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ABSTRACT
Prospector is a computer consultant system intended to aid geologists in evalu-
ating the favorability of an exploration site or region for occurrences of ore
deposits of particular types. Knowledge about a particular type of ore deposit
is encoded in a computational model representing observable geological features
and the relative significance thereof. We describe the form of models in Pros-
pector, focussing on inference networks of geological assertions and the Bayesian
propagation formalism used to represent the judgmental reasoning process
of the economic geologist who serves as model designer. Following the initial
design of a model, simple performance evaluation techniques are used to assess
the extent to which the performance of the model reflects faithfully the intent
of the model designer. These results identify specific portions of the model
that might benefit from "fine tuning", and establish priorities for such revisions.
This description of the Prospector system and the model design process serves
to illustrate the process of transferring human expertise about a subjective
domain into a mechanical realization.

I. INTRODUCTION
In an increasingly complex and specialized world, human expertise about diverse
subjects spanning scientific, economic, social, and political issues plays an
increasingly important role in the functioning of all kinds of organizations.
Although computers have become indispensable tools in many endeavors, we
continue to rely heavily on the human expert's ability to identify and synthesize
diverse factors, to form judgments, evaluate alternatives, and make decisions —
in sum, to apply his or her years of experience to the problem at hand. This is
especially valid with regard to domains that are not easily amenable to precise
scientific formulations, i.e., to domains in which experience and subjective
judgment plays a major role.

The precious resource of human expertise is also a fragile and transient one:
the departure of a crucial expert from an organization may cause serious dis-
locations; senior people impart their knowledge to younger colleagues, but the
demand for their talents may not leave sufficient time for such educational
efforts.
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Section of the National Science Foundation under Grant AER77-04499. Any opinions,
findings, conclusions, or recommendations expressed in this publication are those of the
authors, and do not necessarily reflect the views of either the U.S. Geological Survey or the
National Science Foundation.
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During recent years research in the field of artilicild intelliger.ce has produced
effective new techniques for representing empirical judgmental knowledge and
using this knowledge in performing plausible reasoning. The best known appli-
cation of these techniques has been in the area of medical diagnosis, where
computer programs have achieved high levels of performance (Pople et al.,
1975; Shortliffe, 1976; Weiss et al., 1977; Yu, 1978; Szolovits, 1976). Other
applications include planning experiments in molecular genetics (Martin 1977)
and monitoring instruments in intensive care units (Fagan 1978). This paper
concerns a similar computer program, called Prospector, that is being developed
to help geologists in exploring for hard-rock mineral deposits. The characteristic
of plausible reasoning shared by the domains of medical diagnosis and mineral
exploration is common, to some degree, to many other diverse evaluation tasks
as well. Hence the purpose of this paper is to illustrate, by a case study for the
domain of mineral exploration, the general process of capturing and encoding
human expertise into a mechanical realization.

II. OVERVIEW OF THE PROSPECTOR SYSTEM
The Prospector system is intended to emulate the reasoning process of an
experienced exploration geologist in assessing a given prospect site or region
for its likelihood of containing an ore deposit of the type represented by the
'model he or she designed. Here we use the term "model" to refer to a body .
of knowledge about a particular domain of expertise that is encoded into the
system and on which the system can act. The empirical knowledge contained
in Prospector consists of a number of such specially encoded models of certain
classes of ore deposits. These models are intended to represent the most authori-
tative and up-to-date information available about each deposit class.

In Prospector's normal interactive consultation mode, the user is assumed
to have obtained some promising field data and is assumed to desire assistance
in evaluating the prospect. Thus, the user begins by providing the program
with a list of rocks and minerals observed, and by inputting other observations
expressed in simple English sentences. The program matches these data against
its models, requests additional information of potential value for arriving at
more definite conclusions, and provides a summary of the findings. The user
can ask at any time for an elaboration of the intent of a question, or for the
geological rationale for including a question in the model, or for an ongoing
trace of the effects of his answers on Prospector's conclusions. The intent is
to provide the user with many of the services that could be provided by giving
him telephone access to a panel-of senior economic geologists, each an authority
on a particular class of ore deposits.

The performance of Prospector depends on the number of models it contains,
the types of deposits modeled, and the quality and completeness of each model.
Because the Prospector program is primarily a research project, its coverage
is still incomplete. It currently contains five prospect-scale models, one regional-
scale model, and one drilling site selection model. The prospect-scale models
consist of a Kuroko-type massive sulfide model contributed by Charles F. Park, Jr.,
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a Mississippi-Valley-type carbonate lead/zinc model contributed by Neil Campbell,
a near-continental-margin porphyry copper model contributed by Marco T.
Einaudi, a Komatiitic nickel sulfide model contributed by Anthony J. Naldrett,
and a Western-states sandstone uranium model contributed by Ruffui I. Rackley.

The regional scale model is a variation of Mr. Rackley's model. The drilling

site selection model, for porphyry copper deposits, was contributed by Mr.
Victor Hollister, and differs somewhat from the other models: it derives its
inputs from digitized maps of geological characteristics, and produces as output
a color-coded graphical display of the favorability of each cell on a grid corres-
ponding to the input map. These models were selected for a variety of reasons,
including their economic significance, the extent to which they are well under-
stood scientifically, the availability of expert geologists who could collaborate
with us in the model development, and the new research issues that their im-
plementation would raise.

Each model is encoded as a separate data structure, independent of the
Prospector system per se. Thus, the Prospector program should not be confused
with its models. Rather, Prospector should be thought of as a general mechanism
for delivering relevant expert information about ore deposits to a user who
can supply it with data about a particular prospect or region.

This paper describes briefly the process of developing and encoding such
models for Prospector. General overviews of the technical principles are given
in Hart, Duda and Einaudi (1978), mathematical aspects in Duda et al. (1976,
1978a), and detailed expositions in Duda et al. (1977, 1978b) and Hart, Duda
and Konolige (1978).

III. FORMALISM FOR ENCODING EXPLORATION MODELS

A. Inference Networks of Assertions
For use in Prospector an ore deposit model must be encoded as a so-called
inference network, a network of connections or relations between field evidence

and important geological hypotheses. Since we sometimes do not wish to distin-
guish between evidence and hypotheses, we shall refer to either one as an asser-
tion. To illustrate these ideas, we shall draw upon examples taken from M.T.
Einaudi's porphyry copper model, which we shall denote by PCDA. Typical
assertions in PCDA are "Hornblende has been pervasively altered to biotite" and
"The alteration suggests the potassic zone of a porphyry copper deposit." The

former would normally be thought of as field evidence, the latter as a geological

hypothesis. A small portion of the PCDA inference network is shown in Figure 1.
Here the terminal or "leaf' nodes correspond to field evidence asked of the user,
while the other nodes represent hypotheses. The text in the boxes in Figure 1 is
concise for reasons of graphical display; the actual questions asked of the user
are more definitive.

Although assertions are statement that should be either true or false, in a given
situation there is usually uncertainty as to whether they are true or false. Initially,
the state of each assertion is simply unknown. As evidence is gathered, some

assertions may be definitely established, whereas others may become only more
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Figure 1. Portion of a Prospector model for porphyry
copper deposits. See text for interpretation

or less likely. In general, we associate a probability value with every assertion.

The "connections" in the inference network determine how a change in the

probability of one assertion will affect those of other assertions.

The principal or top-level assertion in an inference network for a model is the

assertion that the available evidence matches that particular model. To establish

this assertion, it is usually necessary to establish several major factors. For
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example, to establish the top-level assertion in PCDA, we must establish the
following hypotheses:

1. The petrotectonic setting is favorable for PCDA;
2. The regional evironment is favorable for PCDA;
3. There is an intrusive system that is favorable for PCDA.
Were any of these assertions field-observable evidence, they could be established

merely by asking the user of the program whether they were true. However,
since all of these factors are hypotheses, each must be further related to other
factors. For example, the favorability of the petrotectonic setting can be estab-
lished through the following three factors, each of which happens to be deter-
minable (at least in principle) from observational evidence:

1. The prospect lies in a continental margin mobile belt;
2. The age of the belt is post-Paleozoic;
3. The prospect is subject to tectonic and magmatic activity related to

subduction.
In general, the ore deposit models in Prospector have this type of hierarchical

structure. The top-level assertion is determined by several major second-level
assertions, each of which may be determined by third-level assertions, with this
refinement continuing until assertions are reached that can be established directly
from field evidence. This is illustrated in Figure 1, which shows graphically that
portion of the PCDA model that describes the regional environment. In addition
to this "top-to-bottom" development in terms of successive levels of assertions,
the models also often exhibit a "left-to-right" organization in terms of spatial
scale, from the petrotectonic setting on the left to the local details of mineral-

ization and texture on the right. Exactly how these considerations interact is
determined by the relations that exist among the assertions. The following
section explains the nature of these relations and illustrates their occurrence
in Figure 1.

B. Relations

Three basically different kinds of relations are used in Prospector to specify how

a change in the probability of one assertion affects the probability of other
assertions. We distinguish these as logical relations, plausible relations, and

contextual relations.
1. Logical Relations. With logical relations, the truth (or falsity) of a hypo-

thesis is completely determined by the truth (or falsity) of the assertions that

define it. Such relations are composed out of the primitive operations of con-
junction (AND), disjunction (OR), and negation (NOT). When several assertions

must all be true for a hypothesis to be true, the hypothesis is the conjunction of
the assertions. When the hypothesis is true if any of the assertions is true, the
hypothesis is the disjunction of the assertions. Negation merely complements
an assertion, interchanging truth and falsity. As an example of a logical relation,
the PCDA model says that alteration of plagioclase is indicative of the barren-
core zone if



MODEL DESIGN IN PROSPECTOR / 339

1. Plagioclase has been altered to
a. albite
or
b. minor sericite (or both)

and
2. Plagioclase has not been altered to major epidote.

Other examples of logical relations are shown in Figure 1.
Of course, in general we do not know whether the assertions are true, but

can only estimate a probability or degree of belief that they are true. With logical
relations, to compute the probability of a hypothesis from the probability of its
component assertions we employ the fuzzy-set formulas of Zadeh (1965). Using
these formulas, the probability of a hypothesis that is defined as the logical
conjunction (AND) of several pieces of evidence equals the minimum of the pro-
bability values corresponding to the evidence. Similarly, a hypothesis defined as
the logical disjunction (OR) of its evidence spaces is assigned a probability value
equal to the maximum of those values assigned to the evidence spaces. One
property of this procedure is that it often gives no "partial credit." In particular,
if all but one of the assertions have been established, but the user can not even
guess about the last, then the probability of their conjunction often remains at
the value it had when the states of none of the assertions were known. This may
be the appropriate conclusion. When it is not, one has the option of using plaus-
ible relations.

2. Plausible Relations. With plausible relations, each assertion contributes
"votes" for or against the truth of the hypothesis. This would be expressed by
relating the assertions to the hypothesis through a set of plausible inference rules.
Each rule has an associated rule strength that measures the degree to which a
change in the probability of the evidence assertion changes the probability of the
hypothesis. This change can be positive or negative, since as assertion can be
either favorable or unfavorable for a hypothesis. As with all parts of a model,
these rule strengths are obtained by interviewing an authority on the correspond-
ing class of ore deposits. Initially he may express the strengths in verbal terms,
such as "rather discouraging" or "very encouraging." This is ultimately translated
into numerical terms (as shown in Figure 1), the changes in probability being
computed in accordance with the rules of Bayesian probability theory, as
outlined below and described in detail in Duda et al. (1977).

Prospector's plausible reasoning scheme is based on Bayesian decision theory
(Raiffa, 1968), exploiting an elementary theorem of probability known as
Bayes' rule. For our purposes, the so-called "odds-likelihood" form of the rule
is most convenient. This form relates three quantities involving an evidence
assertion E and a hypothesis assertion H: the prior odds 0(H) on the hypothesis,
the posterior odds 0(H I E) on the hypothesis, given that E is observed to be
present, and a measure of sufficiency LS. Then Bayes' rule can be stated as

0(H I E) = LS * 0(H) (1)
Odds and probabilities are freely interchangeable through the simple relation

0 = P 1(1 — P), where P denotes probability, and hence P = 0 / (1 + 0). The suffi-
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ciency measure LS is a standard quantity in statistics called the likelihood ratio,
and is defined by

P(E I H)
LS— (2)

P(E —H)

where —H means "not H."
Equation (I) prescribes a means for updating the probability (or odds) on

H, given that the evidence E is observed to be present. An inference rule for
which LS is large means that the observation of E is encouraging for H — in
the extreme case of LS approaching infinity, E is sufficient to establish H in
a strict logical sense. On the other hand, if LS is much less than unity, then
the observation of E is discouraging for H, inasmuch as the observation of E
diminishes the odds on H.
A complementary set of equations describes the case in which E is known

to be absent, that is, when —E is true. In this case, we can use Bayes' rule to
write

0(H I E) = LN * 0(H) (3)

H) 
LN— (4)

P(—E I —II)

The quantity LN is called the necessity measure. If LN is much less than
unity, the known absence of E transforms neutral prior odds on H into very
small posterior odds in favor of H. In the extreme case of LN approaching
zero, E is logically necessary for H. On the other hand, if LN is large, then
the absence of E is encouraging for H.

Hence to define an inference rule
IF
THEN (to degree LS, LN) H,

the model designer must articulate E and H, and must supply numerical values
for LS, LN, and 0(H).

In general, the user may not be able to state that E is either definitely present
or definitely absent. In this case, the updating formulas (1) and (3) cannot be
applied directly, but can be extended to accommodate the uncertainty in the
evidence. The extension used in Prospector involves a linear interpolation
between the extremes of E's being definitely present or definitely absent.
See Duda (1976,1977) for details. The user expresses his certainty about E on
an arbitrary —5 to 5 scale, where 5 denotes that the evidence is definitely present,
—5 denotes that it is definitely absent, 0 indicates no information, and inter-
mediate values denote degrees of certainty.
We illustrate this plausible inference scheme with examples taken from

Figure 1. The two numbers associated with each inference rule in Figure 1
are its LS and LN values, respectively. The number appearing above each box

where
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representing a nonterminal node is the prior probability of that assertion's
being true. For example, the figure indicates that the existence of stocks is a
more highly sufficient indicator of "suggestive morphology of igneous rocks"
(i.e., LS= 300) than is the existence of either dikes, intrusive breccias, or volcanic
plugs (i.e., LS = 75, 20, and 4, respectively). Similarly, "favorable level of
erosion" (FLE) is a highly sufficient and highly necessary factor for establishing
"favorable regional environment" (i.e., LS = 5700 and LN = 0.0001), whereas
the existence of a "preintrusive throughgoing fault system" (OTFSYS) is only
mildly sufficient and mildly necessary for establishing "favorable regional
environment." Hence the positive (LS) or negative (LN) votes of FLE are
weighted much more heavily than those of OTFSYS.

The section of the model concerned with establishing "suggestive morphology
of igneous rocks" (SMIR) illustrates how logical and plausible relations can be
combined as building blocks to accomplish the intent of the economic geologist
designing the model. This section of the PCDA model can be described as
follows. "There are four positive indicators for establishing a suggestive mor-
phology for igneous rocks (SMIR), namely intrusive breccias, stocks, dikes,
and volcanic plugs. Each of these factors contributes independently to estab-
lishing SMIR, although to differing degrees. The absence of any one of these
four factors individually is unimportant [i.e., LN = 1 for those rules] . However,
if it is known that none of these factors is present [implying that the disjunction
node SMIRA is false] , then the probability of a suggestive morphology of
igneous rocks is essentially zero [LN = 0.0002 for SMIRA]." In defining an
inference network for a model, the object is to induce the model designer to
articulate such statements, and then to translate the statements into network
constructions.

To see how the effect of a piece of evidence propagates upward through
the model, suppose that the user has indicated only that intrusive breccias are
present, but this is definite. This fact multiplies the odds of SMIR by a factor
of 20, hence raising its probability from 0.03 to 0.382. (The prior odds on
SM IR are 0.03 1(1 — 0.03) = 0.030927, giving posterior odds on SMIR equal to
20 * 0.030927 = .61855, which corresponds to a probability of 0.61855 /
(1+0.61855) = 0.382.) This in turn increase the odds on HYPE by a factor of
300 weighted by the degree to which SMIR has increased from its prior pro-
bability, i.e, by the factor 300 * (0.382-0.03) / (1-0.03) = 108.866. Hence
the posterior probability of HYPE is 0.52373, which in turn increases the odds
of FLE by a factor of 200 * (0.52373-0.01) / (1-0.01) = 103.78, giving a
posterior probability for FLE of 0.34276. The propagation continues in this
manner upward through the network.

It should be noted that Prospector expresses its conclusions to the user
on the same —5 to 5 certainty scale that the user employs to express his certainty
about evidence requested by the system. Prospector maps internal probability
values to external certainty scores in a piecewise linear fashion, such that the
posterior certainty is proportional to the difference between the posterior
probability and the prior probability. For example, since the prior probability of
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FLE is 0.005, a posterior probability of 0.34276 corresponds to a posterior
certainty of 5 * (0.34276-0.005)! (1-0.005) = 1.697. Similarly, a posterior
probability of 0.001 corresponds in this case to a posterior certainty of 5 *
(0.001 — 0.005) / 0.005 = —4. See Shortliffe (1975) for a description of the
subjective certainty scale used in the MYCIN medical diagnosis system.

3. Contextual Relations. It sometimes happens that assertions cannot be
considered in an arbitrary order, but must be considered in a particular sequence.
For example, one should determine that there is a relevant continental margin
mobile belt before considering its age. This is more than a matter of preference,
since it would be meaningless for the program to ask about the age of a non-
existent belt.
To treat such situations we employ the third class of relations, contextual

relations. In general, we use contexts to express a condition that must be estab-
lished before an assertion can be used in the reasoning process. In the above
example, the existence of a continental margin mobile belt would be specified
as a context for asking about the age of the belt. Thus, before inquiring about
the age, the system would employ all its resources to establish the existence
of the belt, and would not ask about its age unless the probability of the belt
were greater than its initial value.

Contextual relations are also used when one assertion is geologically signifi-
cant only if another assertion has already been established. In such instances it
would not be nonsensical to ask the former question without first establishing
the latter, but it is the case that the former evidence is geologically irrelevant
without the latter to establishing a match to the model. Two such instances
are depicted by dashed arrows in Figure 1. In one of these instances, the entire
"favorable regional environment" section of PCDA model will not be pursued
unless it has first been determined that there are granitic intrusives in the region.

IV. OVERVIEW OF THE MODEL DEVELOPMENT PROCESS
Although the development and encoding of a model for Prospector is not a
routine process, it does progress through several distinct phases whose general
nature can be described. The four most important phases are summarized below.

A. Initial Preparation
Model development is a cooperative enterprise involving an exploration geologist,
who is an authority on the type of deposit being modeled, and a computer
scientist who understands the operation of the Prospector system. The first step
in developing a model is one of introducing the exploration geologist (model
designer) to the inference network formalism, and introducing the computer
scientist (model implementor) to the general nature of the class of deposits
being modeled. In particular, this includes the identification of several known
deposits that should fit the model well, and several known deposits that may fit
partially, but that lack certain important characteristics. These specific cases
help to establish the various factors that must be taken into account.
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B. Initial Design
The initial design of the inference network is the most creative phase of the pro-
cess. It requires the identification of the various assertions, the organization of
the assertions into a hierarchical structure (as illustrated in Figure 1), the deter-
mination of the types of relations (logical, plausible, and contextual) that exist
among assertions, and the estimation of values for the parameters (the voting
strengths and initial probabilities). The magnitude of this task depends upon the

size and complexity of the model being developed; as a point of reference, the

smallest model currently in Prospector contains 28 assertions and 20 inference
rules, while the largest contains 212 assertions and 133 inference rules. The
initial design is usually facilitated by considering factors in the "top-down" and
"left-to-right" sequence described earlier. Delicate refinement is best avoided at
this time, since subsequent revision often causes significant sections of the model
to be reorganized, enlarged, or otherwise modified.

In addition to the connections between assertions exhibited directly by the
inference network, there are connections that exist because of the geological
meaning of the assertions. For example, the statement that there are sulfide
minerals is obviously related to the statement that there is pyrite in quartz veins;
assertion of the latter implies the former, and denial of the former denies the
latter. Recognition of such connections within a model avoids redundant or foolish
questioning; recognition of such connections between different models allows
the program to consider more than one deposit class at a time. Prospector can
automatically recognize many of these assertions if each assertion is properly
articulated. This articulation, which is described in more detail in Duda (1978b),
should also be completed during the initial design.

C. Installation and Debugging of the Model
At the end of Phase B, the model exists in a "pencil-and-paper" form. To be
incorporated into the program, the encoding must be given a formal description.
This is done through the use of a model description language (see Duda, 1978b).
The details of this language are not particularly important here. However, the
task itself is important; upon its completion the program can be run, and acci-
dental blunders or bugs can be corrected. In addition, the program can produce
a questionnaire for the model that is useful in gathering data for subsequent
testing and revision.

D. Performance Evaluation and Model Revision
Given the questionnaire data for a number of actual deposits, it is possible to
make a serious quantitative evaluation of how well particular deposits match the
model. In our experience, this evaluation inevitably exposes various shortcomings
of the model as encoded, requiring revision of the work done in Phases B and C.
Some care must be exercised here to avoid "overfitting" the model to the data.
In general, the goal is to produce a model that can discriminate different types
of deposits without losing the ability to generalize, so as to allow for the vari-
ations one would expect in new situations. Achievement of that goal currently
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remains as much an art as a science. The following section describes in some
detail the use of simple performance evaluation techniques as an aid to refining
a model.

V. USE OF PERFORMANCE EVALUATION IN REFINING A MODEL
To demonstrate that the performance of an expert knowledge-based system is
(or is not) comparable to that of the experts it emulates, it is useful to subject
the system to an appropriate objective evaluation. The simple performance
evaluation experiments reported in this section serve several purposes: (1) to
provide an objective, detailed, quantitative measure of the current performance
of a model; (2) to pinpoint those sections of the model that are not performing
exactly as intended, thereby establishing priorities for future revisions; (3) to
assess consistency of performance across different exploration sites.
We now evaluate a model for a class of porphyry copper deposits (PCDA)

designed by Prof. Marco Einaudi of Stanford University. Input data were avail-
able for three test cases, namely, the known deposits called Yerington (Nevada),
Bingham (Utah), and Kalamazoo (Arizona), each of which is considered an
exemplar of the PCDA mode1.2 On the —5 to 5 certainty scale described earlier,
the overall certainty scores computed by Prospector are 4.769 for the Yerington
deposit, 4.721 for Bingham, and 4.756 for Kalamazoo, indicating a good match
of these sites to the PCDA model.
To show performance in detail, we give below the hierarchical structure of

the major sections of the PCDA model. Included at the right in this enumeration
is the total number of questions that may be asked by Prospector for each of the
major sections of the model, thus showing the relative distribution of these
questions. (The questions in the FAMR section may be asked several times
during a consultation session, once for each geographically distinct zone within
the prospect area. Each such zone has relatively homogeneous geological charac-
teristics, as determined by the user.)

Total Number of Questions Defined
in PCDA Model (Version 2)

Porphyry Copper deposit, type A (PCDA) 81
Favorable petrotectonic setting (FPTS) 4
Favorable regional environment (FRE) 9

Favorable PCDA intrusive system (FPCDAIS) 68
Favorable composition in differentiated sequence 4

(FCDS)
Favorable intrusive system (FIS) 9
Favorable alteration and mineralization relations
(FAMR) 56

2The questionnaire input data used in the present tests are reported in
Duda et al., 1978b, pp.I85-93.
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As a calibration exercise, Prof. Einaudi offered a target value for the certainty
score that should be assigned to each of the three deposits for each of the major
components of the model listed above, based on the values in the input data
set for each prospect site. The target values are given either in the form of a
single number (on a —5 to 5 scale), or as two numbers establishing an upper and
lower bound on a certainty interval. The estimates are listed in Table 1 on the left
for each site in turn, with the scores as determined by execution of Prospector
recorded on the right. (We informed Prof. Einaudi of the values on the right
only after he had given us those on the left.)

Yerington Deposit

Name of Model Node Einaudi's Estimate Prospector Score

PCDA 4.5 to 5.0 4.769
FPTS 4.5 to 5.0 4.528
FRE 4.5 4.540
FPCDAIS 4.5 to 5.0 4.787
FCDS 5 4.524
FIS 5 4.744
FAMR 4.5 to 5.0 4.225

Bingham Deposit

Name of Model Node Einaudi's Estimate Prospector Score

PCDA 4.5 4.721
FPTS 3.5 to 4.0 4.449
FRE 4.0 to 4.5 4.829
FPCDAIS 4.5 to 5.0 4.729
FCDS 5 2.407
FIS 5 4.744
FAMR 4.0 4.225

Kalamazoo Deposit

Name of Model Node Einaudi's Estimate Prospector Score

PCDA 4.0 to 4.5 4.756
FPTS 4.0 to 4.5 4.449
FRE 3.5 1.784
FPCDAIS 4.5 to 5.0 4.791
FCDS 5 4.722

FIS 5 4.744

FAMR 4.0 4.225

Table 1. Prospector Scores for Several Levels of the PCDA Model
(Version 2)
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The data in Table 1 show that Prospector scores each of these sections of
the model with high certainty for each site, with the exception that model
node FCDS for the Bingham deposit and model node FRE for the Kalamazoo
deposit are scored somewhat lower. In most cases shown in Table 1 Prospector
agrees very closely with Prof. Einaudi's estimate. These conclusions can be
expressed quantitatively by first identifying the values in Table 1 with a concise
notation, then defining a simple formula for the relative error of Prospector in
predicting Prof. Einaudi's estimates. Thus:

Let C(X, Y, Z)= Certainty score given to model node Z by agent X for site
Y,
where X denotes either Prospector or Einaudi

For example, C(Prospector, Yerington, FPCDAIS) = 4.787. When Einaudi
gave an interval of certainty values instead of a single value, we use the mid-
point of the interval as the value of C. Then an error measure is given by

C(Einaudi, Y, Z) - C(Prospector, Y, Z)
E(Y, Z) -

C(Einaudi, Y, Z)

For example, E(Yerington, FPCDAIS) = (4.75 - 4.787) /4.75 = -0.008, meaning
that Prospector's prediction is accurate to within 0.8% in this case. Since Table 1
gives values for seven nodes of the model for each of three known deposits, we
can compute the value of E for 21 different instances. For 5 of the 21 data
points Prospector predicted Einaudi's estimate to within 1%, while 15 of the
21 data points show agreement to within 10%. The grand average over the 21
data points is 10.3%. For convenience, we list these 21 values of E in Table 2,
expressed as percentages.

Yerington Bingham Kalamazoo
Average of
Absolute Values

PCDA -.3% -4.9% -11.9% 5.7%
FPTS 4.7 -18.6 -4.7 9.3
FRE -.9 -13.6 49.0 21.2
FPCDAIS -.8 .4 -.9 .7
FCDS 9.5 51.9 5.6 22.3
FIS 5.1 5.1 5.1 5.1
FAMR 11.1 5.6 5.6 7.6

Average of
Absolute values: 4.1 14.3 11.8 10.3

Table 2. Relative Error (E) of Prospector Scores as Predictors of Einaudi's
Estimates (derived from data in Table 1)

Inspection of Table 2 indicates that efforts to revise the PCDA model should
focus on the FRE and FCDS sections. When such revisions are completed, an
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updated version of Table 2 will indicate the extent to which the revisions achieved
the objectives that motivated them.

The small number of cases tested, and the fact that all the present test cases
are exemplars of the PCDA model, and the fact that the model designer himself
supplied the input data concerning the test cases, are limitations; the present
tests are more necessary than sufficient conditions for good performance. Despite
these limitations, the preliminary results reported here have proved useful in the
ongoing model refinement process. More extensive performance evaluation results
are reported in Duda et al. (1978b).

VI. REMARKS
This paper has outlined the typical procedures used to develop an exploration

model for the Prospector system. We have described the inference network and
Bayesian propagation scheme underlying Prospector models, and we have illus-
trated the use of simple performance evaluation techniques in "fine-tuning" a
model systematically. Our experience indicates that the model design process
inherently requires feedback. Although different problem solving domains
differ in many details, we believe the process of constructing Prospector-like
plausible reasoning systems follows certain general patterns and stages of develop-
ment such as are described here. Hence we have presented a concrete case study,
in the domain of mineral exploration, that may credibly suggest what might be
expected in attempts to apply a similar methodology to other domains of
expertise.

Besides the running program, there appear to be several other benefits to
this type of expert system approach. The model design process challenges the
model designer to articulate, organize, and quantify his expertise. Without
exception, the economic geologists who have designed Prospector models have
reported that the experience aided and sharpened their own thinking on the
subject matter of the model. In addition, most of the geologists we know who
have had experience with Prospector have remarked about its potential value
as an educational tool. In this regard, the models in the system contain explicit,
detailed information synthesized from the literature and the experience of
expert explorationists, together with explanatory text that can be obtained
upon request. Furthermore, a typical consultation session with Prospector
costs only about $10 at current commercial computer rates.
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