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VISUAL MOTION ANALYSIS

When an observer moves relative to the environment, the
two-dimensional (2-D) image that is projected onto the eye
undergoes complex changes. These changes however, con-
tain information regarding the relative 3-D motion and
the structure of the scene in view.

There exist several representations for the pattern of
movement of features in the image, containing different
amounts of information related to 3-D motion and shape.
The ones most studied are optical flow, normal optical
flow, and discrete displacements.

OPTICAL FLOW

Optical flow (Gibson, 1950) can be represented by a 2-D
field of velocity vectors as shown in Figure 1. In Figure la
the optical flow is generated by the movement of an ob-
server relative to a stationary environment. The "ob-
server" is a camera mounted on an airplane that is flying
over terrain. A single snapshot from a sequence of images
is shown with reduced contrast. The black vectors super-
imposed on the image represent the optical flow, or veloc-
ity field. The direction and length of these vectors indicate
the direction and speed of movement of features across the
image as the airplane flies along. Optical flow is also gen-
erated by the motion of objects in the environment. Figure
lb shows three views of a three-dimensional (3-D) wire-
frame object that is rotating about a central vertical axis.
Figure lc shows a snapshot of the object at a particular
moment in time, with vectors superimposed that indicate
the velocities of individual points on the object.

The analysis of the optical flow can be divided into two
parts: The first is the measurement of optical flow from
the changing image, and the second is the use of optical
flow to recover important properties of the environment.
The motion of features in the image is not provided to the
visual system directly but must be inferred from the
changing pattern of intensity that reaches the eye. Varia-
tions in the measured optical flow across the image (also
known as motion parallax) can then be used to recover the
movement of the observer, the 3-D shape of visible sur-
faces, and the locations of object boundaries. For example,
from a sequence of optical flows such as that shown in
Figure la, it is possible to recover the motion of the air-
plane relative to the ground. The variation in speed of
movement of points on the wire-frame object of Figure lc
allows the recovery of its 3-D structure from the changing
2-D projection. Sharp changes in the optical flow field indi-
cate the presence of object boundaries in the scene.

Computational studies offer a broad range of methods
for measuring optical flow (for reviews, see Thompson and
Barnard, 1981; Ullman, 1981; Ballard and Brown, 1982;
Hildreth, 1984). Some methods compute the instantane-
ous optical-flow field directly. Methods for measuring mo-
tion also differ in the stage of image processing at which
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movement is first analyzed. For example, some infer

movement directly from changes in the image intensities,

and others first filter the image, or extract features such

as edges. The range of techniques for motion measure-

ment are reflected in a broad range of application do-

mains, from the simple tracking of objects along a con-

veyor belt in an industrial setting to the analysis of more

complex motions such as that of clouds in satellite

weather data, heart walls in x-ray images, or cells in 
cell

cultures. The analysis of optical flow is also becoming es-

sential in autonomous navigation (see ROBOTS, MOBILE) 
and

robotic assembly (see MANUFACTURING, AI IN; ROBOTICS).

The measurement of optical flow poses two fundamen-

tal problems for computer-vision systems. First, 
the

changing pattern of image intensity provides only partial

information about the true motion of features in the lin-

age due to a problem often referred to as the aperture

problem. Second, when the general motion of objects 
is

allowed, there does not exist a unique optical-flow field

that is consistent with the changing image. In theorY,

there exist infinite possible interpretations of the motion

of features in the image. Additional constraint is 
required

to identify the most plausible interpretation from a physi-

cal viewpoint.
The aperture problem is illustrated in Figure 2. Sup-

pose that the movement of features in the image were 
first

detected using operations that examine only a 
limited

area of the image. Such operations can provide only Per"
tial information about the true motion of features in 

the

image (Thompson and Barnard, 1981; Ullman, 1981; Bal
-

lard and Brown, 1982; Hildreth, 1984; Lawton, 1983;

Horn and Schunck, 1981). In Figure 2a the extended 
edge

E moves across the image, and its movement is observed

through a window defined by the circular aperture A.

Through this window, it is only possible to observe 
the

movement of the edge in the direction perpendicular to its

orientation. The component of motion along the orienta-

tion of the edge is invisible through this limited ap
erture.

Thus, it is not possible to distinguish between motions in

the directions b, c, and d. This property is true of anY

motion detection operation that examines only a limited

area of the image. As a consequence of the aperture 
prob-

lem, the measurement of optical flow requires two stages

of analysis: The first measures components of motion in

the direction perpendicular to the orientation of image

features; the second combines these components of motion

to compute the full 2-D pattern of movement in the image.

In Figure 2b a circle undergoes pure translation to 
the

right. The arrows along the contour represent the perPen"
dicular components of velocity that can be measured di-

rectly from the changing image. These component 
rhea

surements each provide some constraint on the 
possible

motion of the circle. Its true motion, however, can be 
de-

termined only by combining the constraints imposed bY
these component measurements. The movement of 

some

features such as corners or small patches and spots can be
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Figure 1. (a) Optical-flow field, represented by black arrows, is
superimposed on a natural image that was taken from an air-
plane flying over terrain. (b) Three views of a wire-frame object
rotating about a central vertical axis. (c) Projected pattern of
velocities of individual points on the object are shown superim-
posed on a snapshot of the object in motion (an orthographic, or
Parallel projection is used).
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measured unambiguously in the changing image. Several
methods for measuring motion rely on the tracking of
such isolated features (Thompson and Barnard, 1981;
Ullman, 1981; Ballard and Brown, 1982; Lawton, 1983).
In general, however, the first measurements of movement
provide only partial information about the true movement
of features in the image and must be combined to compute
the full optical-flow field.

The measurement of movement is difficult because in
theory, there are infinitely many patterns of motion that
are consistent with a given changing image. For example,
in Figure 2c, the contour C rotates, translates, and de-
forms to yield the contour C' at some other time. The true
motion of the point p is ambiguous. Additional constraint
is required to identify a single pattern of motion. Many
physical assumptions could provide this additional con-
straint. One possibility is the assumption of pure transla-
tion. That is, it is assumed that velocity is constant over
small areas of the image. This assumption has been used
both in computer-vision studies and in biological models
of motion measurement (Thompson and Barnard, 1981;

(a)

(b)

;IC

Figure 2. (a) Operation that examines the moving edge E
through the limited aperture A can compute only the component
of motion c in the direction perpendicular to the orientation of the
edge. The true motion of the edge is ambiguous. (b) A circle un-
dergoes pure translation to the right. The arrows along the circle
represent the perpendicular components of motion that can be
measured directly from the changing image. (c) A contour C ro-
tates, translates, and deforms to yield the contour C'. The motion
of the point p is ambiguous.
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Ullman, 1981; Ballard and Brown, 1982; Hildreth, 1984;
Lawton, 1983; Nakayama, 1985). Methods that assume
pure translation are useful for detecting sudden move-
ments and tracking objects across the visual field. These
methods have led to fast algorithms for computing a rough
estimate of the motion of objects, which is often sufficient
in applications of motion analysis. Tasks such as the re-
covery of 3-D structure from motion require a more de-
tailed measurement of relative motion in the image. The
analysis of variations in motion such as those illustrated
in Figure 2c requires the use of a more general physical
assumption.

Other computational studies have assumed that veloc-
ity varies smoothly across the image (Hildreth, 1984;
Horn and Schunck, 1981). This is motivated by the as-
sumption that physical surfaces are generally smooth.
Variations in the structure of a surface are usually small
compared with the distance of the surface from the viewer.
When surfaces move, nearby points tend to move with
similar velocities. There exist discontinuities in move-
ment at object boundaries, but most of the image is the
projection of relatively smooth surfaces. Thus, it is as-
sumed that image velocities vary smoothly over most of
the visual field. A unique pattern of movement can be
obtained by computing a velocity field that is consistent
with the changing image and has the least amount of
variation possible. The use of the smoothness assumption
allows general motion to be analyzed and can be embodied
into the optical-flow computation in a way that guaran-
tees a unique solution (Hildreth, 1984). The optical-flow
fields shown in Figure 1 were computed with an algorithm
that uses the smoothness assumption (Hildreth, 1984).

NORMAL OPTICAL FLOW

An optical flow field is the vector field of the apparent
velocities associated with the brightness patterns on the
image plane. The scene in view is not involved in the
definition of optical flow. One would hope that optical flow
is equivalent to the so-called motion field (Horn, 1986),
which is the perspective projection of the object's three-
dimensional velocity field on the image plane. However,
the optical flow field and the motion field are not equal in
general. Verri and Poggio (1987) reported some general
results in an attempt to quantify the difference between
optical flow and the motion field. Although we do not have
necessary and sufficient conditions for the equality of the
two fields yet, it is clear that they are equal under specific
sets of restrictive conditions.

If /(x, y, t) is the image intensity function (x, y: space; t:
time), the optical flow (u, v) at a point satisfies: /xu + 4v +
= 0, where subscripts denote partial differentiation.

This equation can be written as (Ix, 4) (u, v) = It, indicat-
ing that the projection of the optical flow (u, v) along the
direction (/x, 4) is known. This is what is called the nor-
mal optical flow.

Clearly, estimating normal flow is much easier than
estimating the actual optical flow. But then, how is nor-
mal flow related to the three-dimensional motion field? Is
the normal optical flow field equal to the normal motion
field, and under what conditions?

Let 1(x, y, t) denote the image intensity, and consider

the optical flow field (u, v) = ti and the motion field i7 (u,

5) at a point (x, y) where the local (normalized) intensity

gradient is ii = (Ix, + I. The normal motion field

at point (x, y) is by definition

fin = C-; •

(thc dy)  
"n dt ' .\/1 +

dx dy) VI
Cin = •Tlt dt) 11W11

1 tI cLx dy

U n = x dt 1yCU/

Similarly, the normal optical flow is

Or

or

or

Thus, when approximating the differential dIldt by its
total derivative, the result is

_ 1 dr
art — — Tit

From this equation it follows that if the change of in-

tensity of an image patch before and after its motion (dB
dt) is small enough (which is a reasonable assumption)

and the local intensity gradient V/ has a high magnitude,
then the normal "optical flow" and "motion" fields are

approximately equal. Thus, provided that normal flow is

measured in regions where the intensity gradients are of

high magnitude, it is guaranteed that the normal flow

measurements can be used for inferring 3-D motion.
Clearly, the normal flow field contains less information

than the optical flow field, but recent results indicate that

several questions related to 3-D motion and shape can be

answered solely on the basis of normal flow.

DISCRETE DISPLACEMENTS

The optical flow and normal flow representations of mo-
tion are instantaneous descriptions, ie, they are related to

the velocity with which image patches move. We can con-

sider a representation which is integrated over time, le,
we can trace features over time and thus compute a corre-
spondence between features from one moment to the next.

Features are extracted (using various operators) in sev-
eral dynamic frames and points that correspond to the

same point in the scene are identified through the so-

called correspondence process (Ullman, 1979; Bando-

padhay, 1986; Bandopadhay and Aloimonos, 1991). The

latter sections will describe various approaches to the de-

termination of three-dimensional motion of a rigid body

based on time-sequential perspective views.
Determining the relative motion between an observer

and his environment is a major problem in computer vi-
sion. Its applications include mobile-robot (see ROBOTS, MO-
BILE) navigation and monitoring dynamic industrial pro-



cesses. For background material, the reader is referred to
the two edited volumes of Huang (1981, 1983), the pio-
neering and influential book of Ullman (1979), several
Special journal issues and proceedings of several work-
shops on motion (see General References).

The next three sections describe methods that use a
monocular two-dimensional sensor (such as a television
camera); then methods are discussed that use a stereo pair
of sensors. Finally, there is a brief discussion on numeri-
cal accuracy, multiple objects, nonrigid objects, motion
Prediction, and high level motion understanding. We con-
sider as the inputs to the perceptual process of motion
analysis discrete displacements (correspondences), optical
flow, and normal optical flow.

TWO-VIEW MOTION ANALYSIS USING
FEATURE CORRESPONDENCE

Problem Statement

The basic geometry of the problem is sketched in Figure 3.
The object-space coordinates are denoted by lowercase let-
ters and the image-space coordinates by uppercase letters.
Let the two perspective views (central projections) be
taken at t1 and t2, respectively, and t1 < t2. The coordi-
nates at t2 are primed, and the coordinates at t1 are un-
primed. Specifically, consider a particular physical point P
on the surface of a rigid body in the scene. Let (x, y, z) be
the object-space coordinates of P at time t1, y', z') the
object-space coordinates ofP at time t2, (X, Y) the image-
Space coordinates ofP at time t1, (X', Y') the image-space
coordinates of P at time t2, and

(X', Y')=
image-space
coordinates of
point P at time t2

Figure 3.

(X, 11 image-space
coordinates of
point P at time ti

(AX, AY) image-
space shifts from
time ti to t2 for
point P

Object space

\(x, y, z) - object-space
coordinates of a physical
point P on object
at time tj

(x', y', z') — object-space
z coordinates of the same

point P at time t2

Basic geometry for motion analysis.
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AX 4 X' — X AY 4Y' — Y (1)

the image-space shifts (or displacements) ofP from ti to t2.
It is well known from kinematics that the object coordi-

nates of P at time instants t1 and t2 are related by

[x'ly'=Ry+T—r21
z'

 []   
[r12

r22 r23
r31 732

x
y
z
+

Ax
Ad
Az

(2)

where R represents a rotation and T a translation. To
make the representation unique, the rotation is specified
around an axis passing through the origin of the coordi-
nate system. Let ii = (nl, n2, n3) be a unit vector along the
axis of rotation and 0 be the angle of rotation from t1 to t2.
Then the elements of R can be expressed in terms of n1,
n2, n3, and 0. Since 4 + 4 + n = 1, there are six motion
parameters to be determined: n1, n2, 0, Ax, Ay, and Az.
However, from the two perspective views, it is impossible
to determine the magnitude of the translation, ie, if the
object size and position as well as the translation are
scaled by the same factor, one gets exactly the same two
image frames. One can therefore determine the transla-
tion to only within a scale factor.

To summarize, the problem is: given two image frames
at t1 and t2, find the motion parameters T (to within a
scale factor) and R. As shown below, the equations relat-
ing the motion parameters to the image-point coordinates
inevitably involve the ranges (z coordinates) of the object
points. Therefore, in determining the motion parameters,
one also determines the ranges of the observed object
points. It will be seen that the translation vector T and
the object point ranges can be determined to within a
positive global scale factor. The value of this scale factor
could be found if the magnitude of T or the absolute range
of any observed object point is known.

Solution Using Point Correspondences

Consider a two-stage method to solve the posed problem.
In the first stage, one finds point correspondences in the
two perspective views (images). A point correspondence is
a pair of image coordinates (Xi, Yi), (X: , Y: ) which are
images at t1 and t2, respectively, of the same physical
point on the object. Then, in the second stage one deter-
mines the motion parameters from these image coordi-
nates by solving a set of equations.

Finding Point Correspondences. In order to be able to
find point correspondences, the images must contain
points that are distinctive in some sense. For example,
images of man-made objects often contain sharp corners
that are relatively easy to extract (Fang and Huang,
1982). More generally, image points where the local gray-
level variations (defined in some way) are maximum can
be used (Moravec, 1980). Other important approaches in-
clude Nagel (1983) and Kories and Zimmermann (1986).

In any case, in each of the two images a large number
of distinctive points are extracted. Then one tries to match
the two point patterns in the two images using spatial
structures of the patterns (Fang and Huang, 1984). The
matching will be successful only if the amount of rotation
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(0) is relatively small (so that the perspective distortion is
small). For example, in Fang and Huang (1982), good
matching results are obtained if 0 < 5°. This restriction
may be relaxed if there is some a priori information about
the object (Gu and co-workers, 1984).

Basic Equations. From Figure 3 there is the following
relationship between the image-space and the object-
space coordinates:

X = F Y= (3)

For simplicity, assume throughout that F = 1. The motion
is described by Eq. 2. From Eqs. 2 and 3,

x, _ (ria + r12Y + ri3)z + Ax
(r3iX + r32Y + r33)z + Az

y (r2iX + r22Y + r23)z + Az
(r31X + r3217 + r33)z + Az

(4)

where the F., can be expressed in terms of n1, n2, n3, and 0.
By elimination of z from Eq. 4,

(Ax — X' Az){y'(r3iX + r32Y + r33) — (r21X + r22Y + r23)}

= (Ay — Y' Az){X'(r3iX + r32Y + r33) — (riiX + r12Y + r13)}

(5)
Also,

A x — X' Az 
Z —

(r31 
, 
r32Y + r33) — (r11.2C + r12Y + ri3)

Ay — X' Az 
Y'(r3i X + r32Y + r33) — (r2iX +

(6)r22Y + r23)

Equation 5 is nonlinear in the six unknowns: Ax, Ay,
Az, nu, n2, and 0. Also, it is homogeneous in A x, Ay, and
Az. Therefore, as mentioned earlier, one can only hope to
find T to within a scale factor. After finding T (to within a
scale factor) and R, one can find z, for each observed point
to within the same scale factor using Eq. 6.

To fix ideas, let the translation sought after be the unit
translation vector

= (M, AS, Ai) -A
1 

vAx2 Ay2 ± z2

Then, Eq. 5 can be considered as a nonlinear equation in
the five unknowns: Ai, AS, n1, n2, and 0. Thus, with
5-point correspondence, there are five equations with five
unknowns. Well-known iterative techniques can then be
used to find solutions. In practice, because of noise in the
image data, one tries to find more than 5-point correspon-
dences and seek a least-squares solution.

T (7)

Alternative Formulation. The motion-parameter Eq. 5
was derived by eliminating z in Eq. 4. Alternatively, one
can formulate equations in terms of the z coordinates of
the points under consideration without containing any
motion parameters (Mitchie and Aggarwal, 1985). This

can be done by using the principle of distance conserva-
tion for a rigid body. Assume N point correspondences are
given:

1, 2, . . . ,N

And let (xi, yi, zi) and (x; , y ; , z) be the 3-D coordinates of
the ith point at t1 and t2, respectively. Then, one has

(xi _ xj)2 (yi - yip ± (zi _ zip

= (x + Cy; ± (2.1 _ )2 (8)

and from Eq. 3

(ziX — )2 (ziyi _ ziyi)2 (zi _ zi)2i 

= (z1X; _ xi )2 + (z; IT; _ ri)2 (z; _ z.,d2 (9)

For each pair of points, one Eq. 9 can be written. Thus,
with five-point correspondences, one can write ten equa-
tions that (if z1 = 1) contain nine unknowns: z2 , . . . , z5,
zi, . . . ,zL. A least-squares solution for these unknowns
can be found using iterative methods. Then the motion

parameters are found by solving Eq. 2. Several methods

for carrying out the last step are discussed under Motion

from 3-D Feature Correspondences.

Disadvantage of Solving Nonlinear Equations. To find a
least-squares solution of a small set of nonlinear equa-
tions 5 or 9 using iterative methods is not computationally

expensive. However, unless there is a good initial-guess

solution, the iteration may not coverge or it may converge

to a local but not global minimum. Furthermore, with

nonlinear equations it is very difficult to analyze the ques-

tion of solution uniqueness.
In fact, it is an open theoretical question: what is the

minimum number of point correspondences that will en-

sure a unique solution for the five motion parameters Ag,
AS, nu, n2, and 0? With 5-point correspondences the num-
ber of equations become equal to or larger than the num-
ber of unknowns. However, since the equations are non-

linear, one would expect that the solution may generally

not be unique. This has indeed been verified by computer

simulations in which global searches were made. The

results of such simulations indicated that with 5-p01nt

correspondences there may be more than one solution;

with 6-or-more-point correspondences the solution is gen-

erally unique. It is to be noted that in the case of 5-pomt

correspondences, even though the solution may not be

unique, if the iteration is started at a guess solution that

is close to the true solution, one will most likely converge

to it.
The conclusion is that the approach of solving nonlin-

ear equations is viable if there is a good initial-guess solu-

tion. Otherwise, a better alternative is described in the

next section: A linear algorithm that requires 8-or-more-

point correspondences.

A Linear Algorithm. It turns out that by introduction of

appropriate intermediate variables (which are functions

of the motion parameters), Eq. 5 becomes linear (Longue"
Higgins, 1981; Tsai and Huang, 1984). Define



where

G =[ 0

E =

—Ai
A2

—Ay Ai

ei e2
e4 e5
[ 

e7 e8

A9
0 — Ai

0

e3
e6
e3

= GR

(skew symmetric)

(10)

(11)

=(M, A9, Ai) is the unit translation vector defined in
Eq. 7, and R is the orthonormal rotation matrix. Then Eq.
5 becomes

X
[X' Y' 1]E[Y]=0 (12)

1

which is linear and homogeneous in the nine new un-
knowns: e1, . . , e9. The algorithm consists of two steps:

Step 1. From 8 or more point correspondences deter-
mine E to within an unknown scale factor k.

Step 2. decompose kE to obtain R and i'

Step 1 is relatively simple; it amounts to finding the least-
squares solution of a set of linear equations 12. Step 2 is
more complicated and is not discussed here. Several algo-
rithms are given in other sources (Longuet-Higgins, 1981;
Tsai and Huang, 1984; Yen and Huang, 1983; Zhuang and
co-workers, 1986; Huang, 1985). It can be shown that,
except for degenerate cases, 8 or more point correspon-
dences yield a unique solution for R and T (Zhuang and
co-workers, 1986; Huang, 1985; Longuet-Higgins, 1984).

Planar Patch Case. In many applications the points ob-
served may all lie on a rigid planar patch in 3-D. In this
case the linear algorithm shown above breaks down. One
can go back to use the nonlinear equations 5 or 9. How-
ever, it turns out that a more computationally efficient,
and in fact linear, algorithm exists for the planar patch
case (Tsai and Huang, 1981, 1984; Tsai and co-workers,
1983). This linear algorithm, described below, also throws
light on the uniqueness question for the planar case.

Let the 3-D points observed all lie on a plane whose
equation at t1 is

or

ax + by + cz = 1

[a, b, c] [y]= 1 (13)

Later, the notat on g = [a, b, cit (the superscript t denotes
transportation) is used. From Eqs. 2 and 13

[yx = R [y] + T = R [y] + T [a, b, c] 
lx

z' zi

= (R + T[a, b, [y

or

where

A =
al a2 a31
n-4 a5 a6

a8 a9J
= R

VISUAL

x '
[y  ']
z '

+

MOTION

= A

IxI
Ay
LzJ

y][x
zi

[a,
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(14)

b, e] = R + Tgt (15)

From Eqs. 3 and 14

a7X + a8Y + a9
a4x + a5Y + as Y' = (16)a7X + rt8Y + a9

Some other useful formulas are, from Eq. 13,

and, from Eq. 14,

1
—
z 
= aX + bY + c

z'
—
z 
= ax + c4317 + a9

The two-step linear algorithm is as follows:

(17)

(18)

Step 1. From 4 or more point correspondences, a set of
linear homogeneous equations 16 are solved to find
A to within a scale factor.

Step 2. From A R, wT, and glw, are determined where
w is a positive scale factor.

Step 1 involves basically finding the least-squares solu-
tion of a set of linear equations. Step 2 is more compli-
cated; an algorithm using singular-value decomposition is
described in Tsai and co-workers (1983). It can be shown
that, except for degenerate cases, given 4 or more point
correspondences, there are generally two solutions for R,
T, and g. With 4 or more point correspondences over three
views, the solution becomes unique (Tsai and Huang,
1985).

Solution Using Straight-Line Correspondences

In the presence of image noise and/or due to the spatial
sampling, the coordinates of feature points cannot be de-
termined accurately. This may make the estimation of
motion parameters unreliable. Usually, it is easier to de-
tect and determine the location of straight edges than
feature points (Yen and Huang, 1986; Liu and Huang,
1986). Therefore, the question arises: can one estimate
3-D motion parameters by using straight-line correspon-
dences?

Finding Straight-Line Correspondences. Images of man-
made objects often contain straight edges. These straight
edges can be detected using edge point detectors (such as
the Sobel operator) followed by Hough transform (qv)
(Duda and Hart, 1973). One first detects straight edges in
both image frames and then uses structural information
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to match the two straight-line patterns. The algorithm of
Cheng and Huang (1984) can be used to do the matching if
the motion from t1 and t2 is small.

Two-View Nonuniqueness. By a straight-line corre-
spondence over two frames, one knows the equations in
the image plane at t1 and t2 of a 3-D line on the object:

aX + pY =

t2: a' X + 13'Y = 1

(19)

(20)

where (a, p). (a', p'). Note that one does not assume any
point correspondences on the two lines. Unfortunately, a
little reflection convinces one that no matter how many
straight-line correspondences are known over two frames,
it is impossible to determine R and T uniquely. Heuristi-
cally, one can argue as follows: From the imaging system
geometry expressions for a' and /3' can be derived in terms
of R, T, a, 13, and some additional parameters that pin
down the position of the 3-D line at t1. Given the 2-D
image of a 3-D line, one needs two additional parameters
(y and 8, say) to determine the 3-D position of the line.
Thus,

a' = a'(R, T a, [3, y, 8)

f3' = f3'(R, 'T a, 0, y, 8)

(21)

(22)

Each new straight-line correspondence gives two new
equations 21 and 22 but also two new unknowns, y and 8.
Therefore, the number of equations is always smaller
than the number of unknowns by five (the five motion
parameters).

Three-View Case. With straight-line correspondences
over three image frames (at t1 < t2 < t3), it is possible to
determine the motion parameters R12, T12, (from t1 to t2)
and R23, T23 (from t2 to t3). An equation involving R12 and
R23 can be obtained as follows. Let the equations in the
image plane at t1, t2, and t3 of a 3-D straight line be given
by Eqs. 19, 20, and

t3 a"X + p"Y = 1 (23)

Equation 19 implies with the help of Eq. 3, that at t1, the
3-D straight line lies in the plane

which has a normal

ax + f3y — z = 0,

q = (a, 0, —1) (25)

Similarly, at t2 and t3, respectively, there are the normals

q' = (a', /3', —1)

q" = (a", p", —1)

(26)

(27)

Then, it can be shown that the tree vectors q', R12q, and
R-hq" are coplanar. Thus

q' • (R12q x R13q") = 0

Here a three-element array is considered as either a vec-

tor or a column matrix from context. Equation 28 is non-

linear in the six unknown motion parameters (three from

each rotation matrix). It has been found empirically that

given seven or more straight-line correspondences over

three frames, one can determine a unique solution to R12
and R23 by finding the least-squares solution of the set of

nonlinear Eq. 28 using iterative methods. Once the rota-

tions are found, the unit translation vectors can be ob-

tained by solving linear equations. For a complete analy-

sis, see Spetsakis and Aloimonos (1990).
An alternative treatment of the line correspondence

case was given by Mitiche, Seida, and Aggarwal (Mitiche

and co-workers, 1986).

Solution Using Planar Curve Correspondences

In some cases it may be possible to track the projection of a

planar contour (eg, the boundary of a face of a polyhedron)

from one image frame to the next. The change in the

shape of the 2-D region (in image plane) bounded by the

contour contains information on the 3-D motion parame-

ters as well as the orientation of the plane in 3-D. More

generally, if more than one region can be tracked the

change in the relative positions of these regions (in image

plane) can also be utilized. Gambotto and Huang (1984)

have shown in a simple example how this region-based

method can be used in motion analysis. However, a gen-

eral methodology, even for the one-region situation, is yet

to be developed. In the following, two special cases (one-

region) are described.

Small-Motion Case. Kanatani (1985) has suggested a

method using line (or surface) integrals. It is assumed

that the amount of motion from t1 to t2 is small. Then

1 - 021
RI 4)3 I —4)1 (29)

-432 01 1

where

cAL = ni0 (30)

Let C1 and C2 be the images at t1 and t2, respectively, of a

(24) 3-D planar contour. The equation of the plane at ti is

ax + by + cz = 1 (13)

Choose a function F (X, Y) (eg, F = X2), and compute

where

1(4) = f ciF (X, Y) ds

1(t2) = c2F (X, Y) ds

ds = Vdx2 + dY2

(28) Then, it can be shown that

(31)

(32)

(33)



A/ I(t2) — I(t2) K1 Ax + K2 Ay + K3 Az + K401
+ K502 + K603 K7a Ax + IC,a Ay
+ K9a Az + KI0a01 + K11a02
+ Ki2a03 + K13b Az + K14b Ay
+ K15b A z + Ki6b0i + K17b02
-I- K18 43 (34)

where the Ki are constants obtained by evaluating contour
integrals around C1 whose integrands involve F, aFlaX,
aFlaY,x, Y,dX1ds, and dYlds and where c = 1 has been
set to fix the global scale factor. The detailed formulas for
K, are given in Kanatani (1985). Equation 34 is nonlinear
in the eight unknowns: Ax, Ay, Az, 01, 02, 03, a, and b. To
find these unknowns, eight or more different functions
F(X, Y) are first chosen. For each function one can calcu-
late A/ and the K, to get one Eq. 34. Then one finds the
least-square solution of the set of eight or more equations
34. Whether a unique solution can be obtained by this
method is yet to be answered.

Orthographic Projections. For orthographic projections,
instead of Eq. 3, one has

X=x Y=y (35)

Again, assume that the points observed lie on a plane in
3-D whose equation at t1 is

ax + by + cz = 1 (13)

Then, from Eqs. 2, 35, and 13 (Young and Wang, 1984),

where

[Xy
:]
= A 1X1

LYJ
+ D

A = [aii ail — ar13 r12 — br13

and

azi a22 — ar23 7.22 — br23

D = [
d1 1 Fri3 Axi
d2 i = Lr + A -I- - 23 _y_

(c = 1 has been set to fix the global scale factor). Thus, the
relationship between (X, Y) and (X', Y') is an affine
transformation. This should be contrasted with the case of
central projections where the relationship is Eq. 16.

One can attempt to find the motion and structure pa-
rameters (n1, n2, 0, Ax, Ay, a, and b) in two steps: first,
from a contour correspondence over two frames, deter-
mine A and D in the affine transform Eq. 36 (a contour
correspondence implies no point correspondences between
the contour pair) and, second, determine the desired pa-
rameters from A and D. Several techniques for carrying
out step 1 have been proposed. Reference 34 describe a
method that relates the moment tensors of the two regions
bounded by the contours at ti and t2, respectively; Cy-
ganski and Orr (1985) describes a method that relates the
Fourier coefficients of the two contours after a canonic
parameterization. A related work is Kanatani (1985). Un-
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fortunately, step 2 is generally not possible. The unknown
parameters cannot be determined from A and D without
additional information. This is because there are six equa-
tions:

r11 — arn =

r21 — ar23 = a21

r13 + tx =

r12 — br13 = a12

r22 — br23 = a22

r23 + Ay — d2

but seven unknowns: n1, n2, 0, Ax, Ay, a, and b. Solution
becomes possible if one is given, eg, (a, b), ie, the orienta-
tion of the plane at t1.

To close this section, note the classical result of Ullman
(1979) for the orthographic projection case: four-point cor-
respondence over three views determine motion/structure
uniquely.

MOTION FROM OPTICAL FLOW

Problem Statement

In the two-view case, if t2 — t1 = A t is small,

where

t (37)

S [ w3 0
0 - W3

w2 Wj0

W2

Wi

and I is a 3 x 3 unity matrix.
The symbol ft is used to denote the vector (wi wz w3),

the instantaneous angular velocities around the x, y, and z
axes, respectively, at t1. Also,

T v At

where

are the instantaneous translational velocities along the
axes at t1. Letting A t —> 0, Eq. 2 becomes

dp(t)
= S(t)p(t) + v(t) (matrix equation) (38)dt

or, equivalently,

where

dp(t)
= fl(t) x p(t) + v(t) (vector equation) (39)dt

x(t)]
p(t) [y( t)

z(t)
(40)



1646 VISUAL MOTION ANALYSIS

As At -4 0, in the image plane.

„ AX dX Y dY
Vx A 

V 
— = — 

= 
(41)

At-.0 At dt Y = 
. 

The image-plane velocity vector (Vi, V) is referred to as
the optical flow. The problem of interest is to determine v
(to within a scale factor) and 11 at time t1 from optical-flow
information. One takes an approach similar to that of us-
ing point correspondences in the two-view case. Specifi-
cally, it consists of two steps: Find optical-flow vectors at
N image points, [(X„ Ye), (Vxe, Vye)], i = 1, 2, . . . , N
and solve equations obtained from the optical-flow infor-
mation to determine v and a

Finding Optical Flow

Two approaches to finding optical flow are described. The
first approach is to find point correspondences between
two image frames at t1 and t2 (with t2 - t1 = At small)
using methods discussed above, and then obtain the opti-
cal-flow vectors by

AX AY
Vx Vy

The second approach is to relate temporal and spatial
differences of the image brightness. Let fi(X, Y) and f2(X,
Y) be the brightness at point (X, Y) in the two successive
image frames (at t1 and t2, respectively). At any given
image point (X0, Y0) the time (frame) difference is

Af(X0, Yo) f2(X0, Yo) - fi(Xo, Yo) (43)

Assume the image point (X0, Y0) at t1 and the image point
(X6, Y6), at t2 correspond to the same physical point on
the 3-D object, and let

AX = X6 - X0 AY = Y6 - Y0

Then

Af(X0, Y0) = f2(X0, Y0) - f2(X6, Y6) (44)

if one makes the assumption that any given point on the
3-D object appears in the two image frames with the same
brightness. If the motion is small, this brightness-con-
stancy assumption is reasonable in many situations. Then
/2(2(6, YO) = f2 (X0 + AX, Y0 + AY) is expanded into a
Taylor series around (X0, Y0) and only the linear terms
are kept to get

Af(X0, Y0) = -AX —
af 
(x0 Yip 

'
) - AY —

af 
(x0 Y0) (45)ax aY 

This is an important equation mentioned again in the
section Motion Estimation by Direct Matching of Image
Intensities. Here, one can use it to find optical flow in the
following way (Rocca, 1972; Limb and Murphy, 1975). If
there are two or more image points (near each other) that
one can assume to have the same (AX, AY), by calculating
Af and [afiax, aflaY] (using a difference approximation)
at each point, one can get a set of linear equations in the

two unknowns AX and Y. Finally, the least-squares so-
lution of these linear equations is found, and Eq. 42 is
used to get Vx and V..

For general 3-D motion (AX, AY) vary with (X, Y).
Therefore, it may not be reasonable to assume that (AX,
AY) are the same at several image points. Horn and
Schunck (1981) considered the case where (AX, AY)
change slowly with (X, Y) and formulated a variational
method for estimating (AX, AY). Other methods that are
image-point-wise recursive are described (Robbins and
Netravali, 1983; Cafforio and Rocca, 1983). Also, Nagel
(1983) attempted to improve the estimation of (AX, AY)
by including the second-order terms in the Taylor series
expansion of f2(X0 + AX, Y + AY). For a recent insightful
study on the determination of optical flow, see Hildreth
(Hildreth, 1984). See also the pioneering work on optical
flow by Prazdny (1980).

Basic Equations

Differentiating Eq. 3 with respect to t and using Eq. 38,
one gets

V V
Vx = - X + [-XYwi + (1 + X2)w2 - Yw3](42)

(46)

IV
= 1-z/ Y 

V 
7.1 + [-(1 + Y2)wi - XYw2 + Xw3]

whence

Z =
Vx + XYwi - (1 + X2)w2 + Yw3

vx - Xvz

vy - Yv,
Vy + (1 + Y2)w1 - XYw2 + Xw3

and

(vx — Xv,)[Vy + (1 + Y2)wi — XYw2 — Xwa]

= (vy — Yuz)[Vx + XYwi — (1 + X2)w2 + Yw3]

(47)

(48)

Equation 48 is nonlinear in the six unknowns: vx, vy,
w1, w2 and w3. Also, it is homogeneous in vx , vy, and vz•
Therefore, v = (vi, vy, vz) can be determined only to within
a scale factor. To fix ideas, let the sought after translation
be the unit translation vector

6 = (0x, Oy, 0,) A   (49)
N/L4 + v?, +

Then Eq. 48 contains five unknowns, eg, O, U,, w1, w2, W.
If there are optical-flow vectors at five or more image
points, [(Xi, Yi), (Vx„Vy,)],i = 2, . . . , N, one can seek a
least-squares solution to the set of N nonlinear equations
48. Note that Eq. 46 can be derived from Eq. 4 by letting
A t-> 0.

A Linear Algorithm

Similar to the two-view point-correspondence case, a lin-
ear algorithm is possible here (Zhuang and co-workers, in



press). In fact, in Eq. 12, if one sets

G = K At (50)

where

0 —u„ vy]
K [ vz

— v
0
vx

—vx
0

(51)

and

R

and then lets At —> 0, one

=

X

1 + S At,

gets

(37)

[Vs, Vy, 01K[V]+ [X, Y, 1VCS[Y (52)
1 1

Let

112 113

L =[121 122 /23 KS (53)
131 132 /33

Then Eq. 52 is equivalent to

[X2, Y2, 1, XY, X, Y, Vy, —Vi, VxY — VyX]h. = 0 (54)

where

111

h2 122

h3 133

h4 112 + /21

h = 11.0 a
113 + 131 (55)

11.6 123 + /32

h7 vx

17.13 vy
vz

From Eqs. 53 and 55

and

[h:

h2

h3

h4

h5

—

278][ 

h9

0

WI

W2

U)3

0

—W2

0

— W2

WI

0

W3

Vz

—W3

1V3
0
0
WI

W2

V

V

[V]

(56)

(57)

The solution procedure is as follows. From eight or more
Optical-flow vectors, one determines h1, . . . , h0 to
within a scale factor from the linear Eq. 54. Then Eq. 56
gives v = (vi, vy, vz) to within a scale factor. Finally, Eq.
57 is used to find Si = (wi W3).
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Planar Patch Case. The linear algorithm of the last sec-
tion breaks down when all the image points under consid-
eration correspond to 3-D points lying on a plane (Lon-
guet-Higgins, 1984). However, similar to the two-view
case, a different linear algorithm is available. Let the
equation of the plane in 3-D be

Then, as before,

ax + by + cz = 1 (13)

1
—
z 
= aX + bY + c

Substituting in Eq. 46, one gets

Vx = k1 + k2X + k3Y + k7X2 + k8XY

Vy = k4 + k5X + k6Y + k7XY + k8Y2

where

ki = cvx + w2

k4 = cvy —

k7 = —av2 + W2

k2 = avx — cv,

1z0 = avy + w3

k8 = —bv, — w3

(17)

(58)

k3 = bvx — w3,

k6 = bvy — cvz,

(59)

Given optical-flow vectors at four or more image points,
we can determine 14, k2, . . . , 14 from Eq. 58. Then 0
and Cl can be found from the k, as described in Longuet-
Higgins (1984). Similar to the two-view case, generally
there are two solutions for the motion parameters. Lon-
guet-Higgins (1984) discusses the physical meaning of the
two solutions and the fact that in many cases one of the
solutions can be ruled out.

Generalized Flow Fields

Basic Equations. In the discussions of optical flow so far,
only the image-point velocities Vx and Vy have been used.
A more general formulation using Vx, Vy as well as their
derivatives (with respect to X and Y) up to the second
order was proposed by Waxman and Ullman. Their ap-
proach is based on studying the deformation of a small
neighborhood in the image and provides much insight into
the relationship between the 3-D motion/structure of a
rigid body and its 2-D perspective views.

Specifically, consider the vicinity of the image origin
(X, Y) = (0, 0), and assume that the object surface

z = z(x, y) (60)

around the point (0, 0, z0), where z0 = z(0, 0) is smooth
(twice differentiable). Then 12 observables can be defined
that are expressible in terms of the six motion parameters

(M1—M6),

Vx V Vz
W1 W3, W2

Zo ZO ZO

and five structure parameters (T1—T5),
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Iazl r az
I —I, , zo[T—] , 46] , zo  

a2Z a2z 32z
xo yo x o y o Lax ay _10

The subscript 0 indicates that the derivative is evaluated
at (0, 0, z0). Note that the five structure parameters give
information on the slopes and the curvatures of the sur-
face at (0, 0, zo).

The 12 observables are (01-012) Vx, Vy, en, e22, e12, ty,
aeli/aX, aeii/aY, ae22/aX, ae22/8Y, aw/aX, and aw/aY,
where e11, e22, e12, and w are defined as follows: Let

avi _ 1 ray, 
a(i La6 J 2 L (36 (36 J u

j = 1, 2; (V1, V2) = (Vx, Vy); (6 , 6) = (X, Y) (61)

In terms of image deformation, e, is the rate-of-strain ten-
sor and w, the spin tensor. The physical meaning of these
quantities are ell is the rate of stretch of a differential
image line oriented along the X axis, e22 the rate of stretch
of a differential image line oriented along the Y axis,
e32 (= e21) one-half the rate of decrease of the angle be-
tween two differential line segments along the image
axes, and w21 (= —w12 = w) the rate of rotation (ie, the
spin) of the differential neighborhood of image about the
origin.
The basic flow equations relating the observables to the

motion and structure parameters are derived in Waxman
and Ullman (1983).

01 = M1 + M5

02 = M2 — M4

03

04

05

08 — M8 + i(M1T2 M2T1)

07 2(M5 M3T1) M1T3

= —M3 —

—M3 — M2T2

= — i(M2T1 + M1T2)

08 —M4 ± M3T2 — M1T5

09 = M5 + M3T1 — M2T5

010 = 2(M3T2 — M4) — M2T4

On = l(M4 M3T2 M2T3 M1T5)

012 — 4(M5 M3T1 M1T4 M2T5) (62)

These flow equations form a set of 12 coupled nonlinear
algebraic equations with 11 unknowns. A method of solv-
ing these equations (given 01-032) is described in Waxman
and Ullman (1983).

Finding the Observable. The problem remains: How
does one measure the observables from the image se-
quence? Kanatani (1985), Waxman and Wohn (1984a,b)
suggest a method based on evolving contours in the image
plane. The 12 observables are in terms of VP) and VI?), i,
j = 0, 1, 2 and i — j 2, where

v(i,j) at+Jvx 
x — axi ay; (63)

and similarly for V V). These derivatives can be obtained
in the following manner. In the vicinity of (X, Y) = (0, 0),
one can write

Vx(X, Y) =

Vy(X, Y) =

Xi Yj

i=0 j=0
(i+j2)

2 2
Xi YjE E-

i=0j=0j!
(i+J-2)

(64)

For curved surfaces Eqs. 64 are only locally (and approxi-
mately) valid. But for planes they are globally valid—see

Eqs. 58.
Assume a planar contour is tracked over two image

frames separated by a small At. If one measures at a point

(X, Y) on the contour, the normal flow velocity V,i(X, Y)
and the normal of the contour n(X,Y) = (fly, 72y), one gets

the equation

2 2 • •
r

Vn(X, Y) = E 2, 7 7 fnx(X, Y)1q1) + ny(X , Y)VV)}
i=o i=o i• •
(i+j2)

(65)

Since there are 12 unknowns, one needs to measure the V,,
and n of at least 12 points on the contour. Note that sev-
eral separate contours can be used as long as they lie in
the same plane in 3-D.

For curved surfaces the problem is much more difficult.

Waxman and Wohn (1984b) discusses the truncation er-
rors incurred by using the approximate Eqs. 64.

MOTION ESTIMATION BY DIRECT MATCHING OF
IMAGE INTENSITIES

All the techniques for 3-D motion determination described

above fall into the category of two-step methods. First,

correspondences or optical-flow vectors are found, and

then equations are solved to obtain the motion/structure

parameters. In this section a description of a method

based on direct matching of image intensities is given

(also, see Finding Optical Flow, above).

Determining 2-D Translation by Displaced
Frame Differences

Consider first the simple case of 2-D translation, ie, as-

sume that (AX, A Y) is constant for all image points corre-

sponding to physical points on the rigid body. Again, let

Y) = brightness of first frame (at t1)

f2(X, Y) = brightness of second frame (at t2)

Then the approach is to match fi and 12 directly: Find (AX,

AY) to minimize D {/1.(X, Y), /2(X — AX, Y + AY)}, where



D is a distance measure. One commonly used distance
measure is

D = E in(x, Y) — f2(X + AX, Y + A Y ll2 (66)
X, Y

It is important to point out that this direct matching
approach makes the tacit assumption that the two image
Points at t1 and t2, respectively, corresponding to the same
physical point on the object, have the same brightness: ie,
the brightness of an image point corresponding to a fixed
point on the object does not change after motion. This is
called the brightness-constancy assumption.

Coming back to Eq. 66, one notes that D can be mini-
mized by using standard optimization techniques. How-
ever, the computation can be simplified in the case where
the motion (AX, AY) is small. Then one can expand f2(X +
AX, Y + AY) in a Taylor series around (X, Y) and retain
up to only the first-order terms. And Eq. 66 is reduced to

where

D = E (Af+ AX aaf2 + AY Tfaf2)2 (67)
X, Y

Af(X, Y) ° f2(X, Y) — fi(X,

is the frame difference at (X, Y) (Robbins and Netravali,
1983; Cafforio and Rocca, 1983).

In practice, Af and af2tax, 3f2t3Y is calculated at N
points: (X1, Ye), i = 1, 2, . . . , N. Then the summation in
Eq. 67 will be over these N points. Note that minimizing D
in Eq. 67 is equivalent to finding the least-squares solu-
tion of the set of linear equations:

-(An, = AX(-0-caf2),+ AY (fr,12), (i = 1,2 . . . ,N)

(68)

where a subscript i indicates that the quantity is evalu-
ated at (Xi, Y). This is the same as the method described
in Finding Optical Flow.

Generalization to 3-D Motion

The method of the preceding section can in principle be
extended to the general case of 3-D motion. Both AX and
AY are expressed in terms of the 3-D motion parameters;
then D in Eq. 66 is minimized with respect to the 3-D
motion parameters. In practice, there are two difficulties.
The first is computational: There must be searching in a
high-dimensional space. The second is that (as shown be-
low), without further assumptions, the number of solu-
tions is infinite. From Eqs. 1 and 4 one can get AX and AY
in terms of, eg, X, Y, zl Az, n1, n2, 0, Ax/Az, and Ay/Az
(assuming Az 0). Then D in Eq. 66 is minimized with
respect to these latter variables. Unfortunately, for each
point (Xi, Y,) there is a new unknown z/ z. Therefore,
one always has five more unknowns (the motion parame-
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ters) than the number of terms in Eq. 66, and as a result
one has infinitely many solutions to the minimization
problem.

One can hope to get a unique solution if one knows the
form of the object surface to within a finite number of
parameters. The simplest case is when the surface is a
plane. Then it can be represented by

and

where

ax + by + cz = 1 (at t1) (13)

z _ 1
Az a'X + b'Y + c'

(69)

a' °- a Az, b' b Az c' A c Az (70)

As a result, D in Eq. 66 can be expressed in terms of the
eight unknown parameters a', b', c', n1, n2, 0, Axl Az, and
Ay/Az independent of how many points (Xi, Y) are used
in the summation.

Now the computational problem: To search in an eight-
dimensional space by standard optimization techniques is
very time-consuming. The situation is better if the 3-D
motion is small so that all (AX, AY) are small. Then one
can use the Taylor series approach, and the problem of
minimizing D is reduced to the problem of finding the
least-squares solution of the set of Eq. 68, where AX and
AY are now written in terms of the eight unknowns men-
tioned above. Note that the equations are now nonlinear
(Huang and Tsai, 1981; Huang, 1985).

To summarize, the method of determining 3-D motion
parameters of a rigid planar patch is to calculate Af and
8/218X, 8f218Y at eight or more ponts, and then find the
least-squares solution (by some iterative method) of the
set of eight or more nonlinear Eq. 68, where AX and AY
are written in terms of the eight unknowns a', b', c', n1,
n2, 0, Ax/Az, and Ay/Az by using Eqs. 4 and 69.

Once again, note that the method assumes brightness
constancy.

Linear Algorithm for Planar Patches

The nonlinear least-squares algorithm for determining
3-D motion parameters of a rigid planar patch as de-
scribed in the preceding section can be reduced to a linear
least-squares problem by introducing appropriate inter-
mediate variables (Tsai and Huang, 1981). Specifically,
from Eq. 16

AX = X' — X

= aiX + a2Y + a3 — a7X2 — a9XY — a9X
a7X + as Y + a9

AY = Y' — Y

= a4X + a6Y + a6 — a7XY — as Y2 — a9Y
a7X + a8Y + a9

(71)
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Assuming the motion to be small, one can substitute Eq.
71 into Eq. 68 to get

(a7X + as Y + as) A/

= (aiX + a2Y + a3 — a7X2 — a8XY — a9X)-8—x-8f2

+ (a4X + asY + a6 — a7XY — oc8Y2 — a6Y) ,w8f2

or

Sf2
X -Tc. + Y 8f2 8f2

- 
SX 

(4.2 - 

SX

+ Xn
yOf2 5f2 8i2

—4 - 8y as 
a 

8y 6

[X2 XY N+x a7

— [XY V,12c + Y2 + Y a8

— [X 5f2 + 5f2 Ad a9 = 0a- + Y (72)

This equation is linear and homogeneous in the nine un-
knowns, a1, . . . , a6. If one calculates A f and 8f2/X, 812/
Y at eight or more image points (X, Y), one gets a set of

eight or more equations eg, Eq. 72. Then a1, . . . , a6 can
be solved to within a scale factor. Recall that the at are
related to the motion/structure parameters by Eq. 15 and
that the latter can be obtained from the former by a
method described in Tsai and co-workers (1983).

MOTION FROM 3-D FEATURE CORRESPONDENCES

The motion-estimation techniques described above are
based on images taken by a monocular 2-D sensor such as
a single television camera. With such an arrangement the
3-D translation and the range of the object can be deter-
mined to only within a scale factor. One can determine the
absolute translation velocity and ranges of object points if
binocular vision (see stereo vision) is used, eg, two televi-
sion cameras with known relative positions and orienta-
tions. the binocular method has several other advantages
described below.

Binocular Procedure

A pair of stereo images is taken at t1, and another pair is
taken at t2, and then the following procedure is used.

1. From the two images taken at t1 feature points are
extracted, the two point patterns are matched to
find correspondences, and then by triangulation the
3-D coordinates of these points are found. The same
is done for the two images taken at t2.

2. The two 3-D point patterns at t1 and t2 are matched
to find 3-D point correspondences.

3. A set of equations involving the motion parameters
are obtained from the 3-D point correspondences.

These equations are solved to determine motion
(Huang and Blostein, 1985).

Note that the matching problems in 1 and 2 are usually
easier than the matching problem in the monocular two-
view case (see above) because in 1, for a fixed point in one
image of the stereo pair, the corresponding point in the
other image is restricted to lie on the so-called epipolar
line, and in 2, the distances between pairs of the 3-D
points on a rigid body is invariant to motion. An algo-
rithm for the maximal matching of two 3-D point sets is
presented by Chen and Huang (1986).

Motion from 3-D Correspondences

Once one has obtained 3-D point correspondences p,
p:, i = 1, 2, . . . , N, where

p = [xl
y] and p' = [y'

z'

how does one get the motion parameters R and T? A re-
lated question is: What is the minimum number of 3-D
point correspondences needed for unique determination of
R and T of a rigid body? A basic fact is that R and T are
determined uniquely by three 3-D point correspondences
(assuming the three points are not collinear). This be-
comes obvious if one notes that two points will fix a rigid
body in space except for a possible rotation around the
axis formed by joining the two points. A third point then
fixes the rigid body completely. Once one knows three 3-D
point correspondences on a rigid body, one can generate
any number of other 3-D point correspondences rigid rela-
tive to the original three points.

To describe algorithms for finding R and T, Eq. 2 is
rewritten as

p' = Rp + T (73)

There are six unknown parameters, n1, n2, 0, Ax, Ay, and
Az. Each 3-D point correspondence gives one matrix Eq.
73 or three scalar equations, which are nonlinear in the
unknowns. An obvious method would be to find the least-
squares solution (by some iterative technique) of the set of
3N coupled nonlinear equations obtained from the N
three-dimensional point correspondences, where N 3.
However, much simpler linear algorithms are available
(Blostein and Huang, 1984), one of which is described be-
low.

Assume there are three 3-D point correspondences

Let

pi 4-->

m1 Ps pl P3

,„ A
,,.2 = P2 P3

Then, from Eq. 73,

mi = Rmi

i = 1, 2, 3.

mi Pi — Pi

mi Ap — Pi

Rm2

(74)

(75)



If

m3 ° mi X 77/2 776 ° mi x

(Consider m, and m; as vectors.), then

771, = R m3

Combining Eqs. 75 and 77,

[mi, m, mfl = R[mi, m2, m3]

whence

and
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rather recent activity. This is a very promising research
area since normal flow fields are much easier to compute

(76) than actual flow fields. It turns out that if one employs an
active observer (an observer that can control the geomet-
ric parameters of its sensory apparatus) then 3D motion
and structure can be computed from normal flow. The in-

(77) terested reader can consult (Aloimonos, Weiss, and Ban-
dyopadhyay (1987) and Aloimonos (1990).

(78)

R = [mi, m, m][mi, m2, m3]-1 (79)

T = 13; — Rpi for i = 1, 2, 3 (80)

Note that the numerical accuracy of this algorithm is usu-
ally improved if normalized (to a magnitude of 1) versions
of m, and m; are used in the formulation.
Two remarks are in order. First, the above algorithm

can be used not only for 3-D point correspondences but
also for 3-D straight-line correspondences and surface-
normal correspondences. In the latter two cases only two
correspondences are needed. Second, in the pressure of
noise in the data (3-D point coordinates), the matrix R
obtained from the above algorithm may not be a rotation

orthonormal and with a determinant equal to +1). In
that case a rotation matrix R' can be found by using the
algorithms in Faugeras and Hebert 91983) and Huang
and co-workers (1986) to minimize

3 3

1117' — R112 E E -
1=1 j=1

where r,s, and riu are elements of R and R' respectively.

Correspondenceless Approaches

The problem of retinal correspondence is ill-defined and
only partial solutions have been obtained to date. This
complicates three-dimensional analysis on the basis of vi-
sual motion. Consider a set of points A = {(X,, Y„ Z1), i =
1, . . . , n} in three dimensions that moves rigidly to a
new position A' = {(X:, Y, Z;), i = 1, . . . , n}. Given the
images A1 = {(x1, yi), i = 1, . . . , n}, Ai = {(x;, y), i = 1,
• . . , n} (before and after the motion) and without consid-
ering individual point correspondences (only correspon-
dences of sets of points), the problem is to recover the 3-D
motion involved. Various approaches can be found
(Aloimonos, 1986; Aloimonos and Rigoutsos, 1986;
Aloimonos and Herve, 1990).

Motion and Shape from Normal Flow

Although the idea of the normal optical flow field has
existed in the literature for quite some time, using it to
extract information about 3-D motion and structure is a

ADDITIONAL TOPICS

In the preceding sections the major approaches to deter-
mining 3-D motoin/structure of a rigid body are described
in some detail. This last section is a brief commend on
some important additional topics. These topics also repre-
sent areas where further research is needed.

Numerical Accuracy of Algorithms

The reader should be warned that computer simulations
and experiments with real images (Fang and Huang,
1984a,b) have indicated that in order to estimate motion
parameters reasonably accurately (around 10% error)
from two perspective views using a single camera, the
image resolution has to be quite high (typically 1000 X
1000 picture elements, assuming image-point features
can be measured to within one picture element). Theoreti-
cal studies or even systematic simulation studies on how
the estimation errors depend on various factors are yet to
be made. The situation with the two-camera case is some-
what better (Huang and Blostein, 1985). Some simulation
results for the two-camera case are given below to indicate
how redundant point correspondences can be used to im-
prove estimation accuracy.

The algorithm of Motion form 3-D Correspondences
(above) requires only three 3-D point correspondences. If
more than three point correspondences are available, the
redundancy can be used to improve estimation accuracy in
several ways, two of which are adaptive least-squares
(Huang and Blostein, 1985) and RANSAC (Fischler and
Bolles, 1981). A hybrid of the two was used in Huang and
Blostein (1985), from which some computer simulation
results are quoted. The imaging geometry is as follows:
Two pinhole cameras with focal length 28-mm are used,
and the two image planes are coplanar; each image is 38
mm x 50 mm and has a resolution of 512 x 512 picture
elements. The baseline distance between the two cameras
is 400 mm.

The 3-D points are chosen randomly in a cube centered
at a point 3 m from the cameras each side of which is 0.75
m long. The true motion is a rotation of 35° about an axis
through the origin with direction 0.9, 0.3, and 0.316 fol-
lowed by a translation of 0.8, 0.2, and 0.6 m. The simula-
tion is done as follows. The 3-D points before and after the
motion are projected onto the two images. The image coor-
dinates of these points are quantized (with a resolution of
512 x 512). The quantized image points are then used in
the method described in Motion from 3-D Feature Corre-
spondences to estimate R and T. That is, triangulation is
done using these quantized image points to obtain the 3-D
coordinates of the points, which are then used in the algo-
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rithm described above. The errors in the estimated R and
T are due to the inaccuracies in the 3-D coordinates of the
points, which are in turn due to the quantization of the
image coordinates. The results are: The average errors (in
%) of 0, n1, n2, n3, Ax, Ay, and Az are, respectively: 5.2,
2.3, 14.5, 8.1, 10.1, 30.7, and 10.7 with seven 3-D point
correspondences and 2.2, 1.0, 7.1, 3.1, 4.8, 14.9, and 4.4
with fifteen 3-D point correspondences. For each of the two
cases the averages are computed over 100 trials.

At this point it is worth noting recent research (Spetsa-
kis & Aloimonos, 1989) that develops algorithms that are
provably optimal under assumptions about the noise that
corrupts retinal correspondences. Experiments with such
algorithms demonstrate that a 1% error in the input
(about 4-7 pixels) can produce a 100% error in the output
(3-D motion). Such results indicate that the problem of
recovering 3-D motion (rotation and translation) from
point correspondences in two frames might be inherently
unstable.

Multiple Objects

The methods described in the earlier sections are for a
single isolated rigid body. What if the scene contains sev-
eral rigid bodies moving differently (this includes the spe-
cial case of a single rigid body moving against a stationary
but textured background)? Segmentation needs to be done
somewhere along the way. If one is working with the two-
view case described in Solution Using Point Correspon-
dences (above) and if the motions of the rigid bodies are
small from t1 to t2, the following approach can be tried.

Assuming the motions are small, one can still hope to
get correct point correspondences. However, one does not
know which points lie on which objects. This one attempts
to find by a clustering technique. The basic ideas is to take
all possible octets from the point correspondences, and for
each octet compute R and T using the algorithm described
above under A Linear Algorithm. Then clusters are found
in the five-dimensional (ni , n2, 0, Ax, A9)-space. Ideally,
each rigid body will give one cluster. To save computation,
one uses heuristics (qv) to reduce the number of octets to
consider and perhaps does clustering in subspaces of the
five-dimensional space. Obviously, the same approach can
be used in the binocular case. here, one only has to deal
with triplets.

In order to handle the multiple-object case effectively,
constraints on the scenario should be used wherever possi-
ble. A very impressive piece of work in that direction has
been done by Adiv (1985).

Multiple Frames

Most of the approaches described up to now consider two
or three dynamic frames. If several frames are used, it
turns out that precision is greatly increased (due to redun-
dancy). See Spetsakis (1989) for a survey and the treat-
ment of the problem in its most general form.

Nonrigid Objects

Two cases are of particular interest: an articulated object
(ie, an object comprising several rigid parts connected

through various joints) and an elastic object. Some aspects
of motion analysis of articulated objects have been studied
by Asada, Yachida, and Tsuji (1984); O'Rourke and Badler
(1980); and Webb and Aggarwal (1983a). In particular,
Webb and Aggarwal investigated the case where the rota-
tion axis can be assumed fixed in direction throughout the
observed image sequence. The same authors (1983b) have
also studied a special case of elastic objects where the
object is assumed to be locally rigid, which implies an
affine transformation between two image planes under
local parallel projection. This approach is being extended
by Chen (1985) to handle general elastic bodies. Finally
Koenderink and VanDoorn (1985) are investigating the
special case of bending deformation. The class of bending
deformations encompasses all deformations that conserve

distances along the surface but not necessarily through

space.

THE ROLE OF THE VISUAL FIELD

During the development of the field of visual motion anal-
ysis it was observed that results were more accurate for

wide (as opposed to narrow) visual fields. This observation
led to the development of techniques for finding motion

parameters from spherical flow fields. In Nelson and

Aloimonos (1988), a theory is developed for determining
the motion of an observer given the flow field over a full

360 degree image sphere. The method is based on the fact

that the foci of expansion and contraction for an observer

moving without rotation are 180 degrees opposed; and on
the observation that if the flow field on the sphere is con-
sidered around three equators defining the three principal

axes of rotation, then the effects of the three rotational

motions decouple. The three rotational parameters can

thus be determined independently by searching, in each

case, for a rotational value for which the derotated equato-

rial flow field can be partitioned into disjoint 180 degree

arcs of clockwise and counterclockwise flow. The direction

of translation is obtained as a by-product of this analysis.

Since this search is two dimensional in the motion param-
eters, it can be performed relatively efficiently. Because

information is correlated over large distances, the method

can be considered a pattern recognition rather than a nu-

merical algorithm. The algorithm was shown to be robust

and relatively insensitive to noise and to missing data.

Both theoretical and empirical studies of the error sensi-

tivity were presented. The theoretical analysis showed

that for white noise of bounded magnitude M, the ex-

pected error is at worst linearly proportional to M. Empir-

ical tests demonstrated negligible error for perturbations

of up to 20% in the input, and errors of less than 20% for

perturbations of up to 200%.

Motion Modeling and Prediction

This article has been concerned mainly with estimating

the motion parameters R and T of an object between two

time instants t1 and t2 based on image frames taken at

these time instants. In most practical problems one 15

more interested in predicting rather than just estimating

motion.



In order to predict, one needs a model of the motion
that is valid over a number of image frames and contains
a small number of parameters that remain constant over
these frames. One can first estimate these parameters
based on the first few frames and then use these estimated
values to predict future motion and hence where the ob-
ject will be in future frames.

One such approach is described in Huang, Weng, and
Ahuja (1986), where the object has a precessional motion
around its center of gravity, which is moving on a polyno-
mial curve (eg, a parabola) in space.

High-Level Motion Understanding

In many cases the ultimate goal of motion analysis is to
come up with a symbolic description of the dynamic scene
under study. A complete system can conveniently be
thought of as comprising two modules. The first module
extracts from the observed raw data (eg, an image se-
quence), low/intermediate-level features such as motion
and structure parameters. Then the second module ar-
rives at a symbolic description of the dynamic scene by
high-level reasoning based on the low/intermediate fea-
tures as well as other a priori information about the scene.

One can find such complete dynamic scene-analysis
systems in the literature in the biomedical area. Two ex-
cellent examples are Levine and co-workers, 1983, which
describes a rule-based system for characterizing blood cell
motion, and Tsotsos and co-workers, 1980, which de-
scribes a system for analyzing the motion of left-ventricle
walls. In both cases the "scenes" are basically 2-D in na-
ture, and therefore the task of the low/intermediate-level
module is greatly simplified.

For truly 3-D scenes a complete dynamic scene-analy-
sis system is hard to construct. The main problem is that
the low/intermediate-level features the high-level module
needs for its reasoning may be very difficult, if not impos-
sible, to extract from the raw data. In fact, the low/inter-
mediate-level module will probably need help from high-
level reasoning to improve its performance. Some
impressive examples of high-level modules are O'Rourke
and Badler (1980), Neumann (1984), and Borchardt
(1984). Neumann (1984) describes a system that observes
traffic scenes and produces natural-language descriptions
of them. In particular, the system will recognize and ver-
balize interesting occurrences (events) in the scene—eg,
one car is overtaking another. Borchardt (1984) describes
an expert system for event identification. The applications
considered are simple assembly-line tasks. However, in
both systems the low/intermediate-level features needed
by the high-level modules are furnished at least in part by
human operators.

Future Research

To summarize, the following are important research top-
ics in motion analysis:

To find robust algorithms for motion estimation,
To find algorithms for estimating motion of multiple

objects,
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To find algorithms for estimating motion of nonrigid
objects,

To find algorithms for predicting motion, and
To link and coordinate low/intermediate-level and

high-level motion analysis.
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VISUAL PERCEPTION

The veridicality of visual perception, that is, the corre-

spondence between the percept of the outside world and its

physical features that can be verified, eg, through the

sense of touch, is probably the most striking quality of

vision. Despite its numerous shortcomings, catalogued

and studied by psychologists as visual illusions, the visual

system virtually never fails to provide information about

the outside world that is of genuine behavioral impor-

tance. The three-dimensional layout of surfaces in the vi-

cinity of the observer and the motion, compositions, and

grouping of these surfaces into well-defined objects are

representative examples. The resulting impression of the

visual world is complete; the visual experience of the sur-

rounding space has no gaps in it, even in those portions of

it for which no input information is available (such as that

part of the space projected onto the blind spot of the eye).

At the same time, through fixation, attention, and scru-

tiny we can perceive many fine details of the environment.
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QUESTIONS

Historically, reflections of the sort outlined above have led
to many questions pertaining to the phenomenon of per-
ception. These questions can be divided into distinct
classes, according to the aspects of vision they address.
This essay will deal with only a few of these aspects. It
will survey some common features of the human percep-
tual performance, the processes involved in that perfor-
mance and how these are studied experimentally. [Boff
and co-workers (1986) is a recent comprehensive hand-
book on perceptual performance.] Computational accounts
of vision (Marr, 1982), also offered elsewhere in the ency-
clopedia, will be pointed to briefly. Finally, most of the
topics pertaining to the biological substrate of vision, ex-
cept some of the most pervasive notions (such as receptive
fields and cortical maps), will be omitted altogether. For
information on the anatomy and the physiology of vision
the reader is referred to other sources (e.g., Kandel and
Schwartz, 1985).

Visual Performance

Gibson (1950) begins his book on visual perception with a
question: "Why do things look as they do?" An obvious
(but not very informative) answer to this would be: "be-
cause of the way our visual system is built." In fact, the
recounting of conditions that must be fulfilled before any-
one can see, which constitutes the first paragraph of Gib-
son's book, begs for a more constructive formulation of the
basic empirical question of visual perception: how does the
visual system perform under different conditions, or, what
are the factors that affect the way things look? Some of the
factors that influence perceptual performance, such as the
basic architecture of the visual system, are internal to the
observer and belong to the domain of visual neuroscience.
Other factors, such as the physical characteristics of the
stimulus and of the manner of its presentation, can be
externally manipulated. Experimental psychological
study of visual perception is aimed at understanding the
outcome of the perceptual process, its building blocks, and
its neural substrate, through controlled manipulation of
the external stimulus.

Consider as an example Figure la. When asked to de-
scribe its contents, average observers usually state that it
shows two overlapping triangles, of which one has its ver-

(a) (b)

Figure 1. (a) Illusory contours, as well as some abnormal depth
and lightness percepts, arise in this version of Kanizsa's triangle;
(b) a modified version, in which the illusory percepts are much
weaker.

tices at the centers of the black disks and consists predom-

inantly of illusory contours. Why do we see this second

triangle? One can make an initial step toward an answer

by trying to influence the percept of the illusory triangle

by manipulating the stimulus (Fig. lb). As a by-product,

this process of perceptual experimentation frequently

comes up with notions that are useful for understanding
other visual phenomena (in this specific example, the im-

portant notions are those of completion and filling in, to be

discussed later), including the perception of natural

scenes.

Visual Competence

A different angle on the problem of perception is provided

by the opening lines of Marr's (1982) book on computa-

tional vision. Marr asks "What does it mean to see?" This

question, which (using Chomsky's terminology) is about

competence rather than performance, cannot be elabo-
rated on much further without making a commitment to

an important part of the answer. One of the two main

approaches to this problem is through the notion of direct

perception (Gibson, 1979). According to Gibson, percep-
tion is direct because the organism picks up relevant per-

ceptual invariants, such as the three-dimensional shape of

objects, from the visual world without intervening pro-

cessing or representation. (For a long time, Gibson went

so far as to deny the existence of retinal images and the

relevance to perception of geometric optics involved in
their formation.) In its rejection of internal representa-

tions and processes that can be described as unconscious

inference, the direct perception stance is related to behav-

iorism. The answer of Gibson's school to the question

"What does it mean to see" is "to be attuned to certain

invariant qualities present in the optic array, and, poten-

tially, to become disposed to act in certain ways, given the

appropriate stimulation." Under this view, phenomena

such as that illustrated in Figure 1 tend to be dismissed as

unnatural and "ecologically invalid."
The other approach, called "representational" by Marr

(1982), postulates that the goal of any visual system, in-

cluding biological vision, is to produce representations of

the environment, and that various specific visual tasks,

such as recognition and navigation, are solved through

inference, or computation, defined over these representa-

tions (Marr, 1982). The notion of perception as uncon-

scious inference is usually traced back to von Helmholtz

(1856/1964). In his treatise on physiological optics von

Helmholtz argued that most often the information present

in the visual world as projected on the eye's retina is too

incomplete to support the richness of perception, which

perforce must largely rely on previously or independently

available data and on unconscious reasoning. According

to Mari-, an important source of this additional informa-

tion is a knowledge of physics of the outside world and of

image formation.
Consider again the example of Figure 1. A computa-

tional account of the perceived illusory triangle would in-

dicate that (1) all contours, including the illusory ones,

are explicitly represented at some stage of the visual sys-

tem, and (2) the transformation between the stimulus and



the explicit representation can be computationally speci-
fied (and implemented in the hardware of the brain). A
distinct advantage of computational theories of perception
is that, unlike "direct" accounts, they can be made to gen-
erate concrete predictions, which, in turn, can be experi-
mentally upheld (or refuted). Computational, psychologi-
cal, and physiological investigations of illusory contours
are reported in Ullman (1976), Cavanagh (1987), and von
der Heydt and co-workers (1984), respectively.

To summarize, the interesting questions that can be
asked about visual perception are those of performance
(what conditions affect the way we see?) and of compe-
tence (what does it mean to see? how do we see?). The
computational—representational paradigm proved useful
in addressing all these questions. At present this ap-
proach dominates the psychology of vision, consequently;
in the remainder of the article its assumptions and termi-
nology are employed without qualification.

THE STUDY OF PERCEPTION

Goals

One way to begin investigating the basic questions men-
tioned above is to decide on the form into which the an-
swers should be cast. As in other natural sciences, this
calls for the formation of a mathematical framework that
would encompass the existing body of data on perceptual
performance and would admit generalization by success-
fully predicting performance under novel conditions. In
relatively primitive organisms the process of perception
appears indeed to be amenable to precise mathematical
treatment. As Poggio and Reichardt (1976) have shown, in
the fly the transfer function of the module that supplies
visual motion information for the purpose of flight control
can be specified by a simple expression with only a few
terms. The situation in human perception is rather more
complicated. Among other reasons, this is because of the
sheer diversity and complexity of the human visual sys-
tem, because the output representations of visual modules
are as yet unknown, and because in many cases top-down
influences tend to interfere with "pure" perception. A typi-
cal example of the classical mathematics of perception is
Luce (1986), where one can find an exhaustive survey of
the response time paradigm (see the section on methods
below). The main mathematical tools of this paradigm are
descriptive statistics and statistical models borrowed from
signal detection theory (Green and Swets, 1966).

Shepard's proposal of a "universal law of generaliza-
tion for psychological science" (Shepard, 1987) represents
a more ambitious attempt at the mathematization of per-
ception. The article, written for the occasion of the tercen-
tenary of the publication of Newton's Principia Mathe-
matica, suggests that the generalization of response from
a learned to a novel stimulus depends on the distance
between the stimuli in an abstract space that has the
same metric structure for a wide variety of tasks, ranging
from shape, size, and color judgments to auditory signal
perception. While the notion of a general psychological
space may apply to stimuli that themselves possess a well-
defined metric structure, the chances are meager that the
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more cognitive perceptual processes such as object recog-
nition would admit a similar universal law-like or nomo-
logical description. If those philosophers are right who
claim that mental processes are anomalous instead of
nomological (Davidson, 1980), accounts of cognition in
terms of prototypes and narrow-scope or local rules should
be more fitting than invocations of universal laws.

Methods

There are many ways to collect the data necessary for
building a theory of perception. One may distinguish be-
tween psychological approaches, which concentrate on the
perceptual capacities and experiential aspects of percep-
tion, and biological approaches, which focus on the anat-
omy and physiology of the sensory nervous system. Only
one approach is discussed here: experimental psychology.

Experiments that quantify and measure the psychome-
tric function (viz, the response of a subject to a controlled
stimulus) have traditionally been the principal method of
the psychological study of perception. This experimental
paradigm, called psychophysical because it relates the
magnitude of a psychological response variable such as
response time to some physical quality of the stimulus,
dates back to the previous century. A clear formulation,
due to Jastrow (1890), states that if the process of percep-
tion is indeed structured, then different paths through
this structure will yield different response times. If this is
true, one may hope to infer the structure of perception
from the patterns of response times obtained under differ-
ent experimental conditions. Mental rotation [see Shep-
ard and Cooper (1982) for an overview and Pylyshyn
(1985) for a critique] provides an outstanding example of a
phenomenon in which the dependence of response time on
a characteristic of the stimulus has triggered hundreds of
experiments and was incorporated into the foundations of
a theory of visual representation. (In this case, the task
called for a judgment of object identity between two simul-
taneously shown images of three-dimensional objects, and
the response time was found to depend linearly on the
relative misorientation of the objects with respect to one
another.)

BUILDING BLOCKS

Reductionistic methods that investigate the structure of
the perceptual system encourage the dissection of vision
into submodalities. Some of these building blocks of per-
ception, such as lightness, hue, texture, stereopsis, visual
motion, the perception of space, and object recognition,
are briefly described below. Within the scope of this ar-
ticle, little more than a hint can be given as to the percep-
tual problems solved by each module.

Lightness and Shading

Confronted with a gradient of illumination across the
viewed surface, the visual system must separate the effect
of illumination from the effects of surface albedo, orienta-
tion, and shape. Disentangling all the factors that contrib-
ute to the intensity of the image at a given point on the
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retina is probably the most complicated computational
problem in vision. Thus it is not surprising that some of
the more compelling illusions, such as the Mach bands
and the Craik—Cornsweet—O'Brien effect [see, eg, Frisby
(1979) for an overview], are caused by peculiarities of
lightness perception mechanisms (one such peculiarity is
illustrated in Fig. la, where the illusory triangle is per-
ceived to be brighter than the background). In addressing
the lightness problem, the human visual system appears
to have settled for qualitative rather than quantitative
solutions (Todd and MingoIla, 1983). Moreover, these so-
lutions often seem to be based on high-level heuristics
(Ramachandran, 1988) and are easily downplayed if the
relevant information is available from other sources, such
as the shape of the occluding contours of the surface
(Koenderink, 1984) or stereopsis (Billthoff and Mallot,
1988).

Color

In the perception of color, as in the perception of lightness,
the human visual system exhibits an impressive disre-
gard for irrelevant variables. In this case, the intensity
and the spectral content of the illuminant must be fac-
tored out if a reasonable approximation to the color of the
viewed surface is to be inferred [see the review in Boynton
(1978)1. The mechanisms responsible for this function ap-
pear to be similar for lightness and for color in that they
depend on local contrast while ignoring slow and gradual
changes in image intensity and spectrum, which in many
cases can be safely attributed to the influence of the illu-
minant (Land and McCann, 1971). Observations that are
not easily accounted for by an application of such simple
fixed rules were made by Gilchrist (1977), who found that
global (and cognitive) factors such as the knowledge of the
spatial arrangement of surfaces may affect their perceived
lightness. (See also COLOR VISION.)

Texture

In the natural world, texture, along with color, is an im-
portant cue to the physical composition of visible surfaces
and can be used to segment complex scenes into surface
patches that have distinct origins (eg, belong to different
objects). Also, texture gradients can be readily interpreted
in terms of the orientation of the underlying surfaces and
thus contain cues to the three-dimensional structure of
the visual space (Gibson, 1950). Texture is a mass phe-
nomenon; a surface must bear more than a few markings
to be perceived as textured. The problem of texture per-
ception can be formulated either in statistical terms, or in
terms of the detection of the underlying texture elements
or textons (see Julesz, 1984). An issue that was originally
raised in the context of texture perception and has
since been intensively studied is that of preattentive dis-
crimination (ie, distinguishing between different stimuli
without the involvement of attention or scrutiny). Pre-
sumably, features that combine into preattentively dis-
criminable textures are processed in parallel over the
entire visual field. The identification of such features pro-
vides important clues to the structure of early visual pro-

cesses. An illustration of this approach may be found in

recent work by Fahle (1990), who found that vernier offset

stimuli in the hyperacuity range (pairs of abutting line

segments displaced by an amount that is smaller than the

spacing of the photoreceptors in the retina) can be de-

tected in parallel. (See also TEXTURE.)

Stereopsis

Since the retinal image is a projection of the three-dimen-
sional world onto a two-dimensional surface, the informa-
tion on the third dimension, depth, is already lost at the

very first stage of vision. The perception of depth, or stere-
opsis, can, however, still be attained by combining infor-

mation from the two eyes. (Monocular depth cues are

mentioned below in the section on space perception.)

Stereopsis works because the separation between the reti-

nal images of objects (retinal disparity) is different in the

left and right eyes, depending on the separation of the

objects in depth. Binocular stereo resolution is extremely

fine: a difference in depth of 1 mm can be perceived at a

distance of 1 meter (m). The disparity between the two

eyes' views under such conditions is many times smaller

than the size of a single retinal photoreceptor.
Stereopsis has received much attention in the study of

vision [Julesz (1971); Poggio and Poggio (1984); see also

STEREO VISION]. The behavioral importance of depth percep-
tion becomes apparent if one attempts to thread a needle,

or catch a fly, with one eye closed. Stereopsis is an ac-

quired ability: newborn babies do not perceive binocular

depth until the age of 3 or 4 months. Disorders such as

strabismus (the inability to fixate the same object simul-

taneously with both eyes) present during this period of

plasticity can cause permanent stereoblindness by ham-

pering the development of one of the two main processes

underlying stereopsis: matching the two retinal images to

produce the disparity field. The power of the matching

process is illustrated by our ability to perceive depth in
random-dot stereograms [image pairs consisting of ran-

dom dots, some of which are displaced in one image with

respect to the other to form a stimulus that can be per-

ceived only through stereo vision; see Julesz (1971)1. In a
random-dot stereogram, each dot in one image can match

potentially any dot in the other image. Although match-

ing is usually sufficiently selective to disambiguate such

situations, in some cases people may perceive simulta-

neously several surfaces corresponding to multiple match-

ings between elements in the two images (Weinshall,

1989). Moreover, the relationship between the outcome of

the matching and the perceived depth is sometimes not

unequivocal. For example, the perceived depth may corre-

spond to an average disparity rather than to one of the

actual disparities derived from a possible matching 
(Alitchison and McKee, 1985).

The second process involved in stereopsis is surface in-

terpolation, which fills in the gaps between those locations

in the image where exact disparities are found through

matching. Similar to matching, the surface interpolation

subsystem possesses several distinct features that are not

well understood and are not reproduced by machine vision

algorithms. Two of these are simultaneous perception of



multiple transparent surfaces and the integration of dif-
ferent depth cues in surface perception.

Motion

Visual motion contains many important cues about the
outside world (see also VISUAL MOTION ANALYSIS). Moving
Patterns of light projected onto the retina provide infor-
mation that can be used to segment the surrounding scene
into objects according to their motion and to navigate in
the environment while avoiding collisions with both sta-
tionary and moving obstacles. Visual motion can also be
interpreted to yield the three-dimensional structure of ob-
jects (Wallach and O'Connell, 1953), even when the ob-
jects themselves are allowed to deform while moving, a
common phenomenon in the motion of living things (see
Johansson, 1973). The autonomy of visual motion percep-
tion is demonstrated by our ability to perceive three-di-
mensional structure in moving two-dimensional patterns,
such as those that appear on a television screen, and even
in random-dot kinematograms (Ullman, 1979). The con-
tribution of motion to our overall impression of the world
can be appreciated by anyone who has watched a film
taken from the vantage point of a roller-coaster rider: the
somatic illusions evoked by such stimuli are strong
enough to override vestibular and somatosensory cues.

As Rock (1984) has pointed out, the presence of retinal
displacement of objects is neither sufficient nor necessary
for the perception of motion, despite the indisputable fact
that such displacement is the starting point of neural mo-
tion processing. On one hand, moving objects that are fix-
ated and tracked are effectively stationary with respect to
the retina, but are still perceived as moving. On the other
hand, we perceive the visual world as immobile when our
eyes move between fixations (but not when the eyes are
moved externally, eg, by gently pressing on the eyeball
from the side).

Three-Dimensional Space and Shape

The perception of the three-dimensional layout of visual
space and of solid objects embedded in it relies on a com-
bined action of all the basic modules mentioned above, as
well as on a variety of perceptual rules of thumb that
cannot be readily attributed to one of those modules
(Ramachandran, 1988). The role of shading, textural cues,
retinal disparity, and motion information in seeing depth
has been outlined above. Another class of depth cues is
provided by the oculomotor system; depth can be esti-
mated from convergence of the eyes and from the accom-
modation status of the lens. Among the pictorial cues are
interposition (inferred from occlusion of some objects by
others), shadows, perspective, and familiar size informa-
tion (see Rock, 1984). The problem of understanding the
integration process that brings the depth cues together,
traditionally neglected in favor of the study of individual
visual modules, has recently received increasing attention
(Biilthoff and Mallot, 1988). The main aspects of the inte-
gration problem are the nature of the output representa-
tion and the relative weight given to each cue. Situations
in which the cues are conflicting can be especially inter-
esting. For example, when the contents of Figure la are
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shown stereoscopically in such a manner that the vertices
of the illusory triangle appear, in conflict with the (imagi-
nary) interposition cue, behind those of the real one, the
illusion becomes weaker (Gregory, 1978).

Object Recognition

Mechanisms that support object recognition (qv) in hu-
man vision are the subject of considerable controversy
among psychologists. Although most would agree that
recognition involves comparison between the stimulus
and an internal model or representation kept in memory,
no consensus exists as to the nature of that representa-
tion. Consider the problems encountered by the visual sys-
tem that attempts to identify an object present in the field
of view. Assuming that the candidate object has already
been detected and its approximate location estimated, the
system must segment the object from the environment
and factor out variations in its appearance due to chang-
ing illumination, changing viewpoint (see Fig. 2), and,
possibly, changing shape of the object (as in the recogni-
tion of a moving animal; see the section on motion above).

Does the visual system represent objects in a straight-
forward fashion, eg, by remembering sets of two-dimen-
sional "snapshots" taken from different vantage points, or
are the object models, geometrically, three-dimensional
analogs of the objects they represent? Arguments based,
among other phenomena, on our ability to perceive and
describe the three-dimensional shape of novel objects led
many researchers [notably Man- (1982)1 to postulate the
formation of three-dimensional object-centered (ie, view-
point-invariant) representations of the environment to be
the ultimate goal and the final product of vision. This view
amounts to much more than a theory of object recognition;
it dictates the interpretation of processes of early vision in
terms of the reconstruction of a replica of the visual world.
Recently, this view has been disputed on philosophical,
empirical and computational grounds (see Sloman, 1987;
Quinlan, in press; Edelman and Weinshall, 1989;
Edelman and Biilthoff, in press).

Three-dimensional object-centered models, envisaged
by Man-, and other three-dimensional structural repre-
sentations (eg, Biederman, 1985) are only a few of the
theories competing in the field of recognition. Major alter-
natives (see Ullman, 1989, for a review) are template
matching, description by invariant features and shape

Figure 2. The appearance of a three-dimensional object can de-
pend strongly on the viewpoint. The image on the right is of the
same object as the image on the left, rotated in depth by 900.
People find it difficult to recognize such objects from a radically
unfamiliar viewpoint, even when stereo information (Rock and
DiVita, 1987) or both stereo and motion cues (Edelman and
Billthoff, 1990) to the three-dimensional shape of the object are
available.
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normalization. Although it is clear that structural de-

scriptions of the type suggested by Marr, Biederman, and

others must be invoked to explain some perceptual phe-

nomena, the emergence of recognition models based on

interpolation among prototypical two-dimensional views

(e.g., Ullman and Basri, 1990; Poggio and Edelman, 1990)

indicates that memory for specific instances may be more

important for recognition than previously believed.

CROSS-MODAL CHARACTERISTICS AND PROCESSES

This section lists several characteristics of perception

whose common denominator is generality and pervasive-

ness in vision. These are grouped into two classes. The

first class includes phenomena that are common to more

than one of the building blocks mentioned earlier. The

other class comprises dynamic processes whose scope

spans several visual submodalities.

Constancy

Perceptual constancy is our tendency to see properties of
objects as invariant despite perpetually changing retinal
stimuli. Following is a list of the most prominent con-

stancy phenomena. (Some of these have already been
mentioned in the preceding sections.) Concrete examples
of each phenomenon can be found, eg, in Rock (1984).

Lightness Constancy. The perception of the shade of a

surface's lightness varies in general with the true albedo

of the surface rather than with its luminance (the inten-

sity of the light reflected by the surface, which changes,

for example, because of varying illumination and
shadows).

Color Constancy. When the spectral content of the illu-
minant undergoes a radical change, a surface will no

longer reflect light that corresponds to its true color (ie,
the color it reflects when illuminated with white light).

Nevertheless, its perceived color will in general appear

close to the true one.

Size Constancy. A given object in the world appears to
be about the same size, irrespective of the variation of the

size of its retinal projection (due, eg, to its varying dis-

tance from the eye).

Shape Constancy. The perceived shape of an object re-
mains constant despite changes in the shape of its retinal

projection caused by the movement of the object relative

to the observer.

Space Constancy. The visual world appears to us as sta-
ble and unmoving despite continuing movement of the

retinal image, caused by the movement of the eyes, as in
visual tracking and saccades (see the section on attention
and search below), the head and the entire body (as in

locomotion).

Explanations of Constancy. The constancies of visual
perception constitute an essential part of the visual expe-

rience as we know it. Imagine what a bewildering world it

would be if red tomatoes turned yellow when viewed in
the kitchen under incandescent light, coins appeared el-

liptical unless viewed from the proper vantage point, and

the slightest movement of the head sent the entire sur-
rounding scene careening about. How does the visual sys-
tem achieve perceptual constancy? The stimulus-relation

explanation, favored by the direct perception school, sees
the stimulus itself as the sole cause of constancy. Accord-
ing to this account, the context in which the stimulus

appears affects the way it is perceived. For example, the

apparent size of an unfamiliar object may be affected by
the presentation next to it of another object of known size.
In many situations, however, context information is un-

available, yet size constancy still holds. To continue the

preceding example, the size of a luminous object in a dark-

ened room may be correctly judged as long as distance

information is available, eg, from accommodation and

convergence. If, however, the object is seen through a nar-

row aperture that eliminates distance cues, the constancy

breaks down and the object appears to be of indeterminate

size (Rock, 1984). This phenomenon prompts an alterna-

tive explanation of constancy that proposes that viewers

take unconsciously into account independent or prior

knowledge relevant to a given situation. As we shall see

in the next section, the involvement of prior knowledge

can account also for other features of vision besides con-

stancy.

Implicit Knowledge

An example of the facilitation of perception through the

use of information not available in the immediate sensorY
input is the visual system's superior performance in recog-
nizing and remembering objects and scenes that make

sense, as opposed to those that do not (Biederman and co-

workers, 1974; Potter, 1975). Although the implicit

knowledge in this case is used unconsciously, the per-

ceiver would normally be able to identify and describe
its source. In other cases the knowledge source is not so

readily apparent to the observer. For example, the visual

system seems to take into account the physics of specular

reflection in the perception of three-dimensional shape in

shaded images (Blake and Biilthoff, 1990). In another ex-

ample, motion perception appears to involve implicit fa-

miliarity with the physics of transparency (Stoner and co-

workers, 1990).

Illusions

The unconscious rules of thumb that are in part responsi-

ble for the incredibly rapid performance of the visual sys-

tem in a wide variety of vital tasks are, necessarily, lim-

ited in scope. Certain visual stimuli produce illusory or

non-veridical percepts by causing the breakdown of those

perceptual processes that rely on unconscious rules. An-

other source of illusions is in the inherent anatomical and

physiological properties and limitations of the visual sys-

tern. The illusory contours of Figure la for which a tenta-

tive physiological mechanism has been identified (von der

Heydt and co-workers, 1984) are an example of this kind
(see also Gregory, 1978).



Processes

It is remarkable that a number of central parts of the
Process of visual perception can be described functionally
in a manner that is largely independent of the particular
goals they serve. What follows here is an attempt to
briefly characterize these subprocesses.

Adaptation. The most common example of adaptation
is the adjustment in the light sensitivity of the eye that
follows any change in the ambient illumination. The dy-
namic range of light adaptation is very wide (at least five
orders of magnitude). Only a small part of this range (a
factor of 16 or so) is attributable to the changes in pupil
size; the rest is supported by physiological processes that
operate at the photoreceptors and in the higher levels of
the retina. Presumably, some of the visual aftereffects
that may be classified as adaptation phenomena happen
at higher levels of the visual system. A well-known exam-
ple of this type is the motion aftereffect; we tend to per-
ceive the stationary parts of a waterfall scene as moving
upward after having concentrated for sufficient time on
the downward motion of the falling water. One possible
explanation of the aftereffects is that the visual system
represents qualities such as planarity and immobility as a
dynamic balance between representations of opposites
such as convexity—concavity and upward—downward mo-
tion. A fatiguelike reduction in the activity level of the
representation substrate of downward motion, for exam-
ple, will then cause a perception of upward motion in a
stimulus that is, in fact, static. Note that this account
relies on another common property of perception related
to adaptation: the preferential response to temporal
change and spatial contrast, as opposed to status quo and
uniformity.

Attention and Search. The visual system allocates dif-

ferent amounts of processing resources to different por-
tions of the visual field. Most of this nonuniformity is
architectural and is due to the gradual decrease in the
photoreceptor density (which entails a decrease in acuity)

between the fovea and the periphery. The other part is
more flexible and can be manipulated at will. The phe-
nomenon of diverting processing resources to specified lo-
cations in the visual field or to a specified submodality is

called visual attention (see, eg, Keele and Neill, 1978).
Attention can be shifted to a new location overtly by exe-
cuting an appropriate saccadic eye movement or covertly
by a mechanism whose precise nature is not yet known.
The benefit of the ability to shift attention is in the econ-
omy of processing resources required for adequate func-

tioning. For some visual operations, such as search for
compound stimuli (Treisman and Gelade, 1980), main-
taining uniform processing capability over the entire field
may be quite expensive. In these cases, attention provides
an acceptable trade-off between resources and time.

Perceptual Organization. Perceptual organization is a
collective term for a diverse set of processes that contrib-
ute to the emergence of order in the visual input. Some of
the phenomena already mentioned here can be considered
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as particular instances of perceptual organization. Two
examples that are, in reality, opposite sides of the same
coin are shape constancy and visual motion. The percep-
tion of a deforming two-dimensional retinal stimulus pat-
tern as a three-dimensional object in motion amounts to
organizing the visual input so that it can be described in a
simple and stable fashion. The study of perceptual organi-
zation has a long history in psychology. Palmer (1983),
following Cassirer, Pitts and McCulloch, Gibson, and
others, outlined a uniform framework for the study of or-
ganizational phenomena, based on the mathematical no-
tion of invariance under transformation groups. The
transformational approach allows problems of constancy
and motion to be addressed in the same language as the
classical issues of perceptual organization: figural good-
ness, grouping and frames of reference. A major attempt
to understand these issues, motivated by a conviction that
such understanding would shed light on perception in
general, led to the formation of the Gestalt school in psy-
chology (Kohler, 1947). Many of the laws of organization
proposed by Gestalt theorists, as well as the concept of
perceptual goodness (Praegnanz) they have introduced to
account for a variety of perceptual phenomena, have been
incorporated in a more rigorous formulation into the cur-
rently prevailing paradigm of visual perception [see the
discussion in Marr (1982), p. 1871.

Completion and Filling in. The group of phenomena that
can be characterized by a tendency to optimize figural
goodness includes two that have been mentioned in the
section on visual competence (see also Figure 1). The first
of these is contour completion: the visual system prefers to
perceive a nonexistent contour forming the illusory trian-
gle rather than see the three dented disks as unrelated to
each other (in which case the missing portions of the real
triangle would remain unaccounted for). It turns out that

the perceived shape of the completed contour can be pro-
duced by a process that minimizes a measure of its curva-
ture (Ullman, 1976). The second phenomenon that affects
the perception of figures as wholes is that of area filling in,
which may be considered a two-dimensional analog of con-
tour completion. In Figure 1, filling in is apparent in the
increased subjective lightness of the illusory triangle. An-
other manifestation of filling in is motion capture: our
tendency to perceive stationary features that happen to
fall within a moving contour as drifting along with the
contour. Surface interpolation (see the section on stereop-
sis) is an instance of filling-in that, analogously to contour
completion, can be formulated as a process of optimization
(see Poggio and co-workers, 1985).

Categorization. Several illustrations of our disposition
to see the environment as structured instead of chaotic
were given in the previous sections, when we discussed
the phenomena of object constancy and motion perception.
The imposition of this kind of high-level structure on the
visual world is an apotheosis of the processes of perceptual
organization, linking vision to general cognition and lan-
guage. Experimental evidence suggests that this connec-
tion is bilateral, and that the cognitive level can influence
visual perception. The most directly relevant experiments



1662 VISUAL PERCEPTION

are those in which subjects exhibit object superiority ef-
fects; an example is the facilitation of the perception of a
low-level feature, such as a line segment, by virtue of its

appearance as a part of the projection of a three-dimen-

sional object (Weisstein and Harris, 1974).
In many top-down effects (including object superiority),

the perceptual phenomenon is better characterized as cat-
egorization than recognition. The manner of cognitive in-
volvement in perception is thus more flexible and more
general than mere recollection of previously encountered

stimulus exemplars. Experiments carried out by Rosch
and her collaborators as part of a wider study of the struc-
ture of categories (see, eg, Rosch and co-workers, 1976)
showed that people tend to perceive and describe objects at
a certain level of detail. Importantly, this basic category
level can be independently defined in terms of visual per-
ception, language, and general cognitive development.

Some of the features of the processes involved in per-
ceptual learning and memory are mentioned in the next
section.

Perceptual Learning. Perceptual learning, or the adjust-
ment of perception to the stimulus aspects of the environ-
ment, is sometimes distinguished from cognitive learning;
the latter term is reserved for the modification of problem-
solving behavior (Walk, 1978). In early vision, learning
occurs in processes such as adaptation, mentioned above.
The famous experiment first made by Stratton (1897/
1964), in which a subject wearing inverting prisms gradu-
ally adapts to this condition, is a forceful reminder that
the degree of plasticity at lower levels of the visual system
should not be underestimated. (See Rock, 1984, for a dis-
cussion of the inversion experiments.)

Exactly what is learned and what is innate in vision
(and in cognition in general) has been the subject of in-
tense philosophical debate since Plato's time [see Dretske
(1990) for an overview]. A century of research in visual

psychophysics and neurobiology of vision shows that the
basic perceptual abilities of the human visual system
(such as the ability to perceive luminance contrast) are
largely innate, while others (such as some varieties of
object constancy) are acquired and depend on the visual
experience (Spelke, 1990). Significantly, the mechanisms
of perceptual organization used by infants in learning how
to see seem to persist through adulthood. Thus, the study
of the ontogeny of visual perception may help clarify the
nature of the long-term memory representations of objects
and scenes.
A similar angle on the problem of representation is

provided by studies in which the subjects' perceptual per-
formance in three-dimensional object recognition is modi-
fied merely as a result of practice or exposure to the stim-
uli, without any feedback from the experimenter (after
all, infants acquire vision, and language, without being

instructed). Normally, the subjects' response time in rec-

ognition depends monotonically on the misorientation of

the stimulus with respect to some canonical attitude
[Palmer and co-workers (1981); see also the discussion of
mental rotation in the section on methods, above). Percep-
tual learning under such circumstances, inferred from the
observed changes in the pattern of performance (specifi-

cally, from increasingly uniform response times for differ-

ent aspects of the stimulus), can be attributed to a shift

towards a more memory-intensive and less time-consum-

ing recognition strategy (Tarr and Pinker, 1989; Edelman

and Btilthoff, 1990). Indeed, such a strategy appears to be
the most suitable one for a system in which memory is

cheap, but time is expensive.

THE NEURAL SUBSTRATE

The architecture of the human visual system reflects the

major functional constraint imposed on it, namely, the

requirement of being able to recognize or classify in a few

hundreds of milliseconds any object from a potentially un-

limited repertoire, while taking into account a variety of

visual clues (Biederman and co-workers, 1974; cf Rosen-

feld, 1987). The following section contains several hints as

to what the basic functional elements that constitute this

architecture may be.

Vision Is Massively Parallel. The parallelism of visual

information processing becomes apparent already at the

level of the retina, where a separation occurs between

several pathways, each of which is functionally special-

ized to support certain aspects of the input, such as form,

motion, and color. Since eventually these have to be inte-

grated into a coherent percept, the cortical areas fed by

the different pathways are interconnected in an orderly

fashion [see recent reviews in Zeki and Shipp (1988) and

Kaas (1989)1, so that on the whole the architecture is a

heterarchy in which lateral connections and shortcuts

abound, rather than a hierarchy envisaged by early visual

scientists. Remarkably, in all the visual areas, as in the

entire neocortex in general, information is processed by

the same variety of cells, arranged in the same columnar

structure (Gilbert, 1988). Thus, any comprehensive theory

of brain function would have to specify, in information-

processing terms, what the basic operation is that can be

supported by the cortical architecture and is at the same

time sufficiently powerful to address the entire range of

perceptual, cognitive, and motor tasks.

Maps and Receptive Fields. Although a viable and

widely accepted theory of such scope has yet to be pro-

posed, two well-established findings in the neurobiology of

perception, and in particular of vision, provide an inkling

as to the basic mode of information processing in the cor-

tex. The first of these is concerned with the notion of the

receptive field of a neuron. In vision, it is defined as that

region of the visual field whose stimulation affects the

activity of the neuron (see, eg, Kuffler and Nicholls, 1976).

Without going into the details of the taxonomy and struc-

ture of receptive fields found in the visual cortex, one may

describe their function schematically as the integration. 
of

information over a finite area of the visual field and 
its

concentration at a single point: the axon of the neuron 
in

question, or its output terminal. Note that the axon may,

in turn, connect to many (potentially, tens of thousands)

other neurons at a higher level, so that as a whole 
this

structure is as heterachical as the large-scale arr
ange-

ment of cortical areas mentioned above (Fig. 3a).



(a)

Figure 3. (a) A highly schematic illustration of the notion of a
receptive field: unit a in area 2 receives input from the region
marked as RF(a) in area 1, and, in turn, projects to many units in
area 3; (b) computing the function f(x) = e-(x2+ ) cos y with a two-
dimensional-one dimensional (2D-to-1D) map of connections, or
lookup table. Note that to find the value of the function at a point
for which there in no entry in the lookup table one must resort to
interpolation (see Poggio and Girosi, 1990).

The second basic notion in the architecture of vision,
cortical mapping, pertains to the relationship among dif-
ferent receptive fields in the same visual cortical area. It
turns out that many areas are interconnected by locally
smooth maps (in fact, many areas are retinotopic, that is,
their topology, but not necessarily their metric structure,
conforms to that of the retina). Recent theoretical develop-
ments indicate that computing with maps or, equiva-
lently, connections (Fig. 3b) is a powerful information-
processing paradigm (see, eg, Ballard, 1986, for an
integrative discussion). It has been suggested (Rojer and
Schwartz, 1989; Mallot and co-workers, 1990; Damasio,
1989) that cortical mapping is the basic mechanism of the
visual function of the brain. It remains to be seen whether
this concept can be extended to encompass perception (and
intelligence) in general.

CONCLUSION

The study of visual perception is bound to inspire awe,
because of the recognition of the formidable problems
Posed by vision, and marvel, because of the appreciation of
solutions developed by the brain to address these prob-
lems. Borrowing a phrase from Warren McCulloch, one
can describe this study as discovering what a thing is,
that a man may see it, and a man, that he may see things
(McCulloch, 1965 p. 2). While looking for an answer to
this question, it is worthwhile to remember that in percep-
tion, if not in intelligence, man is the measure of all
things.
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VISUAL RECOVERY

Neither objects nor properties of objects (such as 
shape,

color, etc) exist inside our brains as such. When we 
see,

computations are performed inside our heads which 
gen-

erate hypotheses about objects and their properties.
 To

understand vision, the methods used to derive such 
per-

ceptual hypotheses from visual images must be 
discov-

ered.



Much of the research on computational vision over the
past 35 years has concentrated on specific visual tasks,
and has been concerned with how one can recover visual
quantities necessary for carrying out such visual tasks as
identifying and locating a known object so that a robot
arm can grasp it. This research is sometimes referred to as
belonging to the "recognition" school, since it deals with
specific types of objects which must be identified and lo-
cated. On the other hand, the "recovery" school has con-
centrated on the study of general visual capabilities, such
as the ability to understand the shapes of general objects
based on the distribution of surface markings (texture).
This article reviews general visual recovery research and
discusses how it relates to the recognition point of view.

Visual Problems

A very large variety of problems related to the interaction
of autonomous mechanisms with their environments can
potentially be solved using visual input. However, two
classes of problems are commonly held to be touchstones
for practical vision systems: successful navigation in a
complex environment using visual information, and rec-
ognition of classes of common objects (such as people or
trees) in a complex scene. A large proportion of the pub-
lished papers on computer vision address, explicitly or im-
plicitly, one or the other of these goals. If both were
achieved, automatic systems would have many of the ca-
pabilities of the human visual system; but it is clear that
constructing such systems presents great difficulties.
These difficulties were realized during the 60s and the
early 70s, after the failure of early attempts to build en-
tire vision systems, ie, systems that exhibited some verti-
cal integration and used knowledge at all levels, including
domain-specific information. "In order to complete the
construction of such systems, it is almost inevitable that
corners be cut and many overly simplified assumptions be
made" (Brady 1982). This results in a system capable of
carrying out a limited number of tasks, but not enhancing
our general understanding of vision. At about that time
the recovery school of thought started to develop through
the work of Marr (1982) and his colleagues. This school
held that the majority of visual problems can be reduced
to the following general problem: from one or more images
of a scene, derive an accurate three-dimensional descrip-
tion of the objects in the scene and quantitatively recover
their properties (or at least those properties relevant to a
given task). If we can recover (reconstruct) an accurate
description of our environment, we can navigate, avoid
obstacles, and find specific locations. If we can recover the
properties of an object (shape, reflectance, color, etc), we
can use them to recognize (classify) the object. Thus, the
recovery school of thought in computer vision emphasized
the study of visual abilities, independently of a task.

Methodology of Visual Recovery

Even if we accept that the solution to vision problems lies
in the recovery of the scene, it is not obvious how to pro-
ceed. Luckily, there is a standard way to design large,
complex information systems, as research in computa-
tional fields has shown (Feldman, 1985). The system is
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divided into functional components or subsystems which
break the overall task into autonomous parts. These sub-
systems are analyzed and the representations of informa-
tion that they use and the language of communication
among them are chosen. The subsystems are then tested
individually, in pairs, and all together.

This approach can be used in building a visual system,
using functionally autonomous subsystems that recover
specific properties of the world from images. These subsys-
tems are called modules. Visual recovery research is de-
voted to the study of such modules and their integration.

There is considerable evidence for the existence of such
modules in the human visual system. One source of such
evidence is the study of patients with visual disabilities
that result from brain lesions. In addition, psychophysi-
cists perform experiments in which a particular module of
the human visual system is seemingly isolated, for exam-
ple, Julesz's (1971) work on stereoscopic fusion without
monocular cues, Land's (Land and McCann, 1971) work on
the computation of lightness, Gibson's (1950) work on the
perception of shape from texture, etc. Thus it seems that
cues such as shading (image intensity variations), texture
(distribution of surface markings), contours (image dis-
continuities), color, motion and stereo are very helpful in
recovering properties of the three-dimensional (3-D) world
from images.

Marr (1982) pointed out that perceptual processes, (ie,
processes underlying visual abilities), must be understood
at three levels:

1. The level of computational theory. We must develop,
through rigorous mathematical treatment, the rela-
tionship between the quantity to be computed and
the observations (data = image(s)). After this com-
putational theory is developed, we can understand
whether the given problem has a unique solution.

2. The level of algorithms and data structures. After
the computational theory has been completed, we
must design algorithms and data structures that,
when applied to the input (image(s)), will output the
desired quantity.

3. The level of implementation. After the two previous
levels have been developed, we must implement the
algorithm in hardware (serial or parallel).

If these three levels are fully understood, then we can say
that we understand the perceptual process.

What Do We Want to Recover?

What should we attempt to recover from images in order
to be able to accomplish visual tasks? The answer defines
the nature of research on the theory of computer vision;
that is, image understanding (IU) research which is not
directed towards specific applications.

It is clear that one quantity that should be recovered
from images is the shapes of objects. A large amount of
visual recovery research is devoted to determining the
shapes of imaged objects from image cues, such as shad-
ing, texture, contour, multiple views, motion, etc. If we
can recover the geometry of the environment we can per-
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form navigational tasks such as avoiding obstacles, find-

ing passages, etc. In addition, if we can find an appropri-

ate representation, we can use shape information for

object recognition.
Shape is not the only thing we may want to recover; for

example, if we can recover the three-dimensional velocity

of a moving object we can catch it, avoid it, track it, etc.

Or, we may want to determine the velocity with which

every image point moves, in the case of images obtained

by a moving sensor (optic flow). We may also want to

recover the colors of objects; to recover then pose (spatial

position and orientation) of a known object; to determine

the discontinuities of the image intensity that correspond

to physical discontinuities; to determine a segmentation

of the image that corresponds to some well-defined seg-

mentation of the scene; or we may want to recover (or

restore) the ideal image from the actual image, which is

corrupted by noise, etc. Evidently, it would not be possible

to review all of these topics in this paper. Most of the

articles in this encyclopedia that deal with vision are de-

voted to general or specific recovery problems. In this ar-

ticle, attention will focus on the problem of recovering

shape.
Since this article deals with shape recovery, shape will

be defined, several commonly used shape representations

will be introduced, and the different kinds of projections

(imaging geometries) used in the literature will be re-

viewed. The modules of shape from shading, texture, con-

tour, stereo and motion will be studied, in brief: "shape

from x". The constraints relating 3-D shape to observable

image data, as well as algorithms that aim to reconstruct

the 3-D world from single monocular cues, will be de-

scribed. After discussing the limitations of these ap-

proaches, there will be discussions on how to combine

multiple cues, and an outline of the foundations for the

active vision paradigm, which provides the basis for the

unique and robust computation of 3-D shape, will be in-

cluded.

GEOMETRIC CORRESPONDENCE BETWEEN SCENE

AND IMAGE

Different imaging projections have different properties

that influence the design of shape recovery modules. De-

scribed here are the most commonly used projections.

Perspective Projection

Consider an ideal pinhole at a fixed distance in front of an

image plane (Fig. 1). Assume that only light coming

Figure 1. Perspective projection (image plane in the back).

through the pinhole can reach the image plane. Given

that light travels along straight lines, each point in the

image corresponds to a particular direction defined by the

ray from that point through the pinhole. This is perspec-

tive projection. In the sequel, in order to simplify the

equations, the nodal point of the eye (the pinhole) will be

regarded as being behind the image plane, as shown in

Figure 2. The optical axis is defined to be the perpendicu-

lar from the pinhole to the image plane. A Cartesian coor-

dinate system is introduced with the origin at the nodal

point and the z-axis aligned with the optical axis and

pointing toward the image. Let A be any point in front of

the camera. Assume that nothing lies on the ray from

point A to the nodal point 0. Compute the position of the

image A' of A in the image plane. Let V = (X,Y,Z) be the

vector connecting 0 to A and V' = (x,y,f) be the vector

connecting 0 to A', with f the focal length, ie, the distance

of the image plane from the nodal point 0. Then (x,y) are

the coordinates of A' on the image plane in the naturally

induced coordinate system with origin the point of the

intersection of the image plane with the optical axis, and

axes x and y parallel to the axes of the camera coordinate

system OX and OY. It is trivial to see that

_ fX fY
T

(2.1)

Equations 2.1 relate the world coordinates of a point to the

image plane coordinates of its image. Very often, to fur-

ther simplify the equations, we assume f = 1 without loss

of generality.

Orthographic :'rojection

If, in the perspective projection model, we have a scene

plane that lies parallel to the image plane at Z = Zo, then

we define the magnification, as the ratio of the distance

between two points measured in the image to the distance

between the corresponding points in the scene plane. So,

for a small interval (dX, dY , 0) on the scene plane and the

corresponding small interval (thc, dy) in the image, we

have

(dx)2 + (dy)2  _ f

= (dX)2 + (dY )2 — Z0

Thus a small object in the scene at average distance Zo

will produce an image that is magnified by kt. Evidently

Figure 2. Perspective projection (image plane in front).



the magnification is approximately constant when the
depth range of the scene is small relative to the average
distance of the scene points from the camera. In this case,
equations 2.1 become

x = jiX,y = (2.2)

with µ, = fiZo and Zo the average value of the depth Z. For
convenience, if p, = 1, equations 2.2 further simplify to

x = X, y = Y (2.3)

Equations 2.3 define the orthographic projection model,
where the rays are parallel to the optical axis (Fig. 3). The
difference between orthography and perspective is small
when the distance to the scene is much larger than the
variation in distance among objects in the scene. A rough
rule of thumb is that perspective effects are significant
when a wide angle lens is used, while images taken by
telephoto lenses tend to approximate orthographic projec-
tion; of course, this is not exact (Horn, 1986).

Paraperspective Projection

Orthographic projection is a very rough approximation of
the projection of light on the fovea, but it is unrealistic for
many machine vision applications. Perspective projection,
on the other hand, involves more complicated equations
and makes the analysis of some problems difficult. Para-
perspective projection is a good approximation of perspec-
tive; it lies between orthography and perspective. A ver-
sion of paraperspective projection was first introduced by
Ohta and co-workers (1981). Let a coordinate system
OXYZ be fixed with respect to the camera, with Z axis
pointing along the optical axis and 0 the nodal point of
the eye. Again, we consider the image plane perpendicu-
lar to the X axis at the point (0,0,1) (ie, the focal length f=
1, without loss of generality). Consider a small planar
surface patch SP having the equation Z = pX + qY + C
(Fig. 4). Under perspective, any point (X,Y,Z) E SP is
projected onto the point (X/Z, Y/Z ) on the image plane.
Now consider the plane Z = d, where d is the Z-coordinate
of the centroid C of SP. Paraperspective projection in-
volves two steps:

1. SP is projected onto Z = d. This projection is per-
formed using the rays that are parallel to the cen-
tral projecting ray OC.

2. The projection of SP on Z = d is projected perspec-
tively onto the image plane. Since Z = d is parallel

Figure 3. Orthographic projection.
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Figure 4. Paraperspective projection. Plane P is put in front of
the surface S for pictorial clarity.

to the image plane, this projection is a magnification
by a factor 11d.

Figure 5 illustrates a cross sectional view of the projection
process sliced by a plane perpendicular to the XZ plane
and which includes the central projecting ray. Paraper-
spective decomposes the projection of the scene onto the
image plane into two parts. Step (a) incorporates the fore-
shortening distortion and part of the position effect, and
step (b) incorporates both the distance and the position
effects.

Paraperspective projection has nice mathematical
properties, since it is an affine transformation. It has been
successfully used in many areas of computer vision, such
as shape from texture, shape from contour, object recogni-
tion, and the like. See Aloimonos (1990b) for applications
of paraperspective projection, as well as other perspective
approximations.

WHAT DO WE MEAN BY SHAPE?

A visual system analyzes images and produces descrip-
tions of what is imaged. A description might include infor-
mation about the shapes of the objects in the scene, but
the shape of an object does not have a unique description;
one can think of descriptions at many levels of detail and
from many points of view. As Horn (1986) suggests, "we
can avoid this potential philosophical snare by consider-
ing the task for which the description is intended. We
don't want just any description of what is imaged, but one
that allows us to take appropriate action." A reasonable
first approximation to describing the shape of an object is
to represent the local orientation of its surface. Only this
level of description will be considered here. Global shape
representations can also be used, for example the one
based on superquadrics (Pentland, 1986; Bajcsy and So-
lina, 1987); they are appealing because they represent
complex shapes using only a few numbers, but the inverse
problem (finding this description from an image) still

image plane z=d

G= center of mass

Figure 5. Cross-sectional view of paraperspective.
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needs to be addressed. Various qualitative shape descrip-

tors have been developed in the two-dimensional litera-

ture (Pavlidis, 1980), and a few in the 3-D case (Mumford,

1987), for use in object recognition; but these descriptors

do not provide solutions to the general recovery task.

Finding robust shape descriptions is an open research

problem that will probably require advanced mathemati-

cal tools for its solution, and therefore this section is con-

fined to the local descriptions of shape based on surface

orientation.
Surface orientation is usually represented by the orien-

tation of the surface normal vector. In the following sub-

sections it is shown how the shape of a visible surface can

be reconstructed from local orientation information.

Surface Orientation and Shape

The normal vector 11th the surface Z = Z(X,Y) at the point

(X,Y,Z) is

(az az _,) /[(az)2 (az
\aX' aY' L\axl aY)

\ 2 11/2

Let (x = /X/Z, y = fY/Z) be the image of (X,Y,Z). If (dx, dy)

is a small displacement in the image, corresponding to a

small displacement (dX, dY, dZ) on the surface, then

dx•Z+xdZ  
dY= 

dy•Z+ydZ
clX —

I '

Given that Z(X + dX, Y + dY) = Z(x + dx,y + dy), if we

expand both sides of this equation in a Taylor series and

ignore the higher order terms, we get

az  z  az + ax az az 'Y az aZ
dy

I x aX aY — x Y -aTT

so that

,., az
LI —

az —  
ax

and 
az =ax , az az ay , az az

j — x — — y -- j — x — — y --aa x a Y ax Y

From these equations we see that if az/ax, aziaY are
known, the quantity

az , az ,
= — ax + — ay

ax ay

azZ

Z(x + dx,y + dy)
Z(x,y)

can be computed. This means that if the surface normal is

known as a function of position (x,y) in the image, then

the depth function Z(x,y) can be computed up to a constant

factor. The constant is undetermined; the surface can be

small and near the camera or large and far away.

Surface Orientation and Shape Under Orthography

Under orthographic projection, the image coordinates of a

point are equal to the corresponding scene coordinates, ie,

(x,y) = (X,Y). So

(az az) _ (az az\
\ax' aY) 'Ox' ayi*

Since

aZ
Z(x + clx,y + dy) — Z(x,y) = dx

aZ
+ —

ay 
dy + (higher order terms),

we see that Z(x,y) can be computed up to a constant addi-

tive term. Thus, if we know the surface orientation under

orthography, we know the surface shape, but we do not

know its distance.

Other Coordinate Systems

Let p = az/ax, q = aziaY at the point of the surface Z =
Z(X,Y). We have seen that the surface normal vector is

(p,q,-1) 
(p2 q2 

± 1)1/2

The coordinates

(a,b,c) = (12 g --1) with k = (p2 + q2 + 1)112

define the position of a point on the Gaussian sphere. This

position can also be defined in terms of latitude and longi-

tude angles. Another commonly used representation is in

terms of slant and tilt, (a-, r), where slant is the tangent of

the latitude angle and tilt is the longitude angle. It is easy

to see that

-1 (  1 

V1 + p2 + q2)

= tan-1 (2)

The parameterization of the local surface normal that

uses the partial derivatives p = az/ax,q = az/ay, gives rise

to the concept of gradient space (see, eg, Shafer and co-

workers, 1983). The parameterization has the disadvan-

tage that the partial derivatives can become infinite at

occluding boundaries, ie, at places where the surface turns

away from the viewer; a similar problem arises with the

slant-tilt representation. Ikeuchi and Horn (1981) there-

fore used a different parameterization (f,g) of surface ori-

entation, which they called stereographic space. f and g

are related top and q by

2p(q)[ + p2 + q2 — 1 
f(g) = p2 q2

Using the Gaussian sphere formalism, they showed

that gradient space corresponds to projecting the Gaus-

sian sphere from its center onto a plane tangent to 
the

sphere at its north pole, whereas stereographic space 
cor-

responds to projecting from the south pole (see Figs. 6

and 7).



Figure 6. Projection of Gaussian sphere on gradient space. (Re-
produced from Horn (1985).)

Figure 7. Stereographic projection. (Reproduced from Horn

(1985).)

Figure 8. Shaded surface.
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For a clear discussion of different shape representa-
tions, see Horn, (1986).

SHAPE FROM x

Modules that recover surface orientation from various
cues in the image are called shape from x modules. Some
of these modules operate directly on the image, while
others operate on some intermediate representation cre-
ated from the image. Shape from shading falls in the first
category while shape from texture and contour fall in the
second. As regards shape from stereo and shape from mo-
tion, some researchers put them in the first category while
others put them in the second. The recovery problems de-
fined by these modules are usually ill posed, so additional
constraints must be introduced.

Shape from Shading

The recovery of surface orientation from gray level varia-
tions (shape from shading) was first studied by Horn and
his colleagues at MIT. The analysis was done under or-
thography. Figure 8 shows an image that contains shad-
ing. Humans can easily perceive, at least qualitatively,
the shape of the imaged surface. In this section we de-
scribe methods of recovering surface orientation from
shading, together with other assumptions to be described
later.

In general, the amount of light reflected by a surface
element (the surface radiance) depends on its microstruc-
ture, on its optical properties, and on the angular distribu-
tion and state of polarization of the incident illumination.
For some surfaces, the fraction of incident illumination
(irradiance) reflected in a particular direction depends
only on the surface orientation. The reflectance of such a
surface can be represented by a function f(i,g,e) of the
angles i = incident, g = phase and e = emergent, as they
are defined in Figure 9. For example, in perfect specular
(mirror-like) reflection, the incident angle equals the
emergent angle and the incident, emergent and normal
vectors lie in the same plane; the phase angle is given by
g = i + e. Thus the reflectance function is

Viewer

f(i,e,g) =
1 if i = e and i + e = g
0 otherwise

Figure 9. Geometry of reflection.
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The most widely used model of surface reflectance is

defined by the function ffi,e,g)= pcosi, where p is constant

for a given surface and is called the albedo constant. This

function defines the reflectance of a perfectly diffuse
(Lambertian) surface which appears equally bright from
all viewing directions; the cosine of the incident angle
compensates for the foreshortening of the surface as seen
from the light source.

In orthographic projection, the viewing direction and
hence the phase angle g are constant for all surface ele-
ments. So, for a fixed light source and viewer geometry
and a given surface material, the ratio of radiance to irra-
diance depends only on the surface normal vector. Fur-
thermore, suppose that each surface element receives the
same irradiance. Then the surface radiance, and hence the
image intensity /(x, y), depends only on the surface normal
vector.
When expressed in terms of the surface normal coordi-

nates p = azlax, q = azlay, the reflectance function is
called the reflectance map and is denoted by R(p,q). This

map provides a uniform representation for a given surface
material for a particular light source, surface normal, and
viewer geometry. A comprehensive discussion of reflec-
tance maps for a variety of surface and light source condi-
tions has been given by Horn (1977). A unified approach to
the specification of reflectance maps has been given in
Horn and Sjoberg, (1979).

Under orthographic projection, expressions for cos i,
cose, and cosg can be easily derived from the surface nor-
mal vector (p, q, —1), the light source vector (pa, qa, —1),
and the vector (0, 0, —1) that points in the direction of the
viewer. For a Lambertian reflectance function these ex-
pressions give

R( 
p(1 + p p, + q q,) 

pq) , —  
V(1 + p2 + q2)\/(1 + p + q)

where p is the albedo constant. Under perspective projec-
tion, the expressions are not known exactly, but recent
results indicate that they are similar (Shafer and co-work-
ers, 1983).

Using fixed light sources and fixed reflectance charac-
teristics, the reflectance map associates a brightness
value with each surface orientation. Figure 10 shows iso-

.5
.6

Figure 10. Isobrightness contours for a Lambertian surface

when the light source is near the observer.

Figure 11. Isobrightness contours for a Lambertian surface

when the light source is removed from the observer. (Reproduced

from Horn (1977).)

brightness contours for the case of a Lambertian surface
and a single light source near the viewer. Figure 11 shows

the reflectance map for the same surface and a light

source farther away from the viewer. Reflectance maps for

non-Lambertian surfaces (constructed in a similar way)

can be found in Horn, (1986).
The image irradiance equation I(x,y)= R(p,q)is a non-

linear first order partial differential equation. Horn

(1975) applied the characteristic strip method for solving

partial differential equations to reformulate this equation

as a set of ordinary differential equations. This method

computes the solution surface z = g(x,y) by finding a fam-

ily of space curves whose local tangents all lie in the tan-

gent plane of the solution surface. Such a curve can be

specified by a one-parameter family of points (x(s), y(s),
z(s)), where s is the distance along the curve.

Differentiating with respect to s gives

Or

dx dy dz
p + q — = 0

(p,q,-1) • (—
dx —

dy 
—
d,z
) = 0

ds' ds' ds '

ie, the vector (thtlds, dylds, dzlds) lies in the tangent

plane of the solution surface. Trivially, the vector (Rp,Rq,

pRp + qRq) also lies in that plane. From this observation,

we conclude that

dx
cia 
= Rp

dy
—d; = Rq

dz
(Ts = pRp + qRq

(4.1)

(4.2)

(4.3)

where the subscripts denote partial differentiation.
Differentiating the image irradiance equation with re-

spect to x gives I. = Rppa + Rqqa, and since py gxy
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gyx = qx we have Ix = Rppx + Rqpy, and consequently

Similarly,

dp
= —

ds

dq
iY = ds
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(Pia1.c1,41)

Figure 12. Isobrightness contours (x„y,) —> (p„q).
(Reproduced from Brady (1982).)

where

(4.4) Si1 =R _ foz _ foz (gi+ _ go2

j+1 _ g 021

(4.5)

Thus if we know that the image point (xk, yk) corresponds
to a surface patch with orientation (pi, q), we can extend
this solution to other points. Figure 12 shows the iso-
brightness contours passing through (xi, yi) in the image
and (p„ q) in the reflectance map. If we take a step ds
along the characteristic strip from (xi, .11,) to (xi+1,
and correspondingly from (pi, qt) to (pi+i, qi+ 1), then the
five differential equations 4.1-4.5 show that the step in
the image is in direction (Rp, Rq), ie, along the normal to
the isobrightness contour in the reflectance map. In the
same way, the step in the reflectance map is in the direc-
tion normal to the isobrightness contour computed in the
image. Thus, if we know the reflectance map we can com-
pute the surface orientations at a sequence of points along
a characteristic strip starting from a point where the sur-
face orientation is known. Figure 13 shows the results
obtained using this method.

In order to use this method we need an initial point
with known surface orientation. The algorithm also de-
pends on the assumption that the surface is locally convex
at the initial point. At this stage, researchers began to be
concerned about conditions under which the method
works, as well as about uniqueness issues. These ques-
tions were important in subsequent research on recovery
(Barrow and Tenenbaum, 1981a).

The problem is ill-posed so additional constraints will
be needed. A smoothness constraint, along with boundary
conditions, provides a unique solution, as described below.

Bounding or occluding contours provide boundary con-
ditions for the shape from x problem. Ikeuchi and Horn
(1981) used these conditions in conjunction with a smooth-
ness constraint to solve the shape from shading problem.
If I1 is the intensity at point (i,j), and ( f,g) are the stereo-
graphic coordinates of the surface orientation, we look for
a surface ( (i,j) E image that minimizes

e = E E (Sy + Arid,

and

rij = (Iij — R( gu))

The first term in the sum represents departure from
smoothness while the second represents departure from
the constraint defined by the image irradiance equation.
Thus the surface that minimizes e best satisfies the image
irradiance equation and is also as smooth as possible. The
parameter A defines the relative importance of the
smoothness and the irradiance constraint. We minimize e
by differentiating with respect to f gij and setting the
resulting derivatives equal to zero. This gives the follow-

Figure 13. Reconstruction of a face. (Reproduced from Horn
(1985).)



1672 VISUAL RECOVERY

ing recurrence relations as the basis of an iterative algo-

rithm (Ikeuchi and Horn, 1981):

fru = + X(Iij — R(nt), 4')))a±?af

aR4n+1) = ro x(Ijj _ R( 00. kycZ)))
ag

where the superscripts in parentheses denote iterates and
the bars denote local averages. Since the surface orienta-
tion at the occluding boundaries is known, this recurrence
propagates information inwards and in a relaxation style
computes the orientation everywhere. This algorithm
works well for many images, but there is no proof that it
converges. An important aspect of the algorithm is grace-
ful degradation under errors in the placement of the light
source, the surface orientation on the boundary, and the
nature of the surface reflectivity. The algorithm also does
not guarantee integrability of the resulting surface orien-
tation function. Horn and Brooks (1986) attempted to
remedy this deficiency; Frankot and Chellappa (1987) de-
veloped a method of enforcing integrability.

Other authors proposed smoothness constraints de-
rived from the fact that the integral of depth around a
closed path in the image is zero (Brooks, 1979; Strat,
1979). Woodham observed that the shape from shading
problem can be solved uniquely if a global assumption is
made about the shape of the surface, for example that it is
convex, a ruled surface, or a generalized cylinder (1981).

The mathematical properties of the image irradiance
equation were studied by Bruss (1980). She showed that a
continuous image irradiance equation can have discontin-
uous solutions, and that the curvature of a surface cannot
be identified in general from its image. However, Bruss
proved that there is only one solution which is convex, and
that bounding contours can be determined from the image
only when the image irradiance equation is singular, ie,
the reflectance function R and its first-order partial deriv-
atives are continuous, while the intensity function I is
discontinuous in x and/or y. Bruss studied singular image
irradiance equations, called eikonal, of the form p2 + q2 =
l(x,y). If the intensity function /(x,y) vanishes to second
order at the singular point, then there is exactly one posi-
tive locally convex solution in the neighborhood of the
singular point. In consequence, if there is a closed bound-
ing contour, the solution is unique.

Most shape from shading methods require complete
knowledge of the reflectance map. There have been efforts
to reduce the need for such detailed knowledge. Pentland
(1984) extracts information locally, but he needs strong
assumptions (for example, that the surface is locally
spherical). It is possible to recover the position of the light
source from the image under some assumptions
(Pentland, 1982; Lee and Rosenfeld, 1985; Brooks and
Horn, 1985). This is important, since most research on
shape from shading assumes exact knowledge of the light
source position.

Horn, Woodham and Silverman developed a method for
computing shape from shading using multiple (known)
light sources; it is called photometric stereo (Woodham,

1981). Let the intensity at point (x,y) in the image ob-

tained when only the first light source is used be Ii(x,y).

Then the surface orientation at (x,y) is restricted to the

isobrightness contour in the reflectance map correspond-

ing to the brightness value computed from Ii(x,y). Simi-

larly, when the second light source is used, the surface

orientation is restricted to the isobrightness contour de-

fined by I2(x,y). Thus when we use both light sources, one

at a time, the surface orientation is (usually) determined

by the intersection of two isobrightness contours. A third

source provides complete disambiguation. Figure 14 de-

scribes the process.
One can derive useful information about surface shape

without the need for a detailed solution to the image irra-

diance equation. For example, information from isobright-

ness contours might be beneficial (Koenderink and Van

Doom, 1980). The human visual system may obtain global

shape information from shading without constructing a

surface normal map.
Highlights in images of objects with specularly reflect-

ing surfaces provide significant information about the sur-

faces. Coleman and Jain (1982) presented a method using

four-source photometric stereo to identify and correct for

specular reflection components. Blake (1985) assumes

smooth surfaces and single point specularities and de-

velops a computational theory for shape extraction based

on the disparities of the specularities in a pair of images

(specular stereo). Healey and Binford (1987) derived rela-

tionships between the properties of a specular feature in

an image and local properties of the corresponding sur-

face. Wolff (1986, 1987a, 1987b) studied shape extraction

techniques from multiple images using spectral and polar-

ization properties. Research has also begun on non-Lam-

bertian surfaces, on illumination models due to sun and

sky, etc. A comprehensive collection of papers on the topic

is given in (Horn and Brooks, 1989).

Shape from Texture

Texture provides an important source of information

about the orientations of surfaces. Figures 15 and 16 show

the perspective images of some natural surfaces. It seems

that a human can easily perceive the shapes of the sur-

faces. To recover shape from texture, the distorting effects

of the surface orientation and the imaging geometry must

be distinguished from the properties of the texture on
which the distortion acts. This requires that assumptions

be made about the texture. The problem of recovering the

orientation of a planar surface from texture for the case of

planes has been extensively studied; see (Gibson, 1950;

Witkin, 1981; Stevens, 1981; Bajcsy and Lieberman, 1976;

Kender, 1979, 1980; Kanatani, 1984; and Aloimonos,

1986). These studies were based on different assumptions

about the texture and the imaging geometry.
The process of image formation (projection) introduces

distortions into the appearance of the scene. In general,

the distortions can be considered as due to two effects: the

distance effect (objects appear larger when they are closer

to the camera), and the foreshortening effect (the distor-

tion depends on the angle between the surface normal and

the line of sight). The orthographic projection model cap-
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Figure 14. An illustration of photometric stereo. (Reproduced from Brady (1982).)

tures only the foreshortening effect and ignores the dis-
tance effect. Therefore, methods for shape from texture
which use orthographic projection are valid only in a lim-
ited domain. The perspective projection model captures
both effects, but the resulting algorithms involve the solu-
tion of nonlinear equations, and numerical errors limit
their accuracy.

The first to approach the shape from texture problem
was Gibson (1950). Trying to develop a theory of how hu-
mans perceive surface orientation from texture, he sug-

Figure 15. Textured surface (gravel).

(c)
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gested that textures consist of small elements, which we
shall call texels. Of course, these texels may be arranged
very irregularly. We assume, however, that the texels are
uniformly distributed on the scene plane, in the sense that
each unit area on that plane contains approximately the
same number of texels. In the image, however, the texel
density may not be uniform; it may vary (linearly) with
position. The gradient (magnitude and direction of maxi-
mum rate of change) of texture density in the image then
determines the surface orientation; the magnitude de-
pends on the surface slant, and the direction on the tilt.

Bajcsy and Lieberman (1976) used the two-dimensional
Fourier power spectrum to detect the texture gradient.
Their theory assumes that all the texture elements have
the same size.

Witkin (1981) presented an approach that assumed di-
rectional isotropy, rather than positional uniformity. He
assumed that the edges of the texels have uniformly dis-
tributed orientations. In the image, the orientations will
be biased; the magnitude of the bias depends on the sur-
face slant and its direction on the tilt. Based on an ortho-
graphic projection model, he derived maximum likelihood
estimators for the slant and tilt. Witkin's work will be
described in more detail in the next section since it can

Figure 16. Textured surface (ivy).
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also be used to derive surface orientation from contour.
Many natural scenes do not satisfy the isotropy assump-
tion. However, Witkin did not use the uniform density
assumption because it requires detection of the texels. It
will be shown later how this requirement can be elimi-
nated.

Stevens (1980) studied the shape from texture problem
under perspective projection and pointed out that texel
density depends on both scaling (distance-position) and
foreshortening (surface slant). He showed, however, that
their effects may be (partially) separated and that the
foreshortening effect can be used to compute the surface
orientation.

Kender (1979, 1980) considered the computation of
shape from texture as an instance of a general paradigm
that derives surface orientation from each of several possi-
ble image observables. He assumes that texels are ex-
tracted from the image, and that each texel belongs to a
planar surface. He defines a set of normalized texel prop-
erty maps (NTPM) that generalize the reflectance map in
shape from shading. If we assume that the texels all lie in
a plane, and all have the same values of a given property
(eg, diameter), we can derive constraints on the orienta-
tion of the plane.

Recent work (Aloimonos, 1988a) has developed a ro-
bust method of estimating the orientation of a planar sur-
face based on the uniform density assumption. Let image
regions R1 and R2 have areas S1 and S2 and contain k1
and k2 texels, respectively. Under paraperspective projec-
tion, the areas of the corresponding regions on the scene
plane are T1 = Sic2V a + p2 + q21(1 — Aip — B1q)2 and
T2 = S2C2Vi p2 + q21(1 — A2p — B2q)2, respectively,
where (A1, B1) and (A2, B2) are the centroids of Ri, R2 and
the scene plane has equation Z = pX + qY + c. By the
uniform density assumption we have k1/T1 = k2/T2, and
this can be transformed to give

iik2 Si11/3

RTI AT2] A2 Al] P

1ik2 si11/3 k2 SW"'
RICS-72] B2 Bil = (ki S2/ 

—1

This equation represents a line in p-q space; thus compar-
ing the counts of texels in two image regions constrains
(p,q) to lie on a line in gradient space. Ideally, using two
pairs of image regions we can solve for p and q. But be-

Figure 17. Intersection of lines in gradient space.

Figure 18. Ivy-covered wall.

cause of the errors introduced by the sampling process

(image digitization and density fluctuations of the texels

in the regions), this will give unreliable results. To obtain

a robust result we consider many pairs of image regions.

Each pair gives us a line in the gradient space, and the

desired solution is the point whose sum of distances from

all the lines is minimum (Fig. 17).
The above method requires that the texels be identified

so they can be counted. A more realistic approach uses the

total length of edges in an image region; assuming that

these are texel edges, their total length should be propor-

tional to the number of texels. Using this method one can

recover the orientations of planar surfaces in real-world

scenes. For example, Figure 18 shows the image of an ivy-
covered wall with orientation (slant = 20°, tilt = 0°). Fig-
ure 19 shows the extracted edges; this edge image was

input to an algorithm, that using the modified uniform

density assumption, recovered (slant = 24.5°, tilt =
For other examples and a theoretical treatment, see

Aloimonos, (1988a). For other work using a uniform den-

sity approach, see Kanatani and Chou, (1989).
Kanatani (1984) used the second Fourier harmonics of

the number of intersections between texels and parallel

scan lines to find planar surface orientation, under ortho-

graphic projection, under the assumption that the texture

is directionally isotropic; for other uses of the isotroPY
assumption see the section on Shape from Contour. Ohta

and Kanade (1985) separated the image texels into types

and derived surface orientation information from the area

ratios of pairs of texels of the same type.
Research on shape from texture for nonplanar surfaces

has been restricted to idealized domains involving sur-
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Figure 19. Edge image of the wall.



faces covered with uniformly spaced, identical texels such

as the ones in Figure 20. (Kender, 1979, 1980) studied this

problem under orthographic projection. He assumed the

texels to be polygonal or symmetric and recovered orienta-

tion using skewed symmetry constraints (knowing the an-

gle between two axes in space and the angle they make in

the image, constraints between surface orientation and

measurable image parameters can be developed). This re-
quired prior knowledge about the shapes of the texels, as

well as heuristics about the orientations of some of the

texels.
(Ikeuchi, 1984) studied the problem under spherical

projection using texels that are known to be symmetrical;
he developed constraints similar to Kender's, but in a sim-
pler form because of the properties of the spherical projec-
tion.

(Aloimonos and Swain, 1988) proposed an approach
that applies the methods used in shape from shading to
the problem of shape from texture. Assume that all the
texels are approximately planar and have the same area,
and that we use paraperspective projection. Let S1 be the
area of an image texel, Sw the area of the corresponding
scene texel, (A,B) the centroid of the image texel, and d
the range to the scene texel; then (assuming focal
length = 1) it can be shown that

= 
Sw  1 — Ap — Bq 

a V 1 p2 q 2

where (p,q) is the gradient of the plane containing the
scene texel. If we call S1 the "textural intensity," and SW/
d2 the "textural albedo," the above equation is very simi-
lar to the image irradiance equation

=
1 — Ap — Bq 

I co  
N/1 + p2 + q2

where I is the intensity, (p,q) is the gradient of the surface
point whose image has intensity I, co is the albedo at that
point and (A,B,-1) the direction of the light source (Horn,
1977; Ikeuchi and Horn, 1981). We call

, S.  1 — Ap — Bq 
R(P,q) = d2 N/1 + P2 q2

Figure 20. Image of a patterned sphere.
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Figure 21. Textural reflectance map.

the "textural reflectance." If we fix Sw/d2 and the position
(A,B) of the texel on the image, this equation can be
graphed conveniently as a series of contours of constant
textural intensity. Figure 21 illustrates a simple textural
reflectance map. Using R(p,q), we can recover shape in a
region SI in the same way as Ikeuchi and Horn recovered
shape from shading and occluding boundaries, ie, by mini-
mizing an expression of the form

j {(s, - R)2 + —xd2 ,Fx PY y I (2-Lu.

with X a constant weighing the relative importance of the
constraint vs. smoothness. Results obtained using this
method are shown in Figure 22.

Shape from Contour

"Shape from contour" refers to methods of inferring sur-
face orientation from the shapes or orientations of planar
contours (edges or lines) in the image. Perceptually, shape
from contour seems to be significantly more powerful than
shape from texture (Braunstein and Payne, 1969) or shape
from shading (Barrow and Tenenbaum, 1981a).

Figure 22. Reconstructed sphere (from Figure 20).
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If a planar shape possesses skewed symmetry (a linear
transformation of actual symmetry), it is often perceived

as slanted relative to the image plane. Kanade (1981)

showed that there is a one-parameter family of possible
orientations of a skew-symmetric shape that lie on a hy-
perbola in gradient space; he suggested that we perceive
the orientation that has the minimum slant.

Witkin (1981) analyzed the distribution of contour di-
rections in the image on the assumption that they are
isotropically distributed on the scene plane. Let the axes
in the image and in the scene plane be parallel. If the
contour direction in the image is a and the direction at the
corresponding scene point is 0, then

, tan/3
tan(a — T) -

COSO"

where o-o- are the slant and tilt of the scene plane. If
measurements are aggregated from the whole image then
a distribution of contour directions a can be constructed.
One can evaluate the likelihood of this observed distribu-
tion of a, given expected distributions for /3, o-, and T.
Witkin shows that the probability density function of o- is
sin o-/77-2. If we assume that T and s are uniformly distrib-
uted, it can be shown that the probability of (a-,T) given
the set of measurements a, is

-2 sinzo-
2(cos2(ar — r) + sin2(a, — r )cos2o-)

The maximum likelihood estimate for surface orientation
is the value (o-,r) that maximizes this probability. Figure
23 demonstrates the results of this method applied to a
variety of shapes and compares it to human estimated tilt.
This method can also be applied to the problem of shape
from texture under the assumption that contour direc-
tions are isotropically distributed.

Brady and Yuille (1984) proposed a general paradigm
in which the assumed surface orientation is the one that
extremizes some function computed on the scene con-

Shapes

0

Data Predictions

,roes

Figure 23. Results obtained by Witkin's method. (Reproduced
from Witkin (1981).)

tour(s). One possible function is fik2ds, where k is the cur-
vature of the contour; minimization of this function has

been used as a criterion for interpolating across gaps in

plane curves (Horn, 1981). However, this function is not

extremized when we transform an ellipse into a circle,

whereas ellipses are often perceived as slanted circles. A

related function proposed by Barrow and Tenenbaum

(1981b) is fi (dklds)2 cis. However, this function is sensi-
tive to noise, since it involves derivatives. It is also biased

toward slants close to 900.
Brady and Yuille used the function

area
712 =  

(perimeter)2

Given an image contour, we choose the orientation for

which the scene contour maximizes m. When this is done,

an ellipse is interpreted as a slanted circle, a parallelo-

gram as a rotated square, a triangle as a slanted equilat-

eral triangle, and a skewed symmetric figure as symmet-

ric. For other recent research on geometric interpretation

of image contours see (Horaud and Brady, 1987).
When there is specific a priori knowledge about the

scene contour (perimeter, area, etc), unique solutions for
surface orientation can be obtained (Augusteijn and Dyer,

1986; Chou and co-workers, 1987). Another important

topic, which has not been treated here, is the analysis of

line drawings of 3-D surfaces. The interested reader can

consult the papers of Malik (1987), Nalwa (1987) and

Koenderink (1986) as well as their references.

Shape from Stereo and Shape (or Structure) from Motion

Given two images of a scene taken by two cameras whose

relative position and orientation is known, if correspond-

ing points can be found in the two images (ie points which

are the projection of the same scene point), then by the

process of triangulation the depth of the scene points can

be computed. If many pairs of corresponding points that

lie on the same surface can be found, the shape of this

surface can be determined. This process is known as stereo

(from a Greek word meaning solid). If the relative position

and orientation of the cameras is not known, then finding
the shapes of the surfaces in the scene from corresponding

points in the two images is known as the problem of shape

(or structure) from motion. In both cases, research has

concentrated on finding correspondences between points

in the two images (the disparity map for stereo, and the

optic flow or displacement field for motion). In the case of

motion, because of the great importance of this module in

navigation, there has been extensive theoretical develop-

ment. These topics will not be treated here since they are

discussed in detail in separate articles in this encyclope-

dia which deal respectively with stereo vision and visual

motion analysis.

ILL-POSEDNESS AND REGULARIZATION

All the shape from x problems treated above are ill-posed

in the sense of Hadamard (1923). A problem is well-posed

when its solution exists, is unique, and depends continu-



ously on the given data. Ill-posed problems fail to satisfy
one or more of these criteria.

Poggio and his colleagues (Poggio and Koch, 1984; Pog-
gio and Torre, 1984) realized that most recovery problems
are ill-posed and that regularization theory (Tichonov and
Arsenin, 1977; Morozov, 1984) can be used for their solu-
tion. The main approach to "solving" ill-posed problems,
ie, restoring "well-posedness," is to introduce suitable con-
straints that restrict the space of admissible solutions.
The problem of finding s (the scene) from i (the image) is
ill-posed because the image is obtained from the scene by
a noninvertible process, i = Qs. Regularization of this
problem is usually done by finding the s that minimizes
the function 11Qs — i + xiiPs, where I MD and 11 Ms are
norms, P is a functional that usually involves smoothness,
and X is the so-called regularization parameter.

In shape from shading and shape from texture the gra-
dient (p,q) of a surface patch is related to the data at the
image point (x,y) which is the projection of that patch by
an expression of the form

A(x,y)p2 + B(x,y)q2 + C(x,y)pq
+ D(x,y)p + E(x,y)q + F(x,y) 0 (5.1)

where A, B, C, D, E, F are functions of position in the
image and depend on the particular physical parameters
data). Indeed, in shape from shading the relationship is

X(P Ps + q qs + 
l(x,y) =

V1 + p2 + q2 V1 + p2 +

where (p„ qs) is the direction of the light source, X the
albedo, and l(x,y) the image intensity at (x,y). In shape
from texture, similarly, the relationship is

s SW  1 — Ap — BqI= 
d2 V1 p2 + q2

where Sw/d2 is the "textural albedo," and (A ,B) the cen-
troid of the texel. In such shape from x problems the con-
straint can be rewritten in the form L(f,g,x,y) = 0 V(x,y )
on the image plane, where (f,g) is the orientation of the
corresponding 3-D point in stereographic coordinates
whose space is bounded (Horn, 1986).

In general, suppose the surface orientation satisfies an
equation of the form L( f,g,x,y) = 0, where x,y are the
coordinates in the image plane and f,g are the stereo-
graphic coordinates of the normal to the surface patch
whose image is at (x,y). Can regularization theory be used
to solve for ( f,g) everywhere in the image plane, perhaps
with the help of boundary conditions? If this is attempted,
we face the following problem:

The equation L = 0 is nonlinear, but standard regular-
ization deals with linear constraints. The situation
is different if L is convex (Morozov, 1984), but it is
not in the cases of shape from shading or texture.

The surfaces in the scene are not all smooth, and the
scene is certainly not smooth at the boundaries
where one surface occludes another. If we use
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smoothness in our regularization process, we will
obtain solutions that are not correct at discontinui-
ties.

If we had a regularization theory that could handle
discontinuities and nonlinear, nonconvex functions, then
we could apply it to shape from x problems. In the next
section, a general regularization method based on smooth-
ness is presented, and in the section following, regulariza-
tion in the presence of discontinuities is discussed.

A General Discrete Regularization Technique

Use will be made here of widely known techniques in the
area of partial differential equations, which have already
been applied to some computer vision problems (Lee,
1985). Consider the equation L( f,g, x,y) = 0, for (x,y) E D,
where D is a compact region in the x—y plane. The problem
is discretized using an m x m grid and difference opera-
tors instead of differential operators and sums instead of
integrals. It is assumed that the surface normals on the
boundary of D are known. The desired surface is the one
that minimizes an expression of the form

e =E (si; + xi.•) (5.2)

where the sum is taken over all grid points (i,j) that do
not lie on the boundary. Let (tb, gii) be the surface orien-
tation at the grid point (i,j). If (i,j) is not a boundary
point, j+i, and +1 all exist, and we define
the smoothness component of e as

ski = m21[ fi+1,i — fi;12 +{n+ —t]2 
[gi+ j+i gi fp}

It is assumed here for simplicity that D is square; if it has
a different shape a different discrete approximation to2 A 2+ y + g. + gy can be used.) Similarly, we define

[L(fii,gij,i,j)]2

The minimization of e is subject to boundary conditions,
since Iii and gt, are known if (i,j) is on the boundary.

e is defined on a compact subset K of R2, and it is con-
tinuous in each f, and gjj. Therefore, there exists a solu-
tion to the minimization problem. Furthermore, this solu-
tion is a solution of the system

ae _ ae _ 0
afi; agi; — •

Equations 5.3 yield

= fri — Xm2[L( (fii,gij,i,j)

=gjj — 71: Xm2[L( fij,gii,i,j)1

where

(5.3)

(5.4)

 and similarly for gii
4
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This can be written compactly as

= — Xm20(e) (5.5)

where

e = • • • ,fi,k, • • • ,fk,k, gi,i, • • • ,gkkg

(1) [• • • , {.1,( fii g 
ij jj)} 

af , • • • ,

IL( fii ag

and

= 
(A
O 

Ao 
)where A =

and B =

B —I
—I B —I

• • —I BI
—I BI

'4—i
—1 4—i

• • • •
• • —1 4 1

—1 4/

E Rnxn

E R.

Equation 5.5 is a necessary condition on the solution that
minimizes 5.2.

It can be proven that equation 5.5 has a unique solu-
tion for appropriately chosen A (Aloimonos, 1988b). Fur-
thermore, the sequence ea) defined by

6(.+1) = _x,n2(D-14)( (.)), a = 0, 1, 2, • • •

converges to this unique solution. There thus exists a
unique surface minimizing e, which is also the unique
solution of equation 5.5, and the above described algo-
rithm converges to that solution. A similar result holds
even if we do not know (f,g) on the boundary, as long as
we assume that "natural" smoothness conditions hold on
the boundary.

Discontinuous Regularization

All the shape from x problems come under the regulariza-
tion paradigm and so regularization is very appealing as a
theory for all these modules. However, discontinuities ap-
pear in the world (and it is the discontinuities that make
it interesting), so a theory of regularization effective in
the presence of discontinuities is much needed. Most exist-
ing theories of discontinuous regularization explicitly
search for boundary points: one segments the image into
homogeneous regions and performs ordinary regulariza-
tion in each region. This can also be done iteratively
(Schunck (1984), for example, iteratively combines motion
estimation and segmentation). Grimson and Pavlidis
(1985) suggest not smoothing over regions where local
differences of nearby points are larger than the statistics
of the data as a whole would lead one to expect. Lee and
Pavlidis (1987) and Lee (1986) use post-validation to find
points which are likely to be boundary points. But some-
times we need to regularize over heterogeneous regions in

order to take advantage of texture information or in order
to attain robustness in the presence of noise by regulariz-

ing over a large enough region.
There does not exist a rigorous theory of segmentation.

A rigorous discontinuous regularization theory might be
the first step in the development of such a theory. A regu-
larization paradigm due to Geman and Geman (1984) uses

Bayesian statistical theory to obtaln a non-convex varia-

tional measure that must be minimized. The variational
condition is based on a probability distribution of a point

being a boundary point. The work of Geman and Geman
has been extended by Marroquin (1984, 1986) and by
Mumford and Shah (1985). Geman's and Marroquin's

work deals with a lattice of points whereas Mumford's

work deals with a continuous domain. Geman's work

deals with functions whose range is finite and small (for

example, binary variables), while Marroquin's and Mum-
ford's work deals with functions with a continuous range

such as the real numbers. All these papers employ optimi-

zation procedures such as simulated annealing that seem

to work reasonably well but cannot be guaranteed not to

be fooled by multiple local minima. Blake and Zisserman
(1987) use "graduated non-convexity" to minimize a series
of variational measures which gradually approach the de-
sired measure. Such continuation methods are certain to

converge, but they are slow (Allgower and Georg, 1980;
Chow and co-workers, 1978).

Standard regularization methods also smooth exces-
sively over regions where the change is steep, but is not

large enough to indicate a discontinuity. This suggests
that A, which weighs the importance of smoothing versus

consistency with the data, should vary with position. Ter-
zopoulos (1984) has pursued this idea; his smoothness
term is a weighted sum of squares of first- and second-
order derivatives, where the weights vary with position.
However, he primarily investigated the case where the
weights are constant except at a small fraction of points

where they are zero. Nagel's "oriented smoothness" para-
digm (Nagel and Enkelmann, 1986) is another kind of
discontinuous regularization.

Shulman and Aloimonos (1988b) developed a method of

regularization that does not smooth over discontinuities
and does not make a rigid binary distinction between dis-
continuities and nondiscontinuities. It uses quadratic

variational conditions, which yield linear equations.
The basic insight of this method is that we can expect

the errors at nearby points to be correlated. Thus aliax

and 3L/3y should be small. In addition, a quadratic mea-
sure of smoothness such as f fx)2 (f)2 + (gx)2 

(gy )21

excessively penalizes large changes in orientation, and so

produces large jumps in L in the vicinity of discontinui-
ties. These jumps can be controlled by requiring smallness

of the derivatives of L, and also by using a more general

measure of smoothness.
The general minimization problem that our method

solves has the form

2

minimize [E (ai+ axiayi )] dxdy

+ IE bijoi+ifiaxiay:02 + E cuoi+igtaxiayi)2.
0 0



where the coefficients are parameters. Note that we im-
pose a requirement of smallness on the derivatives of all
orders. Of course, most of the coefficients can be 0. In fact,
because of the noisiness of high-order derivative esti-
mates, the coefficients should rapidly approach 0 as

--> co.
A problem with this approach is that computing the

derivatives of L requires calculating derivatives of the
data, and this calculation is numerically unstable (Poggio
and co-workers 1985). As Poggio suggested in connection
with the problem of edge detection, in order to differenti-
ate numerically regularization is used. It is unnecessary
to actually compute the derivatives; all one needs to know
is that they can be approximated by linear functionals of
L. Thus, the first integral in our condition is approximated
by an expression of the form (AL)2, where A is a matrix.
Similarly, the second and third integrals are approxi-
mated by a polynomial that is quadratic in the f„ and
We thus obtain Euler-Lagrange equations of the form

aA(L) 
A(L) = cDga f

A(L)
aA(L) 

= 026

Here A(L) is a sum of the form EauAii(L) where A 3(L) is
an approximation to ao axiay . Thus, finally the follow-
ing is obtained:

E 4A ii(L)aAii(L)/ a f = (Die

E 4Aii(L)aAii(L)/8g = crig

A (L)aAii(L)1 a n.
Write ou(e) for the known function (Aui(L)aAi(L)/VP
then

E 40,,(6) =

More generally, the 4 could be matrices rather than con-
stants (the constraints that the derivatives of L be small
could be relaxed at certain points). Haw = land a, = 0 for
i,j > 0 our equations become

LaL/af =

LaDag =

which is the usual (nondiscontinuous) regularization con-
dition. Rewrite 144),(6) = icK as

(E aFjoii()) + = —000(0 (5.17)
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where du, = land d, = a, otherwise. The first term in 5.17
represents the discontinuous correction to the usual regu-
larization condition and we want this term to be as small
as possible. To make it easier to work with, rewrite 5.17 in
the form

re, = —000(e) (5.18)

where E is the vector btioo(f ),4Joi(6),cbio(6), • • • , Onm(6)1T
and F is a matrix. We choose r to be the least squares
solution of 5.20. Computing this solution involves calcu-
lating the Moore-Penrose inverse of E (Penrose, 1955;
Ben-Israel and Greville, 1974). Since this is a very com-
plex calculation, it can instead be calculated as the best
solution in a restricted subspace. Note that F hides the
regularization parameter A. This parameter might need to
vary from place to place. (We might require a different
amount of smoothing near the boundary than near the
center of the visual field.) Our smoothing condition might
involve a combination of derivatives of different orders. r
weights the relative importance of the various derivatives
of L being small. This too can vary with position.

If r can be found (through adaptive estimation from
examples, for instance), the resulting discontinuous regu-
larization technique can be applied to solve various recov-
ery problems. Since the equations involved may be
nonlinear, reliable methods of solution still need to be
developed. For some preliminary work on recovery tasks
using discontinuous regularization see (Aloimonos and
Shulman, 1989a; Hurlbert and Poggio, 1987).

MULTIPLE CUES

The methods described in the section on Shape from x are
summarized in Figure 24. In each of these methods, shape
is computed from a single cue; cues are not combined.
Deriving shape from one cue leads to ill-posed problems,
with all their associated difficulties. The situation is much
improved when we try to recover shape from two or more
cues. Indeed, shape can be computed uniquely from many
pairs of cues. This is shown in Figure 25. Various exam-
ples of this can be found in Aloimonos (1986). Recent re-
search along these lines includes the work of Horn (1986)
on combining shading with contour, of various research-
ers (Richards, 1986; Huang and Blostein, 1985) on com-
bining stereo and motion, of Grimson (1984) on combining
shading and stereo, and of Milenkovic and Kanade (1985)
on trinocular stereo. In this section a few examples of the
use of multiple cues in shape recovery are given.

To analyze shape from shading and retinal motion, as-
sume that the Lambertian surface of an object moves and
the optic flow (displacement) field (Au(x,y), Av(x,y)) is

Figure 24. Previous status of shape from x research.
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3-D motion

Retinal motion

Light source

STEREO

URE

Figure 25. Combining cues.

available everywhere in the image. Then the following
constraints hold (Aloimonos and Basu, 1987):

1. The image irradiance equation.
2. A constraint of the form

A1p2 + Bo' + Cipq + D1 = 0,

where the coefficients are functions of the displace-
ments.

3. A constraint due to image irradiance, light source
and motion, which is of the form

A2p2 + B2q2 + C2pq + D2p + E2q + F2 = 0

Shape-motion
constrai

Figure 26. Intersection of constraints.

Here the coefficients are a function of the displacements,
light source position and intensities. Constraints (b) and
(c) are constructed on the basis of geometric and photo-
metric invariants. Figure 26 shows a schematic descrip-
tion of the constraints and the solution as the point of
intersection of all the constraints.

To analyze shape from contour in multiple images, let
C be a contour on the scene plane with equation Z = pX +
qY + c, and let C1 and C,. be the projections of C on the two
images, using perspective projection (Fig. 27).

The difference between the areas or perimeters of C1
and Cr depends on the orientation of the scene plane. If SL,
and SR are the areas of C1 and Cr, it can be shown that

= 1 — ALP — BIN 
SR 1 — ARP — BRq'

(6.1)

where (AL, EL), (AR, BR) are the centers of mass of the left
and right image contours respectively and the focal length
is unity (Aloimonos and Swain, 1988). This gives a linear
equation in p,q. If there are more than two images (whose
centers are not collinear), we can get additional linear
equations and (over)determine (p,q). Alternatively, a con-
straint involving perimeter can be used. For any contour
C, on the image plane, the corresponding scene plane con-
tour has perimeter

VE dx2 + 2F dx dy + G dy2 (6.2)

where E, F, G are the first fundamental coefficients of the
mapping from the image to the scene (Lipschutz, 1969).
Expression 6.2 can be used to compute the length of the
scene contour C from either of its projections C1 and Cr.
Since these lengths should be the same, equating their
difference to zero yields a nonlinear constraint on the pa-
rameters of the scene plane. This, together with equation

Lighting constraint—.

Image irradiance
constraint

ImacgoenitradistrainanAA irradiance



Figure 27. Contours of two images.

Solution

Solution (non-visible)

Length constraint

Area-ratio
constraint

Figure 28. Constraints on the Gaussian sphere.

Figure 29. Trihedral vertex.

6.1, gives a finite number of solutions for the orientation
(p,q) of the scene plane.

If the equation 6.1 is transformed to the coordinates of
the Gaussian sphere, it represents a great circle G. We
need to find which point of that great circle satisfies the
perimeter constraint. Figure 28 shows the area and pe-
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rimeter constraints drawn on the Gaussian sphere. It was
recently shown (Aloimonos and Herve) that there can be
at most two solutions; and criteria for checking the multi-
plicity of the solutions have been developed.

Finally, the recovery of shape from shading and con-
tour is illustrated with a simple example from the domain
of polyhedra. Consider a trihedral vertex (three planes A,
B, C intersecting at a point). Given its orthographic pro-
jection (Fig. 29) one would like to recover the orientations
of the planes. If there is no other information, the only
thing that can be concluded is that the gradients (pA,qA),
(PB, qe) and (pc, qc) of A, B, and C form a triangle in
gradient space, but the shape of this triangle is unknown
(Shafer and co-workers, 1983). If there is also shading
information (Horn, 1977), and it is assumed that the
planes all have the same albedo, a finite number of solu-
tions for the orientatiu_is can be found, using the addi-
tional constraints imposed by the image irradiance equa-
tion. If it is assumed that the dihedral angles between the
planes are known, again only a finite number of solutions
is possible. To find these solutions, a triangle must be
found in gradient space whose vertices lie on the conic
sections that result from the shading or dihedral con-
straints.

ACTIVE VISION

In this section the active vision paradigm is introduced, in
which the observer controls the geometric parameters of
the sensor—for example, its position, its orientation, its
focal length, etc. This allows the observer to manipulate
the constraints on the image(s) and thus provide addi-
tional information for solving recovery problems. This
paradigm is partly motivated by human and animal per-
ception, which are active. Perceptual activity is explor-
atory and searching. Humans do not merely see, they ac-
tively look (Bajcsy, 1985). When the activity is a known
motion of the observer it has been shown (Aloimonos and
co-workers, 1988) that all the shape from x problems be-
come well-conditioned and unique solutions become possi-
ble. Some of these results are summarized in Table 1.

Table 1. Recovery Problems Are Easier to Solve for an Active Observer.

Problem Passive Observer Activer Observer

Shape from shading

Shape from contour

Shape from texture

Structure from motion

Ill-posed problem. Needs to be
regularized. Even then,
unique solution is not guar-
anteed because of nonlinear-
ity.

Ill-posed problem. Has not been
regularized up to now in the
Tichonov sense. Solvable
under restrictive assump-
tions.

Ill-posed problem. Needs some
assumption about the tex-
ture.

Well-posed but unstable. Non-
linear constraints.

Well-posed and stable. Linear
equation; unique solution.

Well-posed problem. Unique
solution for either monocular
or binocular observer.

Well-posed problem. No as-
sumption required.

Well posed and stable. Qua-
dratic constraints, simple
solution methods, stability.
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The basis for the active vision approach lies in being
able to work in an enriched sensory domain with a par-
tially known parametrization. As the sensor parameters
are varied, the image undergoes local transformations
that provide powerful constraints for computing the un-
known scene parameters. Note that we do not work with a
small set of discrete observations, but with continuous
trajectories in the stimulus space. These trajectories are
smooth, since the sensor transformations are smooth.
Thus it is unnecessary to rely on the smoothness of the
observed scene. Complications usually associated with
multiview approaches to vision—for instance, the corre-
spondence problem—are also avoided.

As an example, consider the active perception of shape
from linear image features (texture) (Ito and Aloimonos,
1987). Suppose that a moving camera is looking at a pla-
nar surface. To simplify our analysis it is assumed, equiv-
alently, that the surface is moving. Let X = (X,Y,Z) E S
be imaged onto x = (x,y) in the image plane R. Let the
motion consist of a translation T = (Ti ,T2,T3) and a rota-
tion Si = (oh ,c02,0)3), so that V(X) = T + fI x X, where
V(X) is the velocity of X. Then

Let the image intensity be I(x,y). A linear feature

(Amari, 1987) is a linear functional,

f= f f 1(x,y)m(x,y)dx dy,

where m is called a measuring function.
The image velocity satisfies the following equation

(Horn, 1986):

Ixu + Iyv + It = 0,

where (u,v) is the optic flow at a point (x,y) and Ix, I,, It are

the spatiotemporal derivatives of the image intensity

function at the point (x,y). This equation can be written as

—x • V/.

The time derivative of a linear feature will be

t=fjPali nzdxdy=-ffm(i• VI)dx dy

6 6 „

V(X) = E rkVk(X), where (7.1) = — rk j j m(uklx + vkly)dx dy
k=1

= T1, Vi(X) = (10 0)T; r4 = tot, 174(X) = (0 —Z Y)T

r2 = T2, Vi(X) = (0 1 0)T; r6 = w2, V6(X) = (Z 0 —X)T

r3 — T 3 , V3(X) — (0 0 1)T; r6 — W3, V 6(X) — (—Y X 0)T

It can be easily proved that the image velocity (u,v) at x =
(x,y) is

6 6
Uk(*)

= E rkuk(x) = E
where uk depends on the orientation of S.

For perspective projection the parameters in equation
7.1 are r1 = TjIc, r2 = T2/c, r3 = T3/c, r4 = col, rs = (02,
r6 = cos, u1(x) = (1 — px — qy, 0), u2(x) = (0, 1 — px — qy),
u3(a) = (—x(1 — px — qy), —y(1 — px — qy)), u4(x) = (xY,
y2 + 1), lids) = (—(x2 + 1), —xy) and u6(x) = (y x), where
the motion is translation T = (T1,T2,T3) and rotation 11 =

(wi ,(02,(03) and the scene plane has equation Z = pX +
qY + c with respect to the camera coordinate system (Fig.
30).

z=pX+qY+C

Figure 30. Imaging system and a textured surface.

6

=E rkhk, with hk = — f f m(uk/x + vkIy)dx dy
k=1

This equation relates linear features to shape and mo-

tion parameters. Furthermore, it is linear. If it is applied

to a set of linear features, a set of linear equations in those

parameters is obtained. So, a simple linear least-squares

method is sufficient for the recovery of the parameters. No

local correspondence has been used. The only computed

quantities were the time derivatives of linear features,

which involve the whole image.
It is also important to note that in this approach, the

spatial derivatives of the intensity function do not need to

be computed. Integration by parts avoids differentiation of

the intensity function; only the derivative of the measur-

ing function has to be computed. This avoids differentiat-

ing the image intensity, which is discrete; numerical dif-

ferentiation is an ill-posed problem. More importantly,

the same approach can be followed if the image is discon-

tinuous—for example, a dot pattern or a line pattern (eg

edges).
Now the algorithm can be summarized for the active

detection of shape from two images I(x,y,t) and I(x,y,t +
dt) taken by a camera with known motion.

1. Choose a set of differentiable measuring functions

i = 1,. . . , n. Examples might be
0 j 5- k, or Fourier features such as cos(ix + jy),
0 j k.

2. Compute the linear features fi = ffl(x,y)p.,(x,y)dx
dy, where the integration is over any desired area of
interest.

3. Estimate the time derivatives of the ft from the im-

ages I(x,y,t) and I(x,y,t + dt).



4. Compute hk = — ff mi(uk/x + vkly)thcdy for each f.

5. Let f be the vector of feature values and H the ma-
trix of hs. From equation f = Hr solve for p,q (and/
or) c using a least squares method.

This method has been used (Aloimonos, 1989) to suc-
cessfully recover the orientation of planar surfaces con-
taining complex patterns, viewed by a moving camera.

This method involves solving a linear 3 x 3 system in
the unknowns p,q, and c (the parameters of the plane). Let
the system be A I = 6, where = (p q c)T, A = (au) is a 3 x
3 matrix, and 6 is a 1 x 3 vector whose components are
expressions involving spatiotemporal derivatives. It is
possible that the system may be unstable. Since there is a
discretization error as well as a slight error in the estima-
tion of the known motion, there is some uncertainty in the
elements of the matrix A and the vector c. Let the true
system be A*I* = c*, and let

ari E [ a sii,aij + eii]

If there exist values of the coefficients au in these inter-
vals of uncertainty for which the determinant of the sys-
tem becomes zero, then the system is very badly condi-
tioned and its solution will be unreliable. It can be shown
(Kuperman, 1971) that the necessary and sufficient condi-
tion for the system not to be critically ill-conditioned is

n n

i=1 j=1

where (b3) = 21-1. This expression can be used to test the
robustness of the algorithm. Note that this represents a
worst case analysis.

RESEARCH GOALS

Research on shape from x has been extensively pursued
and has accomplished a great deal. The study of modules
that may correspond to specific abilities of the human vi-
sual system, along with the formulation and exploitation
of photometric and geometric relations, has contributed to
the foundations of vision as a scientific field. Rigorous
theories have been developed for deriving various intrin-
sic scene properties from various image characteristics.
Most of these theories have found no practical applica-
tions because the theories do not result in robust algo-
rithms. Any proposed theory explaining visual abilities
must be backed up with a thorough theoretical stability
analysis. A theory cannot be used for practical applica-
tions or to explain human visual capabilities if it is not
robust. The algorithmic level of the Marr paradigm must
be accompanied with careful theoretical error analyses. Of
course, such analysis is hard. This issue is a topic of re-
search that should be pursued; a few researchers have
recently made such attempts (Aloimonos, 1986; Horn and
Weldon, 1987; Adiv, 1985; Huang and Blostein, 1987).

Techniques have been developed in numerical analysis
(Kuperman, 1971; Neumaier, 1984; Gay, 1981, 1982;
Moore and Kioustelidis, 1980; Demmel, 1987) that may be
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used to study the sensitivity of vision algorithms. One
could go further and do a probabilistic analysis, given as-
sumptions about the probability distributions of the input
measurements. The assumptions could be tested using
statistical techniques.

Most of the shape from x modules have been studied in
isolation: (shape from x and/or y). Unification of existing
approaches to a given module is also of interest; some
research has been done in this direction (Moerdler and
Kender, 1987). But a formal theory is needed of how to
combine information from different sources, especially,
contradictory information. Discontinuous regularization
and Markov random field methods are useful tools for this
purpose (Marroquin and co-workers, 1985; Gamble and
Poggio, 1987; Poggio and co-workers, 1987; Aloimonos
and Shulman, 1989b).

Work on active vision will lead to further research on
exploratory and feedback vision. Exploratory vision in-
volves determining the activity that yields the most stable
algorithm for the task at hand. Feedback vision deals with
how information gathered from the environment can be
used to guide future activities.

NEW DIRECTIONS

This article has dealt primarily with computer vision as a
general recovery problem. Over the past 15 years many
elegant mathematical theories describing various recov-
ery modules have been formulated. Unfortunately, very
few vision systems perform well in real-world environ-
ments. There seem to be several reasons for this.
One reason is that extracting useful visual information

from images seems to involve a very large amount of com-
putation. The visual cortexes of animals contain millions
of neurons, which perform computations that require very
large numbers of computer operations to simulate.
A second reason is the belief (Nelson, 1988) that practi-

cal results will eventually flow from a successful theory
rather than vice versa. This may have more to do with the
scarcity of practical systems than with philosophical con-
viction; historically, empirical engineering applications or
unexplained observations have preceded theoretical de-
velopments at least as frequently as the reverse. If ma-
chine vision systems suddenly appeared that operated
robustly in real-world domains, it is quite likely
that theories explaining their commonality would soon
follow.
A third reason is that the generally accepted goals for

vision systems may be misplaced, or at least over-ambi-
tious. The two commonly held touchstones for practical
vision systems, recognition and navigation, are high-level
objectives. If both were achieved, computer vision systems
would have many of the capabilities of the human visual
system. Given the lack of success in developing general
systems that realize either of these goals in a robust man-
ner, it would appear reasonable to consider simpler prob-
lems. Many researchers have gone in this direction by
working on specific industrial applications. However, this
work does not enhance our understanding of vision in gen-
eral.
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A more fruitful approach is to address specific classes of
vision tasks. For example, the shape from x theories can

be applied to obstacle avoidance, but we can also work on

obstacle avoidance as a problem in its own right, develop a

computational theory for it, design algorithms, prove that

they are robust, and implement them. Nelson and
Aloimonos (1987) is an example of this approach.
Aloimonos and Shulman (1989b) describe this approach as
working bottom-up in the Marr paradigm to find general
solutions to specific problems.

If we could recover the scene we would be able to per-
form many tasks, but it is not always necessary to do
complete recovery. What is vision for? (Ballard, 1989). Vi-
sion is needed in order to accomplish tasks that are essen-
tial for our survival: recognize mates, friends, enemies,
and food, avoid danger, and so on. To carry out these
tasks, it may not be necessary to recover the entire scene
and all its properties. When visual abilities are studied,
their purposes and their uses should be kept in mind.

When vision is studied from a purposive, utilitarian (Ra-
machandran, 1989), or animate (Ballard, 1989) viewpoint,

the problems that formulated are generally simpler, since

they are relevant to specific tasks, and as a result they
can often be solved by qualitative, robust techniques

(Aloimonos, 1990; Zucker, 1988).
Many neuroscientists believe that the visual capabili-

ties of animals developed (evolved) because of specific

needs. Some of these abilities were based on common prin-

ciples, but they may have developed at different times and
may be implemented in separate hardware. The parts of

the brain devoted to vision seem to implement indepen-
dent processes (which of course communicate) that are

devoted to the solution of specific visual tasks.
Research on recovery can continue, to try to under-

stand why existing approaches are unstable, and try to

develop provably optimal methods. A more radical idea

would be to reconsider the need for the recovery paradigm.
Rather, we should ask what tasks could be performed if
there were adequate recovery modules. After these tasks

have been identified, we can try to solve them directly,
and not treat them as applications of a general recovery
process. For example, to avoid obstacles it is necessary to
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Figure 31. Research trends in visual recovery.



Table 2. Reconstructionist vs Purposive Vision.

Reconstructionist Vision Purposive Vision

Reconstruct properties of the
scene from images.

Develop methods of recover-
ing specific properties.

Quantitative methods.
General-purpose: recover the
scene.

Define vision-based tasks.

Develop methods of decompos-
ing tasks into simpler
subtasks.

Qualitative methods.
Directed (purposive).

answer a set of specific questions: Is another object
present? Is it coming closer to me? If so, will it hit me? If
so, how long will it take (relative to my reaction time)? If

problems can be solved directly, the structure from motion
module may no longer be needed. Moreover, because sim-
ple, qualitative questions that have small numbers of pos-
sible answers are being asked, it may be possible to
achieve robust solutions.

In this framework, one need no longer regard vision as
a collection of modules whose purpose is to reconstruct the
scene and its properties and thus provide information for
accomplishing various tasks. Rather, it can be regarded as
a collection of processes which (individually or in groups)
solve particular visual tasks. This means that vision is
being considered not in isolation (as the recovery school of
thought does), but as a part of a system that performs
various tasks.

If we wish to study vision in general, we should study
the tasks that organisms possessing vision can accom-
plish. If these tasks are complicated, we should decompose
them into simpler tasks, and solve the simpler ones. This
will then solve all the subtasks and yield a set of processes
which if appropriately combined can perform the original
task. This viewpoint is summarized, and contrasted with
the reconstructionist viewpoint, in Table 2 (Aloimonos,
1990).
We conclude with Figure 31, which describes the evolu-

tion of research in visual recovery and our view about
future directions.
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