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Dynamic Probability, Computer Chess,

and the Measurement of Knowledge*

I. J. Good

Virginia Polytechnic Institute and State University

Blacksburg, Virginia

Philosophers and • "pseudognosticians" (the artificial intelligentsial) are
coming more and more to recognize that they share common ground and that
each can learn from the other. This has been generally recognized for many years
as far as symbolic logic is concerned, but less so in relation to the foundations of
probability. In this essay I hope to convince the pseudognostician that the
philosophy of probability is relevant to his work. One aspect that I could have
discussed would have been probabilistic causality (Good, 1961/62), in view of
Hans Berliner's forthcoming paper "Inferring causality in tactical analysis", but
my topic here will be mainly dynamic probability.

The close relationship between philosophy and pseudognostics is easily
understood, for philosophers often try to express as clearly as they can how
people make judgments. To parody Wittgenstein, what can be said at all can be
said clearly and it can be programmed
A paradox might seem to arise. Formal systems, such as those used in

mathematics, logic, and computer programming, can lead to deductions outside
the system only when there is an input of assumptions. For example, no
probability can be numerically inferred from the axioms of probability unless
some probabilities are assumed without using the axioms: ex nihilo nihil fit.2
This leads to the main controversies in the foundations of statistics: the contro-
versies of whether intuitive probability3 should be used in statistics and, if so,
whether it should be logical probability (credibility) or subjective (personal). We
who talk about the probabilities of hypotheses, or at least the relative proba-
bilities of pairs of hypotheses (Good, 1950,1975) are obliged to use intuitive
probabilities. It is difficult or impossible to lay down precise rules for specifying
the numerical values of these probabilities, so some of us emphasize the need for
subjectivity, bridled by axioms. At least one of us is convinced, and has
repeatedly emphasized for the last thirty years, that a subjective probability can
usually be judged only to lie in some interval of values, rather than having a

*Reprinted from Rrbush News, with the permission of the editor.
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sharp numerical value (Good, 1950). This approach arose as a combination of

those of Keynes (Keynes, 1921) and of Ramsey (Ramsey, 1931); and Smith's
(Smith, 1961) proof of its validity based on certain desiderata, was analogous to

the work of Savage (Savage, 1954) who used sharp probabilities.
It is unfortunately necessary once again to express this theory of "compara-

tive subjective probability" in a little more detail before describing the notion of
dynamic probability. The theory can be described as a "black box" theory, and
the person using the black box is called "you." The black box is a formal system
that incorporates the axioms of the subject. Its input consists of your collec-
tion of judgments, many of which are of the form that one probability is not less
than another one, and the output consists of similar inequalities better called
"discernments." The collection of input judgments is your initial body of
beliefs, B, but the output can be led back into the input, so that the body of

beliefs grows larger as time elapses. The purpose of the theory is to enlarge the
body of beliefs and to detect inconsistencies in it. It then becomes your

responsibility to resolve the inconsistencies by means of more mature judgment.

The same black box theory can be used when utilities are introduced and it is
then a theory of rationality (Good, 1950,1952).

This theory is not restricted to rationality but is put forward as a model of all
completed scientific theories.

It will already be understood that the black box theory involves a time

element; but, for the sake of simplicity in many applications, the fiction is

adopted (implicitly or explicitly) that an entirely consistent body of beliefs has

already been attained. In fact one of the most popular derivations of the axioms •

of probability is based on the assumption that the body of beliefs, including

judgments of "utilities" as well as probabilities, is consistent.4
One advantage of assuming your body of beliefs to be consistent, in a static

sense, is that it enables you to use conventional mathematical logic, but the

assumption is not entirely realistic. This can be seen very clearly when the

subject matter is mathematics itself. To take a trivial, but very clear example, it

would make sense for betting purposes to regard the probability as 0.1 that the

millionth digit of ir is a 7, yet we know that the "true probability" is either 0 or

1. If the usual axioms of intuitive probability are assumed, together with con-
ventional static logic, it is definitely inconsistent to call the probability 0.1. If

we wish to avoid inconsistency we must change the axioms of probability or of

logic. Instead of assuming the axiom that P(EIH) = 1 when H logically implies E,

we must assume that P(EIH) = 1 when we have seen that H logically implies E. In

other words probabilities can change in the light of calculations or of pure

thought without any change in the empirical data (cf. Good, 1950, p. 49, where the

example of chess was briefly mentioned). In the past I have called such
probabilities "sliding," or "evolving' but I now prefer the expression dynamic
probability.5 It is difficult to see how a subjective probability, whether of a man
or of a machine, can be anything other than a dynamic one. We use dynamic
probability whenever we make judgments about the truth or falsity of mathe-
matical theorems, and competent mathematicians do this frequently, though

140



GOOD

usually only informally. There is a naive view that mathematics is concerned
only with rigorous logic, a view that arises because finished mathematical proofs
are more or less rigorous. But in the process of finding and conjecturing
theorems every real mathematician is guided by his judgments of what is
probably true.6 This must have been known for centuries, and has been much
emphasized and exemplified by Poly.a (Polya, 1941,1954). A good "heuristic" in
problem solving is one that has a reasonable chance of working.7

Once the axioms of probability are changed, there is no genuine incon-
sistency. We don't have to say that P(EIH) has more than one value, for we can
denote its value at time t by Pt(EIH), or we can incorporate a notation for the
body of beliefs Bt if preferred. There is an analogy with the FORTRAN nota-
tion, as in x = x + 3, where the symbol x changes its meaning during the course
of the calculation without any real inconsistency.8

Believing, as I did (and still do), that a machine will ultimately be able to
simulate all the intellectual activities of any man, if the machine is allowed to
have the same mechanical help as the man,9 it used to puzzle me how a machine
could make probability judgments. I realized later that this is no more and no
less puzzling than the same question posed for a man instead of a machine. We
ought to be puzzled by how judgments are made, for when we know how they
are made we don't call them judgments (Good, 1959B).10 If judgments ever
cease then there will be nothing left for philosophers to do. For philosophical
applications of dynamic probability see Appendix A.

Although dynamic probability is implicitly used in most mathematical
research it is even more clearly required in the game of chess.11 For in most
chess positions we cannot come as close to certainty as in mathematics. It could
even be reasonably argued that the sole purpose of analyzing a chess position, in
a game, is for the purpose of improving your estimate of the dynamic proba-
bilities of winning, drawing, or losing. If analysis were free, it would pay you in
expectation to go on analyzing until you were blue in the face, for it is known
that free evidence is always of non-negative expected utility (for example,
(Good, 1967A), but see also (Good, 1974)). But of course analysis is not free, for
it costs effort, time on your chess clock, and possibly facial blueness. In deciding
formally how much analysis to do, these costs will need to be quantified.

In the theory of games, as pioneered mainly by von Neumann (von Neumann,
1944/47), chess is described as a "game of perfect information," meaning that
the rules involve no reference to dice and the like. But in practice most chess
positions cannot be exhaustively analyzed by any human or any machine,
present or future.12 Therefore play must depend on probability even if the
dependence is only implicit. Caissa is a cousin of the Moirai after all.

Against this it can be argued that the early proposals for helping humans and
computers to play chess made use of evaluation functions (for quiescent posi-
tions) and did not rely on probability, dynamic or otherwise. For example, the
beginner is told the value of the pieces, P = 1, B = 3.25, etc. and that central
squares are usually more valuable than the others.' 3 But an evaluation function
can be fruitfully interpreted in probabilistic terms and we now recall a con-
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jectured approximate relationship that has been proposed (Good, 1959B,1967B)
by analogy with the technical definition of weight of evidence.

The weight of evidence, provided by observations E, in favour of one
hypothesis H1, as compared with another one H2, is defined as

1 
0(H1/H21E) _ log pP(E112)

)°g 0(H1 /H2) 
(EH11 

where P denotes probability and 0 denotes odds. In words, the weight of evi-
dence, when added to the intial log-odds, gives the final log-odds. The expression
"weight of evidence," in this sense, was used independently in (Pierce, 1878),
(Good, 1950), and (Minsky and Selfridge, 1961). Weight of evidence has simple
additive and other properties which make it, in my opinion, by far the best
explicatum for corroboration (Good, 1960/68, 1968, 1975). The conjecture is
that ceteris paribus the weight of evidence in favour of White's winning as
compared with losing, in a given position, is roughly proportional to her advan-
tage in material, or more generally to the value of her evaluation function, where
the constant of proportionality will be larger for strong players than for weak
ones. The initial log-odds should be defined in terms of the playing strengths of
the antagonists, and on whether the position is far into the opening, middle-
game, or end-game, etc. Of course this conjecture is susceptible to experimental
verification or refutation or improvement by statistical means, though not easily;
and at the same time the conjecture gives additional meaning to an evaluation
function.14 As an example, if an advantage of a pawn triples your odds of
winning as compared with losing, then an advantage of a bishop should multiply
your odds by about 33.25 = 35.5. This quantitative use of probability is not in
the spirit of Polya's writings, even if interval estimates of the probabilities are
used.

If dynamic probability is to be used with complete seriousness, then it must
be combined with the principle of rationality (see Appendix A). First you
should decide what your utilities are for winning, drawing, and losing, say uw,
up, and uL. More precisely, you do not need all three parameters, but only the
ratio (uw - up)/(up - uL). Then you should aim to make the move, or one of the
moves, that maximize the mathematical expectation of your utility, in other
words you should aim to maxirnze

pwuw + ppup + pLuL (1)

where pw, pp, and pi, are your dynamic probabilities of winning, drawing, or
losing. When estimating (1) you have to allow for the state of the chess clock so
that the "costs of calculation," mentioned in Appendix A, are very much in the
mind of the match chess player.' 5 This is not quite the whole picture because
you might wish to preserve your energy for another game: this accounts for
many "grandmaster draws."

Current chess programs all depend on tree analysis, with backtracking, and
the truncation of the tree at certain positions. As emphasized in (Good, 1967B),
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it will eventually be necessary for programs to handle descriptions of positions16
if Grandmaster status is to be achieved, and the lessons derived from this work
will of course change the world, but we do not treat this difficult matter in
this paper.

For the moment let us suppose that the problem has been solved of choosing
the nodes where the tree is to be truncated. At each such node the probabilities

Pw, PD, and pi, are a special kind of dynamic probability, namely superficial or
surface probabilities, in the sense that they do not depend on an analysis in
depth. The evaluation function used at the end-nodes, which is used for com-
puting these three probabilities, might depend on much deep cogitation and
statistical analysis, but this is not what is meant here by an "analysis in depth."
Then the minimax backtracking procedure can be used; or expectimaxing if you
wish to allow for the deficiencies of your opponent,17 and for your own
deficiencies. In this way you can arrive at values of the dynamic probabilities
pwo, pp°, and pLO corresponding to the positions that would arise after each of
your plausible moves in the current position, 7TO. Of course these probabilities
depend on the truncation rules (pruning or pollarding).

Some programs truncate the analysis tree at a fixed depth but this is very
unsatisfactory because such programs can never carry out a deep combination.
Recognizing this, the earliest writers on chess programming, as well as those who
discussed chess programming intelligently at least ten years earlier,1 8 recognized
that an important criterion for a chess position IT to be regarded as an endpoint
of an analysis tree was quiescence. A quiescent position can be defined as one
where the player with the move is neither threatened with immediate loss, nor
can threaten his opponent with immediate loss. The primary definition of "loss"
here is in material terms, but other criteria should be introduced. For example,
the advance of a passed pawn will often affect the evaluation non-negligibly. We
can try to "materialize" this effect, for example, by regarding the value of a
passed pawn, not easily stopped, as variable. My own proposals are 1% on the
fourth rank, 1% on the fifth rank, 3 on the sixth, 5 on the seventh, and 9 on the
eighth!, but this is somewhat crude.1 9

An informal definition of a turbulent position is a combinative one. For
example, the position: White K at c3, R at c8; Black K at al, R at a4; is
turbulent. But if Black also has a Q at f6, then White's game is hopeless, so the
turbulence of the position does not make it much worth analyzing.

Hence in (Good, 1967B, P. 114) I introduced a term agitation to cover both
turbulence and whether one of pw, pp, and a is close to I. Apart from
considering whether to threaten to take a piece, in some potential future posi-
tion ir, we should consider whether the win of this piece would matter much.
Also, instead of considering one-move threats, it seems better to consider an
analysis of unit cost, which might involve several moves, as, for example, when
checking whether a pawn can be tackled before it touches down in an end-game.
The definition of the agitation A(v) was the expected value of 1U(70) - U(701
where U(7) is the superficial utility of ir and U(rrl$) is the utility of IT were a unit
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of amount of analysis to be done. (U(n1$) is a subjective random variable before

the analysis is done.)
But the depth from the present position no to n is also relevant in the

decision whether to truncate at r. More exactly, the dynamic probability
P(77.11r0) that position IT will be reached from no is more relevant than the depth.

We could even reasonably define the probabilistic depth as proportional to
-log 13(700) and the effective depth of the whole analysis as -E P(rliro)
log P(nino), summed over all endpoints it, as suggested in (Good, 1967B). But
the most natural criterion for whether to treat it as an endpoint in the analysis of
no is obtained by setting a threshold on P(irliro)A(ir). The discussion of agitation
and allied matters is taken somewhat further in (Good, 1967B, pp. 114-115).

As a little exercise on dynamic probability let us consider the law of multipli-
cation of advantage which states that "with best play on both sides we would
expect the rate of increase of advantage to be some increasing function of the
advantage." This might appear to contradict the conjecture that the values of the
pieces are approximately proportional to weights of evidence in favour of
winning rather than losing. For we must have the "Martingale property"

RPtIPO) = Po, where pc, and pt are the probabilities of winning at times 0 and t.
This only sounds paradoxical if we forget the elementary fact that the expecta-
tion of a function is not usually equal to that same function of the expectation.
For example, we could have, for some e >0,

rki'og -,
i
Pt (1 +e)t log Q-

(2)
-pt 1-po

without contradicting the Martingale property, and (2) expresses a possible form
of the law of multiplication of advantage, though it cannot be very accurate.

An idea closely associated with the way that dynamic probabilities can vary is
the following method for trying to improve any given chess program. Let the
program starting in a position Trip, play against itself, say for the next n moves,
and then to quiescence, at say ge . Then the odds of winning from position ire,
or the expected utility, could be used for deciding whether the plan and the
move adopted in position iro turned out well or badly. This information could
be used sometimes to change the decision, for example, to eliminate the move
chosen before revising the analysis of 'no. This is not the same as a tree analysis
alone, starting from ro, because the tree analysis will often not reach the posi-
tion re . Rather, it is a kind of learning by experience. In this procedure n should
not be at all large because non-optimal moves would introduce more noise the
larger n was taken. The better the standard of play the larger n could be taken. If
the program contained random choices, the decision at IT0 could be made to
depend on a collection of sub-games instead of just one. This idea is essentially
what humans use when they claim that some opening line "appears good in
master practice."

To conclude this paper I should like to indicate the relevance of dynamic
probability to the quantification of knowledge, for which Michie proposed a
non-probabilistic measure.20 As he points out, to know that 123 = 1728 can be
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better than having to calculate it, better in the sense that it saves time. His
discussion was non-probabilistic so it could be said to depend, at least implicitly,
on dynamic logic rather than on dynamic probability. In terms of dynamic
probability, we could describe the knowledge that 123 = 1728 as the ascribing of
dynamic probability p = 1 to this mundane fact. If instead p were less than 1,
then the remaining dynamic information available by calculation would be -log p
(Good, 1950, p. 75; Good, 1968, p. 126). This may be compared with Michie's
definition of amount of knowledge, which is based on Hartley's non-
probabilistic measure of information (Hartley, 1928).

Amount of knowledge can be regarded as another quasi-utility of which
weight of evidence and explicativity are examples. A measure of knowledge
should be usable for putting programs in order of merit.

In a tree search, such as in chess, in theorem-proving, and in medical diag-
nosis, one can use entropy, or amount of information, as a quasi-utility for
cutting down on the search (Good, 1970; Good and Card, 1971; Card and Good,
1974) and the test for whether this quasi-utility is sensible is whether its use
agrees reasonably well with that of the principle of rationality, the maximization
of expected utility. Similarly, to judge whether a measure of knowledge is a
useful quasi-utility it should ultimately by compared with the type 2 principle of
rationality (Appendix A). So the question arises what form this principle would
take when applied to computer programs.

Suppose we have a program for evaluating a function f(x) and let's imagine
for the moment that we are going to make one use of the program for calculating
f(x) for some unknown value of x. Suppose that the probability that x will be
the value for which we wish to evaluate the function is p(x) and let's suppose
that when we wish to do this evaluation the utility of the calculation is u(x,)
where X is the proportional accuracy of the result. Suppose further that the cost
of obtaining this proportional accuracy for evaluating f(x), given the program, is
c(x,X). Then the total expected utility of the program, as far as its next use is
concerned, is given by the expression

U = f p(x) max {0, max [u(x,X) - c(x,X)] d

Or

E p(x) max {0, max [u(x,X) - c(x,X)] .
(3)

The notion of dynamic probability (or of rationality of type 2) is implicit in
the utilities mentioned here, because, if the usual axioms of probability are
assumed, the utilities would be zero because the costs of calculation are ignored.
Anything calculable is "certain" in ordinary logic and so conveys no logical
information, only dynamic information.

If the program is to be applied more than once, then formula (3) will apply to
each of its applications unless the program is an adaptive one. By an adaptive
program we could mean simply that the costs of calculation tend to decrease
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when the program is used repeatedly. This will be true for example, in the
adaptive rote learning programs that Donald Michie described in lectures in
Blacksburg in 1974. To allow for adaptability would lead to severe complica-
tions and I suspect that similar complications would arise if Donald Michie's
definition of amount of knowledge were to be applied to the same problem.

I expect his definition will usually be considerably easier to use then the
expression (3), but I do not know which is the better definition on balance.

Example 1. Suppose that (i) all accurate answers have a constant utility a, and
all others have zero utility. Then

a if X = 0
u(x,X) =

0 otherwise;

(ii) c(x,0) = b, a constant, when x belong to a set X, where a > b > 0, and that
c(x,0) > a if x does not belong to X; (iii) all values of x are equally likely a
priori, that is, p(x) is mathematically independent of x. Then (3) is proportional

to the number of elements in X, that is, to the number of values of x that can be
"profitably" computed.

Example 2.

a ifX<X0

0 otherwise.

The analysis is much the same as for Example 1 and is left to the reader.

Example 3. u(x,X) = -log X(X < 1); then the utility is approximately propor-
tional to the number of correct significant figures.

Example 4. In the theory of numbers we would often need to modify the
theory and perhaps use a utility u(x,p), where p is the number of decimal digits
in the answer.

Example 5: knowledge measurement in chess. Let x now denote a chess

position instead of a number. Let u(x) denote the expected utility of the pro-

gram when applied in position x, allowing this time for the costs. Then v =

Exp(x)u(x) measures the expected utility of the program per move, where p(x)
is the probability of the occurrence of position x. The dependence between
consecutive positions does not affect this formula because the expectation of a
sum is always the sum of the expectations regardless of dependence. A measure
of the knowledge added to the program by throwing the book on opening
variations at it, can be obtained by simply subtracting the previous value of v
from the new value.

It should now be clear that dynamic probability is fundamental for a theory of
practical chess, and has wider applicability. Any search procedure, such as is
definitely required in non-routine mathematical research, whether by humans or
by machines, must make use of subgoals to fight the combinatorial explosion.
Dynamic utilities are required in such work because, when you set up subgoals,
you should estimate their expected utility as an aid to the main goal before you
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bother your pretty head in trying to attain the subgoals.
The combinatorial explosion is often mentioned as a reason for believing in

the impracticability of machine intelligence, but if this argument held water it
would also show that human intelligence is impossible. Perhaps it is impossible
for a human to be intelligent, but the real question is whether machines are
necessarily equally unintelligent. Both human problem-solvers and pseudo..
gnostical machines must use dynamic probability.

Appendix A. Philosophical applications of dynamic probability

An interesting application of dynamic probability is to a fundamental
philosophical problem concerning simplicity. Many of us believe that of two
scientific laws that explain the same facts, the simpler is usually the more
probable. Agassi, in support of a thesis of Popper, challenged this belief by
pointing out that, for example, Maxwell's equations imply Fresnel's optical laws
and must therefore be not more probable, yet Maxwell's equations appear
simpler. This difficulty can be succinctly resolved in terms of dynamic proba-
bility, and I believe this is the only possible way of resolving it. For the clarifi-
cation of these cryptic remarks see (Good, 1968) and (Good, 1975). These
papers also contain an explication and even a calculus for "explicativity," a
quantitative measure of the explanatory power of a theory.
A further philosophical application of dynamic probability arises in con-

nection with the principle of rationality, the recommendation to maximize
expected utility. It frequently happens that that amount of thinking or calcula-
tion required to obey this principle completely is very great or impracticably
large. Whatever its size, it is rational to allow for the costs of this effort (for
example, [Good, 1971] ), whatever the difficulties of laying down rules for
doing so. When such allowance is made we can still try to maximize expected
utility, but the probabilities, and sometimes the utilities also, are then dynamic.
When a conscious attempt is made to allow for the costs we may say we are
obeying the principle of rationality of type 2. This modified principle can often
justify us in using the often convenient but apparently ad hoc and somewhat
irrational methods of "non-Bayesian" statistics, that is, methods that officially
disregard the use of subjective probability judgments. But such judgments are
always at least implicit: all statisticians are implicit Bayesians whether they
know it or not, except sometimes when they are making mistakes. (Of course
Bayesians also sometimes make mistakes.)

Thus dynamic probability and dynamic utility help us to achieve a Bayes/
non-Bayes synthesis. Inequality judgments rather than sharp probability
judgments also contribute to this synthesis: a strict non-Bayesian should choose
the interval (0,1) for all his subjective probabilities! For an interesting example
of a Bayes/non-Bayes synthesis see (Good, 1967C) and (Good and Crook, 1974).

NOTES

1. Lighthill's joke, cracked in a BBC TV debate. Jokes don't wear well for long, however
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risible they were originally, so I have invested a neologism that just might replace the

clumsy and ambiguous "workers in Al" The "g" of "pseudognostics" belongs to the

third syllable! Michie's expression "knowledge engineering" might be preferred in some
contexts, but it will tend to prevent Al. work in any university department outside

engineering. Engineering departments already tend to take the universities over.
2. Each axiom merely relates probability values. Suggestions, such as the "principle of

sufficient reason," are not axioms and they require judgments about the real world.
3. By "intuitive probability" I mean either logical or subjective probability (Koopman,

1940) as contrasted with the physical probabilities that arise, for example, in quantum
mechanics, or the tautological probabilities of mathematical statistics (Good, 1959A).

4. More precisely, it must be "coherent" in the sense that a "Dutch book" cannot be

made against it in a gambling situation. A Dutch book is a proposed set of bets such
that you will lose whatever happens (Savage, 1954).

5. Donald Michie expressed a preference for this term in conversation in 1974, since he
thought that "evolving probability," which I have used in the past, was more likely to be

misunderstood.
6. (i) A real mathematician, by definition, cannot do all his work by low-level routine

methods; but one man's routine is another man's creativity. (ii) Two famous examples

of the use of scientific induction in mathematics were Gauss's discoveries of the prime
number theorem and of the law of quadratic reciprocity. He never succeeded in proving

the first of these results.
7. Polya's writings demonstrate the truth of the aphorism in Note 6. Polya's use of

probability in mathematical research is more qualitative than mine. A typical theorem

in his writings is "The more confidence we placed in an incompatible rival of our

conjecture, the greater will be the gain of faith in our conjecture when that rival is

refuted" (Polya, 1954, vol 2, p. 124). His purely qualitative approach would prevent

the application of the principle of rationality in many circumstances.
8. Presumably the ALGOL notation x: = x + 3 was introduced to avoid the apparent

inconsistency.
9. It is pointless to make such judgments without some attached dynamic probabilities, so

I add that I think there is a probability exceeding % that the machine will come in the
present century. But a probability of only 1/1000 would of course justify the present
expenditures.

10. Judgments are never formalized
You can sign that with your blood gents

For when they are formalized
No one dare call them judgments.

Drol Doog (With apologies to Sir John Harrington.)

11. In case this seems too obvious the reader is reminded that it was not explicit in the

earlier papers on chess programming, and there is no heading "Probability" in

(Sunnucks, 1970).
12. Even if every atom in the moon examined 1024 games per second (light takes about

10'24 sec. to traverse the diameter of an electron), it would take ten million times the

age of the universe to examine 10100 games, which is a drop in the mare.

13. The values of the pieces also vary with the position, in anyone's book. There is much

scope for conjectures and statistical work on evaluation functions. For example, it was

suggested in (Good, 1967B) that the "advantage of two bishops" could be explained by

assuming that it is "in general" better to control two different squares than to control

one square twice, although "overprotection of the centre" might be an exception. For

example, the contribution to the total "score" from the control n times of one square

might be roughly proportional to (n + 1)a - (n + 1)43 (0< a < 1, a >0).
14. Perhaps the odds of a draw are roughly the geometric mean of those of winning and

losing.
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15. The International Chessmaster and senior Civil Servant, Hugh Alexander, once re-
marked that it is more important for a Civil Service administrator to make his mind up
promptly than to reach the best decision. He might have had in mind that otherwise the
administrator would "lose on the clock."

16. To be precise I said that natural language should be used, and John McCarthy said from
the floor that descriptions in symbolic logic might be better.

17. This is known as psychological chess when Emanual Lasker does it, and trappy chess
when I do it.

18. By definition of "intelligently."
19. The difficulty of evaluating unblocked passed pawns is one for the human as well as for

the machine, because it is often in the balance whether such pawns can be blocked. This
might be the main reason for the difficulty of formalizing endgame play. It is said that
mathematicians have an advantage in the endgame but I do not know the evidence for
this nor clearly why it should be true.

20. This part of the paper is based on my invited discussion of Michie's public lecture on
the measurement of knowledge on October 30, 1974 in Blacksburg: see his contribu-
tion to this volume.
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