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REALIZATION OF A
GEOMETRY- THEOREM PROVING
MACHINE

H. Gelernter

Introduction

Few of those who have seen a modern high-speed digital computer
digest and transform a mass of data in less time than it takes to follow
the process in the mind can suppress a certain amount of speculation con-
cerning the future of such machines. Under the assumption that the
computer is operating at the mere threshhold of its capacity in performing
the tasks we have thus far delegated to it, a long-range program directed
at the problem of "intelligent" behavior and learning in machines has been
established at the IBM Research Center in New York (Gelernter and
Rochester, 1958). In particular the technique of heuristic programming
is under detailed investigation as a means to the end of applying large-
scale digital computers to the solution of a difficult class of problems cur-
rently considered to be beyond their capabilities; namely those problems
that seem to require the agent of human intelligence and ingenuity for
their solution. It is difficult to characterize such problems further, except,
perhaps, to remark rather vaguely that they generally involve com-
plex decision processes in a potentially infinite and uncontrollable en-
vironment.

If, however, we should restrict the universe of problems to those that
amount to the discovery of a proof for a theorem in some well-defined
formal system, then the distinguishing characteristics of those problems of
special interest to us are brought clearly into focus. We should like our
machine to be able to prove many of the theorems presented to it in a
formal system that is manifestly undecidable. Further, as the machine
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gains "experience" in proving theorems, we should expect it to be able
to solve problems that were earlier beyond its capabilities.

The requirement that a machine should deal with undecidable systems
places a fundamental restriction on its modus operandi. Finding a suitable
algorithm, the obvious technique for the solution of problems on a digital
computer, is no longer acceptable for the simple reason that no such
algorithm exists. An exhaustive search for the initial axioms and theorems
of the proof, combined with exhaustive development of the proof sequence
by systematically applying the rules of transformation until the required
proof has been produced, has been shown to be much too time-consuming
for so simple a logic as propositional calculus (Newell, Shaw and Simon,
1957a). It is a fortiori out of the question for any of the more interesting

logics. A remaining alternative is to have the machine rely upon heuristic
methods, as people usually do under similar circumstances.

Heuristic Methods

A heuristic method is a provisional and plausible procedure whose pur-
pose is to discover the solution of a particular problem at hand. The use of
heuristic methods by the human mathematician is quite well understood, at
least in its less subtle forms. The reader is referred to the excellent two-
volume treatise by Prof. G. Polya (1954) for a definitive treatment of
heuristics and mathematical discovery. A machine that functioned under
the full set of principles indicated by Polya would be aformidable problem-
solver in mathematics, and would be well on the way toward satisfying
Turing's requirements for a machine able to compete successfully in the
"imitation game" (1950). Such a machine, however, lies in the indefinite
future, for the art of instructing a computer is yet in too primitive a state
to consider translating Polya into machine language. As a representative
problem more in keeping with the present state of computer technology,
we have selected the discovery of proofs for theorems in elementary
euclidean plane geometry in the manner, let us say, of a high-school
sophomore. This problem contains in relatively pure form the difficulties
we must surmount in order to attain our stated goal. It must be emphasized
that although plane geometry will yield to a decision algorithm, the proofs
offered by the machine will not be of this nature.. The methods developed
will be no less valid for problem-solving in systems where no such decision
algorithm exists.

Although we have narrowed the scope of our study to include only those
machines that deal with formal systems, there is ample justification for
such a restriction. First, the concept of a problem is now well defined, as is
the concept of a solution for that problem. Second, our ultimate goal stands
clearly before us; it is the design of an efficient theorem-prover in some un-
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decidable system. And, finally, just as manipulation of numbers in arith-
metic is the fundamental mode of operation in contemporary computers,
manipulation of symbols in formal systems is likely to be the fundamental
operating mode of the more sophisticated problem-solving computers of
the future. It seems clear that while the problems of greatest concern to
lay society will be, for the most part, not completely formalizable, they
will have to be expressed in some sort of formal system before they can be
dealt with by machine. 1

Our problem, then, is a statement (or string) in some formal logistic
system. A solution for the problem will be a sequence of statements, each
of which comprises a string of symbols of the alphabet of the system. The
last string of the solution will be the problem itself; the first will always be
an axiom or previously established theorem of the system. Every other
string will be immediately inferable from some set preceding it or will
itself be an axiom or previously established theorem.2 It is the task of the
machine to choose from its stock of axioms and theorems the appropriate
ones for the base of the proof, and to generate from these the remaining
strings necessary to completetheproof.

The problem of theorem-proving is, in a sense, of a particularly simple
nature. Once a sequence of expressions is found that passes the test for a
proof of the theorem (such a test always exists), one may, so to speak,
"close the book" on that problem, provided that no stipulations have been
made concerning the elegance required of the proof. But, basing our esti-
mate on the work of Newell, Shaw, and Simon (1957), any computer
extant would require times of the order of a thousand years to prove a not
uncommon ten-step geometry theorem by exhaustively developing se-
quences until one emerged that passed the test for a proof. What is clearly
called for is a technique for generating sequences with a much higher a
priori probability of being the solution to the problem than those generated
by an exhaustion algorithm.

As did the Logic Theorist of Newell, Shaw, and Simon, the geometry
machine relies upon the well-known analytic method to achieve this end.
By working backward, the machine is assured that every sequence it con-
siders does indeed terminate in the required theorem. This in itself, how-
ever, represents no striking improvement over exhaustion without addi-
tional heuristics, for the advantages of working backward are purchased
at a steep price; each sequence generated, while terminating properly, is
no longer guaranteed to be a proof of anything at all. Indeed, most of the
strings generated in this way will be false! But it is here that the great

"For a critique of some attempts to formalize

scientific,

but nonmathematical
theories, see Dunham, Fridshal, and Sward (1959).

2 The machine will use the deduction theorem to get h- {premises} {conclusions}
from {premises}|-{conclusions}.
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power of the analytic method lies, for if one could find a way of making
their falseness manifest, such sequences could be immediately rejected,
allowing most of the deadwood to be pruned away from the highly
branched problem-solving tree. The set of sequences generated under such
a process would contain fewer members by many orders of magnitude
by the time the search reached any depth, and the density of possible
proofs for the theorem among them would be proportionately greater.
It is here, too, that the geometry machine finds the additional theorem-
proving power necessary for the complex formal system assigned to it;
theorem-proving power that was not necessary, and therefore not sought
for in the propositional calculus machine of Newell, Shaw, and Simon
(Polya, 1954). Like the human mathematician, the geometry machine
makes use of the potent heuristic properties of a diagram to help it distin-
guish the true from the false sequences. Although the diagram is useful
to the machine in other ways as well, the single heuristic "Reject as false
any statement that is not valid in the diagram" is sufficient to enable the
machine to prove a large class of interesting theorems, some of which con-
tain a certain trivialkind of construction.

Before examining the internal structure of the geometrymachine in some
detail, we remark on two fundamental, if obvious, principles that must
guide the choice of heuristics for any problem-solving machine. A heuristic
is, in a very real sense, a filter that is interposed between the solution gen-
erator and the solution evaluator for a given class of problems. The first
requirement for such a filter is a consequence of the fact that its introduc-
tion into the system is never costless. It must, therefore, be sufficiently
"nonporous" to result in a net gain in problem-solving efficiency. Secondly,
a heuristic will generally remove from consideration a certain number of
sequences that are quick and elegant solutions, if not indeed all solutions,
to some potential problems within the domain of the problem-solving ma-
chine. The filter must, then, be carefully matched to that subclass of prob-
lems in the domain containing those that are considered "interesting," and
are therefore likely to be posed to the machine. For a given class of
heuristics, the balance between these essentially opposing requirements
is largely a function of the organization and computing power of the ma-
chine, and can under certain rather easily attainable conditions be quite
critical. In the case of the Logic Theorist 3 experiments with varying
"strengths" of a particular heuristic (the similarity test) indicated that the
optimum porosity of that heuristic varied markedly with the length of the

The designers of the Logic Theorist were not unaware of this heuristic device.In a later version of that machine, they did, in

fact,

include some syntactic heuristics
to reject false subgoals. To use a semantic interpretation of the propositional cal-
culus (a truth table, for example) for this purpose would have reduced the Logic
Theorist to triviality.
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problem and the number of theorems already established in the theorem
memory, a consequence of the limited storage capacity of the computer.

The Geometry Machine

With the object of our research program clearly determined, there were
a number of specific alternatives to theorem-proving in Euclidean geometry
that might have been adopted as a test problem; the evaluation of indefi-
nite integrals, for example, or theorem-proving in the pure functional
calculus. The decisive point in favor of geometry was the great heuristic
value of the diagram. The creative scientist generally finds his most valu-
able insights into a problem by considering a model of the formal system
in which the problem is couched. In the case of Euclidean geometry, the
semantic interpretation is so useful that virtually no one would attempt the
proof of a theorem in that system without first drawing a diagram; if not
physically, then in the mind's eye. If a calculated effort is made to avoid
spurious coincidences in the figure, one is usually safe in generalizing any
statement in the formal system that correctly describes the diagram, with
the notable exception of those statements concerning inequalities. Further
geometry provides illustrative material in treatises and experiments in
human problem-solving. It was felt that we could exchange valuable in-
sights with behavioral scientists during the course of our research. In any
event, elementary Euclidean geometry is comprehensible to every segment
of the scientific community to which we should wish to communicate our
results. Finally, it should not be a difficult task to generalize our machine
to include the more interesting case of the non-Euclidean geometries. A
program of the same theorem-proving power as our Euclidean theorem-
prover should be sufficient to prove a large class of non-obvious theorems
in non-Euclidean geometry. A machine furnished with a non-Euclidean dia-
gram (no more difficult to supply than the Euclidean one in suitable
analytic form) encounters none of the assault on rationality experienced
by a human mathematician searching from some heuristic insight into a
theorem by considering a non-Euclidean diagram.

The formalization of geometry must be carried out within the framework
of the lower functional calculus. Since we are interested in having the
machine produce proofs comparable to those of a high-school student,
we have preferred to construct a more or less ad hoc system following the
scheme of most elementary texts, rather than to adopt as a primitive basis
the fundamental axiomatization of Tarski, Hilbert, or Forder. No attempt
has been made to provide a formalization that is either complete or non-
redundant. If at some later time, the machine is able to prove one axiom
from the others, that axiom will be discarded and we shall applaud the
elegance displayed by our automaton. With regard to completeness, the
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machine is granted the same privileges enjoyed by the high-school student
who is always assuming (i.e., introducing as additional axioms) the truth
of a plethora of "obviously self-evident" statements concerning, for exam-
ple, the ordering properties of points on a line and the intersection proper-
ties of lines in a plane. Some of these statements are indeed independent
of his original axioms, and must be introduced to complete the system.
Most could be derived (but usually with some difficulty) from what he
already has. There is nothing essentially wrong with this procedure of
extracting assumptions from the model, provided that one is fully aware
that this is being done (of course, this is rarely the case for the average
student), and it simplifies the proof considerably without invalidating it.
The geometry machine explicitly records its assumptions for a given proof.
It could, if necessary, minimize the danger that it is proving a specific
instance of a given theorem by drawing alternate diagrams to test the
generality of its assumptions.

I-
h

■i :-i

iThe geometry machine is in reality a particular state configuration of
the IBM 704 electronic Data Processing Machine specified by a rather
long and complex program written for the computer. Its organizationfalls
naturally into three parts: a syntax computer and a diagram computer
both embedded in an executive routine, which is a heuristic computer. The
flow of control is indicated in Fig. 1 .

Manipulation of the formal system is relegated to the syntax computer,
which has within it the equivalent of most of the syntactic heuristics used
by the Logic Theorist.4 The diagram computer contains a coordinate
representation of the theorem to be established together with a series of
routines that produce a qualitative description of the diagram. It is im-
portant to point out that although the procedures of analytic geometry are
used to generate the description, the only information transmitted to the
heuristic computer (there is no direct link between the diagram and the
formal system) is of the form: "Segment AB appears to be equal to seg-
ment CD in the diagram," or "Triangle ABC does not contain a right angle
in the diagram." The behavior of the system would not be changed if the
diagram computer were replaced by a device that could draw figures on
paper and scan them.

■ i , i

i

4 The process of chaining as denned by Newell et al. is under the control of theheuristic computer.
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The major function of the heuristic computer for our first system, the
subject of this report, is to compare strings generated by the syntax com-
puter (working backward) with their interpretation in the diagram, reject-
ing those sequences that are not supported by the model. In addition to
the above, the heuristic computer performs several other tasks. Among
these are the organization of the proof-search process and the recognition
of the syntactic symmetry of certain classes of strings. The latter function
produces behavior equivalent to that of the human mathematician who,
when A and B are syntactically symmetric, and both must be established,
will merely prove A, and say "Similarly,B." It is an important feature, and
is described in detail in an earlier report (Gelernter, 1959a). The proce-
dures above are clearly independent of geometry; they are applicable to
any formal system with its corresponding interpretation. The heuristic
computer applies some additional semantic heuristics that are not inde-
pedent of geometry. These may be "switched off" so that the behavior of
the machine can be observed with and without specific geometry heuristics.

The character of the theorem-proving machine is determined largely by
the heuristic computer. Modifications and improvements in the system (the
introduction of learningprocesses, for example) will be made by modifying
this part of theprogram.

Our first system does not "draw" its own initial figure, but is, instead,
supplied with the diagram in the form of a list of possible coordinates for
the points named in the theorem. This point list is accompanied by another
list specifying the points joined by segments. Coordinates are chosen to

Figure 2. Problem-solving graph. The nodes G," represent subgoals of order i,
with a numbering the subgoals of a given order. Pt"» is a transformation on

G,"

into G<? ,
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reflect the greatest possible generality in the figures. Later systems will
construct their own interpretation of the premises, but since most problems
for high school students are accompanied by a diagram, it was felt that we
could dispense with this additional spate of programming at the current
stage. When the machine is drawing its own figures, points will be chosen
at random, subject to the constraints of the premises.

In working backward, the system generates a problem-solving graph,
defined in the following way: Let G0 be the formal statement to be estab-
lished by the proof. It will be called the problem goal. If G, is a formal
statement with the property that Gi_ x may be immediately inferred from
Gi, then G, is said to be a subgoal of order i for the problem. All Gj such
that j< i are higher subgoals than Gb where G0 is considered to be a
subgoal of order zero. The problem-solving graph (Fig. 2) has as nodes
the Gj, with each G, joined to at least one d-i by a directed link. Each
link represents a given transformation from G, to Gi-!. The problem is
solved when any Gi can be immediately inferred from the premises and
axioms. If, as is generally the case in geometry, a given subgoal is a con-
junction of statements, the graph splits at that point, and each parallel
subgoal must be separately established. At any given time, the problem-
solving graph is a complete representation of the current status of the
proof-search process.

The organization of the heuristic computer (which is also the organiza-
tion of the entire system) is displayed in greatly simplified form in Fig. 3.
The diagram and syntax computers are accessible as subroutines to the
heuristic computer. In operation, the machine executes the following proc-
esses (numbered below to correspond with like-numbered blocks in the
flow chart).

1. The diagram is scanned to construct three lists, one containing every
segment in the figure, one the angles, and one the triangles. Each element
on a list is followed by a sublist describing that element.

2. The initial configuration of the system is set up, with the premises
placed on a list of established formulas, and the conclusion on the problem-
solving graph as a zero-ordersubgoal.

3. Definitions of nonprimitive predicates in the premises are added to
the list of established formulae.

4. A subgoal to be established (the generating subgoal) is chosen from
the problem-solving graph.

5. Appropriate axioms and theorems are selected from the theorem
memory and, by working backward, a set of lower subgoals is generated
such that if any one of these is established, the generating subgoal may be
established by modus ponens and the generating axiom (or theorem). If
the generating subgoal was labeled "provisionally fruitless" (see step 8),
constructions are attempted (seebelow, p. 144).
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Figure 3. Simplified flow chart for the geometry-theorem proving machine.

6. Subgoals that are not valid in the diagram are rejected, as are those
that appear as higher subgoals on the graph (or are syntactically symmetric
to some higher subgoal).

7. If any lower subgoal is valid by virtue of its instance on the list of
established formulas or if it may be assumed from the diagram, the gen-
erating subgoal is established; otherwise—8. Acceptable nonredundant lower subgoals are added to the graph,
and a new subgoal generator is chosen (4). If there are no acceptable
lower subgoals and a construction is possible at this point, the generating
subgoal is designated as provisionally fruitless. If a construction is not
possible, or if the machine has tried and failed to find one, the generating
subgoal is designated as fruitless.
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9. If the generating subgoal is established, it is added to the list ofestablished formulas, together with all of its higher consequences as deter-mined by the graph. If there are no parallel subgoals remaining to be estab-lished, the machine reconstructs the proof from the problem-solving graph
and prints it (11).

10. If at any time, every free subgoal on the graph is fruitless, the ma-chine fails, providing it has not previously exhausted its available storageor thepatience of the operator.

It is within blocks 4, 5 and 6, where subgoals are chosen, developed, anddiscarded, that the major heuristics reside. These subprograms represent,if you like, the seat of our artificial intelligence.
!

Some Early Results ;.< i
The geometry machine is able to prove many of the theorems withinthe scope of its ad hoc formal system using the diagram only to indicatewhich subgoals are probably valid. In this way, the following theorem is

proved in less than a minute."
Theorem: A point on the bisector of an angle is equidistant from thesides of the angle (see Fig. 4 in Appendix A).
In less than five minutes, the machine is able to find the attached proof,which requires the construction of an auxiliary segment.
Theorem: In a quadrilateral with one pair of opposite sides equal andParallel, the other pair of sides are equal (see Fig. 5 in Appendix B).
Although the introduction of a new element by the machine is impres-sive, the construction in this proof is essentially trivial, for the new segment

merely joins two already existing points. It was discovered by the follow-mg process. In attempting to develop subgoals for the string "AB = CD,"the machine could find none that were valid in the diagram. The normalProcedure at this point is to seek an alternative path on the problem-solving graph. But when none is available (as was the case here, sincethe offending string is a zero-order subgoal), the machine reexaminesthose of the previously rejected subgoals containing instances of predi-cates for which there was no representation in the diagram. The machinethen considers for each one an augmented set of premises such that the
In the proofs displayed herein, the nonobvious predicates have the following

interpretations:

■

t ■

,

OPP-SIDE XYUV Points X and V are on opposite sides of the line through
points U and V.

SAME-SIDE XYUV Points X and V are on the same side of the line through
points U and V.

PRECEDES XYZ Points X,V, and Z are collinearin that order.COLLINEAR XYZ Points X, V, and Z are collinear.

i
I i
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k.

interpretation does contain a representation of the predicate. If the string
is valid in the augmented system, and there exist theorems permitting the
required additional premises to be derived from the original set, then the
string becomes a subgoal in the augmented system. The added premises
specify a construction in the diagram that is permitted by virtue of the
theorems through which they were derived. Returning to our example, the
subgoal "AABD aCDB" is generated for the string "AB = CD," but
the required triangles are not represented in the diagram until the premise
"Segment BD exists" is added. The axiom "Two distinct points determine
a segment" justifiesthe construction." The entire process is a variant of the
major heuristic above, and is clearly independent of the particular formal
system under consideration. Note, too, that the process is finite, since no
new points are introduced into the predicates; the old ones are merely
reconsidered.

Our second example illustrates one further point. Although it is clear
in the diagram (Fig. 5) that the transversal BD makes alternate interior
angles with sides BC and AD, this is a consequence of the theorem
"Opposite vertices of a convex quadrilateral fall on opposite sides of the
diagonal through the other vertices." That this is not true of a general
quadrilateral becomes clear when one considers the outside diagonal of a
reflex quadrilateral. A completely rigorous solution, then, requires that one
prove the lemma above if it is not already available, and that one demon-
strate that the quadrilateral ABCD can only be convex. Rather than do
this, the machine makes the usual assumption that the diagonal forms
alternate interior angles with the opposite sides of the quadrilateral. Un-
like the usual high-school text, however, the assumption is made explicit in
theproof.

The theorem-proving system described thus far is adequate for many
problems of greatercomplexity than the ones cited above. However, with a
linear increase in the number of individual points mentioned in the prem-
ises, the rate of growth of the problem-solving graph increases exponen-
tially and the time required to explore the graph increases correspondingly.
If the machine were able to select those among a given set of subgoals that
were more likely to lead to a solution, much of the wasted search time
could be eliminated. Two specific geometry heuristics have been introduced
to enable the machine to do this. The first is a routine that recognizes cer-
tain of the subgoals that are usually established in just one step. Identities
are in this category, for example, as are equalities between angles that
are observed to be vertical angles in the diagram. Such subgoals

6 Our ad hoc formal system requires that the segments joining the vertices of a
triangle be specified, as well as the vertices themselves, to define the triangle. This is
necessary in order to avoid the difficulties that would otherwise arise when the theo-
rem names a large number of noncollinear points. If our formal system were a true
point geometry, all such constructions would be implicit in the diagram.



j

I

A GEOMETRY-THEOREM PROVING MACHINE 145

\i
\i

i

■

! .

! ; i i

' '

:'"]

are placed on a priority list and developed before any of the othersare considered. The second specific heuristic is a routine that assigns adistance between each subgoal string and the set of premise strings insome vaguely defined formula space. After those on the priority list havebeen developed, the next subgoal chosen is that which is "closest" to thepremise set in formula space.
It is instructive to examine the machine's behavior in proving complextheorems both with and without the expanded set of semantic heuristics,

the theorem "Two vertices of a triangle are equidistant from themedian to the side determined by those vertices," the machine finds a proofm about eight minutes with the basic heuristics alone (see Fig 6 in Ap-pendix C). The expanded set of heuristics produces a proof in oneminute,m addition, the second proof is quite short and to the point, while the firstproof meanders blindly about the direct path to the goalbefore reaching itReflecting the greater efficiency with which the machine attacked theProblem in the second trial, only four circuits of the subgoal-generatingoop were required compared with twenty-four circuits required withoutme extended heuristics. Twenty-one intermediate subgoals were gener-ated compared with sixty-one in the first case, and the problem-solvinggraph extended to a depth of only three levels, rather than twelve levelstor the proof with basic heuristics alone.
For a particular case of a problem taken from a Brooklyn technical highschool final examination in plane geometry a solution was found with theextended heuristics in less than five minutes. With the basic heuristicsaione, the machine exhausted its working storage in half an hour withoutHaving completed the problem. On the other hand, there are problems forwhich the machine achieves no net gain by applying the additionalheuristics. The theorem: "Diagonals of a parallelogram bisect one an-°tner was proved in about three minutes in either mode. The proofsProduced m each trial were equivalent, though not the same. A Brooklyntechnical high school final examination supplied an example of an inter-mediate case, where the machine found identical proofs in both modesout took almost three times as long with the basic heuristics alone (eightminutes, compared with three minutes with extended heuristics) We shallundoubtedly encounter cases for which the application of the extended setwill result in a net loss of efficiency, although none has appeared yet in ourlimited tests.

Conclusion
It is well at this point in our discussion to reemphasize the fact that theobject of this research has not been the design of a machine capable ofProving theorems in Euclidean plane geometry, or even one able to prove
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theorems in some undecidable system such as number theory. We are,
rather, interested in understanding the use of heuristic methods (or strate-
gies) by machines for the solution of problems that would otherwise be in-
accessible to them. Theorem-proving machines in themselves are objects of
much interest to mathematicians and logicians, and important work at
IBM is being done on this approach by Wang and by Gilmore. Wang
(1960a) has written a program for the IBM 704 that is able to prove all
theorems in propositional logic offered by Russell and Whitehead in the
Principia Mathematica, whereas the Logic Theorist could master only
about 38 of the 52 theorems appearing in chap. 2 of that volume. Also,
the time required by the latter machine was far in excess of that used by
the former. Newell, Shaw, and Simon, however, were interested in heuristic
methods, whereas Wang, and also Gilmore, whose machine deals with the
first order predicate calculus, are searching for algorithms, which, though
less than a decision procedure, will produce "interesting" proofs within a
reasonable amount of time. Both Wang and Gilmore find that for more
complex formal systems, heuristics are required (they prefer the word
"strategies") to make their algorithms sufficiently selective to produce,
within acceptable bounds on space and time, proofs of any great interest.

The work of Wang and Gilmore is most relevant to a new branch of
applied logic first characterized by Wang. He names this discipline "in-
ferential analysis," and defines it to include "treatment of proofs as numer-
ical analysis does calculations" (1960a). The results of inferential analysis
are expected to "lead to mechanical checks of new mathematical results,"
and ultimately "lead to proofs of difficult new theorems by machine." The
present author feels that inferential analysis is relevant, too, to the problem
of intelligent behavior in machines. An automaton confronted with the real
world, however, will certainly have to rely heavily on heuristics, for the
unorthodox formal systems describing its environment will probably be far
from amenable to the traditional methods of mathematical logic.

In conclusion, we should like to specify the course of this research for
the immediate future. The machine described above is purely a problem-
solving system. Except for the annexation of new theorems to the list of
axioms, its structure is static. A sequence of practice problems given to
the machine will not improve its performance unless a usable theorem is
among them. Because it is incapable of developing its own structure, the
machine will always be limited in the class of problems it can solve by the
initial intent of the designer. It seems that the problem of designing a more
general problem-solving machine will be enormously greater than that of
designing one not so intelligent but with the capacity to learn.

An immediately obvious approach to the problem of introducing learn-
ing into the geometry machine is to allow the machine to adjust all of the
parameters that determine its specific semantic heuristics, maximizing the
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predicted utility of those subgoals that prove to be useful in practice. The
machine will thus improve the match of its heuristic filters to the class of
problems considered interesting enough to be presented to it for solution.
Of greater significance would be the introduction of routines enabling the
machine to recognize recurring patterns in its proof-search procedure.
Once discovered, such a pattern would enable the machine to construct its
own heuristics designed to induce a repetition of the pattern in later proofs.
For example, the machine might notice that certain classes of premise
strings are regularly followed by the same first step in a proof. The heu-
ristic derived from this pattern would search the premises for such strings
and perform the first deduction before starting on the problem-solving
graph. The difficult subject of abstract pattern recognition must be under-
stood first, however, and the transformation of pattern to effective heuristic
is by no means trivial. But whatever approach to learning is considered
most worthwhile to explore, the geometry machine should serve as an ex-
cellent framework within which the explorations may be pursued.

AppendixA

Premises
Angle ABD equals angle DBC
Segment AD perpendicular segment AB
Segment DC perpendicular segment BC

Definition
Right angle DAB
Right angle DCB
Syntactic Symmetries
CA, 88, AC, DD

Goals
Segment AD equals segment CD

Solution
AngleABD equals angle DBC

Premise
Right angle DAB

Definition of perpendicular
Right angle DCB

Definition of perpendicular
Angle BAD equals angle BCD

All right angles are equal
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Segment DB
Assumption based on diagram

Segment BD equals segmentBD
Identity

TriangleBCD
Assumption based on diagram

Triangle BAD
Assumption based on diagram

Triangle ADB congruent triangle CDB
Side-angle-angle

Segment AD equals segment CD
Corresponding elements of congruent triangles are equal

Total elapsed time = 0.3200 minute

Appendix B

Premises
Quad-lateral ABCD
Segment BC parallel segment AD
Segment BC equals segmentAD

CA BA DA
DB AB CB
AC DC BC
BD CD AD

Figure 5.
Goals
Segment AB equals segment CD

I am stuck, elapsed time = 0.88 minute
Construct segmentDB
Add premise segmentDB
Restart problem

Solution
Segment BC parallel segment AD

Premise
Opp-side CADB

Assumption based on diagram
Segment DB

Premise
Angle ADB equals angle CBD

Alternate interior angles of parallel lines
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Segment BC equals segment AD
Premise

Segment BD equals segment DB
Identity

Triangle CDB
Assumption based on diagram

Triangle ABD
Assumption based on diagram

Triangle ABD congruent triangle CDB
Side-angle-side

Segment AB equals segment CD
Correspondingelements of congruent triangles

Total elapsed time = 4.06 minutes

Appendix C

Premises
Triangle ABC
Precedes BMC
Segment BM equals segment MC
Precedes ADM
Precedes DME
Segment BD perpendicular segment AM
Segment CE perpendicular segment ME

Figure 6.
Definition
Right angle MEC
Right angle BDM
Right angle BDA
Angle BDA equals angleBDM

No syntactic symmetries

Goals
Segment BD equals segmentEC

Solution
Precedes BMC

Premise
Segment EC

Assumption based on diagram



V

M

150 ARTIFICIAL INTELLIGENCE

AngleECM equals angle BCE
Same angle

Precedes DME
Premise

Angle CED equals angle MEC
Same angle

Right angle BDM
Definition of perpendicular

Right angle MEC
Definition of perpendicular

AngleBDM equals angle CEM
Right angles are equal

Angle CED equals angle BDM
Angles equal to the same angle are equal

Same side MEDB
Assumption based on diagram

Same side DACE
Assumption based on diagram

Collinear EDM
Ordered collinearity implies collinearity

Precedes ADM
Premise

Precedes EDA
Combinatorial properties of ordered collinearity

Collinear EDA
Ordered collinearity implies collinearity

Angle BDE equals angle AEC
Different names for equal angles

Precedes EMA
Combinatorial properties of ordered collinearity

Angle CEMequals angle AEC
Same angle

Angle BDE equals angle MEC
Angles equal to the same angle are equal

Angle CED equals angle EDB
Anglesequal to the same angle are equal

Opp side CBED
Assumption based on diagram

Segment ED
Assumption based on diagram

Segment EC parallel segment BD
Segments are parallel if alternate interior angles are equal

Opp side EDCB
Assumption based on diagram
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Segment CB
Assumption based on diagram

Angle BCE equals angle DBC
Alternate interior angles of parallel lines

Angle ECM equals angle DBC
Angles equal to the same angle are equal

Same side CMBD
Assumption based on diagram

Same side MBEC
Assumption based on diagram

Collinear CMB
Ordered collinearity implies collinearity

Angle DBM equals angle BCE
Different names for equal angles

Angle MBD equals angle MCE
Angles equal to the same angle are equal

Angle DMB equals angle EMC
Vertical angles

Segment BM equals segment MC
Premise

Triangle BDM
Assumption based on diagram

Triangle CEM
Assumption based on diagram

Triangle BDM congruent triangle CEM
Angle-side-angle

Segment BD equals segment EC
Corresponding elements of congruent triangles

Total elapsed time = 8.08 minutes

WITH BASIC HEURISTICS

Solution
Precedes DME

Premise
Precedes BMC

Premise
Angle DMB equals angle EMC

Vertical angles
Right angle BDM

Definition of perpendicular
Right angle MEC

Definition of perpendicular
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Angle BDM equals angle CEM
Right angles are equal

Segment BM equals segmentMC
Premise

Triangle CEM
Assumption based on diagram

Triangle BDM
Assumption based on diagram

Triangle BDM congruent triangle CEM
Side-angle-angle

Segment BD equals segment EC
Corresponding elements of congruent triangles

Total elapsed time = 1.06 minutes

WITH EXTENDED HEURISTICS
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EMPIRICAL EXPLORATIONS
OF THE GEOMETRY -
THEOREM PROVING MACHINE

H. Gelernter, J. R. Hansen, & D. W. Loveland

Introduction
In early spring, 1959, an IBM 704 computer, with the assistance of a

program comprising some 20,000 individual instructions, proved its first
theorem in elementary Euclidean plane geometry (Gelernter, 19596).
Since that time, the geometry-theorem proving machine (a particular state
configuration of the IBM 704 specified by the afore mentioned machine
code) has found solutions to a large number of problems1 taken from high-
school textbooks and final examinations in plane geometry. Some of these
Problems would be considered quite difficult by the average high-school
student. In fact, it is doubtful whether any but the brightest students could
have produced a solution for any of the latter group when granted the same
amount of prior "training" afforded the geometry machine (i.e., the same
vocabulary of geometric concepts and the same stock of previously proved
theorems).

The research project which had as its consequence the geometry-
theorem proving machine was motivated by the desire to learn ways to
use modern high-speed digital computers for the solution of a new and
difficult class of problems; a class heretofore considered to be beyond the
capabilities of a finite-state automaton. In particular, we wished to make
pur computer perform tasks which are generally considered to require the
intervention of human intelligence and ingenuity for their successful com-
pletion. The reasons behind our choice of theorem proving in geometry as
a representative task are set forth in detail in an earlier study (1958). We

More than fifty proofs are on file at the present time.
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only remark here that problem-solving in geometry satisfies our definition
of an intellectual activity, while being at the same time especially well
suited to the approach we wished to explore. The fact that geometry is
decidable is irrelevant for the purpose of our investigation. The methods
employed by the machine are suitable as well for the proof of theorems in

systems for which no decision algorithm can exist.
We shall not labor the question as to whether our machine is indeed

behaving intelligently in performing a task for which humans are credited
with intelligence. The psychologists offer us neither aid nor comfort here;
they have yet to satisfactorily characterize such behavior in humans, and
have rarely considered the abstract concept of intelligence independent of
its agent. In the final analysis, people are occasionally observed to do
things that may best be described as intelligent, however vague the con-
notations of the word. These are, in general, tasks involving highly complex
decision processes in a potentially infinite and uncontrollable environment.
We should be most happy to have our machine duplicate this kind of be-
havior, whatever label is affixed to it.

Heuristic Programming and the GeometryMachine

The geometry machine is able to discover proofs for a significant number
of interesting theorems within the domain of its ad hoc formal system
(comprising theorems on parallel lines, congruence, and equality and in-
equality of segments and angles) without resorting to a decision algorithm
or exhaustive enumeration of possible proof sequences. Instead, the
theorem-proving program relies upon heuristic methods to restrain it from
generating proof sequences that do not have a high a priori probability of
leading to a proof for the theorem in question.

The general problem of heuristic programming has been discussed by

Minsky (1959a) and Newell, Shaw, and Simon (1959a). The particular
approach pursued by the authors has been described at length in the papers
to which we have already referred (Gelernter et al., 1958, 19596). We
shall therefore defer to the presentation of the machine's detailed results
in the full study summarized here for a description of how these results
were achieved. It should be recorded here, however, that the geometry

machine operates principally in the analytic mode (reasoning backward).

At each stage of the search for a proof, a goal exists which must be "con-
nected" with the premises for the problem by a bridge of axioms and
previously established theorems of lemmas. If the connection cannot be
made directly, then a set of "subgoals" is generated and the process is

repeated for one of the subgoals. Heuristic rules are used to reject subgoals
that are not likely to prove useful, to select one from those remaining to

work on, and to choose particular axioms and theorems to use in generat-
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ing new subgoals. The machine does depart from this procedure in a num-
ber of circumstances (in setting up an indirect proof, for example), but
these cases account for only a small fraction of the total search time.

The computer program itself was written within the framework of the
so-called Newell-Shaw-Simon list memory (19576). In order to ease the
task of writing so massive and complex a machine code, a convenient
special-purpose list processing language was designed to be compiled by
the already available FORTRAN system for the IBM 704 computer
(Gelernter et al., 19606). The authors feel that had they not made free
use of an intermediate programming language, it is likely that the geometry
program could not have been completed.

Summary of Results

Since its initial solo performance, the geometry machine has existed in
several different configurations. In its earliest and most primitive form, the
system was equipped with a single major semantic heuristic. 2 That first
system was, however, able to prove a large number of interesting, though
admittedly simple theorems in elementary plane geometry.3 The heuristic
rule in question, which is independentof the particular formal system under
consideration, may be described in the following way. All subgoal formulas
that are generated at a given stage of the proof search are interpreted in a
model of the formal system; in our case, the model is a diagram, a formal
semantic interpretation. If the interpreted subgoal is valid in the diagram,
it is accepted as a possible step in the proof, provided that it is noncircular
(Gelernter, 1959a). Otherwise, it is rejected.

As an experiment, a number of attempts were made to prove extremely
simple theorems with the latter heuristic "disconnected" from the system
(i.e., all noncircular subgoals generated were accepted). In each case, the
computer's entire stock of available storage space was quickly exhausted
by the initial several hundreds of first level subgoals generated, and, in
fact, the machine never finished generating a complete set of first level
subgoals. We estimate conservatively that on the average, a number of the
order of 1000 subgoals are generated per stage by the decoupled system.
If one compares the latter figure with the average of 5 subgoals per stage
accepted when the diagram is consulted by the machine, it is easy to see
that the use of a diagram is crucial for our system. (Note that the total
number of subgoals appearing on the problem-solving graph grows
exponentially with the number accepted per stage.)

Since the procedure described above is a heuristic one, errors are oc-
2 A semantic heuristic is one based on an interpretationof the formal system rather

than on the structure of the strings within that system.

' A number of these proofs arereproduced in

Gelernter,

19596.



V

156 ARTIFICIAL INTELLIGENCE

i

M

casionally made in the selection or rejection of formulas as subgoals. The
diagram is made available to the machine in coordinate representation to
finite precision. Formulas are interpreted by transforming them into an
appropriate calculation on the numerical coordinates representing the point
variables. For example, to check the validity of a statement concerning the
equality of two segments, the length of each segment in the figure is cal-
culated, and they are then compared to a certain preassigned number of
decimal places. If, instead, the statement concerned parallel segments, the
slopes would be calculated and compared. In a small number of cases,
round-off error has propagated beyond the allowed value, so that valid
subgoals were rejected, or invalid ones accepted. It is important to point
out, however, that in no case could this effect result in a false proof. Where
valid subgoals were rejected, the machine found alternate paths to the
solution. Where invalid ones were accepted, the machine failed, of course,
to establish them within the formal system. In the worst possible case, the
interpretation error could prevent the computer from finding any solution
at all, but never could it leadto an invalid proof.

It should be clear at this point that the diagram is used only to guide
the search for a proof by supplying yes or no answers to questions of the
form: "Is segment AB equal to segment CD in the figure?", or "Is angle
ABC a right angle in the figure?". There is no direct link between the
diagram and the formal system in the geometry machine. The behavior of
the machine would not be changed if the coordinate representation were
replaced by a device capable of drawing figures on paper and scanning
them.

In the basic theorem-proving system described above, after a set of sub-
goals has been generated, each member of the set is explored in order. The
next subgoal in line is not examined until the one preceding it has been
followed down to a dead end. Too, in generating the next level for a given
subgoal, every applicable theorem available is pressed into service.

This system was soon extended by the introduction of selection heuristics
for both subgoals and subgoal-generating theorems. The subgoal selection
heuristic assigns a "distance" between each subgoal string and the set of
premises in a vaguely defined ad hoc formula space. At each stage, the
next subgoal selected is that which is "closest" to the premises in formula
space. The generator selection routine recognizes certain classes of sub-
goals that are usually established in one step. For such "urgent" subgoals,
the appropriate generator is withdrawn immediately, and an attempt is
made for a one-step proof (of that particular subgoal) before generating
the full set for that formula.

The extended system is able to prove a number of somewhat more dif-
ficult theorems that are beyond the capacity of the basic machine. For
those problems within the range of both systems, the former is, on the
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average, about three times faster, and
generatesabout two-thirds the total num-
ber of subgoals in half as many subgoal
generationcycles as required by the basic
system. The average depth of the prob-
lem-solving graph for the refined system, A E D

about seven to nine levels, is two-thirds Figure 1.
the average depthfor thebasic system.

By the addition of a simple construction routine, the theorem-proving
power of the machine is expanded to include an entirely new class of
problem, hitherto logically unattainable. The routine, called upon only
when all other attempts have failed, allows the machine to join two pre-
viously unconnected points in the diagram, and extends the newly created
segment to its intersections with all other segments in the figure. The new
segment, when it intersects previously given ones, introduces new points
into the problem which are named by the machine and become part of the
problem system.

At this stage in its development, the geometry machine was capable of
producing proofs that were quite impressive (Appendix l).4 Its perform-
ance, however, fell off rapidly as the number of points in the diagram
increased. This effect was due largely to the fact that unlike humans, who
generally identify angles visually by their vertices and rays, the computer
specifies an angle by a predicate on three variables, the vertex and a point
on each ray. Consequently, the equality of angles 1 and 2 in Fig. 1 may be
represented in thirty-six different ways, since each angle has six different
names. Formal rigor demands, too, that the equality of angles ADH and
EDG, for example, be proved rather than taken for granted. It should be
clear that where the condition above exists, the search for a proof quickly
bogs down in a mass of uninterestingdetail.

In the current system, the angle problem is solved by allowing the
machine to use the diagram to identify a given angle with its full set of
names, and to assume the equality relationship between different names for
the same angle, as does its human counterpart. The geometry machine in
its present configuration is able to find proofs for theorems of the order of
difficulty represented by the following:

Theorem: If the segment joining the midpoints of the diagonals of a
4 In the proofs appended to this paper, the nonobvious predicates have the follow-

ing interpretations:
OPP-SIDE XYUV Points X and V are on opposite sides of the line through

points U and V.
SAME-SIDE XYUV Points X and V are on the same side of the line through

points U and V.
PRECEDES XYZ Points X,V, and Z are collinearin that order,
COLUNEAR XYZ Points X, V, and Z are collinear.
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trapezoid is extended to intersect a side of the trapezoid, it bisects that side
(Appendix 2).

Limitations of the System

It will be immediately evident to those familiar with the properties of
formal logistic systems that unless a construction which generates a new
point is introduced by the machine, all problems are solved within the
framework of a propositional calculus, however complex its structure.
Although the machine's present construction routine can and does generate
new points, we could not expect our results to be of great interest to
logicians until a full set of possible constructions (corresponding to a com-
plete set of existentially quantified axioms) is made available to the system
to abet its search for a proof.

An equally serious limitation on the formal generality of the theorem-
proving machine is imposed by our method for determining the well-
formedness of strings within the logical system. In order to attain the
necessary speed and efficiency in processing, well-formed formulas are
defined by schema rather than recursively. The kind of statement that can
be made in the system is then determined by the schema available to the
machine. The practical effect of this loss in generality is to restrict rather
severely the freedom with which algebraic statements in geometry may be
manipulated.

In addition to the above, there are a number of nonessential bounds on
the theorem-proving ability of the machine. These are a consequence of
the limited speed and memory capacity of the computer for problems of
such highly combinatorial character. Improvements in either of the above
will be immediately effective in extending the class of machine-solvable
problems in both quantity and difficulty.

Conclusion

The initial goal of our research program in machine intelligence has been
attained. If the interrogator were to restrict his probing to the area of
theorem-proving in elementary Euclidean plane geometry, our machine
could be expected to give an excellent account of itself in competition with
a human in Turing's well-known "imitation game" (1950). Of course
there are many other problem areas (solving arithmetic problems, for ex-
ample) where computers have always been able to compete successfully
with humans. The significant point is that a knowledgeable interrogator
would certainly avoid such areas in his questioning, while he might well
(until now, at any rate) introduce a plane geometry problem in a cal-
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culated attempt to separate the men from the machines. 5 Although the
stage is now set for the argument that any distinct area of human intel-
lectual activity will in the same way succumb to the inexorable logic of
electrons, switches, and gates, we defer to our philosopher colleagues for
debate on the implications of that contention, at least until the time that
computers have been programmed to consider such issues.

There are a number of consequences of our work that are, fortunately,
more concrete than that alluded to above. Perhaps the most important are
those relating to inferential analysis, a new branch of applied logic first
characterized by Wang (1960a). Inferential analysis "treats proofs as
numerical analysis does calculations," and is expected to "lead to mechan-
ical checks of new mathematical results" and, more important, "lead to
proofs of difficult new theorems by machine." It is expected that our tech-
niques for the manipulation and efficient search of problem-solving trees
and our results concerning syntactic symmetry will prove to be useful tools
in pursuing the goals of inferential analysis.

'■'\

Contributions have been made, too, in the area of techniques for com-
puter implementation of complex information processes. Results pertaining
to the design and use of intermediate languages for the specification of list
manipulation processes have been reported elsewhere (Gelernter et al.,
19606). The latter work indicates clearly the requirements of a digital
computer system designed for optimum execution of such list processes. In
brief, a list processing computer should possess hardware facilities for:

1. Generalized indirect addressing; specified in the indirectly addressed
instruction to arbitrary depth and in arbitrary order from either the left or
theright field of a two-address register,

2. Effective address recovery; making available the terminal content of
the address register (the final address in a long and complex indirect
address chain, for example) as the address field for a subsequent operation,

3. Field logic; a greatly expanded set of interfield operations within a
full register sectioned according to some previously established convention,
and

4. List search operations; a list equivalent of the conventional table
look-up instruction.
The bulk storage input-output requirements for a list processing computer
are severe, and are not included in the enumeration above. The system

*It may be argued (and undoubtedly, it will be argued) that the truly knowledge-
able interrogator, cognizant of the decidability of geometry, would certainly avoid
this area as well, perhaps preferring the manifestly undecidable parts of the predi-
cate calculus or number theory to effect the distinction between man and machine.
We recall here that our methods are independent of the decidability of the formal
system, and, in

fact,

Wang (1960a) and Gilmore (1960) have developed proofs for
theorems in the undecidablearea of the predicate calculus.
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design of a digital computer for the manipulation of list structures will be
described in detail in a subsequentpaper.

Finally, we consider the implications of our work for the basic problem
of machine intelligence. The geometry machine, we feel, offers convincing
evidence of the power and fruitfulness of heuristic programming for the
solution of problems of a certain class by computer. In our experience,
the theorem-proving power of the machine has often been extended by
the addition of a single heuristic to a degree equivalent to a three-to-
fivefold increase in the speed or storage capacity of the computer.

Our program has proved to be disappointing as a tool for the study of
the more elementary trial-and-error types of machine learning, largely be-
cause of the rather low rate at which it accumulates experience. It is rea-
sonable to expect, however, that the geometry machine might yet be
pressed into service in an investigation of the higher, conceptual types of
machine learning, providing that one will someday know how to formulate
theproblem.

If nothing else, our work offers some qualitativeindication of the order
of magnitude of difficulty for problems that could be expected to yield to
contemporary computer technology. Three years ago, the dominant opinion
was that the geometry machine would not exist today. And today, hardly
an expert will contest the assertion that machines will be proving interesting
theorems in number theory three years hence.

Appendix 1

Premises
Quad-lateral ABCD
Point E midpoint segment AB
Point F midpoint segment AC
Point G midpoint segment CD
Point H midpoint segmentBD

To Prove
ParallelogramEFGH

Figure 2.
Syntactic Symmetries

Segment DG equals segment GC
Definition of midpoint

BA, AB, DC, CD, EE, HF, GG, FH, CA, DB, AC, BD, GE, FF, EG,
HH, DA, CB, BC, AD, GE, HF, EG, FH

Proof
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Segment CF equals segmentFA

Definition of midpoint
Triangle DCA

Assumption based on diagram
i 'jPrecedes DGC

Definition of midpoint
Precedes CFA

Definition of midpoint
Segment GF parallelsegment AD

Segment joining midpoints of sides of triangle is parallel tobase
Segment HE parallel segment AD

Syntactic conjugate
Segment GF parallelsegment EH

Segments parallel to the same segment are parallel
Segment HG parallel segmentFE

Syntactic conjugate
Quad-lateral HGFE MAssumption based on diagram
Parallelogram EFGH

Quadrilateral with opposite sides parallel is a parallelogram
Totalelapsed time = 1.03 minutes

Appendix 2

Premises i
I

,1

Quad-lateral ABCD
Segment BC parallel segment AD
Point E midpoint segment AC
Point F midpoint segment BD
Precedes MEF
Precedes AMB Figure 3.

To prove
Segment MB equals segment MA

j

No Syntactic Symmetries
I Am Stuck, Elapsed Time = 8.12 Minutes
Construct segment CF
Extend segment CF to intersect segment AD in point X

Add to Premises the Following Statements
Precedes CFK
Collinear AKD it
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Proof
Segment BC parallel segment AD

Premise
Collinear AKD

Premise
Segment KD parallel segment BC

Segments collinear with parallel segments are parallel
Opp-side KCDB

Assumption based on diagram
Segment DB

Assumption based on diagram
Angle KDB equals angle CBD

Alternate interior angles of parallel lines are equal
Precedes CFK

Premise
Precedes DFB

Definition of midpoint
Angle KFD equals angle CFB

Vertical angles are equal
Segment DF equals segment FB

Definition of midpoint
Triangle FDK

Assumption based on diagram
Triangle FBC

Assumption based on diagram
Triangle FDK congruent triangle FBC

Two triangles are congruent if angle-side-angle equals angle-side-angle
Segment KF equals segmentCF

Corresponding segments of congruent triangles are equal
Segment CE equals segmentEA

Definition of midpoint
Triangle AKC

Assumption based on diagram
Precedes CEA

Definition of midpoint
Segment EF parallel segment AX

Segment joining midpoints of sides of triangle is parallel to base
Segment EF parallel segment KD

Segments collinear with parallel segments are parallel
Segment FE parallel segment BC

Segments parallel to the same segment are parallel
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.k.

Precedes MEF
Premise

Collinear MEF
Ordered collinear points are collinear

Segment FM parallel segmentBC
Segments collinear with parallel segments are parallel

Segment FM parallel segmentDA
Segments parallel to the same segment are parallel

Triangle DBA
Assumption based on diagram

Precedes AMB
Premise

Segment MB equals segment MA
Line parallel to base of triangle bisecting one side bisects other side

Total elapsed time = 30.68 minutes
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