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ABSTRACT

This talk reviews those efforts in automatic theorem proving, during the past few years, which have
emphasized techniques other than resolution. These include: knowledge bases, natural deduction,
reduction, (rewrite rules), typing, procedures, advice, controlled forward chaining, algebraic
simplification, built-in associativity and commutativity, models, analogy, and man-machine systems.
Examples are given and suggestions are made for future work.

1. Introduction

Automatic theorem proving was born in the early 1930s with the work of Herbrand,
but did not get much interest until high speed digital computers were developed.
Earlier work by Newell, Simon, Shaw, and Gelernter in the middle and late 1950s
emphasized the heuristic approach, but the weight soon shifted to various syntactic
methods culminating in a large effort on resolution type systems in the last half
of the 1960s. It was about 1970 when considerable interest was revived in heuristic
methods and the use of human supplied, domain dependent, knowledge.

It is not my intention here to slight the great names in automatic theorem proving,
and their contributions to all we do, but rather to show another side of it. For
recent books on automatic theorem proving see Chang and Lee [19], Loveland [44],
and Hayes [31]. Also see Nilsson's recent review article [61].
The word "resolution" has come to be associated with general purpose types

of theorem provers which use very little domain dependent information and few if
any special heuristics besides those of a syntactic nature. It has also connoted the
use of clauses and refutation proofs.
There was much hope in the late 60's that such systems, especially with various

exciting improvements, such as set of support, model elimination, etc., would be
powerful provers. But by the early 70's there was emerging a belief that resolution
type systems could never really "hack" it, could not prove really hard mathematical
theorems, without some extensive changes in philosophy.

l This is an edited version of an invited lecture at the 4th International Joint Conference on
Artificial Intelligence, held in Tbilisi, Georgia, U.S.S.R., September 1975.

This report is about this other non-resolution effort. But we do not just want to
emphasize non-resolution, but rather to emphasize the efforts that are less syntactic
in nature, that use heuristics and user supplied knowledge, which is often domain
dependent. Our belief is that other purely syntactic methods such as Gentzen
systems will fare only about as well as resolution systems, unless they employ some
of the kinds of concepts we mention below. Also much improvement in resolution
systems can be gained by using such concepts, and this has been done in many
cases.
The author was one of the researchers working on resolution type systems who

"made the switch". It was in trying to prove a rather simple theorem in set theory'
by paramodulation and resolution, where the program was experiencing a great
deal of difficulty, that we became convinced that we were on the wrong track. The
addition of a few semantically oriented rewrite rules and subgoaling procedures [7]
made the proof of this theorem, as well as similar theorems in elementary set
theory, very easy for the computer. Put simply: the computer was not doing what
the human would do in proving this theorem. When we instructed it to proceed
in a "human-like" way, it easily succeeded. Other researchers were having similar
experiences.
This is not really a general review in any fair sense. Rather it is a list of things I

feel are important, with a real bias toward my work and that of my students and
friends.
A list of references is given at the end of the paper.

2. Concepts

We will now list some of the concepts and techniques that we have in mind, that
seem to hold promise in automatic theorem proving, and briefly discuss them.
Of course no such list could be complete and we apologize for glaring omissions.
Also these concepts are not mutually exclusive, some being special cases of others.
The word "knowledge" is a key to much of this modern theorem proving.

Somehow we want to use the knowledge accumulated by humans over the last
few thousand years, to help direct the search for proofs. Once a proof has been
found it is a relatively simple matter to verify its validity by purely syntactic

KNOWLEDGE

Build-in man's knowledge
Often Domain-specific
Contextual and Permanent

AVOID LISTING OF AXIOMS
Clogs up the system

EASY TO USE and CHANGE
FIG. 1. Basic concepts.

The family of subsets of (A n B) is the same as the intersection of the family of subsets of A
and the family of subsets of B. This example is treated later.
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procedures. So in a sense all of our concepts have to do with the storage Lnd
manipulation of knowledge of one sort or another. See Fig. I.
The use of knowledge and built-in procedures partially eliminates the need for

long lists of axioms, which tend to slow up proofs and use excessive amounts of
memory. Such knowledge must be organized in a way that is easy to use and
change.

Fig. 2 shows the 13 concepts we will discuss in the succeeding pages.

I. Knowledge Base
2. Reductions (rewrite rules)
3. Algebraic Simplification
4. Built-in Inequalities (and total ordering)
5. Natural Systems
6. Forward Chaining
7. Overdirector
8. Types
9. Advice
10. Procedures (and Built-in Concepts)
11. Models (and counterexamples)
12. Analogy
13. Man-machine

Fto. 2. Concepts.

2.1. Knowledge base

We store information in a knowledge base (or data base), process that information
to obtain other information (by procedural forward chaining, etc.), and interrogate
the data base when necessary to answer questions. A central idea here is, that
facts are stored about "objects" rather than "predicates". For example the
hypothesis Open(A0) would be stored with "Open" as a property of "Ao" rather
than with "Ao" as a property of "Open". (Objects are the skolem constants arising
in a proof.) Also knowledge is stored about concepts. This knowledge can be
stored in procedures or in lists or other structures.
The planner—QA4 type systems are ideally suited for using these concepts.

See for example Winograd's Thesis [84], especially Sections 3.1.3-3.3.1 for an
excellent description of some of these concepts.
Some concepts associated with a knowledge base are shown in Fig. 3. Demons

are routines that watch the knowledge base and only act whenever certain properties
become true of the data base. Languages like Microplanner, Conniver, and QA4
greatly facilitate the use of demons.
Some parts of the base remains static (as for example, properties of continuous

functions) while other parts such as information about objects in the proof are
dynamic and should be carried in a contextual data base.

Contains FACTS about Concepts and Objects
Facts are manipulated during proof to obtain new facts (contextual)
Procedural forward chaining
Static Information
Look up Answers
Object oriented: Open (A0)
Property list A0)

open
Demons
Examples

Partial Sets
Monads
Reduction Rules

"Graph" Provers
MODELS
FRAMES

FIG. 3. Knowledge base.

See later

The "graph" provers of Bundy [17], Ballantyne and Bennett [4] use such a data
base, as do the provers of Winograd [84], Goldstein [28], and others. MinsIcy's
frames [55] appear to offer good advice for organizing data for a knowledge base.

Shortly we will show an example from analysis [5] which utilizes a data base
with many of the concepts we have discussed in this paper.

2.2. Reduction

A reduction is a rewrite rule,

For example, the rule
A---> B.

te(AnB)--->teA A tEB

requires that we change all subformulas of the form t e (AnB) into the form
(teA A teB), (but never rewrite the latter into the former). Such rules are

IN

t e(AnB)
te(At.., B)
t E {X : P(x)}
te subsets (A)
tg.AnB
E U g(2)
aGF

Fto. 4. Some REDUC t . ules (rewrite rules).

OUT

teA A teB
teAv teB
P(t)
t g_ A
tgAntgB
3ct(et e F A t eg(c))
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semantic; their inclusion, and their use is not based upon their syntactic structure

but on their meaning. The user supplies these rules. Fig. 4 lists some such rules,

and Fig. 5 gives some definitions.

A=B
A g B

Subsets (A)
sb(A)

Fin. S. Some definitions.

ABABA
x(x e A —■ X E B)

skolem form
(x0 e A —+ xo e B)

(x e A —■ X e B)
{B: B g A}
Subsets (A)

(set equality

in "conclusion"
in "hypothesis"

The use of REDUCTIONS is best illustrated by an example from [7]. See Fig. 6.

Here the formula "subsets(A)" means the set of all subsets of A; we have

shortened it to "sb(A)" for this proof.

THEOREM. V AVB (subsets (A r B) = subsets (A) n subsets (B))

PROOF. sb(A n B) = sb(A) sb(B) THE GOAL

[sb(A r B) g sb(A) r sb(B)] A [. . . 2 . .],
SUBGOAL 1

[sb(A n B) g sb(A) n sb(B)]

[to e sb(A n B) to e (sb(A) r sb(B))],

[to g (A n toe sb(A) A to e sb(B)]

[to G A A to g- B to g A A to g B]

[sb(A) ri sb(B) g sb(A r B)] SUBGOAL 2

"T" Similarly

defn of =

defn of g
Reduce
Reduce

(12)

Fin. 6. An example of a proof.

IN
0 g A
A g A
0 e
A e 0
0 .4 I
Open 0
A g A

OUT

"False"
"T"

•
We would not include

P(y) A V x (P(x) --■ Q(x)) Q(y) ..r,

because it is too complex.
Fin. 7. Storing unit facts as reductions.

The reduction rules and definitions given in Fig. 4 and 5 are used in the proof.

Notice how easy and "human-like" the proof proceeds when reductions are used. A

corresponding resolution proof (without built-in partial ordering) required 14

clauses and a lengthy deduction.
Reductions also offer a convenient way for storing unit facts that can be easily

used during proofs. See Fig. 7.

We are concerned with the four types of REDUCTION shown in Fig. 8.

REDUCTION (Rewrite Rules)
Conditional Reduction
Controlled Definition Instantiation
Complete Sets of Reductions

FIG. 8. Four kinds of REDUCTION.

2.2.1. Controlled definition instantiation
In this example we did not instantiate all definitions possible, but rather followed

the rule: when all other strategies fail, instantiate the definition of the main

connective of the conclusion. See Fig. 9.

EXAMPLES. Do not expand definitions in:

(A g B A xeA A Open A=•Open A).

Do expand the definition of "OCCLFR" in
(Regular (if) A OCLFR(.9") OCCLFR(.7))

if other attempts fail.
Fin. 9. Controlled definition instantiation.

Instantiating all definitions can badly clutter up the proof and is often not needed.

In general, definition instantiation should be carefully controlled.

2.2.2. Conditional reduction
This is a slight generalization of the reduction concept, whereby the program will

perform the reduction only if a given stated condition is true in the data base. We
do not want a large effort expended to determine whether the condition is true,
because reductions are supposed to be performed quickly, so we verify the
condition in the data base (rather than call the prover itself for this purpose).
'See Fig. 10 for a simple example.

2.2.3. Complete sets of reductions (written by D. Lankford).

Instead of using a reduction (A ---> B) one could get the same effect by adding
the formula (A = B) as another hypothesis. But computational experience [5, 9,
30, 37, 39A, 40, 42, 56] has shown it is desirable to use equations as rewrite rules
or to incorporate them into a normal form algorithm, in order to reduce the
computation time and storage space needed. To what extent this can be done has
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IN
INTERIOR (A)
CLOSURE (A)

IAI
IAI

CONDITION
OPEN (A)
CLOSED (A)
A 0
A < 0

OUT
A
A
A

-A

EXAMPLE THEOREM. 2 </A4 I< 9 A(O<KAL< 10 P(K, L))

P(4 IJI)-

PROOF. The hypothesis 2 < I and 4 < J < 9 are stored in the data base on the
property lists of I and J. The term 1./1 is reduced (rewritten) to J after a check in

the data base verifies the condition J 0.

Backchaining on the third hypotheses now gives the subgoal (0 < land J < 10)
which is easily verified by the data base.

Flo. 10. Conditional reductions and an example.

been the object of considerable research. Fig. 11 lists some of the principal workers
in this area with brief descriptions of their contributions. The pioneering works of
Knuth and Bendix [40] and Slagle [73] focused on certain sets of rewrite rules for
special study, those which determine normal forms for the corresponding equational

theories. These decision procedures, called complete sets of reductions by Knuth
and Bendix [40] and sets of simplifiers by Slagle [73], are defined by two properties:

the finite termination property—no term can be infinitely reduced, and the unique
termination property—any two sequences of immediate reductions, starting with

the same term and terminating in irreducible terms, terminate with identical terms.
Knuth and Bendix [40] developed an effective procedure which often derives a
complete set of reductions from a given set of equations. Fig. 12 shows the end

result of their derivation of a complete set of reductions for group theory beginning

with the three left minimal axioms. Slagle [73] initiated the study of refutation
complete methods for combining complete sets of reductions with resolution and
paramodulation. Lankford [41,42] generalizes a synthesis of their methods.

Fig. 13 gives a proof in group theory using the Knuth-Bendix reductions.
Unfortunately, complete sets of reductions fail to exist for some equational

theories, such as commutative group theory and ring theory, for the simple reason

that some equations, such as commutative equations, cannot be expressed as
rewrite rules with the finite termination property. For example, in proving a
theorem in group theory like that in Fig. 14, when the hypothesis (x+(x+x) = 0)

is added to the axioms of group theory, the whole set can no longer be converted

to a complete set of reductions. The existence of undecidable word problems,

such as the theory defined by four equations found by Matijasevic [49A], shows

that this limitation cannot be entirely overcome by a modification of the notion

of complete sets of reductions. In addition, many important theories contain

Ballantyne and Bledsoe [5]: Metatheoretical concepts of non-standard analysis
encoded as rewrite rules.

Bledsoe, et al. [p]: Ring theory normal form generator.

Guard, et al. [30]: Semi-automatic proof of SAM's lemma.

Knuth [39A]: Automatic proof of a conjecture from central groupoid theory.

Knuth and Bendix [40]; Complete sets of reductions; A class of finite termination
tests; a test dependent unique termination algorithm.

Lankford [41, 42]: A test independent unique termination algorithm; an enlarged
class of finite termination tests; refutation completeness results for complete
and incomplete sets of reductions.

Nevins [56]; An experimental anticipation of many of the concepts related to
complete sets of reductions.

Plotkin [63]; Refutation completeness results for theories having normal forms
by specialization of the unification algorithm.

Slagle [73]; Complete sets of reductions; refutation completeness results for
complete sets of reductions for fully narrowed input sets.

Winker [83]; Dynamic demodulation; a class of finite termination tests.

FIG. 11. Workers in the area of complete sets of reductions.

KB1 x+0 -'x

KB2 0+x -.x

KB3 x+(-x) -■ 0
KB4 (-x)+x 0

KB5 (x+y)+z--• x+(y+z)

KB6 -

KB7 - (- x) x

KB8 -(x+y) (-y)+ (-

KB9 x + (( - x) +y)) y

KB10 (-x)+(x+ y
FIG. 12. Knuth and Bendix's complete sets of reductions for a group.

THEOREM. • [(D + (C+ (- C)))+ (-(0 + (- ADA e H (D + A) e H
Proof.

•[(D+(C+(-C)))+(-(-A))]e (D+A)e H

•[(D+0)+(-(-A))1e (D+ A) e H

•[D+(-(- AD]E H (D+ A) e H

•[D+AleH-*(D+A)eH

TRUE
FIG. 13. A proof in strDup theory using complete sets of reductions.

KB2

KB3

KB1

KB7

MATCH
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equations that occur in non-unit clauses. And the well-known result of Birkhoff on
equational definability shows that this situation cannot be avoided. Nevertheless,
we believe that modifications and adaptations of the concept of complete sets of
reductions [41, 42, 63, 73] will lead to significant improvement in the treatment of
equality when combined with heuristic methods and built-in procedures [5, 9, 56,
63, 76].

For example, consider the theorem that in a group with x+x+x = 0,
h(h(x, y), y) = 0 where h(x, y) = x + y + (— x)+ (— y). This theorem has received
repeated attention in the literature [61A, 67A] as a difficult theorem for mechanical

THEOREM. X+ (X+X) = h(h(a, b),a ) = 0.

Proof. The conclusion is reduced to

= 0 (associate to the right).

The hypothesis (x+ (x+ x) 0) is added as another rewrite rule.

11 x+(x+x) 0

In the first round, three new reductions are generated, and one equality:

N1 x+x+x+y y

N2 x+y+x+y+x+y 0

N3 —x x+x

El x+y+x+y = y+y+x+x
(this cannot be made a reduction).

added.

11, KB5

11, KB5

11, KBIO

N3, KB8

N1-3 Act upon KB1-10, 11 and eliminate all of KB1-10, 11 except

KB1 x+0 —.x

KB2 0+x —'x

KB5 (x+y)+z x+(y+z)

11 x+x+x O.
Flo. 14. First round of the proof using Lankford's method (using Fig. 12).

In the second round, three new reductions are generated, and no new equations:

N4 x+y+x+y+x+y+z 0

N5 x+y+z+x+y+z+x+y+z 0

N6 x+y+x+y+x y+y.

The Goal:
= 0

is proved in this round by applying N3, El, NI, N6 and 11.
Steps: 2.

Formulas saved: 7.

Time: 30 seconds.
Fro. 15. Second round of the proof.

(and human!) theorem provers, and was only recently proved fully automatically
without hints by Nevins [56]. Lankford's methods [42] in Fig. 14 and 15 were
implemented by Ballantyne and Lankford [5A] and show considerable improve-
ment over Nevin's methods, primarily because of Nevin's treating associativity by
unification rather than as a rewrite rule.

Fig. 16 gives a challenging problem for automatic provers from ring theory
which seems beyond present methods.

THEOREM. In a RING

x3 = x ab = ba.

(Recall that a ring is +commutative.)
FIG. 16. A challenging problem for automatic provers.

2.3. Algebraic simplification

There is a strong need to avoid adding the field axioms for the real numbers as
hypotheses to a theorem being proved, because this greatly slows proofs. The
associativity and commutativity axioms for + and are especially troublesome,
so several efforts have been made to "build these in".
Some references to this work are: Slagle and Norton [74, 75]; QA4; QLISP [65, 68];

Plotkin [63]; Fronig [25]; Stickel [77]; Bledsoe, et al. [9, 12].
Of course much is learned from the researchers working in the field of symbol

manipulation and algebraic simplification, where these methods have been applied
to other problems in physics and mathematics. However, automatic theorem
proving presents difficulties not covered by that work.
For example, the theorem

P(a+b+c)—,P(b+a+c)

is easily handled by using a canonical form, but the theorem

P(k+ 2) —■ P(b+ 5)
where k is a variable and b is a constant, presents more difficulty. An ordinary
unification algorithm

UNIFY(k +2, 1)+5)

would put b for k, blk, and fail. An "Algebraic Unifier", could write the equation
k+2 = b+5,

and "solve for" k, getting k = b+3, and return (b + 3) for k, to successfully
complete the proof.
A similar approach works on the example

UNIFY(B[k + I] = Amax(B, j, k +1),

A0[i0] = Amax(Ao, 1, la))
where B, j, k are variables, and Ao, io are constants. This example is from the field
of program verification (see [13], pp. 27-28).
Data types suco as sets, bags, and triples [68, 65] handle some of these problems.
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2.4. Built-in inequalities (and total orderings)

Again we must avoid the explicit use of such axioms as the transitivity axiom

(x<yny<z--■x<z).
Bledsoe et al. [8, 9, 13, 29] employ "interval types" for dealing with certain

inequalities, and Slagle and Norton [75] have built-in axioms for handling total and

partial ordering (including inequalities). See Fig. 17.

A .e A A B

A' -c B V A=B

ALLOW UNIFICATION IN ALL OF THESE CASES

FIG. 17. Slagle and Norton's build-in partial and total ordering.

The following is a theorem from program verification which was proved by
Slagle and Norton's program. This theorem, which is a verification condition from
Hoare's FIND program, and others like it have been proved by the "interval type"
methods of Bledsoe and Tyson [8, 13], and by others.

THEOREM.
j <

A m p q n

VxVy(nz <x<in j<y<n A[x] < A[y])

VxVy(m x < y < j -+ A[x] A[y])

A VxVy(i x y n -■ A[x] < A[y])
A[p] < A[q].

Also Slagle and Norton have built-in partial ordering for handling some
problems in set theory.

2.5. Natural systems

We have chosen to emphasize the so called "natural" systems in this report.
I would not like to define the term, but will only give examples. In general we are
not talking about refutation systems such as resolution, though we sometimes do
proofs by contradiction [66]. They are sometimes called goal oriented systems,
or Gentzen type systems.
We are given a goal G and a hypothesis Hand wish to show that G follows from

H,
VI G)

or more generally to find a substitution 0 for which

(HO -+ GO)

is a propositionally valid formula. A set of rules is given for manipulating Hand G
to obtain the desired 0. For example, (P(a) A (P(x)-+ Q(x)) Q(a)) has the
solution 0 alx.3 The Rules in Fig. 18 and 19 are from the IMPLY System
described in [9, 12]. They are given more precisely and completely in [12]. See
Fig. 20 for a simple example.

14. (H =. A A B)

If (H =. A) returns 0

and (H =. BO) returns A

then return 0 o A.

"SPLIT"

13. (H1 v H2 C) "CASES"

If (HI C) returns 0

and (H20 C) returns A

then return 0 0 A.

IS. (H C)

Put C': = REDUCE(C): H': = REDUCE(H)

Call (H' C').

17. (H (A B)) "PROMOTE"

Call (H A A =. B).

113. (H C)

Put C': = DEFINE(C)

Call (H C').

(See [12] for the ordering of these rules)
Flo. 18. IMPLY rules. A partial set from [12].

3 Sometimes 0 must be more complicated, (see App. 3 of [12]) as in the example (P(x)--+ P(a)
A P(b)) which has the solution 0 alx V blx.

co
a)

0



112. (H C) "MATCH"

If HO -= CO, return 0,

H6. (A A B xa. C) "OR-FORK"

If (A C) returns 0 (not NIL), return 0,

Else Call (B m C)

H7. H A (A -0 D)=. C "BACK-CHAIN"

If (D C) returns 0,

and (H =. AO) returns A,

then return 9° A

H9. H A (a = C "SUB="

Put a': = CHOOSE (a, b), b': = OTHER (a, b)

Call (H(a7b)=. C(01)).
Flo. 19. IMPLY rules (contd.).

THEOREM. (P(a) A Vx(P(x) -• Q(x)) -• Q(a)).

P(a) A (P(x) Q(x)) =. Q(a))

(P(a) (Q(a))

FAILS

(P(x) Q(x)) Q(a))

(Q(x) . Q(a))
Return 0malx

(P(a) P(x)(a I x))
Return TRUE.

Returns a 1 X.
FIG. 20. An example proved by IMPLY.

H6

H7

H2 •

(START)

SELECT PROBLEM 41■■•••••••NO MORE METHODS)•■•.

TRY METHOD......NO MORE THEOREMS).—..

L ..•••■••••••■■ SELECT THEOREM., 

TRY IT. •■•■■ (FAIL)-.'

(GET NEW PROBLEM)

TRY SUBSTITUTION (NO MORE

THEOREMS)

SELECT THEOREM• 

TRY (FAIL)■■••

(PROOF)

THROUGH

Flo. 21. General flow diagrams of the LOGIC THEORIST 1591.

Newell, Simon, and Shaw's logic theorist [59, 60], and Gelernter's geometry

machine [26], were natural (or goal directed) systems, although we see that they

included various other features. See Fig. 21 and 22. Reiter's MATH—HACK

START

SET UP
INITIAL

CONDITIONS

EXPAND
DEFINITIONS

 *I CHOSE GENERATING
SUBGOAL

DIAGRAM FILTER,

NO MORE SUBGOALS

GENERATE
LOWER

SUBGOALS

DISCARD
UNWANTED

LOWER GOALS

FAIL

PRINT PROOF

ADD ACCEPTABLE
LOWER SUBGOALS

(IF ANY EXIST)
TO PROBLEM.

SOLVING GRAPH

FIG. 22. Simplified flow chart for the geometry-theorem proving machine (Fig. 3 of [26]).

NSS—Logic Theorist [60]
Gelernter's Geometry machine [26]
Reiter's math—hac [66]—much like [12] but more
Maslov [48]
Bibel [6]
Ernst [23]
Boyer—Moore [14]
Nevins [56-58]
Planner [34, 78]
Conniver [52]
QA4, QLISP [68, 65]
Goldstein [28]
Ullman [80]

Flo. 23. Other natural systems.
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system [66] is much like that of [12] but has the important addition of models which
we will mention later, and other features.
Other natural systems include the Planner–Conniver–QA4 group, and those of

Maslov, Goldstein, Nevins, Bibel, Boyer-Moore, Ernst, [48, 49, 28, 34, 78, 52, 68,
65, 6, 14, 23, 46, 15, 30] and others. See Fig. 23.
What are the advantages (if any) of the natural systems? There may be none—

especially in the long run—and especially if the techniques we emphasize here are
built into the resolution systems. But we feel that this is not easy to do. Specifically
we feel that the natural systems are:

• Easier for human use.

• Easier for machine use of knowledge.

See Fig. 24 and 25.

HUMAN USE

Bring to bear knowledge from pure mathematics in the same form used there.

Recognize situations where such knowledge can be used.

Professional mathematician will want to participate.

Easier to design, augment, work upon.

Essential for man–machine interaction (where the man is a trained mathe-
matician).
Flo. 24. Advantages of natural systems.

MACHINE USE

Automatically limits the search. Does not start all proofs of the theorem.
(Syntactic search strategy.)

A natural vehicle to hang on heuristics, knowledge, semantics. (Semantic search
strategies.)

Easier to combine procedures with deduction.

Contextual data base problem. (One data base would be needed for each

clause.)

New Languages (PLANNER, QA4). Ease the implementation.

FIG. 25. Advantages of natural systems (contd.).

We include here two quotes regarding the advantages of natural systems.

"There is a naturalness with which systems of natural deduction admit a
semantic component with the result that a great deal of control is gained over the

search for a proof. It is precisely for this reason that we argue in favour of their

use in automatic theorem-proving, in opposition to the usual resolution-based

systems, which appear to lack any kind of reasonable control over dead-end

searches." Raymond Reiter [66].

"A point worthy of stress is that a deductive system is not "simpler" merely

because it employs fewer rules of inference. A more meaningful measure of simpli-

city is the ease with which heuristic considerations can be absorbed into the

system." Arthur Nevins [56].

2.6. Forward chaining

Forward chaining is accomplished when one hypothesis is applied to another to

obtain an additional hypothesis. See the example in Fig. 26.

Hypothesis Conclusion

P(A) A (P(x).■110.0(x))C

Q(A)

FIG. 26. Forward chaining. The additional hypothesis Q(A) is obtained.

Since such a process can, in some cases, result in an infinite repetition it is

important that it be controlled by a cut-off mechanism. Also we have found other

controls desirable, such as allowing only those new hypotheses which are ground
formulas.

Procedural forward chaining is also used, where a procedure is invoked which

manipulates items in the data base (or in the hypothesis) to produce new items.
This is exhibited, for instance, in the non-standard analysis example given below

and in [5].
The early programs of Newell, Simon and Shaw, used forward chaining, as did

many others. Fig. 27 lists some more recent examples where extended use of
forward chaining produced surprising results. Nevin's remark [58, pp. 2, 3] on how
his geometry prover was so greatly improved by the use of forward chaining, is of
particular interest on this point.

Bundy [17]—Doing arithmetic with diagrams.

Siklossy, Rich, and Marinov [71]—British Museum.

Ballantyne and Bennett [41—Topology.
Nevins [58]—Plane Geometry.
Ballantyne—Non-Standard-Analysis [5].

Fto. 27. Extensive use of forward chaining.



2.7. Overdirector
Every prover has a control routine which directs the search tree. See Newell,
Simon, and Shaw's control structure was shown in Fig. 21.

This overdirector can bring to bear strategies or experts (see [28]), heuristics, and
advice tables, controlled backup, etc. as it sees fit.

It is important that such an overdirector have the flexibility to switch from one
line of attack to another, and back again, as the proof proceeds, thus providing a
parallel search capability. This of course, requires a (controlled) back-up mechanism
such as that possessed by Conniver. Unrestricted back-up is intolerable. A
contextual data base, which can be consulted by the overdirector to help it decide
whether and how much to back-up, or what other line of attach to take, is
an indispensable part of the prover we have in mind. The concepts of Conniver
[52] and QA4 [68, 65] apply here.

EXAMPLE. (From Non-Standard Analysis.) The following example is given here
to exhibit the use of some of the concepts we have described above. These
techniques have been used by Mike Ballantyne to prove by computer (not inter-
actively) several difficult theorems in intermediate analysis. See [5] for a complete
description of this work.
The reader need not be conversant with non-standard analysis (or even inter-

mediate analysis) to follow the example given in Fig. 28 and 29.
Notice that the proof follows the general procedure described by the rules of

Figs 18-19. First, the fact that f is continuous, is noted in the data base and the
hypothesis Cont(f, S0) is dropped. Next the term "Compact" is defined (in
non-standard terms), and the formula xo ef(S0) is "promoted" to the hypothesis
by Rule 17 of Fig. 18, and then reduced to product the new hypothesis.

Vo E So A Xo = f(V0).

Forward chaining then gives the additional hypothesis: SON E
At this point we leave the rules of Fig. 18 and 19, and work with the data base.

See [5] for details.
Various routines such as EL, STANDARD, FINITE, CONTINUOUS, are used to put

items into the data base and to manipulate them to obtain others. This is called
procedural forward chaining. For example the program detects (V0 E So) and
(st(V0) e So) in the hypothesis and calls EL which builds a set S6 in the data base
with the elements Vo, and st(V0), and drops (V0 e So) and (st(V0) E So) from the
hypothesis. This set SO with only two elements represents the set So which may be
infinite.

Similarly the monad M1:(st(Vo), Vo) is built in the data base. The reader needs
only to understand that continuous functions map monads into monads, (and not
what a monad is) and hence that the monad M, is mapped into the monad
M : (f(st( V0)), f( V0)).
The hypothesis (x0 = f(V0)) is used to generate the reduce rule R, and another

hypothesis generates R2. Thus the goal st(x0) ef(S0) is easily converted to the new

5.2. THEOREM. Iff is continuous on a compact set S, then f(S) i. compact.

Proof

• Com(/' So) A Compact(So) Compact(f(So))

Note: f is continuous on So.

In
Data

Base

• Compact(S0) Compact(f(So))

• (x e So st(x) e S0) (x0 ef(S0) st(x0) Ef(S0))

definition

• (x e So St(X) e So) A X0 EJ(S0) St(X0) EJ(S0)

promote (See Fig 18).

• (x e So --. st(x) e So) A (Vo e So A xo = f( V0) =. st(x0) ef (So)
reduce

(x e So st(x) e So) A (Vo e So AX0 = f( Vo)
A SON E S0=. St(Xo) EJ(So)

forward chain
FIG. 28. An example of a proof by Ballantyne's prover.

DATA BASE

• SO: (st( V0), Vo)

Type: st(V0), Standard

Type: st(V0), Finite

Vo , Finite

A11: OVA Vo)

RI: xo --->fiVo)

• M2: (fist( Vo)), Vo))

• R2: st(f(Vo)) f(st(Vo))

.fiSoY U(st(Vo)), fixo))

• (x e So st(x) e So) st(x0) ef(So)

• (x e st(x) e So) st(ft v0)) el(s0)
• (x €S0 st(x) e So) fist( Vo)) ef(S0)
• TRUE

FIG. 29. Proof (contd.).

AGENT

EL

Standard

Standard

Finite

Equals

Continuous

Continuous

Continuous

R1

R2

f(SO)'
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goal f(st( V0)) ef(S,), which is readily verified by inspection; i.e., the program

notes that the set f(S0)' in the data base, contains the item f(st(170)).
In summary, one sees the manipulation of a data base and the execution of a few

logical operations, to produce the proof of this theorem.

2.8. Types

The concept of typing plays a fundamental role in mathematics and computer

science. Using a letter e for the identity element of a group, lower case letters

x, y, z, for members of the group, and capital letters G, H, for groups and sub-
groups, is immensely helpful to humans in proving theorems.

Similar typing is helpful in automatic provers. Other data types such as integer,
real, negative, complex, bags, sets, types, interval types, infinitesimals, infinitely
large, etc., can be advantageous in certain applications. See Fig. 30.

x, y, z
G, H
x, y, z
A, B, C
F, G, H

x, y

I, J, K
a, b
r, s, t
x, y, z
co

identity in a group
members of a group
groups, subgroups
points
sets
Families
topology
predicates
reals
complex
Integers
Infinitesimals
standard reals
non-standard reals
infinitely large integers

Bags, sets, types
Interval types

Flo. 30. Some examples of types.

2.9. Advice

One of the most powerful things a human can do to aid the prover is to provide
"advice" for the use of a theorem or lemma. Carl Hewitt's PLANNER [34] exploits
this idea.
For example in Fig. 31 we see an example of Winograd's [84] where, to determine

that a thing x is a thesis we are "advised" to either verify that it is long, or that it
contains a persuasive argument. This is given in Micro-planner language in Fig. 32.

Another such advice lemma is given in Fig. 33, and this is used in Fig. 34 to
prove a theorem. This proof also clearly emphasizes the need for simplification
routines and eqation solving routines in proofs in analysis.

GOAL

(Thesis x)

or

Flo. 31. Winograd's example.

VERIFY

(Long x) (Use: contents—check, count pages)

(x contains y)

and

(argument y)

and

(persuasive y)

(DEFINE THEOREM EVALUATE

(THCONSE(X Y)

(THGOAL(# THESIS $?X))

(THOR

(THGOAL(# LONG

(THAND

;EVALUATE is the name we are
;giving to thi theorem

;this indicates the type of
;theorem and names its
;variables

;show that X is a thesis
;the " Sr indicates a variable

;THOR is like "or", trying things
;in the order given until one works

S/X)(THUSE CONTENTS-CHECK COUNTPAGES))
;THUSE says to try the theorem
;named CONTENTS-CHECK first,
;then if that doesn't work, try
;the one named COUNTPAGES

(THGOAL(# CONTAINS SU /Y))
;THAND is like "and"

;find something Y which is
;contained in X

(THGOAL(# ARGUMENT S ?Y))
;show that it is an argument

(THGOAL(# PERSUASIVE $?Y)(THTBF THTRUE))))))
;prove that it is persuasive, using
;any theorems which are applicable

FIG. 32. PLANNER Representation of the advice lemma in Fig. 31 (Fig. 53 of [841).

GOAL VERIFY

(IAI z) (A = B+C)

and

(IBI ‘. et)
and

(ICI e2)

1

2

3

a
rn
0

0



and

(61+62 <

OT

(Other advice)

(A = B C)

and

(IBI < 61)
and

ICI < 62)
and

(el • 62 < 6)

or

(Other advice)

FIG. 33. An advice lemma.

The concept depicted in Fig. 33, might be generalized in a manner shown in
Fig. 35. Then perhaps an instantiation of it (like Fig. 33) could be saved by the

4 program for future use.

1

2

3

4

THEOREM. lal 4. Es-1 A PI EP- 1 A 1+ C = (a + 1)(b + 1) -■ Icl

Proof. Goal: id < E2+P-1.

Parts 1-4 of the advice lemma (Fig 33) are used to convert this to
(4) below.

(1) c = B+C

To solve this, convert the hypothesis 1+c = (a+ 1)(b +1) to c = a
substitute a • bIB, a + cIC (i.e. substitute a b for B and a + b for C)

(2) iabI<ei use parts 1'-4' of the advice lemma.

(21) a•b= B-C B, bIC

(22) lal £11 Es lIcii

(23) lb' < 612 -1/c12
(24) (Es-1) • (EP-1) < £1 ( )-( )/E1

Es+P- 1

subgoals (1)-

•b+a+6 and

(3) la+bl < £2 use parts 1-4 of the advice Lemma (again).

(32) lal < £21 Es-1/821

(33) ibi < £22 E-l/c22

(34) (Es- I)+ (EP- 1) < e2 (Es -1)+ (V - 1)/62

(4) (Es -1) • (EP -1) + ((Es - 1)+ (EP -1)) < Es+0
E2+#_1 < —1

use simplification.
TRUE

FIG. 34. The proof of an example (due to Overbeek) using the advice lemma of Fig. 33.

GOAL

P(C)

FIG. 35. A more general advice lemma.

VERIFY

Find P(A) in Hypothesis

and

Express C in terms of A,
C = f(A, B)

and

Find P(a) A P($) P(f(ct, P))

and

Goal P(B)

or

(Other Advice)

2.10. Procedures (and built-in concepts)

These have been discussed already, especially in the non-standard analysis example

given in Section 7.
Fig. 36 lists some of these concepts and examples. An "expert" is a set of

procedures for solving one type of problem. See Goldstein [28].

Strategies

Heuristics
Syntactic
Semantic (domain dependent)

Experts

EXAMPLES:

Induction

Built-in partial and total ordering, inequality, associativity, etc.

"Solvers"

Goldstein's geometry prover

Limit heuristic

PAIRS heuristic

CONCEPTS:

Follow a plan rather than search.

Calculate an answer rather than prove a formula.
FIG. 36. Some procedures.
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In Fig. 37 we see an INDUCTION heuristic being applied [7]. In general when
a heuristic is to be applied, the program detects a pattern and consults a list of
recommendations. In this example it detects the presence of co in the theorem
being proved and proceeds as shown. Details of this proof are omitted.

THEOREM. Cc) = U CC
IGO)

(0)-CU°E)A(Uag.0)). Defn of = SUBGOAL I
1101 1103

SUBGOAL 1

(11) (co g U cc) EASY
110

SUBGOAL 2

(12) (Uccgco)
CIO)

e U -+ to e (0).
fife)

Defn of g

(ao e co A to e —+ to e o)). REDUCE

The proof fails by the normal procedures. It detects the presence of co, and decides
to try INDUCTION. Pre-INDUCTION converts it to the form:

(cto C CO —+ (to e ao -4 to e co)).

P(:(0)
It now trys:

P(0) and (P(cco) --■ P(cco+ 1)).
.1

(12.1) (to e 0 to e co) SUCCEEDS

(12.1) (cco e co A (to e cco --■ to e (.0) —■ (to e (xo + 1) --■ to e (0))-
SUCCEEDS

to = Mo V to E Cco

FIG. 37. The use of an INDUCTION heuristic to prove a theorem.

Fig. 39 shows some strategies from Goldstein's geometry prover [28], and
Fig. 40 shows an example where the PAIRS heuristic [10] is being applied. In this
example a partial match was obtained between the two formulas

Cover(G0) and Cover(d0),

which triggered the program to consult the PAIRS table (see Fig. 41) for advice.
The first advice given from the PAIRS table, namely (Go g Go), failed, but the
second one, (Go g g Go), succeeded.

STRATEGY EQTRI3

TO-PROVE: Triangle XYZ = Triangle UVW

ESTABLISH: 10 seq XZ = seq VW
20 angle XYZ = angle UVW
30 angle YZX = angle VWU

REASON: congruence by asa

(This is like backchaining)

CONVERSION ANGLE-BISECTOR

GIVEN: seq DB bisects angle ABC

ASSERT: angle ABD = angle CDB

FORGET: given

(This is like reduce)

COROLLARY EQTRI-2

GIVEN: Triangle XYZ = Triangle UVW

ASSERT: Angle XYZ = angle UVW
angle YZX = angle VWU
angle ZXY = angle WUV

FIG. 39. Some strategies from Goldstein's Prover.

THEOREM. VG (Cover (G) Cover (a))

(1) Cover (Go) Cover (60)

No Match

Partial Match: Use PAIRS heuristic

Consult PAIRS table under "Cover"

(1.1) Try (Go g Go) Fails

(1.2) Try (Go g g Go) "T" by REDUCE

(Ao e Go C e A Ao g C) defn of g g

(A0eG0 BeG0 A C=B A A0 C)

(Ao e Go B e Go A Ao g B) sub =

SUBGOAL 1

(1.21) (Ao e Go B e Go) AolB

SUBGOAL 2

(1.22) (A0 e Go Ao g A0) "T" by REDUCE

Flo. 40. An example using Bledsoe's PAIRS heuristic.

or

QED.

0

0

0



PAIRS table—

IN Pattern Recommendations

Cover (Cover (G) Cover (F)) [(G g F)(G g F) . . .]
.1 .2

Countable (Countable A -■ Countable B) [(B g A)
.1

(3f (f is a function A domain fc A A Bg range f)) ...]
.2

DEFINITION table—
A a The Closure of A. (note: A g A).

{A:AeG}

cover (G, X) -a- XcUa
aeG

GggF (O is a refinement of F)
-=VAEG3CeF(AgC)

REDUCE TABLE (single entry)
IN OUT

A g A
GcgC

FIG. 41. A PAIRS table, definitions, and reductions, used in Fig. 40.

2.11. Models

In Fig. 22, we saw the flow chart of Gelernter's geometry prover, with its famous
"diagram filter", being used to discard unwanted subgoals. This is an excellent
example of a MODEL or counterexample being used to help with a proof. Since
models and counterexamples play such crucial roles in mathematics it is not
surprising that they have been found useful in automatic provers. We expect their
role to be expanded.

Fig. 42 shows Reiter's Rule 4 (see [66]) and an explanation of how the model M
is used in the execution of this rule; and Fig. 43 gives an example of a theorem
being proved by his system. In this example the Model M might be, for example,
the Klein-four Group (Fig. 44) in which the goal (122), BB-1 = clearly fails.
More complicated models are needed for other proofs, especially where com-
mutativity is not assumed.

4. Ild-A/NB

If tlr I- A returns al, M OE Baa,
and tfr Bo, returns a2

610.2

Suppose that, during an attempted proof of A, x is instantiated by the term t.
At this point, make the semantic test M FE B(t). If successful, proceed with the
proof of A. Otherwise, A's proof has obviously gone astray and must be redirected.
Thus, rather than patiently waiting for A to deliver a (possibly wrong) cri, the
wff B should be continuously semantically monitoring the proof of A, thereby
minimizing the risk of receiving an incorrect cri. We believe that this kind of
parallel processing of dependent subgoals will considerably alleviate the problem
of back-up encountered by purely syntactic theorem-provers.
FIG. 42. Reiter's rule 4 in MATH-HACK for the use of models, and his accompanying comment.

THEOREM. IfS is a subset of a group such that xy-1 e S whenever x and y ES, then
X 1 e S whenever x e S.

Proofex=xnxe=xy\xx-1 =enx-lx=enbES

A (XeSAyESA = z-+ zeS)Fb-1 ES.

Backchain on a to get the subgoal

(1) 1-xeS A yeS A xy-1 =

(11) FxeS blx

(12) I- y e S A by =

(121) I- y e S bly

(122) I- bb-1 = b

Fails in the model, so back up to (1). Reorder subgoals.

(11) I- = elx,bly

(12) FeeS A beS

Easily proved.
FIG. 43. An example proved by Reiter's system.

For Reiter example

FIG. 44. The Klein-four group.

eabc

e e a b c
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Some others using models and counterexamples in automatic proofs are:

Gelernter [26]--Geometry.

Slagle [72]--Resolution.

Reiter [66]---Groups.

Nevins [58]—Geometry.

Siklossy [70]—Robots (DISPROVER).

Winograd [841—Block's world.

Ballantyne [3]—Topology.

Henschen [331—Groups.

2.12. Analogy

Perhaps the biggest error made by researchers in automatic theorem proving has
been in essentially ignoring the concept of analogy in proof discovery. It is the
very heart of most mathematical activity and yet only Kling [39] has used it in an
automatic prover. His paper showed how, with the use of knowledge, a proof in
group theory could be used to help obtain a similar proof in ring theory.
We strongly urge that other workers in this field familiarize themselves with

Kling's work and extend and apply them more effectively.

2.13. Man-machine

One of the most irksome things about current automatic theorem provers is the
apparent need for the human user to prove the theorem himself before he gives it
to the computer to prove. This is necessary because he must determine (for the
computer) what axioms, or supporting theorems, are needed in the proof, and if
he puts in too many, the proof will bog down. See [12, p. 45].
This problem is partially eliminated by the use of the various concepts men-

tioned above, such as procedures and REDUCTION tables, which effectively
carry the information needed from some of these reference theorems, and are able
to give this information when needed without slowing the system down. The
remainder of the difficulty can be eliminated by having the human user insert
reference theorems only when they are needed. See Fig. 45.

Also present systems cannot prove very hard theorems, so they don't get
involved in interesting mathematics. We take as a maxim:

Automatic provers will not compete successfully with humans for the next
100 years. Therefore the most effective systems will be those in which the
computer acts as an assistant to the human user.

Thus it is imperative that this work attracts researchers from pure mathematics,
and therefore, that interactive programs be made convenient for the user, not the
programmer.

THEOREM

THEOREM

FIG. 45.

AXIOMS ANO SUPPORTING
THEOREMS NEEDED IN

THE PROOF

TKOREM KING PROVED

BUILT IN PROCEDURES
ANO REDUCTION TAKES

GIVEN ONLY WHEN PEEDED

Some of the needs of the user mathematician are listed on Fig. 46. Point 3
Fig. 46 is important because a mathematician will not long use a system which
repeatedly requires him to give trivial information to the system.

1. READ and easily COMPREHEND the scope.

2. FOLLOW the PROOF.

3. HELP COMPUTER only when needed.
4. Axioms and Reference theorems:

(i) Built-in (some),
(ii) Others added only when needed.

5. Convenient Commands.

FIG. 46. Some needs of a mathematician interacting with a mechanical prover.

We feel that a well-built system can be exercised on a large number of examples,
thereby obtaining much valuable information on the utility of concepts in the
program.
By running a large number of examples, the user can learn by experience, those

places where he needs to improve the automatic part of the system, places where a
little extra programming can greatly reduce the load on the human user.

0
0

0



This objective has been partly attained in an interactive program verification
system [29, 13] which has been running for the last year in Ralph London's
laboratory of the Information Science Institute, Los Angeles, and is now also
running at the University of Texas. Peter Bruell, Mabry Tyson, and Larry Fagan
were instrumental in developing this system. Much more needs to be done on it to
make it truly effective.
Others who have (earlier) worked on interactive systems include: Guard, et al.

[30]; Allen and Luckham [2]; Huet [37] and others.

3. Programming Languages

The new programming languages, such as PLANNER [34], MICRO-PLANNER [78],
QA-4 [68], Q-LISP [65], and PLASMA [35], which have been proposed and/or imple-
mented during the last few years have much to offer automatic theorem proving.
Especially are they rich in concepts such as: Knowledge, data base, procedures,
goal oriented, automatic backup, pattern directed invocation, demons, data types.

Also these languages have built-in structures and controls to handle the kinds of
things we propose.
However, we do not believe that the lack of use of these programming languages

in current automatic prover has hurt their performance. No proof of a hard
theorem has been omitted because the user did not use one of these. This may
not remain to be the case as automatic provers get more sophisticated, and as
these languages get more powerful and efficient. Many of their features are ready-
made for provers, and we should move toward adopting them, with needed
modifications, for our use.

4. Comments

The reader should not get the idea that we have found the secret to automatic
theorem prozing. We believe in these concepts but are certain that others will
evolve.
We have talked aglot and proved very few hard theorems (by computer) during

the last several years. It is time to do, to show that our concepts are good. It is time
to get a lot more experience with our provers. This will allow us to eliminate some
of our "good" ideas.

It is not the time to give up on automatic theorem proving. How can that be
advisable at a time when so little has been done to develop and apply the ideas we
already have? For example, why doesn't someone else use analogy in automatic
proofs?
One thing that would help push this field ahead, would be for authors to follow

the practice of publishing the proof of at least one hard theorem in each new
methods paper. We do not believe this field will remain vital unless we develop
truly powerful provers, and not just theories.

Completeness in itself is not a bad concept, if handled correctly. For example,
a complete unification system with built-in associativity and commutativity, such
as [77], needs to be reworked in a way that will make it a useful part of a practical
prover. It is believed that a properly constructed overdirector (see 11.7) can so
direct the search that one can have both efficiency and (essential) completeness.
At least we can try for this.

"Trapping" remains a serious problem, whereby a substitution alx that satisfies
a goal P(x) may fail on Q(x), and hence on

(P(x) A Q(x)).

Backing-up theoretically solves this but can be very time consuming. Huet's
"delaying" as used for matching in higher order logic [36] might be a good idea
here.

Another worry is the "learning" problem. During the last decade most researchers
in A.I. have avoided machine learning, because of such poor results from earlier
experiments, and have favored the use of Man's "knowledge" in A.I. programs or
human imposed learning such as used by Winston [85]. However, eventually that
barrier must be removed if the automatic prover is to be very effective. Figs 35 and
33 and accompanying comments provide an example of the kind of controlled
learning that might be useful.

Other work such as studies on induction (by Meltzer [53] and others) might be
important to our efforts.
One should also not ignore proof checking as a potential use for automatic

theorem proving [1, 11,51], and also computer aided teaching of mathematics [47].
Another recent effort which may have a far reaching effect on automatic theorem

proving is the work of Lenat [42A] which automatically discovers concepts in
mathematics.

5. Challenges

Let me close by suggesting a few theorems, from various fields of mathematics,
whose proofs by automatic means would be impressive at this time or in the near
future. See Table 1.

In our efforts to mold our experience into an effective theorem prover, we are
reminded of a 1918 statement by Albert Einstein [62]:

Man tries to make for himself in the fashion that suits him best a simplified
and intelligible picture of the world. He then tries to some extent to substitute
this cosmos of his for the world of experience, and thus to overcome it....
The supreme task ... is to arrive at those universal elementary laws from which
the cosmos can be built up by pure deduction. There is no logical path to these
laws; only intuition, resting on sympathetic understanding of experience, can
reach them....
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TABLE 1. Some challenging theorems for automatic provers

Field Theorems Proved Challenge

Set theory

Calculus

Analysis

Geometry

Topology

Algebra

Elementary set theory
w = w n Subsets (w)
w = U a

c*

Limit Theorems
(with Limit Heuristic)

Bolzano Weierstrass Theorem
Cont. fcn on a Compact
set is Uniformly Cont.
(Using Non-Standard Anal.)

Gelernter's

Open (A) A Open (B)
-• Open (A u B)

Group

Right Identity

x+(x-Fx) =0 -•
b+a-F(-b)+(-a)+(-b) = 0

Schoeder-Bernstein Theorem

Limit Theorems
(w/o Limit Heuristic)

Rolle's Theorem

J f dx exists for f continuous
Bolzano Weierstrass Theorem
(w/o Non-Standard Analysis)

Cont. fcn on a Compact Set is
Uniformly Cont.
(w/o Non-Standard Analysis)

Heine Borel Theorem
Hahn Banach Theorem

Pythagorean Theorem

A separable, normal space
is metrizable

Tichenoff Theorem

Ring

x3 = x for x 0

--oa•b=b•a
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