
PROGRAM SYNTHESIS / 141

A Deductive Approach to Program
Synthesis

ZOHAR MANNA

Stanford University and Weizmann Institute

and

RICHARD WALDINGER

SRI International

Program synthesis is the systematic derivation of a program from a given specification. A deductive
approach to program synthesis is presented for the construction of recursive programs. This approach
regards program synthesis as a theorem-proving task and relies on a theorem-proving method that
combines the features of transformation rules, unification, and mathematical induction within a single
framework.

Key Words and Phrases: mathematical induction, program synthesis, program transformation, reso-
lution, theorem proving
CR Categories: 3.64, 4.20, 5.21, 5.24

MOTIVATION

The early work in program synthesis relied strongly on mechanical theorem-
proving techniques. The work of Green [5] and Waldinger and Lee [13], for
example, depended on resolution-based theorem proving; however, the difficulty
of representing the principle of mathematical induction in a resolution framework
hampered these systems in the formation of programs with iterative or recursive
loops. More recently, program synthesis and theorem proving have tended to go
their separate ways. Newer theorem-proving systems are able to perform proofs
by mathematical induction (e.g., Boyer and Moore [2]) but are useless for program
synthesis because they have sacrificed the ability to prove theorems involving
existential quantifiers. Recent work in program synthesis (e.g., Burstall and
Darlington [3] and Manna and Waldinger [7]), on the other hand, has abandoned

This research was supported in part by the National Science Foundation under Grants MCS 76-83655
and MCS 78-02591, in part by the Office of Naval Research under Contracts N00014-76-C-0687 and
N00014-75-C-0816, in part by the Defense Advanced Research Projects Agency of the Department of
Defense under Contract MDA903-76-C-0206, and in part by the United States—Israel Binational
Science Foundation.

Authors' addresses: Z. Manna, Department of Computer Science, Stanford University, Stanford, CA
94305; R. Waldinger, Artificial Intelligence Center, SRI International, 333 Ravenswood Ave., Menlo
Park, CA 94025.

142 / DEDUCTION

the theorem-proving approach and has relied instead on the direct application of
transformation or rewriting rules to the program's specification; in choosing this.
path, these systems have renounced the use of such theorem-proving techniquos
as unification or induction.
In this paper we describe a framework for program synthesis that again relies

on a theorem-proving approach. This approach combines techniques of unifica-
tion, mathematical induction, and transformation rules within a single deductive
system. We outline the logical structure of this system without considering the
strategic aspects of how deductions are directed. Although no implementation
exists, the approach is machine oriented and ultimately intended for implemen-
tation in automatic synthesis systems.
In the next section we give examples of specifications accepted by the system.

In the succeeding sections we explain the relation between theorem proving and
our approach to program synthesis.

SPECIFICATION

The specification of a program allows us to express the purpose of the desired
program, without indicating an algorithm by which that purpose is to be achieved.
Specifications may contain high-level constructs that are not computable, but
are close to our way of thinking. Typically, specifications involve such constructs
as the quantifiers for all . . . and for some . . . , the set constructor (x: ..), and
the descriptor find z such that. . . .
For example, to specify a program to compute the integer square root of a

nonnegative integer n, we would write

sqrt(n) 4si find z such that
integer(z) and z2 n < (z + 1)2

where integer(n) and 0 n.

Here, the input condition

integer(n) and 0 5. n

expresses the class of legal inputs to which the program is expected to apply. The
output condition

integer(z) and z2 n < (z + 1)2

describes the relation the output z is intended to satisfy.
To describe a Program to sort a list 1, we might write

sort(l) find z such that
ordered(z) and perm(1, z)

where islist(1).

Here, ordered(z) expresses that the elements of the output list z should be in
nondecreasing order; perm(1, z) expresses that z should be a permutation of the
input 1; and is/ist(/) expresses that 1 can be assumed to be a list.
To describe a program to find the last element of a nonempty list 1, we might

write

last(1) oE find z such that
for some y, 1 = y<>[z]

where islist(1) and 1 r4 .

PROGRAM SYNTHESIS / 143

Here, u<>v denotes the result of appending the two lists u and v; [u] denotes the
list whose sole element is u; and [] denotes the empty list. (Thus, [A B C]< >[D]
yields [A B C DJ; therefore, by the above specification, last([A B C D]) = D.)
In general, we are considering the synthesis of programs whose specifications

have the form

f(a) find z such that R(a, z)
where P(a).

Here, a denotes the input of the desired program and z denotes its output; the
input condition P(a) and the output condition R(a, z) may themselves contain
quantifiers and set constructors (but not the find descriptor).
The above specification describes an applicative program, one which yields an

output but produces no side effects. To derive a program from such a specification,
we attempt to prove a theorem of the form

for all a,
if P(a)
then for some z, R(a, z).

The proof of this theorem must be constructive, in the sense that it must tell us
how to find an output z satisfying the desired output condition. From such a
proof, a program to compute z can be extracted.
The above notation can be extended to describe several related programs at

once. For example, to specify the programs diti(i, j) and rem(i, j) for finding the
integer quotient and remainder, respectively, of dividing a nonnegative integer i
by a positive integer j, we write

(div(i, j), rem(i, j)) find (y, z) such that integer(y) and
integer(z) and i = y.j + z and 0 z and z < j

where integer(i) and integer(j) and 0 :s i and 0 < j .

BASIC STRUCTURE

The basic structure employed in our approach is the sequent, which consists of
two lists of sentences, the assertions A1, A2, ,Am, and the goals GI, G2, • 4 •
G. With each assertion or goal there may be associated an entry called the
output expression. This output entry has no bearing on the proof itself, but
records the program segment that has been constructed at each stage of the
derivation (cf. the "answer literal" in Green [5]). We denote a sequent by a table
with three columns: assertions, goals, and outputs. Each row in the sequent has
the form

assertions goals outputs

A,(a, x) ti(a, x)

or

Gi(a, x) ti(a, x)

The meaning of a sequent is that if all instances of each of the assertions are
true, then some instances of at least one of the goals is true; more precisely, the

144 / DEDUCTION

sequent has the same meaning as its associated sentence

if for all x, A i(a, x) and
for all x, A2(a, x) and

•
for all x, Am(a, x)

then for some x, Gi(a, x) or
for some x, G2(a, x) or

for some x, Gn(a, x)

where a denotes all the constants of the sequent and x denotes all the free
variables. (In general, we denote constants or tuples of constants by a, b, c,.
n and variables or tuples of variables by u, v, w, . . . , z.) If some instance of a goal
is true (or some instance of an assertion is false), the corresponding instance of its
output expression satisfies the given specification. In other words, if some instance
G, (a, e) is true (or some instance A, (a, e) is false), then the corresponding instance
t, (a, e)(or ti (a, e)) is an acceptable output.
Note that (1) an assertion or goal is not required to have an output entry; (2)

an assertion and a goal never occupy the same row of the sequent; (3) the
variables in each row are "dummies" that we can systematically rename without
changing the meaning of the sequent.
The distinction between assertions and goals is artificial and does not increase

the logical power of the deductive system. In fact, if we delete a goal from a
sequent and add its negation as a new assertion, we obtain an equivalent sequent;
similarly, we can delete an assertion from a sequent and add its negation as a new
goal without changing the meaning of the sequent. This property is known as
duality. Nevertheless, the distinction between assertions and goals makes our
deductions easier to understand.

If initially we are given the specification

f (a) find z such that R(a, z)
where P(a),

we construct the initial sequent

assertions goals outputs
f(a)

P(a)
R(a, z) z

In other words, we assume that the input condition P(a) is true, and we want to
prove that for some z, the goal R(a, z) is true; if so, z represents the desired
output of the program f (a). The output z is a variable, for which we can make
substitutions; the input a is a constant. If we prefer, we may remove quantifiers
in P(a) and R(a, z) by the usual skolemization procedure (see, e.g., Nilsson [11]).
The input condition P(a) is not the only assertion in the sequent; typically,

simple, basic axioms, such as u = u, are represented as assertions that are tacitly
present in all sequents. Many properties of the subject domain, however, are
represented by other means, as we shall see.

PROGRAM SYNTHESIS / 145

The deductive system we describe operates by causing new assertions and
goals, and corresponding new output expressions, to be added to the sequent
without changing its meaning. The process terminates if the goal true (or the
assertion false) is produced, whose corresponding output expression consists
entirely of primitives from the target programming language; this expression is
the desired program. In other words, if we develop a row of form

or

true

false

where t is a primitive expression, the desired program is of form

f (a) 4E% t.

Note that this deductive procedure never requires us to establish new sequents
or (except for strategic purposes) to delete an existing assertion or goal. In this
sense, the approach more resembles jesolution than "natural deduction."

Suppose we are requL vd to costruct two related programs f (a) and g (a); i.e.,
we are given the specifiepti,o.

(f (a), g (.:)) find (y, z) such that R(a, y, z)
P(a).

Then we construct an initial sequent with two output columns

assertions goals
outputs

f (a) g (a)

P(a)
R(a, y, z) Y z

If we subsequently succeed in developing a terminal row, say of form

true

where both s and t are primitive expressions, then the desired programs are

f (a) em s

and

g (a) 4m t.

In the remainder of this paper we outline the deductive rules of our system and
their application to program synthesis.

SPLITTING RULES

The splitting rules allow us to decompose an assertion or goal into its logical
components. For example, if our sequent contains an assertion of form F and G,
we can introduce the two assertions F and G into the sequent without changing
its meaning. We will call this the andsplit rule and express it in the following

146 / DEDUCTION

notation:

assertions goals outputs

F and G t

F
G

t
t

This means that if rows matching those above the double line are present in the
sequent, then the corresponding rows below the double line may be added.

Similarly, we have the orsplit rule

and the ifsplit rule

assertions goals outputs

F or G t

F
G

t
t

assertions goals outputs

if F then G t

F
G

t
t

There is no orsplit rule or ifsplit rule for assertions and no andsplit rule for
goals. Note that the output entries for the consequents of the splitting rules are
exactly the same as the entries for their antecedents.

Although initially only the goal has an output entry, the ifsplit rule can
introduce an assertion with an output entry. Such assertions are rare in practice,
but can arise by the action of such rules.

TRANSFORMATION RULES

Transformation rules allow one assertion or goal to be derived from another.
Typically, transformations are expressed as conditional rewriting rules

r= s if P

meaning that in any assertion, goal, or output expression, a subexpression of form
r can be replaced by the corresponding expression of form s, provided that the
condition P holds. We never write such a rule unless r and s are equal terms or
equivalent sentences, whenever condition P holds. For example, the transforma-
tion rule

uEvu= head(v) or u E tail(v) if islist(v) and v 0 [1

expresses that an element belongs to a nonempty list if it equals the head of the
list or belongs to its tail. (Here, head(v) denotes the first element of the list v, and
tail(v) denotes the list of all but the first element.) The rule

u 10 ==s true if integer(u) and u 0

expresses that every nonzero integer divides zero.

PROGRAM SYNTHESIS / 147

If a rule has the vacuous condition true, we write it with no condition; for
example, the logical rule

Q and true = Q

may be applied to any subexpression that matches its left-hand side.
A transformation rule

r = s if P

is not permitted to replace an expression of form s by the corresponding expression
of form r when the condition P holds, even though these two expressions have
the same values. For that purpose, we would require a second rule

s r if P.

For example, we might include the rule

x + 0 = x if number(x)

but not the rule

x = x + 0 if number(x).

Assertions and goals are affected differently by transformation rules. Suppose

r=s ifP

is a transformation rule and F is an assertion containing a subexpression r' which
is not within the scope of any quantifier. Suppose also that there exists a unifier
for rand r', i.e., a substitution 0 such that r0 and r' 0 are identical. Here, re denotes
the result of applying the substitution 8 to the expression r. We can assume that
8 is a "most general" unifier (in the sense of Robinson [12]) of rand r'. We rename
the variables of F, if necessary, to ensure that it has no variables in common with
the transformation rule. By the rule, we can conclude that if PO holds, then r0
and sO are equal terms or equivalent sentences. Therefore, we can add the
assertion

if PO then FO[ill 4- SOI

to our sequent. Here, the notation F0[r0 4-- sO] indicates that every occurrence of
r8 in FO is to be replaced by sO.

For example, suppose we have the assertion

a E land a ri 0

and we apply the transformation rule

tzEu=u= head(v) or u E tail(v) if islist(v) and v 0 0,

taking r' to be a E 1 and 0 to be the substitution [u 4— a; v 4— 1]; then we obtain
the new assertion

if islist(1) and 1,' 0
then (a = head(1) or a E tail(1)) and a 0 0.

Note that a and 1 are constants, while u and v are variables, and indeed, the
substitution was made for the variables of the rule but not for the constants of
the assertion.

148 / DEDUCTION

In general, if the given assertion F has an associated output entry t, the new
output entry is formed by applying the substitution 9 to t. For, suppose some
instance of the new assertion "if PO then FO[rO 4— Se]" is false; then the
corresponding instance of PO is true, and the corresponding instance of
FO[re 4— Sei is false. Then, by the transformation rule, the instances of r0 and se
are equal; hence the corresponding instance of FO is false. We know that if any
instance of F is false, the corresponding instance of t satisfies the given specifi-
cation. Hence, because some instance of FO is false, the corresponding instance of
te is the desired output.
In our deduction rule notation, we write

assertions goals outputs

F t

if PO then FO[r0 4— sO] M.

The corresponding dual deduction rule for goals is

assertions goals outputs

F t

P49 and Fe[r0 4— sO] tO

For example, suppose we have the goal

I alzandbiz z + 1

and we apply the transformation rule

u I 0 true if integer(u) and u 0 0,

taking r' to be a I z and 0 to be the substitution [z 4—O; U 4— a]. Then we obtain
the goal

i

(integer(a) and a 0 0)
and
(true and bl 0)

0 + 1

which can be further transformed to

linteger(a) and a 0 0
and b10

1

Note that applying the transformation rule caused a substitution to be made for
the occurrences of the variable z in the goal and the output entry.

Transformation rules can also be applied to output entries in an analogous
manner.
Transformation rules need not be simple rewriting rules; they may represent

arbitrary procedures. For example, r could be an equation f (x) = a, s could be its
solution x = e, and P could be the condition under which that solution applies.
Another example: the skolemization procedure for removing quantifiers can be
represented as a transformation rule. In fact, decision methods for particular

PROGRAM SYNTHESIS / 149

subtheories may also be represented as transformation rules (see, e.g., Bledsoe
[1] or Nelson and Oppen [9]).

Transformation rules play the role of the "antecedent theorems" and "conse-
quent theorems" of PLANNER (Hewitt [6]). For example, a consequent theorem
that we might write as

to prove f (u) = f (v)
prove u = v

can be represented by the transformation rule

f (u) = f (v) = true if u = v.

This rule will have the desired effect of reducing the goal f (a) = f(b) to the
simpler subgoal a = b, and (like the consequent theorem) will not have the
pernicious side effect of deriving from the simple assertion a = b the more
complex assertion 1(a) = f(b). The axiomatic representation of the same fact
would have both results. (Incidentally, the transformation rule has the beneficial
effect, not shared by the consequent theorem, of deriving from the complex
assertion not(f (a) = f (b)) the simpler assertion not(a = b).)

RESOLUTION

The original resolution principle (Robinson [12]) required that sentences be put
into conjunctive normal form. As a result, the set of clauses sometimes exploded
to an unmanageable size and the proofs lost their intuitive content. The version
of resolution we employ does not require the sentences to be in conjunctive
normal form.
Assume our sequent contains two assertions F and G, containing subsentences

P1 and P2, respectively, that are not within the scope of any quantifier. For the
time being, let us ignore the output expressions corresponding to these assertions.
Suppose there exists a unifier for P1 and P2, i.e., a substitution 8 such that P10
and P28 are identical. We can take 0 to be the most general unifier. The AA-
resolution rule allows us to deduce the new assertion

FO[Pies 4- true] or Ge[P20 4 * false]

and add it to the sequent. Recall that the notation FO[PIO true] indicates that
every instance of the subsentence P10 in FO is to be replaced by true. (Of course,
we may need to do the usual renaming to ensure that F and G have no variables
in common.) We will call 0 the unifying substitution and P10(=P20) the eliminated
subexpression; the deduced assertion is called the resolvent. Note that the rule
is symmetric, so the roles of F and G may be reversed.
For example, suppose our sequent contains the assertions

if (P(x) and Q(b)) then R(x)

and

P(a) and Q(y).

The two subsentences "P(x) and Q(b)" and "P(a) and Q(y)" can be unified by
the substitution

e = [x 4— a; y 4-- b].

150 / DEDUCTION

Therefore, the AA-resolution rule allows us to eliminate the subexpression "P(a)
and Q(b)" and derive the conclusion

(if true then R(a)) or false,

which reduces to
R(a)

by application of the appropriate transformation rules.
The conventional resolution rule may be regarded as a special case of the above

AA-resolution rule. The conventional rule allows us to derive from the two
assertions

and

the new assertion

(not P1) or Q

P2 or R

QO or RO,

where 0 is a most general unifier of P, and P2. From the same two assertions we
can use our AA-resolution rule to derive

(((not PI or Q)0)[P18 4-- true] or “(P2 or R)0)[P28 4'""' false]

((not true) or Q8) or (false or R8),

which reduces to the same conclusion

(28 or Re

as the original resolution rule.
The justification for the AA-resolution rule is straightforward: Because F holds,

if P18 is true, then FO[P10 true] holds; on the other hand, because G holds, if
P10(=P28) is false, GO[P20 4-- false] holds. In either case, the disjunction

FO[Pie true] or GO[P20 4-• false]

holds.
A "nonclausal" resolution rule similar to ours has been developed by Murray

[8]. Other such rules have been proposed by Wilkins [14] and Nilsson [10].

THE RESOLUTION RULES

We have defined the AA-resolution rule to derive conclusions from assertions.
The AA-resolution rule

assertions goals

FO[PIO 4-- true] or GO[P20 4— false]

where P10 = P20, and 9 is most general.
By duality, we can regard goals as negated assertions; consequently, the

following three rules are corollaries of the AA-resolution rule.

PROGRAM SYNTHESIS / 151

The GG-resolution rule

assertions goals

FO[PIO 4-- true] and G9[P20 false]

The GA-resolution rule

assertions goals

F9[1310 4— true] and
not (GO[P20 4- false])

The AG-resolution rule

assertions goals

F
G

not(F6[13,0 4— true]) and
GO[P28 4-.. false]

where P1, P2, and 0 satisfy the same condition as for the AA-resolution rule.
Up to now, we have ignored the output expressions of the assertions and goals.

However, if at least one of the sentences to which a resolution rule is applied has
a corresponding output expression, the resolvent will also have an output expres-
sion. If only one of the sentences has an output expression, say t, then the
resolvent will have the output expression W. On the other hand, if the two
sentences F and G have output expressions t1 and t2, respectively, the resolvent
will have the output expression

if 1310 then t10 else 128.

(Of course, if t10 and t20 are identical, no conditional expression need be formed;
the output expression is simply t10.)
The justification for constructing this conditional as an output expression is as

follows. We consider only the GG case: Suppose that the goal

FO[P,B 4-- true] and GO[P20 4-- false]

has been obtained by GG-resolution from two goals F and G. We would like to
show that if the goal is true, the conditional output expression satisfies the desired
specification. We assume that the resolvent is true; therefore both FO[PIO 4-- true]
and GO[P20 false] are true. In the case that PIO is true, we have that FO is also
true. Consequently, the corresponding instance tIO of the output expression t,
satisfies the specification of the desired program. In the other case, in which P10
is false, P20 is false, and the same reasoning allows us to conclude that t20 satisfies
the specification of the desired program. In either case we can conclude that the

152 / DEDUCTION

conditional

if P10 then t10 else t20

satisfies the desired specification. By duality, the same output expression can be
derived for the AA-resolution, GA-resolution, and AG-resolution.
For example, let u • v denote the operation of inserting u before the first element

of the list v, and suppose we have the goal

assertions goals outputs
f (a, b)

head(z) = a and tail(z) = b z

and we have the assertion

head(u • v) = u

with no output expression; then by, GA-resolution, applying the substitution

= [u 4-- a; z 4— a • v]

and eliminating the subsentence

head(a • v) = a,

we obtain the new goal

(true and tail(a • v) = b) and
(not false)

a • v

which can be reduced to

tail(a • v) = b a•v

by application of the appropriate transformation rules. Note that we have applied
the substitution[u 4— a; Z 4- a • v] to the original output expression z, obtaining
the new output expression a • v. Therefore, if we can find v such that taiga • v) =
b, the corresponding instance of a • v will satisfy the desired specification.
Another example: Suppose we have derived the two goals

assertions goals
outputs
max(1)

max(tail(1)) a. head(1)
and tail(1) 0 [1

not(max(tail(1)) a head(1))
and tail(1) r‘ 1]

_
max(tail(1))

head(1)

Then by GG-resolution, eliminating the subsentence max(tail(1)) head(1), we
can derive the new goal

(true and tail(1) [1) and
(not false) and tail(1) [11

if max(tail(1)) head(1)
then max(tail(1))
else head(1)

PROGRAM SYNTHESIS / 153

which can be reduced to

tail(1) if max(tail(1)) head(1)
then max(tail(1))
else head(1)

THE POLARITY STRATEGY

Not all applications of the resolution rules will produce valuable conclusions. For
example, suppose we are given the goal

assertions goals outputs

1P(c, x) and Q(x, a)

and the assertion

!if P(y, d) then Q(b, y)1

Then if we apply GA-resolution, eliminating Q(b, a), we can obtain the resolvent

(P(c, b) and true) and not(if P(a, d) then false),

which reduces to the goal

P(c, b) and P(a, d)

However, we can also apply GA-resolution and eliminate P(c, d), yielding the
resolvent

(true and Q(d, a)) and not(if false then Q(b, c)),

which reduces to the trivial goal

false

Finally, we can also apply AG-resolution to the same assertion and goal in two
different ways, eliminating P(c, d) and eliminating Q(b, a); both of these appli-
cations lead to the same trivial goal false.
A polarity strategy adapted from Murray [8] restricts the resolution rules to

prevent many such fruitless applications. We first assign a polarity (either positive
or negative) to every subsentence of a given sequent as follows:

(1) each goal is positive;
(2) each assertion is negative;
(3) if a subsentence S has form "not a," then its component a has polarity

opposite to S;
(4) if a subsentence S has form "a and 13," "a or 13," "for all x, a," or "for some

x, 13," then its components a and 13 have the same polarity as S;
(5) if a subsentence S has form "if a then f3," then # has the same polarity as

S, but a has the opposite polarity.

154 / DEDUCTION

For example, the above goal and assertion are annotated with the polarity of
each subsentence, as follows:

assertions goals outputs

(if P(y, dr then Q(b, y)-)-
(P(c, x)* and Q(x, a)+)*

The four resolution rules we have presented replace certain subsentences by
true, and others by false. The polarity strategy, then, permits a subsentence to be
replaced by true only if it has at least one positive occurrence, and by false only
if it has at least one negative occurrence. For example, we are permitted to apply
GA-resolution to the above goal and assertion, eliminating Q(b, a) because
Q(x, a), which is replaced by true, occurs positively in the goal, and Q(b, y), which
is replaced by false, occurs negatively in the assertion. On the other hand, we are
not permitted to apply GA-resolution to eliminate P(c, d), because P(y, d), which
is replaced by false, only occurs positively in the assertion. Similarly, we are not
permitted to apply AG-resolution between this assertion and goal, whether we
eliminate P(c, d) or Q(b, a). Indeed, the only application of resolution permitted
by the polarity strategy is the one that led to a nontrivial conclusion.

The deductive system we have presented so far, including the splitting rules,
the resolution rules, and an appropriate set of logical transformation rules, has
been proved by Murray to constitute a complete system for first-order logic, in
the sense that a derivation exists for every valid sentence. (Actually, only the
resolution rules and some of the logical transformation rules are strictly neces-
sary.) The above polarity strategy does not interfere with the completeness of
the system.

MATHEMATICAL INDUCTION AND THE FORMATION OF RECURSIVE CALLS

Mathematical induction is of special importance for deductive systems intended
for program synthesis because it is only by the application of some form of the
induction principle that recursive calls or iterative loops are introduced into the
program being constructed. The induction rule we employ is a version of the
principle of mathematical induction over a well-founded set, known in the
computer science literature as "structural induction."
We may describe this principle as follows: In attempting to prove that a

sentence of form.F(a) holds for an arbitrary element a of some well-founded set,
we may assume inductively that the sentence holds for all u that are strictly less
than a in the well-founded ordering <u,. Thus, in trying to prove F (a), the well-
founded induction principle allows us to assume the induction hypothesis

for all u, if u <„, a then F(u).

In the case that the well-founded set is the nonnegative integers under the
usual < ordering, well-founded induction reduces to the familiar complete induc-
tion principle: To prove that F(n) holds for an arbitrary nonnegative integer n,
we may assume inductively that the sentence F(u) holds for all nonnegative
integers u such that u <n.
In our inference system, the principle of well-founded induction is represented

PROGRAM SYNTHESIS / 155

as a deduction rule (rather than, say, an axiom schema). We present only a
special case of this rule here.
Suppose we are constructing a program whose specification is of form

f (a) find z such that R(a, z)

where P(a).

Our initial sequent is thus

assertions goals outputs
Ra)

P(a)
R(a, z) z

Then we can always add to our sequent a new assertion, the induction hypothesis

if u -c, a
then if P(u)

then R(u,j(u))

Here, f denotes the program we are trying to construct. The well-founded set and
the particular well-founded -<u, to be employed in the proof have not yet been
determined. If the induction hypothesis is used more than once in the proof, it
always refers to the same well-founded ordering -<,„.
Let us paraphrase: We are attempting to construct a program [such that for an

arbitrary input a satisfying the input condition P(a), the output [(a) will satisfy
the output condition R(a, [(a)). By the well-founded induction principle, we can
assume inductively that for every u less than a (in some well-founded ordering)
such that the input condition P(u) holds, the output (u) will satisfy the same
output condition R(u, f (u)). By employing the induction hypothesis in the proof,
recursive calls to [can be introduced into the output expression for [(a).
As we shall see in a later section, we can introduce an induction hypothesis

corresponding to any subset of the Rssertions or goals in our sequent, not just the
initial assertion and goal; most of these induction hypotheses are not relevant to
the final proof, and the. proliferation of new assertions obstructs our efforts to
find a proof. Therefore, we employ the following recurrence strategy for deter-
mining when to introduce an induction hypothesis.
Let us restrict our attention to the case where the induction hypothesis is

formed from the initial sequent. Suppose that at some point in the derivation a
goal is developed of form

R(s, z') t(Z)

where s is an arbitrary term. In other woids, the new goal is a precise instance of
the initial goal R(a, z) obtained by replacing a by s. This recurrence motivates us
to add the induction hypothesis

if u <“, a
then if P(u)

then R(u,f(u))

156 / DEDUCTION

The rationale for introducing the induction hypothesis at this point is that now
we can perform GA-resolution between the newly developed goal R(s, z') and the
induction hypothesis. The resulting goal is then

true and
not ifs a

then if P(s)
then false

t(i(s))

This simplifies (by the application of logical transformation rules) to

S -<„ a and P(s) t(f (s))

Note that a recursive call f (s) has been introduced into the output expression for
f (a). By proving the expression s -4, a, we ensure that this recursive call will
terminate; by proving the expression P(s), we guarantee that the argument s of
the recursive call will satisfy the input condition of the program f.
The particular well-founded ordering -4 to be employed by the proof has not

yet been determined. We assume the existence of transformation rules of form

u v =1. true if Q(u, v)

capable of choosing or combining well-founded orderings applicable to the partic-
ular theories under consideration (e.g., numbers, lists, and sets).
Let us look at an example. Suppose we are constructing two programs div(i, j)

and rem(i, j) to compute the quotient and remainder, respectively, of dividing a
nonnegative integer i by a positive integer j; the specification may be expressed
as

(div(i, j), rem(i, j)) find (y, z) such that
i + z and 0 z and z <j

where 0 5_ i and 0 < j.

(Note that, for simplicity, we have omitted type requirements such as integer(i).)
Our initial sequent is then

assertions goals outputsoutprem(i, j)div(i, j)

0 _. . i and 0 < j
i = y.j + z and 0 5- z and z < j y z

Here, the inputs i and j are constants, for which we can make no substitution; y
and the output z are variables.
Assume that during the course of the derivation we develop the goal

j—j=y1.j4 z and 0 z and z < j yi+1

This goal is a precise instance of the initial goal

i y.j + z and 0 z and z <f

PROGRAM SYNTHESIS / 157

obtained by replacing i by i—j. Therefore, we add as a new assertion the induction
hypothesis.

if (lib az) <.(i, i)
then if 0 5 ul and 0 < u2

then ui = div(ul, u2) • u2 + rem(ul, u2)
and 0 5_ rem(ul, 142) and rem(ul, 142) <u2

Here, <E,.. is an arbitrary well-founded ordering, defined on pairs because the
desired program [has a pair of inputs.
We can now apply GA-resolution between the goal

i—j = ypj + z and 0 z and z <j Y1+1

and the induction hypothesis; the unifying substitution 0 is

rut i—f; u2 f; yl div(i—j,i); z rem(i---i,1)].

The new goal is

true and
not (if (i—j, j) <„.(i, j)

then if 05 i—j and 0 < j
then false)

div(i—j, j)+1 rem(i—j, j)

which reduces to

(i—j, j) <„.(i, j) and div(i—j, j)+1 rem(i—j, j)
0 5_ i — j and 0 <j

Note that the recursive calls div(i—j,j) and rem(i—j,j) have been introduced into
the output entry.
The particular well-founded ordering <u, to be employed in the proof has not

yet been determined. It can be chosen to be the < ordering on the first component
of the pairs, by application of the transformation rule

(ul, u2) <NI(vi, v2) true if u1 < vi and 0 5 ui and 05 v.

A new goal

i—j < i and 0 5 i—j and 0 .5 i div(i—j, j)+1 rem(i—j, j)
and true
and 0 5 i—j and 0 < j

is produced; this goal ultimately reduces to

div(i—j, j)+1 rem(i—j, j)

In other words, in the case that j i, the outputs div(i—j, j)+1 and rem(t—j, j)
satisfy the desired program's specification. In the next section, we give the full
derivation of these programs.

In our presentation of the induction rule, several limitations were imposed for
simplicity but are not actually essential:

(1) In the example we considered, the only skolem functions in the initial

158 / DEDUCTION

sequent are the constants corresponding to the program's inputs, and the only
variables are those corresponding to the program's outputs; the sequent was of
form

assertions

:P(a)

goals

R(a, z)

outputs
f(a)

In forming the induction hypothesis, the skolem constant a is replaced by a
variable u and the variable z is replaced by the term f (u); the induction hypothesis
was of form

if u -<„ a
then if P(u)

then R(u, 1(u))

However, if there are other skolem functions in the initial sequent, they too
must be replaced by variables in the induction hypothesis; if there are other
variables in the initial sequent, they must be replaced by new skolem functions.
For example, suppose the initial sequent is of form

f (a) find z such that

for all xi,

for some X),

R(a, z, xi, x2)

where P(a).

Then the initial sequent is of form

assertions

P(a)

goals

I R(a, 2, g1(2), x2)

outputs
f (a)

where R., (z) is the skolem function corresponding to xl. The induction hypothesis
is then of form

if u < a
then if P(u)

then R(u, f (u), v,g2(u,v))

Here, the skolem function g1(z) has been replaced by the variable v, and the
variable x4 has been replaced by a new skolem function g2(u, v).
(2) One limitation to the recurrence strategy was that the induction hypothesis

was introduced only when an entire goal is an instance of the initial goal. In fact,
the strategy can be extended so that the hypothesis is introduced when some
subsentence of a goal is an instance of some subsentence of the initial goal,
because the resolution rule can then be applied between the goal and the
induction hypothesis. This extension is straightforward.

PROGRAM SYNTHESIS / 159

(3) A final observation: The induction hypothesis was always formed directly
from the initial sequent; thus, the theorem itself was proved by induction. In later
sections we extend the rule so that induction can be applied to lemmas that are
stronger or more general than the theorem itself. This extension also accounts for
the formation of auxiliary procedures in the program being constructed.

Some early efforts toward incorporating mathematical induction in a resolution
framework were made by Darlington [4]. His system treated the induction
principle as a second-order axiom schema rather than as a deduction rule; it had
a limited ability to perform second-order unifications.

A COMPLETE EXAMPLE: FINDING THE QUOTIENT OF TWO INTEGERS

In this section, we present a complete example that exploits most of the features
of the deductive synthesis approach. Our task is to construct programs div(i, j)
and rem(i, j) for finding the integer quotient of dividing a nonnegative integer i
by a positive integer j. Portions of this synthesis have been used to illustrate the
induction principle in the previous section.
Our specification is expressed as

(div(i, j), rem(i, j)) find (y, z) such that
i y + z and 0 5_ z and z <3

where 0 5. i and 0 <j.

(For simplicity, we again omit type conditions, such as integer(i), from this
discussion.) Our initial sequent is therefore

assertions goals
outputs

div(i, j) rem(i, j)

1. 0 5 i and 0 < j
2. i = y.,/ + z and
0 5 z and z < j

Y z

(Note that we are enumerating the assertions and goals.)
In presenting the derivation we sometimes apply simple logical and algebraic

transformation rules without mentioning them explicitly. We assume that our
background knowledge includes the two assertions

3. u = u
4. u 5 v or v < u

Applying the andsplit rule to assertion 1 yields the new assertions

5. 0....5 i
6. 0 < j

Assume we have the following transformation rules that define integer multipli-
cation: 0. v = 0

(u+1)•v= u•v + v.

160 / DEDUCTION

Applying the first of these rules to the subexpression y.j in goal 2 yields

7. i = 0 + z and 0 5 z and z <I 0

The unifying substitution in deriving goal 7 is

8 = [y —0;v4 4--)1;

applying this substitution to the output entry y produced the new output 0.
Applying the numerical transformation rule

0 + v

yields

8. i = z and 0 z and z < j 0

The GA-resolution rule can now be applied between goal 8 and the equality
assertion 3, u = u. The unifying substitution is

8 = [u 4-- i; z i]

and the eliminated subexpression is i = i; we obtain

9. 05iandi<j 0

By applying GA-resolution again, against assertion 5, 0 i, we obtain

10. i < j 0

In other words, we have found that in the case that i <j, the output 0 will satisfy
the specification for the quotient program and the output i will satisfy the
specification for the remainder program.

Let us return our attention to the initial goal 2,

i = y.j + z and 0 5 z and z <j.

Recall that we have a second transformation rule

(u+ 1) • Li u • u +

for the multiplication function. Applying this rule to goal 2 yields

11. = yrj + j + z and + 1
0 z and z < j

where yi is a new variable. Here, the unifying substitution is

8 = [y 1-y1+1; u v•-j];

applying this substitution to the output entry y produced the new output yi+1 in
the div program.
The transformation rule

U = v + iv= U - V = w

PROGRAM SYNTHESIS / 161

applied to goal 11 yields

I 12. i—j = + z
andO5randz<j

Goal 12 is a precise instance of the initial goal 2,

i =y.j+ z and 0 z and z <j,

obtained by replacing the input i by (Again, the replacement of the dummy
variable y by yi is not significant.) Therefore, the following induction hypothesis
is formed:

13. if (ui, u2) <(i, J)
thee,. if 0 ul and 0 < u2

then ul = div(ui, u2)•u2 + rem(ul, u2) and
0 :5 rem(ui, u2) and rem(ul, u2) <u2

Here, <„ is an arbitrary well-founded ordering.
By applying GA-resolution between goal 12 and the induction hypothesis, we

obtain the goal

I 14. true and
not (if (i-j, j) <a,(i,j)

then if 0 5 i-j and 0 < j
then false)

div(i-j, j) + 1 rem(i-j, j) I

Here, the unifying substitution is

= [u1.-i—j; u2 4--j; diV(j7i, j); rem(i—j, j)]

and the eliminated subexpression is

i—j = div(i—j, j).j + rem(i—j, j) and 0 :s rem(i—j, j) and rem(i—j, j) < j.

Note that the substitution to the variable yi has caused the output entry
yl + 1 to be changed to div(i—j, j) + 1 and the output entry z to be replaced by
rem(i—j, j). The use of the induction hypothesis has introduced the recursive
calls div(i—j, j) and rem(i—j, j) into the output.
Goal 14 reduces to

15. (i-j, .1) <.•(i, .1.) div(i-j, j) + 1 rem(i-j, j)
and05i-jand0<j

The particular ordering <u has not yet been determined; however, it is chosen to
be the < ordering on the first component of the pairs, by application of the
transformation rule

(111, U2) <NI (VI, V2) true if ul < vi and 05. 141 and 05 v

A new goal is produced:

16. i—j < i and 0 i-j and 0 i +
'
I and 0 i-j and 0 < j

rem(i-j, j)

162 / DEDUCTION

Note that the conditions of the transformation rule caused new conjuncts to be
added to the goal.
By application of algebraic and logical transformation rules, and GA-resolution

with the assertion 5, 0 i, and assertion 6, 0 <j, goal 16 is reduced to

17. j i div(i—j,j) + 1 rem(i—j, j)

In other words, we have learned that in the case that j i, the outputs dtv(i—j,
j) + 1 and rem(i—j, j) satisfy the specification of the div program. On the other
hand, in deriving goal 10 we learned that in the case that i <j, 0 and i are
satisfactory outputs. Assuming we have the assertion 4

U v or v < u,

we can obtain the goal

18. not(i < j)

by GA-resolution.
The final goal

div(i—j,j) + 1 rem(i—j, j)

r

19. true if i < j
then 0
else div(i—j,j) + 1

if i < j
then i
else rem(i—j,j)

can then be obtained by GG-resolution between goals 10 and 18. The conditional
expressions have been formed because both goals have a corresponding output
entry. Because we have developed the goal true and a corresponding primitive
output entry, the derivation is complete. The final programs

div(i, j) if i < j
then 0
else div(i—j,j) + 1

and

rem(i, j) if i
then i
else rem(i—j, j)

are obtained directly from the final output entries.

THE FORMATION OF AUXILIARY PROCEDURES

We have remarked that mathematical induction need not be restricted to apply
only to the initial assertion and goal but may legitimately be applied to any
subset of the assertions and goals in the sequent. In fact, when induction is
applied in this more general setting, auxiliary procedures may be introduced into
the program being constructed. For example, in constructing a program sort to
order a list, we might introduce an auxiliary procedure merge to insert a number
in its place in an ordered list of numbers. In this section we develop the extended

form of the induction principle that accounts for the formation of auxiliary
procedures. We begin with a description of the recurrence strategy that applies

to this extended induction.

PROGRAM SYNTHESIS / 163

Assume that we are in the process of constructing a program f(a) whose
specification is of form

f (a) 4Es find z such that R(a, z)

where P(a).

Then our initial sequent is of form

assertions goals outputs
1(a)

P(a)
R(a, z)

Let goal A be any goal obtained during the derivation of 1(a), and assume that
goal A is of form

A: R' (a, z') t'(z')

Suppose that by applying deduction rules successively to goal A and to the
assertions P(a), P(a), . . . , Pk(a) of the sequent, we obtain a goal B of form

B: R'(s, z")

where s is an arbitrary term. (For simplicity, we assume that no goals are required
other than those derived from goal A, and that none of the k required assertions
have associated output entries.)
In summation, we have developed a new goal (goal B) that is a precise instance

of the earlier goal (goal A), obtained by replacing the input a by the term s. This
recurrence motivates us to define an auxiliary procedure fnew(a) whose output
condition is goal A; we then hope to achieve goal B by a recursive call to the new
procedure.
Let us be more precise. The specification for fnew(a') is

fnew(a') *ea find z' such that R'(a', z')
where FY (a').

Here, the input condition P'(a1) is P(a') and .121 (a') and • • • and P'k (a'). If we
succeed in constructing a program that meets this specification, we can employ
it as an auxiliary procedure of the main program [(a).

Consequently., at this point we add a new output column for fnew(a') to the
sequent, and we introduce the new rows

A':

assertions goals
outputs 1

1(a) fnew(a')

P'(a')
Rla', z') Ofnew(a))

I

z'

Note that in these rows we have replaced the input constant a by a new constant
a'. This step is logically necessary; adding the induction hypothesis without
renaming the constant can lead to false results. The second row (goal A') indicates
that if we succeed in constructing fnew(a') to satisfy the above specification, then
f(a) may be computed by a call e(fnew(a)) to the new procedure.

164 / DEDUCTION

By introducing the procedure fnew(a') we are able to call it recursively. In
other words, we are now able to form an induction hypothesis from the assertion
P'(a') and the goal R' (a', z'), namely,

if u' <„.., a'
then if P'(u')

then R'(u', fnew(u'))

If this assertion is employed during a proof, a recursive call to fnew can be
introduced into the output column for fnew(a'). The well-founded ordering
corresponding to fnew(a') may be distinct from the ordering < corresponding to
f (a).

Note that we do not begin a new sequent for the derivation of the auxiliary
procedure fnew; the synthesis of the main program f (a) and the auxiliary
procedure fnew(a') are both conducted by applying derivation rules to the same
sequent. Those rows with output entries for fnew(a') always have the expression
t'(fnew(a)) as the output entry for [(a).
Suppose we ultimately succeed in obtaining the goal true with primitive output

entries t and t':

assertions goals
outputs

1(a) fnew(d)

true t t'

Then the final program is

f (a) 4Es t

and

fnew(a') 42* t'.

Note that although the portion of the derivation leading from goal A to goal B
serves to motivate the formation of the auxiliary procedure, it may actually have
no part in the derivation of the final program; its role has been taken over by the
derivation of goal B' from goal A'.

It is possible to introduce many auxiliary procedures for the same main
program, each adding a new output column to the sequent. An auxiliary procedure
may have its own set of auxiliary procedures. An auxiliary procedure may call the
main program or any of the other procedures; in other words, the system of
procedures can be "mutually recursive."

If we fail to complete the derivation of an auxiliary procedure fnew(a'), we
may still succeed in finding some other way of completing the derivation of f(a)
without using fnew, by applying deduction rules to rows that have no output
entry for fnew(a').
To illustrate the formation of auxiliary procedures, we consider the synthesis

of a program cart(s, t) to compute the cartesian product of two (finite) sets s and
t, i.e., the set of all pairs whose first component belongs to s and whose second

PROGRAM SYNTHESIS / 165

component belongs to t. The specification for this program is

cart(s, 1) find z such that

z= ((a, b): a E s and b E t).

The initial sequent is then

7_

i
assertions goals Outputs

cart(s, t)

z= ((a, b): a E s and b E t)

(Note that this specification has no input condition, except for the type condition
isset(s) and isset(t), which we omit for simplicity.)
We denote the empty set by (). If u is a nonempty set, then choice(u) denotes

some particular element of u, and rest(u) denotes the set of all other elements.
We assume that the transformation rules concerning finite sets include:

u E v false if v = ()

uEv=u= choice(v) or u E rest(v) if v ()

(u: false) = ()

P or Q) = (u: P) U (u: Q)

rest(u) < u = true if u 0 0

(w u = v) (v) (where u does not occur in v)

We will not reproduce the complete derivation, but only those portions that
concern the formation of auxiliary procedures.
By application of deduction rules to the initial sequent, we obtain the goal

A: z' = ((a, b): a = choice(s) and b E t) ifs= ()
then 0
else z' U cart(rest(s), t)

By applying several deductive rules to this goal alone, we obtain the new goal

B: z" = ((a, b): a = choice(s) and b E rest(t)) if t =
then {)
else ifs = ()

then ()
else (choice(s), choice(t)) U

cart(rest(s), t) U z"

This goal is a precise instance of the earlier goal; consequently, our recurrence
strategy motivates us to form an auxiliary procedure cartnew(s, t) having the
earlier goal as its output specification, i.e.,

cartnew(s', t') ((a, b): a = choice(s') and bE t').

We therefore introduce an additional output column corresponding to the new

166 / DEDUCTION

procedure, and we add to the sequent the row

A':

assertions goals
outputs

cart(s, t) cartnew(s', t')

z' = ((a, b): a = choice(s)
and b E e)

ifs = ()
then ()
else cartnew(s, t) U

cart(rest(s), t)

z'

The induction hypothesis corresponding to this goal is then

if (u', v') <u,(s', t')
then cartnew(u', v') = ((a, b): a = choice(u.) and b E v'}

By applying deduction rules to the new goal, we obtain the goal

B': z" = ((a, b): a = choice(s') ifs = 0 if t' = 0
and b E rest(r)) then {} then ()

else cartnew(s, t) U else (choice(s'), choice(t'))
cart(rest(s), t) U z"

Applying GA-resolution between this goal and the induction hypothesis, and
simplying by transformation rules, we obtain the goal

(s', rest(r)) <,.(s', e) ifs = 0 if (= 0
then () then ()
else cartnew(s, t) U else (choice(s'), choice(e))

cart(rest(s), t) U cartnew(s', rest(e))

Note that a recursive call has now appeared in the output entry for the auxiliary
procedure cartnew. By further transformation, the well-founded ordering -<„,, is
chosen to be <8.2, defined by

(111, U2) "<n(Vi, V2) if u2 is a proper subset of v2.

The final program obtained from this derivation is

cart(s, t) 4=3 ifs =
then ()
else cartnew(s, t) U

cart(rest(s), t)

cartnew(s', t') os if t' = ()
then
else (choice(s.), choice(r)) U

cartnew(s', rest(t')).

There are a few extensions to the method for forming auxiliary procedures that
we will not describe in detail:
(1) We have been led to introduce an auxiliary procedure when an entire goal

was found to be an instance of a previous goal. As we remarked in the section on

PROGRAM SYNTHESIS / 167

mathematical induction, we can actually introduce an auxiliary procedure when
some subsentence of a goal is an instance of some subsentence of a previous goal.
(2) Special treatment is required if the assertions and goal incorporated into

the induction hypothesis contain more than one occurrence of the same skolem
function. We do not describe the formation of such an induction hypothesis here.
(3) To complete the derivation of the auxiliary procedure, we may be forced to

weaken or strengthen its specification by adding input or output conditions
incrementally. We do not present here the extension of the procedure-formation
principle that permits this flexibility.

GENERALIZATION

In performing a proof by mathematical induction, it is often necessary to gener-
alize the theorem to be proved, so as to have the advantage of a stronger induction
hypothesis in proving the inductive step. Paradoxically, the more general state-
ment may be easier to prove. If the proof is part of the synthesis of a program,
generalizing the theorem can result in the construction of a more general proce-
dure, so that recursive calls to the procedure will be able to achieve the desired
subgoals. The recurrence strategy we have outlined earlier provides a strong clue
as to how the theorem is to be generalized.
We have formed an auxiliary procedure when a goal is found to be a precise

instance of a previous goal. However, in some derivations it is found that the new
goal is not a precise instance of the earlier goal, but that both are instances of
some more general expression. This situation suggests introducing a new auxiliary
procedure whose output condition is the more general expression, in the hope
that both goals may be achieved by calls to this procedure.
Let us be more precise. Suppose we are in the midst of a derivation and that

we have already developed a goal A, of form

A:

where si is an arbitrary term. Assume that by applying deduction rules only to
goal A and some assertions Pi (a), . . . , P(a), we obtain a goal B, of form

assertions outputs
t (a)

R' (a, Si, z1) I t1(z1)

goals

B: R'(a, 32, Z2) t2(Z2)

where s2 is a term that does not match Si. Thus, the new goal (goal B) is not a
precise instance of the earlier goal (goal A). Hence, if an induction hypothesis is
formed for goal A itself, the resolution rule cannot be applied between goal B and
the induction hypothesis.
However, both goals A and B may be regarded as instances of the more general

expression R' (a, b', z'), where b' is a new constant: goal A is obtained by replacing
b' by sl, and goal B is obtained by replacing b' by s2. This suggests that we
attempt to establish a more general expression (goal A') hoping that the proof of
goal A' will contain a subgoal (goal B') corresponding to the original goal B, so
that the induction hypothesis resulting from goal A' will be strong enough to
establish goal B'.

168 / DEDUCTION

The new goal A' constitutes the output condition for an auxiliary procedure,
whose specification is

fnew(a', b') 4m find z' such that Ifla', b', z')
where P'(a').

(Here, P (a') is the conjunction Pi (a') and 134(a') • • • and P;(a').) Consequently,

we introduce a new output column to the sequent, and we add the new assertion

assertions goals
outputs

1(a) fnew(a', b')

P(a')

and the new goal

A': R'(a', b', z')ti(fnew(a, z'

(Note again that it is logically neceRgary to replace the input constant a by a new
constant a'.) Corresponding to this assertion and goal we have the induction
hypothesis

if (u', v') -<... (a', b')
then if Plu')

then R(u', v', fnew(u', v'))

There is no guarantee that we will be able to develop from goal A' a goal B' such
that the resolution rule can be applied between goal B' and the induction
hypothesis. Nor can we be sure that we will conclude the derivation of mew
successfully. If we fail to derive fnew, we may still complete the derivation of fin
some other way.
We illustrate the generalization process with an example that also serves to

show how program-synthesis techniques can be applied as well to program
transformation (see, e.g., Burstall and Darlington [3]). In this application we are

given a clear and concise program, which may be inefficient; we attempt to derive

an equivalent program that is more efficient, even though it may be neither clear

nor concise.
We are given the program

reverse(1) 43E if 1 =
then
else reverse(tail(1))<>[head(1)]

for reversing the order of the elements of a list 1. Here, head(1) is the first element

of a nonempty list 1 and tail(1) is the list of all but the first element of 1. Recall

that u<> v is the result of appending two lists u and v, [] denotes the empty list,

and [w] is the list whose sole element is w. As usual, we omit type conditions,

such as islist(/), from our discussion.

This reverse program is inefficient, for it requires many recursive calls to

reverse and to the append procedure< > . We attempt to transform it to a more

efficient version. The specification for the transformed program rev(1) is

rev(1) on find zi such that z1 = reverse(1).

PROGRAM SYNTHESIS / 169

The initial sequent is thus

A:

assertions goals outputs
reu(1)

zi = reverse(1) zi

The given reverse program is not considered to be a primitive. However, we
admit the transformation rules

reverse(u)=H if u =

and

reverse(u)= reuerse(tall(u)) <> [head(u)] if u 0;

obtained directly from the reverse program.
We assume that the transformation rules we have concerning lists include:

head(u•v)= u

tail(u•v)= v

[u]= u•0

(u•v = = false

(where u• u is the result of inserting u before the first element of the list v; it is the

Lisp cons function)

u<>v v if u =

u<>v= u if v=0

u< >v = head(u)•(tail(u)<> v) if u

(u<>v)<>w=u<>(v<>w)

tail(1)-<Ll= true if 10

Applying transformation rules to the initial goal, we obtain a subgoal

B: z2 = reverse(tail(1))<>[head(1)] if 1 =
then
else z2

This goal is not a precise instance or goal i. however, botn goals may be regarded
as instances of the more general expression

z' = reverse(1')<> 171".

Goal A is obtained by replacing l' by tail(1) and m' by (.1 (because u< >[J = u),
and goal B is obtained by replacing l' by tail(1) and m' by [head(l)J. This suggests
that we attempt to construct an auxiliary procedure having the more general
expression as an output condition; the specification for this procedure is

revnew(1', find z such that z' = reverse(1')<> m'.

Consequently, we introduce a new output column to the sequent, and we add the

170 / DEDUCTION

new goal

A'•
assertions goals

outputs
rev(I) revnew(r, m')

z' = reverse(r)< > m' revnew(1, DI z'i

The induction hypothesis corresponding to this goal is then

if (u', v') < (1', m')
then revnew(u', v') = reverse(u')< > v'

By applying deduction rules to the goal A', we eventually obtain

B':

assertions goals
outputs

rev(1) revnew(r , m')

z" = reverse(tail(r))<> (head(r)• m') revnew(1, 0) if i' =0
then m'
else z"

We succeed in applying the resolution rule between this goal and the induction
hypothesis.

Ultimately, we obtain the fmal program

rev(1) revnew(1,

revnew(r, m') if l' =

then m'

else revnew(tail(r), head(r)•rn').

This program turns out to be more efficient than the given program reverse(1);
it is essentially iterative and employs the insertion operation • instead of the
expensive append operation < > . In general, however, we have no guarantee that
the program produced by this approach will be more efficient than the given
program. A possible remedy is to include efficiency criteria explicitly in the
specification of the program. For example, we might require that the rev program
should run in time linear to the length of 1. In proving the theorem obtained from
such a specification, we would be ensuring that the program constructed would
operate within the specified limitations. Of course, the difficulty of the theorem-
proving task would be compounded by such measures.
Some generalizations are quite straightforward to discover. For example, if goal

A is of form R' (a, 0, z1) and goal B is of form R' (a, 1, z2), this immediately
suggests that we employ the general expression R' (a, b', z'). Other generalizations
may require more ingenuity to discover. In the reverse example, for instance, it
is not immediately obvious that zi = reverse(1) and z2 = reverse(tail(1))<>
[head(1)] should both be regarded as instances of the more general expression
z' = reverse(1')<> m'.
Our strategy for determining how to generalize an induction hypothesis is

distinct from that of Boyer and Moore [2]. Their system predicts how to generalize

PROGRAM SYNTHESIS / 171

a goal before developing any subgoals in our approach, recurrences between a

goal and its subgoals suggest how the goal is to be generalized.

COMPARISON WITH THE PURE TRANSFORMATION-RULE APPROACH

Recent work (e.g., Manna and Waldinger [7], as well as Burstall and Darlington

[3]) does not regard program synthesis as a theorem-proving task, but instead

adopts the basic approach of applying transformation rules directly to the given
specification. What advantage do we obtain by shifting to a theorem-proving
approach, when that approach has already been attempted and abandoned?
The structure we outline here is considerably simpler than, say, our imple-

mented synthesis system DEDALUS, but retains the full power of that system.
DEDALUS required special mechanisms for the formation of conditional expres-
sions and recursive calls, and for the satisfaction of "conjunctive goals" (of form

"find z such that R1(z) and R2(z)"). It could not treat specifications involving
quantifiers. It relied on a backtracking control structure, which required it to
explore one goal completely before attention could be passed to another goal. In
the present system, these constructs are handled as a natural outgrowth of the
theorem-proving process. In addition, the foundation is laid for the application of
more sophisticated search strategies, in which attention is passed back and forth
freely between several competing assertions and goals. The present framework
can take advantage of parallel hardware.

Furthermore, the task of program synthesis always involves a theorem-proving
component, which is needed, say, to prove the termination of the program being
constructed, or to establish the input condition for recursive calls. (The Burstall-
Darlington system is interactive and relies on the user to prove these theorems;
DEDALUS incorporates a separate theorem prover.) If we retain the artificial
distinction between program synthesis and theorem proving, each component
must duplicate the efforts of the other. The mechanism for forming recursive
calls will be separate from the induction principle; the facility for handling
specifications of the form

find z such that Ri(z) and R2(z)

will be distinct from the facility for proving theorems of form

for some z, R1(z) and R2(z);

and so forth. By adopting a theorem-proving approach, we can unify these two
components.
Theorem proving was abandoned as an approach to program synthesis when

the development of sufficiently powerful automatic theorem provers appeared to
flounder. However, theorem provers have been exhibiting a steady increase in
their effectiveness, and program synthesis is one of the most natural applications
of these systems.

ACKNOWLEDGMENTS

We would like to thank John Darlington, Chris Goad, Jim King, Neil Murray,
Nils Nilsson, and Earl Sacerdoti for valuable discussions and comments. Thanks
are due also to Patte Wood for aid in the preparation of this manuscript.

172 / DEDUCTION

REFERENCES
1. BLEDSOE, W.W. Non-resolution theorem proving. Artif. Intell. J. 9, (1977), 1-35.

2. BOYER, R.S., AND MOORE, JS. Proving theorems about LISP functions J. ACM 22, 1 (Jan. 1975),
129-144.

3. BURSTALL, R.M., AND DARLINGTON, J. A transformation system for developing recursive pro-

grams. J. ACM 24, 1 (Jan. 1977), 44-67.

4. DARLINGTON, J.L. Automatic theorem proving with equality substitutions and mathematical
induction. Machine Intell. 3 (Edinburgh, Scotland) (1968), 113-127.

5. GREEN, C.C. Application of theorem proving to problem solving. In Proc. Int. Joint Conf. on
Artificial Intelligence (Washington D.C., May 1969), 219-239.

6. HEwirr, C. Description and theoretical analysis (using schemata) of PLANNER: A language
for proving theorems and manipulating models in a robot. Ph.D. Diss., M.I.T., Cambridge, Mass.,
1971.

7. MANNA, Z., AND WALDINGER, a Synthesis: dreams ■f• programs. IEEE Trans. Softiv. Eng.
SE-5, 4 (July 1979), 294-328.

8. MURRAY, N. A proof procedure for non-clausal first-order logic. Tech. Rep. Syracuse Univ.,

Syracuse, N.Y., 1978.
9. NELSON, G., AND OPPEN, D.C. A simplifier based on efficient decision algorithms. In Proc. 5th

ACM Symp. Principles of Programming Languages (Tucson, Ariz., Jan. 1978), pp. 141-150.

10. NitssoN, N.J. A production system for automatic deduction. Machine Intell. 9, Ellis Horwood,
Chichester, England, 1979.

11. NitssoN, N.J. Problem-solving methods in artificial intelligence. McGraw-Hill, New York,

1971, pp. 165-168.
12. ROBINSON, J.A. A machine-oriented logic based on the resolution principle. JACM 12, 1 (Jan.

1965), 23-41.
13. WALDINGER, R.J., AND LEE, R.C.T. PROW: A step toward automatic program writing. In Proc.

Int. Joint Conf. on Artificial Intelligence (Washington D.C., May 1969), pp. 241-252.

14. WiLxims, D. QUEST—A non-clausal theorem proving system. M.Sc. Th., Univ. of Essex,

England, 1973.

