
ARTIFICIAL INTELLIGENCE 275

A Chess Combination Program Which
Uses Plans

Jacques Pitrat

Centre National de la Recherche Scientifique 75007 Paris, France

Recommended by Hans Berliner

ABSTRACT

The program analyses carefully the initial situation. It creates some plans and tries to execute them.
It analyses the situations deeper in the tree only if the plan fails. In that case it generates new plans
correcting what is wrong in the old one. So, the program considers only natural branches of the tree.
It can find combinations for which it is necessary to look more than twenty ply ahead. The paper
describes the methods used for analyzing a situation and for modifying unsuccessful plans. Then we
examine some results found by the program.

1. Introduction

1.1. Utility of plans

Artificial Intelligence programs generate generally a very large tree. Heuristics
eliminate many branches, but they select when a node is developed for the first
time; therefore if some branch is eliminated, it is often impossible to consider it
again later. But it is very difficult to choose branches in that way: either we eliminate
important branches or we keep all the branches and the tree is too large. It is
frequently unnatural to consider many branches when we find them for the first
time; but, after developing some other subtree, it becomes evident that we must
consider them for correcting what is wrong in this new subtree.

It is also very expensive to perform for each node of the tree the same analysis
that is done at the root of the tree. It is better to analyse carefully the initial
situation, and to generate plans, i.e. sequences of actions. We carry out these plans
when we generate new nodes deeper in the tree. If all is going well, no analysis is
necessary: we execute the next step of the plan. A new analysis is useful only if
something goes wrong; but this analysis is short, we try mainly to see how we can
correct the anomaly. It is cheaper than the initial analysis. It is well known (De
Groot [4]) that a chess player perceives the essential properties of his position
during the first moments. He is not engaged in a search of move sequences from
theleginning like many chess playing programs. The analysis of the given position
may be very lengthy, it is done only once.

Artificial Intelligence 8 (1977), 275-321

Copyright C) 1977 by North-Holland Publishing Company

276 J. PITRAT

It was necessary to use some specific problem for showing the interest of this
method. We choose to write a program finding combinations in chess. It is a well
known problem, which is difficult even for a good player. It is necessary to develop
very long tactical sequences. The player must be able to look 14 ply or more ahead
(Berliner [2]). It is very difficult for present chess playing programs to develop
such trees.

1.2. An expository example

Let us see the first steps of the program when it finds a combination for Fig. 1
(M39).1 The goal is to win a knight.

8

7

6

5'

4'

3

2

A /, /7 v r
A • A /,
r r r 7
A A A A

A / A

A V IR yr ,/ "._, A A T,,,gi, , •,_._. 4

a

FIG. 1. M39: Black to play.

The initial analysis finds some ten plans. Many of them result from the following
observation: the white king is on the first rank and it cannot move out of this
rank.
So, if we can move a rook or the queen on this rank, we win. We have particularly

the plan P1.2
P1. Remove the black knight from d53

The position is named by the combination of the letter referring to a book and the number of
the diagram in the book. E stands for Euwe [6], L for Le Lionnais [II], M for du Mont [5], T for
Tarrasch [16].

2 Plans are named by the letter P followed by a number.
3 We use the algebraic notation. The eight files counting from left to right are lettered con-

secutively a to h. The eight ranks counting from the side of the board initially occupied by the
white men are numbered consecutively 1 to 8. Each square is named by the combination of the
letter of the file and the number of the rank in which it occurs. (See Fig. 1). A move will be recorded
by the designation of the man moved (not being a pawn: K for King, Q for Queen, R for Rook,
B for Bishop, N for Knight) followed by the designation of the square it occupied and then the
square to which it has been moved. x indicates a capture and -I- a check.

Artificial Intelligence 8 (1977), 275-321

A CHESS COMBINATION PROGRAM WHICH USES PLANS 277

Rd8d1
Rdl x gl.

Several methods can be used by Black for removing his knight from d5. He may

capture an enemy man with this knight, for instance the white knight. So we generate

a new plan:

P2. Nd5 x c3

Verify that d5 is empty
Rd8d1
Rdl x gl.

Now we must look for what the opponent can play after Nd5 x c3, the first move

of our plan. The most natural move is to recapture the knight with the rook. So

after 1 . Nd5 x c3; 2Rc2 x c3, we consider the following step of plan P2. As

d5 is now empty, it succeeds and we play 2...,Rd8d1 which is the third step of

the plan. This move threatens Rdl x gl ; if the opponent does not play, it loses.

King's moves: Kgl hl and Kg1f1 are futile. But two capture moves are interesting:

Rd l x dl and Qe2 x dl. After these moves we cannot execute the fourth step of

plan P2. The program chooses one of these moves, for instance Rd l x dl, and

tries to destroy it. It is essential to play the black rook to dl; so we must first

remove the white rook from Cl. After 1 . . Nd5 x c3; 2Rc2 x c3, a new plan is

considered:

P3. Remove the white rook from cl

Rd8d1

Rdl x gl.

There are several ways for removing an enemy man M from a square. We

analyse the position only for achieving this goal. One of the possibilities is to

capture a man protected by M. Here the rook in cl protects only the rook in c3.

We look for a friendly man which can capture the rook in c3. There is only one

move: Rc5 x c3. P3 becomes

P4. Rc5 x c3
Verify that there is no white rook in cl.
Rd8d1
Rdl x gl.

After 2 .. Rc5 x c3, the most natural move is 3.Rcl x c3. After the two

exchanges, we execute the second step of P4: there is no white rook in cl. We can

execute the third step and we generate 3 . . Rd8d1. For this, no analysis of the

position is necessary: it is sufficient to verify that the move is legal. This move

threatens Rdl x gl. White is obliged to play Qe2 x dl and Black cannot play the

last step of P4. It has to destroy the move Qe2 x dl. The only way is to remove the

Artificial Intelligence 8 (1977), 275-321

278 J. PITRAT

queen from e2. After 1 . . Nd5 x c3;2 Rc2 x c3,Rc5 x c3;3 Rd l x c3, we generate
the plan: .

P5. Remove the white queen from e2
Rd8d1
Rdl xgl.

For removing the white queen, we may threaten her. There are several moves, for
instance 3 . . Qb6b2, which threatens Qb2 x e2. If white plays 4Qe2 x b2, Black
plays the following step of the plan: Rd8d1 and wins.
This is only the main variation of the combination. At each level, white, using

the same method, finds the black moves which are dangerous and generates plans
for destroying the combination. For instance it finds that after 3 . . Qb6b2, it
must move its queen (Qb2 x e2 is a dangerous move), while always controling the
square dl (Rd 1 x gl is a dangerous move). So it finds the move 4.Qe2c2; thus
Black has to find another plan, because if it plays 4 . . Rd8d1, white plays
5Qc2 x dl.
So we develop a tree including only natural moves. The tree may be very large if

the problem is difficult: we must consider all the natural replies of the opponent.
If they are not good, generally the execution of the following steps of the plan
gives a combination and no time is wasted for analyzing unrelated positions.

1.3. Related work

Chess programs develop generally very large trees (Greenblatt [10], Gillogly [9]).
For instance for Gillogly, all moves are searched to a fixed depth (usually five ply).
After which, it investigates all sequences of captures. The tree is used for finding
combinations. If there is no combination, the program uses a very interesting
positional analysis for finding the best move. But this analysis does not use the
tree. This program develops a tree for the same reason that our program. But there
are many combinations that cannot be found in using this large tree: frequently
it is necessary to consider a move which is not a capture at a depth greater than
five. It is not easy to see how this method can be improved. The computer time
increases exponentially with the depth. With this method, it is possible to write
programs which will play reasonably well, but we doubt that they could reach
some day the level of a grandmaster even with faster computers. The majority of
the combinations found by our program cannot be found by Gillogly's program.
In these cases, it may play the good move, but by chance, without analyzing some
important variation.

Baylor and Simon [1] have written a chess mating combination program. Their
method is different and they are interested mainly in mating combinations. They
can use moves threatening mate. As we see later, these are not considered by our
program. So, the positions in which these programs find combinations are very
different.

Artificial Intelligence 8 (1977), 275-321

•

A CHESS COMBINATION PROGRAM WHICH USES PLANS 279

Berliner [2, 3] has realized a very interesting program. This program and ours

have several common features, although they are written independently. It tries to

understand the consequences of a move and to generate moves preventing what

happens if it is wrong. But the program does not use plans. His goal is more

ambitious, since his program plays and not only finds combinations.

Plans were used in other areas than chess. For instance by the robot of the S.R.I.

(Fikes [8], Sacerdoti [14]) or by Lawaly (Siklossy [15]). But these plans are very

different from those used in our program. First, they find them in defining abstracted

spaces where some details are omitted. These details are always the same in their

environment. For instance the condition "an object is pushable" is always impor-

tant, while "a door is open" is not: a door can always be opened if necessary in

their world, but if an object is not pushable, it is impossible to change that fact.

At chess the problem is quite different and it is not easy to define abstracted spaces.

The existence of the queen may be a mere detail, the existence of some pawn may

be essential.
Another difference is that plans generated for robots become more specified,

but do not alter the original order. At chess, we are frequently obliged to modify

drastically the initial plan. For instance we discover that some enemy man destroys

our plan, and we have to correct this trouble; for this, we may have to change the

beginning of the plan. In another example, the initial plan leads to a mate with a

rook, however we end up with a combination where a knight captures a pawn.

But the only natural way for finding this combination is to try the first plan.

Fahlman [7] has also used plans for robots. But usually Fahlman's plan is the

wanted result: it has to be executed in the real world, and the author does not

study what the program has to do if some unexpected event occurs. In that sense,

his plans have nothing to do with our plans. But in some cases, a subplan already

found is manipulated as an object as in our work. If it has to build a movable

subassembly, it keeps all the steps that occur after the placement of the base

block. If it succeeds in building the subassembly, it tries to make as much use as

possible of the old plan. Naturally it must verify each step of this plan fragment.

But Fahlman's program does not generate at the beginning a plan for building

some structure. It tries only to find what block may be placed first. It creates a

plan which could be tried by a robot in the real world. But it does not plan for

•creating the plan.
Another important aspect of this work is the ability to modify already generated

plans by placing the modification into the middle of the planning sequence. If a

plan fails and if one reason for this failure is some enemy move M, the program

tries to destroy this move M before achieving the old plan. It generates a subplan

for destroying M; this subplan is executed instead of the friendly move just before

move M. After the subplan, the program will execute the end of the initial plan.

The beginning of the plan will also be unchanged: the program does not change

the first moves of the sequence, except the move before M.

Artificial Intelligence 8 (1977), 275-321

280 J. P1TRAT

2. The Program

Rules of chess have been simplified; there is no castling, nor capture en passant.
This is not important, these moves are rather infrequent in a combination. There
is also no stalemate. This is a more serious limitation: some beautiful combinations
are based on the search for a stalemate, if a player has a hopeless position.
The program receives the description of a chess board, the player (Black or

White) who has to play and the value of the combination which it has to find.
For instance it knows that it has to checkmate the opponent's king or to win at
least one rook or only one pawn. This is an important difference from a chess
playing program, which does not know what it has to win. It would be necessary
to give to the program some method for evaluating what it is possible to win in
a given position. Berliner [3] uses EXPCT for doing this. This problem is not easy,
even for a human chess player. In chess books, the author gives only the main
variations, where some important enemy man is captured. But in other variations it
is possible that we cannot win more than a pawn, or in some cases only a positional
advantage. It happens also that there are several combinations in one position, and
it is interesting to find the one where we capture the most important man. In that
case, we indicate the value of this man. If the program has to win one pawn, it
generates all the possible plans, even those for mating the king. If such a plan
succeeds, the program has won more than one pawn; if the plan fails, the program
may win some enemy man that the opponent must sacrifice for avoiding the mate.
In contrast, if the program must mate, it does not try a plan winning only one
pawn; if it has not checkmated its opponent, the program fails, even if it has
captured some enemy piece.
The value of a combination is the material balance. It is computed with the

following values:
King: 1000; Queen: 95; Rook: 45; Bishop: 30; Knight: 30; Pawn: 10.
These values are read, and it is easy to give another set of values. Perhaps this

set was not the best one. But a set such as 1000:90:50:30:30:10 would give similar
results in most cases. But the values given above are used for all the positions in
this paper. The plans are used for generating the moves which have to be con-
sidered in a position. They add new nodes to the tree and do nothing else. The
program finds a combination, if, when it uses the minimax procedure, the backed
up evaluation is greater or equal to the wanted value. The evaluation function for
the leaves of the tree is the value of the material of the program minus the opponent's
material.

2.1. A language for writing plans
A plan is a sequence of statements. There are four types of statements.

2.1.1. Move statement: xyzt*

The asterisk is optional. x and z stand for letters a to h, y and t for numbers 1 to
8. This statement means that we have to consider the move: the man in square xy
Artificial Intelligence 8 (1977), 275-321

282 J. PITRAT

There are four kinds of modification statement.

(1) Remove a friendly man. First we may want that a square becomes empty:

the friendly man obstructs a line; if forbids an interesting move of another man.

In this case, we write F V. But we may also want that the square is no longer

occupied by a friendly man, because an enemy man threatens our man. In that

case, we write F -+ NF. NF represents the state where there is no friendly man in

the square. We may have an enemy man, which is not good for F -4 V. In both

cases, it is good if the square becomes empty.

We have an asterisk if the friendly man not only clears the space, but also has

to capture or threaten an enemy man. If there is no asterisk, it is sufficient to play

our man freely.

EXAMPLE We write the initial plan P1 of M39 (Fig. 1)

P7. d5 F V*
d8d1
dIgl*

The square d5 must be empty. It is not sufficient to play our knight: White would

play for instance g2-g3. We want to capture or threaten a white piece with a move

of the knight.

(2) Remove an enemy man. There are three reasons for doing this.

(i) We want the square to become empty. We write E -4 V. The enemy man

obstructs a line of one of our pieces.

(ii) We want that the square is no longer occupied by the enemy man which is

there now. The square may be occupied by a friendly man, another enemy

man or empty. We write En -4 NEn. n stands for the initial of the man in

the square. For instance, the plan P5 of M39 (Fig. 1) is:

P8. e2 EQ -÷ NEQ
d8d1
dlgl*

The reason of this modification is that the enemy man is dangerous or forbids

a combination. We prefer it on another square.

(iii) We want that the square remains occupied by an enemy man, but not of

the same nature that the one which stands now in this square. We write

En -4 ENn, n stands for the initial of the enemy man. This kind of modi-

fication statement is useful when the enemy man can play a dangerous move,

but the presence of an enemy man on this square is essential, because we

intend to capture later the man which is on this square.

(3) Move a friendly man to some square. We want that this square is no longer

empty. We obstruct a line of an enemy man. We write V —> NV. It is always good

if our man is captured by an enemy man which obstructs also the line.

Artificial Intelligence 8 (1977), 275-321

A CHESS COMBINATION PROGRAM WHICH USES PLANS 281

moves to square zt. If there is no asterisk and if the move is legal, we put this
move in the tree. If it is not legal, the plan fails and we do not consider its following
steps.

If there is an asterisk, we consider always the immediate next step. But we put
the move in the tree only if it is a legal capture move. Intuitively a move with an
asterisk is the execution of a threat. It is conceivable that the move is no longer
possible because the opponent has just captured our man or moved his man. It
may also occur that this move has no interest, because the opponent has protected
the threatened man. But these possibilities were foreseen by the program, and the
program must execute the end of the plan.
For M39 (Fig. 1), remove the white queen from e2 in plan P5 gives the plan:
P6. b6b2

b2e2*
verify that the white queen is not in e2
d8d1
dlgl*

After Qb6b2 and the opponent's reply, we consider the statement after: b2e2,
even if Qb2 x e2 is not legal (the black queen has been captured for instance) or
is not a capture move because the white queen has moved from e2. It is just what
we want. But if Qb6b2 or, later, Rd8d1 are not legal, we stop the execution of the
plan.

2.1.2. Modification statement

This statement includes the coordinates of the square to modify, the state of this
square before the modification, an arrow, then the wanted state of the square.
Optionally there is an asterisk. Its meaning is given for each kind of modification.
In the description of the state of a square, F stands for Friend, E for Enemy,

V for empty (Vacant). The nature of the man, if necessary, is indicated by K for
King, Q for Queen. . . . If N is the first letter of a state, it indicates that the square
must not have the following state.

EXAMPLE e2 EQ NEQ.

There is the enemy queen in square e2 and we try to get a position where this
queen is not in square e2. This square may be empty or occupied by a friendly
man, or an enemy man other than the queen.

e2 E —> V.

There is an enemy man in square e2 and we want a position where this square is
empty.
When it executes such a statement, the program generates a subplan for realizing

this modification. The modification statement is substituted by this subplan. After
the subplan it creates a verification statement which verifies that the opponent has
played what was expected and has not disturbed our plan. Then we go back to the
old plan.

Artificial Intelligence 8 (1977), 275-321

A CHESS COMBINATION PROGRAM WHICH USES PLANS 283

If there is an asterisk, we must create a threat while we are playing the move
which realizes this modification. For instance, in its new square, our man can
threaten the enemy queen.

(4) Induce some enemy man to come on the square. We write NE --> E. We
indicate eventually the nature of this man. For instance if we want the enemy king
on square f8, we write

f8 NEK —> EK.

In that case, f8 may be initially empty or occupied by a friendly man, or by an
enemy man other than the king.

2.1.3. Verification statement

We have the coordinates of a square and the wanted state for this square. The
wanted state is the part of a modification statement following the arrow. If we
have NF, the program verifies that the square is not occupied by a friendly man.
If we have EK, it verifies that the Enemy king is on the square.

If the verification fails, the plan is terminated. If the verification succeeds, the
next statement of the plan is considered.

EXAMPLE The plan P3 of M39 (Fig. 1) is:

P9. cl ER -4 NER
d8d1
dIgl*

The modification statement generates several new plans. Among them, there is:

P10. c5c3
cl NER
d8d1
dlgl*

The capture move Rc5 x c3 captures a piece protected by the rook cl. If cl
recaptures, the verification statement succeeds and we consider the following
statement which generates the move Rd8d1. If cl does not recapture the verification
fails, so it is unnecessary to consider the following statements. If the balance of
the captures is good after the enemy move following Rc5 x c3, the program
succeeded. If the balance is not good, for instance the opponent captured some
other black piece, it will be necessary to find another plan.
In the same way, the execution of the modification statement of plan P8 of

M39 (Fig. 1) will give several plans. Among them:

P11. b6b2
b2e2*
e2 NEQ
d8d1
dIgl*

Artificial Intelligence 8 (1977), 275-321

284 J. P1TRAT

After Qb6b2 and White's reply, we consider Rd8d1 only if the white queen is
no longer in square e2.

2.1.4. Limited analysis statement

We indicate the coordinates of some enemy man M, then the word "analysis".
When we execute this statement, we try to find some simple combination based
on M. For instance a double attack on M and some other enemy man.

2.2. Generation of the plans for the initial position

This analysis is done only once, in the initial position. There are four main kinds
of plans.

2.2.1. Capturing a man

For each enemy man, we look for the friendly men attacking it and for the enemy
men protecting it. We consider also the potential attacks where some man obstructs
a line. If it is a friendly man, we have a discovered attack.

EXAMPLE E42 (Fig. 2).

8

7

6

5

4

3

2

a

FIG. 2. E42: White to play.

White has the plan:

P12. g4 F V*
h5e2

There is an asterisk in the modification statement: we must create a threat while
removing the knight from g5. If not, Black would move his queen.

Artificial Intelligence 8 (1977), 275-321

A CHESS COMBINATION PROGRAM WHICH USES PLANS 285

If the obstructing man is an enemy man, we use this pinned man. We generate
a plan where we try to remove it from its square (modification E -4 V) and then
we capture the man behind the pinned man.

EXAMPLE E42 (Fig. 2). If Black could play instead of White, he would have the
plan:

P13. f2 E -4 V
b6g1

It may happen that it is possible to capture an enemy man without risk. In that
case, the plan has only one statement: the move capturing the man.

EXAMPLE E42 (Fig. 2). If Black could play first, it would generate the plan:

P14. e2d1

It occurs frequently that a man could be captured if some protecting man is
removed. We generate a plan with only one statement: the move capturing the
man. After the program realizes that an enemy man recaptures our man, it generates
various plans where it tries to destroy this enemy move before capturing the man.

EXAMPLE E42 (Fig. 2). If Black could play first, he would have:

P15. e2g4

But after Qe2 x g4, White would play Qh5 x g4. Then Black generates plans
destroying this move—if possible—before playing Qe2 x g4.
We do not program the capture of men which can play only a few moves. In

some cases we may capture a queen or a bishop in that way. It is possible to get a
man in a position where there is no escape. But this situation is unfrequent, so we
do not program this, although it would be possible to write a subroutine ad hoc.
The program considers only the case of the king (cf. 2.2.3) and of the pawn with
a man before it.

2.2.2. Double attacks

Pinning a man is a special type of double attack. The analysis made for 2.2.1
indicates which men could be captured if the program attacks them once more.
For each couple of such men, Pi and Pi, we look for a friendly man M attacking
them simultaneously if it moves on some square S. If the square S is occupied by
a friendly man (or by an enemy man if M is a pawn), the program creates first a
modification statement S F V*. If some intermediary square I between M and
S, S and Pi or S and pi is obstructed, it generates modification statements: / E -+ V
or I F V*. Then it puts: the man M moves to S, and the two capture moves:
the man in S captures Pi, and: the man in S captures P. These two capture moves
have an asterisk: if the opponent destroys the threat for one man, it must consider
the move which captures the other.

EXAMPLE M58 (Fig. 3). The pawn on a2 is not protected. It is always good to
attack the king.

Artificial Intelligence 8 (1977), 275-321

20

286

8

7

6

5

4

3

2

a

J. PITR AT

FIG. 3. M58: Black to play.

A queen on square e6 attacks both squares a2 and el.

Therefore, it considers the plan:

P16. d5 F V*
e6 F V*
b6e6
e6el*
e6a2*

If Pi, P, and S are on the same line, it adds a statement between the first capture
statement and the second one. If the first man may be protected (its value is not
greater than the value of the attacking man M), it places a modification statement
E V for its square. If the opponent protects the man which would be now pinned,

8

7

6

5

4

3

2

a

FIG. 4. T117: Black to play.

Artificial Intelligence 8 (1977), 275-321

A CHESS COMBINATION PROGRAM WHICH USES PLANS 287

it will try some method for removing it. If the man cannot be protected, it is
sufficient to insert a verification statement: if the first capture move is not possible
because the opponent has played his man, the program tries the second capture
move.

EXAMPLE T117 (Fig. 4). A rook on the file g attacks the king in gl and the queen
in g4. The move: Rf6g6, moves a rook on that file.
It would be legal if the program removes first its knight from g6. It must also
remove the white pawn from g3: it prevents the move Rg6 x gl. So the program
generates the plan:

P17. g3 E —* V
g6 F —> V*
f6g6
g6g4*
g4 V
g6g1*

The queen cannot be protected, as she is threatened by a rook. Therefore there is
a verification statement on g4. If there were a knight on g4 instead of a queen, we
would have instead: g4 E —> V. If, in this case White protects his knight, the
program may try to attack it again, with a pawn for instance.
When the attacking man M is a knight, the program examines if it can move to

a square S where it attacks one enemy man Pi and a square Tnext to the opponent's
king. If so, it generates a double attack, but the plan begins with a modification
statement TNEK EK, inducing first the enemy king to move to square T.

EXAMPLE M9 (Fig. 5). The program generates:

P18. el NEK EK
f2d3
d3el*
d3f4*

8

7

6

5

4

3

2

FIG. 5. M9: White to play.

F
4

Y / r/
/z. ,,

a
, twit

Artificial Intelligence 8 (1977), 275-321

288

EXAMPLE E2 (Fig. 6). It generates:

P19. f8 NEK ---+ EK
d4e6
e6f8*
e6c7*

8

7

6

5

4

3

2

1

FIG. 6. E2: White to play.

y
 ,

M I Ni l -vz' i r,A I
raw i, .,,;, ,,,_

i•
F/A‘ r/ i

v•
/

/A- 1/A A / A
r i r r

.4;z:/,-,,,,,4 •:7/

,A
' , ,

A ̀67-11 A / .

A % A 7 A
w r:o
/.

,7. r /;,./.7.,,:
, A A

,

a

J. PITRAT

2.2.3. Attacking the king

The program generates a plan including a move giving a check on square S followed
by the move capturing the enemy king if:

(1) The square S is controled by its forces: the opponent cannot capture the
man giving the check.

EXAMPLE E42 (Fig. 2).

P20. h5h7
h7e7*

The white queen in h7 cannot be captured.

(2) When its man is on square S. every square where the opponent's king can
play is controled by its forces, except, eventually, the square S. In that case the
program generates, if necessary, modification statements at the beginning of the
plan if some man obstructs a line.

EXAMPLE E42 (Fig. 2).

P21. h5f7
f7e7*

This plan is generated although the black king may capture the queen on f7.

EXAMPLE M58 (Fig. 3).

P22. b6e3
e3e1*

Artificial Intelligence 8 (1977), 275-321

A CHESS COMBINATION PROGRAM WHICH USES PLANS 289

EXAMPLE M39 (Fig. 1).

P23. d5 F V
d8d1
dIgl*

EXAMPLE E2 (Fig. 6).

P24. f7 E -÷ V
f3f 8
f8g8*

But the program does not consider all the plans which create a check. For
instance for E42 (Fig. 2) it does not generate at the beginning the check move:
Rd1d7 + : White does not control the square d7 when the rook is on d7 and the
black king may escape to e6. In the same way, it does not consider for M9 (Fig. 5):
Qhlel +; the king can capture the queen or it can play on c2.
We do not program the generation of moves threatening mate without giving

check. It would be possible to write a subroutine generating plans including such
moves. But it would be a large subroutine and in many combinations it would
not be used, mainly when we do not try to checkmate the opponent. Therefore
the program does not receive combinations where it is necessary to consider moves
threatening mate. This is not a problem of computer time: these moves do not
occur frequently and for many positions, no move of this type would be generated.
But for realizing the subroutine, a difficult analysis—from a chess point of view—
is necessary. As our goal is to test a method and not to write a chess playing
program, we did not try to implement this possibility.

2.2.4. Promoting a pawn

If there is a white (black) pawn on the ranks 6 or 7 (3 or 2), the program generates
a plan for pushing this pawn. If there is a man before the pawn, the plan begins

8

7

6

5

4

3

2

FIG. 7. M3: White to play.

/

V r

/ A 4 VA It A
v lor r/ '

AA
a

Artificial Intelligence 8 (1977), 275-321

290 J. PITRAT

with a modification statement removing this man: F V* or E —> V. If the nearest
square forward of either of the diagonals is empty, the plan begins with a modi-
fication statement: NE —> E; after this statement, the pawn captures.

EXAMPLE M3 (Fig. 7).

P25. b8 E V
b7b8

P26. c8 NE E
b7c8

The program considers two kinds of promotions: the pawn is exchanged for a
queen or for a knight. The exchanges for a rook or a bishop have no interest: we
do not consider stalemate.

2.3. Execution of a plan

The program adds moves to the tree only if some plan indicates doing this. Two
lists of plans are associated with each node of the tree. Let us suppose that the
move Q is a friendly move. The first list contains all the friendly plans which indicate
to consider move Q. There is at least one plan in this list: a move can be generated
only by a plan. The second list (which may be empty) includes the enemy plans
which the opponent may execute after move Q. When a plan of this list is tried, it
is deleted.

There is a tie between these two kinds of lists. Let R be the enemy move before
our move Q, and P P- 1,- 2, • • • Pn the plans which indicate to consider R (elements of
the first list tied to node R). Pi begins with a move statement generating R. The
plan beginning after this move statement must be examined after our move Q.
Therefore if Pi has more than one statement, it gives a plan for the second list
tied to move Q. We examine them after each friendly move following R.
We may change the part played by friend and enemy.

EXAMPLE M39 (Fig. 1). Let R be the Black move 2 .. Rc5 x c3, following
1 . . Nd5 x c3 2 • Rc2 x c3. We have seen that the plan P10 indicated to consider
it. After each White move Q following R, the program will consider the plan
P27 beginning at the second statement of P10.

P27. cl NER
d8d1
dlgl*

If there is no white rook on cl, this plan generates the move Rd8d1. Particularly,
Q may be Rd l x c3. P27 will be in the second list of plans of this node.
We turn now to how the program executes the different kinds of statements.

2.3.1. Move statement

The program examines first if the move is legal. It is not always true. The opponent
tries generally to destroy our plans; he may for instance obstruct a line or capture
the man which the program wants to play.
Artificial Intelligence 8 (1977), 275-321

A CHESS COMBINATION PROGRAM WHICH USES PLANS 291

If the move Q is legal (and if it is a capture move when there is an asterisk),

the program adds it to the tree if it has not already been generated. The list of the

friendly plans generating move Q has only one plan: the one which the program is

executing. The second list of plans is created from the list of plans which create

the enemy move just before Q.
If the move Q was already in the tree, it just adds the new plan to the first list

of plans. It verifies however that this plan is not already in this list. Then it adds

the end of the new plan to the second list of plans of all the enemy moves (if any)

following Q.

EXAMPLE. Let us consider the plan P11 of M39 (Fig. 1); after the moves:

1 Nd5 x c3
2 Rc2 x c3 Rc5 x c3

3 Rcl x c3

This plan adds the move 3 . . ., Qb6b2. The plan P11 is put in the first list of

this move. But after each enemy move following Qb6b2, for instance 4 •Qe2c2,

4 •Qe2 x b2, 4.Qe2e1; 4.g2g3 . . . the program puts in their second list of plans

the end of plan P11:

P28. b6e2*
e2 NEQ
d8d1
dlgl*

If e2 is not empty, for instance after 4g 2g3, Qb2 x e2 is a capture move and it

tries it. If e2 is empty, Qb2e2 is not a capture move, and the program does not

consider it, even if it is legal. Then it verifies that e2 is no longer occupied by the

enemy queen and, if the verification succeeds, it generates the move Rd8d1. For

instance after 4 . Qe2 x b2, it considers first 4. . ., Rd8d1 0.

When the program adds a new plan to the second list of plans of a node, it

verifies first that it is interesting to consider this plan. For this, the program simu-

lates the execution of the plan. It supposes that the opponent will play exactly

what it hopes. If there is a modification statement where the opponent is induced

to move his king to some square, after the statement, the king is supposed to be

in that wanted square.

If there is somewhere an impossibility: capturing an enemy man on an empty

square, playing a friendly man from an empty square . . ., the plan is rejected. If

it has not been rejected when this optimistic simulation is completed, the program

verifies that the balance of the captures is sufficient: if it wants to win the queen, it

eliminates a plan where it wins only one pawn. It verifies also that the plan is

not absurd: a plan ending with a double attack on two pawns has no interest if,

in the first steps, it wins a queen. If it is not possible to win the queen, the plan is

bad, and if it is possible, the program will generate a special plan for this. In the

same way, if the program's queen is lost in the first steps of the plan, threatening a

Artificial Intelligence 8 (1977), 275-321

292 J. PITRAT

pawn is not a severe threat for the opponent. (When a man is sacrificed deliberately,
the program considers in the balance that its man is captured).
Many plans without interest are eliminated with this simulation. Not much time

is lost, it is very fast because the possible enemy moves are not considered. For
the position at the root of the tree, all the plans are plausible, but after the opponent's
replies many plans are impossible or very bad.

2.3.2. Modification statement
We suppose that the program executes the plan P beginning with a modification
statement on square S, followed by a subplan Q, which may be empty. The execution
of the modification statement generates subplans R1, R2, . . R„ (n may be 0). In
that case, the program considers n plans Si. Si begins with the subplan Ri; there is,
after R„ a verification statement, verifying that square S has the wanted state.
Then the old subplan Q ends up the new plan.
For each kind of modification statement, we will see how the subplan R, is

generated.
(1) Removing a friendly man from square S. S F —> V or S F NF. These

two cases are treated in the same way. The only difference is that the verification
statements are different. In the first case, we verify that the square is empty, in
the second one that there is no friendly man.

If there is no asterisk, we are not obliged to threaten. For the queen, the rook,
the bishop and the knight, we generate a move statement: the piece in S plays.
The program does not indicate precisely the square where this piece moves. If,
deeper in the tree, the opponent has some combination, the program tries to find
the squares where the piece can move for destroying that combination. For instance,
if the opponent captures later a man M, and if it is possible to protect it, the program
generates at the same level as the move: the piece in S plays, the moves where the
piece in S can protect M. If, on S, there is the king or a pawn, all their moves are
generated.

If there is an asterisk, the program must threaten. It determines the enemy men
which can be threatened, and it looks for moves of its man on S attacking one of
them, if necessary after removing some obstacle. The subplan Ri includes: the
modification, if any, for removing the obstacles, the move from S and the move
(followed by an asterisk) capturing the threatened man. If the man in S is a knight,
the program tries also to attack a square next to the enemy king. But it puts first
a modification for inducing the king to come to this square.

Instead of threatening, it is also possible to find moves where the man in S
can capture an enemy man, if necessary after removing some obstacle.
EXAMPLE M39 (Fig. 1). For the execution of plan P23, the black knight must be

removed from d5. It can capture the white knight on c3.
P29. d5c3

d5 V
d8d1
dlgl*.

Artificial intelligence 8 (1977), 275-321

A CHESS COMBINATION PROGRAM WHICH USES PLANS 293

EXAMPLE E42 (Fig. 2). For P12, the white knight must be removed from g4. It
may attack the square d7 next to the black king on e7.

P30. d7 NEK —> EK
g4f6
f6d7*
g4 V
h5e2.

(2) Remove an enemy man from square S. There are three cases: S E —> V;

S En —* NEn ; S En --+ ENn.

For the first two cases, the program can threaten the enemy man, for inducing

it to move out of square S. If necessary, it may add some modifications for removing

obstacles.

EXAMPLE. We have seen earlier for M39 (Fig. 1) that the plan

P8. e2 EQ —> NEQ
d8d1
dIgl*

gave the plan:

P11. b6b2
b2e2*
e2 NEQ
d8d1
dlg I *

EXAMPLE M58 (Fig. 3). After 1 . . .: Qb6e3 generated by plan P22, the opponent

captures the queen with 2 . Qh3 x e3. This move must be destroyed. One possibility

is to remove the white queen from h3:

P31. h3 EQ —> NEQ
b6e3
e3el*

The rook may threaten the queen.

P32. g8g3
g3h3*
h3 NEQ
b6e3
e3el*

This plan is good if the opponent plays, after 1 ..., Rg8g3, 2 . Qh3 x g3. The

program considers 2. . ., Qb6e3. The move 3. Qg3 x e3 is still bad. It tries to remove

the queen from g3. For this, it considers after 1 . . ., Rg8g3. 2. Qh3 x g3 the plan

P33. g3 EQ —> NEQ
b6e3
e3e1*.

Artificial Intelligence 8 (1977), 275-321

294 J. PITRAT

The bishop on e7 may threaten the queen:

P34. e7h4
h4g3*
g3 NEQ
b6e3
e3el*

This plan gives the main variation of the combination. But, if, after 1 . . . Rg8g3,
the opponent plays h2 x g3 instead of Qh3 x g3, the plan P32 cannot be used: the
queen is always on h3 and the verification: h3 NEQ, fails. The winning move
Qb6e3 is not considered. We will later see that another way for destroying the
move: Qh3 x e3, gives the solution in both cases: instead of removing the queen
from h3, the plan obstructs the third rank between e3 and h3.

Always for the first two cases of the modification statement: S E -4 V and
S En --+ NEn, it is possible to capture a man protected by the enemy man on S. If
it recaptures, the wanted result is obtained.

EXAMPLE E2 (Fig. 6). For the execution of plan P24 the program sees that the
pawn f7 protects the knight on e6. Thus:

P35. ele6
f7 V
f3f8
f8g8*

EXAMPLE T117 (Fig. 4). Black has to remove the white pawn on g3 for executing
P17. But g3 protects f4.

P36. g6f4
g3 V
g6 F V*
f6g6
g6g4*
g4 V
g6g1*

Naturally, before realizing a modification, it is necessary to verify that it has
not already been done; If it is, we execute the following statement. With P36,
if Black plays 1 . . Ng6 x f4, White can reply 2.g3 x f4. Then g3 is empty, but
g6 also. The modification g6 F V* has already been done. The move Rf6g6 is
immediately generated and wins.

If the modifications of plans P17 were generated in a different order, g6 F -4 V*
being the first statement of the plan, the same combination is however found.

Artificial Intelligence 8 (1977), 275-321

A CHESS COMBINATION PROGRAM WHICH USES PLANS 295

Black can capture with the knight for removing it from g6, for instance the white

pawn f4. This gives:

P37. g6f4
g6 V
g3 E —> V
f6g6
g6g4*
g4 V
g6g1*

After 1 . . Ng6 x f4 2.g3 x f4 the modification g3 E —> V is already done and

Rf6g6 is generated.

EXAMPLE M39 (Fig. 1). In plan P9 the white rook must be removed from cl.

The program can capture some man protected by this rook. There is only the rook

on c3. So it obtains the plan P10.

P10. c5c3
cl NER
d8d1
dlgl*

For the last two cases: S En —> NEn and S En —> ENn, it is possible to capture

the enemy man on S.

EXAMPLE M39 (Fig. 1). After 1 S Nd5 x c3
2 Rc2 x c3 Rc5 x c3
3 Rd l x c3 Qb6b2
4 Qe2c2 Rd8d1.

Black plays Qc2 x dl. A plan destroying this move and considered after 4 Qe2c2

is:

P38. c2 EQ —> NEQ
d8d1
dlgl*

It gives:

P39. b2c2
c2 NEQ
d8d1
dlgl*

and Black wins with this plan.

Other methods may be used for removing an enemy man from its square. Some

of them have been implemented, but they are used rarely and we do not describe

them here.

Artificial Intelligence 8 (1977), 275-321

296 J. PITRAT

(3) Move a friendly man to some square S. The program generates all the moves
bringing a friendly man to S. Generally, there are not many moves doing this. If
necessary it generates before a modification statement if a man obstructs the line. If
there is an asterisk, it verifies that the friendly man threatens from Ssome enemy man.
EXAMPLE M58 (Fig. 3). After 1 Qb6e3, the opponent plays 2 •Qh3 x e3.

One possibility for destroying this move is to remove the white queen from h3.
We have seen that it does not give the solution if, after 1 . . Rg8g3, white plays
2.112 x g3: as the white queen is always on h3, the verification statement of P32
fails and the program does not consider the winning move: 2. . Qb6e3.
But there are other methods for destroying 2 • Qh3 x e3. A friendly man can be

moved on some intermediary square between e3 and h3. For instance in occupying
g3, we have:

P40. g3 V NV*
b6e3
e3eI*

Rg8g3 moves a man to the good square and it threatens the enemy queen.
Thus we have:
P41. g8g3

g3h3*
g3 NV
b6e3
e3el*

The program has now to verify that g3 is not empty.
If, after 1 . Rg8g3, White plays 2 Qh3 x g3, the program considers Qb6e3

and we have exactly the same solution than with P32. But if White plays 2 h2 x g3,
the verification succeeds now: g3 is not empty. So, 2. . Qb6e3 is tried and wins
after the interposition 3 Bd3e2, Qe3 x e2 .
(4) Induce some enemy man to come on the square S. S NE -÷ E or S NEn -* En.
A friendly man creating a threat may move to that square. The opponent can
capture this man for destroying the threat. If there is already an enemy man on S,
but if this man has not the wanted nature (for example a rook instead of the king),
it is possible to capture it, if it is protected by a man of the wanted nature. If the
enemy king has to move to S and if it occupies a square next to S, the program
looks for a man which can move to S (after, if necessary removing some obstacles)
and which gives a check on S.

EXAMPLE M9 (Fig. 5). In P18, the black king on d2 has to move to el.
P42. hlel

e I d2*
el EK
f2d3
d3el*
d3f4*

Artificial Intelligence 8 (1977), 275-321

A CHESS COMBINATION PROGRAM WHICH USES PLANS 297

If the king captures the queen, the program executes the double attack and wins
the bishop.

EXAMPLE E2 (Fig. 6). In P19 the black king must go to f8. If the white queen
was on f8, she would give a check. But for this, we must remove the pawn f7 which
obstructs the file f. We have:

P43. f7 E --* V
f3f8
f8g8*
f8 EK
d4e6
e6f8*
e6c7*

A way for removing the pawn f7 is to capture the knight protected by this pawn.
The plan where it is captured by the knight d4 is eliminated: this plan is impossible,
because the knight is needed later for the double attack. It remains only the capture
with the white rook.

P44. ele6
f7 V
f3f8
f8g8*
f8 EK
d4e6
e6f8*
e6c7*

This plan gives the main variation of the combination:

1 Rel x e6 f7 x e6
2 Qf3 x f8 + Kg8 x f8
3 Nd4 x e6 + Kf8 plays
4 Ne6 x c7.

White wins a knight and a pawn.

EXAMPLE M3 (Fig. 7). For P26, an enemy man must come to c8, so that the pawn
b7 can be promoted. The program looks for a White man which can move to
that square and threatens when it is there. It is possible with the white rook c 1
which gives a check on c8.

P45. cic8
c8b8*
c8 E
b7c8

After 1 • Rcl c8 +, Black cannot play 1 . . ., Kb8 x c8. It must play 1 . . ., Rd8 x c8.
The following move of the plan is not legal, but it is an optional move. Then the

Artificial Intelligence 8 (1977), 275-321

298 J. PITRAT

verification succeeds: there is an enemy man on c8. So, after 1 Rcl c8—Rd8 x c8,
2 b7 x c8 is tried. But Black plays 2 . . Kb8 x c8. Before playing b7 x c8, white
must destroy this move. The only way is to remove the king from b8. So, after
1 Rc1c8—Rd8 x c8 the following plan is generated:

P46. b8 EK NEK
b7c8

A possibility is to threaten the king with the queen

P47. a5a7
a7b8*
b8 NEK
b7c8

If, after 2 Qa5 x a7, Black plays 2. . Kb8 x a7, White captures the rook with

the pawn, and when the pawn is exchanged for a knight, it creates a double attack
on the king and the queen: White wins a knight.

EXAMPLE E42 (Fig. 2). For P30, the black king must be on d7. It is possible to

move to this square the white rook which gives a check.

P48. dld7
d7e7*
d7 EK
g4f6
f6d7*
g4 V
h5e2

This plan gives the main variation:

1 Rd1d7 + Ke7 x d7
2 Ng4 x f6 + K plays or R x N
3 Qh5 x e2

2.3.3. Verification statement

The program verifies that the square has the wanted state. If it is good, the program

executes the following statement. If not, it leaves the plan.

2.3.4. Limited analysis statement

The analysis is similar to the analysis made for the initial position. But it is made

only for one man. The program examines: if the man may be captured, eventually

after removing some obstacle; if it is possible to create a double attack on this man

and some other man. If the king is on the square, the program looks for possible

mating attacks. Only one modification in a plan is accepted; for the analysis of

the initial position, at most two modification statements were accepted in a plan.

This limitation was made for avoiding exponential growth, and also because it

was never necessary to consider plans with more than two modifications. Generally

the plan which gave the initial idea of the combination had only one modification.

Artificial Intelligence 8 (1977), 275-321

A CHESS COMBINATION PROGRAM WHICH USES PLANS 299

2.4. The dangerous moves

The program must find a combination for one player. It supposes that its opponent
tries to forbid it to do so. At each stage of development of the tree, one of the
players succeeds and the other fails. The program is interested by the player who
fails. It looks for the dangerous moves of the player who succeeds and tries to
correct what goes wrong for the other by creating new plans which generate new
moves. Then it determines again with the new tree which player succeeds and it
resumes the procedure. It is possible that the same player fails consecutively
several times: his plan was bad or there were several dangerous moves and the
plan destroyed only one of them. The procedure stops when a player does not
succeed and has tried everything that was possible for destroying the dangerous
moves of his opponent.
This method for developing a tree seems similar to the method used by human

players (De Groot [4]). The program tries first some promising combination; if
it seems possible to refute this combination, it tries another one, but later it may
return for a deeper analysis of the first combination if the second one fails also.
We give first a more precise definition of "a dangerous move" and a method for

finding them. Then we will see what the program can do when it has found a
dangerous move.

2.4.1. Definition and research of the dangerous moves
Let P be the player who does not succeed: either he has to find a combination
and he has not found it or he wants that his opponent has no combination. For
the sake of simplicity, we suppose that P is the first player, the one who wants to
find a combination and fails.

There are many things which are not good in the tree. If we take any move Q
of player P at the first level and if we apply to the subtree of root Q the minimax
procedure, the value backed up is not sufficient. (We have seen earlier that the
evaluation function at the leaves is the balance of the captures). From the definition
of the minimax procedure, there is at least one enemy move following Q for which
the value backed up is not sufficient. All the moves in that case are called dangerous
moves. The program chooses, using heuristics, one of them R and it will try later
to destroy it. If it destroys R and if there are other dangerous moves, it will have
to destroy them later. If it fails, it is not necessary to study the other dangerous
moves of the same level as R.
But there may be other dangerous moves deeper in the tree. The program resumes

the procedure for each friendly move (if any) following R.
We give in Fig. 8 a possible state of development of the tree for M39 (Fig. 1).

In that state White succeeds, Black fails and we circle the dangerous moves.
O stands for a null move. We can notice that a dangerous move is not for ever a
dangerous move.
In Fig. 8, Rc2 x c3, Rd 1 x c3 will not be dangerous moves when the combination
has been found.

Artificial Intelligence 8 (1977), 275-321

300 J. PITRAT

If P, the player who does not succeed, is not the first player, his opponent, the

first player, has a combination: at least one move M at the first level has a sufficient

value backed up by the minimax procedure. We use exactly the same method as

before with the tree of root M which is unsuccessful for P.

Nd5.c3 Nd5f4

1
g2g3

Rd8d1 Rc5.c3

Rdl.g1

Rdl.g1

/

Nf4xe2

Rd8d1

fl

0 tQe2xd1) Qe2e1

RdIxel

FIG. 8.

There is a little problem when a move is not good, but when there is no opponent's

move after it: there is no dangerous move to destroy. In that case we examine if

this move is a threat. A move M is a threat if a move with an asterisk follows it

in at least one of the plans which generate M. If the move is a threat, we generate

a null move (represented by 0) for the opponent and we consider after this null

move, the following move of the plan. If this threat is real, the balance of the

captures will be good and this move will be dangerous for the opponent. So the

opponent tries to destroy this new move and, if it succeeds, he will eventually

add after M, moves which will be dangerous for the player.

EXAMPLE M58 (Fig. 3). When the program executes P32, the move Rg8g3 is

not sufficient for Black: the balance of the captures is zero. But this move is a

threat. The following move Rg3 x h3 is added to the tree after a null move. The

balance of the captures (a queen) is good for Black. White must see what goes

wrong. It finds that Rg3 x h3 is a dangerous move. It tries to destroy it, for instance

it plays, after 1 . . Rg3 x h3 2 Qh3 x g3. Now Black fails. It looks for the dangerous

moves and finds Qh3 x g3.
When a dangerous move is found, the program tries to correct its effects or to

destroy it. There are many ways for doing this. The program does not try all these

possibilities at once. They are sorted in six classes. It keeps with each move the

number of the last class tried. If after a first attempt to correct it, the move is still

dangerous, the program tries the following class. When the six classes have been

tried, still not changing the outcome of the move, the program considers it a

hopeless case and goes to another dangerous move. The idea is to try first the

methods which succeed frequently.

Artificial Intelligence 8 (1977), 275-321

A CHESS COMBINATION PROGRAM WHICH USES PLANS 301

In all cases the program executes the plans, if any, which are in the second list
of plans of the dangerous move. They are the plans which must be executed after
this move.

EXAMPLE M39 (Fig. 1). The plan P29 generates the move Nd5 x c3. If the opponent
replies Rc2 x c3, the balance of the captures after this move is zero. It is not
sufficient for Black, thus the move Rc2 x c3 is a dangerous move. But the end of
plan P29 is in the second list of plans of the node corresponding to Rc2 x c3:

P49. d5 V
d8d1
dlgl*

The first thing to do in trying to correct the bad effects of the dangerous move is to
execute the plans of its second list, and particularly P49. As d5 is empty, the
verification succeeds. Thus Rd8d1 is generated. The balance of the captures is not
positive for Black after this move, but the plan is not finished. A null move is
generated for the opponent, then with the last statement Rdl x g 1 . We have the
following moves:

1 Nd5 x c3
2 Rc2 x c3 Rd8d1
3 0 Rdl x gl.

The balance is now good for Black. White determines why it is not good for
him. The moves Nd5 x c3, Rd8d1 and Rdl x gl are dangerous and he tries to counter
them, using the same methods.

2.4.2. The first class: generation of new capture moves
A new capture move is a move created by the dangerous move or by the friendly
move played just before. A move M1 creates another move M2, if M2 is not a
legal move before M1 is played. Each move changes two squares of the board (it
is true because we do not program castling and capture en passant). The last two
moves change at most four squares: it may happen that they change the same
square. The program looks for the capture moves which may be created by each of
these changes. If one of these changes is that the square becomes occupied by an
enemy man, it examines if it is possible to capture this man. If the change is that
the square becomes occupied by a friendly man, it examines if it is possible to
capture with this man. If the change is that the square becomes empty, it examines
if a friendly queen, rook or bishop is on a line including the square, and if there is
an enemy man on the other side of this line.
Such moves are new capture moves. They are kept only if the capture is interesting:

if the capturing man has a value greater or equal to the value of the captured
man, the program sees if there is a possible sequence of captures where it wins
some material advantage, whatever the opponent plays. If it cannot find such a
sequence, the move is eliminated.

Artificial Intelligence 8 (1977), 275-321

21

302 J. PITRAT

EXAMPLE M39 (Fig. 1). After 1 . . Nd5 x c3 two squares changed: d5 and c3.

For instance c3 is now occupied by a black knight. This move is dangerous for

white. But there is a new move capturing the white knight on c3: Rc2 x c3. If

the rook c5 recaptures, it is recaptured by the rook on cl. For White the balance

is good: one knight, and a plan with only the move: Rc2 x c3 is generated.

In the same way after 1 Nd5 x c3, 2 Rc2 x c3 Rd8d1, squares dl, d8, c2, c3

have changed in the last two moves. If Rd8d1 is a dangerous move for White

(and it is if Rdl x gl is generated after a null move of White), the program looks

for moves capturing the rook on dl. There are Qe2 x dl and Rd l x dl which give

a good result for White. The program has generated a part of the tree of Fig. 8.

For each new capture move, the program generates a plan with only one state-

ment describing the move. But it generates other plans. Let Q be the dangerous

move, R the friendly move just before Q and P a plan of the first list of R, i.e.

one of the plans which created move R. Its first element is move R. Let P' the plan

beginning at the second statement of P. The program generates a plan beginning

with the new capture move followed by the end of the old plan: P'. This is important.

For instance after an exchange the program must not forget its initial plan; if the

opponent plays a capture move which has nothing to do with the program's

plan, it may be necessary to recapture at once (with the new capture move) and

then to go on with the execution of the old plan.

EXAMPLE E2 (Fig. 6). When executing P44, after 1 Re 1 x e6, Black can play

1 . . Ba7 x d4 which destroys the dangerous move Nd4 x e6. After Ba7 x d4 which

is dangerous for White, the end of P44 is first tried:

P50. f7 V
f 3f 8
f8g8*
f8 EK
d4e6
e6f 8*
e6c7*

But the verification, f7 empty, fails. The program looks for a new capture

move. There is a change on d4 and it can capture the black bishop with 2 Nb3 x d4.

So a plan is generated, beginning with this move and followed by the end of P44:

P50.

P51. b3d4
f7 V
f3f8
f8g8*
f8 EK
d4e6
e6f8*
e6c7*

Artificial Intelligence 8 (1977), 275-321

A CHESS COMBINATION PROGRAM WHICH USES PLANS 303

If after 1 Re 1 x e6 Ba7 x d4 2 Nb3 x d4, Black plays f7 x e6, White tries at once
the plan beginning with the second statement of P51. As f7 is empty, the verification
succeeds and the program plays without new analysis the good combination. The
exchange: Ba7 x d4—Nb3 x d4 does not disturb the program which does not
forget its initial plan.

2.4.3. The three following classes: destroying the dangerous move

If a friendly man on square S is captured in the dangerous move, a plan with the
modification S F NF is generated. If the balance of the captures is good at the
level where the plan is executed, the man is first removed without threatening.
This is the second class. In all cases, for the third class the man is removed and has
to threaten at the same time. The modification statement is now S F NF*.

EXAMPLE E42 (Fig. 2). If the following moves have been generated: 1 Rd1d7,
no-move. 2 Rd7 x e7, the last move is dangerous for Black. But the balance after
Rd1d7 is zero, so is good for Black—which has only to prevent a combination of
White. Thus the following plan is found

P52. e7 F -+ NF

The king plays and it is not necessary that it threatens.
If the preceding steps fail or if the dangerous move is not a capture move, other

methods are used in the fourth class of possibilities.
—If T is the square occupied by the enemy man which moves in the dangerous

move, the modification statement T En NEn is generated for removing this
man. If later in the plan it is necessary to capture on square T, T En -> ENn is
generated instead: the man must be removed, but the square must be always
occupied by an enemy man.
—If some intermediary squares Di must be empty for the dangerous move,

the statement Di V NV are generated. If the balance is not good, we indicate
with an asterisk that a threat is necessary.

EXAMPLES M58 (Fig. 3). After 1 . . Qb6e3 +, the opponent plays the dangerous
move 2 • Qh3 x e3. After this move, there is no new capture move and Black cannot
move his queen from e3, since her presence is necessary on that square for realizing
the end of the plan: Qe3 x el. Then the program tries the fourth class: remove the
queen from h3 and it obtains P31 which has already been seen.

P31. h3 Q +) NEQ
b6e3
e3el*

But it can also move a man to g3 or f3. We have seen P40 which gives the solution:

P40. g3 V NV*
b6e3
e3el*

Artificial Intelligence 8(1977), 275-321

304 J. PITRAT

It is necessary to threaten: at the beginning, the balance of captures is zero and it
is bad for Black who wants to win some White man.

There are several other trials in the fourth class. For instance the program pro-
tects the square where the enemy man moves in the dangerous move. I do not
detail them.
An important problem arises for these three classes. At what level of the tree,

the new plan must be executed. Generally the plan is put in the second list of plans
of the enemy move V preceding the friendly move R which precedes itself the
dangerous move Q. The first move of the new plan is considered instead of move
R which is unsuccessful.
But in some cases, the new plan is placed at another node. If, for instance, move

V is a check. It is necessary to destroy this threat and it is not possible to realize a
modification for destroying another threat at this level. Therefore the plan is
placed two ply higher in the tree. The best solution in all cases would be to consider
the plan after each enemy move preceding the dangerous move. But, as the tree
is often very deep, there would be too many plans. There are other exceptions: if
two enemy moves capture successfully on the same square, the program destroys
also the second move at the place where it destroys the first one. Curiously enough,
these heuristics which seem rough do not lead to trouble.
The program can notice that it is not possible to destroy a dangerous move played

in the initial position for these three classes. In that case, the possibilities of the
fifth class are immediately considered.

Another important problem is to find the subplan which follows the modification
statement. We have found that generally the modification must be made after
the enemy move V preceding the move R which precedes the dangerous move Q.
A new plan generated by the program is composed of the modification statement
followed by one plan of the first list of plans of move R: plans which indicate to
consider this move. Thus the program generates as many new plans as there were
in the list. If the balance of captures is good for the player after the enemy move V,
the plan composed with only the modification statement is also considered. If
the modification is tried at another level (for instance V is a check), the program
uses the plans of the first list of its move preceding V. There is an exception if the
enemy move preceding W is still a check. We use the same method two ply higher.

EXAMPLE E2 (Fig. 6). We suppose that White has found the main variation

1 Rel x e6 f7 x e6
2 Qf3 x f8 + Kg8 x f8
3 Nd4 x e6 + K plays
4 Ne6 x c7

Black looks for the dangerous White moves. Among them, there is Ne6 x c7.
Black cannot destroy this move after Nd4 x e6 or Qf3 x f8 which gives a check.
Therefore he tries to destroy Ne6 x c7 after the white move Re 1 x e6.

It is not possible to generate a modification statement for e6 because it is necessary

Artificial Intelligence 8 (1977), 275-321

A CHESS COMBINATION PROGRAM WHICH USES PLANS 305

for destroying Ne6 x c7 to remove the white knight from e6 and, in the position

after Rel x e6, there is not a white knight, but a white rook on e6. It is impossible

to remove a man which is not on the square. But it is possible to generate a modi-

fication for square c7: F --> NF*. It is necessary to threaten because White has

already won a knight.
Among the plans generating f7 x e6, there is certainly the plan including only

this move: this is a new capture move. So, after 1 Rel x e6, Black will try the plan:

P53. c7 F —> NF*
f7e6*

Black does not forget that, after removing his queen, he has to capture the rook

on e6 with his pawn f7.
P53 generates several plans: the queen has many threatening moves. One of

them is:

P54. c7d8
d8d4*
c7 NF
f7e6*

If white moves his knight, Black remembers that he can also capture the rook,

although this move is no longer a new capture move. It is a new capture move

only after 1 Rel x e6, not after 1 . . Qc7d8, 2 Nd4 plays. Let us give an example

of a variation found by the program:

1 Rel x e6 Ba7 x d4
2 Nb3 x d4 Rf8d8
3 Re6e4 f7f5
4 Re4f4 g6g5
5 Rf4 x f5 Rd8 x d4
6 Rf5 x g5 + Kg8h8

Ba7 x d4 is generated for destroying the move Nd4 x e6 of the main variation. Rf8d8

destroys the move Qf3 x f8 and attacks the knight on d4. As this knight is protected

by the rook, the program tries to remove this piece with f7f5 and g6g5. The White

moves Rf4 x f5 and Rf5 x g5 are new capture moves.
We can notice that the program stops because it has won what was wanted: two

pawns. It does not generate the mating move 7. Qf3f8 . It is not necessary to

try to mate on some variation if it is impossible for the other variations. If it was

required to mate, the program would naturally find the good move at the sixth

step (2.4.5).

2.4.4. The fifth class: the interferences between combinations

The program generates the plan in the initial position for the player who has to

find a combination. But it generates them also as if the opponent could play

first. It examines if some difficulty prevents the immediate realization of a plan:

Artificial Intelligence 8 (1977), 275-321

306 J. PITRAT

obstacle, enemy man which is protected. . . If, deeper in the tree, after a dangerous
move, this difficulty has disappeared, the initial plan is tried. If there is no difficulty,
the plan is always tried, if it is possible.

EXAMPLE T169 (Fig. 9). Black tries to win at least a pawn. The program generates
also the white plans as if White could play first.

8

7

6

5

4

3

2

1

FIG. 9. T169: Black to play.

8

, r
i

' r/ v
A / A

V/
A

Y V7074i,
/al4,•, i z

/ a„ A

a

7

6

5

4

3

2

11 i if v
•i,-, .4., 4

/

, / ' • _„%
V Y

A A A

A

7

/A •.„„V MI'

a

FIG. 10. T149: Black to play.

The queen on b6 and the pawn on e4 are attacked and not protected. Thus
White will try, after black's dangerous moves, these two following plans:

P55. c4b6*

and

Artificial Intelligence 8 (1977), 275-321

A CHESS COMBINATION PROGRAM WHICH USES PLANS 307

P56. c3e4*

After the sequence

1 Bd6 x h2 +
2 Kg1g2 Bh2 plays

Bh2 plays is a dangerous move for White. With the interferences, the moves

Nc4 x b6 and Nc3 x e4 will be considered, although they are not new capture

moves. If, instead of moving his bishop, Black would protect it with the queen,

White generates only the move Nc3 x e4. Plan P55 fails as the queen is not on b6.

EXAMPLE T149 (Fig. 10). Black tries to win at least a white pawn. If White

could play first, plan P57 would be interesting.

P57. e5 E --+ V
e2e7
e7c7*
e7f 8*

The queen attacks two unprotected men. But it is necessary that e5 becomes empty.

If later, after a dangerous black move, White finds the square e5 empty, it tries

the plan P57. For instance after the sequence

1 Be5 x h2 +
2 Kg 1 x h2 Qg5h4 +
3 Kh2g1 Qh4 x a4

the move Qh4 x a4 is a dangerous move. As e5 is empty, White tries the plan P57

and generates 4 Qe2e7.

2.4.5. The sixth class: a limited analysis

In the dangerous move, an enemy man moves to some square S. The program

tries to use that fact for creating a plan attacking S. For instance it looks for a

double attack on S and some other man. If the king is on S, it tries to mate it.

It uses for this the limited analysis statement defined in Section 2.1.4. Its execution

is described in Section 2.3.4.

EXAMPLE E2 (Fig. 6). When the program executes P35, it gets:

1 Re I x e6 f7 x e6

2 Qf3 x f8 + Kg8 x f8

Black's moves are new capture moves. The move Kg8 x f8 is dangerous for White.

The limited analysis on square f8 indicates that it is possible to attack the king

and the queen on c7 with the knight. So, the following plan is considered

P58. d4e6
e6f8*
e6c7*

Artificial Intelligence 8 (1977), 275-321

308 J. PITRAT

This is another way for finding the combination. It is not so fast as with P50,
which gives it directly. Generally the program has several ways for finding a
combination. Some way is more natural and is found first.

EXAMPLE M9 (Fig. 5). After 1 Qhlel +, Black can play Kd2c2 and White
cannot continue the execution of P42: the verification, el EK, fails. Kd2c2 is a
dangerous move; the program examines if it is possible to attack the man which
moved (here the king) on its new square. It is possible to attack the queen and a
square next to the new square of the king.

P59. cl NEK EK
f2d3
d3c1*
d3f4*

which gives:

P60. elcl
cic2*
cl EK
f2d3
d3c1*
d3f4

We have now the sequence
1 Qhle 1 + Kd2c2
2 Qe1c1+

If Black captures the queen, the bishop is won immediately with the double
attack 3 Nf2 x d3 +.
Some other possibilities than the limited analysis are tried. If the friendly man,

which moved during the move before the dangerous move, has not been captured,
the program looks for a double attack with this man. If the friendly move before
the dangerous move was a check, and if the opponent secured his king without
moving it, the program looks however for a new attack of the king: something
around the enemy king has changed. It is good to examine the new position.
Some heuristics, which were already used for a general game playing program

(Pitrat [13]), are used by the program. Their goal is to study first the dangerous
moves which are the more interesting to correct.
For instance, in the tree of Fig. 8, it is sufficient to correct one of the following

dangerous moves: e3 x f4, Rc2 x c3, Rd l x c3, Qe2 x dl. But it is not sufficient to
correct Rd l x dl, because it would be also necessary to correct Qe2 x dl.

I do not describe again the method given in Pitrat [13]; the important thing is to
remember that the program orders the dangerous moves and tries to correct first
moves such that, if it succeeds, there are as few other dangerous moves as possible
to correct afterwards.

Artificial Intelligence 8 (1977), 275-321

A CHESS COMBINATION PROGRAM WHICH USES PLANS 309

Because it is frequently easy to correct a dangerous move in generating new
capture moves, however we try quickly this possibility for all the dangerous moves.
If ten dangerous moves must be corrected, and if they are corrected easily with
new capture moves, it would be bad not to consider this possibility.

3. Results

The program was written in FORTRAN IV for the IBM 370-168 of the C.N.R.S.
It has more than 7000 instructions. List processing is done by using subscripted
variables. There is a garbage collector.
The values of all the parameters were the same for all the combinations given

to the program: the value of the men used for computing the balance of the

captures, the number of modifications accepted in a plan (at most two for the

analysis of the initial position, one in the other analyses).
One hundred and eighty-four positions were proposed to the program. They

were taken in chess books (generally Tarrasch [16] and du Mont [5]). No move

threatening mate was necessary for finding these combinations. We considered

100 positions given by Tarrasch in which there was a combination giving a material

advantage. Many positions of this book could not be given: for some variations,

the player won only a positional advantage, or the opponent played a move

which was not the best one. In the others books, the positions were selected out

of a larger set; there were no laws for selecting them, except we always considered

a position if the author specified that the combination had not been found by the

player in the real game.
The notion of branching factor has no sense for the program. It studies all the

moves that are natural, for some reason, to consider. If there is no such move, it

generates nothing. But in one case it has considered 26 enemy moves at depth 12.

There was a reason for considering each of them. There is no limitation in depth,

nor in width for the tree. If there is really a combination, it is easy to refute quickly

the greatest part of the enemy moves. After most of them a plan generated higher

in the tree can be executed or there is a new capture move. In both cases, the good

move is quickly found.
The difficulty for the program is not to find the main variation of the combination.

The program finds it generally very quickly. For instance for E2 (Fig. 6), the plan
P43 which gives it was the 11th plan generated after the initial analysis. And the
program had to consider more than 12 700 plans! The reason is that the opponent

has many ways for escaping from a threat, and the program has to refute all of
them. In a difficult position, the program may be obliged to find hundreds of small
combinations. If it does not see only one of them, it fails.
The more difficult combinations are those where it wins only a pawn. It is easier

to find a mating combination, and generally combinations where there are many
checks: the opponent has only a few replies. If the program must win a pawn, the
opponent has many ways for capturing another pawn and the tree quickly grows
very large.

Artificial Intelligence 8 (1977), 275-321

310 J. PITRAT

It is difficult to be sure that the program does not forget some interesting variation.
In the books, there are only a few moves and the program, usually, finds them
quickly. The problem begins with the other moves. Generally, when there is a
sacrifice, the author of a book indicates only what happens if the opponent captures
the man; for the program, the main difficulty is to see what happens if the sacrifice
is not accepted.

3.1. Some examples
First we give two examples where the program succeeds and finds the solution
given in the book.

Berliner [2] proposes the position B5 (Fig. 11) which shows the importance of
developing a very deep tree. The program finds:

8

7

6

5

4

3

2

a

Flo. 11. B5: White to play.

1 Qe2h5 + Nf6 x h5
2 f5 x e6 + Kf7g6
3 Bb3c2 + Kg6g5
4 Rflf5 + Kg5g6
5 Rf5f6 + + Kg6g5
6 Rf6g6 + Kg5h4
7 Rele4 + Nh5f4
8 Re4 x f4 + Kh4h5
9 g2g3 any move
10 Rf4h4 0

The initial plan generating Qe2h5 is found because the queen on h5 controls
all the squares where the king could move and gives a check. The following moves
are generated by limited analysis statements, except move g2g3. The program
played first 9 Rf4h4. But Black plays the dangerous move 9. . Kh5 x h4. White

Artificial Intelligence 8 (1977), 275-321

A CHESS COMBINATION PROGRAM WHICH USES PLANS 311

finds a plan controling the square h4, before playing Rf4h4. Particularly it controls

the square with g2g3.

EXAMPLE M42 (Fig. 12). This was the most difficult combination found by the
program. The basic idea came from the following fact: the black king can move
only to squares on the eighth rank. So it is interesting to move a rook to that rank.

8

7

6

5

4

3

2

1

a

Fro. 12. M42: White to play.

P61. e2e8
e8g8*

But the rook on e8 is protected by the rook on c8 and the queen on d7. After
the failure of P61, the program generates:

P62. d7 EQ NEQ
e2e8
e8g8*

which gives, among other plans:

P63. d4g4
g4d7*
d7 NEQ
e2e8
e8g8*

If the black queen captures the white one, White executes the following steps
of P63 and wins. Black can play his queen on squares where she controls e8 and
where she cannot be captured. So it plays after 1 • Qd4g4, Qd7b5. When White
tries again 2 • Re2 x e8, the queen on b5 appears to be dangerous. After 1. Qd4g4—
Qd7b5, it generates:

P64. b5 EQ --+ NEQ
e2e8
e8g8*

Artificial Intelligence 8 (1977), 275-321

312 J. PITRAT

which gives

P65. g4c4
c4b5*
b5 NEQ
e2e8
e8g8*

If the black queen captures the white one, White wins in executing the following
statements of P65.

Finally the program finds the main variation

1 Qd4g4 Qd7b5
2 Qg4c4 Qb5d7
3 Qc4c7 Qd7b5
4 a2a4 Qb5 x a4
5 Re2e4 Qa4b5
6 Qc7 x b7

either the black queen is captured or it loses the control of square e8. In that case
the plan

P66. e4e8
e8g8*

can be executed and White wins.

There are many other variations. For instance
5 Re2e4 Re8 x e4
6 Qc7 x c8 + Re4e8
7 Qc8 x e8 +

It is necessary to consider many other black moves. For instance after 3 Qc4c7,
Qd7a4. Also White has many possibilities for threatening the black queen. Instead
of 4 a2a4, it may play 4 Qc7 x b7 or instead of 5 Re2e4, 5 b2b3. It is not easy to
see that these moves are not the good ones, and the program wastes much time in
examining their consequences.
The program has a problem more difficult than the problem solved by the author

of this combination. It is easy to see that, after 1 • Qd4g4, White does not lose a
man, Black can only play Qd7b5. This is sufficient for playing the move. But it is
not so easy to be sure that, in the initial position, White wins something whatever
Black plays. A player can play a move if it has proved that he wins a piece for
some opponent's replies and that he loses nothing for the other replies. On the
other hand, the program must prove that it wins a piece for all the opponent's
replies.
We could give examples of combinations found by the program, although

champions such as Smyslov, Euwe, Tshigorine, Reshevsky, Ed. Lasker, Pillsbury
do not see them. But it is not very convincing because:

Artificial Intelligence 8 (1977), 275-321

A CHESS COMBINATION PROGRAM WHICH USES PLANS 313

—even a grandmaster can play a bad move, especially in case of time pressure.
It was the case of E42 (Fig. 2): master Prins did not see the combination because
he had to play 12 moves in a few minutes.
— a program can always find anything if its programmer knows what it has to

find.
Therefore we will see some other examples, of perhaps easier combinations,

but where the solution found is different from the one given in the book. We did
not know the solution found by the program.

— M9 (Fig. 5). The author of the book indicates:

1 Qhlel + Kd2c2
2 Qe1c1 + Kc2b3
3 Qc1b2 + Kb3c4
4 Qb2b4+ Kc4d5
5 Qb4d6+ Kd5c4
6 Qd6c5+ Kc4b3
7 Qc5b4+ Kb3c2
8 Qb4b2 + Kc2 x b2
9 Nf2 x d3 + K plays
10 Nd3 x f4

The program finds a shorter combination; it wins a queen instead of a knight
from the position obtained after the first eight ply.

The first four moves of the program are the same.

5 Qb4c5+ Kd5e6
6 Qc5d6+ Ke6f7 (if Ke6f5, Qd6f6 0)
7 e5e6+ K plays
8 Qd6 x f4

There is a position very similar to M9 given by Le Lionnais [11]. We call it
L180. There is a white pawn on f6 and the square g5 is empty. In this case the second
combination is not possible and the program finds exactly the combination given
by du Mont.
The program does not see that it is always doing the same maneuver when it

finds the combination for L180. As the black king always moves, it makes a limited
analysis on the new position of the king. It sees that a double attack would be
possible if the enemy king moved to some square and it brings its queen on this
square, prompting the king to capture her.

— M75 (Fig. 13).
The author gives a combination which seems good, beginning with 1 Re3 x e4—

followed by 2 f5f6 + .

But he says that the fork 1 f5f6 + is not possible because the black knight in e4
prevents it. However the program finds a combination beginning with the fork.

Artificial Intelligence 8 (1977), 275-321

314

8

7

6

5

4

3

2

7 A 4
U• flI
/ gilk X /X

A:;',•/ 7 .,,,,,7 V
A A ,/

x
AA 7,1

, r.... ,7 / 7 ▪ ,
/ , /, A

a

J. PITRAT

FIG. 13. M75: White to play.

In reality, during the experimentations of the program, it found two such combina-
tions. We give here the more simple.
The initial plan is the double attack

P67. f5f6
f6e7*
f6g7*

After 1 • f5f6 +, Black has the new capture move. Ne4 x f6
But, the initial analysis gave other plans than P67:

P68. e4 E V
e5 F V*
e3e7*

This plan comes from the observation that the rook e7 is not protected.
When the program tries the interferences after the dangerous move Ne4 x f6,

it sees that the modification e4 E -4 V has been realized. So it tries after 1 f5f6
Ne4 x f6 the plan

P69. e5 F ,y*
e3e7*

There are several ways of threatening with the knight e5. Particularly it may
attack a square next to the enemy king. This gives:

P70. f6 NEK EK
e5g4
g4f6*
e5 V
e3e7*

Artificial Intelligence 8 (1977), 275-321

il

,

A CHESS COMBINATION PROGRAM WHICH USES PLANS 315

White can capture the man on square f6 for inducing the black king to move to

this square

P71. flf6
f6 EK
e5g4
g4f6*
e5 V
e3e7*

This plan gives the main variation; the black moves are new capture moves or

destroy a move capturing his king.

1 f5f6 + Ne4 x f6

2 Rfl x f6 Kg7 x f6

3 Ne5g4+ Kf6g7
4 Re3 x e7

It seems that the combination given in the book does not hold for several

situations. The program finds two cases in Du Mont [5] and three in Tarrasch [16].

We give one of them.

T149 (Fig. 10). It is easy to find the moves given in the book

1 Be5 x h2 +
2 Kgl x h2 Qg5h4+
3 Kh2g1 Qh4 x a4.

Black wins a pawn. This combination is based on the possibility of a double attack

on the pawn h2 and the bishop a4. But we have seen earlier (2.4.4) that White

sees the interference with the initial plan

P57. e5 E -+ V
e2e7
e7c7*
e7f 8*

As after 3.. . Qh4 x a4, e5 is now empty, the program considers Qe2e7 with the

hope of recapturing a pawn. This is a very dangerous move. It is not evident that

the more important thing for Black is to protect at once the rook f8 and the pawn

c7. But, if he wants to do it, he can only play Bc8d7. Then the program plays

Rfl f4 threatening the queen. If the queen moves, the program considers Rf4h4

threatening the pawn h7 and the mate. There are many variations, but it seems

likely that there is no combination for Black in the initial position.

3.2. The failures of the program

The program does not find 3 of the 184 combinations.

The first failure was for T169 (Fig. 9). The tree is too large and the program

stopped because the available storage was not sufficient. It had found the main

Artificial Intelligence 8 (19-i7), 275-321

316 J. PITRAT

variations, but many moves may be considered if the sacrifice of the bishop is
not accepted: after 1 . . . Bd6 x h2 + 2 the king moves to hi or g2, the situation
is very intricate. Three black men are en prise: the queen on b6, the bishop on h2
and the pawn on e4. White has many possibilities for trying to recapture at least
a pawn. It seems that there is really a combination where Black wins a pawn, but
it is necessary to develop a very large tree if we want to be sure of this.
The two other failures have another reason. Let us see one of them: T148 (Fig. 14)

8

7

6

5

4

3

2

a

A A A

Flo. 14. T148: Black to play.

The program finds easily

1 Bc5 x d4
2 e3 x d4 Qd8b6

and sees that the pawn on d4 cannot be protected. If 3 Bc1e3, the pawn on b2 is
captured.
But White tries to capture the pawn on d5 and considers
3 Be2f3 Nc6 x d4
4 Nc3 x d5 Nf6 x d5
5 Bf3 x d5

As the balance is zero, the program estimates that there is no combination for
Black. But it has not seen the black move 5 . . Ra8d8 followed by Nd4c2, if the
bishop on d5 moves. This last move threatens the rook on al and the queen on dl.
This is not a hopeless failure. The combination beginning with Ra8d8 succeeds

because the white bishop on d5 is not protected. But white has just moved this
bishop. So, a small modification of the limited analysis, which bares precisely on
the square d5, would give the combination. I do not implement this because it is
not good to modify a program for a failure which occurs only once.
The correction of the third failure would require also a slight modification of

the limited analysis.

Artificial Intelligence 8 (1977), 275-321

V.

A CHESS COMBINATION PROGRAM WHICH USES PLANS 317

In the three cases, the failure came from a variation which was not considered in

the book.

3.3. Some statistics

TABLE 1.

Position P N NR DR MER F FL

M39 5290 2157 135 11 17 16 47 24.1 6.26

E42 769 305 35 7 8 12 35 2.73 11.48

M58 8437 2985 293 19 12 10 56 32.5 9.82

T117 529 218 69 7 12 7 36 2.91 31.65

M9 6474 3277 180 19 8 11 22 28.3 5.49

E2 12766 4800 790 17 26 17 47 71.4 16.45

M3 3173 1810 76 9 12 14 35 11.6 4.20

B5 17619 6439 117 21 4 5 44 68.8 1.82

M42 59748 22223 2454 23 26 5 44 448.9 11.04

M75 6511 2946 159 19 21 8 38 25.7 5.40

L180 16536 8110 189 19 8 13 22 74.7 2.33

1NIT 9 0 0 0 0 0 20 0.42 —

The positions are given in the order where they appear in the paper. L180 is

M9 (Fig. 5) with a white pawn on f6 instead of g5. INIT is the initial position in

chess. Naturally there is no combination! This position was given to show that

the program wastes no time when it is evident that there is nothing to find. It

generates plans such as:

P72. a2 F —> V*
a7 E —> V
a! a8*

This plan does not generate a move: it is impossible to threaten some black man

with the pawn a2. The computer time is mainly used for initializing the list storage.

P is the number of plans generated by both players.

N is the number of nodes of the tree. We have always P N, since a node is

generated by at least one plan, but a plan does not generate always a node, and

several plans may generate the same node.

NR is the number of nodes of the "reduced" tree: When the first player plays, we

keep only the winning move, and we keep all his opponent's moves after this

move. NR indicates the minimum number of nodes necessary for justifying the

combination.

DR is the maximum depth (in ply) of the reduced tree. If, in some variation,

there is a mate, we count the move capturing the enemy king. This depth is often

greater than the depth of the main variation. The maximum depth may occur for

another variation. The program may also generate moves after the last move of

Artificial Intelligence 8 (1977), 275-321

22

318 J. PITRAT

the main variation: it has to be sure that its opponent cannot recapture some
friendly man.

MER is the maximum number of enemy moves considered after a friendly
move in the reduced tree. This maximum may be reached at any level. For M42,
26 enemy moves are considered after a friendly move at depth 11. When there are
many enemy moves, the greatest part is generally quickly refuted. For instance for
E2 (Fig. 6), after 1 Re 1 x e6 the program considers 26 black moves (Black has
35 legal moves). But for 15 of them the tree following them has only one move.

F is the number of friendly moves considered at the first level of the tree.

FL is the number of legal moves in the initial position. So F FL.

T is the C.P.U. time in seconds of IBM 370-168. The times given are large,
because we give some difficult combinations. Generally they are smaller than 5
seconds.

r is the ratio (100*NR)/N. We have obviously r 100. If r = 10, it does not
mean that only 10% of the generated moves are well chosen. If a friendly move M
is not very good, all the moves of the subtree following R are counted in N and not
in NR. However many moves of this subtree are well chosen. It is also necessary
to generate a friendly move which is not the best one for finding what goes wrong
after this move. In generating another friendly move, the program corrects what
was bad.

Thus it is normal to get values of r which are small.

4. Conclusion

4.1. Comparison with chess playing program

This program was not made for playing chess. There are four main things to change
if we want to include it in a chess program.

In a chess program, it is not possible to give the wanted value of a combination.
We could use some method such as the one described by Berliner [3] with his
pessimistic values.

It would be necessary to program the complete rules of chess, including castling,
capture en passant, stalemate. These rules complicate the program and are rarely
useful in combinations.
In the analysis of the positions, we deliberately removed the possibilities of

threatening mate and the attack of men (except king and pawns) with few moves.
It is not a question of computer time, the analysis is done only once and if there
is no possibility of threatening mate, no move is generated. The difficulty is to
program the way of getting such plans and to experiment the program. It is possible
to do this work, but another year is needed for achieving this.
The number of combinations with which the program has been tried is not

sufficient. It would be necessary to modify some parts of the program, for instance
the method for generating plans of double attacks. There are certainly very simple
Artificial Intelligence 8 (1977). 275-321

A CHESS COMBINATION PROGRAM WHICH USES PLANS 319

combinations that the program would not find. But it is a very lengthy work to

achieve this.

We think that a program of a grandmaster strength is possible in starting from

this program and from the program developed by Berliner. But such a program

would be very large, for instance 50 000 Fortran instructions. And it would be

necessary to experiment with it for a long time.

Finding a combination would be the most important part of this program.

This is the main reason for which programs develop large trees. For positional

playing, methods presented by Gillogly [9] seem interesting. But it is also necessary

to use the positional interest of a position in evaluating the tree.

It would be also necessary to find plans for endgames. These plans are rather

different; all the moves will not be described, but only the main steps: try to promote

pawns PI or P2, for that the king is brought near them . . . A very difficult study

would be necessary.
It is natural that programs like Berliner's are beaten by programs which develop

very large trees. It is difficult to write a program which reasons; this program must

be a very big one, and it is sufficient that a small part is missing for playing a bad

game. It is likely that, in developing the tree a part of the program, where there is

a bug or where the chess analysis is not well made, is used. In consequence a very

bad move may be chosen.
But it is the only way, in our opinion, for realizing a program which plays very

well. It is unlikely that a simple program could do this. Chess is a very complicated

game and very complicated programs are necessary.

4.2. Learning

As the program will be very complicated it would be interesting to write a learning

program. The main difficulty is to find how we can analyze a position for finding

8

6

5

4

3

2

•///, W A
4.

A A A A
<

V r/A A A
r Aik

, V

'F`i4Y
/

 --„,, Z
a

FIG. 15. T99: White to play.

Artificial Intelligence 8 (1977), 275-321

320 J. PITRAT

good plans. In Pitrat [12, 1, 17], we described a program which could learn how to
find plans for combinations. It learned when it received the moves of a game really
played. It understood the combinations which occurred, and even those which
were tried, but failed. It understood also how a combination had been refuted.
The program generalized the combination and generated a pattern: if some

conditions are realized, try the following plan.
For instance, receiving for T99 (Fig. 15), the moves

1 Rflel d7d5
2 d2d3 Ke8f8
3 d3 x e4

the program learned the three following patterns:
(1) If the enemy king and a man of value greater or equal than the knight are

on the same file or rank, consider the plan: try to bring a rook on the line, then
capture the enemy man, or, if it moves, capture the king.
(2) If a friendly knight is pinned on the king by a rook, try to protect the knight

with a pawn.

(3) If an enemy knight (or a man of greater value) is on the same file or rank
than the enemy king, if our rook is on this line and if the knight is protected,
attack it with a pawn.

The first two patterns do not succeed in the real game. However the program
stores them. If there were no pawn on d2, the second one would also be good.
Such a program would certainly be useful. But the patterns found by this learning

program were not as good as those that we found. There is still much work to do
for experimenting learning programs.

4.3. Application to other areas than chess

The program is doing a very sophisticated analysis of the initial situation. It
generates plans and executes them. If everything is good, it does not analyse the
intermediary situations. If something goes wrong, it analyses what is wrong. It
tries to correct it in several steps, beginning with the methods which have the
greatest chance of success.

This method is general, and useful in other areas than chess. There are two main
reasons for its success.

At each level of the tree, the program considers only natural branches. When it
knows what happens after some node, other nodes at the same level become
natural, because they correct what is wrong. For instance in games, a sacrifice is not
natural, and must not be considered first. But if it sees in developing some other
node, that an enemy man is troublesome, it considers a sacrifice which removes
this man. The tree is not very large. This seems specially interesting for solving
practical problems, where many actions are possible.
Artificial Intelligence 8 (1977), 275-321

•

•

•

•

A CHESS COMBINATION PROGRAM WHICH USES PLANS 321

For many nodes, the program performs a very simple analysis, and even in

some cases, no analysis. It has to do a complete analysis only in the initial situation.

Later, the analysis is always directed toward a well-defined goal. It may be done

very seriously, since it is limited.

REFERENCES

1. Baylor, G. W. and Simon, H. A., A chess mating combinations program, Spring Joint

Computer Conference (1966) 431-447.

2. Berliner, H. J., Some necessary conditions for a master chess program. Third Int. Joint Conf

Artificial Intelligence (1973), 77-85.

3. Berliner, H. J., Chess as problem solving: the development of a tactics analyzer, Ph.D. Thesis,

Carnegie Mellon University (March 1974).

4. De Groot, A. D., Thought and choice in chess (Mouton, The Hague, 1965).

5. Du Mont, J., Les bases de la combinaison aux echecs (Payot, Paris, 1970). In English: The

basis of combinaison in chess (Routledge and Keagan Paul Ltd., London).

6. Euwe, M., Les echecs. Position et combinaison (Payot, Paris, 1966).

7. Fahlman, S. E., A planning system for robot construction tasks, Artificial Intelligence! (1974),

1-49.
8. Fikes, R. E., Hart, P. E. and Nilsson, N. J., Learning and executing generalized robot plans,

Artificial Intelligence 4 (1972), 251-288.

9. Gillogly, J. J., The technology chess program, Artificial Intelligence 3 (1972), 145-163.

10. Greenblatt, R. D., Eastlake, D. E. and Crocker, S. D., The Greenblatt chess program, Fall

Joint Computer Conference (1967) 801-810.

II. Le Lionnais, F., Maget, E., Dictionnaire des echecs (Presses Universitai de France, Paris, 1967).

12. Pitrat, J., Realization of a program learning to find combinations at chess, in: Simon, J. C., ed.,

Computer oriented learning processes (Noordhoff, Leyden, 1976) 397-424.

13. Pitrat, J., A general game playing program, in: Findler, N. V. and Meltzer, B. Eds., Artificial

Intelligence and heuristic programming (Edinburgh University Press, Edinburgh (1971)),

125-155.
14. Sacerdoti, E. D., Planning in a hierarchy of abstraction spaces, Artificial Intelligence 2 (1974),

115-135.
15. Siklossy, L., Dreussi, J., A hierarchy driven robot planner which generates its own pro-

cedures, Report TR-6, University of Texas at Austin (February 1973).

16. Tarrasch, S., Traite pratigue du jeu d'echecs (Payot, Paris, 1965).

17. Pitrat, J., A program for learning to play chess, in: Chen, ed., Pattern recognition and artificial

intelligence (Academic Press, New York, 1976) 399-419.

Received March 1976; revised version received August, 1976

Artificial Intelligence 8 (1977), 275-321

N,

I.

