
8

A Note on Inductive Generalization

Gordon D. Plotkin
Department of Machine Intelligence and Perception
University of Edinburgh

In the course of the discussion on Reynolds' (1970) paper in this volume, it
became apparent that some of our work was related to his, and we there-
fore present it here.

R.J.Popplestone originated the idea that generalizations and least
generalizations of literals existed and would be useful when looking for
methods of induction. We refer the reader to his paper in this volume for
an account of some of his methods (Popplestone 1970).

Generalizations of clauses can also be of interest. Consider the following
induction:

The result of heating this bit of iron to 419°C was that it melted.
The result of heating that bit of iron-to 419°C was that it melted.

The result of heating any bit of iron to 419°C is that it melts.

We can formalize this as:
Bitofiron (bit 1) A Heated (bit 1,419)z Melted (bit 1)
Bitofiron (bit 2) A Heated (bit 2,419)= Melted (bit 2)

(x) Bitofiron (x) A Heated (x, 419) Melted (x)

Note that both antecedents and conclusion can be expressed as clauses in
the usual first-order language with function symbols. Our aim is to find a
rule depending on the form of the antecedents which will generate the
conclusion in this and similar cases. It will turn out that the conclusion is
the least generalization of its antecedents.
We say that the literal L1 is more general than the literal L2 if Lia =L2 for

some substitution a. For clauses we say that the clause C1 is more general than
the clause C2 if C1 subsumes C2. Although the implication relationship might
give interesting results, the weaker subsumption relationship allows a more
manageable theory. For example, we do not even know whether implication
between clauses is a decidable relationship or not.
A least generalization of some clauses or literals is a generalization which

is less general than any other such generalization. For example, P(g(x), x)
is a least generalization of {P(g(a()), a()), P(g(b()), b())} and P(g(x), x)

153

MECHANIZED REASONING

is a least generalization of { Q(x) vP(g(a()), a()), R(x)v P(g(b()), b())}.
We give another, more complex example taken from a board game situation
later in the paper. Our logical language is that of Robinson (1965). MacLane
and Birkhoff (1967) is a good reference for our algebraic language.

PRELIMINARIES

We will use the symbols t, tli u, . . . for terms, L, Li, M, . . . for literals,
D, D1, D, . . . for clauses, 9 for a function symbol or a predicate symbol or
the negation sign followed by a predicate symbol.
A word is a literal or a term. We will use the symbols V, Vi, W, . . . for

words.
We denote sequences of integers, perhaps empty, by the symbols I, J,
We say that t is in the /th place in W if:

when I= <>, t= W or
when /.= <ii,. in>, then W has the form 9(ti, t,„) and ic‘...m and t
is in the <12, >th place in ti,. For example, xis in the <>th place in x,
the <2>th place in g(y, x) and in the <3, 2> th place in P(a, b, g(y, x)).
Note that t is never in the <>th place in L. We say that t is in W, if t is in

the /th place in W for some I.
< W2 (read Wi is more general than W2') iff W1o= W2 for some

substitution a. For example, P(x, x, f(g(y))) <P(1(3), /(3), f(g(x))).
We can take o= {/(3)1x, xly}.

< C2 (read 'CI is more general than C2') if C10 cC2 for some substitution
o. Cl< C2 means that Ci subsumes C2 in the usual terminology. For example,
P(x)v P(f())<.P(f()). We can take a= {fOlx}.
In both cases, the relation < is a quasi-ordering. We have chosen to write

Li <L2 rather than Li ?...L2 as Reynolds (1970) does, because in the case of
clauses, < is 'almost' c. Further, if Li is the universal closure of L and L2 is
the element of the Lindenbaum algebra corresponding to Li, then we have

<.L2 if L1—.4 iff Li <Li.

WORDS

Suppose that we can show that a property holds for variables and constants,
and that whenever it holds for t„ then it holds for 9(t1, • • tn)•

Then the property holds for all words. This method of proof is called induc-
tion on words.
We write Wv-, W2 when WI< W2 and W2 t‹. W1. As < is a quasi-ordering,

this defines an equivalence relation. It is known that Wi— W2 if Wi and W2
are alphabetic variants.
Two words are compatible if they are both terms or have the same predicate

letter and sign.
If Kis a set of words, then W is a least generalization of K if:

/. For every V in K, WV.
2. If for every V in K, W1 V, then Wt< W.

154

PLOTKIN

It follows from 2 that if W1, W2 are any two least generalizations of K,
then WI", W2.
We can define also the least generalization as a product in the following

category. The objects are the words and a is a morphism from V to W if
Va= Wand a acts as the identity, E, on variables not in V. V is then a least
generalization of WI, W2} if it is a product of W1 and 14'2. We could also
have defined the dual of the least generalization. This would just be the most
general unification of Robinson (1965) and would be the coproduct in the
above category. This approach was suggested in a personal communication
by R. M. Burstall, but we have not followed it up to any degree.

Theorem 1

Every non-empty, finite set of words has a least generalization if any two
words in the set are compatible.
Let TV1, W2 be any two compatible words. The following algorithm

terminates at stage 3, and the assertion made there is then correct.
1. Set Vi to Wi(i=1, 2). Set ei to E(i= 1, 2). e is the empty substitution.
2. Try to find terms tli t2 which have the same place in VI, V2 respectively
and such that t1+ t2 and either ti and t2 begin with different function letters or
else at least one of them is a variable.
3. If there are no such ti, 12 then halt. V1 is a least generalization of { TV1, W2}
and VI= v2, v,e,=w,(i=i, 2).
4. Choose a variable x distinct from any in V1 or V2 and wherever ti and 12
occur in the same place in V1 and V2, replace each by x.
5. Change Ei to {tilx}ei(i =1,2).
6. Go to 2.

Example. We will use the algorithm to find a least generalization of
{P(f(a(), g(y)), x, g(y)), P(h(a(), g(x)), x, g(x))).

Initially,
Vi=P(f(a(), g(y)), x, g(y))
V2=P(h(a(), g(x)), x, g(x)).

We take ti =y, /2=x and z as the new variable. Then after 4,
Vi=P(f(a(), g(z)), x, g(z))
V2=P(h(a(), g(z)), x, g(z))

and after 5,

el= {Yiz}, 62= {xlz}.
Next, we take ti =f(a(), g(z)), t2=h(a(), g(z)) and y as the new variable.
After 4 and 5,

Vi= P(y, x, g(z))= V2
ei= {f(a(), g(z))1y){y1z}
= {f(a(), g(y))jy, ylz}

£2= {h(a(), g(z))1y}{xlz}
= {h(a(), g(x))1y, xjz).

The algorithm then halts with P(y, x, g(z)) as the least generalization.

155

MECHANIZED REASONING

Proof. Evidently the compatibility condition is necessary. Let {W1,..., W„}
be a finite compatible set of words. If n=1, then the theorem is trivial.
Suppose that the algorithm works and that inf { V, W} is the result of
applying it to V and W. Then it is easy to see that

inf { inf { W2, inf { W-1, }
is a least generalization of the set. Hence we need only show that the
algorithm works.
The rest of the proof proceeds as follows. In order to avoid a constant

repetition of the conditions on ti, t2 given in 2, we say that ti and t2 are
replaceable in V1 and V2 if they fulfil the conditions of 2.
To show that the algorithm halts and that when it does V1= V2, we define

a difference function by difference (V1, V2) =number of members of the set
{IIft1, t2 are both in the Ith place in V1, V2 respectively then they are replace-
able in V1 and V2} . We also denote by VI, Vi the result of replacing t1 and t2 in
V1, V2 by x in the way described in 4.
Lemma 1.2 then shows that every time a pair of replaceable terms is

replaced the difference drops. Consequently by lemma 1.1 it will eventually
become zero and when it does, lemma 1.1 shows that we must have V1= V2
and the algorithm will then halt.
We still have to show that the replacements take us in the correct direction.

First of all, <V, since by lemma 1.3, (ti I x} = Vt. It is also immediate
from this that when the algorithm halts, VIci= W. Now suppose that W is
any lower bound of { W1, W2}. Then a lower bound Vis a product of 14'1, W2
if the diagram of figure 1 can always be filled in along the dotted line, so that
it becomes commutative in a unique way.

Figure 1

The category is the one defined above. In it there is either one or no
morphisms between any two objects and hence it is not necessary in figure 1

to name the morphisms. Indeed, if a diagram can be filled in at all, it can be
filled in commutatively and uniquely.
We show in lemma 1.4 that the diagram on figure 2 can be filled in cora-

mutatively.

156

PLOTKIN

Thus every time a replacement is made, the V are greater than any lower
bound of W1, W2. Consequently when the algorithm halts, we have a product.
We now give the statements and proofs of the lemmas.

Figure 2

Lemmal.!

If .V1 and V2 are distinct compatible words, then there are ti, t2 which are
replaceable in them.
Proof. By induction on words on V1. If one of VI, V2 is a constant or a
variable, or if they begin with different function symbols, then VI, V2 will
do for t1, t2 respectively.
If V1 is (a, tl,) and V2 i S 9(ti, ti), then for some i, a 0 tf and

by the induction hypothesis, applied to th there are ui, u2 which are replace-
able in ti, tf and as t, ti have the same place in VI, V2 respectively, they are
also replaceable in VI, V2
Lemma 1.2

If VI, V2 are distinct compatible words, thin Difference (VI, <Difference
V2).

Proof. By induction on words on VI. If one of V1 or V2 is a variable or a
constant then 1'1= V1, t2= V2 and VI = V =x, so 0= Difference (VI, VI) <1 =
Difference (V1, 112) •
If V1 isf(vi, v„) and V2 is g(ui, um) where f0 g, then if ti= Vi(i=

1,2), 0 = Difference (VI, < Difference (V1, V2), by lemma 1.1; otherwise,

Difference(ri, V'2) =1+ E Difference(v;, WI)
1,min(m.n)

<1+ E Difference(vi, ui)
i=1,min(m.n)

(by induction hypothesis, since m, n 0)
=Difference (V1, V2). In the remaining case

where V1 and V2 both have the form (p(ti, • • tn), a similar but less com-
plicated argument applies.

Lemma 1.3
Vi{tilx} = (i= I, 2).

Proof. Since Pi is obtained from Vi by replacing some occurrences of t1 in
Vi by x, and since x does not occur in Vi, substituting ti for x in V; will
produce Vi. (i=1, 2).

157

MECHANIZED REASONING

Lemma 1.4

If VI, V2 are distinct compatible words and Vag= Vi(i= 1, 2), then there are
al so that Vol= V1(i =1, 2).

Proof. It is convenient to denote by fi(ui, u2, t1, t2) the result of applying
the operation of 4 to ui, u2 on ui(i =1, 2).

Let al= {41h, urlYm} (1=1, 2);

vii=j;(ul, u, t1, t2)(i=1, 2;j=1, m);

vrly,„}(i=1, 2).

By lemma 1.3, ai=a1 { (i =1, 2). We show by induction on V, that:
if V, VI, V2 are such that Val= Vi(i =1, 2), then Vol= V(i= 1, 2).

Suppose that V is a constant, then V= Vi= V2 and the result is trivial.
Suppose that V is a variable, y. If y#yi for 1=1, m then y= V= Vi= V2 and
the result is again trivial. If y=yi say, then Val =fi(VI, V2, ti, t2) = V.
Suppose Vis (ul, • • u„) then if V/ = 9(wi , • • 14),

V ol= (u icrt, unol) = w„i) (by the induction hypothesis)
= V.

This concludes the proof.
The next lemma is used in the proof of the existence of least generalizations

of clauses.

Lemma 2

Let K= {Wili=1, n} be a set of words with a least generalization Wand
substitutions iti(i= 1, n) so that Wpi= Wi(i= 1, n).
1. If t is in W then t is a least generalization of {41111=1, n} .
2. If x, y are variables in Wand xpi =yui(i= 1, n) then x=y.

Proof. I. Evidently, t is a generalization of { I i= 1, n}. Suppose u is any
other and that 01= t pi(i=1, n). Let UT be an alphabetic variant of u such
that UT, W have no common variables. Let W' be W, but with t replaced by
UT wherever t occurs in W. Then z-1 Aiu pi is defined -- this follows from the

• construction of r - and Wi(r-121upi) = Wi(i= 1, n). Hence there is a v so
that W' v= W, as W is a least generalization of { W I i= 1, n}. Hence u(Tv) =
(us)v= t. Hence, t is a least generalization of {42'11=1, n}.

2. Suppose that yOx. Let W'= W {y1x} . Then W', Ware not alphabetic
variants, but W-.5 W'. Let W= W[x, y, y3, . . y„,], where x, y, y,. .
are the distinct variables of W. We have,

Wt= Witt= W[xiii, y, Y3P1, • • YmPil
=WIYIii• Ykii• .173Pi• • • •• y,,,] (by hypothesis)
= W[Y• Y• Y3, • • ••
=W'pi(by construction). (i= 1, n).

This contradicts the fact that W is a least generalization of { I i= 1, n
Hence y=x.
This completes the proof.

158

PLOTKIN

CLAUSES

Just as we did with words, we write when CED and DEC. This
defines an equivalence relation. We also say that C is a least generalization
of a set of clauses, S, when:

1. For every E in S, CE.
2. If for every E in S, DEE, then DEC.

Any two least generalizations of S are equivalent under However, when
CI— C2, C1 and C2 need not be alphabetic variants. For example, take

= (P(x), P(fK))); C2 = {P(fO)} •
It turns out that there is a reduced member of the equivalence class, under
of any clause. This member is unique to within an alphabetic variant.

C is reduced if D C, D C implies that C= D. In other words, C is reduced
if it is equivalent to no proper subset of itself.

Lemma 3

If Cp= C, then C and Cp are alphabetic variants.

Proof. We regard C as a set ordered by <, and suppose without loss of
generality that p acts as the identity on variables not in C. Let L be in C. The
sequence L=Lpo, Lpl =Lp, Lp2, . is increasing relative to <. As C is
finite and all members of the sequence are in C, it follows that for some

0. Hence for some N and for all L in C, Lpw—LpN+I(i> 0).
As Cp = C, there is an M in C so that Mplv=L, given L in C. Hence, L=
MpN —,MpN+1=Lp, and so p maps variables into variables. But as Cp= C,
C and Cp have the same number of variables. Hence p maps distinct variables
of C to distinct variables of Cp, and so C and Cp are alphabetic variants,
thus completing the proof.

Theorem 2

If and C and D are reduced, then they are alphabetic variants. The
following algorithm gives a reduced subset, E, of C such that C.

1. Set E to C.
2. Find an L in C and a substitution a so that Eag.E\{L}.

If this is impossible, stop.
3. Change E to Ea and go to 2.

(It is necessary to be able to test for subsumption in order to carry out
stage 2. Robinson (1965) gives one way to do this.)

Proof. As C, D, there are p, v so that Cpc_ D, Dvg.C. Hence, Cpv g. C.
But C is reduced so Cpv = C. Hence by lemma 3, pv maps the variables of C
into the variables of C in a 1-1 manner. Hence C and D are alphabetic
variants.
The algorithm halts at stage 2, since the number of literals in E is reduced

by at least one at stage 3 and so if it does not halt before then, it will halt
when this number is 1. If C= 0, then it will halt on first entering 2.
There is always a p so that Cp E. For at stage 1, take ,u =8. If one has such

159

MECHANIZED REASONING

a p before stage 2, then pa will be one after stage 2. Hence, when the
algorithm halts, Cy g E and Eg. C, and then
Suppose E is not reduced at termination. Then there is a proper subset

E' of E so that E' So there is a a such that Eag.E' .Pick L in E\E'.
Then Eag.E'gE\{L}. This contradicts the fact that the algorithm has
terminated and completes the proof.
This theorem is useful as our method of producing least generalizations of

clauses tends to give clauses with many literals which may often be sub-
stantially reduced by the above procedure.
Let S= {Ci li= 1, n} be a set of clauses.
A set of literals, K={Liii=1, n) is a selection from S if LieCi(i= 1, n).
We can now state the main theorem.

Theorem 3

Every finite set, S, of clauses has a least generalization which is not 0 if
S has a selection. If C1 and C2 are two clauses with at least one selection, then
the following algorithm gives one of their least generalizations.
Let S= {C1, C2} , and let the selections from S be {LI, Ll}(1= 1, n) where

Li is in C. Suppose that Li= (+)Pi(th, ti,,), where (+)P is either
P1 or Pi. Let fi be a function letter with k, places (1=1, n), and let P be a
predicate letter with n places. Let M./ be the literal

4,1), (j=1, 2).

Find the least generalization of {M1, M2} by the method of theorem
Suppose that this is

M=P(Muii, ukii), f.(ui uk.)). Let C be the clause

uk1i)li=1,

Then C is a least generalization of S= {Ci, C2}.
Evidently, it is not necessary in any actual calculation to change any PI

to the corresponding fi.

Proof. We begin by showing that the algorithm works. By theorem 1, there
are vi(i= 1, 2) so that Mvi = Mi. From lemma 2, it follows that fi(uii,
uk i) is a least generalization of {fs(tii, tlit) j=1, 2).
Hence Li= (±)Pi(uli, ukti) is a least generalization of {Lli, Li} (i=

1,n).

Hence Cvi= u {Li} g CI and so Cis a generalization of (Cj, C2).
1=1.

Note also that by lemma 2, if xv i=yvi(i= 1, 2), then x=y.
Now suppose that E is any generalization of {Ci, C2). We show that E<C.

Let at be chosen so that Eaig. Ci. (i= 1, 2), and let E= {M1, . . MO.
{Mpaili=1, 2} will be a selection, say {Lk, L3.}. Consequently,
the corresponding least generalization of the selection, and there is a ftp
so that Mpflp:=Lie

160

PLOTKIN

nt
Hence, if u/3p exists, E(L) C and we will have finished. Now Li/3p

P=
exists precisely if, whenever x is an individual variable in Mpi and M„2

(P1 P2) then 43 pi=x142. Let the notation AB (A, B literals; a a substitu-
tion) mean A=B. We have shown that the relationships described by
figure 3 hold:

Alp,
(i,k. 1, 2)

Figure 3

Now xj? pi, is a term in L,,(k =1, 2), which is a least generalization of
{LR, Lk}. Hence, by lemma 2, xflpk is a least generalization of {x/3„kvi,
x/3pkv2} = {xmi, xa2} from the diagram, (k=1, 2).

Consequently, xfipi, xflp2 are alphabetic variants. Let xi, x2 be variables
having the same place in xflpi, xfip2 respectively. Then as xl3pivi=xflpji=
xai(i=1, 2), it follows that xivi= xzvi(i= 1, 2). Hence by our note on the
properties of the vi(i= 1, 2) at the beginning of the proof, xl=x2. Hence
xfl pi= x13p2, and ups, exists and Es C and so C is a least generalization of
{Ci, C2}.

Next, we note that C is not empty and indeed if a particular combination
of sign and predicate letter occurs in a selection from { C1, C2) then it occurs
in C. Suppose that S= {C 1)(1=1, q) is a finite set of clauses. If C(00) is a
generalization of S, there are cci so that Caig Ci, and if L is in C, {Lai l i=1, q)
is a selection. On the other hand, 0 is a generalization of S. Hence if S has no
selection its only, and hence its least, generalization is 0. Otherwise, by
nesting infs as in the proof of theorem 1, we can find a least generalization
of S which, by the note at the beginning of this paragraph, will not be 0.
This completes the proof.

AN EXAMPLE

Suppose that some two-person game is being played on a board with two
squares, 10 and 20 and that the positions in figure 4 are won positions for
the first player:

Position pi()

Figure 4

161

Position p20

MECHANIZED REASONING

10 is the name of the left hand side square, and 2 () of the right hand square;
pi() and p20 are the names of the positions and 00, X() are the names of
the marks 0, X. We describe the fact that these positions are wins by means
of the following two clauses:

1. UW(1 0, x0, Pi 0) VOC(20, 00, P10)V Win(pi 0).
2. Erc(1(),), P2())VOC(20, X0, P20)V W1n(p2())•

The course of the calculation is indicated as follows:
occ(10, X0, pi()) Occ(10, X(), p)
0-c7(10, X(), P2()) Occ(10, X0, P)

Trc7(1 0, x0,pi ())737c.(1 x0,p)-57c(ni, X(),P)
Occ(20, XO,P20) Occ(20, X0, P) Occ(ni, X(),P)

Occ(20, 00, Pi()) Occ(2(), 00,P) 5cc(20, 00,P) Occ(n2, 00,P) Occ(n2, x, P)
Occ(10, X0,P20) Occ(10, X(), p)-0-Fc(10, X0, P) Occ(n2, X(), p) Occ(n2, x, P)

Occ(2(), 00, pi()) Occ(2(), 00,P) Occ(2(), 00,P) Occ(20, 0(), p) Occ(20, x, P)
Occ(20, X0,P20) Occ(20, X(), p)aFJ(2(), X(), P) Occ(20, X0, P) Occ(20, x, P)

Win(Pi()) Win(p)
Win (P2()) Win (P)
As indicated above, we have not replaced predicate symbols by function
symbols, and we have left P implicit. Each vertical column displays Mi and
M2 at an instance of stage 2 of the algorithm of theorem 1. In a given column,
the pairs of literals are corresponding arguments in Mi and M2. We find
ti and t2 by searching through Mi and M2 from left to right. As soon as two
literals have become the same in a column, we do not mention them in
subsequent columns.
Thus the least generalization is:

ô(10, X(),p)VOcc(ni, X0, P) VOcc(n2,x,p) VO2(), x, p) V Win(P)•
We use the algorithm of theorem 2. We can take L=Occ(ni, X(), p),

. This gives

Ca=Occ(10, X(), P)V-Occ(n2, x, p) VOcc(20, x, p) V Win(p)•

Next, we can take L. Occ(n2, x, p) and a= {201n2} and obtain
Ca=(1 0, X(), p)VOcc(2(), x, p)VW1n(p).

The algorithm stops at this point. The final clause says that if a position has
an X in hole 1 and hole 2 has something in it, then the position is a win,
which, given the evidence, is fairly reasonable.
We leave it to the reader to verify that the conclusion of the inductive

argument given at the beginning of this note is indeed a least generalization
of its antecedents. The main computational weakness in the method for
finding a reduced least generalization lies in that part of the reducing algo-
rithm which requires a test for subsumption. For suppose that we are looking
for the inf of two clauses each with nine literals in a single predicate letter
(this can arise in descriptions of tic-tac-toe, say); there will be at least
eighty-one literals in the raw inf, and we will have to try to tell whether or
not a clause of eighty-one literals subsumes one of eighty.

162

PLOTKIN

FURTHER RESULTS

We give without proof some further results obtained on the algebraic nature
of the < relation between clauses.
Let [C] denote the equivalence class under of C. We say that [C] < [D]

if C< D. It is easily seen that this is a proper definition.
The set of equivalence classes forms a lattice with the lattice operations

given by:

[C]rl[D]=[inf {C,
[C]ll [D] =[CZuD],

where is a substitution which standardizes the variables of C and D apart.
This lattice is not modular. It has an infinite strictly ascending chain

[Ci] (i> 1) where

= {P(xo, xi)); Ci = Ci_iu {P(xj_i, x,)}.

This chain is bounded above by {P(x, x)} .
There is also a rather complicated infinite strictly descending chain,

[CI] (i> 1) with the following properties:

/. No literal in any Ci contains any function symbols.
2. The clauses are all formed from a single binary predicate letter and a
single unary one.
Any infinite descending chain is bounded below by 0. We hope to publish

the proofs elsewhere.

Acknowledgements
I should like to thank my supervisors R.J.Popplestone and R.M.Burstall for all the
different kinds of help they gave me. Particular thanks are due to Dr Bernard Meltzer,
without whose encouragement this paper would not have been written. The work was
supported by an SRC research studentship.

REFERENCES

MacLane, S. & Birkhoff, G. (1967) Algebra. New York: Macmillan.
Popplestone, R.J. (1970) An experiment in automatic induction. Machine Intelligence 5
pp. 203-15 (eds Meltzer, B. & Michie, D.). Edinburgh: Edinburgh University Press.

Reynolds, J. C. (1970) Transformational systems and the algebraic structure of atomic
formulas. Machine Intelligence 5 pp. 135-52 (eds Meltzer, B. & Michie, D.). Edinburgh:
Edinburgh University Press.

Robinson, J.A. (1965) A machine-oriented logic based on the resolution principle.
J. Ass. comput. Mach., 12, 23-41.

163

