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Ten methodologies for automatic program construction are presented, discussed and

compared. Some of the techniques generate code from formal input—output specifications
while others work from examples of the target behaviour or from natural language input.

1. Introduction

Computer programming is the process of translating a variety of vague and fragmentary
pieces of information about a task into an efficient machine executable program for doing
that task. Automatic computer programming or automatic programming occurs whenever a
machine aids in this process.
The amount of automatic programming that is occurring is a variable quantity that

depends on how much aid the human is given. There are a number of dimensions on
which the level of help can be measured including the level of the language used by the
human, the amount of informality allowed, the degree to which the system is told what to
do rather than how to do it, and the efficiency of the resulting code. Thus we usually say
that there is a higher degree of automatic programming whenever a higher level language
is used, less precision is required of the human, the input instructions are more declarative
and less procedural, and the quality of the object code is better.
The technologies of automatic programming thus include the fields that help move the

programming experience along any of these dimensions: algorithm synthesis,
programming language research, compiler theory, human factors, and others. This paper
will concentrate on only the first of these topics, formal methodologies for the automatic
construction of algorithms from fragmentary information.
The formal methodologiest have been separated into two categories, synthesis from

formal specifications and synthesis from examples. In the former case, it is assumed a
specification is given for the target program with adequate domain information so that

the target program can be derived in a series of logical steps. In the later case, behavioural
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t The formal methodologies that transform specifications, domain information and behavioural examples
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automatisation of this transformation process. Also, most of these methodologies are intimately connected with
automatic theorem proving. Hence, automatic programming should be viewed in the context of symbolic
computation as defined in the editorial of this journal.

0747-7171/85/020119 +24 S03.00/0 © 1985 Academic Press Inc. (London) Ltd.

5



120 Alan W. Biermann

examples are given for the desired program, and it is inferred by a series of generalisation

steps.
After completing the coverage of these formal methodologies, a short section mentions

some work on the generation of programs from natural language input using artificial

intelligence knowledge based systems.
The various synthesis methodologies will be described by illustrating their operation on

a single programming problem. In all cases, many details have been omitted or modified

from the original sources to maintain brevity and readability. The reader is always

encouraged to return to the referenced papers for more complete coverage.

2. Information Sources

The target program in a programming environment must be derived from basic

information about the desired behaviour. Some of this information is furnished by the

buman user and some may be general domain knowledge. In all cases, enough

information must be available to specify the target program.

However, the "structural distance" between the source information and the target may

vary greatly. In some cases, the form of the axiomatic information may be quite close to

that of the generated code, in which case we say that little automatic programming has

occurred. In the extreme case, the user gives code in a compiled language that can be
directly translated into the target language. In a less severe case, the user needs to specify

axioms in a relatively exacting form, and the synthesiser performs only modest

translations to assemble the target. In the most impressive cases, the source of

information may be extremely random and fragmentary in nature leaving the synthesiser

to discover essentially all of the structure required to do the computation.

For the sake of concreteness, we will study synthesis methodologies as they construct a

program to remove the nonatomic entries from a list. Thus the desired behaviour

transforms the input list (A (B) C) to (A C). If the input list has length zero, the output list

is this same list, i.e. nil yields nil. The process of generating this program illustrates the

construction of both a loop and a nested branch.

Relatively standard notations will be used in this paper If x = (A (B) C) then car (x) will

be a function that finds the first entry on the list, A. The function cdr (x) will return list x

with the first entry removed, ((B) C) in this example. The cons (u, v) operator will add its

first argument u to the front of its second argument, list v. Thus cons (x, x) will yield

((A (B) C) A (B) C). The symbol atom is a predicate which yields true if its argument is an

atomic unit or list of length zero. Thus atom ((A (B) C)) is FALSE and atom (A) is TRUE.

The function length will give the length of a list. Thus length ((A (B) C)) is 3.

In specifying the example problem given above, several key facts need to be included.

Thus it will be necessary to give the fact that input nil is to yield output nil. This will be

known as fact Fl in later discussions. It may be written as

if x = nil then fix) = nil (F1)

where f is the name of the target program. But some synthesis methodologies will require

other notations. For example, the notation R(x, z) will denote the target relationship

between the input x and output z. So the nil case is specified as R(nil, nil) or as

R(x, nil) TRUE if x = nil. The symbol can be read as "may be replaced by".

If the input list x is not nil, its associated output must also be specified. Considering

the output list as a set, one can write j(x) =: where
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for all u[member(u, z)<—> (member(u, x) and atom (u))].

Another way of encoding this information is to say that

If not (x = nil) and not (atom (car(x))) and R(cdr(x), u)

then R(x, TRUE

and

(F2)

if not (x = nil) and atom (car(x)) and R(cdr(x), u)

then R(x, cons(car(x), u)) TRUE (F3)

All of these forms will be used in the examples below.
The careful reader may object to synthesising programs from information as specific as

the axioms given above. They are in some sense already executable in their current form

and are thus programs as they stand. For example, the latter forms are almost identical to

the following PROLOG program.

R(nil, nil) <—

R(x, y) <— R(cdr(x), y), not(atom(car(x))),

not(atom(x))

R(x, cons(car(x), u))<— R(cdr(x), u),

atom(car(x)), not(atom(x))

Thus one can compute j(x) = z by proving the theorem R(x, z) on a PROLOG system.

However, the synthesised programs given below are deterministic and thus compute much
more efficiently than one can expect to execute specifications. The theorems implicit to the
programs are already proved and there is no uncertainty related to their execution. The

interpretation of specifications is dependent on the nature of the interpreter, the ordering
of the axions, and other extraneous factors. The fact that specifications can be executed

does not necessarily obviate the need for generating deterministic code.

3. Synthesis from Formal Specifications

Many methodologies have been developed in recent years for the generation of

programs from specifications. Five of them will be described here: the strategical approach
of Bibel & Hornig (1984) which has been embedded in the LOPS system, the divide and
conquer methodology of Smith (1985), the transformational technique as developed by
Broy (1983), the deductive sequent method of Manna & Waldinger (1980), and the
synthesis from equational specifications as described by Prywes et al. (1979).

3.1. A STRATEGICAL APPROACH

Bibel & Hornig (1984) have constructed the logical program synthesis system LOPS
which has a variety of facilities for acquiring specification information, manipulating
domain knowledge, proposing critical theorems and proving them, and constructing code.
We will follow their methodology as it solves the synthesis problem posed above. The
system searches for relationships between the input and output and attempts to guess a
portion of the input which can be selected out to begin computation of the output. If this
is successful, it then attempts to find a recurrence of the original specification in the
reduced form of the problem with part of the input already processed. If the recurrence
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can be found, a loop is constructed to process the rest of the input and complete the
synthesis.

Occasionally, the synthesis may be blocked because needed theorems are not available.
Then the methodology invokes a model exploration capability to generate examples
related to the unknown phenomena, to seek a generalisation of the examples observed,
and to prove the generalisation if possible. Thus the approach attempts to include a
capability similar to that of humans to find restatements or new relationships in the
domain that can be key steps in the synthesis.
The methods begin with a dialogue with the user.

INITIALISE PROBLEM

INPUT VARIABLE

X

INPUT CONDITION

OUTPUT CONDITION

if x = nil then fix) = nil
otherwise fix) = y where

for all u[member (u, y)<—> (member(u, x) and atom(u)]
Since the nil case is trivial, it can be handled immediately and all concerns can be
transferred to the more general case.

fix) = if x = nil then nil else g(x)

The function g(x) needs to be built to process all other inputs.

g(x) = y where not(x = nil) and list (y) and
for all u[member(u, y)<—> (member(u, x) and atom(u))]

At this point, the processor attempts to decompose the problem in such a way that part of
the calculation can be done immediately and the rest can be done later by a recursive call
to g. Bibel & Hornig argue that there are relatively few practical recursion schemes and
that their system needs only to examine those few.
To initiate this loop finding behaviour, the system "guesses" what the output might be

and which piece of the input should be processed first. In the current example, we assume
it selects the first entry in x. Since the only processing done in this example problem is the
transfer of items from input to output, the only question is whether this first entry is in or
not in the output.

g(x) = y where not(x = nil) and list(y) and
for all u[member(u, y)<—> (member(u, x) and

atom(u)] and
[not(member(car(x), y)) eor member (car(x), y)]

Here eor means "exclusive or". This can be rewritten to consider the two cases separately,
not (member(car(x), y)) and member(car(x), y).

g(x) = y where not(x = nil) and list(y) and
[(for all u[member(u, y)<—> (member(u, x) and atom(u))]

and (not(member(car(x), y))))
eor
(for all u[member(u, y)<—> (member(u, x) and atom(u))]

and member(car(x), y))]
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Next, the theorem prover invokes the fact that if car(x) is not a member of the output,
then one can construct y without using it, i.e. use cdr(x) instead of v. If car(x) is in y, then
it must be added to the front of y.

g(x) = y where not(x = nil) and list(y) and
[(for all u[member(u, y)<—> (membcr(u, Wi(y)) and atom(u))]

and (not(member(car(x), y))))
eor
(there exists y'
(for all u[member(u, y') <—> (member(u, cdr(x)) and atom(u))]

and y = cons(car(x), y')
and member(car(x), y)))]

Loop finding has, in fact, succeeded at this point because copies of the original
specification for f can be found. Thus g can now be written in terms of the function f:

g(x) = y where not (x = nil) and list(y) and
[(y =f(cdr(x)) and not (member(car(x), y)))
eor
(y' =f(cdr(x))and y = cons(car(x), y')

and member(car(x), y))]

(At each step, of course, many details have been omitted.) This can be rewritten as

g(x) = y where not(x = nil) and list(y) and
[(y =/(cdr(x)) and not(member(car(x), y)))
eor
(y = cons(car(x), j(cdr(x)))

and member(car(x), y))]

Finally, the system needs to be able to find property p such that

p(car(x))<—> member(car(x), y).

It is possible that the knowledge base and theorem prover will be adequate to discover
that p is the predicate atom. If the theorem prover cannot discover this fact, the model
generator is invoked to generate typical cases. Then a generalisation is attempted to
hypothesise what key property controls membership in y. Then if the theorem prover
confirms the hypothesis, the predicate p can be used in the program. The final version of g
is

g(x) = if atom (car(x)) then cons(car(x), f(cdr(x)))
else ficdr(x))

Of course, from earlier considerations it was decided that

J(x) = if x = nil then nil else g(x).

An important point about this approach is that it attempts to avoid dependence on
axioms that already specify the target loop through their embedded recursions as appear
in F2 and F3. The methodology depends on theorem proving methodologies and the
strategy of generalising from examples to obtain this level of performance.

3.2. DIVIDE AND CONQUER

Software engineers have often advocated that programs be constructed in a "top
down" manner. The original specifications for a program are broken into parts which
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may be simple enough to solve directly or which may become non-trivial subtasks to be
solved individually. The subtasks may be similarly decomposed into even smaller tasks
and so forth until all parts are primitive enough for solution. Then the individual parts
are recomposed beginning at the bottom of the tree until a complete solution is
assembled.
The divide and conquer methodology of Smith (1985) follows this strategy by

partitioning the problem on the dimension of the data being processed. That is, if f is to
be constructed which has input x, the methodology first checks to see whether the result
can be directly computed. If not it divides x into parts and operates on the parts of x
individually. Then the results of the individual calculations are assembled to produce the
result off. Symbolically, this idea can be expressed as follows:

Ax) = if primitive(x) then directly solve (x)
else compose. (f, x f,). decompose(x)

Here the result of decompose is a vector of length two and the periods indicate function
composition. The ith entry of the decomposition is operated on by f, for each i = 1, 2
resulting in another such vector. Then compose assembles the parts of the vector to yield
the output for f

This methodology is interesting because of its structural simplicity, because it often
leads to efficient programs, and because of its ubiquity in practical situations. We will
examine its application in solving the problem posed in the previous section.
The synthesis begins with the primitive case which appears in the specifications as F!.

f(x) = if x = nil then nil

Then the method of decomposition must be selected. Many choices may be suggested,
and in practice the synthesis process may be forced to try them all. For brevity here, we
will examine a choice that leads to a successful synthesis, decompose = (car x cdr). That is,
the input list will be broken into two parts, the first item and the rest of the list, and the
computation will be dependent on processing them separately and assembling the
solution.

In the case where x is not nil, our definition states

fix) = z where
for all u[member(u, z)<—> (member(u, x) and atom(u))].

The above decomposition suggests a partition on the values of u.

.f(x) = z where
for u = car(x) and for all u in cdr(x)

[member(u, z)<—> (member(u, x) and atom(u))]

Thus the output has two parts, that part coming from u = car(x) and that from u in
cdr(x).

./(x) = z where
z = append (

z, such that u = car(x)[member(u, z1)<—> (member(u, x) and atom(u))]
z2 such that u E cdr(x)[member(u, z2)<—>(member(u, x) and atom(u))])

(The function append joins two lists to form a single list.)

Minor simplifications lead to the following:

J(x) = append(
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z, such that [member(car(x), z1) <—> atom(car(x))],
z2 such that for all u

[member(u, z2)<—> (member(u, cdr(x)) and atom (11))])

This leads to the definition

z, =J, (car(x)) = if atom(car(x)) then cons(car(x), nil) else nil

since z, is the list containing car(x) if atom(car(x)) and nil otherwise.
We also note that z2 is defined in terms of the original definition off.

z2 =f(cdr(x))

Thus we conclude for the case not(x = nil) that

fix) = append(f, (car(x)), f(cdr(x)))
= append . (f, x f) . (car x cdr)x

The final synthesised program is

J(x) = if x = nil then nil
else append . (f, x f) . (car x cdr)x

Smith (1985) has shown how this strategy can be used to create a variety of programs.
An obvious domain for study is the class of sorting programs, many of which can be
derived by making different choices for the decomposition operator. Thus a car-cdr choice
as used above leads to an insertion sort. If the decomposition is a split, a merge sort
results and other choices lead to such algorithms as selection sort, quicksort, and others.

3.3. TRANSFORMATIONAL METHODOLOGIES

A popular approach to program synthesis in recent years (Broy, 1983; Burstall &
Darlington, 1977; Gerhart, 1976; Manna & Waldinger, 1979) follows the technique of
sequentially transforming the original specification until a program is derived. Such
transformations take the form

Initial Specification

Applicability Condition

Final Specification

where the initial specification is a schema giving the form of the specification to be
modified, the applicability condition specifies all relationships that are prerequisite to use
of the transformation, and the .final specification gives the revised form of the initial
specification. Program synthesis begins with the original specification and applies rules of
this form until the target program is complete.
The methodology assumes the availability of a variety of transformations and the

program derivation involves selecting the appropriate ones and instantiating them to
allow convergence to a satisfactory program. Early transformations in a given
construction may have the effect of modifying the original specifications into more
convenient form. Later transformations begin to assemble parts of the program. The final
transformations may manipulate a nearly complete code segment to increase efficiency.
A feeling for the general approach can be obtained by rereading one of the previous

sections and constructing formal transformations to achieve the sequential steps which are
less well justified in their current form. Transformations can be designed for splitting a
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problem into cases, for collapsing disparate cases into a single set, for creating looping
and branching code, subroutines, and many other constructions. The above references
give numerous examples of such transformations.
A very useful characteristic of the transformational approach is that it allows the

embedding of arbitrary amounts of information into a single step. Transformations may
be small and simple to build one construct at a time. They can also be large enough to do
a huge fraction of the work with one application.
An example of the latter point is the following transformation which stores some of the

insights of the above derivation in a single structure.

f(x) =: where R(x,:)

Applicability Conditions

J(x) = if C(x) then T(x) else G(H1(x),f(H2(x)))

where the applicability conditions are

C(x) —> R(x, T(x))

7 C(x) and R(H2(x), y) —> R(x, G(H,(x), y))

length(x) = 0 —> C(x)
length(x) > 0 —> length (H2(x)) < length(x)

This transformation is applicable to the example of this paper. The only problem is to
find instantiations of the notations so that the applicability conditions will hold. From the
considerations of the previous section, it is clear that they are all true in the following
case:

C(x) is x = nil
T(x) is nil
Hi(x) =f1 (car(x))
H2(x) = cdr (x)
G(x, y) = append (x. y)

3.4. THE DEDUCTIVE SEQUENT

Manna & Waldinger (1980) have developed a tabular method for organizing the
derivation of programs using a deductive technique. The methodology is built around the
concept of a sequent which is a three column table with rows of the form

Assertions Goals Outputs
A i(a, x) t i(a, x)

or
Assertions

This table has the meaning

if for all x, A,(a, x) and
for all x, A,(a, x) and

for all x, Arn(a, x)

Goals Outputs
Gi(a, x) ti(a, x)
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then
for some x, Gi(a, x) or
for some x, G2(a, x) or

for some x, Gn(a, x)

where a denotes the constants and x denotes the free variables in the domain. The output
entries in the sequent have the following meaning: If some instance of a goal is true, then
its corresponding output satisfies the specification. If some instance of an assertion is
false, its corresponding output satisfies the specification.
Program synthesis proceeds as follows. The original specification is properly coded into

the sequent and then a series of new rows are added in an attempt to deduce the target
program. If a goal is reached that is true or an assertion is found that is false with the
associated output entry in terms of computational primitives, that output entry is a
program satisfying the original specification.
The initial specification is

for all a, for some z(P(a) —> R(a, z))

where P(a) is a specification on the input and R is as defined in earlier sections. In the
example problem of this paper, P(a) may be taken to require that the input be a list. In
the sequent, this appears as follows:

Assertions Goals Outputs
P(a) (1)

R(a, (2)

We seek a sequence of deductive steps that will achieve the target program.

Assertions Goals Outputs
TRUE (Program)

Manna & Waldinger have given several mechanisms for deducing new rows in the
sequent. One utilises transformations of the form

r s if P.

Such a transformation can be used to replace a subexpression in an assertion or goal as
follows. Suppose, for example, a goal F has subexpression r' such that there is a unifier 0
for r and r', i.e. r0 = r'0. Then goal F can be replaced by goal PO and F[r0 <— s0]. The
notation F[r0 <— sO] means r0 in F is replaced by sO. If F has a corresponding output t,
the new goal will have output tO. This appears in the sequent as shown.

Assertions Goals Outputs

PO and FO[r0<— sO] tO

As an illustration, the transformation F! from Section 2 can be applied to goal (2)
above. The unifier 0 is x<— a and z<— nil. That is R(a, nil) true if a = nil converts
R(a, z) to (a = nil) and true.

Assertions Goals Outputs
(a = nil) nil (3)
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Similarly, transformations F2 and F3 can also be applied to (2).

Assertions Goals Outputs
not(a = nil) and
not(atom(car(a))) and u (4)
R(cdr(a), u)

not(a = nil) and
atom(car(a)) and cons(car(a), u) (5)
R(cdr(a), u)

Another way to add rows to the sequent is to resolve two goals to obtain a new goal.
Suppose F and G are goals with output entries t, and t2.

Assertions Goals Outputs
t,
t2

Further, suppose F and G have subsentences P, and P2 which can be unified by 0:
P10 = P20. Then a new goal can be created F0[P10 <— TRUE] and G0[P20 FALSE] with
output entry if P10 then t10 else t20.

Assertions Goals Outputs
F0[P10 4-- TRUE] if P10 then t10
and else t,0
G0[P20 4—FALSE]

This is called a GG-resolution. As an example of this deductive step, suppose goal(3) is
resolved with the following goal.

Assertions Goals Outputs
not(a = nil)

Then 0 can be nil and P10 = P2 9 = (a = nil). The resolution produces this new row:

Assertions Goals Outputs
TRUE and if a = nil and then nil
not FALSE else t

Looping is introduced in the sequent by adding an induction hypothesis as an assertion
and then resolving it with other rows. For example, in (4) above we see the relation R has
been deduced with a reduced input cdr(a). This suggests that a recursive loop can possibly
be derived so the inductive hypothesis is added.

Assertions Goals Outputs
if u <a then
if P(u) then (6)
R(u, f(u))

That is, if u is less than input a by some well-founded ordering, we are assuming the
program f realises the target relation R for that u. One can do a GA resolution similar to
the GG resolution above to combine (4) and (6) to obtain a new goal.

Assertions Goals
not(a = nil) and
not(atom(car(a)))

Outputs

f(cdr(a)) (7)
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Looking at the output, we see that a recursive call to f has, in fact, been synthesised.
Similarly, another GA resolution can be made between (5) and (6) to obtain another

recursive form.

Assertions Goals Outputs
not(a = nil)
and cons(car(a), f(cdr(a))) (8)
atom(car(a))

The target program can be derived by combining (7) and (8) with a GG resolution to
obtain (9) and similarly (3) and (9) to obtain (10).

Assertions Goals Outputs
if not(atom(car(a)))

not(a = nil) then fled r(a)) (9)
else
cons(car(a),.f(cdr(a)))

if a = nil then nil
TRUE else if not (atom(car(a))) (10)

then l(cdr(a))
else
cons(car(a), f(cdr(a)))

The Manna—Waldinger deductive system combines many of the program synthesis
mechanisms developed during the 1970s into one unified and systematic approach. The
ideas of constructing code as a side effect to theorem proving, generalised resolution,
transformational techniques and others all are utilised in the method simultaneously and
compatibly.

3.5. SYNTHESIS FROM EQUATIONAL SPECIFICATIONS

Prywes et al. (1979) have developed a methodology for program specification which has
some resemblances to the PROLOG language. Declarative information is given by the user
regarding the relationships between objects in the domain. The automatic system then
executes the statements in an order that may be unrelated to their presentation order and
in a chaining manner to find answers. Some of the differences with PROLOG are that the
Prywes language MODEL is aimed at business applications and is especially designed to
compile into efficient object code.
The MODEL language is not designed to do symbolic computations of the kind required

by the example problem of this paper. However, we will modify its syntax slightly and
invent enough new constructs to show how it might handle the problem. The basic data
structure is the array and we will assume pairs of the form (i, x) can fit into individual
array entries. Here i is an integer and x is the string being processed. Integer i indicates
which item in x is to be processed next.
The pseudo-MODEL program utilises an array in which the sequential iterations in the

computation are stored. The second equation specifies the inductive step which builds a
looping behaviour to complete the computation.

A(1) = (1, x)
A(I) = if atom(select(i, x) in A(I-1)) then (i+ 1, x)

else (i, delete (i, x) in A(I-1))
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j = LEAsT(I, AM= (length(v)+ 1, v))

RESULT = Z such that A(j) = (k,:)

The function (select(i, x) in 4(I-1)) finds (i, x) in A(I-1) and returns the ith entry in list x.
The function (delete(i, x) in A(/-1)) acts similarly except that it deletes the ith entry in
list x.

Tracing the operation of this program on the sample input x = (A (B) C) yields
a

A(1) -= (1, (A (B)C))
4(2) = (2, (A (B) C))
A(3) = (2, (A C))
A(4) = (3, (A C))

j = 4
= (A C)

Strategies for compiling this language will not be discussed here but are described in
Pnueli et al. (1984).

4. Synthesis from Examples

Suppose pi, p,, p3, . . is an enumeration of all programs in the space of possible
programs and that pi is the first program that meets the user's needs. Then a satisfactory
specification for p, is enough behavioural information to separate it from all of its
predecessors. One synthesis procedure thus is to simply enumerate programs checking
each one for acceptability until pi is found.

This approach to synthesis is desirable from the user's point of view because experience
shows that relatively little behavioural information is typically needed to disqualify the
predecessors of p, from consideration. However, from the point of view of the system
designer, it is fraught with difficulties. First, the undecidability of the halting problem
makes it impossible to reliably determine whether a given input—output behaviour can be
achieved for each program. Second, the cost of enumerating and checking all predecessors
of pi is normally too high to be attempted.
Any approach to synthesis must deal with these problems. The halting problem can be

managed by requiring some kind of execution time limitation be included with example
behaviours. The cost of enumeration can sometimes be controlled by requiring that
enough structural information be given about the computation of the examples so that
most predecessors can be efficiently skipped allowing fast convergence to the answer. In
some synthesis environments, the input information is sufficient to eliminate search. In
most research on synthesis from examples, only very limited classes of programs are
considered so that the effects of both problems are minimised.

This section will consider four approaches to program synthesis from examples: the
function merging technique which can construct any regular LISP program from its
examples, the synthesis of single loop LISP programs using recurrence relations, the
generation of the class of LISP scanning programs using a production rule method, and the
synthesis of programs by generalisation of logic characterisations.

4.1. THE FUNCTION MERGING TECHNIQUE

In the example problem the desired output from the input x = (A (B) C) is z = (A C). It
is straightforward to write z in terms of x.

It

It

I.

ft
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z = cons(car(x), cons(car(cdr(cdr(x))), cdr(cdr(cdr(x))))

That is, z is built by "consing" together three atoms found in x: A, C. and the nil obtained
by three cdr operations on x. This decomposition is a major step toward building a
program to do the target computation. The synthesis proceeds by assembling this set of
primitives into a compact program.
The second step in the synthesis involves breaking the functions used to compute z into

a series of primitive steps of the form

j(x) = cons(fj(x),A(x))
f(x) = fj(car(x))
J(x) = .fi(cdr(x))
.fi(x) = x

In fact, z decomposes as follows:

z = fi(x) = cons(f2(x),f3(x))
12(x) = Mcar(x))
f3(x) = cons(f5(x),A(x))

,f4(x) = x
f5(x) = Pcdr(x))
f6(x) = f8(cdr(x))
f7(x) = f,(cdr(x))
f8(x) = ft 0(cdr(x))
f9(x) =f„(car(x))

f1 (x) =f12(cdr(x))

i(x) = x
f12(x) = x

It turns out that this is an inefficient computation of z. For example, we notice that

f3(x) = cons(f5(x),f6(x))
f5(x) =f7(cdr(x))
f6(x) =f8(cdr(x))

If only cdr(x) is to be used in computing /3' (x), one should compute the value of cdr(x)
before passing control to cons. Thus the computation can be done with just two primitive
functions.

f3(x) =f5(cdr(x))
f5(x) = cons(f7(x),f8(x))

Thus cdr (and car) operations can be pushed above a cons operation in some cases to
increase efficiency. If all possible such improvements are made, the functional
decomposition is shortened maximally. (For reasons of the later discussion, the input of
each function is also listed.)

z = f,(x) = cons(f2(x)J3(x)) x = (A (B) C)
f2(x) = f4(car(x)) x = (A (B) C)
f3(x) =f5(cdr(x)) x = (A (B) C)

f4(x) = x x = A
f5(x) = f6(cdr(x)) x = ((B) C)
f6(x) = cons(f,(x),f,o(x)) x = (C)
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f9(x) =f,,(car(x)) x = (C)

o(x) =f12(cdr(x)) x = (C) oi

f11(x)=x x = C
x = nil P(

The function merging technique finishes its task by finding the maximal merge of these
functions consistent with the goal of doing the sample computation. There are two Cr

strategies for merging functions. First, if two functions have identical form they merge e)

trivially.

fa(x) = i(x) = 2(x) = x

If two functions j(x) and 1,00 have different form, it still may be possible to merge them

by using the LISP conditional cond. For example, we notice that f4,f1, and f12 are all cl
called with arguments that are atoms. So they could be merged with a function like f, e)
which is not called with an atomic argument.

J(x) = cond (atom(x) x)
(T cons(f2(x),f3(x))) ti

This function thus checks the argument x and returns the value that ft, Ai, or f12 would
give if x is an atom. Otherwise it returns cons(f2(x),f3(x)). Thus it can substitute for these

three functions and f, as well. Merges of this kind are possible if predicates can be found

to enable a branch down the correct path wherever necessary to duplicate the

computation of the unmerged sequence of functions. The function merging approach

usually employes only a limited class of predicates so the construction of the necessary

tests for a given merge is inexpensive.
This merging can thus be continued if we note that predicates can be found to

differentiate the argument of f4, fi 1, fi2 (atom(x)) from the argument off, (atom(car(x)))

which is different from the argument of f5(other). This merger, in fact, leaves f as a three-

way branch.

j(x) = cond (atom(x) x)
(atom (car(x)) cons(f2(x),f3(x)))
(Tf6(cdr(x)))

The maximal merger consistent with the execution of the original example partitions the

functions into three groups,

fa, fs, f6, fi 21, {f2, f9 } , and {f3,
The resultant program is

./(x) = cond (atom(x) x)
(atom(car(x)) cons(f2(x),f3(x)))
(T f(cdr(x)))

f2(x) =f(car(x))
f3(x) =f(cdr(x))

In summary, the function merging technique has four major steps.

1. Write z in terms of x using cons, car, and cdr functions.

2. Break this computation into a set of primitive functions A of the form described
above.

ir
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3. Revise this computation trace for maximum efficiency by lifting car and cdr

operations above cons operations.
4. Find a maximal merge of the A functions by introducing cond branches wherever

possible.

This synthesis procedure was developed by Biermann (1978), who has shown it can

create any program in the class of regular LISP functions on the basis of randomly selected

examples. The regular LISP programs are, roughly speaking, all those programs which can

be constructed from the primitives described above, which use no auxiliary variables, and

which use predicates made up of atom operating on a nesting of car and cdr functions.

This synthesis procedure is functionally equivalent to a full enumeration, and therefore

has the desirable property of guaranteed convergence to a solution if one exists in the

class of regular LISP programs. It also has the disadvantage of being exponentially

expensive on the size of the target program.

Historically, the function merging technique evolved from the node merging technique of

Biermann (1972), where a "trainable Turing machine" was defined and studied. The

trainable Turing machine had a learning mode in which the user could force the read-

write head up and down the tape manually simulating the desired calculation. During this

phase, the system stored a trace of the one or several calculations and used node merging
to collapse those traces into a minimal finite state controller. Then the Turing machine

could be switched to compute mode and use the controller it had created. For example, it

was shown in Biermann et al. (1975) that this machine could be shown how to simulate

one simple Turing machine and then program itself to be a universal Turing machine.

Biermann & Krishnaswamy (1976) used the node merging technique in another

application to build a self-programming desk calculator.

4.2. SYNTHESIS FROM RECURRENCE RELATIONS

The high cost of enumerative methods can be avoided if one increases the information
in the examples and limits consideration to the class of single loop programs. First, we

input a sequence of examples to illustrate the performance on sequentially larger inputs.

Then recurrence relations are constructed which can be used to create the program.

For the standard example of this paper, we begin with the following input—output

information.

ExampleInput Output
1 nil nil
2 (C) (C)
3 ((B) C) (C)
4 (A (B) C) (AC)
5 ((D) A (B) C) (A C)

Then each output is written down in terms of its associated input using primitive

functions.

f1(x) = nil
.f2(x) = cons(car(x), nil)

f3(x) = cons(car(cdr(x)), nil)

f4(x) = cons(car(x), cons(car(cdr(cdr(x))), nil))

f5(x) = cons(car(cdr(x)), cons(car(cdr(cdr(cdr(x)))), nil))
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Studying these J's, one can find recurrences; for i greater than 1, each fi can be written in
terms of J_ 1.

Input Recurrence relation p,

nil f1(x) = nil
(C) f2(x) = cons(car(x), fi(cdr(x))) tc

((B) C) f3(x) = f2(cdr(x))
(A (B) C) f4(x) = cons(car(x), f3(cdr(x)))
((D) A (B) C) f5(x) =f4(cdr(x)) S(

From these relations it is apparent that the lowest level computation for x = nil is
J(x) = nil and that two recurrences can be observed,

f(x) = cons(car(x),fi _ i(cdr(x)))
and

ft(x) = 1(cdr(x)).

Thus the program has the form

fix) = if atom(x) then nil
else (select correct recurrence).

The predicate generation can run on the inputs shown above and attempt to find a
predicate that will differentiate the inputs associated with cons(car(x),fi _ i(cdr(x))) from
those associated with fi _ i(cdr(x)). In fact, atom(car(x)) is sufficient yielding the final
program.

f(x) = if atom(x) then nil else
if atom(car(x)) then cons(car(x), f(cdr(x)))
else f(cdr(x))

Summers (1977) has developed a theory of LISP synthesis from examples, and Kodratoff
& Jouannaud (1984) have extended it. The methodology provides a format for
discovering recurrence relations and a theorem that gives the exact form of the required
program to achieve the behaviour specified by those relations. The proof of the theorem
guarantees that if the recurrence relations characterise the target behaviour, the given
program will correctly realise it.

4.3. A PRODUCTION RULE METHODOLOGY

Another strategy for generating programs is to diagnose their behaviours in a
hierarchical manner and then generate the required code using production rules. Starting,
for example, from the knowledge that (A (B) C) is to produce (A C), one can represent the
required input output behaviour with the graph of Fig. 1. This methodology is
particularly aimed at transferring items from the input to the output possibly in a
sequence of scans and with modifications in order. Each local problem is diagnosed in a
graph similar to Fig. 1 and a small set of production rules are available to solve the
problems as they arise.
The approach begins by proposing code to solve the lowest level problem, the

construction of the output list. There is an appropriate production rule and it is selected.

[P°,(X 0 XL), next]
P2,(X0, XL) = cons(car(X0), next)

a
t
Il

ri
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This rule consists of two parts, a non-terminal symbol in square brackets and a line of

generated code. The non-terminal symbol is quite complicated because it contains many

parameters that will be instantiated when the rule is used. This non-terminal means that
program 13 , is to be defined with arguments (X0 XL) and the result of the computation is
to be appended to "next".

This program P° needs to be called twice to obtain the output. This is represented in
Fig. 2. Next, diagnosis observes that P° is to be invoked for two, but not all of the inputs,
so that a conditional rule is needed. It builds a predicate to separate the two behaviours
and then proposes the conditional rule.

[13;,,, (X, XL), next]
13,.,(X1, XL) =
cond (atom(car(Xi))P°,(Xi, X,, XL))

(T next)
[P°1 1, (X0, X1, XL), next]

This rule generates two things, some code to generate the branching behaviour and a
non-terminal to generate the lower level construction of the output. The result of this

diagnosis is shown in Fig. 3. Code is needed to call routine 13' for each item on the input
list.

Finally, code is needed to call 13' three times as shown in Fig. 3. A production rule for

generating looping code is selected.

[13!„, (X2 XL), next]
P(X2, XL) =
cond(atom(X2) next)

(T 13 1(X2, X2, XL))

[1311, (X1 X2 XL), ./:),(cdr(X2), XL)]

This program will make all of the required calls in Fig. 3 and thus reduces the problem to
that shown in Fig. 4. Program P2 needs to be called with input (A (B) C).

When the problem has been reduced to one call as shown in Fig. 4, it has been solved
and the code can be generated by expanding the non-terminal [P2,(X,), nil] with the
three rules given above. Applying the P2 rule with w and XL set to be null strings and
next = nil, we obtain the first step in code generation.

[P2, (X2), nil]
P2(X2) = cond (atom(X2) nil)

(T 131(X 2, X2))

[Pt, (X,, X2), P2(cdr(X2))]

This step has produced another non-terminal which can be expanded using the branching
rule with w = 1, XL = X2, next = P2(cdr(X2)).

Output

Fig. 1. Graphing the target behaviour.

A

(B)

P0

PO

Output

Fig. 2. Proposing P° to construct the output.



136 Alan W. Biermann

(B)

p1

P1

P1

Output

Fig. 3. Proposing branching code to separate the kinds of input.

A

42_ (B)

P2

Output

Fig. 4. Proposing looping code to call P'.

[PI, (X1 X2), P2(cdr(X2))]
PI(X,, X2) =
cond (atom(car(X1))P?1(X1, X1, X2))

(T P2(cdr(X2)))
[P?i, (X0, X1, X2), P2(cdr(X2))]

Now the P° rule is needed to remove the last generated non-terminal with w = 11,
XL = X1 X2, and next = P2(cdr(X2)).

[P?i, (X0 Xi X2), P2(cdr(X2))]
P?,(X0, X1, X2) = cons(car(X0), P2(cdr(X2)))

The union of the above generated code is the final program.

P2(X2) = cond(atom(X2) nil)
(T 131(X 2, X2))

cond(atom(car(Xi))P°,(Xt, X1, X2))
(T P2(cdr(X2)))

P71(X0, X1, X2) = cons(car(X0), P2(cdr(X2)))

Biermann & Smith (1979) have developed the production rule technique described here
which generates scanning code, programs which repeatedly scan the input and transfer
tokens to the output in various orders and forms. It is shown that a set of six rule schemas
are enough to generate a large class of programs. This methodology is particularly
unusual in its ability to diagnose and synthesise deeply nested loops.

4.4. SYNTHESIS THROUGH GENERALISATION ON LOGICAL ASSERTIONS

A number of researchers (Cohen & Sammut, 1984; Michalski, 1980; Shapiro, 1981)
have examined techniques for inferring general statements about a phenomenon from
specific facts. It turns out that such "learning" mechanisms are capable of creating
programs.
In the usual situation, such learning systems are used to build "concepts", logical

structures which represent or classify objects or sets of interest. As an illustration, suppose
a system is given the following examples of good basketball players.



Automatic Programming: A Tutorial on Formal Methodologies 137

player 1: Height (Tall) and Hair (Brown)
player 2: Height (Tall) and Hair (Blond)

A learning system attempting to build a concept for good basketball players might use
what Michalski (1980) calls the "dropping selector" rule for generalisation and
hypothesise that the correct rule is Height (Tall). Such a generalisation might be too
inclusive and later data might require restrictions as with (Height(Tall) and Reflex(Fast)).
Thus the learning model is one of continuous adding of new information with the concept
being enlarged or restricted further at each step to better match the incoming data. The
eventual result of the learning process is a formula which correctly models all of the data
samples, and if the samples are representative, all of the data in the domain.
Cohen & Sammut (1984) and Shapiro (1981) have shown how this kind of system can

learn the concept of the example problem of this paper. We will follow the methodology
of Cohen & Sammut in its solution. Assume the relationship to be learned is called
"delete". The training process begins with an example of the target behaviour.

x = nil, z = nil

The learning system which has an array of transformation rules asserts that

x = z and x = nil

and applies the dropping selector rule to hypothesise the following.

delete (x, z) is x = z

This is the system's first guess at the target input—output relation. It is clearly an over
generalisation and is contradicted by the next piece of data.

x = ((B)), z = nil

This data requires a restriction on the current concept. The system retreats from the
above hypothesis and proposes

delete (x, z) = (x = nil and x = z) or
(car(x) = (B) and cdr(x) = nil

and z = nil)

which can be generalised to

delete (x, z) = (x -= nil and x = z) or

(not atom (car(x)) and cdr(x) = nil
and cdr(x) = z).

The system continuously looks for opportunities to generalise by applying recursion. For
example, here it could try the following form which, in fact, is a correct step toward the
target.

delete (x, z) = (x = nil and x = z) or

(not atom (car(x)) and
delete (cdr(x), z))

A series of additional examples could demonstrate the desired behaviour in the case of

atom(car(x)) and result in the code

delete (x, z) = (x = nil and x = z) or

(not atom (car x)) and
delete (cdr(x), z)) or
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Table I. A summary of ten synthesis methodologies

Input informationName Reference Synthesis method Class of programs for sample program Synthesised program

Strategic approach Bibel & HOrnig Heuristic search General Specification .1(x) = if x = nil then nil(1984) 
else g(x)

g(x)= if atom(car(x)) then
cons(car(x),./(cdr(x)))
else./(cdr(x))

Divide and conquer Smith (1985) Input decomposition, Divide and Specification _fix) = if x = nil then nil
computation and conquer programs else
composition append. (RI).

(car x cdr)x
f1(x) = if atom(x) then

list(x)
else nil

Transformational Broy (1983) Search for General Specification fix) = if x = nil then nil elsemethods successful sequence append(f,(car(x)),of transformations ,f(cdr(x)))
.ft(x) = if atom(x) then

list(x)
else nil

A deductive Manna & Waldinger Search for successful General Specification f(x)= if x = nil then nilmethod (1980) sequence of transforms else
and resolutions if not(atom(car(x)))

then flcdr(x))
else
cons(car(x),
ficdr(x)))

Equational Prywes et al. Compilation General MODEL program (Object code)specification (1979)
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Function merging Biermann (1978)

From recurrence Summers (1977)
relations

A production Biermann & Smith
rule methodology (1979)

Generalisation on
logical statements

Cohen & Sammut
(1984)

Natural language Biermann (1983)
programming

Decomposition into
primitives and merging

Discovery of recurrence
relations. Generalisation

Diagnosis and application
of production rules

Regular LISP
programs

Single loop
LISP programs

LISP scanning
programs

Sequential generalisation General
and specialisation
on concept model

Parsing and
interpretation of
natural language

General

(A (B) C)
yields (A C)

Five examples

One example

Several examples

Two English
sentences

./(x) = cond(atom(x) x)
(atom(car(x))

cons(f2(x),./3(x)))
(Tf(cdr(x)))

f2(x) =ficar(x))
/3(x) —f(cdr(x))

f(x) = if atom(x) then nil
else
if atom(car(x)) then
cons(car(x). Rcdr(x)))
else./(cdr(x))

J(x2) = cond(atom(x2) nil)
(T .11 (x2, x2))

/1(x 1 , x2) = cond(atom(car(x1))
./0(xl, xl, x2))
(T f(cdr(x2)))

10(x0, xl, x2) = cons(car(x0),
./(cdr(x2)))

delete(x, z) = (x = nil and x = or
(not atom(car(x)) and

delete(cdr(x), z)) or
(atom(car(x)) and

car(z) = car(x) and
delete(cdr(x), cdr(z)))

Semantic representation of
sentences
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(atom (car(x))
and car(z) =- car(x) and

delete (cdr(x), cdr(z)))

While this relationship is not a deterministic program of the style we seek, it is
executable in the sense of PROLOG. Thus, it can be used as a synthesized program, or it
could serve as a basis for a Manna-Waldinger derivation of a deterministic program.

Shapiro (1981) has given an elegant technique for doing learning of the kind described
above and includes a proof that it converges on the correct target program if one exists.

5. Natural Language Programming

Rather than furnishing a formal specification or examples of the desired behaviour, a
user might type or speak a description of the computation in natural language. For
example, the user might say

"Read in an input list."
"11,1,1, :1111.1

return thy hiMilt,"

Natural languages may be thought of as set manipulation languages in the
programming environment. Processing generally begins at the head noun of the noun
phrase where a set of objects within the area of focus for the dialogue are specified. Then
modifiers to the head noun perform subsetting operations on the original set until a
possibly complex subset is constructed. In the imperative sentence environment, such
subsets are then passed to the execution routines for the imperatives for appropriate
manipulation.

In the above two sentence sequence, the noun group in the first sentence is indefinite
meaning in this environment that an object is being created conceptually. In English
conversation, it is quite common to create conceptual objects with indefinite noun groups
and then subsequently reference them with definite noun groups. The "read" imperative
then seeks an object via a read operation to insert into the newly originated slot. The
head noun "entries" in the second sentence finds all objects in focus which are entries. If
other entries had been mentioned earlier in the conversation, it would probably still select
the entries in the recently read list, because that list does ordinarily have entries and it is
the primary object in focus. The modifier "nonatomic" selects out only a portion of the
set of all entries and the resulting set is passed to the "delete- routine. The final clause
addresses any singular object which can be designated a "result- which is in focus and
outputs that object. Biermann (1983) has described a theory of natural language
processing of the type explained here appropriate for programming applications.

Instead of stating the task in sequential imperative sentences, the user might have a
conversation with the machine.

-Please write a delete routine for me."
WHAT WILL BE ITS NAME?

"Call it "delete...."
DESCRIBE ITS INPUTS.

and so forth.

Several such systems for interviewing the user about the target program and then doing
the coding have been constructed by Balzer (1973), Green (1976), Heidorn (1972), and
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Martin et al. (1974). These processors include natural language interfaces, knowledge

bases for their respective domains, mechanisms for following conversation, code

generation facilities, and numerous other features.

6. Conclusions

Table 1 gives a summary of the ten program synthesis methods discussed in this paper

with their major characteristics. All of these approaches continue to be active research

areas up to the present time.
Automatic programming is an important area of research both because it is a needed

aid for people who want help in programming machines and because intelligent machines

of the future should be programming themselves to better cope with their environments.

Thus research in this field is fundamental to progress in artificial intelligence and will

remain central to it for years to come. Some additional readings on this subject can be

found in Barr & Feigenbaum (1982), Biermann (1976), Biermann & Guiho (1983), and

Riermann of al. (1984).
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