
16

XSEL: a computer sales person's assistant

J. McDermott
Carnegie-Mellon University
Pittsburgh, USA

Abstract

R1, a knowledge-based configurer of VAX-11 computer systems, began to be used
over a year ago by Digital Equipment Corporation's manufacturing organization.
The success of this program and the existence at DEC of a newly formed group
capable of supporting knowledge-based programs has led other groups at DEC
to support the development of programs that can be used in conjunction with
RI. This paper describes XSEL, a program being developed at Carnegie-Mellon
University that will assist salespeople in tailoring computer systems to fit the
needs of customers. XSEL will have two kinds of expertise: it will know how
to select hardware and software components that fulfil the requirements of
particular sets of applications, and it will know how to provide satisfying expla-
nations in the computer system sales domain.

Introduction

The world is filled with tasks that can be performed satisfactory only by those
who have acquired, through apprenticeship, the bodies of knowledge relevant to
these tasks. In designing programs to perform these tasks, the AI community has
had to face the issue of how to represent large amounts of ill-structured knowledge
in a way that enables relevant knowledge to be quickly brought to bear. The
software tools that have been developed for this purpose are quite different from
the tools developed for use in well-structured domains; in particular, they are
intended to be used to implement continuously evolving programs. Since only a
handful of people are familiar with any of these tools, and since the programs
they can be used to implement acquire expertise only with use, the tools are
currently under-utilized. One approach to this technology transfer problem is for
people familiar with the tools to develop programs that have some expertise in
various industrial domains, plant the programs in those domains, and let those
who need the programs acquire familiarity with the tools by using (and continuing
to develop) the programs.

325



KNOWLEDGE-BASED SYSTEMS

This is essentially the strategy that Carnegie-Mellon University and DEC

adopted, and it appears to be working well. In December 1978, work was begun

at CMU on R1 (McDermott 1980a, 1980b) a program that configures VAX-ll

computer systems. In less than a year, R1 had been developed to a point where

it could be used on a regular basis by DEC's manufacturing organization to

configure VAX-11/780 systems. At that time, DEC established a group responsible

for the maintenance and continued development of Rl. During 1980, the group

grew to include 12 people; it now consists of a manager, 5 people proficient in

0Ps5 (the production system language in which RI is written), 3 people respon-

sible for ensuring that RI's database (a set of descriptions of hardware and soft-
ware components) is accurate and up to date, and 3 people responsible for

developing processes to facilitate Rl's use and to aid in extracting configuration

knowledge from experts. Over the course of the year, CMU provided considerable

technical assistance to this group. The group is now essentially self-sufficient;
that is, it needs no assistance from CMU in maintaining and extending Rl.

In the Fall of 1980, the group implemented a version of R1 that can configure

VAX-11/750 systems; almost all VAX systems built within the United States are

now configured by these programs.
Though DEC now has the expertise required to continue the development

of R1 and plans to extend Rl's capabilities so that it will be able to configure
PDP-11 systems, it is not yet quite at the point where it could embark on the

development of knowledge-based programs that perform quite different tasks.

Yet there is a need at DEC for such programs. In particular, RI performs only

the component organization part of what could be called the computer system

configuration design task. The configuration design task has two parts:

• Component selection: the set of components that are both necessary and

sufficient to satisfy the requirements imposed by a set of applications

must be selected.
• Component organization: the set of components selected must be organized

to form a system that satisfies the requirements imposed by the set of

applications.

A program that could perform the component selection part of the task would

be extremely valuable. Thus DEC has asked CMU to develop such a program.

In the next section, Rl's capabilities will be briefly reviewed. Then in section

2, XSEL, the program being developed to perform the component selection part

of the configuration design task, will be described. Though XSEL is still in the

initial stages of development, it has become apparent that the recognition-driven

approach to problem-solving that characterizes R1 can also be the principal

approach used by XSEL. The fact that two tasks of a significantly different

nature are both amenable to a recognition-driven approach suggests that there

may be a wide range of tasks for which this approach is appropriate. The final

section will discuss XSEL's explanation capability. Because some of the people

with whom XSEL will interact will have only a limited understanding of con-

326



McDERMOTT

figuration design issues, it is important that XSEL be able to answer a wide range
of questions in a simple and straightforward fashion.

1. R1's ROLE IN CONFIGURATION DESIGN

RI takes a set of components as input and produces diagrams showing what the

spatial relationships among the components should be. Though it knows almost
nothing about the subtask of selecting a set of components to satisfy a functional

specification, it does understand that certain components, in order to be con-

figured, may require other components. If the set of components it is given is

incomplete in this sense, it adds whatever components are required to make the
set configurable. R1 has a relatively large amount of knowledge that enables it
to recognize the acceptable ways in which components can be associated under

various conditions. It uses this knowledge to construct a single configuration

that satisfies all of the organizational constraints. Because its knowledge is

sufficient to enable it to recognize what to do next at each step, it performs this

task with almost no search; that is, it seldom needs to backtrack.

RI is implemented in OPS5, a general-purpose, rule-based language (Forgy

1980, Porgy 1977) OPS5 provides a rule memory, a global working memory, and
an interpreter that tests the rules to determine which ones are satisfied by a set

of the descriptions in working memory. A rule is an IF-THEN statement consisting
of a set of conditions (patterns that can be matched by the descriptions in

working memory) and a set of actions that modify working memory. On each

cycle, the interpreter selects one of the satisfied rules and applies it. Since

applying a rule results in changes to working memory, different subsets of rules

are satisifed on successive cycles. 0PS5 does not impose any organization on rule

memory; all rules are evaluated on every cycle. It often turns out to be convenient,

however, to be able to restrict the set of rules that can fire on any given cycle to

those that bear on the task currently being performed; this can be accomplished
by including in each rule a condition element that specifies the context (subtask)
in which the rule is relevant.

In implementing Rl, 0PS5's two memories were augmented with a third.
This memory, the data base, contains descriptions of each of the more than 750

components currently supported for the VAX-11. Each database entry consists
of the name of a component and a set of 18 or so attribute/value pairs that
indicate the properties of the component which are relevant for the configuration
task. As R1 begins to configure an order, it retrieves the relevant component
descriptions. As the configuration is generated, working memory grows to contain
descriptions of partial configurations, results of various computations, and
context symbols that identify the current subtask.

Production memory contains all of R l's knowledge of how to configure
VAX-11 systems. RI currently has about 850 rules that enable it to perform the
task. These rules can be viewed as state transitions operators. The conditional
part of each rule describes features that a state must possess in order for the
rule to be applied. The action part of the rule indicates what features of the

327



KNOWLEDGE-BASED SYSTEMS

state have to be modified or what features have to be added in order for a new

state that is on the solution path to be generated. Each rule is a more or less
autonomous piece of knowledge that watches for a state that it recognizes to
be generated. Whenever that happens it can effect a state transition. If all goes
well, this new state will, in turn, be recognized by one or more rules; one of

these rules will effect a state transition, and so on until the system is configured.
An English translation of a sample rule is shown in Fig. I.

ASSIGN-UB-MODULES-EXCEPT-THOSE-CONNECTING-TO-PANELS-4

IF: THE MOST CURRENT ACTIVE CONTEXT IS ASSIGNING DEVICES TO UNIBUS MODULES
AND THERE IS AN UNASSIGNED DUAL PORT DISK DRIVE
AND THE TYPE OF CONTROLLER IT REQUIRES IS KNOWN
AND THERE ARE TWO SUCH CONTROLLERS

NEITHER OF WHICH HAS ANY DEVICES ASSIGNED TO IT
AND THE NUMBER OF DEVICES THAT THESE CONTROLLERS CAN SUPPORT IS KNOWN

THEN: ASSIGN THE DISK DRIVE TO EACH OF THE CONTROLLERS
AND NOTE THAT THE TWO CONTROLLERS HAVE BEEN ASSOCIATED

AND THAT EACH SUPPORTS ONE DEVICE

Fig. 1 — A sample rule.

Though RI performs its task adequately, it is a less valuable tool than it

might be because it lacks certain pieces of information. The only information

that is currently made available to RI is the set of components ordered. Since

R1 has no knowledge of the physical characteristics of the room or rooms in

which the system is to be housed, it cannot produce a realistic floor-layout even

though it has the capability to do so; this means that it cannot determine the

precise lengths of cable required to connect some pairs of components. Moreover,

R1 has no access to information that would enable it to determine whether the

intended uses of a system imply unusual configuration constraints; thus the con-

figuration that RI produces is not necessarily the one that provides the customer

with the best performance for his particular set of applications.t

2. XSEL's ROLE IN CONFIGURATION DESIGN

XSEL's role complements RI's. XSEL's task is to select the set of components

that satisfy the requirements imposed by a set of applications. It then informs

RI of its selections and provides any additional information RI will need in

order to tailor its configuration to those applications. It is important to note

that one of RI's capabilities makes XSEL's task considerably easier than it would

otherwise be. Much of the problem of component selection is that salespeople,

in addition to having to select components directly relevant to the intended uses

of a system, also have to be concerned with 'support' components (e.g., back-

The most recent extension to R1 is a capability that enables it to accept as part of its input
a set of ad hoc (customer-specific) constraints; in producing a configuration, R1 gives
preference to these constraints over the ordinary-case constraints encoded in its rules
(McDermott 1981).

328



McDERMOTT

planes, boxes, panels, cabinets, cables, etc). Since part of R1's task is to make
sure that all such support components are included on the order and to add
them if they are not, there is no need for XSEL to concern itself with support
components at all. Thus the component selection problem reduces to the problem
of selecting just that set of components that would normally be included in a
system's functional specification.

2.1. The humble role

XSEL in its current state is little more than a front end for RI. It allows a user
to specify a cpu, some amount of primary memory, whatever software is desired,
and whatever devices are desired (e.g., disk drives, tape drives, terminals, printers,
etc.); this skeletal order is then passed to R1 to be fleshed out and configured.
The interaction with the user actually has three stages:

(1) The user is asked a few standard questions: his name, the order identi-
fication number, etc.

(2) The user is asked what components he wants to order.
(3) The user is asked for information required by RI in order to do floor-

layout and is asked to indicate any special configuration constraints
that the intended uses of the system imply.

The first stage is simple and straightforward; the second and third stages are
somewhat more interesting.

When asked what components he wants to order, the user may, if he wishes,
enter the names (and quantities) of the components he wants; XSEL then performs
a few simple consistency checks to make sure that the components ordered are
compatible and goes on to the third phase. Since DEC's naming conventions are
somewhat confusing, even to the initiated, the user may specify the components
he wants by 'subtype' rather than by name. DEC's names for components all have
the form xxxxx-yy; the first five characters indicate the subtype and the final
two characters indicate the variation. Typically a subtype will have anywhere
from four to eight variations. Partly as a matter of convenience and partly to
avoid the errors that frequently crop up because an incorrect variation has
been specified, the user may elect to specify some or all of the components by
subtype. If so, XSEL will ask a few questions to determine which variation the
user wants.

The user may specify some types of components in terms of total capability
desired, rather than by name or subtype. Currently, primary and secondary
memory can be ordered by specifying megabytes desired, and printers can be
ordered by specifying total printing capability desired in lines per minute.
In order to handle this type of specification, XSEL does need some knowledge
of how to select among subtypes. Since.specification in terms of capability does
not ordinarily narrow the set of possibilities to the variations of just one subtype,
XSEL must have criteria that enable it to make reasonable choices. Currently
XSEL has a few rules that enable it to avoid obviously poor choices; it will

329



KNOWLEDGE-BASED SYSTEMS

need a significant amount of additional knowledge before its choices will be
consistently adequate.

Once the user has specified the components he wants, XSEL goes on to the
third stage. Here, XSEL asks the user a number of questions about the room or
rooms in which his system will be housed. It asks for the dimensions of the rooms
and the positions of doorways and obstructions. If the user wishes, he may then
specify how he wants some or all of the components on the order to be positioned;

he may specify the precise location of components or may indicate the approxi-
mate locations of various groups of components. After the user has provided as
much floor layout information as he wants, he is given the opportunity to enter
other configuration information. He can specify how devices are to be distributed

among controllers, the type of length of cable to be used to connect a pair of
devices, the positions of controllers on buses, and the positions of backplanes in
boxes or of boxes and panels in cabinets. XSEL then passes to RI the set of
components ordered and any other information the user entered.

Much of the knowledge that the initial version of XSEL requires is not
domain-specific, but is rather knowledge of how to lead a user through a selection
process. And the relatively small amount of configuration design knowledge
required is primarily knowledge of the task's structure. Given the penchant of
many knowledge engineers for building special-purpose 'engines' (ordinarily in
LISP) to contain knowledge of this sort, it is worth indicating why all of XSEL's
knowledge is represented in the form of rules. There are several reasons:

• It is important that a user be able to take as much or as little advantage of
XSEL's expertise as he wants at any point during an interaction; we suspect
that this flexibility will be easier to achieve if all of XSEL's knowledge is
uniformly represented.

• The domain knowledge that XSEL currently has provides a base that will
support more specific knowledge of how to perform the component
selection task; it is important that this base knowledge be neither more
nor less privileged than the knowledge that will be added.

• In order to construct explanations that focus attention on the most
significant steps in its decision-making process, a program needs to be
able to examine that process.

In the remainder of the paper, the strategy for developing XSEL's expertise in
the domains of configuration design and computer system sales explanation
will be discussed. Although the knowledge that XSEL currently has in these
domains is extremely limited, the structure needed to support a large amount of
much more specific knowledge appears to be in place.

2.2 A more exalted role

A considerable amount of knowledge is required for the configuration design
task because there is no small set of general principles that can be used as the
basis of component selection. A customer is often not completely sure of the

330



McDERMOTT

uses to which he will put his computer system, and even when he is, may have
little idea of how much functionality each use requires. The best he can do is
provide indirect measures of the requirements of each of his intended applications.
Thus an expert must know what sorts of data to collect and what can be inferred
from that data. Furthermore, each intended use is independent from the point
of view of functionality required; that is, knowing how to infer the resources
required for one application does not get one very far in inferring the resources
required for a different application. Finally, there are ordinarily a number of
different combinations of components that supply essentially the same func-
tionality; the differences among these sets of components are usually quite
small, but some may be better suited to the particular needs of the customer
than others.

Though a significant amount of knowledge is required in order to perform
the component selection task adequately, all of this knowledge is relevant to one
of the following three subtasks:

• Decide whether a particular component type is necessary for one or more
of the intended applications.

• If some type of component is needed, select from among the subtypes
available that subtype which best fulfils the need.

• If a subtype has been selected, select from among the variations available
that variation which best fulfils the need.

The most striking characteristic of these subtasks is that for all three the decisions
to be made are relatively independent both of prior and of subsequent decisions;
thus the tasks are fundamentally recognition tasks. The task of determining
whether a particular type of component is necessary for some application involves
little more than determining whether the conditions that signal the need for that
component type are satisfied by the application. The task of selecting a particular
subtype or variation involves little more than determining which of the competing
sets of conditions that signal the need for the possible alternatives are satisfied
by the application. It is of course true that in order for the component selection
task to be performed by recognition, all of the relevant information about each
intended application must be known. But this is just another recognition task —
the task of recognizing what questions must be asked before a selection can be
made.

Though there are a few complicating factors that will be discussed below,
the fact that the component selection task can be recognition driven makes
XSEL conceptually quite simple. Given a user who wants assistance in selecting a
set of components, XSEL first finds out what general classes of applications he
has in mind. Each of these applications will suggest some number of component
types as possibly necessary. Given a set of applications and a possibly necessary
component type, a set of questions will suggest themselves; the user's answers to
these questions will enable XSEL to recognize whether or not a component of
that type is necessary. Once a component type is determined to be necessary,

331



KNOWLEDGE-BASED SYSTEMS

additional questions will suggest themselves; the user's answers to these questions
will enable XSEL to recognize which subtype (and then which variation) best
satisfies the requirements imposed by the applications. Though XSEL's knowledge
of how to do component selection is currently quite limited, it should be clear
that adding knowledge presents few problems. Each of XSEL's component
selection rules recognizes a particular need in the context of a particular applica-
tion; rules are almost completely independent of one another, and thus modifying
or adding rules has no hidden implications.

How difficult it is to recognize that a particular component type is required

for a particular application depends on the nature of the application. When an
application always requires the functionality provided by some particular type
of component, all that is needed to ensure that that type of component will be
ordered is a rule that associates the application with the component type. If the
application requires that type of component only under certain conditions, then
several rules may be necessary, each of which recognizes one set of conditions.
When several applications all require the same component type, it is necessary
to distinguish cases in which the component can be shared from those in which a
separate component is required for each application.

Before a subtype of a required component type can be selected, the total
capacity that must be provided by the component type must be known. This is
trivial when the capacity of a component type is fixed (e.g., a FORTRAN com-
piler, a floating point accelerator). But in cases of component types with variable
capacity, XSEL must perform a computation. Each of its rules that associates an
application with a variable capacity component type also represents the form of
the required computation and specifies what information has to be extracted
from the user in order for the computation to be performed. This knowledge is
represented as a set of elements that collectively define the computation. Each
of these elements describes the operation that must be performed to find the
value of one of the terms in the computation; for the primitive terms, the
operation is to ask the user. Once the user supplies the information requested of
him, the total capacity needed is computed. Since many of XSEL's computations
rely on some pieces of information from the user, it is important that the compu-
tations be able to share information. Thus, if sometime during his interaction
with XSEL, the user has supplied a value for a term that reappears in a subsequent
computation, the later occurrence of the term inherits its value from the first
occurrence.

An additional complication arises when the total capacity required depends
on several different applications. It is ordinarily necessary in this case to do more
than simply accumulate the values returned by the various application-specific
computations. A variety of computations for each application must often be
performed, and then the results of these computations must be combined. For
example, to determine the amount of primary memory needed on a system,
each application must compute the core requirements both of its compute-
bound and its i/o bound jobs; the total amount of core required is a function of

332



Mc DERMOTT

the sum of core requirements of the compute-bound jobs and the maximum
of the core requirements of the i/o bound jobs.

Since most component types have a number of subtypes, for XSEL to decide
which of those subtypes to select (and in what quantity), it must ordinarily have
more information than just a measure of the total capacity required. There are
three sources for this information. Sometimes XSEL must ask the user for
additional information about the intended uses of his system. Sometimes the
information collected to determine total capacity implicitly contains the necessary
information. And sometimes XSEL falls back on domain-specific heuristics to
discriminate among candidates. When XSEL has collected as much information
as it can, it searches its database of component descriptions for components
that satisfy all of the constraints implied by this information. If all of the compo-
nents found have the same subtype, then the subtype selection task is finished.
If components of more than one subtype are found, XSEL must decide which
subtype or subtypes to select on the basis of more general heuristics.t

Once a subtype is selected, XSEL must decide which variation is most
appropriate. As we have seen, the initial version of XSEL asks the user a set of
questions sufficient to discriminate among the possibilities; but these questions
assume that the user knows which variations are best suited to his applications.
If the user is relying on XSEL for guidance in selecting an appropriate set of
components, it is quite likely that he will not know how to answer the questions,
In this case, XSEL must use less direct means to collect the necessary information.
The available sources are essentially the same as those used in obtaining the
information needed to discriminate among subtypes. XSEL can ask for additional
information about the intended uses of the system, make inferences from the
information already collected, or fall back on domain-specific heuristics. Given
a subtype and information further specifying that subtype, XSEL retrieves a
component of that subtype from its database and adds the component to the
order.

While engaged in the task of selecting an appropriate set of components,
XSEL watches for indications that the intended use of some subset of compo-
nents implies unusual configuration constraints. It has a set of rules that recognize
situations that signal atypical use. If such a signal is present, XSEL generates a
constraint that will cause R1 to tailor its configuration to fit the atypical use.
Since XSEL communications with RI by means of a simple language consisting a
relatively small number of command forms, these constraints are easy for XSEL
to generate.

3. THE EXPLANATION TASK

Several of the knowledge-based programs developed over the past few years
have quite sophisticated explanantion capabilities. But for the most part, these
programs do not treat explanation as a task that requires intelligence. Almost all

t Currently if XSEL must decide among subtypes of apparently equal appropriateness, it
selects the least costly subtype.

333



KNOWLEDGE-BASED SYSTEMS

of the knowledge these programs have is knowledge of how to solve problems in
their respective domains. Little if any of it is knowledge of how to effectively
communicate an understanding of the problem solving process to a user.t A major
component of XSEL's knowledge will be knowledge of how to construct expla-
nations in the computer system sales domain so that they contain just that infor-
mation in which the user is interested.

XSEL currently has a few limited explanantion capabilities. It can provide
the following kinds of information on demand:

(1) Descriptions of components, definitions of properties of components,
definitions of terms used in formulas.

(2) Values of the properties of components, data entered by the user and
inferences drawn from that data, components selected, configuration
constraints generated.

(3) Significant differences among components of the same subtype, signifi-
cant differences among subtypes of the same type.

(4) Its reasons for selecting particular components, its reasons for generating
a configuration constraint.

(5) A justification of the reasoning that led it to select some quantity of
components.

These capabilities vary greatly in the amount of knowledge about explanation
that they presuppose. Capabilities 4 and 5 require the most knowledge and thus
are the least developed at the moment; this section will focus primarily on these
two capabilities and indicate what plans we have for developing them.

It should be noted that XSEL can provide any of the various sorts of infor-
mation at any time during an interaction. As mentioned above, XSEL's rules are
grouped into contexts on the basis of the tasks for which they are relevant. One
of XSEL's contexts contains rules that determine, on the basis of how the user
responds, whether he is entering a value that XSEL requested or wants something
explained. The user indicates that he wants something explained by entering one
of five types of commands. If the user gives one of these commands rather than
entering the requested value, a rule that recognizes that command fires and
generates a working memory element indicating the name of the context that
can provide the sort of information he wants. This context contains all of the
rules relevant to that sort of explanation.

The first three capabilities listed above are essentially information retrieval
capabilities; XSEL needs only a small amount of general knowledge in order to
provide the information desired. XSEL has access to a database of definitions;
thus the first capability is achieved simply by look-up. The second capability is
also achieved by look-up, though here there are two sources that might contain
the information. If the value requested is the value of a property of a compo-
nent, XSEL retrieves the value from its database of component descriptions;

t A notable exception is GUIDON (Clancey 79), a rule-based, tutorial program that can be
built on top of MYCIN-like expert systems.

334



McDERMOTT

if the information is contained in a working memory element (e.g., the value
of some term in a computation), XSEL responds with the value contained in
that working memory element. The third capability allows somewhat more room
for various forms of assistance, but is currently implemented simply. Since the
differences among variations of the same subtype and among subtypes of the
same type are ordinarily differences in just a few properties, XSEL searches
through its database of component descriptions for the relevant set of compo-
nents and then displays for each component those of its properties which
distinguish it from at least one of the other components.

The fourth capability enables XSEL to provide the user with reasons for its
decisions. For the most part, when the user asks why a component was ordered,
he has one of four things in mind:

(1) Why was a particular variation of a component selected rather than some
. other variation?

(2) Why was a particular subtype selected rather than some other subtype?
(3) Why is a particular component type necessary for his applications?
(4) Why does he need the quantity of a component that XSELhas indicated

he needs?

The form in which the user asks the question typically indicates which of these
four pieces of information he has in mind. The first three questions are all
handled by the rules in one context; the fourth question is handled by the rules
in a different context.

To enable itself to answer the first three types of questions, whenever XSEL
asserts a working memory element specifying that a component of some type is
needed or specifying constraints on the allowable subtype or variation, it also
asserts a working memory element containing the reason. Since the rules that
generate these assertions implicitly contain the reason (i.e., have a set of con-
ditions that define when a particular type or subtype or variation is required),
the assertion is simply a re-representation of the reason in a declarative rather
than a procedural form. By putting the reasons into a declarative form, other
rules — rules that comprise XSEL's knowledge of what constitutes a good
explanation — can construct a satisfactory answer to any of the first three types
of questions. Constructing such an answer could, for example, involve collapsing
a set of reasons into a single more general reason. Or it could involve suppressing
certain reasons that might distract the user's attention away from more important
considerations. Or it could involve justifying some selection on the basis of its
similarlity to an already explained selection.

To answer the fourth type of question, XSEL uses the sets of elements that
define its computations. Once XSEL has performed the computation required to
determine what the total capacity of some component type should be, its working
memory contains elements specifying the value of the intermediate as well as the
primitive terms in whatever formula it used. It can use this information to focus
the user's attention on significant factors in the computation. If a user asks why

335



KNOWLEDGE-BASED SYSTEMS

he needs quantity Q of some component X, it is unlikely that he would be

satisfied with the following answer:

• You require a total capacity TC of component type x.
• Q of X provide TC.
• Thus you need Q of X.

What the user actually does want to know, however, depends to a considerable

extent on the particular situation. If the user wants to know why he needs 2

MS780-DD (i.e., 4 megabytes of primary memory) and if 3 megabytes are needed

for one of his applications and 1 megabyte is sufficient for his other six appli-

cations, then an important piece of information for the user to have is that one

application requires 3 megabytes of memory. XSEL could supply this piece of

information by noticing that one of the seven values whose sum specified the

total amount of primary memory required is significantly larger than any of the

other six values.
The other use a user can make of the fourth capability is to find out why

particular configuration constraints were generated. The problem here is essentially

the same as the problem of explaining why a component of a particular type,

subtype, or variation was ordered, and XSEL uses the same solution. Whenever

it recognizes that it has information that implies some configuration constraint,

in addition to generating the constraint, it asserts the reason for the constraint.

This reason simply describes ths situation that implies the constraint.
The fifth capability listed above is the capability of justifying the reasoning

that led to some quantity of components of a particular type being ordered.

This capability provides a second level of explanation in those cases in which

what is not understood is why the intended uses of the system imply some

capacity of some component type. The problem here is to justify the formula

used to compute the capacity required. This justification is accomplished by

treating the formula as if all of its primitive terms were constants — where the

constants are just those values entered by the user. The strategy is to make the

unfamiliar formula familiar by reducing it to a formula tailored to the situation

at hand.

CONCLUDING REMARKS

The design and implementation history of XSEL is significantly different from
that of RI. RI is the first knowledge-based program to be used at DEC, and thus

before it could become part of the culture, it had to prove itself; it had to be
an accomplished configurer before DEC would commit itself to exploring its
potential. But now that R1 is established at DEC, and now that DEC has a group
capable of supporting knowledge-based programs, a different design and imple-
mentation strategy is possible. Using Rl's capabilities as a base, other programs
can be developed and put to work before they are truly accomplished in their
domains. Through DEC is not yet ready to design such systems, it does have

336



McDERMOTT

the capability necessary to oversee their development from the prototype stage
to maturity.

Though the XSEL program is a more ambitious effort than RI was (in terms
both of the variety of the demands of its task domain and of the amount of
knowledge it will ultimately have), it will become useful long before it reaches
maturity. XSEL is sufficiently developed that within a few months it will be able
to be used, in conjunction with R1, to aid salespeople in entering orders and in
determining the precise set of components that a customer needs. As knowledge
is extracted from configuration design experts, it will be given to XSEL. We
expect that by the summer of 1982, XSEL will be sufficiently expert in con-
figuration design and in explaining how configuration design decisions are
reached, that it will be of real assistance to the DEC sales force.

ACKNOWLEDGEMENTS

The development of XSEL is being supported by Digital Equipment Corporation.
The research that led to the development of 0PS5, the language in which XSEL
is written, was sponsored by the Defense Advanced Research Projects Agency
(DOD), ARPA Order No. 3597, and monitored by the Air Force Avionics
Laboratory under Contract F33615-78-C-1151. The views and conclusions
contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of Digital
Equipment Corporation, the Defense Advanced Research Projects Agency, or the
U.S. Government. VAX-11 and PDP-11 are trademarks of Digital Equipment
Corporation.

Tom Cooper and Barbara Steele have contributed significantly to both the
design and development of XSEL. Other colleagues at CMU have provided
valuable suggestions and criticisms, in particular, Jon Bentley, Charles Forgy, and
Allen Newell. Sam Fuller, Arnold Kraft, Dennis O'Connor, and many others at
DEC have been a constant source of encouragement.

REFERENCES

Clancey, W. J. (1979). Dialogue management for rule-based tutorials. Proceedings of the 6th
International Joint Conference on Artificial Intelligence, (Tokyo), pp. 155-161.

Porgy, C. L. & McDermott, J. (1977). OPS, A domain-independent production system
language. Proceedings of the 5th International Joint Conference on Artificial Intelli-
gence, pp. 933-939. (Cambridge, Mass). Pittsburgh: Dept. of Computer Science,
Carnegie-Mellon University.

Porgy, C. L. (1980). The OPS5 user's manual. Technical Report, Pittsburgh: Carnegie-
Mellon University, Department of Computer Science.

McDermott, J. (1980a). RI: a rule-based configurer of computer systems. Technical Report,
Pittsburgh: Carnegie-Mellon University, Department of Computer Science.

McDermott, J. (1980b). RI: an expert in the computer systems domain. Proceedings of the
1st Annual National Conference on Artificial Intelligence, (Stanford). pp. 269-271.

McDermott, J. and Steele, B. (1981). Extending a knowledge-based system to deal with
ad hoc constraints. Proceedings of the 7th Joint International Joint Conference on
Artificial Intelligence, (Vancouver) pp. 776-781.

337

1,111000..m_


