
11

An Experiment in Automatic
Induction

R. J. Popplestone
Department of Machine Intelligence and Perception
University of Edinburgh

INTRODUCTION

The problem discussed in this paper, namely that of finding a function to
satisfy a given argument-value table, is by no means new to computing science,
or to mathematics. Thus, for example, the problem of fitting a curve to a set
of points is a part of numerical analysis. However, I am concerned with finding
a function over a non-metric space, and so my work is closer to that of
Feldman et al. (1969) in what they call, 'grammatical inference' or to the
automaton-synthesizing programs described by Fogel, Owens and Walsh
(1966). •
The idea of putting together attributes with boolean connectives, which is

part of the apparatus available to the induction engines described in this
paper, is to be found in the psychological literature and referred to as
'concept formation', for instance, see Bruner, Goodnow and Austin (1956).

There have been some applications of learning devices. Perhaps the best
known is Samuel's checkers program (Samuel 1967), but Murray and Elcock
(1968) have a system for describing generalized board states in Go-Moku
that employs a much richer language to describe the concepts learnt.

Relevant aspects of the problem are mentioned in McCarthy and Hayes
(1969).

INDUCTION ENGINES

Induction is going from the particular to the general. Denote an induction
engine by E. Here follows a definition of E that is sufficiently formal for my
purpose.
Suppose there are two sets D and R, and let F be a set of functions from

D to R, so that f e F can be regarded as a subset of D x R. Then E is a

203

MECHANIZED REASONING

mapping which takes a finite subset s off onto a function E(s) from D to R
so that the following conditions hold:

1E1 scE(s) that is, E(s) agrees with f on s

1E2 3s1 (s' eDxR & s' f gE(s) & s)

where means 'is significantly greater than'. What 1E2 really says is that
E(s) must agree with foyer a set significantly larger than s and by significant
I mean that a human would prefer to have a function constructed by an
induction engine than to construct and program one himself.
The notation may be informally summarized as follows:
F defines the family of functions over which the induction engine is to

operate.
f is a function to be guessed.
s is a sample off, in the form of an input—output table.
E(s) is a function synthesized from s, — i.e., it is the induction engine's

guess and must satisfy the stated conditions IE1 and 1E2.
This definition is akin to that of the convergence of a sequence of functions

in classical mathematics, but is in difficulties over defining an adequate
metric. In some circumstances, e.g., for perceptrons with F being the set of
linearly separable functions and Feldman's grammar learning programs
(Feldman et al. 1969), a strong condition

1E3 3s' E(s')=f & finite(f)

can be imposed.
However, if we use a human as an induction engine, we would expect him

to satisfy 1E1 and 1E2, but not to satisfy 1E3. That is to say, there would be
functions he could not guess definitions for. .
For the further discussion of induction engines the concept of language is

required. A language L is a pair (T, 1) where Tis a set of sentences and us a
function which takes t e T onto I(t) e F. I is called the interpreter for the
language.

Consider, for example, an Adaline (Widrow 1962). This is a simple linear
threshold device. Suppose there are n inputs. Then T is the set of sequences
of n+ 1 real numbers forming the weights (N W1, W2 • • • Wn+1)• D, the set of

possible inputs, is the Cartesian product n B where B is the set {0, 1} .
Thus a typical member of D would be (d1, d2. . dr). R, the set of outputs, is
B. Let (w1 wn+i) be a member of T, that is to say, a sentence, then

Awl wn+) = Ad if widi+ w2d2+ . . . wrdr> wr+i then 1 else 0

where di . . . c4, are the components of d. An adaline training procedure is then
an induction engine for adalines.
A concept of importance is the power of a language. This is simply the

range of the interpreter. In particular, if /ranges over all computable functions
then the language is said to have full power. Thus if T= all LISP expressions

204

POPPLESTONE

and /. a LISP interpreter then we have a language with full power. On the
other hand, an Adaline does not have full power.

AN INDUCTION PROGRAM

In this section I will describe a program to realize an induction engine. The
domain D is a set of boards, where a board is an n x n array with entries
taken from a set of symbols, { .} u A, where A is a finite set. n is fixed but
arbitrary. "." is called the null symbol. Thus for tic—tac—toe A= {X, O}.
The range R is the set of truth values which we shall take to be (0, 1).
The language L consists of sentences of the predicate calculus formed by

the rules 10-16 below, and interpreted by a special purpose interpreter.
Since the domain is finite, the system is decidable. The sentence formation
rules are as follows:

/0 There is a set P of primitive sentences contained in T. P consists
of sentences such as occ(1, 2, 'X') where occ is a predicate
meaning 'is occupied by', so that the sentence occ(1, 2, 'X')
means 'square 1, 2 is occupied by an X'.

11 t eTt & t' ET
12 t eTt v t' eT

where either (i) t' e T or (ii) for some predicate p, t' is p(ci c) where the
ci are constants one of which occurs in t.

13 teT=iteT
14 .9)(c) e T3x„(x,x e C(c) & .99 (x6)) e T
15 (c) e T\ x,c(x.e C(c) & (x.)) e T

In /4 and 15 (c) means a sentence containing the constant c, and C(c)
means a set containing c. Thus if c is a number then C(c) would be the set
of numbers { 1, 2,. n} n being the size of the board. /4 and 15 provide the
means of generalizing from a statement about individuals to a statement
about a class containing those individuals. x8 is a symbol not occurring in
(c).

Finally

16 (c) e (f(ci c„)) e T

where f is drawn from a set of standard functions. Thus /6 would convert
occ(1, 3, 'X') into occ(1, 1 + 2, 'X').
There are two possible interpretations of /4 and 15. These differ in whether

abstraction is of a constant or an instance of a constant. Thus in one interpre-
tation occ(1, 1, 'X') would only give rise to 3x2 occ(x„, x„, 'X') by abstrac-
tion on 1 using /4, whereas in the other, one would also get 3.x. occ(x., 1, 'X')
and 3x„ occ(1, x„, 'X'). In existing versions of the program, the first interpre-
tation is used.
Two programs have been written which form sentences according to /0 to

/6. They are referred to as the Mark-1 and Mark-2 programs.

205

MECHANIZED REASONING

THE MARK-1 PROGRAM

This is an induction engine which uses rules 10,11(1), /2(1), /3, /4 and 15 as
follows. A set of current base sentences (CBS) is maintained. This is initially
the primitives of /O. Let s be a 'sample' of argument—value pairs (as section 1.)
An algorithm called ORDISCRIM is entered which produces, using rthe
propositional rules /1(i), /2(i), and /3, a sentence t such that sg/(t) where
1 is the interpreter. Thus ORDISCRIM itself satisfies 1E1 (or more exactly

ORDISCRIM o Iwhere 0 means function product).
It will also in some measure satisfy 1E2, because it has a built-in preference

for simple explanations, and so will not specify that particular primitives
need to be true (or false) if they are not needed for 1E1. Thus, from Occam's

Razor, we would expect the sentence formed by ORDISCRIM to work for
some wider class than s.

Notice that ORDISCRIM performs a task equivalent to that of designing a
digital logic circuit from AND, OR, and NOT gates which produces an output
from a set of inputs, where the input—output relationship is tabulated. The
inputs correspond to the primitive sentences of /0, and the input—output
table to the set s.
The sentence resulting from the application of the propositional rules is

then decomposed into all its subsentences, and the generalizing rules /4 and
15 are applied to these, and a new CBS is made from the union of the result

of this application of /4 and 15 and the primitives. ORDISCRIM is then
applied to the new CBS and the process repeated until no new result is
produced by ORDISCRIM.
The above description is of the action of the engine when it is working on

the first sample set. When working on a sequence of examples, the CBS for
the final explanation of one is carried over to the next. This means that it is

possible for the engine to find a sentence s for which 1(s) =f via a sequence of
examples graded in difficulty which could not be found if the engine were

presented with the last example straight off.
An annotated run of the mark-1 program is to be found in Appendix 1.

In this example, the board is 3 x 3 and f, the function to be guessed, is the
property of there being three Xs in a line, either row, column, or diagonal.
The limitations of the Mark-1 program were fairly obvious. Firstly, the

series of examples by which it 'learned' a complex function had to be care-
fully chosen. Thus in the example quoted above, it was necessary to get an
adequate understanding of a horizontal line before trying to express a
vertical line. Also, since the generalization processes, /4 and 15, worked on
the output of ORDISCRIM there was no possibility of redress if ORDISCRIM
seized on features of particular boards which did not generalize correctly.

Thus it was not possible to get correct generalizations if the board contained

other non-null symbols than X. Finally, there is a severe restriction in

expressive power through the inability to introduce predicates other than

occ. To overcome some of these limitations, Mark-2 was written.

206

POPPLESTONE

THE MARK-2 PROGRAM

The program has the flow-diagram shown in the figure.

gather more data

find explanations

EXPERIMENT

In the ̀ gather more data' phase, the program reads—in some more argument—
value pairs to add to the sample. In contrast to the Mark-1 program where all
data is entered in this way, relatively little is entered thus.
In the 'find explanations' box, the Graph Traverser (Doran and Michie

1966, Doran 1968) is used to search for an explanation. This is done as
follows.
Nodes are sentences in T.11 to 15 are used as rules to generate sentences,

and thus form the basis of the ̀develop' function. The primitives are used as
starting nodes. For any node t, the goodness of t is measured by
(1) how well 1(t) agrees with! on s
(2) the complexity of t.
In the present program, selection oft' for rules /1(i) and 12(1) is done by

using the best k nodes to date, for some fixed k. This is not optimal, and better
methods can be devised by considering the algorithm ORDISCRIM described
above.
The Graph Traverser runs until certain limits either of space or of time are

exceeded. The routine EXPERIMENT is then entered.
The EXPERIMENT routine consists in examining the nodelist, as follows.

If the best two nodes t„ and tp are not both explanations, the routine exits.
Otherwise the sentence t=t„ & i tp is formed, and a Beth tree theorem prover
(Popplestone 1967) is entered to find a board position for which t is true.
If there is none (and since the domain is finite this is decidable) then t' &
Ip is formed, and again a board position for which t' is true is searched for.
If, again, there is none, then t. =--- tp and the sentence with the higher score
(the ̀ worse' sentence) is discarded, and the process repeated with the new
nodelist. Otherwise, if a position satisfying t or t' has been found, it is printed
out, and the user is asked what the value off is for it. All nodes are then
re-evaluated with the new sample, and EXPERIMENT is re-entered.

207

MECHANIZED REASONING

The EXPERIMENT routine is important because it enables the machine to
decide between hypotheses in the manner of a scientist thinking of a crucial
experiment.

Acknowledgement

This work was made possible by facilities supplied through a research grant from the

Science Research Council.

REFERENCES

Bruner, J. S., Goodnow, J.J., & Austin, G. A. (1956) A Study of Thinking. New York:
John Wiley & Sons.

Doran, J.E. & Michie, D. (1966) Experiments with the Graph Traverser program.

Proc. R. Soc. (A), 294,235-59.
Doran, J.E. (1968) New developments of the Graph Traverser. Machine Intelligence 2,

pp. 119-35 (eds Dale, E. & Michie, D.). Edinburgh: Oliver and Boyd.

Feldman, J., Gips, J., Horning, J.J., & Reder, S. (1969) Grammatical complexity and

inference. Technical Report No. CS 125, Stanford Artificial Intelligence Project,
Stanford, California.

Fogel, L.J., Owens, A.J. & Walsh, M. J. (1966) Artificial Intelligence through simulated

evolution. New York: John Wiley & Sons.
McCarthy, J. & Hayes, P. (1969) Some philosophical problems from the standpoint of

artificial intelligence. Machine Intelligence 4, pp. 463-502 (eds Meltzer, B. & Michie,

D.). Edinburgh: Edinburgh University Press.
Murray, A. M. & Elcock, E. W. (1968) Automatic description and recognition of board

patterns in Go-Moku. Machine Intelligence 2, pp. 75-88 (eds Michie, D. & Dale, E.).

Edinburgh: Oliver and Boyd.
Popplestone, R.J. (1967) Beth Tree methods in automatic theorem proving. Machine

Intelligence I, pp. 119-35 (eds Collins, N.L. & Michie, D.). Edinburgh: Oliver and

Boyd.
Samuel, A. L. (1967) Some studies in machine learning using the game of checkers - 2 -

recent progress. IBM Journal Research and Dev.,11, 601-17.

Widrow, B. (1962) Generalization and information storage in networks of adaline

neurons. Self-Organizing Systems - 1962, pp. 435-61 (eds Yovitz, Jacobi & Goldstein).

Washington D.C.: Spartan Books.

APPENDIX A ABBREVIATED AND ANNOTATED OUTPUT
The program is here learning to recognize a win at tic-tac-toe.

** 'TYPE BOARD'

: x. .

: • • •

: . . .

** 'I SAY WIN': WRONG

** [ORF]

208

The experimenter types in
first position

The machine guesses, on no
evidence, that this is a winning
position and the experimenter
tells it that it is wrong.

This is the machine's next
explanation which is simply
that win(s) is false for every
state s.

** 'TYPE BOARD'

: X X X

: . . .

** 'I SAY NOT WIN': WRONG

** [ORF [ANDF [EXISTS 9400000A [1 2 3]
ALL 8400000A [1 2 3] LAMBDA SS OCC SS
9400000A 8400000A [QUOTE . x]]]]

** 'TYPE BOARD'

: . . .
: XXX

: . . 0

** 'I SAY WIN' : RIGHT

** 'TYPE BOARD'

: x. .

: x. .

: x. .

** 'I SAY NOT WIN': WRONG

** [ORF [ANDF [ALL 4500000A [1 2 3]
EXISTS 3500000A [1 2 3] LAMBDA SS OCC
SS 4500000A 3500000A [QUOTE . X]]]

[ANDF [ALL 5500000A [1 2 3] EXISTS
2500000A [1 2 3] LAMBDA SS OCC SS
2500000A 5500000A [QUOTE. X]]]]

** 'TYPE BOARD'

: oxo

: . x.

: . X 0

** 'I SAY WIN': RIGHT

** 'TYPE BOARD'

: X. .

: . x.

: . . X

** 'I SAY WIN': RIGHT

P 209

-

POPPLESTONE

This time the machine is
presented with a winning
position and it guesses that it
is not a winning position
(because its current
explanation is that all positions
are not winning positions).

It is again corrected by the
experimenter.

Its next explanation is that for
a win there must be an i such
that for all j, square if is
occupied by an x, that is to
say, one row of the board
must be occupied by xs.

The next example confirms
this hypothesis.

But this one does not.

The next explanation offered
by the machine is ingenious
but wrong, namely that either
there must be an x in every
row or there must be an x in
every column.

MECHANIZED REASONING

** 'TYPE BOARD'

: x. .

: . . X

** 'I SAY NOT WIN': RIGHT

** 'TYPE BOARD'

: x. .

: x. .

: . x. The machine is only

** 't SAY WIN': WRONG disillusioned here,

** [ORF [ANDF [EXISTS 4600000A [1 2 3]

ALL 0600000A [1 2 3] LAMBDA SS OCC SS
4600000A 0600000A [QUOTE . X] 1]

[ANDF [EXISTS 3600000A [1 2 3] ALL
1600000A [1 2 3] LAMBDA SS OCC SS
1600000A 3600000A [QUOTE . X]]] [ANDF

[LAMBDA SS OCC SS 22 [QUOTE .x]]]]

** 'TYPE BOARD'

: . . .

: . x.

: . . X

** SAY WIN': WRONG

** [ORF [ANDF [ALL 2700000A [1 2 3 1
LAMBDA SS OCC SS 2700000A 2700000A

[QUOTE .]]] [ANDF [EXISTS 8700000A

[1 2 3] ALL 4700000A [1 2 3] LAMBDA SS
OCC SS 8700000A 4700000A [QUOTE . X 1]]

[ANDF [EXISTS 7800000A [1 2 3] ALL
5700000A [1 2 3] LAMBDA SS OCC SS
5700000A 7700000A [QUOTE . X]]]]

** 'TYPE BOARD'

: . X•

: x. .

** 'I SAY NOT WIN': WRONG

and now offers the explanation
that there must either exist a
row of xs or a column of xs
or that square 2 2 must be
occupied with an x

which is immediately faulted

Finally, an explanation is produced which says that there is a win if there
are xs in the leading diagonal or there is a row or column occupied by xs.
At this stage the time-sharing system failed.

210

APPENDIX B

** TYPE BOARD

: X X X

: • • •

: • • •

POPPLESTONE

A RUN OF THE MARK 2 PROGRAM

The human types in a board
state.

** IS THIS AN INSTANCE: YES

** DO YOU WANT TO TELL ME MORE: YES

** TYPE BOARD

: x. .

: • • •

: • • •

** IS THIS AN INSTANCE: NO

** DO YOU WANT TO TELL ME MORE: NO

** [21.19 16 SEPT 1969]

** INDDEVEL

ti: OCC (1, 3, QUOTE (X))
TRUECOUN 1TARGCOUN 1INDVALOF 16

-

** INDDEVEL

t2: occ (1, 2, QUOTE (X))
TR1UECOUN 1TARGCOUN 1INDVALOF 16

** INDDEVEL

t3: EXISTS A55000 (1 2 3) occ (A55000,
2, QUOTE (X))
TRUECOUN 1TARGCOUN 1INDVALOF 17

** MAXNJOBS

** CHECK JOBLIST

ti: OCC (1, 3, QUOTE (X)) 16
t2: occ (1, 2, QUOTE (X)) 16
t3: EXISTS A55000 (1 2 3)occ (A55000,
2, QUOTE (X)) 17

t4: ALL A55000 (1 2 3) occ (1, A55000,
QUOTE (X)) 17

t5: EXISTS A45000 (1 2 3) occ (A45000,
3, QUOTE (X)) 17

211

And says it is an instance of
the concept.

The concept (property) to be
guessed is 'there is a row or a
column or a diagonal of xs'.

Then he types in another.

And says it is not an instance.

The program then starts work

Hypothesis t1 — square 1, 3 is
occupied by an x.

Hypothesis t2 — square 1,2 is
occupied by an x.

Hypothesis t3 — there is an x
in column 2.

Space bound exceeded, exit
. from Graph Traverser.

Print best 5 hypotheses.

MECHANIZED REASONING

** EXPERIME
tl : OCC (1, 3, QUOTE (X))
TRUECOUN 1TARGCOUN 1INDVALOF 16

t2: occ (1, 2, QUOTE ())
TRUECOUN 1TARGCOUN 1INDVALOF 16
. . x
• • •

• • •

** IS THIS AN INSTANCE: NO

** EXPERIME
t2: occ (1, 2, QUOTE (X))
TRUECOUN 1TARGCOUN 1INDVALOF 16

t4: ALL A45000 (1 2 3) occ (1, A45000,
QUOTE (X))

TRUECOUN 1TARGCOUN 1INDVALOF 17
. X.
• • •

• • •

** IS THIS AN INSTANCE: NO

** EXPERIME
t4: ALL A55000 (1 2 3) occ (1, A55000,
QUOTE ())

TRUECOUN 1TARGCOUN 1INDVALOF 17

t5: ALL A45000 (1 2 3) occ (1, A45000,
QUOTE (X))

TRUECOUN 1TARGCOUN 1INDVALOF 17

** EXPERIME
t4: ALL A55000 (1 23) occ (1, A55000,
QUOTE ())

TRUECOUN 1TARGCOUN 1INDVALOF 17

t6: ALL A65000 (1 2 3) EXISTS A55000
(1 2 3) occ (A55000, A65000,
QUOTE (X))

TRUECOUN 1TARGCOUN 1INDVALOF 18
. XX
X. .
• • •

212

Experiment. The machine

produces a state for which
a & —IC is true.

The human says it is not an
instance of the concept, thus
contradicting ti.

.t4 says:
'Row 1 is full of xs'.

Machine produces state of
board for which t2 &
is true.

Human says 'not an instance'
so contradicting t2 and also t3.

Experiment cannot find a state
for which t4 &

- or for which t5 & --1t4 and so
concludes t5E---:t4

t6 says 'there is an x in every
column' — so this board is
t6 & —JO

** IS THIS AN INSTANCE: NO

** DO YOU WANT TO TELL ME MORE: NO

POPPLESTONE

Experiment is finished, and
no more boards are given
manually. So start Graph
Traverser.

* [21.23 16 SEPT 1969]

** INDDEVEL
t4: ALL A55000 (1 2 3) occ (1, A55000,
QUOTE (X))

TRUECOUN 1TARGCOUN 1INDVALOF 17

** INDDEVEL
t7: EXISTS A75000 (1 2 3) ALL A55000
(1 2 3) occ (A75000, A55000,
QUOTE ())

,TRUECOUN 1 TARGCOUN 1INDVALOF 18

** MAXNJOBS

** CHECK JOBLIST

ALL A55000 (1 2 3) occ (1, A55000,
QUOTE (X)) 17

EXISTS A75000 (1 2 3) ALL A55000 (1 2 3)
occ (A75000, A55000, QUOTE ()) 18

NOT ((ALL A55000 (1 2 3) occ (1,
A55000, QUOTE (X))) 19

NOT (EXISTS A75000 (1 2 3) ALL A55000
(1 2 3) occ (A75000, A55000,
QUOTE ())) 20

occ (1, 1, QUOTE ()) 21

** EXPERIME
t4: ALL A55000 (1 2 3) occ (1, A55000,
QUOTE (X))

TRUECOUN 1TARGCOUN 1INDVALOF 17

t7: EXISTS A75000 (1 2 3) ALL A55000
(1 2 3) occ (A75000, A55000,
QUOTE ())

TRUECOUN 1TARGCOUN 1INDVALOF 18

. . . t7 &1t4
X x x t7 says 'there is a row of xs'
. . .

** IS THIS AN INSTANCE: YES

** DO YOU WANT TO TELL ME MORE: NO

** [21.25 16 SEPT 1969]

213

MECHANIZED REASONING

** INDDEVEL
EXISTS A75000 (1 2 3) ALL A55000 (1 2 3)
occ (A75000, A55000, QUOTE (x))

TRUECOUN 2TARGCOUN 2INDVALOF 18

** INDDEVEL
NOT (EXISTS A75000 (1 2 3) ALL A55000
(1 2 3) occ (A75000, A55000,
QUOTE (X)))

TRUECOUN 4TARGCOUN OINDVALOF 20

** MAXNJOBS

** CHECK JOBLIST
EXISTS A75000 (1 2 3) ALL A55000 (1 2 3)
occ (A75000, A55000, QUOTE (X)) 18

NOT (EXISTS A75000 (1 2 3) ALL A55000
(1 2 3) occ (A75000, A55000,
QUOTE ())) 20

occ(2, 2, QUOTE(X)) 21 .
NOT (NOT (EXISTS A75000 (1 2 3) ALL
A55000 (1 2 3) occ (A75000, A55000,
QUOTE (x)))) 22

ALL A65000 (1 2 3) EXISTS A55000 (1 2 3)
occ (A55000, A65000, QUOTE (X))
24. 67

** DO YOU WANT TO TELL ME MORE: YES

** TYPE BOARD

** IS THIS AN INSTANCE: YES

** DO YOU WANT TO TELL ME MORE: NO

** [21.28 16 SEPT 1969]

** INDDEVEL
OCC (1, 1, QUOTE (X))
TRUECOUN 3TARGCOUN 2INDVALOF 24. 33

** INDDEVEL
OCC (2, 2, QUOTE (X))
TRUECOUN 1TARGCOUN 1INDVALOF 24. 33

** MAXNJOBS

214

Next the idea of a column is
introduced, but the capability
of the program of analysing
disjunctive concepts is limited.

** CHECK JOBLIST

OCC(1, 1, QUOTE (X)) 24 . 33
occ (2, 2, QUOTE (X)) 24 . 33
EXISTS A75000 (1 2 3) ALL A55000 (1 2 3)
occ (A75000, A55000, QUOTE (X))
24. 67

NOT (OCC (1, 1, QUOTE ())) 27 . 0
NOT (EXISTS A75000 (1 2 3) ALL A55000
(1 2 3) occ (A75000, A55000,
QUOTE ())) 28 .

** DO YOU WANT TO TELL ME MORE: NO

215

POPPLESTONE

The program now revisits
earlier simple-minded pro-
posals which were formerly
not even aired.

