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1. INTRODUCTION

We are interested in constructing a computer agent whose behaviour will be
intelligent enough to perform cooperative tasks involving other agents like itself.
The construction of such agents has been a major goal of artificial intelligence
research. One of the key tasks such an agent must perform is to form plans to
carry out its intentions in a complex world in which other planning agents also
exist. To construct such agents, it will be necessary to address a number of issues
that concern the interaction of knowledge, actions, and planning. Briefly stated,
an agent at planning time must take into account what his future states of
knowledge will be if he is to form plans that he can execute; and if he must
incorporate the plans of other agents into his own, then he must also be able to
reason about the knowledge and plans of other agents in an appropriate way.
These ideas have been explored by several researchers, especially McCarthy &
Hayes (McCarthy & Hayes 1969) and Moore (Moore 1980).

Despite the importance of this problem, there has not been a great deal of
work in the area of formalizing a solution. Formalisms for both action and
knowledge separately have been examined in some depth, but there have been
few attempts at a synthesis. The exception to this is Moore's thesis on reasoning
about knowledge and action (Moore 1980), for which a planner has been recently
proposed (Appelt 1980). Moore shows how a formalism based on possible-world
semantics can be used to reason about the interaction of knowledge and action.
In this paper we develop an alternative formalism for reasoning about knowledge,
belief, and action; we show how this formalism can be used to deal with several
well-known problems, and then describe how it could be used by a plan con-
structing system.

1.1 Overview and Related Work

We seek a formalization of knowing and acting such that a description of their
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interaction satisfies our intuitions. In the first section, we present a basic for-
malism for describing an agent's static beliefs about the world. We take a syntactic
approach here: an agent's beliefs are identified with formulas in a first-order
language, called the object language (OL). Propositional attitudes such as knowing

and wanting are modelled as a relation between an agent and a formula in the
OL. By introducing a language (the metalanguage, or ML) whole prime object of
study is the OL, we are able to describe an agent's beliefs as a set of formulas
in the OL, and express partial knowledge of that theory. An agent's reasoning
process can be modelled as an inference procedure in the OL: from a base set
of facts and rules about the world, he drives a full set of beliefs, called his theory

of the world.
The syntactic approach to representing propositional attitudes is well-known

in the philosophy literature, and in the artificial intelligence field McCarthy
(McCarthy 1979) has developed a closely related approach. The formalism
developed here differs mainly in that it explicitly identifies propositional
attitudes as relations on sentences in an object language, and uses provability in
the OL as the model of an agent's reasoning process. We are able to present quite
complex deductions involving the beliefs of agents (see the Wise Man Puzzle in
Appendix A, for example) by exploiting the technique of semantic attachment
to model directly an agent's reasoning process. We are indebted to Weyhrauch
(Weyhrauch 1980) for an introduction to this technique, and for the general idea
of using ML/OL structures to represent agents.

Finally, our work differs from McCarthy's in its careful axiomatization of
the relation between ML and OL, and incorporates solutions to several technical
problems, including reasoning about belief-nesting (beliefs about beliefs; Creary

(Creary 1979) has also described a solution, and a cleaner approach to repre-
senting quantified OL expressions in the ML. (This latter subject is not directly
relevant to this paper, and will be reported in (Konolige 1981).)

An alternative to the syntactic approach to representing propositional
attitudes is the possible-world approach, so called because it utilizes Kripke-type
possible-world semantics for a modal logic of knowledge and belief. Moore
(Moore 1980) has shown how to reason efficiently about propositional attitudes
by using a first-order axiomatization of the possible-world semantics for a modal
logic. Our objections to the possible-world approach are twofold: first, the
possible-world semantics for representing propositional attitudes is complex and
at times unintuitive; to deduce facts about an agent's knowledge, one must talk
about the possible-worlds that are compatible with what the agent knows.
Ultimately, we suspect that the syntactic approach will prove to be a simpler
system in which to perform automatic deduction, but further research in both
areas is needed to decide this issue. A second objection is that it seems to be
difficult to modify possible-world semantics for the modal logic to model
adequately inference processes other than logical deduction. The possible-world
approach uses the modal axiom that every agent knows the consequences of

his knowledge, and this is obviously not true, if only because real agents have
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resource limitations on their reasoning processes. The syntactic approach does
not suffer from this criticism, because it is possible to describe explicitly in the
ML the inference procedure an agent might use.

The second part of this paper integrates the syntactic approach to repre-
senting knowledge and belief with a situation calculus description of actions
(McCarthy & Hayes 1969). We concentrate on many of the interactions between
knowledge and action presented in Moore's thesis (Moore 1980). Simply stated,
Moore's account is that an agent's beliefs in any situation arise from at least
three sources: direct observation of the world, persistence of beliefs about
previous situations, and beliefs about what events led to the current situation.
By formalizing this assumption, he shows how to model in an intuitively plausible
way the knowledge an agent needs to perform actions, and the knowledge that
he gains in performing them. Although we subscribe to his notions on how
knowledge and action should interact, for the reasons stated above we feel that
the possible-world approach Moore uses to formalize these ideas, while elegant,
may not have the same intuitive appeal as the syntactic approach.

The main contribution of this paper is to show that the syntactic approach,
when integrated with a situation calculus description of actions, can adequately
formalize Moore's criteria for the interaction of knowledge and belief. An
important benchmark is to formalize the idea of a test: an agent can perform
an action and observe the result to figure out the state of some unobservable
property of the world. We conclude the second section with just such an example.

In the third section we consider the application of these results to a planning
system, in particular one that would require an agent to take account of other
agents' plans in forming his own. We come to the conclusion that such a planning
system may not be significantly different from current situation calculus planners
in its method of search, but does require considerably more sophistication in
the deductions it performs at each node in that search.

2. AGENTS' BELIEFS AND FIRST-ORDER THEORIES

In this section we lay the basic groundwork for our syntactic approach to repre-
senting and reasoning about agents' beliefs. We will model an agent's beliefs
about the world as a set of statements (or theory) in some first-order language
with equality. This is not to say that an agent actually represents the world as a
set of first-order statements; we are not concerned here with the details of the.
internal representation of a computer or human agent with respect to its environ-
ment. All we seek is a way of modelling the beliefs of an agent in a manner that
will make reasonable predictions about the agent's behaviour, and still be formally
tractable. To this end we assume that we can represent an agent's beliefs about
the world as a set of statements in a first-order language, and model the derivation
of new beliefs by an agent as an inference process in those statements.

Consider an example from the blocks-world domain; let Ao be the name of
an agent. Ao will have some set of beliefs about the state of the blocks-world.
We represent Ao's beliefs as a list of well-formed formulas (wffs) in a first-order
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language with equality. We call this list of wffs Ao's theory of the world. For
example, suppose Ao believes that block B is on block C, and that he is holding
block D. Then we would have:

Ao's Theory of the Blocks-World
ON(B,C)
HOLDING (A0, D)

where ON and HOLDING have the appropriate interpretations.
Besides specific facts about the state of the world, Ao also has some general

rules about the way the world is put together. For instance, Ao may know the
rule that if any block x is on any blocky, then the top of y is not clear. Using
this rule together with specific beliefs about the world, he may be able to deduce
that C is not clear. This can be modelled as a process Of extending Ao's initial set
of beliefs about the world to include the deduced information:

Ao's Facts and Rules about the World Ao's Theory of the World
ON(B,C) ON(B,C)
HOLDING(A0,D) HOLDING (A 0,D)
Vxy0N(x,y)D —CLEAR(y) Vxy ON(x,y) —CLEAR(y)

—CLEAR(C)
• • •

Thus an agent's theory of the world will be the closure of a set of facts and rules
about the world, under some suitably defined inference procedure. We will call
the set of basic facts and rules from which all other beliefs are derived the base
set of the theory. Note that the inference procedure that derives the consequences
of the base set need not be logical deduction; it is readily demonstrated that
people do not know all the consequences of their beliefs, that they derive
contradictory consequences, etc. We recognize that the problem of deriving the
consequences of beliefs for more realistic inference procedures is a thorny and
unsolved one, and do not intend to pursue it here. For the purposes of this
paper we have chosen logical deduction as the inferential procedure: an agent
will be able to deduce the logical consequences of his beliefs.

2.1 Metalanguage and Object Language

If we were always to have complete knowledge of an agent's beliefs, then it
would be possible to use a simple list of facts and rules to represent the base set
of those beliefs. However, it is often the case that our knowledge is incomplete;
we may know that an agent either believes fact P or fact Q, but we don't know
which. Such a description of an agent's beliefs cannot be modelled by a list of
facts. So the modelling process must be extended to a description of an agent's
beliefs. Since beliefs are wffs in a first-order language, a metalanguage can be
used to describe a collection of such wffs (Kleene 1967). The basic idea is to
have terms in the metalanguage to denote syntactic expressions in the first-
order language used to encode an agent's beliefs. The latter first-order language
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is called the object language, or OL, since it is the object of study of the meta-
language (ML). Predicates in the metalanguage are used to state that an expression
of the object language is in an agent's theory of the world. The full expressive
power of the metalanguage is available for describing a given theory of the object
language.

It is natural to choose a first-order language for the metalanguage, since we
will be interested in proof procedures in the ML as well as the OL. Let ML be a
sorted, first-order language with variables restricted to range over particular sorts.
The domain of discourse of the ML will be both the syntactic expressions of the
OL, as well as the domain of discourse of the OL. Thus the ML will be able to
state relationships that hold between OL expressions and the actual state of the
world.

A basic division of sorts of the ML is between terms that denote individuals
in the world, and terms that denote expressions in the OL. Among the former
will be terms that denote agents (A0, A1, . ..) and agents' theories of the world;
all these will be called 7'1 terms. We will use the function th of one argument, an
agent, to denote that agent's theory of the world.

The other major sort of terms will denote formulas of the OL; these will be
referred to as TF terms. Restricting our attention for the moment to sentential
formulas of OL, there will be terms in ML that denote propositional letters in OL,
and constructors in ML for putting together more complicated formulas from
these letters. For example, P' in ML denotes the propositional letter P of the
OL,t and the ML term and (P' ,Q') denotes the sentence PA Q of the OL. These
ML constructors from an abstract syntax (McCarthy 1962) for OL expressions.

Writing names of formulas using and, or, not, and imp as constructors is
somewhat cumbersome. For the most part we will use a syntactic abbreviation,
enclosing an OL formula in sense quotes, to indicate that the standard ML term
for that formula in intended. For example, we will write:

EPA for and(P',Q')
(Q V RP for imp(P',or(Q%k ))

and so on.

The rule for translating sense-quote abbreviations into TF terms of the ML is to
replace each predicate symbol P of the sense-quote expression by the ML term
symbol P', and each Boolean connective by the corresponding ML Boolean
constructor. As more sorts are introduced into the ML we will extend the
sense-quote convention in various ways.

Finally, we introduce the ML predicates TRUE, FACT, and PR, each of
which has an OL formula as one of its arguments. TRUE([), where f is an OL
formula, means that f is actually true in the world under consideration. It is often

t The general convention will be to use primed terms in ML to denote the corresponding
unprimed formulas in OL.

$ They are called sense-quotes to indicate that the sense of the expression is wanted, rather
than its truth-value. In (Kaplan 1971) these are called Frege quotes.
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the case that we will want to describe a certain condition actually holding in the

world, independent of whether some agent believes it or not; for instance, this is

critical to our reasoning about events in the next section, where events are
defined as transformations from one state of the world to another.

We intend TRUE to have the normal Tarskian definition of truth, so that

the truth-recursion axioms are valid. Let the variables f and g range over OL

expressions. Then we can write the metalanguage axioms for truth-recursion

in the object language as follows:

Vf — TRUE (f)- TRUE(not(f))
V fg TRUE(f) V TRUE(g) TRUE(or(f,g))
V fg TRUE(f) A TRUE (g) TRUE(and(f,g))
V fg TRUE(f) D TRUE (g) =3. TRUE (imp (f,g))

FACT(t, f), where t is an OL theory, means that f is one of the base set

formulas of the theory (from which the rest of the theory will be derived by
deduction). Using FACT, agent Ao's previously exhibited beliefs about the world
could be described by the following ML predicates:

FACT(th(A0),r-ON(B,C)')
FACT(th(A0),r-HOLDING(A0,DP)
FACT(th(A0),r-Vxy ON(x,y)D — CLEAR (y)-1) .

The last FACT predicate describes a rule that agent Ao believes.
One special type of FACT that we will make frequent use of is a formula

known to all agents. We define the predicate CFACT on OL expressions to mean

that a true expression is a FACT for all agents, that is, a Common FACT:

V f CFACT(f) D Va FACT(th(a), f) A TRUE (f) . (CF1)

CF1 doesn't completely axiomatize what we intend a common fact to be, however,
since it doesn't say that every agent knows that every agent knows that every
agent knows f, etc. But a fuller characterization of CFACT must wait until the
technical machinery for describing belief-nesting is developed in a later subsection.

PR(t,f) means that f is provable in the theory t. As discussed previously, we
will assume that PR gives the closure of sentences in OL that can be generated
by logical deduction from an original set of FACTs. A simple axiomatization of
PR can can be given for Hilbert-style (assumption-free) proofs. There is only one
rule of inference, Modus Ponens:

V tfg PR(t,imp (f,g)) APR (t,f) D PR (t,g) (MP)

that is, from P D Q and P in the OL, infer Q. Since every FACT is an initial
theorem of the theory, we assert that each of these is provable:

Vtf FACT(t,f)D PR(t,f) . (FP)

And in each theory the logical axioms of a Hilbert system need to be asserted;
we assume a sufficient set for the sentential case.

(TR)
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MP and the Hilbert axioms will be used in ML proofs of the provability of
OL statements; these axioms simulate a Hilbert-type proof system for an OL
theory. This simulation is necessary because in general there will be an incomplete
ML description of the OL theory, rather than a simple list of FACTs for that
theory. In those special cases when a list of FACTs is available, it is possible to
run the proof procedure on the OL theory directly. That is, since the intended
meaning of the PR predicate is provability in the OL theory, we can check
whether the PR predicate holds in the ML by running a theorem-prover in the
OL. It also isn't necessary to use a Hilbert system, and we will feel free to exploit
any system of natural deduction that is sound. The technique of using a com-
putable model of the intended interpretation of a predicate to determine the truth
of formulas involving the predicate is called semantic attachment (Weyhrauch
1980), and it will be used extensively to simplify proofs in later sections.

The provability predicate PR does not have the same characteristics as
TRUE, and this is important in representing beliefs. For example, the fact that P
is not provable doesn't imply that —P is provable. If we identify provability with
belief, —PR(th(A0),I—P-1) asserts that P is not one of Ao's beliefs about the word,
but this does not imply PR(th(A0),r—P-1), i.e., that Ao believes —P. Also, it is
possible to express that either Ao believes that C is clear, or he believes that C is
not clear:

PR(th(A0),rCLEAR(CP)V PR(th(A0),r—CLEAR(C));

this says something quite different from PR(th 0),ECLEAR (C)V •— CLEAR (CP);
the latter is a tautology that every agent believes, while the former says something a
lot stronger about Ao's beliefs about the world.

Parallelling the truth recursion axioms TR, we can state rules for the prova-
bility of compound OL expressions in terms of their immediate subexpressions.
Because of the nature of provability, the axioms for negation, disjunction, and
implication, unlike their truth-theoretic counterparts, are not equivalences.

V tsf --.PR(t,f) C PR(t,not(f))
Vtsfg[PR(t,f) V PR(t,g)] D PR(t,or(f,g))
Vtsfg[PR(t,f) APR (t,g)] PR(t,and(f,g))
V tsfg[PR(t,f)D PR(t,g)] CPR(t,imp(f,g)) .

These are all deducible from the logical axioms in the Hilbert proof system; for
instance, the last assertation is just a restatement of Modus Ponens.

Another interesting connection between the PR and TRUE predicates can
be drawn by looking at models of the OL. Suppose we have used FACT and PR
to describe an agent's theory T of the world. There will be some set of models
that satisfy 7', i.e., for which all of T's theorems hold. The actual world will be
one of these models just in case all T's theorems hold for the world. This con-
dition is statable in the ML as:

(PR)

V fPR(T,f) J TRUE(f) .
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In general this assertion will not be valid, that is, an agent's beliefs need not
correspond to the actual world. By introducing the predicate TRUE in the ML,
we are able to state the correspondence between a given theory of the world and
the actual state of affairs in the world.

2.2 Knowledge and Belief

The PR and TRUE predicates can be used to state our fundamental definitions

of knowing and believing for an agent. BEL(a,f) means that agent a believes f;
KNOW(a,f) means that agent a knows f. Then we have the definitions:

PR(th(a),f)
VafKNOW(a,f) === BEL(a,f) A TRUE(f) .

That is, we identify belief with provability in an OL theory, and knowledge as a

belief that actually holds in the world. In model-theoretic terms, a sentence is
known to an agent if the sentence holds in all of his models, and the actual

world is a model for that sentence. The definition of a common fact in CF1
means that all common facts are known to all agents.

We already know that the inference process used in deriving new beliefs

from old ones is only approximated as logical consequence, yet we should still
expect this approximation to correctly model some of the characteristics we
attribute to belief. For instance, if a rational agent believes that P Q, and he
doesn't believe Q, then it should be the case that he doesn't believe P. Translating
to the above notation yields the sentence:

BEL(A0,rP D Q-1) A —BEL(440,70) D —BEL(A0,1-13-1) .

To illustrate the use of axioms for belief and provability given so far, we exhibit
a natural deduction proof of this sentence in ML.

(B1)

1. BEL(A0,1-P Q-1) given
2. PR(th(A0),EP Q-1)

-Q-1)
1,B1

3. —BEL (40,r
-Q-1)

given
4. —PR(th(A0),r

-Q-1)
3,B1

5. PR(th(A0),r-P-1) D PR(th(A0),r 2,PR
6. —PR (th(A0),EP-1) 4,5 contrapositive
7. --BEL (40,EP-1) 6,B1

This particular proof in the ML cannot be done by semantic attachment to the
OL, because it involves reasoning about what isn't provable in the OL theory.

At this point we have presented the basic ideas and definition for a syntactic
approach to representing and reasoning about agent's beliefs. The rest of this

section is devoted to exploring various technical issues that arise when extending
the previous analysis to talking about individuals.

2.3 Individuals

By restricting ourselves to the case of sentential form' ulas in OL, we have been
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able to present the basic concepts for representing the beliefs of an agent more
simply. Additional complications arise when dealing with terms in the OL that
denote individuals rather than truth-values. But a ML encoding of these terms
is necessary in order to express such concepts as agent A0 knows who B is.

To talk about the individuals that the OL refers to, we introduce an additional
sort into the ML, whose denotation will be the function terms of the OL. This
sort will be called TT, and consists of the following members:

(1) variables a,13,...
(2) (2) {f"(ti, , t,)}, where ti E TT [n-ary OL function];
(3) n (t), where t E 71 [the 'standard name' function] ;
(4) nothing else.

The ML variables a, 13, , range over OL function terms. For example, we can
state that Ao believes a particular block is on C by asserting the ML expression:

3a BEL(Ao,ON'(a,C')) .

In this expression there are two ML terms in TT, namely, a and C'. C' is a 0-ary
function (or constant) in TT that denotes the constant term C in 0L.1. ON' is a
type of ML term that hasn't been used explicitly before; it is a member of TF
because it names an OL formula. It takes two arguments, each of which is an
ML term denoting an OL term, and constructs an OL formula that is the OL
predicate ON of these arguments. So the ML term ON'(a,C') denotes the
OL expression ON(A,C) where is the OL term denoted by a.

It is now possible to give a full definition of TF terms:

(1) variables f,g, ;

(2) {fn(ti, , tn)}, where ti E TF [Boolean constructors, e.g., and];
(3) {e(ti, ,t,)}, where ti E TT [predicate constructors, e.g.,ON' ];
(4) nothing else.

and Tr terms:

(1) variables x,y, .;
(2) { f " (6, , Oh where ti E 71 [individual constants and functions];
(3) A(t), where t e TT [the denotation function];

(TI)(4) nothing else.

We will also find it convenient to extend the notion of sense-quote abbre-
viations to handle ML terms involving TT variables. The previous rules are
expanded in the following way: all function symbols in the sense-quote expression
are replaced by their primed forms, while any symbols used as variables in the
surrounding ML expression remain unchanged. For example, the sense-quote
expression in 3 a KNOW(A0,1-0N(a,b (C)51) is to be understood as a syntactic

t We extend the prime convention to cover ML terms in TT as well as TF; that is, t' in ML
denotes the unprimed term tin OL.
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abbreviation for the ML term ON'(a,b'(e)). We have not yet said what happens
to Tr variables in sense-quote expressions; this must wait until standard names
are explained in the next subsection.

The introduction of TT terms into the ML completes the descriptive power
of ML for OL expressions. It also lets us handle some of the well-known deno-
tational puzzles in the philosophy literature. One of the simplest of these is the
Morningstar-Eveningstar description problem. Both Morningstar and Eveningstar
are actually the planet Venus seen at different times of the day. An agent Ao
believes that they are not the same; further, he doesn't have any knowledge
about either being the planet Venus. Let MS, ES, and VENUS be OL terms that
denote the Morningstar, the Eveningstar, and Venus, respectively. The following
set of ML formulas describes this situation:

TRUE (-ES = VENUS-1)
TRUE (-MS = VENUS-1)
BEL(Ao,l-MS ES-1)
—BEL (A0,r-ES = VENUS-1)
— BEL (A0,r-MS = VENUS').

It is perhaps easiest to explain this set of sentences in model-theoretic terms. The
intended interpretation of the OL terms, ES, MS, and VENUS is the same
object, namely the planet Venus. The two TRUE predicates establish this, since
they assert that these three terms denote the same individual in the world. On
the other hand, the first BEL predicate asserts that in the models of Ao's theory
of the world,MS and ES denote different individuals. This means that the actual
world cannot be among the models of this theory. Further, the last two BEL
predicates assert that ES and MS are not provably equal to VENUS in this
theory; hence there will be some models of the theory for which ES = VENUS
holds, some for which MS = VENUS holds, and some for which neither holds.
From this we conclude that not only is Ao mistaken as to the equality of ES and
MS, he also is unsure about whether either is the same as VENUS. McCarthy
(1979) lists some other philosophical puzzles that can be handled in a syntactic
formulation.

24 Knowing Who Someone Is

One of the problems that any formal treatment of belief must confront is that of
describing when an agent knows who or what something is. For example, the
following two English sentences say something very different about the state of
Ao's knowledge:t

(1) "Ao knows who murdered John:'
(2) "Ao knows that someone murdered John:'

The police would certainly be interested in talking to Ao if the first statement
were true, while the second statement just means that Ao read the local tabloid.

t A similar problem appears in (Quine 1971).
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We might paraphrase the first statement by saying that there is some individual
who murdered John, and Ao knows who that individual is. The second statement
can be true without Ao having any knowledge about the particular individual
involved in the murder.

How is the distinction between the two sentences above to be realized in
this formalism? The second sentence is easy to represent:

BEL(A0, 1-3 xMURDERED(x,JOHN)) . (W1)

This simply says that Ao believes in the existence of an individual who murdered
John. It might be supposed that the first sentence could be represented in the
following way:

3 a BEL(440,1-MURDERED(a,JOHNP) (W2)

W2 says that there is a MURDERED predicate in Ao's theory of the world
relating some individual (a's denotation) and John. Unfortunately, this isn't
quite strong enough; if the denotation of a is the OL term murderer (JOHN),
then W2 is virtually a tautology, and doesn't say that Ao knows who murdered
John. Indeed, if the OL expression in WI is skolemized, it becomes obvious that
W1 and W2 are equivalent.

What seems to be going on here is that different names have a different status
as far as identifying individuals is concerned. "Bill" is a sufficient description
for identifying John's murderer, whereas "John's murderer" is not. The question
of what constitutes a sufficient description is still being debated in the philo-
sophical literature. But for the purposes of this paper, it will suffice if we have
a name that is guaranteed to denote the same individual in every model of the
OL. By asserting a predicate involving this name in Ao's theory of the world,
it will be possible to encode the fact that Ao believes that predicate for the
given individual. Names that always denote the same individual are called standard
names.

The formal method of establishing standard names is straightforward.
Consider the set of all individuals involved in the situation we wish to consider.t
Include in the OL a set of constant symbols, the standard name symbols, to be
put in one-one correspondence with these individuals. The language OL will
be partially interpreted by specifying this correspondence as part of any model
of the language; this means that the only models of OL we will consider are
those that are faithful to the standard name mapping.

In the metalanguage, we introduce the standard name function n of one
argument (see the definition of TT terms above). This function returns the
standard name of its argument. Generally we will use lowercase Greek letters
from the later part of the alphabet as ML variables for OL standard names
[p, v, .[. The metalanguage statement of "Ao knows who the murderer of
John is" then becomes:

3 x# (n(x) = p) A KNOW(440,1-MURDERED(p,JOHN)-1) . (W3)

t We restrict ourselves to countable sets here.
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Because /I denotes a standard name, the only models of this statement are those

in which the same individual x murdered John. This is in contrast to W1 and
W2 above, which allow models in which any individual murdered John. An

immediate consequence is that WI and W2 are derivable from W3, but not the

other way round.
So in order to assert that Ao knows who or what some individual B is, we

write in the ML:t

3 xp (ri(x) = A KNOW(A0,1-B = IP) .

By modifying the sense-quote translation rules slightly, it is possible to write
OL expressions involving standard names much more compactly. The modifi-

cation is to assume that any ML variable of type 71 occurring within a sense-
quote gets translated to the standard name of that variable. With this rule, for
example, the above assertion comes out as 3 x KNOW(A0,r-13 = x-1).

We will use the predicate KNOWIS(a,13) to mean that the agent a knows
who or what the OL term denoted by p refers to. The definition of KNOWIS
is:

Vaf3KNOWIS(a,13) 3x KNOW (a, = x-1) . (KW)

Nste that the property of being a standard name is a relation between a term of
tife OL and models of this language, and hence cannot be stated in the OL. The
use of a metalanguage allows us to talk about the relation between the OL and
its models.

One of the proof-theoretic consequences of using standard names is that
every theory can be augmented with inequalities stating the uniqueness of
individuals named by standard names. In the metalanguage, we write:

Vxyx0yDVt PR (t,rx 31-1) . (SN)

Formally, the definition of a standard name can be axiomatized in the ML

by introducing the denotation function A.t (a), where a denotes an OL term,

is the denotation of a in the actual world; it is the inverse of the standard name
function, since it maps an OL term into its denotation. There is an intimate

relation between the denotation function and equality statements in OL formulas
describing the world:

Va13 TRUg(a= 137) A(a) = zi(p) (D1)

that is, two OL terms are equal in the actual world just in case they denote the
same individual; DI can be viewed as a definition of the intended interpretation
of equality. The prime purpose of the denotation function is to tie together the

t This analysis essentially follows that of (Kaplan 1971), with the extension of standard
names to all individuals in the domain, rather than just numbers and a few other abstract
objects. There are problems in using standard names for complex individuals, however (see
Kaplan 1971).
This is Church's denotation predicate in function form (Church 1951); since a term can
have only one denotation, it is simpler to use a function.
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denotation of terms in the OL and the ML. For standard names, it can be used
to state that the denotation of a standard name is the same individual in all
situations, something that cannot be done with equality predicates in the OL:

(D2)

For example, by asserting n (VENUS) = VENUS' in ML, we fix the denotation
of the OL term VENUS' to be the individual denoted by the ML term VENUS
in all models of the OL.

The introduction of standard names with fixed denotations across all models
makes the task of relating the OL to the ML easier. By introducing this 'common
coin' for naming individuals, we are able to write expressions of the OL that
represent beliefs without constantly worrying about the subtle consequences of
the denotational variance of terms in those expressions. Standard names will
play an important role in describing belief-nesting (beliefs about beliefs), in
describing executable actions, and in simplifying the deduction process.

2.5 The Object Language as Metalanguage

In this subsection we extend the OL to include a description of another object
language OL'. Thus extended, the OL can be viewed as a metalanguage for
OL'. The reason we want to do this is that it will be necessary for representing
an agent's view of a world that is changing under the influence of events. In the
next section we will show how an agent can model the way in which the world
changes by describing what is true about different states of the world connected
by events. But to describe these states of the world, or situations, the agent's
theory must talk about sentences of another language holding in a given situation.

Before trying to extend the formal apparatus of the OL to describe another
OL, it is helpful to examine more closely the relation between the ML as a
means of studying the OL and as a means of describing the actual world. This is
because the structure of an ML/OL pair will be very similar no matter what
the depth of embedding; and the simplest such structure to study is obviously
the topmost one. Although we initially characterized the ML's domain of
discourse as including that of the OL, it appears that we have not made much
use of this characterization. In describing the models of OL, however, it was
necessary to pick out the model that was the actual world; this was done with
the predicate TRUE. And it was impossible to state the definition of a standard
name without appealing to terms in the ML that referred to individuals in the
actual world. So, in fact, we have already used the ML to characterize the
actual state of the world and the individuals that populate it.

We have stated that agent's beliefs are represented as first-order therories of
the world. The ML is, by the above argument, just such a theory; but whose
theory of the world is it? One useful interpretation is to take what we will call
the egocentric view: a theory in the ML is identified as the theory of a particular
agent. That is, suppose we were to build a computer agent and invest him with
an ML/OL structure as a way of representing other agent's beliefs. Then the
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nonlogical axioms of the ML would constitute the computer agent's theory of

the world. The interpretation of the ML predicate TRUE would be "what the
computer agent believes about the world", and of the predicate KNOW, "what
another agent believes that agrees with what the computer agent believes:'
In this interpretation, there is no sense of absolute truth or knowledge; the
beliefs of one agent are always judged relative to those of another.

Suppose we identify the agent Ao with the ML; what interpretation does the
OL theory th (A0) have? Interestingly enough, it is Ao's introspective description
of his own beliefs. Unlike other agent's theories of the world, th(A0) shares an
intimate connection with formulas that hold in the ML. For a rational agent,
it should be the case that if he believes P, then he believes that he believes P.
We can state this connection by the following rule of inference:

Belief attachment: If the agent a is identified with the ML, then from
TRUE(f) infer BEL(th(a), f) .

Introspection will be useful when we consider planning, because a planning agent
must be able to reflect on the future state of his beliefs when carrying out some
plan.

If the metalanguage is intended to describe the actual world, then it is
reasonable to ask what the relation is between models of the ML and models of
its OL, and whether this connection can be formalized in the ML. We start by
adding predicate symbols to the ML whose intended meaning is a property of
the actual world, rather than of the OL and its models. Consider such a predicate
P of no arguments, and let its intended meaning be "222 Baker Street Apt 13 is
unoccupied:" that is, the actual world satisfies P just in case this apartment is
indeed unoccupied. In the OL there is also a predicate symbol P of no arguments
whose meaning we wish to coincide with that of the ML predicate P. The fact
that these symbols are the same is an orthographic accident; they come from
different languages and there is thus no inherent connection between them.
However, because the ML can describe the syntax and semantics of the OL, it is
possible to axiomatize the desired connection. Let P' be the ML term (in TF)
denoting the OL predicate P. Thell Fin the ML and OL have the same meaning if:

PE- TRUE(P') (R1)

is asserted in the ML. For suppose the actual world satisfies P in the ML; then
TRUE(P') must also hold, and hence by the meaning of TRUE, the actual world
is also a model for P in the OL. Similarly, if the actual world falsifies P in the
ML, TRUE(not(P')) must hold, and the actual world falsifies P in the OL also.
So the proposition named by P' holds just in case Apt. 13 at 222 Baker Street
is unoccupied, and thus the meanings of P in the ML and P in the OL coincide.

For predicates that have arguments, the connection is complicated by the
need to make sure that the terms used in the ML and OL actually refer to the
same individuals. So, for example, if P is an ML predicate of two arguments that
we wish to mean the same as the OL predicate P, we would write:
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Vag TRUECP(a,(3)-1) P(A(a)4(0)) ; (R2)

that is, since the denotation function A gives the individuals denoted by the OL
terms a and j3, P in the ML agrees with P in the OL on these individuals. Using
standard names, R 2 could be rewritten as:

Vxy P(x,y)=-1 TRUE(P(x,y)-1) (R 3)

since, by D2, A (n(x)) = x, A(n(y)) = y. Note that the standard name convention
for sense-quotes is in force for R3.

Using TRUE and equivalence, axioms like R3 cause predicate symbols to
have a 'standard meaning' across the ML and OL, in much the same way that D2
formalizes standard names using the denotation function and equality. But while
nonstandard names are a useful device for encoding an agent's beliefs about indi-
viduals that the agent may have misidentified (recall the Morningstar-Eveningstar
example), nonstandard predicates don't seem to serve any useful purpose. So we
will assume that for every predicate symbol P in ML, there is a function symbol
of the form P' whose denotation is the OL predicate P, and there is an axiom of
the form R2 equating the meaning of these predicates.

To make the OL into a metalanguage for OL', we simply introduce sorts that
denote OL' expressions into the OL, in exactly the same way that it was done
for the ML. In addition, the various axioms that tie the ML and OL together
(MP, D1, etc.) must also be asserted in the OL. Unfortunately, this also means
that the ML itself must have a new set of terms denoting terms in the new
OL; the machinery for describing embedded ML/OL chains rapidly becomes
confusing as the depth of the embedding grows. So in this paper we will supply
just enough of the logical machinery to work through the examples by intro-
ducing two conventions; readers who want more detail are referred to Konolige
(1981).

We will extend the convention of sense-quote abbreviation to include ML
variables of the sort TF (denoting formulas of the OL). When these occur in
sense-quotes, they are to be translated as the standard name of the variable;
hence they denote the name of an expression. To take an example, we will
complete the axiomatization of CFACT:

V f CFACT(f)D CFACTCCFACT(f)-1) (CF2)

CF2 asserts that if f is a common fact, then every agent knows it is a common
fact. The sense-quote term r-CFAC7'(f)l denotes the OL expression CFACT(f),
where f' is the standard name of the 01! expression corresponding to f

Finally, every axiom is a common fact:

CFACT(-A7 ), A an axiom. (CF3)

In practice, we hope that the depth of embedding needed to solve a given
problem will be small, since the complexity needed for even the three-level
structure of ML, OL, and 01! is substantial. Also, the technique of semantic
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attachment can be used to reduce the complexity of reasoning about embedded
structures by attaching to a particular level of an embedded structure and
reasoning in that language. In Appendix A we use embedded ML/OL structures
to solve the wise man puzzle, which involves reasoning to a depth of embedding
of three (ML, OL, and Of ); we exploit semantic attachment to simplify the
reasoning involved.

3. THE INTERACTION OF ACTIONS AND BELIEFS

The previous section laid the groundwork for a syntactic treatment of knowledge.
and belief in a static world. This must be integrated with a formal treatment of
actions in order to accomplish our original task of formalizing the interaction
of knowledge and action. We examine the following two questions:

• What knowledge is required by an agent successfully to perform an action?
• What knowledge does an agent gain in performing an action?

The methodology we will use is to apply the situation calculus approach (McCarthy
and Hayes 1969) first to formally describe the way in which the world changes
as events occur. It will then be assumed that this formal system is a reasonable
approximation to the way an agent reasons about changes in the world: this
means that it becomes part of an agent's rules about the world. By simply
attributing a facility for reasoning about events to agents, it turns out that we
are able to answer both these questions formally, and that this formalization
corresponds well with our intuitions about real agents. This is essentially the
same method that was used by Moore (Moore 1980); here, we show that it can
be successfully carried out for a syntactic formalization of knowledge and
belief.

Once the formal requirements for reasoning about events have been specified,
we consider how an agent might plan to achieve a goal using his knowledge of
actions. We conclude that planning is inherently a process of self-reflection:
that is, in order to construct a plan, an agent must reflect on what the state of
his beliefs will be as the plan is undergoing execution. Such a self-reflection
process is represented naturally by an ML/OL structure in which the planning
agent is identified with the ML, and his future states are theories of the OL.
We will show how it is possible to construct plans within this representation,
and extend it to include plans that involve other cooperative agents.

3.1 Situations

In the situation calculus approach, events are taken to be relations on situations,
where situations are snapshots of the world at a particular moment in time. It is
natural to identify situations with models of a language used to describe the
world; in this case, we will use the language OL of the previous section, because
the ML for describing models of the OL is already laid out. In the ML, situations
will be named by terms, generally the constants {S0, SI, ...}. A formula f of the
OL holds in a situation s when the situation satisfies f; the ML predicate H(s, f)
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will be used to indicate this condition. If the situation So is singled out as being
the actual world (and the initial world for planning problems), then TRUE
can be defined in terms of H:

V f TRUE (f)E- H(So,f) (Hi)

Since H describes satisfiability in a model, the truth-recursion axioms TR are
valid for H as well as TRUE.

If we consider agents to be part of domain of discourse, then their beliefs
can change from one situation to the next, just as any other inessential property
,of an agent might. But if an agent's beliefs change from situation to situation,
then the theory that is used to model these beliefs must also change. One way to
represent an agent's changing beliefs is to ascribe a different theory to an agent
in each situation to model his beliefs in that situation. In the ML, we will write
ths(a,$) to denote agent a's beliefs in situation s; if So is taken to be the actual
world, then it is obvious that 'c/a ths(a,S0)= th (a).

But we might now ask what situation the expressions in each of these theories
are about. Suppose that the OL sentence P is a member of ths (A0, S1), and thus
one of Ao's beliefs in situation SI. We would naturally want P to be property that
Ao believes to hold of situation S1 (and not So or some other situation). That is,
ths(a,$) represents agent a's beliefs in situation s, about situation s. In informal
usage we will call the situation we are focussing on the current situation, and say
'the agent a in situation s' when we are referring to the agent's beliefs in that
situation. Later we will show how to represent an agent's beliefs about situations
other than the one he is currently in.

For each situation, an agent's beliefs in that situation are specified by a
theory. Given this arrangement, we define the new predicates B and K as similar
to BEL and KNOW, but with a situation argument:

Vas f B (a,s, f) PR(ths(a,$),f)
Vas f K(a,s,f):s: B(a,s,f)H(s,f) . (B2)

B(a,s, f) means that in situation s agent a believes that f holds ins; K is similar,
with the condition that f actually holds in s. Note that the underlying predicates
FACT and PR do not have to be changed, since they are defined on theories of
OL rather than models. Thus the properties of BEL and KNOW described in the
previous section also hold for B and K in any particular situation. BEL and
KNOW can be defined as B and K in the situation So.

Several extensions to the formalism presented in the first section must be
made to deal with situations. A new denotation function takes a situation
argument as well as an OL term; 6 (s,a) is the denotation of a in situation s.
6,(a) gives the denotation of a a in situation So, and is definable as 5 (So,cc). The
appropriate forms of D 1 and D2 are:

Vscefi H(-s, a = (3-1)
V sx (s,n(x)) = x . (D3)
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This last says that standard names always have the same interpretation in every
situation. Nonstandard names can change their denotation in different situations,
e.g., the block denoted by "the block Ao is holding" may be changed by Ao's
actions.

Finally, we require the appropriate versions of R 1-R6, where these axioms
are appropriately generalized to refer to all situations.

3.2 Observables

Following Moore (Moore 1980), we recognize three ways that an agent can acquire
beliefs in a situation:

• He can observe the world around him.
• His beliefs about past situations persist in the current situation.
• He can reason about the way in which the current situation arose from

events that occurred in previous situations.

In the next few subsections we describe how an agent's beliefs persist and how he
reasons about events; here we formalize what it means for a property of the
world to be observable.

It is certainly true that there are many properties of the world we live in
that are not directly observable; for example, consider a gas oven whose pilot
light is completely encased and hence not visible. Whether this pilot light is on
or off isn't an observable property, but there are other observations that could
be made to test what the state of the pilot light is, e.g., by turning on the oven
and observing whether it lights. What we actually consider to be observable
depends on how we formalize a given problem domain; but it is important for
a planning agent to be able to make the distinction between properties of the
world he can observe directly, and those he must infer.

One of the reasons that it is handy to have a separate theory representing
the beliefs of an agent in each situation is that we then have a way of describing
the effect of observable properties on an agent's beliefs. Formally, we can state
that a property is observable by asserting that in every situation, subject to certain
preconditions that are required for the felicitous observation of the property, an
agent knows whether that property holds or not. For example, in the OL let o
be an oven, and let LIT(o) mean that o is lit. Then LIT(o) is asserted to be
observable by:

V aos H(s,r-AT(a,o)-1)D[K (a, s,ELIT(o)-1) V K (a,s,r---LIT(o)')[; (01)

that is, if the agent is actually at the oven, he knows either that it is lit, or that it
is not lit. Recall from the previous section on knowledge and belief that 01 says
something very strong about the state of a's knowledge, and is not derivable
from the tautology K (a, s,r-LIT(o) V —L/T(o)-1).

3.3 Events Types

Event types are relations on situations; a given event type describes the possible
states of the world that could result from an event occurring in any initial state.
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We will use the three-place predicate EV in the metalanguage to describe event
types: EV(e,si,sf), where e is an event type and si and sf are situations, means
that sf results from an event of type e occurring in si. An event is an instance of
an event type,t but generally we will not have to distinguish them for the purposes
of this paper, and we will use 'event' for 'event type' freely.

Generally the events of interest will be agents' actions, and these will be
constructed in the ML using terms representing actions, agents, and the objects
involved in the action (the parameters of the action). If act is an action, then
do(a,act) is the event of agent a performing this action. Consider the situation
calculus axiomatization of a simple blocks-world action, puton(x,y), where the
parameters of the action are blocks:

Vaxysisf EV(do(a,puton(x,y)),si,sf) 3 H(si,r-CLEAR (y)-1) A
H(sbr-HOLDING(a,x)-1) A
H(sf)rON(x, y)-1) A
H(s1r."-H0LDING(a,x)-1)

(P01)
VaxysisfEV(do(a,puton(x,y)),si,sf)

[V f SAF(f) A f *1—CLEAR (y)-1 A f 01—HOLDING (a,x)-1
H(si, f) H(sf, f)J (P02)

The form of P01 is conditional, so the right-hand side describes the conditions
under which situations si and sf are related by the event of a putting x on y. The
first two conjuncts on the right-hand side are essentially preconditions for the
event to occur, since they state conditions on the intial situation si that must
be satisfied for EV to hold. The preconditions are that CLEAR ((y)) and
HOLDING(n(a),o(x)) must hold in situation si; note that the standard names
for the parameters are indicated by the sense-quote convention. If the precon-
ditions are not met, then there is no situation sf that is the successor to si under
the event e. The rest of the conjuncts describe which formulas of the OL are to
hold in the new situation S.

P02 specifies that all formulas of a certain type that hold in si are also to
hold in S. It is thus a frame axiom for the event e, describing which aspects of
the situation si remain unchanged after the event occurs. The predicate SAF
stands for Simple Atomic Formula; it picks out those formulas of the OL that
are composed of atomic predicates over standard names. Although SAF applies
only to non-negated atomic formulas, the frame axiom carries over negated
atomic formulas as well, since H(s,not(f)) is equivalent to —ll(s,f).* Among

t For example, "Borg's winning of Wimbledon yesterday was fortuitous" is a statement
about a single event, but "Borg winning Wimbledon has happened five times" describes an
event type that had five particulat instances.
The axiomatization of events given here is a standard one in the AI literature on formal
planning, and there are well-known problems involving the use of frame axioms like the
one above. We are Snot attempting to add any new insight to this particular aspect of
planning; but we are interested in having a formal description of events to integrate with
our theory of belief, and this seems to be the best formulation currently available.
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the nicer features of this axiomatization is that events whose outcomes are
conditional on the initial state can be easily described. For instance, consider the
event of an agent turning on a gas oven that has a pilot light. If the pilot light is
on, the oven will be lit; if the pilot light is off, the oven will have whatever

status, lit or unlit, it had before the event occurred (the oven may already have
been on). Let FL (o) be an OL predicate meaning "the pilot light of oven o is on";
and let LIT(o) mean "oven o is lit". Then the event of an agent turning on o can

be described as:

Vasisfo EV(do(a,light(o)),shsf) D
H(si,r-AT(a,oP) A (LT1)
H(si,r-PL (0)-1) D H(sf, EL/T(o)1) A
H(si,r—PL (oP) D [H(s1,rL/T(o)-1) H(si,r-LIT(o))]

Vasisf o EV(do(a,light(o)),si,sf)D
[Vf SAF(f) A f OrLIT(o)-1 H(si,f) H(spf)] .

(LT2)

The second conjunction of LT1 gives the result of the event on case the pilot
light is on: the oven will be lit. The third conjunction says that if the pilot light

is off, the oven will be lit in sf just in case it was lit in si, i.e., its status doesn't
change. LT2 is the frame axiom.

3.4 Reasoning about Situations and Events

The axiomatization of events as relations on situations enables us to talk about
what is true in the world after some events have occurred starting from an initial

situation (which we will generally take to be S0). What it doesn't tell us is how
an agent's beliefs about the world will change; nothing in the PO or LT axioms
gives any insight into this. It might be suspected that, as events are described by
axioms as changing the actual state of the world, this description might be
extended to cover agents' theories as well, e.g., changing Ao's theory in situation
So (ths(A0,S0)) into his theory in situation 51 (ths(A0,S1)).1. But there is no
obvious or well-motivated way to make modifications to axioms like PO and

LT so that they take into account agents' beliefs about a situation rather than
what actually holds in the situation. t What is needed here is a principled way of
deriving the changes to an agent's beliefs that result from an event, given a des-
cription of the event as a relation on situations. Credit for the recognition of

t Indeed, it might be though that the most widely known AI planning system, STRIPS, has
just such a mechanism in its add/delete list approach to describing events. However, closer
examination reveals that because STRIPS makes the assumption that it has a partial
model in the sense of (Weyhrauch 1980), and it is actually slightly less descriptive than the
situational approach described above (Nilsson 1980).
There is one proposal that is suggested by the our use of H to refer to the actual situation
and PR to statements that an agent believes about a situation, namely, to replace all
predicates involving H with the corresponding ones involving PR. However, it can be
shown that the substitution of PR (ths("40,$), .) for H (s, .) yields counterintuitive
results for A:s beliefs.
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this problem belongs to Robert Moore, and we will formalize the solution he
presented in his thesis, the main points of which follow.

The solution to this difficulty lies in making the observation that agents are
reasoning entities. Consider how agent Ao might reason about some event E;
let us suppose the event is that agent Ao turned on the oven in situation So, and
that the result was that the oven was not lit in situation SI. What should Ao's
beliefs be in situation SI? First, by observation, he knows that the oven isn't lit.
He also believes (in Si) that the current situation resulted from the event E
occurring in situation S. So Ao reasons as follows: if, in situation So, the pilot
light of the oven had been on, then in S1 the oven would be lit, since he turned
it on. But the oven isn't lit; hence the pilot light couldn't have been on in So,
and remains not on in Si.

There are several important things to note about this analysis. The first is
that, as suggested previously, Ao's beliefs in situation S1 comes from only three
sources: observation ("the oven is not lit"), persistence of beliefs about previous
situations ("if in So the pilot light had been on ..."), and beliefs about the way
events change the world. This latter is equivalent to having some form of LT1 as
part of Ao's beliefs in situation Si. From these three sources Ao is able to generate
anew set of beliefs for Si.

The second thing to note is that none of Ao's reasoning in S1 could have
taken place unless he believed that SI resulted from So via the event E. Beliefs
about what sequence of events led to the current situation play a very important
role in reasoning about that situation, and, like other beliefs, they can be mistaken
or inferred from other evidence. Suppose, for example, that Ao suddenly sees
the oven become lit. He might infer that the only way that could happen when
it wasn't previously lit would be for an agent to turn it on; this is inferring that
the situation where the oven is lit is connected by a certain event with a previous
situation where the oven wasn't lit. We will not be concerned with this kind of
inference here, although we note the possibility of doing event recognition in
this framework. The events we are interested in are actions, and the assumption
we will make for the remainder of this paper is that an agent knows what action
it is that he performs in executing a plan.

A third aspect of this reasoning that is unusual is that the axiomatization of
events is being used in a different way than a planning program would normally
consider doing. Typically, a planner uses an event description like LT1 to form
plans to light the oven, and the side condition that the pilot light be on is one of
the things that can go wrong with the plan, and so must be taken into account as
a subgoal. However, in the above example Ao has used LT1 to reason about
a property of the world that is not available to his direct observation, that is,
as a test. This is an important characteristic for any formalism that combines a
description of agent's beliefs with a description of events; a single description of
an event should suffice for an agent to reason about it either as a means of
effecting a change in the world, or as a test that adds to his beliefs about the
world.
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Finally, the precondition that Ao be at the oven to turn it on translates
naturally in this analysis into a precondition on Ao's beliefs in situation S.
If Ao is to reason that situation S1 is the successor to So under the event E, he
must believe that he was actually at the oven in situation So. For if he doesn't
believe this, then he cannot use LT1 to infer anything about the results of his
action.

We might summarize the analysis of this section in the following way:
by making the simple assumption that an agent reasons about the way in which
situations are related by events, we are able to characterize in a natural way the
belief preconditions required for executing an action, and the effects of actions
on the subsequent belief state of an agent. The interaction of observation and
reasoning about situations gives an agent the power to plan actions that perform
tests, as well as change the state of the world.

3.5 Formalizing Agents' Reasoning about Events

We now give a formalization that implements the ideas just laid out. The first
requirement is that we be able to describe an agent a in situation s reasoning
about other situations, especially the one just preceding. Since the formulas of
ths(a,$) all refer to properties of situation s, we must enrich the OL so that
formulas in the OL can refer to different situations. Using the techniques of
belief-nesting of the previous section, we add to the OL the predicate H corres-
ponding to the ML predicate of the same name. The OL expression H(Sbr-P-1)
means that the Of formula P holds in situation S1, regardless of what theory this
formula appears in.t With the addition of the H predicate to the OL, the notion
that all formulas in ths(a,$) refer to properties of s can be formalized as:

Vsf PR(th(a,$),f) PR(th(a,$),1-11(s,f)-1) . (H2)

H2 can be paraphrased by saying that an agent believes P in situation s just in
case he believes that P holds in situation s. Given H2, it is possible to describe
agents' theories as consisting purely of formulas in H; but the added level of
embedding puts this technique at a disadvantage with respect to using other
predicates from OL to describe an agent's beliefs about the current situation.

It is also possible to formalize the notion that beliefs about previous situations
persist, or are carried over into succeeding situation. Suppose that in situation
Sr, an agent has a belief of the form, "in a previous situation Si, P was true".
Then if S„+1 is the successor to S„ under some event, this belief is still valid.
Formally, we can assert this with the ML axiom:

V sisf e EV(e,si,sf) J [VasfB(a,s1,171(s,f)7) D B (a,sf,r-H(s, f 51)] .

(H3)

t We will take 5,„Si,... to be standard names for situations in all languages. It will be
assumed that standard names are always used to name situations.
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The antecedent of the implication says that si and sf must be connected by some
event for beliefs to be carried over from si to sf; this is necessary because we don't
want agents to inherit beliefs from their future states. By phrasing the beliefs in
terms of the predicate H, H3 carries over beliefs about all situations previous to
and including si.

One of the consequences of H3 is that once an agent forms a belief about a
situation, he holds that belief about that situation for all time. Since beliefs can
be mistaken, it might happen that an agent observes something that forces him
to revise his previously held beliefs. In that case, H3 is too strong, and the
resultant theory will be inconsistent. We recognize that the general problem of
reconciling inconsistent beliefs that arise from different sources (called belief
revision) is a hard one, involving both conceptual and technical issues, and it is
not part of this research to say anything new about it. Nevertheless, it is worth-
while to note that because the ML has terms that refer to agents' theories in
different situations, it may be possible to describe a belief revision process
formally in the ML.

3.6 An Example of a Test

Given the preceding techniques for describing what an agent believes to hold in
situations other than the one he is currently in, we can show formally that Ao can
use the LT axioms as a test to figure out whether the pilot light is on or not.
In the initial situation So, we will assume that Ao knows he is at the oven 0
(where 0 is the standard name for the oven), and realizes that it is not lit:

Initial Conditions in the ML

(1) K (A0, So ,rAT(A0,0) A —L/T(0)-1) given
(2) K (A0, Si, r-E V (do (Ao,light (0)),S0,S1)-1) given

The style of proof we will exhibit will be natural deduction, with assumption
dependencies noted in square brackets in the justification for a line of the proof.
Given the initial conditions, we next show that Ao can observe whether or not
the oven is lit in situation SI:

(3) V f SAF(f) A f OrLIT(0)l D
H(So, H(S1,f) 2,B2,LT2

(4) SAF(AT(A0,0).1) definition of SAF
(5) H(Sbr-AT(Ao, OP) 1,3,4,B2
(6) K(A0,S1,11,IT(0)-1) V K(40,S1,r--LIT(0)-1) 5,01

Line 3 comes from the frame axiom for light, and lets us infer that Ao is still
at the oven in situation S1 (line 5). The observation axiom 01 is then invoked
to assert that Ao will know what the state of the oven is in that situation.

Throughout this proof, we will be interested in two theories of the OL:

t Doyle (Doyle 1978) worked on this problem under the rubric "Truth Maintenance", and
more recent work in nonmonotonic reasoning also considers this problem.
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ths(A0,S0) and ths(A0,S1). Assertions in the ML involving Ao's beliefs can be
reasoned about by using semantic attachment to the appropriate OL theory. For
example, line 1 above is attached to the following statements in ths(A0,S0):

Ao's Theory in Situation So
(7) Ani10,0) A —LIT(0) 1, B2, semantic attachment
(8) H(S0,r—LIT(0)-1) 1,B2 ,H2, semantic attachment

Line 7 is the attachment of line 1 to Ao's theory in So. Line 8 is derived from
line 1 by the use of H2; it is useful because it will persist as a belief in the
successor situation Si. Generally, beliefs that an agent derives about the current
situation can be inherited into succeeding situations by expressing these beliefs
with the H predicate.

At this point we do reasoning by cases. First assume the right disjunct of
line 6; then for Ao's beliefs in situation S1 we have:

Ao's Theory in Situation Si

(9) —LIT(0)
(10) --H($brLIT(0)-1)
(11) EV(do(A0,1ight(0)),S0A)
(12) H(S0,r-PL(0)-1)D H(Sbr-LIT(0))
(13) —H(SQ1r-PL(0)-1)
(14) H(So, I —PL(0)-1)

[9] : assumed, semantic attachment
[9]: 9,H2 semantic attachment
2, semantic attachment
11,LT1
[9]:10,12 contrapositive
[9]:13,TR for H

The first part of the result is derived by line 14, namely, that if Ao observes that
the 0 is not lit in situation So, then he knows that the pilot light was not on in
situation S. This sequence of steps is interesting because it illustrates the inter-
mixture of proof techniques in the ML and OL. Lines 9, 10, and 11 come from
statements in the ML about ths(Ao,S1). Line 10 is derived from line 9 in the
ML by the application of axiom H2. Line 11 says that Ao believes that Si is the
result of the light (0) action occurring in So, and follows directly from line 2
and semantic attachment. Line 12 follows from line 11 and the event axiom
LT1; it is assumed that Ao believes this ald0111. Finally, 13 and 14 follow, given
that the truth-recursion axioms for H are made available in all theories in the OL.

The left disjunct of line 6 can be reasoned about in the following way (since
lines 11 and 12 did not involve any assumptions, they can be used in this part of
the proof also):

Ao's Theory in Situation Si

(15) Ling)
(16) H(Si, I LIT(0)1)
(17) —H(So,FLIT(0)11?
(18) — [14S,FLIT(0) H(Si,ainop)]
(19) H(So, --PL(0)I) H(S1,1 L/T(0)-1) =---

H(S0,FLIT(0)1)
(20) —H(S021--PL(0)-1)
(21) H(So, I PL (OP)
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Here again, the first few lines (15, 16, and 17) are established by reasoning at the
ML about ths(Ao,S1). Line 17 comes from an instance of axiom H3, which
enables an agent's beliefs to persist through a sequence of situations. Line 19
comes from Ao's knowledge of LT1, and line 20 is the key step: it establishes
that under the assumption of 0 being lit in SI, the pilot light was on in So.
Finally, the frame axiom LT2 will carry the pilot light's status in So forward
into SI:

Ao's Theory in Situation S1

(22) VfSAF(f)AfOr-LIT(0)-1 DH(S0,f)m H(Si,f)
(23) SAF(r-PL(0)-1)
(24) H(S0,EPL(0)-1)== Kgbr-PL(0))
(25) PL(0)
(26) —PL (0)

11, LT1
definition of SAF
22,23
[15]: 21,24,H2
[9]: 14,24,H2

Line 25 is under the assumption of the left disjunct of line 6, and line 26 is
under the right disjunct. In the ML we can derive several results from the pre-
ceding proof structure:

In the ML

(27) B(A0,S1,1-PL(0)-1) V B(Ao,Sbn—PL(0)-1) 6, 20,21
(28) B(A0,S1,r-LIT(0)-1) D BOo,Sbr-P4(0)-1)

-1)
15,25

(29) B(A0,S1,1--LIT(0)-1)D B(Ao,S1,1 —PL(0) 9,26

Line 27 says that in SI, Ao will either believe that the pilot light is on, or he will
believe that is not on. Thus, by performing the action of lighting the oven, Ao
gains knowledge about the state of an unobservable, the pilot light. This is
the desired result of agent Ao using LT1 to perform a test of an unobservable
property.

Lines 28 and 29 give belief analogues to the LT axioms, which described the
event of lighting the oven solely in terms of the actual situations before and after
the event. These assertions show how the beliefs of A0 change under the influence
of the event do(a,light(0)). By suitably generalizing the preceding proof, it can
be shown that 28 and 29 hold for all agents and initial situations.

Vaosisf EV(do(a,light(o)),si,sf) A K(a,si, r-A T(a, o) A —L/T(o)-1) D
B(a,spr-LIT(o)-1)D B(a,spr-PL.(o)-1) (LT3)
B(a,sf,r—LIT(o)-1)DB(a,sf,r—PL(0)-1).

LT3 is valid under the condition that LT1 is assumed to be believed by all
agents. LT3 is one description of the way in which an agent's beliefs change in
a situation that results from an oven-lighting event; it would be most useful to
a planner as a lemma to be invoked if the state of the pilot were to be tested as
a step in a plan. Another lemma about oven-lighting that would be useful to a
planner would be one in which the belief preconditions to an action were made
explicit; this would be used to plan actions that light the oven.
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4. PLANS AND PLANNING

In the previous section we saw how to characterize the changes to an agent's

beliefs produced by his observation of events. In this section we will consider

how to use these results as part of the deductions that an agent needs to do to
construct workable plans, i.e., plans that will accomplish their goals.

Consider how an agent might go about constructing workable plans. Using

his description of various events (PO, LT, and others) he can try to find a sequence
of actions that lead to the desired goals being true in some final situation. If we
identify the planning agent with the ML, then a plan would be a sequence of
situations connected by actions performed by that agent, such that the goals
are true in the final situation. This doesn't seem to involve the planning agent
in any reasoning about his beliefs; all he needs to do is describe how the actual
world changes under the influence of his actions.

This isn't the whole story, though. The plan that is derived must be an
executable plan; that is, if the plan is a sentence of actions, the agent must be
able to execute each of those actions at request time. For instance, the action
description light(oven(lohn)) will not be executable if Ao doesn't know which
oven is John's. For a plan to be executable by an agent, the agent must know
what action is referred to by each of the do-terms in the plan. According to a
previous section, this means that the agent must have the standard name for the
action in his theory. But what are standard names for actions? Following Moore
(Moore 1980), we take the viewpoint that actions can be analysed as a general
procedure applied to particular arguments, e.g., puton is a general procedure
for putting one block on top of another, and puton(A,B) is that procedure
applied to the two blocks A and B. If we assume that all agents know what
general procedure each action denotes, then the standard names for actions
are simply the terms formed by the action function applied to the standard
names of its parameters! The condition that actions be executable forces the
planning agent to make the critical distinction between his beliefs at planning
time and his beliefs at execution time. A planning agent may not know, as he
forms his plan, exactly what action a particular do-term in his plan denotes;
but if he can show that at the time he is to execute that action, he will know
what it is, then the plan is an executable one. Plans of this type occur frequently
in common-sense reasoning; consider a typical plan Ao might form to tell some-
one what time it is. The plan has two steps: first Ao will look at his watch to
find out what the time is, and then he will communicate this information to
the requestor. At planning time, Ao doesn't really know what the second action

t Actually, the condition that the parameters be standard names is too strong. Standard
names have the property that every agent knows whether two individuals named by standard
names are the same or not in every situation, but this condition is not strictly necessary
for an action to be executable. Consider the action of requesting information from the
telephone operator; surely it is not required that an agent be able to differentiate the
operator from every other individual in his beliefs. If he were to dial the operator on two
separate occasions, he would not necessarily be able to tell if he talked to the same operator
or not.
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is, because he doesn't know the time, and the time is an important parameter
of the communication act. Yet he can reason that after looking at his watch,
he will know the time; and so the plan is a valid one.

By this argument, an agent must analyse at planning time what the future
states of his beliefs will be as he executes the plan. Thus the planning process
intrinsically forces the agent into introspection about his future beliefs. Since
we have identified the planning agent with the ML, it is natural to represent his
future beliefs during the execution of the plan as OL theories in the situations
that the planning process gives rise to. If the planning agent is Ao, then these
theories are ths(A0,S0) (the initial situation), ths(A0,11), etc., where each of
the Si results from its predecessor via the execution of the next action in the plan.
Ao's planning process is basically a simulation of the plan's execution in which
he reasons about the changes that both the actual world and his set of beliefs
will undergo during the course of the plan's execution. By figuring out what his
future states of belief will be, he can decide at planning time whether an action
of the plan will be executable.

For Ao to take other agents' plans into account in forming his own, he must
be able to represent their future states of belief, in addition to his own. But this
doesn't involve any additional representational complexity, since Ao is already
keeping track of his own beliefs during the simulated execution of the plan. In
Konolige and Nilsson [1980] an example of a multi-agent plan is presented;
currently we are working on formalizing such plans in the framework presented
here.

Actually, this planning process bears a strong resemblance to typical imple-
mentations of a situation calculus approach to planning (Warren 1974). In these
systems, events are axiomatized along the lines of PO and LT, and the planner
searches for a sequence of situations that leads to the goal by doing theorem-
proving with the event axioms; the search space is essentially the same in either
approach. The main difference is in the relative complexity of reasoning that
the two planning systems must be able to handle. In the approach described
here, the effect of actions on the agent's beliefs in each situation greatly increases
the deductive complexity of the planner and the work that it must do at each
node in the search space of plans. The usefulness of lemmas such as LT3 that
describe the effects of actions on an agent's belief state now becomes apparent:
by summarizing the effect of actions on an agent's beliefs, they reduce the
complexity of the deductions that must be performed at each step in the plan.
Further savings can be realized by using the method of belief attachment described
in the previous section: from H(s,f) at the ML, infer K(A0,s,f). Most of the
work of figuring out Ao's future states of knowledge can be performed by
reasoning about H at the metalevel, rather than K, and this is considerably simpler.
Finally, it should be noted that the executability requirement acts as a filter on
plans. Thus a reasonable search strategy would be to first find a plan that works
without taking into account its executability (and hence the future belief states
of the planning agent), and then test it for executability.
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5. CONCLUSION

To summarize the contributions of this paper: we have defined a syntactic
approach to the representation of knowledge and belief in which the key element
is the identification of beliefs with provable expressions in a theory of the object
language. The technique of semantic attachment to the intended interpretation
of the metalanguage provability predicate has been advanced as a method of
simplifying proofs by directly modelling an agent's inference procedure, rather
than simulating it.

To unify a formalization of knowledge and action, we have shown how to
take Moore's account of their interaction and formalize it within the syntactic
framework. The benchmark example was a presentation of a test in which an
agent uses his knowledge of observable properties of the world and the way
actions affect the world to discover the state of an unobservable property. Finally,
we pointed out how the formalization could be used in a planning system.

While this paper is a step towards showing that the syntactic approach can
be extended to an adequate formalization of the interaction of knowledge and
action, there is still much work to be done in constructing a practical planner for
a multi-agent environment that uses this formalism. Two areas in particular are
critical. First, a suitable system for doing automatic deduction in the framework
has to be worked out. Although we have advocated semantic attachment as a
means of simplifying proofs, we have not yet explored the problem of controlling
a deduction mechanism that uses this technique. The second area also involves
control issues: how can a planner be designed to search the space of multi-
agent possible plans efficiently? One of the ideas suggested by this paper is to
derive lemmas of the form of LT3 that show the effect of actions on an agent's
beliefs. With such lemmas, a planning system would have compiled the necessary
results for contructing new brief states from previous ones.
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APPENDIX: THE WISE MAN PUZZLE

This is a solution to a simple version of the wise man puzzle, for whose statement
we quote from McCarthy et al. (1980):

A king wishing to know which of his three wise men is the wisest, paints
white dots on each of their foreheads, tells them that at least one spot is
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white, and asks each to determine the colour of his spot. After a while the
smartest announces that his spot is white, reasoning as follows: "Suppose
my spot were black. The second wisest of us would then see a black and a
white and would reason that if his spot were black, the dumbest would see
two black spots and would conclude that his spot is white on the basis of
the king's assurance. He would have announced it by now, so my spot must
be white."

We will simplify this puzzle by having the king ask each wise man in turn
if he knows what colour his spot is, staring with the dumbest. The first two say*
"no", and the last says that his spot is white.

In formalizing the puzzle, we will take the three wise men to be Ao, Ai, and
A2, in order of increasing stupidity.t We will reason about the puzzle from Ao's
point of view, and show that Ao knows that his spot is white after hearing the
replies of the other two. We will not be concerned with the axiomatization of
the speech act performed by the agents; it will be assumed that Ao's model of
the world changes appropriately to reflect this new information.

There are three situations in the puzzle: the initial situation So, the situation
S1 just after A2 speaks, and the situations S2 just after A1 speaks. The frame
axioms for these situation are simply that every agent knows he knew in the
previous situation; these frame axioms are common knowledge.

We will identify Ao with the ML, so that goal is to show: H(S2,1-14/(A0P) in
the ML. W(a) is the predicate whose meaning is ̀ a's spot is white'. The initial
conditions of the problem are:

(1) W(A1) A W(A2)
(2) CFACT(rW(A0) V WOO V W(A2)-1)
(3) CFACT(1-1C(A2,4,7W(A0P)V K(A2,4,7— W(A0)-1)-1)
(4) CFACT(rIC(A2,S0,EW(A1)-1) V K(A2, So, W(A1)-Ip)
(5) K(Al , So, EW(A0)-1) V K(Ai W(A0)1)
(6) CFACT(r—K(A2,S0,1-W(A2)-1)-1)
(7) CFACT(r—K(A1,S1,r-W(A1)-1)-1)

Line 1 says that Ao observes white spots on A1 and A2; line 2 asserts that it is
common knowledge that at least one spot is white. The next two lines state
it is common knowledge that A2 can observe whether the other two agent's
spots are white or not. Line 5 says that A1 knows the colour of Ao's spot. And
the last two lines express the effect of the first two agent's answers to the king
on everyone's knowledge. This axiomatization will be sufficient to prove that
Ao knows his spot is white in S2.

The first step in the proof is to show that A1 knows, in situation SI, that
either his own or Ao's spot is white; this by reasoning about A2's answer to the
king. We will attach to Ai's theory in situation Si (that is, ths(A1,S1)), and do
our reasoning there:

f A0, A1 and 42 are standard names for the wise men.
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Ai's Theory in Situation Si
(8) —K(A2,S0,EW(112)-1)
(9) K(A2,S0,EW(A0) V W(A) V W(42))
(10) K(A2,S0,r(-13/(A0) A —KAI)) D KA2)-1)
(11) K(A2,S0,1--W(A0) A W(AS1) D

K(42, So, r W(A2)7)
(12) --K(A2,S0,1"-- WOO A --14/001)

6, semantic attachment
3, semantic attachment
9

10, MP
8,11 contrapositive

In these lines, we have used the fact that everyone knows that everyone knows
common knowledge assertions. At line 12,A1 realizes that A2 doesn't know that
both Ao and A1 lack white dots; if he did, he would have announced the fact.

Now A1 uses the common knowledge that A2 can observe the colour of Ao's
and Al's dots to reason that one of the latter has a white dot:

Al's Theory in Situation SI

(13) K(A2,S0,E—W(A051) A

K(A2,S0,1--W00-1)
(14) K(A2,S0, WOO A —KAI?)
(15) "-K(A2,S0,17— W(A0)-1) V

—K(A2,S0,1--11100-1)
(16) —K(A2,S0, oP)
(17) K(A2,S0, EW(A0)-1) V

K(42, So, WOOP)
(18) K (42, S0,1- W (40-1)
(19) )
(20) K(A2,S0h r-W(A1)-1) V 042,S0,1---14/(A0-1)
(21) K(A2,S0,1-KA1)i )
(22) K(A2,S0,7W(A0)-1) V K(212,4,714/00-1)
(23) H(So, rW(A0) V 4/(A1)-1)
(24) WOO V W(A1)

[14 assumption
[1413, PR

13;12,14 contradiction
[16]: assumption

3, semantic attachment
[16]: 16,17
[19]: assumption
4, semantic attachment
[19]:19,20
15,16,18,19,21
22,B2

23, frame axioms, R1

We first show here that A2 doesn't know Ao's spot is black, or he doesn't know
that Ai's spot is black (line 15). Assertions that follow from assumptions are
indicated by a square bracketing of the assumption line number in their justifi-
cation. Next we do an analysis by cases of line 15; in either case, line 22 holds:
A2 either knows Ao's spot is white, or he knows Ai's spot is white. From this
A1 concludes that either he or Ao has a white spot (line 24). Note that the frame
axioms were needed to show that the W predicate doesn't change from situation
So to situation Si.

At this point we are through analysing Ai's theory of situation SI, and go
back to the ML to reason about situation S2. By line 5, A1 knows the colour of
Ao's dot, so we assume that he knows it is black:
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(25) K(A1,S0,1-- W(A0)
(26) K(41,41--11100-1)
(27) K(A1,S1,1---W(A0) W(A1)-1)
(28) K(AI,S1,r-W(A1)-1)
(29) -K(Al ,S1,r-W(ilin
(30) -K(Al, So, I-- W(110)-1)
(31) K(A1,S0,1-400?)
(32) H(So, WOO))

[25]: assumption
[25]: 25, frame axioms
24, frame axioms
[25]: 26,27,MP
7,CF1
25, 28, 29, contradiction
5,30
31,B 2

KONOLIGE

Under the assumption that A1 knows Ao's spot is black, we derive the contra-
diction of lines 28 and 29. Therefore, by line 5, it must be the case that A1
knows Ao's spot to be white. This is the conclusion of line 32; since this is one
of Ao's beliefs, we are done.
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