
1

Relational Programming

R. J. Popplestone
Department of Artificial Intelligence
University of Edinburgh, UK

1. INTRODUCTION

A programming language needs simple and well defined semantics. The two
favoured theoretical bases for languages have been lambda calculus as advocated
by Landin and others, and predicate calculus as advocated by Kowalski (see
Landin (1966) and Kowalski (1973)). In this paper I adopt an approach based
on predicate calculus, but in a manner that differs from the existing PROLOG
language (Warren 1975 and Battani & Meloni 1973) in that I adopt a "forward
inference" approach — inferring conclusions from premises, rather than the
"backward inference" approach of PROLOG, which starts with a desired con-
clusion and tries to find ways of inferring it. This difference is reflected in the
internal structure of the associated implementations, that of PROLOG being
a "backtrack search" kind of implementation, while the most obvious imple-
mentation of the system proposed here involves a kind of mass operation on
tables of data, reminiscent of APL (Iverson 1962) but in fact identical in many
respects with the work of Codd (Codd 1970) on relational data bases. Indeed,
from one perspective this paper can be seen as an extension of Codd's work into
the realm of general purpose computing.

As in the case of PROLOG it is necessary for the user of the relational
programming system to make statements which are not associated with the
logical structure of the problem, but reflect the need to control the compu-
tation. In PROLOG these are effected by the use of extra-logical control
primitives, but in our system control is exercised by the introduction of predi-
cates for that purpose, which have exactly the same semantics as the predicates
relevant to the logical structure of the problem.

In later sections I deal with the problem of introducing equality into the
system, in a way that reflects the normal mathematical usage of equality. In
this I am attempting something that programming systems normally do not try,
although the ABSYS system (Elcock et. al. 1971) was built with equality as a

3

ABSTRACT MODELS FOR COMPUTATION

central concept, and the unification algorithms of P ROLOG provide a limited

treatment.
When we come to consider the question of implementation, the relational

system seems to open a number of avenues of possibility, and it certainly raises

a number of problems. The most interesting developments compared with other

Artificial Intelligence languages are the possibility of making efficient use of the
address space of a modest size computer, or of handling much bigger problems

on a larger machine, and of exploiting parallelism. The major problem raised by
the system is that the most natural implementation involves repeating compu-
tations unnecessarily.

2. AN EXAMPLE

Figure lA shows a simple "blocks world" in which we have five blocks denoted
by the numbers 1, 2, 3, 4, 5. In this example we use numbers to denote the
entities in the world as a matter of convenience, since we are going to express

the relations holding between entities in the form of tables, and numbers are

the most convenient symbols to use. In later sections of the paper we shall use

the numbers "as numbers", that is as entities that can be operated on by the

normal functions of arithmetic, and will want to distinguish them from non-

numeric entities like blocks.

3

5

Fig. lA — A simple "blocks world".

ON

1 2
23
3 5

Fig. IB — The table for the ON relation.

Suppose that the state of this world is specified by stating which blocks

are on others. This relationship, which we shall call ON, can be expressed in

tabular form as in Fig. 1B. This can be regarded as an association of the name

ON, which we shall call a predicate name, or just a predicate, with a binary

relation, that is the set of pairs {(1,2) (2,3) (3,5)1. Now suppose we want to

4

POPPLESTONE

define a new relation, called ABOVE, in terms of ON. This can be done by
using the following two clauses

ON (X, Y) => ABOVE(X, Y)
ON (X, Y) & ABOVE(Y,Z) => ABOVE(X,Z)

(Cl)
(C2)

That is if X is ON Y, then Xis ABOVE Y, and if X is ON Y, and Y is ABOVE
Z, then Xis ABOVE Z.

It is possible to find a value for ABOVE, while keeping the same value for
ON, by applying a process illustrated in Fig. 2. In this process we cycle round
the clauses Cl and C2 and at each stage we form a table whose columns are
labelled with the names of the variables of the clause currently being examined,
and whose rows tabulate the possible values of the variables of the left side of
each clause. We then use this table to produce new rows to be added into the
table which is the current value of ABOVE. In this way we create a sequence
rl r4 of tables which specify possible approximations to the ABOVE
relationship. If we carry on with the process beyond r4 no new rows are added
to in producing r5 . . , and we say we have reached a fixed point. At this point
ON = -[(1,2) (2,3) (3,5)1 and ABOVE = -[(1,2) (1,3) (1,5) (2,3) (2,5) (3,5)1
and with these values (1) and (2) are satisfied according to the usual laws of
logic.

In a more general case, where the values of a number of predicates are being
built up, each step in the approximation will be represented by a sequence of
tables, each table specifying a possible value for one of the predicates, and in

ON ABOVE

1 2
23
3 5

ON ABOVE

1 2 1 2
2 3 1 3
3 5 23

2 5
3 5

V

Fig. 2 — Computing the ABOVE relation.

5

ON ABOVE

1 2 1 2
23 2 3
3 5 3 5

ON ABOVE

1 2 1 2
2 3 1 3
3 5 1 5

23
2 5
3 5

ABSTRACT MODELS FOR COMPUTATION

the next two sections we shall give a formal definition of the process illustrated

by the example above, and prove that it gives rise to a sequence of relations

which form an interpretation of a given set of logic clauses.

3. A FORMAL SPECIFICATION OF THE SYSTEM

Let us now develop a precise mathematical specification of systems of the type
outlined above.

3.1 The basic sets

We need a set E of entities, which form the universe of discourse. Thus in the
above example E = {1,2,3 ,4, 5]..

We also need a set P of "predicate symbols" and a set Vof "variable symbols".
Thus in our example P = {"ON", "ABOVE"]., and V = -["X", "Y", "Z"}, where

the quotes denote that the symbol itself is being referred to. We insist that E
and V are disjoint sets.

3.2 Finite sequences

For many purposes we will need to make use of finite sequences of-elements,
usually of entities and variables. We shall use bold lower case letters to denote
sequences. If a is a sequence, then ak denotes the kth element of a. (ak) is
occasionally used to denote the sequence a. By la I we mean the set {ak} of
elements of the sequence a. The length of a sequence a, denoted by length (a)
is the number of elements in it (counting repetitions). It is convenient to use
a sequence without repetitions as a way of referring to the members of another
sequence of the same length. Let v be a sequence without repeated members,
and let a be a sequence. Let vk be a member of I v I. Then we use the.notation

vk of a wrt v = ak •

For example, let v = ("X", "Y") then

"Y" of (5,6) wrt ("X", "Y") = 6 ,
and

"Y" of (5,7) wrt ("Y", ̀!X") = 5 •

The empty sequence, which we shall denote by (), is a sequence of no elements.

If x is a sequence, and x is an element, then conseq(x,x) = t, where t1 = x,
and tk = xk_i. We shall use a form of structural induction (Burstall 1969) on
sequences, whereby to prove a result for all sequences, it is sufficient to prove
it for the empty sequence, and to prove that if a result holds for a sequence x,
then it holds for conseq(x,x).

We will often need to extend a mapping defined on elements to apply to a
sequence. If a is a mapping and x is a sequence then a(x) = (a (x j)).

6

POPPLESTONE

3.3 Horn clauses

The logical sentences which we shall use will consist of conjunctions of Horn

clauses. A Horn clause has the form L1 & L2 & 4 => L where the Li
and L are literals, that is they simply take the form of a predicate applied to

arguments. More formally, a clause is a pair (L,E) consisting of a sequence L
of literals which we shall call the negative literals of the clause, and a literal

L' which we shall call the positive literal of the clause. Each literal itself is a
pair (p,a) where p is a predicate in P, and a is a sequence of "arguments" drawn

from V U E.

3.3.1 A restriction on clauses

An additional constraint which we place on the clauses allowed in our system
is that if (L ,L') is a clause then all variables occurring in L' must occur in some
L in ILI.

Thus from our example, ("ON"("X", "X")), and ("ON",("X",1)) are
literals, as well as ("ON",("X", "Y")). In the sequel, we shall use the normal
notation (for example ON(X,Y)) when referring to particular literals of the
object language. We are not of course restricted to binary predicates, for
example one might have BETWEEN, which is ternary, as in BETWEEN(X,Y,Z).
However, we suppose that with each predicate symbol p there is associated
a positive integer arity(p) which specifies the length of any argument sequence
which is associated with it in forming a literal.

3.4 Relations

Our clauses will be interpreted in terms of relations on E. By a k-ary relation on
E we mean a subset r of the cartesian product Ek. We denote the set of all k-ary
relations on E by Rel(E,k) which is of course the power set of Ek. Thus in our
example the tables, without column headings, represent relations, with the rows
being the "tuples" taken from Ek.

We will interpret a sequence of clauses C by associating a relation with each
predicate occurring in C. In fact, let p be a sequence, without repetitions of
the predicates of C. Then a sequence of relations r, with length (r) = length (p)
can be considered as a possible interpretation if arity (rk) = arity (Pk) 15 kS
length (p). We denote the set of all such relation sequences by 61 and call it the
domain of interpretation of C. 61 is then the cartesian product

61= Ilk Rel(E, arity (Pk)) (3.4.1)

In our example, C can be the sequence (Cl, C2) and p the sequence
("ON", "ABOVE").

61 is the product Rel(E,2) X Rel(E,2), so that if (rl,r2) in 63. then rl is a
possible value for ON, and r2 is a possible value for ABOVE.

Now, for any k, Rel(E,k) is a complete lattice under the normal set theory
operations of union and intersection. It follows that 61 is also a complete lattice,

ABSTRACT MODELS FOR COMPUTATION

since it is the direct product of such lattices. We need to make use of the
following "fa point" theorem about completing lattices.

3.4.2 Theorem

If .0 is a complete lattice, and 0 : .C-4..0 has the property that 0(1) >1, for each 1
in C, then there is an element u in .0 with the property that 0(u) = u .

Proof

Let v = U{Iltheta(1) > 1}. Then either 0(v) = v, in which case the required
result holds, or 0(v) > v, (where U denotes the lattice operation). Let us suppose
that 0(v) > v. Then either 0(0 (v)) = (v), in which case 0(v) is the required
"fixed point" or 0(0(v)) > (v). But v = U{110(1) > 11, and 0(v) > v, a
contradiction.

That 0(v) is in fact sometimes the fixed point can be shown by the following
example. Let .0 = [0,1] union -[2]-, with the standard ordering on the reals.
Let 0(x) = x + (1—x)2, x < 1, 0(x) = 2 otherwise. Then v = 1 in the above
proof, but 0(v) = 2 is the fixed point.

We shall also have need of a more constructive form of the fixed point
theorem.

3.4.3 Theorem

Let .0 be a complete lattice. Let 0 : have the properties (i) 0 (1)>1, and
(ii) If {lal CC is an ascending chain of members of C, then 0 (u{la}) = U{0(10)}.
Let la be any element of C. Then if la = VOi(la), 0(1,,) =

Proof

0(1,,) = 0(
la
U
o
0i(la)) = U 0(1a) = U

o
01(1a) since 01(10)-00(1a) = .

i>o
In the theory of computation, it is customary to refer to a function satis-

fying the preconditions of (3.4.3) as being continuous.

3.5 Labelled relations

To simplify some of the definitions we shall make later, and to clarify the
processes involved, we need to introduce the notion of a labelled relation, which
is a pair, (v,r) where v is a sequence of variables without repetition, and r is a
relation having the property that arity(r) = length (v). The main benefit of this
device is to be found in the definitions of attach, detach, and join, to be found
below. In Fig. 2, the labelled relations are represented by tables with column
labels, the row of column labels corresponding to the sequence of variables.
In the first development of the theory we used unlabelled relations, which
necessitated permuting columns in a way that was difficult to follow. It should
be noted that the relational data base work of Codd and others makes use of
labelled relations, but the necessity of attaching and detaching labels seems
not to be generally recognised.

8

POPPLESTONE

We shall*denote labelled relations by q, , q", etc. In particular, ch =
(13, {Ø}) will be called the null labelled relation.

If {q0,1 = {(v,ra)} is a family of labelled relations with the same label
sequence, then we write 1J0q a for (v,Ura). We will not require a union operation

over labelled relations having different v's.

3.6 The rho function

In this section we define a function p, which has the property that if C is a
sequence of clauses: p(C):61-41t, and p(C) satisfies the conditions specified
for 0 in (3.4.2) and (3.43). In Sec. 4 we shall show that any fixed point of
p(C) is an interpretation of C.

p is defined for clause sequences by building up a definition via predicates,

literals, and literal-sequences and clauses. The definition involves a number of
auxiliary functions which we shall define, namely inject, project, attach, detach,
and join (this last is written *). Let C be a clause sequence, C = (L, (p',)) be
a clause, where L is a literal sequence. Let L = (p,a) be a literal. Then

P ((C)) = P (C) p1
p (consseq(C,C)) = p (C) op (C) p2

p((L, (p' , a')) (r) = r U inject (p' ,p) (detach (a, p'(L)(r))) P3

PV))(r) = qo p4
Aconsseq((L ,L))(r) = p (L)(r) * p'(L)(r) p5
p((p,a))(r) = attach (a,p (p)(r)) p6

p(p)(r) = project (p ,p)(r) P7

where 0 is the functional composition operation defined by (fog)(x) = g(f(x)).
Before we go on to complete the formal details of the definition of p, let

us consider its meaning in our example. p (C1) is a function which takes a pair,
(rl,r2), where rl is a possible value for the ON relation, and r2 is a possible
value for the ABOVE relation, and produces (r ,r 2'), which are again possible
values for ON, and ABOVE respectively, according to the procedure sketched
out in Sect. 2. Note that the value of ON will not in fact change, since it does
not occur positively in any clause, nevertheless it is convenient to include it in
the considerations.

3.7 The auxiliary functions

Returning to the definition of pl-p7, the inject and project mappings simply
serve to access components of members of the cartesian product, R. In fact

inject(p,p)(r) = (rk) where rk = r ifpk =p, and rk = 0 otherwise. p8
project(p,p)(r) =p of r wrt p P9

ABSTRACT MODELS FOR COMPUTATION

Thus in our example,

project (ON, (ON,ABOVE))(4(1,2),(2,3),(3,5)1, 4 D =

and selects the value of the ON relation. Likewise,

inject (ABOVE, (ON, ABOVE) ({(1, 3),(2 , 5)1) = ({]., {(1, 3),(2 , 5)].)

and is used in the creation of a new value for the ABOVE relation.
While unlabelled relations are associated with predicates, labelled relations

are associated with literals, and sequences of literals. If L is a literal, with

associated labelled relation (v ,r) then v is the sequence of variables of L, without

repetitions. The same is true for literal sequences. The attach function is used to

go from unlabelled relations associated with predicates to labelled relations

associated with literals, and the detach function makes the opposite transition.

detach (a,(v,r)) takes an argument sequence a, la I CEU V and a labelled

relation (v,r), and produces an unlabelled relation r' for which arity(r') =

length(a). Our clauses are restricted by (3.3.1) so that the condition lain vc Iv'
is always satisfied.

detach (a(v,r)) =
13t e r
ake Iv = = ak oft wrt v
ake E=> tic = akb p10

In our example, for C2, when we are forming a new value of ABOVE, we use

detach with arguments ("X","Z") and (("X","Y","Z"), (1,2,3),(2,3,5)) to

obtain the relation 4(1,3),(2,5)]. to be added into ABOVE.
Suppose now that a is a sequence for which la ICEUV and r is a relation,

such that arity(r) = length(a). Then attach (a,r) is a labelled relation (v,),

where iv I = !al n V and

r' = -R113t e r
Vk,k've = ak => vie Of wrt v = tk

Vk akelE=> tk = akl. pll

In our example, if L = ABOVE(Y,Z), then we have to perform

attach(("Y","Z"), 4(1,2),(2,3),(3,5)1) =

(("Y","Z"), {(1,2),(2,3),(3,5)D

a trivial example in fact. If, however, we attach ("X","X") to the above relation,

10

POPPLESTONE

then we get the labelled relation (("X"), {}), since nothing is above itself. If we
attach ("X",5), we get (("X"), {(3)}).

The next operation we have to consider is the join operation. This is
involved in combining the labelled relations derived from two different literals.
Let (v , r) and (v1 , r') be two labelled relations, then

(v", r") = (v, r) * ,) <=>
Iv" I = Iv).
r" = [t" 13 t ,t1

v c jv => v of t" wrt v" = v oft wrt v
v'e Iv' I => v' of t" wrt v" = v' oft' wrt v']..

For example, in processing C2 we have to compute the join

p12

(("X","Y"),4(1,2),(2,3),(3,5)1) * (("Y ","Z"), 4(1,2),(2,3),(3,5)1)

= (("X","Y","Z"),4(1,2,3),(2,3,5)D.

Note that q0 = (0, 401) is an identity for * , and that * is commutative and
associative.

3.8 Summary of section 3
We have now completed the definition of p. Note that p3 implies that p(C)(0> r
and so, from pl and p2, p(C)(r) r. Thus p(C) has at least one fixed point by
3.4.2, r1, say, and moreover, r1 must also be a fixed point for p(C) or all C in
ICI, by the definition of p(C). It follows that r1 is a fixed point for any clause
sequence C' st IC' I = IC I so that the fixed point depends only on the set of
clauses, not on their order. Before we investigate the properties of p further
in Sec. 4, let us work through an example of the application of ((C1,C2)).

Let us consider the initial state of our example, represented by ro =
p = ("ON", "ABOVE") so that "ON" is associated

with the first relation in the pair ro, and ABOVE with the second (null) relation.
Then by p1 & p2

X(C1,C2))(ro) = P (C2)(P(C1)(ro)) (3.8.1)
P(C1)(ro) =r0 U inject("ABOVE",13)(detach(("X","Y"),P1(L)(ro)
where L = ("ON",("X","Y"))) (3.8.2)

13' (1-) (ro) = qo * P VON",("X","Y")))(ro) (3.8.3)
P VON",("X","Y")))(ro) = attach (("X", "Y"), P ("ON") (ro))
= attach (("X", "Y"), project(("ON"("ON","ABOVE")))(r0))
= attach (("X","Y "), 4(1,2),(2,3),(3,5)1)
(("X","Y"),4(1,2),(2,3),(3,5)D = P'04(ro)

since qo is an identity for * .

11

ABSTRACT MODELS FOR COMPUTATION

Thus, applying (3.8.2) we get that

P(C1)(r = ro U inject("ABOVE",p) (detach(("X","Y"),

(("X","Y"), 4(1,2),(2,3),(3,5)1)))
= 1.0 u inject ("ABOVE",P)(4(1,2),(2,3),(3,5)1)
= 1.0 U (41, 4(1,2),(2,3),(3,5)1
= (.[(1,2),(2,3),(3,5)},4(l,2),(2,3),(3,5)}).

We shall not compute p(C2)(r0) in detail, but note that the join operation

involved is the one given as an example after the definition of join.

4. FIXED POINTS ARE INTERPRETATIONS

In this section we prove two theorems. The first states that the fixed point of

p(C) gives rise to an interpretation of C, that is a correspondence between

predicates of C and relations in which the clauses of C are satisfied.

The second theorem shows that p(C) is continuous, and thus provides a

basis for fulding fixed points by repeated applications of p(C) to an initial

relation sequence.

4.1 Theorem

Let C be a sequence of clauses. Let r be a fixed point of p(C). Let Ce IC I.

Let a : VUE E be a function for which a(2) = Q for e E. Suppose that
for each literal (p,a) occurring negatively in C,a(a)e project (p,p)(r). Let (pcd)

be the positive literal of C. Then cr(a') e project (p',p)(r).
Comment on the meaning of this theorem.
With each predicate p occurring in C we associate a relation, project (p,p)(ro).

We can regard this association relation as an interpretation of the predicate. The
theorem states that however we substitute constants for variables in C, if we
regard p(ei, e2 ek) as being satisfied when (e1, e2) in r, where r is the
associated relation with p, then if all the literals on the left of a clause are

satisfied, then that on the right must be satisfied.

Thus in our example, let us consider C2, and let

= 2, a("Y") = 3 and a("Z") = 5
and let

r = (4(1,2),(2,3),(3,5)1, {(1,2),(2,3),(3,5),(1,3),(2,5),(1, 5)1).
Then

.= (2,3) e project ("ON", ("ON", "ABOVE"))

= 4(1,2),(2,3),(3,5)1

and likewise sigma(("Y","Z")) e project("ABOVE",("ON","ABOVE"))(ro)
thus the left-hand side of C2 is satisfied, and we find that the right-hand side
is satisfied, since

= (2,5) e project ("ABOVE",("ON","ABOVE"))(ro)

12

P0 PP LESTONE

Before we can prove (4.1) we need the following two lemmas.

4.2 Lemma

Let a be a sequence with lal CE U V. Let r be a relation. Let (v ,r') = attach(a,r).
Then for any a: VUE-+E for which eeE => a (e) = e

a (a)er => a(v) e

Proof

Suppose o(a)er
Let vk, = ak for some k,k'

re of a(v)wrt v = a(v)k, =a (vie) = a(ak) = a(a)k.

Moreover if ak eE then a(a)k = ak

Hence a(a) e r' from the definition of attach (pl 1).

4.3 Lemma

Let v,V, v" be sequences of variables, and let r,r' ,r" be relations for which

(v",r") = (v, r) * (v' , r')

then if a : VUE-+E

a (v) e r & (v') e r' => a (v") e r".

Proof

Let v e iv and let vi e Iv' I.

v of a (v") wrt v" = o(v) = v of a (v)wrt v
v' of a (v") wrt v" = o(vs) = of a (v1) wrt vi.

Thus a (v) & a(vs) satisfy the requirements to be the t & t' in the definition
of *, and so we conclude a (v") e r"

4.4 The proof of theorem 4.1
It follows from Sec. 3.8 that r must be a fixed point for p(C) for
each Ce IC I.

Now let (p,a) be a literal occurring negatively in C. Then from Lemma 4.2
and p7

a(a) e projecqp,PM) => a(a)e P(P)(ro)
=> a (v) e r' where (v,r')= p ((p,a))(ro)

13

ABSTRACT MODELS FOR COMPUTATION

Thus if a satisfies the preconditions of our theorem (4.1), then for each literal
(p,a) occurring negatively in C

(v,r') = P aD(ro) => a(v) e (4.4.1)

Let L" be a sequence of these literals. We shall show, by structural induction
(Burstall, 1969), that if (v",r") = p'(L") then a(v) e r".

Suppose Ln = 0. Then (v",r") = qo = (0,{0}), by p4. Thus a(v") =
a(0) = a(0) = 0 e {0}, so founding our induction. Suppose L" =
consseq(L,C), and suppose that a(v') e r', where p(C)(co) = (V,e).

Now by p 5,

a' (I:)0' 0) = P (L) (r 0) * (1!) (1* = 07" , r"), say

Let p(L)(ro) = (v,r), so that o(v) e r by (4.4.1).
We can conclude from Lemma 4.3 that a(v") e r".
Thus if C = (L,E) and AL)(ro) = (v,r) then a(v) e r.
Now ro is a fixed point of p(C), and from p3 we see that this implies that

Thus

inject (p' , p) (detach (a' ,(v, r))) Cr0.

project (p',p)inject (p',p) detach (a` ,(v,r)))
= detach (af,(v,r)) C project (p', p) (r)) .

Consider a(a')
1f4 e E then a(a')k =ak
If 4 e V then 4 of a(v)wrt v = a(4) =

Hence, by the definition of detach with a(v) playing the part of t, and a(a')
playing the part of we conclude that a(a')e detach(as,(v,r)), and so a(a')e
project (p',p)(ro).

This concludes the proof.
Let us now return to the proof that p(C) is chain continuous. We begin

with lemmas showing that attach, detach and join are continuous, the latter
in both its arguments, and then prove the chain-continuity of p(C) by building
up the definitions p1-7.

4.5 Lemma

If {r2ctlis a set of relations, and a sequence for which tat CE U V, then

attach (a, U ra) = Lai (attach (a,ra)).

14

POPPLE STONE
Proof

Let (v,r') = attach(a,V, ra)

(v,r") = u attach(a ra)
a

Then r" = u r where (v ria) = attach (a ra)a
Lett e r' . Then

3 t,te Ura &ak = v => ak of t'wrt a = vk oft wrt va
&ak eE=>tk=ak .

Suppose t e ra, for some /3. Then t' e r;. and hence t' e U ra. The converse proof
is similar. a

4.6 Lemma
If {(v,ra)} is a set of labelled relations, with identical labels, and a is an argument
sequence, then

detach (a, U (v,ra)) = U detach (a, (v, ra)) .

The proof is straightforward, and is not included in this paper.

4.7 Lemma
If (v, r) is a labelled relation, and -[(v' ,)1 is a set of labelled relations, then

(v, r) * U (v' , ra) = U((v, r) * (v' , ra')) .a

Proof

Let (v" , r") = (v',r) * (V(V, r,))

Then lel = Iv I U Iv' I
Let t" e r". Then

3t,e, te r & t' elcir&Vv e v,Vv' e v'
v of t" wrt v" = v of t wrt v
v' of t" wrt v" = v oft' wrt .

Suppose t' e rh for some (3. Then

t e (v, r) * (v', rh)
and sot e U ((v,r) * (v',ra'))a

and similarly conversely.

15

ABSTRACT MODELS FOR COMPUTATION

We also need the following two results, for which the proof is sufficiently

straightforward to be omitted.

4.8 Lemma

If -NI- is a set of relation sequences, and p is a predicate, then

project i(p,p)(U (Ur) = U (project (p,p)(r,)).
a a

4.9 Lemma

If {ral is a set of relations, and p is a predicate, then

inject (p, ra) = Vinject(p,p)(ra)).

We are now able to prove the following.

4.10 Theorem

p(x) is a chain-continuous, from 61 to tR, whether x be a predicate, literal,

clause or clause sequence, and if L is a literal sequence, then p'(L) is chain-

continuous.

Proof

Let Ta be an ascending chain of members of 61, indexed by a in some totally

ordered set A.

(i) Let p be a predicate. Then

p (p) (Lai ra) = project (p,p)(y ra)
= y project (p,p)(ra)
= td p(p)r.

(by 4.8)

(by p7)

(ii) Let (p,a) be a literal. Then

pl(p,a)(yra) = attach(a p(p)(y, rc,))

= attach (a,(p(p)(ra)) (by OD

= ld attach (a,p(p)(k)) (by 4.5)

= y, P (P 0(ra). (by p6)

(iii) This section of the proof, which lifts continuity over the join operation,
is the root of the restriction to chain-continuity, which arises essentially from
the cross-terms generated by join. So, we shall prove, by structural induction,
that

p'(L)(lcira) =

16

To found the induction we observe that

Ps(0)(Vra) = qo =

Now suppose that for some L

ps(L)(Ura) = u p'(L)(ra) .

Then, by p 5

p'(consseq(L,L)(cyra) = p(L)(c)ra)

= cy p(L)(ra) * Wpi(L)(rft)

= wcy P M(ç«) *P1(000)

= U U(p(L)(rc,) * (L) (0)
R "

= cy(p'(consseq(L,L))(ra))

POPPLE S TO NE

* p'(L)()ra)

(by (ii) and inductive hypothesis,
where p e A)

, (by 4.7)

(by 4.7 and commutativity of *)

(by p5, and the properties of U)

Since for any a and p in A, either a < 13 or 13< a and so

p (L);(r) * (L)(rp) < 14)00 * (WO
or

P(L)(ra) * P'(1-)(r,)<P(L)(0 * P'(1-)(ro) •

(iv) Let (L, (p',a')) be a clause

p(L(p', a'))(ld ra) =

IJ r y inject(p1,p)(detach(as,p'(L)(vra)))

= Vra U yjinject(p',p)(detach (a',p'(L)(ra)))

= 11(ra U inject (P:PXde tach (a' ,p (L) (OD •

(by 4.6,4.9)

(v) Finally we prove, by structural induction, that p (C) is chain-continuous
for the clause-sequence C.

p ((0)(U rot) = p(C)(Ure,)
= tc-2P(C)(ra)
= cY, P((C))(42)

(by pl)

(by (iv))

(by pl)

Suppose now for some C that p(C)(Uras) = U p(C)(ra') for any ascending
chain 4.

17

ABSTRACT MODELS FOR COMPUTATION

Then

p(consseq(C,C))(y ra)

= p(C)(p(c)() (by p2)

= P(C)(Lee P(C)(ra)) (by (iv)

=La./ P(C)(P(C)(0)
by inductive hypothesis, since p(C)(r) is an ascending sequence

= cy p(consseq(C,C))(r,) (by p2)

which concludes the proof.

5. APPLICATION OF THE THEORY

The conclusion that we can draw from Secs. 3 and 4, is that given a sequence

of clauses, C and an initial sequence of relations ro, that there exists a relation

sequence r which is defined by

= un (C)(r0)

and which provides an interpretation of C in the sense that for any substitution
of constants for variables in a clause C of C if the left-hand side of C is satisfied

then the right-hand side must be.
Now if we are dealing only with finite relations, the sequence (pn(C)(ro))

must reach its least upper bound after a finite number of steps, so that, for
some n, r,. = pn(C)(ro) .

The interesting problems arise when some of the relations concerned are
infinite. We are not proposing a treatment of the general case, but shall restrict
ourselves to consideration of the case where infinite relations only occur
negatively in clauses, and where join only produces finite results.

In order to be able to perform arithmetic computations within our rela-
tional system, we need some representation specifying that the set E contains

the reals, and that the arithmetic operations, + — * /, are represented as relations
on E (there need be no confusion between the use of * at the meta-level for join,
and at the object-level for multiplication). It is also convenient to add the
distinguished set -[T,F1 for "true", "false", to E.

We shall use R to denote the set of real numbers.
The technical device used to incorporate the real number operations into

the relational system is based on the following definition.

5.1 Definition

Let E' CE. Let f : E -+ E'. Then p(f) is the relation

{t Itn+i f (t, • ..tn),t, .2.tn e .

18

POPPLESTONE

Thus it is possible to incorporate arithmetic into the system by insisting that
P contain the set {"+", "*", "/"]- and by associating with each an operator
applied to the corresponding function. It is also clear that the arithmetic
relations, <, >, ‹, ›, can be extended to apply to E.

5.2 Implementation of infinite relations

The introduction of infinite relations into the system can only be bought at a
cost. The representation of finite relations in a computer raises no problems
of principle, although there may be practical difficulties in handling large
relations economically. On the other hand there are difficulties involved in
representing infinite relations in a way that is effective computationally, and of
course there is no guarantee that any clause sequence will give rise to a fixed
point in a finite number of iterations. This second difficulty is unavoidable if
the system is to have full computational power — it is equivalent to the halting
problem.

There are conventionally two methods of representing infinite objects in
a computer — as a program or symbolically. (These two are not necessarily
distinct; LISP program can be treated as symbolic, although this is seldom done
in practice). We propose to restrict the system and to deal only with finite
relations, apart from the basic arithmetic ones defined above. This is possible
on account of the following.

5.2.1 Theorem

Let (v, r) be a finite labelled relation. Let f : E'n -> E', E' C E. Let a be an
argument sequence of length n + 1, for which

i<n +1=>ai CivjUE

then
(v,r) * attach (a, tt(f))

is finite.

Proof

Let (v',r')= attach(a,p(f))
Let (v",r")= (v,r) * (v',r')
Let 0 : r" -> r be defined by

•
If t" e r", choose 0 (tpers.t.
V e Iv' => v of t" wrt e = v of 0(0 wrt v

We shall show that 0 is 1-1.

19

ABSTRACT MODELS FOR COMPUTATION

Suppose 0(t") = 0(s") = t, say, for some s", t" e r"

There are two cases to consider.

Case
an+i e E U {a, Then Iv' I c Ivi
therefore v"e lv" I => v" e lvi since Iv" I = Iv I U Iv' I
therefore Vv"e Iv" I =>
v" oft" wrt v" = v" of 0 (t") wrt v = v" of 0(s") wrt v

= v" of s" wrt v"
therefore s" =t" .

Case 2

an+2 e a,,,+1 at n.
Let vk = an+1

Let to s° e p(f) for which

vie = ak => vie oft' wrt v` = 4

vie of s' wrt v' =

ak eE=>t ak = .

Then for k < n, let ak = vie . Then vie e Iv I.
= vie oft' wrt v' = vie of t" wrt v"

= vie of t, wrt v =k' of s wrt v

= vk. of s" wrt v" = vie of s' wrt v' = s.

Thus 4 =4 k < n.
But 4+1 = f(t;) = f(s1,— = sg+

therefore 4 of t" wrt v" = 4 of wrt v' = 4+1
= 4+1 = 4 of s' wrt v' = 4 of s" wrt v"

and, for v" * vk, v" e Iv
sop" of t" wrt v" = v" of 0(t") wrt v = v" of 0(s") wrt v

= v" of s" wrt v"
therefore t" = s"

Thus U is 1 — 1, hence r" is finite, since r is finite.

5.2.2 Theorem
Let (v, r) be a finite labelled relation. Let r' be relation. Let a be an argument

sequence, length(a) = arity(r'). Then

(v,r) * attach(a/)

is finite.
The proof is similar to the preceding theorem, and is omitted.

20

POPPLESTONE

The import of the above two theorems is that the relations involved in the
computation of p(C), for some clause C, will be finite if for every literal (p,a)
where p is associated with an infinite relation ti(f), a, ... a„ are either constants,
or are variables which have already occurred in earlier literals in the clause
(arity(p) = n+1). Moreover, every literal (p,a) for which p is associated with
a non-functional, infinite relation of arity n, then a, a,, must either be
constant, or have occurred earlier in the clause.

5.3 Free functions

In order to provide some equivalent facility to the data structures of conventional
programming languages, let us suppose that there is a set tf„,„} of functions,
fm, : Em —> E, for which

fmn (x, • • • xm) = Len' (x', • • • x
=>m = n =n',xj= x; .

The fmn are called free functions on E.
We can associate free functions with predicate symbols, as in the last

section. It should be noted that in addition to the uses of these permitted
by Theorems 5.2.1 and 5.2.2, it is possible to have a literal (p,a), for which p
is associated with fmn, where am4.1 is a variable which has occurred earlier
in the clause, while ai, i < n have not necessarily occurred earlier. This obser-
vation does not carry through to the quotient interpretations discussed in the
next section.

6. THE TREATMENT OF EQUALITY

Most mechanised logic systems have problems in their treatment of equality. The
basic intuitive notion that if entities are equal then they should behave identi-
cally when acted on by functions can be expressed by axioms of the sort

x =y => f(x) = f(y)

which have to be written out for every function named in the system. It is
possible to ensure that this substitutivity property of equality is automatically
provided by adding the predicate n=" to the set P of predicates, and by modi-
fying the definition of p(C), for some sequence of clauses C to

peq (C) = p(C) o n (r)

where n (r) is defined as follows:

Let req = =" of r wrt p
Let 4,7 be the reflexive symmetric and transitive closure of req.

21

ABSTRACT MODELS FOR COMPUTATION

Then n (r) is r' where

(t) "=" of r' wrt p = r'eq
(ii) If p e jpi,p*"=" and let

r = p of r wrt p. Then
= p of r' wrt p is defined to be

r' = -[t' 13ter, Vi(t'bti)

The effect of the above definition can be stated simply by saying that
in each cycle of the interactive process of interpreting clauses, we take the
equalities that have been deduced, apply the rules of reflexivity, symmetry
and transitivity to produce an extended equality relation, and then use this to
infer that if two entities are equal, and one is related to some further, then
the other must also be related to these entities.

4.6.1 Introducing n is equivalent to introducing equality axioms
In this section we show that if C is a clause sequence, then
peq(C) is a fixed point of C' where C' is formed from C by
axioms.

Let r1 be a fixed point of peq(C), and let us note that
from the reflexivity of r;q in the definition of n.

We can easily see that r1 is a fixed point of p(C) for

P (C) < n(P(c)(0)
= P e q(C) (ri) =

But from the definition of p

p (C)(ri) >

Similarly, we can show that n (r1) = r1.

6.1.1 Theorem

If C is a clause sequence, and r is a fixed point of peq(C) then

(i) 1.1 is a fixed point of
p(x =y =>y =

(ii) r1 is a fixed point of
p(x=y&y=z=>x=z)

(iii) for any p e pJ, r1 is a fixed point of
p (x = y & p x p . . .

22

any fixed point of
adjoining equality

for all r, n(r) > r,

POPPLESTONE

We shall omit the proof of (i) and (ii) and only give the proof of
Since qo is an identity of *, we need to consider

t e detach((xl ...y ...xn), attach ((x,y),req)*attach((x
where reel = "=" ofri wrt p and rp = p ofr1 wrt p .

We need to show that t e rp
Now from the definition of detach (p10),

3t' e attach((x,y),req) * attach ((x, x . ..x„)rp)

for which

v e Iv' I => v oft wrt (x1 ...y ...xn) = v oft' wrt v'

where v' is a sequence without repetitions and Iv'i= {x1 • • • xri,x,Yi-•
Now, form the definition of * and attach, pll & p12,

3t", t", t" e req & t'" e rp St.
e 4x,y} =>

v" oft' wrt = v" oft" wrt (x,y)
v' "
s " oft

,
v wrt vi = v" of t" wrt (xi ...x ...x).

Let v e {xi . .x„}.. Then

and

v of t wrt (x ...y...xn)= v of t' wrt v'
= v of t'" wrt (xi ...x ...xn)

y of t wrt (xi ...y ...x„)=y of t' wrt v'
=y of t" wrt (x,y).

from (I).
from (III).

from (I)
from (II)

Now n (r1) = 7.1 so that req is its own reflexive symmetric & transitive closure,
so that it is itself reflexive symmetric and transitive. Thus

v e {xi ...xn} => (v of t wrt(x, ...y ...x,),
v of t" wrt (xi ...x ;3)) e req

by the reflexivity of req and

(y.of t wrt (xi ...y ...xn),x of t" wrt (xi ...x, ...xn)) e req

since
(y of t wrt(xi ...y...xn),x of t'" wrt (xi . • • x • • • xn))
= (y of t" wrt(x,y),x oft' wrt v) = (y of t" wrt(x,y), x of t" wrt (x)
= (WO say, from the definition of *. (p12)

23

ABSTRACT MODELS FOR COMPUTATION

Now since req is symmetric and

t" =(x oft" wrt(x,y),y of t" wrt (x y))

it follows that (tc,tp) e req

But t" e ii,, and we have shown that for each i,) e req .
Therefore, from the definition of n, and the fact that n = 1'1 it follows that

t e rp.

6.2 A discussion of equality

Theorem 6.1.1 shows that it is possible to make the interpretation system

behave as though the equality axioms were explicitly present.

From a practical point of view this method of treating equality suffers from

a major disadvantage in that the application of the equality rules results in a

large expansion of the relations. It seems likely that the obvious ploy of using

req to define equivalence classes of entities, and only recording relationships

between canonical members of these classes, would be theoretically sound, but

I have not completed a proof that this is so.

7. DISCUSSION

In this paper we have shown how it is possible to use certain combinators on

relations to produce an interpretation of a class of clauses (Horn Clauses) in

predicate logic. The work was inspired by a particular view of the task of writing

certain kinds of program, but has not yet given rise to a system implemented

on a digital computer, although some initial studies have been made. The mathe-

matical apparatus used is hardly novel — perhaps my most direct debt is to

D. Park (1969).

REFERENCES
Batani, G. and Meloni, H. (1973). Interpreteur du Language de Programmation PROLOG.

Marseille: Universite d'Aix-Marseille.

Burstall, R. M. (1969). Proving properties of programs by structural induction. Computer

Journal, 12,41-48.
Codd, E. F. (1970). A relational model of data for large shared data banks. Comm. Ass.

Comp. Mach., 13, 377-387.
Elcock, E. W., Foster, J. M., Gray, P. M. D., McGregor, J. J. and Murray, A. M. (1971).

ABSET: A programming language based on sets; motivation and examples. Machine

Intelligence 6, pp. 467-492 (eds. Meltzer, B. and Michie, D.). Edinburgh: Edinburgh

University Press.
Iverson, K. E. (1962).A Programming Language. New York: Wiley.

Kowahld, R. (1973). Predicate logic as a programming language. DCL Memo No. 70.

Edinburgh: Dept. of Artificial Intelligence, University of Edinburgh.

Landin, P. J. (1966). The next 700 programming languages. Comm. Ass. Comp. Mach., 9,

157-166.

24

POPPLESTONE

Park, D. (1969). Fixpoint induction and proofs of program properties. In Machine Intelli-gence 5, pp. 59-77 (eds. Meltzer, B. and Michie, D.). Edinburgh: Edinburgh UniversityPress.
Warren, D. (1975). Users guide to DEC System 10 PROLOG. DAI InternalMemo. Edinburgh:Dept. of Artificial Intelligence, University of Edinburgh.

25

