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Participants in the search for intelligent machines frequently disagree i
On a basic question of strategy in their quest. On the one hand there are ‘
those who believe that the major obstacles can be overcome by reliance
on the computer’s infallible memory, electronic speed, and arithmetic
Capabilities if these capacities are cleverly employed in sophisticated search-
ing and statistical procedures. On the other hand there are those who
feel that the problems of meaning and intuition must be somehow resolved
before significant progress will be made, and that these problems are not
solely a matter of speed and arithmetic. This issue will only be resolved by
demonstration, and yet it is of some importance to decide how to allocate
Our efforts. This report takes the position that immediate, practical applica-
tions can derive from the former approach, but the major problems will be
solved only by the latter. To mention a single example, the implementation
of information retrieval techniques on present-day computers would be a
large step forward, even though the techniques thus far considered have
largely been conceptually trivial. The automation of libraries and scientific
document files could immediately bring about great savings in valuable
human time and effort, plus increased accuracy in literature searching.
Kehl (1961) is now implementing a retrieval system which searches for
Certain combinations of key words in a large corpus and yields references to
those documents which contain the proper combinations. Luhn (1958) has
used a straightforward statistical procedure to extract key sentences from
Scientific articles, thus yielding useful abstracts of a sort. The use of these
two techniques on a large scale would go a long way toward extracting us
from the clutches of the information explosion which is so often discussed.
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218 ARTIFICIAL INTELLIGENCE

And yet it is quite clear that these techniques, whose primary advantages
derive from using the great speed of the computer, will not produce intel-
ligent machines, or even produce machines which do simple jobs with the
intelligence displayed by a human clerk. For even an unintelligent human
does more than count frequencies or search for key words. The human
displays intelligent features which are generally summed up by saying that
he understands the meaning of what he hears and reads.

The meaning of meaning and the meaning of understanding have never
been adequately explicated when applied to human thought processes. How
then can we hope to make them precise enough to enable us to build
machines which understand meaning? Before attempting to answer this
question, let us attempt to sharpen our intuitions by considering more
specifically some examples of things which could be done by machines
which understand but which would be beyond the capabilities of machines
without this ability.

One of the major problems of the many encompassed by artificial intel-
ligence is that of the mechanical translation of natural languages. Many
of the early advocates of mechanical translation felt that high-quality trans-
lations could be produced by machines supplied with sufficiently detailed
syntactic rules, a large dictionary, and sufficient speed to examine the
context of ambiguous words for a few words in each direction. No doubt
such machines will be able, when the syntactic rules are discovered, to
produce fairly good translations, and yet it should be clear that such ma-
chines will never produce truly high-quality translations without the aid of
pre-editing and postediting by human translators.

Here is one example of a difficulty. We wish to translate “The boy is in
the house” and “The boy is in Paris” into French. In the first instance, the
preposition “in” is rendered in French as “dans”; in the second sentence,
the same preposition is rendered in French as “a.” The human translator
makes his decision by knowing that houses enclose people on all sides,
while cities do not. This situation could, of course, be handled by marking
all nouns with an indicator which tells the machine whether or not the
thing denoted can enclose other things. But the hope that all such idio-
syncrasies can be handled by such multiplication of stored details is futile.
Bar-Hillel (1960) has given an even more perplexing example. We wish
to translate the sentences “The pen is in the box” and “The box is in the
pen” into French. There is no other context, and no other is needed by 3
human translator who knows that “pen” in the first sentence must denot¢
a writing instrument and not a fenced enclosure, while the opposite is trué
in the second sentence. He can thus select the proper French equivalent
for each, even though in French a single word does not suffice as it does
in English. Once again we must increase the information stored in ouf
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machine, this time indicating for each noun those things which it can
enclose.

The problem of understanding may be rephrased to state that we must
find ways of storing large amounts of such detailed knowledge while Co
keeping the amount of memory capacity required within realizable limits. : '

Much of the literature on meaning has not been directly connected with
this notion, but has been concerned with the problem of denotation: to
what things does a symbol refer. Here, however, we are faced with the
problem of what a proposition means. Osgood (1957) and Mowrer (1954)
have attempted to extend notions of association and conditioning to include
associations between groups of words rather than single words.

According to Osgood’s theory, a word elicits associated internal re-
sponses. These responses can be described by their values along certain
dimensions, such as active-inactive, good-bad, strong-weak. The meaning
of a combination of words is an average of the component values for each
of the words taken individually. For example, if “shy” is valued as mildly _
inactive, mildly bad, and mildly weak, and if “secretary” is valued as being .
very active, very good, and mildly weak, then “shy secretary” is valued as '
mildly active, mildly good, and mildly weak.

According to Mowrer’s theory, sentences are temporal sequences of
words and the internal responses to the first words are conditioned, in the
classical sense, to the internal responses to the later words. Thus the
sentence “Tom is a thief” conditions the notion of Tom to the notion of
thief, where we use the loose term “notion” to indicate that it is not the
words themselves, but the internal responses to them which become
associated.

In both of these theories, the measure of meaning of a concatenation
of words amounts to some sort of combination of the measures for the
individual words. It appears that a useful theory must somehow make use
of more complicated associative connections than those proposed by either
of these two workers. For one thing, Osgood’s scheme depends not at all
on word order, only on which words are used; Mowrer’s scheme depends
only on word order, and not upon any other relations. To Osgood, “Tom
hit Joe” would have the same meaning as “Joe hit Tom”; to Mowrer,
“Tom is a thief” would have the same meaning as “Tom hit a thief.”

Intuitively, a concept of meaning must include the notion of implication:
what does a proposition imply. This does not mean, that is, imply, logical
implication, but merely implication to the individual. Thus the meaning
of a proposition is relative to the audience, and this probably is an un-
avoidable requirement.

Knowing more than one is told is a characteristic of human performance
Which is present in most behaviors which are called intelligent. We have
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argued that this characteristic is necessary for machines which are to
solve the real problems of information retrieval, language translation, and
problem-solving. And furthermore, we must find efficient ways to store
implications if we are to develop intelligent machines with finite memory
capacities, that is, if we are to develop intelligent machines.

Examples of memory structures with these desired properties im-
mediately come to mind from personal experience. They are often called
mental pictures. Gelernter (1959b), for example, has developed a geometry
machine whose basic source of intelligence lies in its ability to reject most
of the formally possible sequences of proof steps because they ‘“‘cannot
possibly be correct.” In effect, the machine constructs a diagram based
upon the premises of the theorem to be proved. (Actually, the machine is
supplied with such a diagram, although the task of constructing one is,
while difficult, not taxing of memory and speed.) The implications of the
premises are explicitly contained in this diagram, as are some nonimplica-
tions, but most nonimplications are not contained. The machine then
merely rejects as possible subgoals (intermediate steps) all things which
are not true in the diagram. For example, the premises “Triangle ABC,”
“AB = BC,” “A, D, C collinear,” and “AD = DC” are supplied in con-
junction with coordinates for each point, such as A(0,0), B(5,5), C(10,0)
and D(5,0) (see Fig. 1). The machine will never attempt to prove
“triangle ABC congruent to triangle ABD” because this is not true in the
diagram, as the machine can determine by calculating their respective
perimeters. However, it might try to prove “angle DAB = angle DCB,”
which is implied by the premises. It may also try to prove “AD = DB”
which is true in the diagram, but not implied by the premises. By supply-
ing the machine with a more general diagram, such as by moving B to
(5,15) (see Fig. 2), this last cul de sac could be avoided.

Such two-dimensional pictures have the properties we desire: they store
implications and they do so in compact fashion. They also have a wide
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range of application, few of which, aside from Gelernter’s work, have been
explored. One further example is provided by Venn diagrams, which are
devices which aid logical reasoning. We may represent the proposition “all
B are A” by two areas, one completely enclosed by the other, with
appropriate labels. If we add a third area, C, according to the same rules
to represent the proposition, “all C are B,” the resulting diagram contains
the implication that “all C are A,” since area C must lie wholly within
area A. Similar rules can be devised for other propositional forms, as
elsewhere discussed by Lindsay (1961). Actually there are simpler schemes
for such situations since not all of the properties of euclidian two-dimen-
sional space are required, but, since such representations also handle many
other situations, an intelligent machine would achieve some economy by
employing such general-purpose representations wherever usable rather
than devising special schemes for each case.

So far we have discussed only situations where few difficulties arise.
Reasoning does not always obey the rules of logic and geometry, and we
quickly encounter additional difficulties when we attempt to handle even
simple situations. A program has been written to handle a different class
of problems, and the difficulties will become clear as this program is
described.

The program to be described parses sentences written in Basic English
and makes inferences about kinship relations. To do this it constructs two
types of complex structures in the computer memory, one corresponding
to a sentence diagram of the sort produced by high-school students, the
other corresponding to the familiar family tree. These are represented
inside the computer by so-called list structures. A list structure is a form
of associative memory, wherein each symbol is tagged by an indicator
which tells the machine the location of a related symbol. So far this cor-
responds to the associative bonds which are the basic concept of stimulus-
tesponse psychology. However, each symbol may at times refer to a whole
string of other, connected symbols, thus producing a hierarchical organiza-
tion of memory associations. This feature provides much greater flexibility
than either the single associations of stimulus-response psychology or the
mediated associations which have recently been discussed and seem to be a
first step in the direction of generalizing the limited stimulus-response
schema.

The Sentence-parsing Program

The grammars of certain languages may be described by rules of re-
Placement, which, if they satisfy certain conditions of simplicity, are called
phrase structure rules (see Chomsky, 1957). For example, a simple gram-
mar might consist of the following rules:
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S e NP 4 Pred
S NP4 VP NP
S ©NP-+V4NP

1.
2.
3.
4, NP & They
5. NP & planes
6. NP <A +N
7. N ¢ planes
8. N < man
9. A <o the
10. A o flying
11. VP < Aux+V
12. V. ¢oare

13. V o flying

14. Aux <> are

15. Pred & VP - NP 4 Ad
16. Ad <> swiftly

These rules may be interpreted as, for example, the twelfth, “When v
is encountered in a string of symbols, it may be replaced by ‘are,’” or
“when ‘are’ is encountered in a string of words it may be replaced by V.”
The former interpretation concerns the production of sentences, while the
latter concerns the parsing of sentences. Thus we may produce a sentence
by beginning with the symbol S and successively applying rules. For ex-
ample: S - NP 4 VP + NP - NP + Aux + V NP — They 4 Aux +
V+NP—>They+are+V+NP—>They+are+ﬂying+NP—->
They are flying planes.

Different sequences of rules produce different sentences. With the rules
given above, certain sentences can be produced which are ungrammatical
within English. For example, we could generate “The man are flying
planes.” A proper grammar (set of rules) for English would have to rule
out such possibilities. This is generally accomplished both by defining rules
more narrowly (assuring, for example, that subject agrees with verb) and
by introducing certain metarules which specify which sequences of applica-
tion are legitimate [for two methods of accomplishing this, see Chomsky
(1957) and Pendergraft (1961)].

It is also clear that different sequences of rules may produce the same
sentences. For example:! S —>NP 4+ V 4+ NP> NP 4V + A4+ N-—
They+V+A+N-—>They+are+A—|~N—->They+are + flying
4 N — They are flying planes.

Consider now a straightforward parsing technique which might be ap-
plied to the sentence “They are flying planes swiftly,” using the rules of
our example. This sentence has a unique parsing which may be discovered
as follows. Find each word or group of words which occurs in the sentence

1 This example is due to Chomsky (1957).
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on the right-hand side of one of the rules, and replace it by the symbol
which appears on the left-hand side of the rule. Apply the same procedure
to the resulting string of symbols. If a symbol or word appears on the
right-hand side of more than one rule, form separate strings for each case.
Continue until the sequence is reduced to the single symbol S, abandoning
paths to which this procedure ceases to apply. Thus we have:

They are flying planes swiftly
1. NP 4 V4V 4+ N4 Ad
can go no farther
2. NP 4V 4 V4 NP 4 Ad
can go no farther
3. NP4+ V-+A+N+Ad
NP + V 4+ NP + Ad
S4 Ad
can go no farther
4, NP+ V4 A+ NP+ Ad
can go no farther

5. NP 4 Aux + A + N + Ad
NP - Aux - NP 4 Ad
can go no farther
6. NP + Aux 4+ A - NP + Ad

can go no farther
7. NP + Aux 4 V+ N 4 Ad
NP + VP + N + Ad
can go no farther
8. NP 4 Aux + V 4+ NP + Ad
NP -+ VP 4 NP + Ad
8.1. S+ Ad
can go no farther
8.2. NP + Pred
S ‘ |
successful parsing

Even after a sufficient number of rules and metarules are supplied se
as to eliminate ungrammatical sequences, there will remain, for natural
languages, sentences which can be generated by two or more different
production sequences. Conversely, any procedure which parses sentences
should be able to discover all such sequences. The decision as to which
Parsing is correct depends upon a context larger than a single sentence
and in many cases will also depend upon the meaning of the sentence,
including a dependence upon what the various words denote.

However, even if we neglect the problem of selecting which legitimate
parsing is correct in a given instance, the problem of discovering any
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legitimate parsing is itself formidable when we deal with the tens of thou-
sands of rules needed to describe a matural language. A complete set of
rules is, in fact, so large that none has yet been devised for any natural
language, although some have been under study for thousands of years.
With even a moderately large number of rules, the parsing procedure de-
scribed above will generate many possible branches, some of which may
continue to be feasible for a long time. In order to discover any parsing in
reasonable time and with reasonable effort, it is useful to employ some sort
of selection procedure.

The procedure employed in the program to be described here is based
upon two assumptions which are psychologically realistic. First, it is as-
sumed that almost all sentences which will be encountered in actual text
may be parsed by a procedure which proceeds from left to right, making
decisions about the disposition of earlier phrases without considering the
entire sentence. This reduces the number of rule combinations which must
be searched. Secondly, it is assumed that a very limited amount of memory
is available to remember intermediate results during the parsing of even
extremely long sentences. This places severe restrictions upon which types
of complexity will be analyzed and which types of syntactic structure will
not be handled.

The final result of applying the parsing program to a sentence is an as-
sociatively organized memory whose structure reflects the interrelations
among words, but does not give complete information as to which rules
should be applied first to produce the sentence. The sentence diagram for
our above example might be drawn as in Fig. 3. Each node in a sentence
diagram corresponds to a substructure which has been constructed during
the scanning of the sentence.

The sentence-parsing program is provided with a string of words as an
input sentence. Each word may be found in a dictionary which indicates

/s\
NP Pred
VP NP Ad
Aux v
They are flying planes swiftly

Figure 3.
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a series of possible parts of speech which that word may serve as, the
series being ordered so as to present the most frequent function first. The
machine proceeds in a left-to-right fashion, assuming temporarily that the , 5
first word serves its most common function. To each part of speech there L
corresponds an associative structure which the machine forms. This struc- : :
ture is then temporarily held in memory and the next word is examined. If
the structure so created requires the services of an additional word type,
the machine continues to search for this type. If the next word serves the
purpose, its structure is incorporated with that of the first word so that
only a single structure name must be kept in rapid access memory, the
remainder of the information being obtainable via the name. If the next
word does not serve the desired purpose, its structure is stored separately,
and the machine continues to look for words which will complete the struc-
tures of each of the words now held in memory. However, the number of
structure names which can be held for rapid access is limited to a small
total so that the machine must eventually begin to combine its sub-
structures or else forget where it is. Frequently, the machine will be forced
to complete a structure even though it has not found what it wants. This
results in changing the part of speech designation for one or more words |
so that the entire sequence will now be compatible. The machine thus -
broceeds through the sentence, making temporary decisions, storing sub- ‘
Structures in its limited rapid access memory, and revising its decisions
only when forced to by lack of rapid access memory space or by complete
incompatibility of substructures.

Loosely, the machine’s behavior can be described as follows. The first
word is “the.” All right, now I need to find a nounlike word. The second
word is “very,” so now I need an adjective or adverb. The third word is
“big,” which is the adjective I needed, so combine these two words into the
Structure “very big.” Now I need a nounlike word. The fourth word is
“man,” which is the noun needed. Now all words are combined into the
Structure ““(the((very) big)) man.” But now we have a subject, so look
for a verb. The fifth word is “bit” which can act as the verb, so create the
Structure “((the((very)big))man) bit.” Now another nounlike word or
Structure could serve as object. The sixth word is “the,” so save it to mod-
ify a nounlike word; now we have two things saved, both looking for a
Nounlike word. The final word is “dog” which will serve both needed
functions. We now have the complete sentence, whose structure is illus-
trated in Fig. 4.

In one sense this program is nothing but an algorithm which produces
an output for every possible sequence of part-of-speech series inputs. How-
ever, if the program were written so as to merely check the input sequence
and produce the corresponding output, a serious difficulty would arise.
The size of the table required increases exponentially with sentence length,
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/ ence\
)/SubK Verb Object

Modifiers Noun Articte Noun
Article Ad]ectnve
p rase

Adverb AdJecﬂve
: &
The very big mon bit the dog
Figure 4.

thus an extremely large table for sentences of even moderate length would
be needed. Although the program as it stands is limited in terms of the
complexity of the sentences which it can handle, length alone does not
contribute to complexity. For example, the program can handle a sentence
such as “The big, black, ugly, ferocious, . . . , strong dog bit him,” where
the number of adjectives which may be inserted in the string is limited only
by the memory capacity of the computer. This is possible because all of
the adjectives are combined into a single substructure at every step, hence
the rapid access memory is never exceeded. Further, the total memory re-
quirements only increase linearly with sentence length. However, sentences
which require the construction of an excessive number of substructures
will cause the program to fail, even though these sentences are relatively
short. Yngve (1961) has described a similar device for producing sen-
tences, and argues that the limitations on complexity imposed by limits on
rapid access memory capacity explain why certain constructions are not
commonly used in natural English and hence are called ungrammatical.

The part-of-speech routines provide a finite set of processes which can
handle an infinite number of sentences, in principle. They are superior to
the table look-up method for the same reason that a program which com-
putes e for any value of x is superior to a table of this function and 2
look-up program.

Obviously humans must employ some finite set of processes which are
used to parse sentences, and obviously each word acts as a stimulus to
elicit the corresponding processes. These processes, as in this program, are
highly complex, and their decisions are contingent upon which other proc-
esses have been initiated before. It is quite consistent with our knowledge
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of human thought processes to assume that the interaction takes place in
the above-described manner, that is, through a small set of rapid access
memory locations. However, the adult human undoubtedly has a larger
set of processes, which effectively categorize words into more narrow cate-
gories than the few part-of-speech designations provided to our program,
and these processes are no doubt much more complex.

Another psychologically tenable feature of this program is its left-to-
right analysis. Although English grammar may conceivably be more readily
analyzed in some other fashion, humans generally proceed from left to
right, with only occasional reversals.

The limits of this program are not very well known. It will accept no
words not included in Basic English, a system of grammar and a vocabu-
lary of about 1700 English words which was defined by Ogden (1933).
(Basic English is simplified English in the sense that anything which is
good Basic is good English, but not vice versa.) The program will not
accept certain punctuation marks, such as colons, and it does not distin-
guish between others, such as exclamation points and periods. Also,
Phrases and clauses in apposition must be indicated by dashes rather than
commas. However, the program is not limited to single-clause sentences,
nor must the input be a complete sentence. Thus, the program can handle
Many inputs which appear in actual writing but not in books on grammar.
The program always makes a decision, and the result is always a complete
Structure containing all of the input.

The end result of the application of the program to a sentence is a struc-
ture which relates all the words of a sentence. This could be replaced
logically by a set of descriptions listing all of these relations, but such a
set would be far more elaborate and costly to memory. The syntactic
meaning of the sentence is just this structure, wherein relations among
words are implicit in its organization.

The Semantic-analysis Program

After the diagram of a sentence is constructed, the program attempts to
deal with the meaning of some of the words. First, a list of all nouns is
Constructed. This list includes not only words which were used as subjects
Or objects, but also names used as possessive adjectives, such as “Bill’s.”

At this point, words cease to be considered solely by their syntactic-
Category membership. The sentence diagram is used as an information
Store which relates words. Subject-object combinations whose main verb
is some form of “to be” are discovered. When such a combination is
found, the words are marked “equivalent” by a cross-referencing scheme
Wwhich indicates that both subject and object refer to the same thing or
Person. The modifiers of all equivalent nouns are then grouped together.
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Next, a search is made for the eight words which Basic English provides
to discuss kinship relations: “father,” “mother,” “brother,” “sister,” “off-
spring,” “brother-in-law,” “sister-in-law,” and “married.” If any of these
relation words occurred in the sentence, their modifiers are examined to
discover proper names which appeared as possessive adjectives or objects
of a preposition, as would be the case if the original sentence contained
phrases of the form “Jane’s brother” or “the father of John.” Each such
proper name is paired with all others associated with the same occurrence
of the relation word. By proceeding through the entire collection of words
in this fashion, a list of elementary relations is formed. The items on this
list are word triplets, two proper nouns, and a relation word which
connects them.

Now the family tree is constructed. The computer memory is organized
in an associative fashion again, with one computer storage location linked
to others. The structure is isomorphic to diagrams such as given in the
example below. Each “marriage” is represented by an association between
the husband and wife, plus the name of a similar family unit for the parents
of the husband, another for the parents of the wife, and the name of a list
of offspring of this marriage. If the names of one of the partners, one of
their parents, or some of their offspring are not given, places are reserved
for these names should they occur in the future. The resulting tree is the
same no matter whether the information was explicitly given in the text
or merely implied.

By way of illustration, Fig. 5 depicts the memory structure for a simple
family tree. The tree is composed of two basic family units, one formed by
the marriage of A and B, and the other formed by the marriage of C and
D. One of the offspring, E, of the first marriage is married to one of the
offspring, F, of the second. It is evident that many relations are described
by the tree given. However, it is important to note that the associations
are one-way associations. This fact necessitates the addition of the name
of the parent family unit at the end of each offspring unit. Thus, given A
we may determine that E is one of his offspring by moving only in the
direction of the arrows. Given E we may again trace the connection to A
by moving only in the direction of the arrows, but this is true only because
the family unit associated with E also contains the name of A’s family unit.
Tt follows that, given the fact that F (already located in the tree) and G (2
name not previously encountered) are siblings, it is not sufficient to add G
to the list of A-B offspring (dotted lines) but we must also copy the name
of F’s parental family unit into the newly constructed family unit of G
(dashed lines).

The family tree, or trees, so constructed, are not erased after a single
sentence is processed, but continue to grow as additional information i
given throughout the passage.
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The complexities and many small difficulties which are encountered in
even this simple type of relation are indicative of the problem involved in
the construction of semantic structures. More instructive, however, are
the conceptual problems which arise in attempting to generalize this pro-
gram to less strictly structured situations. Let us consider two of the most
important problems.

It often happens, even when dealing with simple kinship relations, that
the order of presentation of the input information has a crucial effect upon
the efficiency of memory allocation. For example, if we are first told that
X has offspring A, B, C, and D, we must construct an elaborate organiza-
tion to handle this information, locations such as for the spouse of X being
left blank. If we are then told that Y has offspring E, F, G, and H, we
must construct another such structure, unrelated to the first. Finally, we
May learn that B and H are brothers. This permits (neglecting such com-
Plications as multiple marriages) a collapsing of the two structures into a
single organization which much more compactly represents the information

Family Unit 1 {
Husband —= 4
Wife —— 3
Offspring ————————»n

Husband's = Unknown

parents Family Unit 3

Wife's ——s Unknown

Dolr::ms Husbond —= £
Wife F

= Offspring—= Unknown
> Husband's~» Family Unit {

parents
e Wite's ——— Family Unit 2
. . parents
Family Unit 2
Husbond— ¢
Wife D
Offspring
Husband's — Unknown
parents : Family Unit 4

Wife's —— Unknown

parents Terereenn = Husband — G

Wife ——— Unknown
Offspring—e Unknown

Husband's~---- >Family Unit 2
parents

Wife's—= Unknown
parents

Figure 5.
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implied. If we had been fortunate enough to have first learned of B’s re-
lation to H (or of X’s relation to Y), we would have made much more
efficient use of our memory capacity. In the program, the extra structures
are “erased,” that is, the memory used for them is returned to a common
stockpile for use anywhere else it is needed. This is quite handily done
with the easily altered computer memory, but a memory which is hard to
erase, as the human memory presumably is, could be affected in important
ways by such unhappy input sequences.

Nonetheless, an intelligent machine should have the property of being
intelligent no matter what the order of its inputs. One aspect of the “aha”
phenomenon is just that many formerly unrelated items of information are
suddenly brought together by a single additional item, so that many im-
plications suddenly leap out. Educators are beset by the problem of de-
termining optimal orders of presentation of material, but, fortunately for
the student, the human mind is capable of seeing connections under non-
optimal conditions.

An even more baffling problem is that of handling what has been called
connotative meaning (Lindsay, 1961). Probably more often than not, 2
set of propositions which make some definite implications contains several
subsets which alter the probabilities of other propositions without making
any of them definite. Thus the statement that “George voted for Eisen-
hower and is opposed to medical care for the aged” makes it more likely
that George is opposed to the United Nations, though only slightly so-
It is quite clear that human cognitive organizations frequently take cogni-
zance of these altered probabilities, perhaps to a greater extent than is
reasonable. But how can such implicit connotations be intelligently and
efficiently handled?

Let us consider a more concrete example arising in the context of the
kinship-relation program. Consider the following sentence: “Joey was
playing with his brother Bobby in their Aunt Jane’s yard when their
mother called them home.” Certain definite information is given by this
sentence, such as the fact that Joey and Bobby are brothers. Also, it is
clear that Jane is either the sister or the sister-in-law of the children’s
mother, but it is not known definitely which is the case. If previous in-
formation has related, say, Joey to many others and Jane to many others,
but has not related Joey’s relations to Jane’s relations, then the given sen”
tence may imply a large number of things and remove the possibilities of
a large number of other things. Still other possibilities depend upon know”
ing the exact relation between Joey’s mother and Jane. The problem is
capture in the family-tree structure all of the definite implications, to elimi”
nate all of the things definitely ruled out, indicate the altered probabilities
of other relations, and still not make any definite assertions about the rela-
tion between Joey’s mother and Jane.
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The structure thus far described is unable to handle even this simple
case, since the associations are either there or they are not, and only one
connection is permissible. One solution to this problem is to construct
several family-tree structures, one for each possibility. This corresponds,
for example, to the situation in which a student will draw diagrams of an
acute triangle, a right triangle, and an obtuse triangle corresponding to the
Possible cases for which he wishes to prove a theorem. This solution, how-
ever, will work well only when the number of alternatives is small and
when the structures are themselves simple. In more complex situations this ‘
Procedure is too taxing of memory capacity. It is desirable to include the !
Uncertainty within a single structure.

In order to do this, we must allow multiple connections. Thus, in place ‘
of every association in our original format we must substitute a list of all i
the possibilities, and the process which retrieves information must recog- i
Nize that only one of these can be correct. When nothing at all has been &

}
i

implied, the lists of possibilities will contain an “all” symbol indicating that
all things are possible; when something definite is implied later, this “all”
Symbol is replaced by the proper connection; when several things have
been implied, the universal symbol is replaced by a list of the remaining
Possibilities. We may also need to record a list of connections which are
definitely impossible. When nothing has been implied, this list will contain
a “none” symbol indicating that no things are impossible.

It is to be noted that a probabilistic connection of the sort frequently
hypothesized by psychologists is not appropriate here. That is, we do not
Wwant a connection such that a given stimulus will sometimes evoke one
association, sometimes another on a probability basis. In the above exam-
Ple, the reader knows definitely that either Jane is the sister of Joey’s
Mother or is the sister of Joey’s father, but not both; no reader would
Conclude half the time that Jane is the sister of Joey’s mother and half the
time that she is the sister of Joey’s father, altering his decision from time
to time.

But we are still faced with two problems. First, it is impossible, or at
least impractical, to retain an extremely large number of possibilities;
Second, it is not clear how we should indicate that some possibilities are
More probable than others. The first problem is perhaps solved by humans
by not remembering all possibilities; thus humans are unable to remember
all possible implications when the set of such possibilities is large. This
Will no doubt remain a problem for machines as well. We might solve the
Second problem by ordering the list of probabilities, placing the most likely
alternatives first; or perhaps we might decide to associate probabilities
With each alternative. In any event, the probabilities so established will
determine the weight which is assigned to implications, but will not deter-
Mine the implications which will hold to the exclusion of others. Finally,
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we can imagine a situation in which the list of possibilities is truncated due
to the limited computing capabilities of man or machine, and where subse-
quently all of the possibilities which remain are eliminated by further in-
formation. In this case, the machine, after all, will have to indicate that
something is wrong and review previous inputs, this time reselecting possi-
bilities in the light of knowledge of information to follow.

To complete our example, we may present the modified storage format
(Fig. 6) which could be used to solve our sample problem.

Finally, we note that we have solved the problem of connotative mean-
ing while retaining our basic device of storing definite implications im-
plicitly, but we have resorted to storing possible implications explicitly.
Techniques for avoiding this listing of possibilities would prove extremely
valuable, since as we have seen, requirements on memory capacity increaseé
rapidly when storage is explicit.

Family Unit1

Husbond—— 4
Wife ——=8

Offspring
Husband's — All possible
porelms except Unit1,2,3,4 Family Unit 3
Wife's — Ali possible —
parents except Unit1,2,3,4 Husband e £
Wife F
= Offspring — Joey, Bobby, perhaps
Possibly others not known yet
-+ Husband's —=Family Unit 1
\ parents
. . Ls wife's — il i
Family Unit 2 palrensfs Family Unit 2
Husband—C Either
Wife ———0 this
Offspring thifs.b "
Husband's—All possible except ~notho
parents Unit1,2,3, 4 Possibly
Wife's — All possible except
parents Unit1,2,3,4 Family Unit 4
[ Husband — All possible except
ane, 4,5,C,0,,F
Joey, Bobby
Wife Jane
= Offspring—= All possible except
Jane, 4,8,C,0, £, F

Joey, Bobby
Perhaps Perhaps R v
ofherg ofherps = Husband's— All possible except

parents Unit 4
L Wife's ——— Either Unit1 or 2
parents

Figure 6.
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Summary

It has been argued that the problem of meaning is of major importance
in the study of the nature of intelligence, and that a useful definition of
meaning must include not only denotation but connotation and implica-
tion as well. To handle these important questions it is necessary to study
cognitive organizations which are more complex than those upon which
most psychological theories are based. A central question is the storage of
large numbers of interrelated propositions in a manner which efficiently
uses memory capacity. Ilustration of these points was given by reference
to a computer program which stores syntactic relations and extracts and
stores semantic implications of a very limited character. The illustrations
Put into concrete terms some of the problems which must be resolved be-
fore machines of formidable intelligence can be constructed.







