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ABSTRACT

Humans and intelligent computer programs must often jump to the conclusion that the objects they
can determine to have certain properties or relations are the only objects that do. Circumscription
formalizes such conjectural reasoning.

1. Introduction . The Qualification Problem

McCarthy [6] proposed a program with ̀ common sense' that would represent what
it knows (mainly) by sentences in a suitable logical language. It would decide what
to do by deducing a conclusion that it should perform a certain act. Performing the
act would create a new situation, and it would again decide what to do. This requires
representing both knowledge about the particular situation and general common
sense knowledge as sentences of logic.
The ̀qualification problem', immediately arose in representing general common

sense knowledge. It seemed that in order to fully represent the conditions for the
successful performance of an action, an impractical and implausible number of
qualifications would have to be included in the sentences expressing them. For
example, the successful use of a boat to cross a river requires, if the boat is a rowboat,
that the oars and rowlocks be present and unbroken, and that they fit each other.
Many other qualifications can be added, making the rules for using a rowboat
almost impossible to apply, and yet anyone will still be able to think of additional
requirements not yet stated.

Circumscription is a rule of conjecture that can be used by a person or program
for ̀ jumping to certain conclusions'. Namely, the objects that can be shown to have
a certain property P by reasoning from certain facts A are all the objects that satisfy P.
More generally, circumscription can be used to conjecture that the tuples
<x, y, z> that can be shown to satisfy a relation P(x, y, z) are all the tuples
satisfying this relation. Thus we circumscribe the set of relevant tuples.

We can postulate that a boat can be used to cross a river unless 'something'
prevents it. Then circumscription may be used to conjecture that the only entities
that can prevent the use of the boat are those whose existence follows from the facts
at hand. If no lack of oars or other circumstance preventing boat use is deducible,
then the boat is concluded to be usable. The correctness of this conclusion
depends on our having 'taken into account' all relevant facts when we made the
circumscription.

Circumscription formalizes several processes of human informal reasoning. For
example, common sense reasoning is ordinarily ready to jump to the conclusion
that a tool can be used for its intended purpose unless something prevents its use.
Considered purely extensionally, such a statement conveys no information; it
seems merely to assert that a tool can be used for its intended purpose unless it
can't. Heuristically, the statement is not just a tautologous disjunction; it suggests
forming a plan to use the tool.
Even when a program does not reach its conclusions by manipulating sentences

in a formal language, we can often profitably analyze its behavior by considering
it to believe certain sentences when it is in certain states, and we can study how these
ascribed beliefs change with time (see [9]). When we do such analyses, we again
discover that successful people and programs must jump to such conclusions.

2. The Need for Non-Monotonic Reasoning

We cannot get circumscriptive reasoning capability by adding sentences to an
axiomatization or by adding an ordinary rule of inference to mathematical logic.
This is because the well known systems of mathematical logic have the following
monotonicity property. If a sentence q follows from a collection A of sentences and
A c B, then q follows from B. In the notation of proof theory: if A I— q and A c B,
then B q. Indeed a proof from the premisses A is a sequence of sentences each of
which is a either a premiss, an axiom or follows from a subset of the sentences oc-
curring earlier in the proof by one of the rules of inference. Therefore, a proof from
A can also serve as a proof from B. The semantic notion of entailment is also mono-
tonic; we say that A entails q (written A = q) if q is true in all models of A. But if
A = q and A a B, then every model of B is also a model of A, which shows that
B q.

Circumspection is a formalized rule of conjecture that can be used along with the
rules of inference of first order logic. Predicate circumscription assumes that entities
satisfy a given predicate only if they have to on the basis of a collection of facts.
Domain circumscription conjectures that the 'known' entities are all there are. It
turns out that domain circumscription, previously called minimal inference, can be
subsumed under predicate circumscription.
We will argue using examples that humans use such 'non-monotonic' reasoning

and that it is required for intelligent behavior. The default case reasoning of many
computer programs [11] and the use of THNOT in MICROPLANNER [12] programs
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are also examples of non-monotonic reasoning, but possibly of a different kind from

those discussed in this paper. Hewitt [5] gives the basic ideas of the PLANNER

approach.
The result of applying circumscription to a collection A of facts is a sentence

schema that asserts that the only tuples satisfying a predicate P(x, z) are those

whose doing so follows from the sentences of A. Since adding more sentences to A

might make P applicable to more tuples, circumscription is not monotonic. Con-

clusions derived from circumscription are conjectures that A includes all the relevant

facts and that the objects whose existence follows from A are all the relevant objects.

A heuristic program might use circumscription in various ways. Suppose it

circumscribes some facts and makes a plan on the basis of the conclusions reached.

It might immediately carry out the plan, or be more cautious and look for additional

facts that might require modifying it.
Before introducing the formalism, we informally discuss a well known problem

whose solution seems to involve such non-monotonic reasoning.

3. Missionaries and Cannibals

The Missionaries and Cannibals pn771e, much used in AI, contains more than enough

detail to illustrate many of the issues.

"Three missionaries and three cannibals come to a river. A rowboat
that seats two is available. If the cannibals ever outnumber the missionaries
on either bank of the river, the missionaries will be eaten. How shall they

cross the river"

Obviously the puzzler is expected to devise a strategy of rowing the boat back and

forth that gets them all across and avoids the disaster.
Amarel [1] considered several representations of the problem and discussed

criteria whereby the following representation is preferred for purposes of AI,

because it leads to the smallest state space that must be explored to find the solution.

A state is a triple comprising the numbers of missionaries, cannibals and boats on

the starting bank of the river. The initial state is 331, the desired final state is 000,
and one solution is given by the sequence (331, 220, 321, 300, 311, 110, 221, 020,

031, 010, 021, 000).
We are not presently concerned with the heuristics of the problem but rather with

the correctness of the reasoning that goes from the English statement of the problem

to Amarel's state space representation. A generally intelligent computer program

should be able to carry out this reasoning. Of course, there are the well known

difficulties in making computers understand English, but suppose the English sen-

tences describing the problem have already been rather directly translated into
first order logic. The correctness of Amarel's representation is not an ordinary logical
consequence of these sentences for two further reasons.

First, nothing has been stated about the properties of boats or even the fact that
rowing across the river doesn't change the numbers of missionaries or cannibals

or the capacity of the boat. Indeed it hasn't been stated that situations change as a
result of action. These facts follow from common sense knowledge, so let us imagine
that common sense knowledge, or at least the relevant part of it, is also expressed
in first order logic.
The second reason we can't deduce the propriety of Amarel's representation is

deeper. Imagine giving someone the problem, and after he puzzles for a while, he
suggests going upstream half a mile and crossing on a bridge. "What bridge," you
say. "No bridge is mentioned in the statement of the problem." And this dunce
replies, "Well, they don't say there isn't a bridge." You look at the English and even
at the translation of the English into first order logic, and you must admit that
"they don't say" there is no bridge. So you modify the problem to exclude bridges
and pose it again, and the dunce proposes a helicopter, and after you exclude that,
he proposes a winged horse or that the others hang onto the outside of the boat
while two row.
You now see that while a dunce, he is an inventive dunce. Despairing of getting

him to accept the problem in the proper puzzler's spirit, you tell him the solution.
To your further annoyance, he attacks your solution on the grounds that the boat
might have a leak or lack oars. After you rectify that omission from the statement of
the problem, he suggests that a sea monster may swim up the river and may swallow
the boat. Again you are frustrated, and you look for a mode of reasoning that will
settle his hash once and for all.
In spite of our irritation with the dunce, it would be cheating to put into the

statement of the problem that there is no other way to cross the river than using the
boat and that nothing can go wrong with the boat. A human doesn't need such an
ad hoc narrowing of the problem, and indeed the only watertight way to do it might
amount to specifying the Amarel representation in English. Rather we want to
avoid the excessive qualification and get the Amarel representation by common
sense reasoning as humans ordinarily do.

Circumscription is one candidate for accomplishing this. It will allow us to con-
jecture that no relevant objects exist in certain categories except those whose existence
follows from the statement of the problem and common sense knowledge. When
we circumscribe the first order logic statement of the problem together with the
common sense facts about boats etc., we will be able to conclude that there is no
bridge or helicopter. "Aha," you say, "but there won't be any oars either." No, we
get out of that as follows: It is a part of common knowledge that a boat can be used
to, cross a river unless there is something wrong with it or something else prevents
using it, and if our facts do not require that there be something that prevents crossing
the river, circumscription will generate the conjecture that there isn't. The price is
introducing as entities in our language the 'somethings' that may prevent the use
of the boat.

If the statement of the problem were extended to mention a bridge, then the
circumscription of the problem statement would no longer permit showing the
non-existence of a bridge, i.e., a conclusion that can be drawn from a smaller collec-
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tion of facts can no longer be drawn from a larger. This non-monotonic character

of circumscription is just what we want for this kind of problem. The statement,

"There is a bridge a mile upstream, and the boat has a leak." doesn't contradict the

text of the problem, but its addition invalidates the Amarel representation.

In the usual sort of puzzle, there is a convention that there are no additional ob-

jects beyond those mentioned in the puzzle or whose existence is deducible from the

puzzle and common sense knowledge. The convention can be explicated as applying

circumscription to the puzzle statement and a certain part of common sense know -

ledge, However, if one really were sitting by a river bank and these six people came

by and posed their problem, one wouldn't take the circumscription for granted,

but one would consider the result of circumscription as a hypothesis. In puzzles,

circumscription seems to be a rule of inference, while in life it is a rule of conjecture.

Some have suggested that the difficulties might be avoided by introducing prob-

abilities. They suggest that the existence of a bridge is improbable. The whole

situation involving cannibals with the postulated properties cannot be regarded as

having a probability, so it is hard to take seriously the conditional probability of a

bridge given the hypotheses. More to the point, we mentally propose to ourselves

the normal non-bridge non-sea-monster interpretation before considering these

extraneous possibilities, let alone their probabilities, i.e. we usually don't even

introduce the sample space in which these possibilities are assigned whatever prob-

abilities one might consider them to have. Therefore, regardless of our knowledge

of probabilities, we need a way of formulating the normal situation from the state-

ment of the facts, and non-monotonic reasoning seems to be required. The same

considerations seem to apply to fuzzy logic.

Using circumscription requires that common sense knowledge be expressed in a

form that says a boat can be used to cross rivers unless there is something that pre-

vents its use. In particular, it looks like we must introduce into our ontology (the

things that exist) a category that includes something wrong with a boat or a category

that includes something that may prevent its use. Incidentally, once we have decided

to admit something wrong with the boat, we are inclined to admit a lack of oars as such

a something and to ask questions like, "Is a lack of oars all that is wrong with the

boat?"
Some philosophers and scientists may be reluctant to introduce such things. but

since ordinary language allows "something wrong with the boat" we shouldn't be

hasty in excluding it. Making a suitable formalism is likely to be technically difficult

as well as philosophically problematical, but we must try.

We challenge anyone who thinks he can avoid such entities to express in his

favorite formalism, "Besides leakiness, there is something else wrong with the boat."

A good solution would avoid counterfactuals as this one does.

Circumscription may help understand natural language, because if the use of

natural language involves something like circumscription, it is understandable that

the expression of general common sense facts in natural language will be difficult

without some form of non-monotonic reasoning.

4. The Formalism of Circumscription

Let A be a sentence of first order logic containing a predicate symbol P(xi, x„)
which we will write P(i). We write AR) for the result of replacing all occurrences
of P in A by the predicate expression (D. (As well as predicate symbols, suitable
)-expressions are allowed as predicate expressions).

Definition The circumscription of P in A(P) is the sentence schema

AR) A ((DM P()) (P (Fc) (DM). (I)

(1) can be regarded as asserting that the only tuples (1) that satisfy P are those
that have to—assuming the sentence A. Namely, (1) contains a predicate parameter
41) for which we may substitute an arbitrary predicate expression. (If we were using
second order logic, there would be a quantifier V(D in front of (1).) Since (1) is an
implication, we can assume both conjuncts on the left, and (1) lets us conclude the
sentence on the right. The first conjunct AR) expresses the assumption that (1)
satisfies the conditions satisfied by P, and the second V5e.R(30 a P(i)) expresses
the assumption that the entities satisfying (Dare a subset of those that satisfy P. The
conclusion asserts the converse of the second conjunct which tells us that in this
case, (1) and P must coincide.
We write A 1– p q if the sentence q can be obtained by deduction from the result

of circumscribing Pin A. As we shall see is a non-monotonic form of inference,
which we shall call circumscriptive inference.
A slight generalization allows circumscribing several predicates jointly; thus

jointly circumscribing P and Q in A(P, Q) leads to

AR, tli) A V.(0() P(g)) A V9. CP() Q(i7))

V Tc. (P (D(.7E)) A V5.(Q(y) 'IV)) (2)

in which we can simultaneously substitute for (1> and The relation AI– "q is
defined in a corresponding way. Although we do not give examples of joint circum-
scription in this paper, we believe it will be important in some AI applications.

Consider the following examples:

Example 1. In the blocks world, the sentence A may be

isblock A A isblock B A isblock C (3)

asserting that A, B and Care blocks. Circumscribing isblock in (3) gives the schema

(D(A) A (D(B) A (D(C) A Vx.R(x) isblock x) Vx.(isblock x
(4)

If we now substitute

(D(x) (x=Avx=Bvx=C) (5)

into (4) and use (3), the left side of the implication is seen to be true, and this gives

Vx.(isblockx (x =A v x=Bv x= C)), (6)



which asserts that the only blocks are A, B and C, i.e. just those objects that (3)
requires to be blocks. This example is rather trivial, because (3) provides no way of
generating new blocks from old ones. However, it shows that circumscriptive in-
ference is non-monotonic since if we adjoin isblock D to (3), we will no longer be
able to infer (6).

Example 2. Circumscribing the disjunction

is block A v isblock B

leads to

(7)

(4)(A) v (1)(B)) A Vx.(0(x) isblock x) V x .(isblock x (1)(x)). (8)

We may then substitute successively (11(x) (x = A) and (I)(x) (x = B), and
these give respectively

(A = A v A = B) A V x .(x = A isblock x) x .(isblock x x = A),

(9)

which simplifies to

isblock A x.(isblock x x = A) (10)

and

(B = A v B = B) A V x.(x = B isblock x) Vx.(isblock x = B),

which simplifies to

isblock B Vx .(isblock x x = B).

(11)

(12)

(10), (12) and (7) yield

V x .(isblock x x = A) v Vx.(isblock x x = B), (13)

which asserts that either A is the only block or B is the only block.

Example 3. Consider the following algebraic axioms for natural numbers, i.e.,
non-negative integers, appropriate when we aren't supposing that natural numbers
are the only objects.

isnatnum 0 A Vx.(isnatnum x isnatnum succ x). (14)

Circumscribing isnatnum in (14) yields

(I)(0) A Vx.(0(x) (1)(succ x)) A /x. ('1(x) isnatnum x)

V x.(isnatnum x (3)(x)). (15)

(15) asserts that the only natural numbers are those objects that (14) forces to be
natural numbers, and this is essentially the usual axiom schema of induction. We

can get closer to the usual schema by substituting (P(x) P(x) A isnatnum x. This
and (14) make the second conjunct drop out giving

T(0) A Vx.(T(x) (11(succ x)) 'Ix. (isnatnum x T(x)). (16)

Example 4. Returning to the blocks world, suppose we have a predicate on(x, y, s)
asserting that block xis on block yin situations. Suppose we have another predicate
above(x, y, s) which asserts that block x is above block y in situation .s. We may
write

'Ix y s.(on(x, y, s) above(x, y, s))

and

(17)

'Ix y z s.(above(x, y, s) A above(y, z, s) above(x, z, s)), (18)

i.e., above is a transitive relation. Circumscribing above in (17) and (18) gives

Vx y s.(on(x, y, s)

A VX y z s. (1(x, y, .5) A 40, Z, CD(X, Z, s))

A 'Ix y s. (4)(x, y, s) above(x, y, s))

Vxys.(above(x, y, s) (1(x, y, s)) (19)

which tells us that above is the transitive closure of on.

In the preceding two examples, the schemas produced by circumscription play
the role of axiom schemas rather than being just conjectures.

5. Domain Circumscription

The form of circumscription described in this paper generalize3 an earlier version
called minimal inference. Minimal inference has a semantic counterpart called
minimal entailment, and both are discussed in [8] and more extensively in [3]. The
general idea of minimal entailment is that a sentence q is minimally entailed by an
axiom A, written A J'=mq, if q is true in all minimal models of A, where one model
if is considered less than another if they agree on common elements, but the domain
of the larger many contain elements not in the domain of the smaller. We shall call
the earlier form domain circumscription to contrast it with the predicate circum-
scription discussed in this paper.
The domain circumscription of the sentence A is the sentence

Axiom() A A. Vx .4I>(x). (20)

where A. is the relativization of A with respect to (I) and is formed by replacing each
universal quantifier Vx. in A by Vx. (I)(x) and each existential quantifier 3x. by

A. Axiom(0) is the conjunction of sentences (11(a) for each constant a and
sentences Vx. (0(x) (21(f(x))) for each function symbol f and the corresponding
sentences for functions of higher antics.
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Domain circumscription can be reduced to predicate circumscription by rela-
tivizing A with respect to a new one place predicate called (say) all, then circum-
scribing all in A" A Axiom(all), thus getting

Axiom(0) A A° A Vx. (0(x) all (x)) V x .(all(x) (I)(x)). (21)

Now we justify our using the name all by adding the axiom Vx.all(x) so that (21)
then simplifies precisely to (20).
In the case of the natural numbers, the domain circumscription of true, the

identically true sentence, again leads to the axiom schema of induction. Here Axiom
does all the work, because it asserts that 0 is in the domain and that the domain is
closed under the successor operation.

6. The Model Theory of Predicate Circumscription

This treatment is similar to Davis's [3] treatment of domain circumscription. Pat
Hayes [4] pointed out that the same ideas would work.
The intuitive idea of circumscription is saying that a tuple g satisfies the predicate

P only if it has to. It has to satisfy P if this follows from the sentence A. The model-
theoretic counterpart of circumscription is minimal entailment. A sentence q is
minimally entailed by A, iff q is true in all minimal models of A, where a model is
minimal if as few as possible tuples g satisfy the predicate P. More formally, this
works out as follows.

Definition. Let M (A) and N(A) be models of the sentence A. We say that M is a
submodel of N in P. writing M p N, if M and N have the same domain, all other
predicate symbols in A besides P have the same extensions in M and N, but the
extension of Pin M is included in its extension in N.

Definition. A model M of A is called minimal in P if M' p M only if M' = M.
As discussed by Davis [3], minimal models do not always exist.

Definition. We say that A minimally entails q with respect to P, written A p q
provided q is true in all models of A that are minimal in P.

Theorem. Any instance of the circumscription of P in A is true in all models of A
minimal in P. i.e., is minimally entailed by A in P.

Proof. Let M be a model of A minimal in P. Let P' be a predicate satisfying the left
side of (1) when substituted for (1). By the second conjunct of the left side, P is an
extension of P'. If the right side of (1) were not satisfied, P would be a proper ex-
tension of P'. In that case, we could get a proper submodel M' of M by letting M'
agree with Mon all predicates except P and agree with P' on P. This would contra-
dict the assumed minimality of M.

Corollary. If A I— q, then A p q.

While we have discussed minimal entailment in a single predicate P, the relation
<", models minimal in P and Q, and =FQ have corresponding properties and a
corresponding relation to the syntactic notion 1—p,,2 mentioned earlier.

7. More on Blocks

The axiom

Vx y s.(Vz. —Iprevents(z, move(x, y), s) on(x, y, result (move(x, y), s)))
(22)

states that unless something prevents it, x is on y in the situation that results from
the action move(x, y).
We now list various 'things' that may prevent this action.

Vx y s.( isblock x v iisblocky

prevents(NONBLOCK, move(x, y), s)) (23)

Vx y s.(—Iclear(x, s) v 7 clear(y, s)

prevents(COVERED, move(x, y), s)) (24)

Vx y s. (tooheavy x prevents (weight x, move(x, y), s)). (25)

Let us now suppose that a heuristic program would like to move block A
onto block C in a situation sO. The program should conjecture from (22) that
the action move(A, C) would have the desired effect, so it must try to establish
Vz.—Iprevents(z, move(A, C), s0). The predicate Az .prevents(z, move(A, C), sO)
can be circumscribed in the conjunction of the sentences resulting from specializing
(23), (24) and (25), and this gives

isblock A v lisblock C 0(NONBLOCK))

A clear(A, sO) v 7 clear(C, sO) (NCO VEREDD

(tooheavy A 0(weight A))

Vz. ((I)(z) prevents(z, move(A, C), s0))

Vz .(prevents(z, move(A, C), sO) (I)(z)) (26)

which says that the only things that can prevent the move are the phenomena
described in (23H25). Whether (26) is true depends on how good the program was
in finding all the relevant statements. Since the program wants to show that nothing
prevents the move, it must set Vz.(4)(z) false), after which (26) simplifies to

(isblock A A isblock B A clear(A, sO) A clear(B, sO) A 7 tooheavy A

Vz prevents(z, move(A, C), s0). (27)

We suppose that the premisses of this implication are to be obtained as follows:
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(I) isblock A and Isblock B are explicitly asserted.
(2) Suppose that the only onness assertion explicitly given for situation sO is

on(A, B, 3.0). Circumscription of Ax y.on(x, y, sO) in this assertion gives

(1)(A, B) A 'ix y. (c1(x, y) on(x, y, 30)) 'ix y .(on(x, y, sO) (1)(x, y)),

and taking (x, y) mx.Any=B yields

'ix y.(on(x, y, sO) nx.-- A A y= B).

(28)

(29)

Using

'ix s.(clear(x, s) as Vy.-lon(y, x, s))

as the definition of clear yields the second two desired premisses.

(30)

(3) tooheavy(x) might be explicitly present or it might also be conjectured by
a circumscription assuming that if x were too heavy, the facts would establish it.

Circumscription may also be convenient for asserting that when a block is moved,
everything that cannot be proved to move stays where it was. In the simple blocks
world, the effect of this can easily be achieved by an axiom that states that all blocks
except the one that is moved stay put. However, if there are various sentences that
say (for example) that one block is attached to another, circumscription may express
the heuristic situation better than an axiom.

8. Remarks and Acknowledgments

(1) Circumscription is not a 'non-monotonic logic.' It is a form of non-monotonic
reasoning augmenting ordinary first order logic. Of course, sentence schemata are
not properly handled by most present general purpose resolution theorem provers.
Even fixed schemata of mathematical induction when used for proving programs
correct usually require human intervention or special heuristics, while here the pro-
gram would have to use new schemata produced by circumscription. In [10] we
treat some modalities in first order logic instead of in modal logic. In our opinion,
it is better to avoid modifying the logic if at all possible, because there are many
temptations to modify the logic, and it would be very difficult to keep them
compatible.
(2) The default case reasoning provided in many systems is less general than

circumscription. Suppose, for example, that a block xis considered to be on a block
y only if this is explicitly stated, i.e., the default is that xis not on y. Then for each
individual block x, we may be able to conclude that it isn't on block A, but we will
not be able to conclude, as circumscription would allow, that there are no blocks on
A. That would require a separate default statement that a block is clear unless some-
thing is stated to be on it.
(3) The conjunct Y. (0(Fc) P(I)) in the premiss of (1) is the result of suggestions

by Ashok Chandra [2] and Patrick Hayes [4] whom I thank for their help. Without
it, circumscribing a disjunction, as in the second example in Section 4, would lead
to a contradiction.

(4) The most direct way of using circumscription in AT is in a heuristic reasoning
program that represents much of what it believes by sentences of logic. The program
would sometimes apply circumscription to certain predicates in sentences. In par-
ticular, when it wants to perform an action that might be prevented by something,
it circumscribes the prevention predicate in a sentence A representing the information
being taken into account.

Clearly the program will have to include domain dependent heuristics for deciding
what circumscriptions to make and when to take them back.
(5) In circumscription it does no harm to take irrelevant facts into account. If

these facts do not contain the predicate symbol being circumscribed, they will
appear as conjuncts on the left side of the implication unchanged. Therefore, the
original versions of these facts can be used in proving the left side.
(6) Circumscription can be used in other formalisms than first order logic. Sup-

pose for example that a set a satisfies a formula A(a) of set theory. The circum-
scription of this formula can be taken to be

Vx. (A(x) A (x c a) (a c x)). (31)

If a occurs in A(a) only in expressions of the form z e a, then its mathematical prop-
erties should be analogous to those of predicate circumscription. We have not
explored what happens if formulas like a e z occur.
(7) The results of circumscription depend on the set of predicates used to express

the facts. For example, the same facts about the blocks world can be axiomatized
using the relation on or the relation above considered in Section 4 or also in terms
of the heights and horizontal positions of the blocks. Since the results of circum-
scription will differ according to which representation is chosen, we see that the choice
of representation has epistemological consequences if circumscription is admitted
as a rule of conjecture. Choosing the set of predicates in terms of which to
axiomatize as set of facts, such as those about blocks, is like choosing a co-ordinate
system in physics or geography. As discussed in [9], certain concepts are definable
only relative to a theory. What theory admits the most useful kinds of circumscription
may be an important criterion in the choice of predicates. It may also be possible to
make some statements about a domain like the blocks world in a form that does
not depend on the language used.
(8) This investigation was supported in part by ARPA Contract MDA-903--76-

C-0206, ARPA Order No. 2494, in part by NSF Grant MCS 78-00524, in part by
the IBM 1979 Distinguished Faculty Program at the T. J. Watson Research Center,
and in part by the Center for Advanced Study in the Behavioral Sciences.
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Abstract 

This paper discusses the problems of representing and
reasoning with information about knowledge and action. The
first section discusses the importance of having systems that
understand the concept of knowledge, and how knowledge is
related to action. Section 2 points out some of the special problems
that are involved in reasoning about knowledge, and section $
presents a logic of knowledge based on the idea of possible worlds.
Section 4 integrates this with a logic of actions and gives an
example of reasoning in the combined system. Section 5 makes
some concluding comments.

I. Introduction 

One of the most important concepts an intelligent system needs
to understand is the concept of knowledge. Al systems need to
understand what knowledge they and the systems or people they
interact with have, what knowledge is needed to achieve
Particular goals, and how that knowledge can be obtained. This
paper develops a formalism that provides a framework for stating
and solving problems like these. For example, suppose that there
is a safe that John wants to open. The common sense inferences
that we would like to make might include:

If John knows the combination, he can immediately open
the safe.

If John does not know the combination, he cannot
immediately open the safe.

If John knows where the combination is written, he can
read the combination and then open the safe.

In thinking about this example, consider how intimately the
concept of knowledge is tied up with action. Reasoning about
knowledge alone is of limited value. We may want to conclude
from the fact that John knows A and B that he must also know C
and D, but the real importance of such information is usually that
it tells us something about what John can do or is likely to do. A
major goal of my research has been to work out some of the
interactions of knowing and doing.

That this area has received little attention in Al is somewhat
surprising. It is frequently stated that good interactive Al
programs will require good models of the people they are
communicating with. Surely, one of the most important aspects of
a model of another person is a model of what he knows. The
only serious work on these problems in Al which I am aware of is
a brief disscussion in McCarthy and Hayes (1969), and some more
recent unpublished writings of McCarthy. In philosophy there is
a substantial literature on the logic of knowledge and belief. A
good introduction to this is Hintikka (1962) and papers by Quint,
Kaplan, and Hintikka in Linsky (1971). Many of the ideas I will
use come from these papers.

In representing facts about knowledge and actions, I will use
first-order predicate calculus, a practice which is currently
unfa.hionable. It seems to be widely believed that use of

predicate calculus necessarily leads to inefficient reasoning and
information retrieval programs. I believe that this is an over-
reaction to earlier attempts to build domain-independent theorem
provers based on resolution. More recent research, including my
own M.S. thesis (Moore, 19)5), suggests that predicate calculus can
be treated in a more natural manner than resolution and
combined with domain-dependent control information for greater
efficiency. Furthermore, the problems of reasoning about
knowledge seem to require the full ability to handle quantifiers
and logical connectives which only predicate calculus posseses.

Section 2 of this paper attempts to bring out some of the
special problems involved in reasoning about knowledge. Section
$ presents a formalism which I believe solves these problems, and
Section 4 integrates this with a formalism for actions. Section 5
makes some concluding comments.

2. Problems in Reasoning about Knowledge 

Reasoning about knowledie presents special difficulties. It
turns out that we cannot treat know" as just another relation. If
we can represent "Blockl is on Block2" by On(Block1,131ock2), we
might be tempted to represent 'John knows that P" simply by
Know(John,P). This approach glosses over a number of problems.
We might be suspicious from the first, since P is not the name of
an object but is rather a sentence (or proposition). The semantics
of predicate calculus forbid the arbitrary intermingling of
sentences and terms for good reason. For one thing, the second
argument position of Know is a referentially opaque context.
Ordinarily in logic we can freely substitute an expression for one
that is extensionally equivalent (i.e., one that has the same referent
or truth value), without affecting the truth of the formula that
contains the expression. This is called referential transparency.
For example, if X • Y • 7 and X • 3, then 3 • Y • 7. This pattern
of reasoning is not valid with Know. We cannot infer from
Know(John,(X • Y • 7)) and X • 3 that Know(John,(3 • Y • 7)) is true,
since John might not know the value of X.

One possible solution to this problem is to make the second
argument of Know the name of a formula rather than the formula
Itself. This is essentially the same idea as Coedel numbering,
although it is not necessary to use such an obscure encoding as
the natural numbers. We won't specify exactly how the encoding
is done, but simply use '10" to represent a term denoting the
formula P. The representation of "John knows that V' now
becomes Know(John,"P"). We are no longer in any danger of
infering Know(John,"P(A)") from Know(John,"P(B)") and A • B,
because A is not contained in "P(A)". Only the name of A, i.e.
"A", is contained, and since "A" does not equal B. there is no
problem.

There Is, however, a more serious problem, the fact that
people can reason with their knowledge. We would expect a
reasoning system to have built into it the ability to conclude B
from A and A B. But if we treat Know as just an ordinary
predicate, we will have no reason to suppose that Know(John,"A")
and Know(John,"A * B") might suggest Know(John,"B"). This
problem is emphasised by the fact that there is no formal
connection between a formula and its name. The fact that we


