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Abstract

A more general kind of scquence-prediction problem—the non-deterministic prediction problem—is
defined, and a general methodology for its solution presented. The methodology, called SPARC, employs
multiple description models to guide the scarch for plausible scquence-gencrating rules. Three different
modcls are presented along with algorithms for instantiating them to discover rules. The instantiation process
requires that the initial input sequence be substantially transformed to make cxplicit important fcatures of the
sequence. Four different data transformation operators arc described. The architecture of a system called
SPARC/E is presented, which implements most of the methodology for discovering sequence-generating

rules in the card game Elcusis. Examples of the exccution of SPARC/E are presented.
L d

Key terms: Machine learning, sequence-extrapolation, data transformation, model-directed learning,
Elcusis.

1 Introduction

Inductive Icarning—that is, learning by generalizing specific facts or observations—is a fundamental
strategy by which we acquire knowledge about the world. This form of learning is rapidly becoming one of
the central rescarch topics in Al Most research on computer models of inductive learning has addressed the
problem of inducing a gencral description of a concept from a collection of independent instances of that
concept (the so-called training instances). Thus, the rescarch has dealt with lecarning concepts that represcnt a
certain class of instances. The instances can be specific physical objects, interactions, actions, processes, and
so on. The learned concepts arc gencral descriptions of classes of such instances.

Learning problems of this type include

e learning a checkers evaluation function [Samuel, 1963, 1967] that assigns to a given class of board
situations a certain value,

e lcarning descriptions of block structures [Winston, 1970},
e determining rules for interpreting mass spectrograms [Buchanan and Mitchell, 1978],
* formulating diagnostic rules for soybean discases [Michalski and Chilausky, 1980], and

e discovering heuristics to guide the application of symbolic integration operators [Mitchell, Utgoff,
and Banerji, 1983].




In Samucl's checkers program, for example, each training instance was a board situation represented as a
vector of 16 attributes. The learned concept was an cvaluation function that computed the “value” of any
board position for the side whose turn it was to move. No relationships between different board positions
were considered.  Similarly, Michalski's AQI1l programn {Michaiski and Chilausky, 1980] was given
indcpendent training instances, cach describing a discased soybcan plant in tenns of 35 multi-valued
attributes. Each plant could have one of 19 possible soybean diseases. From scveral hundred training

instances, the program inferred general diagnostic rules for each of these diseases.

This type of inductive learning can be called instance-to-class generalization. A review of several methods
for such instance-to-class generalization can be found in [Michalski, Carbonell, and Mitchell, 1983). A

comprchensive review of learning research is given in [Dietterich, London, Clarkson, and Dromey, 1982].

Another type of inductive learning involves constructing a description of a whole object by observing only
selected parts of it. For cxample, given a set of fragments of a scene, the problem is to hypothesize the
description of the whole scene. A very important case of such pari-to-whole generalization is where the "part”
consists of a fragment of a sequence of objects (or a process evolving in time) and the problem is to induce the
hypothetical description of the whole sequence (the process). Once such a description is found, it can be used
to predict the possible continuations of the given scquence or process. This class of part-to-whole inductive

learning problems we will call prediction problems.

This paper investigates the prediction problem for a sequence of objects characterized by a finite set of
attributes.  An elementary problem of this type is letter-sequence prediction, in which cach object in the
sequence is characterized by only one attribute: the name of the letter. For example, given a sequence of
letters such as

ABXBCWCDV...
the lcarning program must discover a "pattern”—that is, a rule that governs the generation of letters in the
sequence. In this case, such a rule might state that the sequence is a periodically repcating subscquence of
three letters in which the first two lctters are successors of the letter appearing in the previous period, while
the third letter is the predecessor of the corresponding letter in the previous period. Early papers by Simon
and Kotovsky [1963, 1972, 1973] show that just a few relationships (such as successor, predecessor, and
cquality) are sufficient to represent most such patierns. Related work by Solomonoff [1964] and Hedrick

[1976] has investigated grammatical approaches to describing letter sequences.

The sequence prediction problem becomes more difficult when the sequence consists not of simple objects
with only a single rclevant attribute (like the problem just described), but instcad of objects with many

relevant attributes.  Further complexity is introduced if the pattern describing the sequence also involves a




varicty of relationships among these autributes. For example, the pattern may involve the periodicity of
recurrence of certain properties or the dependence of the next object in the sequence on the properties of
objects preceding it at some arbitrary distance in the past. A sequence prediction problem exhibiting the
above-mentioned complexitics arises in the card game Eleusis [Abbott, 1977; Gardner, 1977). Examples from
this game will be used to illustrate the general methodology of discovering patterns in sequences described in

this paper. The rules for Eleusis are briefly cxplained in section 2.1.

Before we formulate precisely this problem of discovering patterns in sequences, let us first explain why it
is important for current Al research. There are three major Al problems that must be addressed in any
solution to this discovery task: (a) the representation problem, (b) the problem of performing model-driven
inductive Icarning with multiple models, and (c) the nroblem of reasoning about temporal processes. The
specific representation problem of interest here is that of automatically determining an appropriate series of
transformations of the initial sequence description so that the pattern can be found. The multiple-model
inductive learning problem ariscs because no single model can provide sufficient guidance to the search for
plausible descriptions in this domain. The relationship of this problem to rcasoning about time is not as
strong as the other two problems. However, since temporal processes include as a special case discrete-time

linear sequences, some of the techniques developed for scquence prediction may be relevant to the more
general problem.

In the next two scctions, we discuss in detail the representation problem and the problem of multiple-

model induction as they arise in this domain.

1.1 Task-oriented transformation of description space

The problem of transforming the initial problem description arises in many practical domains in which the
given data (e.g., the training instances in inductive learning) are obscrvations or measurements that do not
include the information most relcvant to the task at hand. For example, in character recognition, the inpuf
typically consists of a matrix of light intensitics representing a character, but the relevant information includes
position-invariant properties of letters such as the presence of a linc on the left or right of a character,
occurrence of line endings, closed contours, and so on (c.g.[Karpinski and Michalski, 1966]). These position-

invariant propertics can be madc explicit by applying task-oriented transformations to the raw data.

An example of a learning program that performs task-oriented transformations is INTSUM (a part of the
Mecta-DENDRAL system, [Buchanan and Mitchell, 1978]). INTSUM is presented with raw training instances
in the form of chemical structures (graphs) and associated mass spectra (represented as fragment masses and

their intensitics). For cach fragment in the mass spectrum, INTSUM must determine the bonds that could




have broken to produce that fragment.- A simple mass spectrometer simulator is used to develop these
hypothesized bond breaks. Each of the resulting transformed training instances has the form of a chemical
structurc and a sct of bonds that broke when that structure was placed in the mass spectrometer. It is this

information that is provided to the remaining parts of the Meta-DENDRAL system (programs RULLEGEN
and RULEMOD).

In character recognition programs and in Meta-DENDRAL, the data transformations are fixed in advance.
Future learning systems, however, may not know the proper transformations a priori. These learning systems

will need to select or invent appropriate task-oriented transformations for each learning situation.

This description-space transformation problem has been called by various authors the data interpretation
problem [Dictterich, ct al, 1982] or the reformulation problem [Amarel, 1968]. We prefer the term
task-oriented transformation problem, since it ecmphasizes that the proper choice of data transformations
depends upon the task being performed. In the sequence prediction problem discussed in this paper, the
desired sequence-gencrating rules are described in a language quite different from the languagc used to
describe the raw sequence. The learning system determines appropriate data transformations frbm four
gencral classes of transformations and applies them to the raw sequence to produce a transformed sequence

amcnablc to pattern discovery.

The task-oriented transformation problem is part of a spectrum of problems faced by learning programs.
The simplest learning algorithms (c.g., linear regression) determine the cocfficients for a predetermined, fixed
set of variables. Slightly more sophisticated are learning algorithms, such as the A9 algorithm [Michalski and
Kulpa, 1971] or the candidate climination algorithm [Mitchell, 1978], that are able to determine which terms
are relevant and how they should be combined (i.e., with operators such as A and V). Learning algorithms
that perform interpretative transformations (e.g., Soloway [1981], Mcta-DENDRAL [Buchanan and Mitchell,
1978]) augment these basic inductive algorithms by applying a set of predetermined transformations to the
data prior to inductive generalization. Not yet developed are lcarning algorithms that could select
description-space transformations under guidance of special heuristics. And very few rescarchers have
addressed the problem of discovering new descriptors (predicates, functions, operators, ctc.). Table 1 shows

this spectrum of inductive lcarning problems.

The method presented in this paper falls under category 4, since it searches four general classes of

transformations and employs heuristics reflecting domain-specific knowledge.




1. Determine cocfficients

2. Sclect relevant varizbles and combine

3. Apply predetermined transformations

4. Sclect transformations under heuristic guidance
S. Discover new descriptors

Table 11 Spectrum of lcarning problems in increasing order of difficulty

1.2 Learning with multiple models

The second major problem that arises in sequence prediction is the problem of learning using multiple
description models. This problem has not received much attention in previous Al rescarch. Most existing
systems employ a single’ model that provides guidance to the induction algorithm as it searches a space of
possible descriptions. Many systems, for example, use conjunctive descriptions w0 represent concepts. By
constraining the scarch to consider only conjunctive descriptions, the lcarning problem is greatly simplified.
Michalski [Michalski and Kulpa, 1971] constrains descriptions (o be in disjunctive normal form with fewest
disjunctive terms. This constraint is satisfied (approximately) by having the induction algorithm find first one
conjunction, and then another, and so on until all of the training instances are covered. Meta-DENDRAL
[Buchanan and Mitchell, 1978] employs a fairly elaborate model of the opcration of the mass spectrometer to

guide its scarch for cleavage rules. In general, all of these systems use a single modecl, and very few authors

have made their models cxplicit.
One rescarcher who has employed multiple models is Persson [1966]. He applied four different models to
the problem of extrapolating number- and letter-sequences. Briefly, these models were

1. a modcl that computes the cocfficients and the degree of a polynomial by applying Newton's
forward-difference formula (the degree can be arbitrarily large);

2. an extended model that discovers exponential rules of the form ABC, where A is a polynomial of

degree 4 or less and B and C are polynomials of degree 1 or less (i.c., B and C are of the form ax
+ b);

3. asimple periodic model for periods of length 2 (i.c., intertwined sequences); and

4. a gencralization of the Kotovsky and Simon model for Thurstone letter-series that can discover
simple periodic and segmented scquence-generating laws.
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These models are applicd in an artificial learning situation in which the program is given a sequence of
sequence-extrapolation problems.  Thus, in addition to attempting to solve cach individual scquence-
extrapolation problem, Persson’s program tries to predict the kind of sequence-prediction problem that it will
next reccive—that is, it tries to predict which model will best fit the next sequence-prediction problem.
Hence, when the program is attempting to solve one of the base-level problems, it selects models to apply

based on its predictions about the kind of sequence that it is expecting,.

Persson’s work shows the value of employing multiple description models to scarch for sequence-
generating rules. The major limitation of Persson’s approach, however, is that it is specific to number- and
letter-sequence prediction.  His methods cannot solve the more general problem described in this paper in

which objects have multiple attributes and the task is to find a nondeterministic scquence-prediction rule.

Table 2 shows a spectrum of five model-based Icarning methods. The simplest approach is to'usc a single
fixed model. This has been the common approach in Al thus far. The next step is to provide a learning
program with a sct of modcls from which it would choose the most appropriate ones. This is the approach
uscd by Persson. The third level of sophistication would be to have the program generate a predetermined set
of modecls, just as the learning program applics a predetermined set of data transformations. This could be
improved by having the program decide which models to gencrate on the basis of special heuristics. Finally,

an cven more sophisticated program would be able to invent new models and apply them to guide the

Icarning process.

1. Single modecl

2. Selection from a few modcls

3. Predcterminced generation of models

4. Heuristically-guided gencration of modcls
5. Discovery of new models

Table 2:  Spectrum of model-based methods in increasing difficulty

The approach described in this paper searches a predetermined space of possible models in a depth-first

fashion, and hence, falls under point 3 of this table.

It is the development of techniques for addressing these two problems—of selecting task-oriented
transformations and of applying multiple description models—that is the main theoretical contribution of this

rescarch. In the remainder of this paper, we




1. define the sequence prediction problem under consideration,

2. describe the methods used for representing and transforming the initial training instanccs,

3. present techniques for representing the models and scquence-gencrating rules, and finally,

4.provide the details of the program SPARC/E, which implements most of the described

methodology. The program is illustrated by a few sclected examples of its opcration when applied
to the inductive card game Elcusis.

2 Problem Statement

Suppose we are observing a process that generates some objects, onc after another, and arranges them into
a scquence. Suppose that the objects are generated from a known sct and that there exists an underlying law
that specifies at least some of the properties of every new generated object.  We will call such a law a
sequence-generating rule. 1t is assumed that the law is expressed in terms of propertics that are either
obscrvable properties of objects present in the sequence up to the moment when a new object is generated or

propertics that can be derived from such observable properties by some known inference rules.

We are interested in the most general kind of sequence-ganerating law in which the law does not
necessarily completely determine which objects can or cannot appear next in the scquence. The law merely
states some propertics that constrain the next object to be a member of a restricted set. Thus, such a
gencerating rule is nondeterministic. The task of discovering such a generating law is a difficult learning task,
requiring task-specific data transformations and model-guided induction. We will call this learning problem a
non-deterministic prediction problem (NDP, for short). If the law guiding the generation of the sequence
completely defines the next object at every point in the sequence, then the NDP problem reduces to a
deterministic prediction problem (DP, for short). In the DP problem, it is assumed that there is no randomness

in the generation of the next object. The next object is strictly a function of the past objects.

Many rescarchers have previously considered DP problems such as letter-sequence prediction, number-
series extrapolation, cconomical prediction, and prediction of the behavior of a computer system. Most
recently, the BACON system [Langley, 1980] has addressed a wide range of DP problems that arise in
scientific discovery situations. BACON and most of its predecessors make strong use of the constraint that in
a DP problem, all attributes of the next object in the sequence are determined by the previous objects in the
scquence. The NDP problem is more difficult to solve, because only a partial description of the original

sequence is sought. Conscquentiy, many more plausible hypotheses must be considered during the inductive

learning process.




Let us illustrate a simple NDP problem by an cxample. Supposc we are given a snapshot of an ongoing

process that has alrcady generated the objects (graphs) shown in F igure 1.

THOIA® /- A -

I 2. 3. 2

NENLOQIY |

Figure 1: A simple NDP problem

The obscrvable properties of cach graph arc: the NUMBER OF NODES. the SIAPE of the graph (T-junction,
square, bar, wheel, triangle, star, diamond), the TEXTURE of cach node (solid black, blank, and cross), and the
ORIENTATION of the graph (applicable only to graphs that are clongated in some dircction, expressed as

degrees clockwisc from vertical). Suppose we would like now to predict what could be the next object.

By examining the given string in Figure 1, we can observe that it can be partitioned into segments of three
graphs in length. The nodes of the graphs in cach triplet have TEXTURE in the order <solid black, blank,
cross>. The SHAPES of the graphs are always <T-junction, *, bar> (where * denotes any shape). We can also
notice that the ORIENTATION of the T-junction changes by —45 degrees cach time, while the ORIENTATION of
the bar increases by +45 degrees each time. Finally, the NUMBER OF NODES in the center graph alternates
between 4 and 8. If the above regularities indeed constitute the gencerating law, we can hypothesize that the
next graph in the scquence will have 8 blank nodes, and then after that there will be a graph that is a slanted
bar with crossed nodes and ORIENTATION of 225 degrees (slant downwards to 'eft). Thus, with regard to the
first predicted object, we know only two_propertics (NUMBER and TEXTURE of nodes), and with regard to the
second predicted object, we know it completeiy. It is casy to see that the problem of letter-sequence
prediction (or extrapolation) is a special case of the NDP problem where cach object is a letter of an alphabet
whose obscrvable property is its name. It also has one derived property that is its position in the alphabet.
(The order of letters in the alphabet is externally-provided domain knowledge.) Since each object (in this case
a charaélcr) is defined completely by specifying its name (or 1ts position in the alphabet), letter serics

prediction is necessarily a DP problem.




2.1 An exemplary NDP problem: the card game Eleusis

An interesting NDP problem occurs in the card game Eleusis, invented by Robert Abbott [Abbott, 1977;
Gardner, 1977]. Eleusis is an inductive game in which players attempt to discover a "secret rule” invented by
the dealer. The seeret rule is the generating rule for a sequence of cards. Each player, in his or her turn, adds
one card to the sequence, and the dealer indicates whether the card is a correct extension of the sequence (i.c.,
satisfics the sccret sequence-generating rule). Players who play incorrectly are penalized by having additional
cards added to their hands. The goal of cach player is to get rid of all of the cards in his hand, which is only
possible if correct cards are played. The cards played during the game are displayed in the form of a layout in
which the correct cards form & "main line” and incorrect cards form "side lines" branching down from the
main linc at the card that they followed. Figure 2 shows a typical Eleusis layout for the sequence-generating
rule "Play alternating red and black cards." In this game, the 3 of hearts was played first, followed by a 9 of
spadcs, and a Jack of diamonds. All of these were correct. Following the Jack, a § of diamonds was played.
Itappears on a sideline below the Jack, because it was not a correct extension of the scquence. (At this point a

black card is required.) The 4 of clubs was then correctly played, and so on.

Main line: 3H 9S JD 4C JD 2C 10D 2C 6H

Side lines: 6D AH AS 8H
8H 10S 7H
QD 10H

Figure 2. A sample Eleusis layout

Eleusis provides a good domain for studying the use of task-oriented data transformations to aid learning.
Frequently, the gencrating law for an Eleusis sequence is stated in terms of descriptors that are not present in
the initial sequence. In this example, for instance, the generating law is stated in terms of the color of the
cards, but the original sequence supplics only the RANK and SUIT of each card. Table 3 provides some

examples of gencerating laws from Elcusis. Note that the terms in which these laws are expressed (c.g., "strings

of cards of the same suit”, “alternating sequence™) are quite different from terms such as RANK and SUIT that

described the original sequence. To bridge this difference, appropriate description-space transformations
have te be performed.

Eleusis also provides a good domain for studying the use of models for guiding the induction process. The
spacc of possible Elcusis rules using descriptors such as SUIT, RANK, COLOR, FACEDNESS, PARITY, PRIMENESS,

and RANK MODULO 3 is very large. In our description language, there are more than 1037 possible scquence-
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generating rules involving four or fewer conjunctive expressions' A breadth-first search of this space, such as
is conducted by the candidate-elimination algorithm, would clearly be impossible. Fortunately, the rules used
by pcople tend to cluster into certain classes that can be well-described by three models: periodic rules,

dccomposition rules, and DNF rules. Thus, a model-directed approach can be used to discover sequence-
gencrating rulces in Elcusis.

e If the last card was a spade, play a heart; if last card was a heart, play diamonds; if last was
diamond, play clubs; and if last was club, play spadecs.

e The card played must be onc point higher than or one point lower than the last card.

e If the last card was black, play a card higher than or equal to that card; if the last card was red,
play lower or equal.

e Play alternating even and odd cards.

e Play strings of cards such that cach string contains cards all in the same suit and has an odd
number of cards in it.

Table 3:  Some examples of sequence-gencrating rules in Elcusis

3 Overview of Solution

This section gives an overview of the approach taken to solving the NDP problem defined in section 2. The
approach is a combination of bottom-up data transformation, top-down model specialization, and data-driven

instantiation of the specialized models to fit the transformed data. These three processes can be bricfly
explained as follows:

1. Bottom-up data transformation involves applying various transformation operators to the initial
scquence description to obtain a derived sequence description. We wuse four basic data

Ll‘hls estimate is based on computing the space of all syntactically legal VL1 conjuncts containing the following set of descriptors (after
cacn descniptor is listed the number of clements in its value set and the number of possible sclectors that aan be formed using those
clements): sUIT (4.9), RANK (13, 91), COLOR (2.3), FACEDNESS (2,3), PARITY (2.3). PRIMENESS (2,3). RANKMODS (3,7), D-suttol (4,9), D-sutTD2
(4.9). D-RANKOL (25,300). D-RANKO2 (25.300). S-RANKO! (25,300), S RANKO2 (25.300), 1> COLOROL (2.3). D-COLORO0? (2.3), D-FACEDNESSO! (2,3),
D-FACEDNESS02 (2,3), D-PARITYO! (2.3). D PARITY02 (2.3). D-PRIMENESSO] (2.3). D-PRIMENESS0? (2.3), D-RANKMOD301 (3.7), D-RANKMOD3-02
(3.7). The surr and RANKMOD3 descriptors are cyclically ordered, whiic the RANK descriprors are interval descriptors.  All others are
nominal. In a block of three adjacent cards (with lookback L=2), llgc first seven descriptors appear three times—once for cach card.
Hence, the total number of possible con;uncks_zlj (9")1'.\‘3‘3‘3'7) * (9%3007300°3°3°3*3*7)" = 211221°10" . If there are four
conjuncts in a rule, then we obtain [2.11221*107 ] = 1.99*10 ",
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transformations: adding derived attributes, scgmenting, splitting, and blocking. Details of these
arc described in section 4.

. Top-down modecl specialization involves specifying particular values for the paramcters of general
rule models to obtain a parameterized model. We use three general models: the disjunctive normal
form modcl (DNF), the decomposition modcl, and the periodic model. Each of these modecls has
one or*morc parameters. For example, both the DNF and decomposition models have a single
parameter: the lookback, L (i.e., the number of objects back from the given object in the sequence
that are assumed to determine the next object). The periodic model has two paramecters: the
lookback, 1., and the period length, P, which indicates the length of the repeating period in the
sequence. Details of the model specialization process are described in section S.

. The model-instantiation process attempts to fit the parameterized model to the derived sequence
description to produce an instantiated parameterized model. A model that has been
parameterized and instantiated serves as a scquence-gencrating rule. This process is described in
section 6.

.

The above threc steps are illustrated schematically in figure 3.

Classes of models

Generate
specific
model

Specific

model
Fit model

Derived
sequence

.
to data ;

Transform
original

description

S

Original sequence

Figure 3: Schematic description of the rule discovery process

Model instantiation, as used in this paper, is an extension of the well-known Al technique of schema
instantiation. Schema instantiation has been applicd, for example, by Schank and Abelson [1975] to interpret
natural language, by Engelmore and Terry [1979] 1o interpret X-ray diffraction data in protein chemistry, and

by Friedland [1979] to plan genetics experimen’ . Model instantiation differs from schema instantiation in
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the complexity of the instantiation process. Model instantiation involves not only filling in predetermined
slots or substituting constants for variables, but also synthesizing a logical formula of an assumed type. For
example, in order to instantiate cach of the three modcls described below, the program must synthesize a
conjunction of predicates or a disjunction of such conjunctions that satisfics certain constraints. Model-
instantiation methods share with schema-instantiation methods the advantage that they are cfficient, and also
cffective with noisy and uncertain data. The constraints provided by the models (or schemas) drastically

reducc the size of the space that the program must search.

The principal disadvantage of mode!- and schema-instantiation methods is that they require substantial
amounts of domain knowledge to be built into the program. In order to keep this domain knowledge explicit

and casily modified, we employ a ring architecture in the design of the learning program, as described in

section 6. This architecture facilitates the application of the system to a varicty of problems by simplifying the

process of changing the domain-specific parts of the program.

4 Describing and Transforming Training Instances

Now that we have defined the problem to be solved (the NDP problem) and sketched the solution, we
launch into the details of that solution. This section presents the description language for representing the

original sequences and the transformation operators that can be applied to modify that representation.

4.1 Representing the initial sequence

A scequence of objects is represented as an indexed scqucncc2
<q1. Qy. - qk>
[t is assumed that the only relevant relationship between two objects is their ordering in the sequence. Each
object is described by a sct of attributes (also called descriptors) fl. fz, fn. which can be viewed as functions
mapping objccts into attribute values. To state that attribute f| of object q has value r, we write ‘
[(fi(aj)=r].
This notation is called a selector. For example, if f‘n is color and r is red, then the selector

[color(gj)=red]
states that the color of the j-th object in the sequence is red.

Each attribute is only permitted to take on values from a finite value sct called the domain, D(F), of that

attribute.  This constraint is part of the background knowledge that has to be given to the program. For

2
A summary of the notational conventions used in this paper appears in section 9.
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example, in a deck of cards, the domain of the SuIT attribute is {clubs, diamonds, hearts, spades}. Additional
knowledge about the domain sct can be rcpfcscnlcd. In particu:lar, the domain set may be lincarly ordered,
cyclically ordered (i.c., in a circular, wrap-around ordering), or tree ordered. We will sce below how these

domain orderings arc applied to the problem of representing cards in an Eleusis game,

A complete initial description of a single object, q; called an event, is an expression giving the values for all

of the attributes of q; This is usually written as a conjunction of selectors:
[f1(q3)=r1][f2(qj)=r2]...[fn(qj)=rn].
It can also be represented as a vector of attribute values:
(rl. Py s rn).
This vector notation suggests that each object description can be viewed as a point in the event space E.:
= D(f)) X D(f,)) X... X D(f)

This cvent space contains all possible cvents.

A complete description of the initial sequence is a sequence of conjunctions of selectors (or altcmative]y,
sequence of attribute vectors)—one conjunction for cach object in the sequence. The space of all possxblc

sequences can be generated by sclecting all possible sequences of events chosen from E.

4.2 Transforming the Sequence

As we mentioned in section 1, it is often necessary to transform the initial sequence into a derived sequence
in order to facilitate the discovery of scquence-gencrating rules. Such a data transformation can be viewed as
a mapping T from one set of sequences S, containing objects Q, described by attributes F, to another set of
derived sequences S', containing derived objects Q', and described by derived attributes F'.

T <8, Q. P > <8, Q. F»
¢ e
where p,, ..., p, arc parameters of the transformation that control its application. We have found four basic
transformations to be especially uscful for discovering sequence-gencrating rules: (a) adding derived attributes,

(b) segmenting, (c) splitting into phases, and (d) blocking. Each of these is described in turn.

4.2.1 Adding derived attributes

The simplest transformation docs not change the set of sequences, S, or the set of objects, Q, but only the
sct of attributes, F. For example, in Elcusis, the initial set F contains only two attributes: the RANK and SUIT
of a card. These can be augmented by deriving such attributes as COLOR (red or black), FACEDNESS (faced or
nonfaced), PARITY (odd or even), and PRIMENESS (prime or not prime in rank). The adding-derived-

attributes transformation has no parameters.
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4.2.2 Segmenting

The scgmenting transformation derives a new sequence made up of a new set of objects, Q’, and described
with a new set of attributes, F'. The new sequence is produced from the original sequence by dividing the
original sequence into non-overlapping segments. Each segment becomes a derived object in the new
sequence. The only parameter of the segmenting transformation is the scgmentation condition that tells how
the original sequence shpuld be divided into segments. Three types of segmentation conditions can be
distinguished: (a) those that use properties of the original objects to determine where the sequence should be
broken, (b) those that use properties of the original objects to determine where the sequence should not be

broken, and (c) those that use propertics of derived objects to determine where the original sequence should be
broken.

For cxample, suppose the original sequence consists of physical objects described by attributes such as

WEIGHT, COLOR, and HEIGHT. An example of cach type of segmentation condition follows:

1. Break when [weight(qi-1)>10][weight(qi)<<10].

According to this condition, the original sequence is to be broken (between q,., and q,) at the
point where the weight of an object changes from above 10 to under 10.

2. Don't break as long as [color(gi)=color(qi-1)][weight(qi)>10].

This condition states that the original sequence will not be broken (between q,, and qi) if the
color stays the same and the weight remains above 10. It will be broken at any point where these
conditions do not both hold.

3. Break so that [Tength(q1')=2].

This condition states that derived objects (qi') should be subscquences of length 2 from the
original sequence (i.e., pairs of adjacent objects from the original scquence).

The choice of attributes, F, for describing the newly-derived objects, Q', depends on the segmentation
condition used to segment the sequence.  For cxample, if the [1ength(qi’ )=2] condition is used,
attributes of interest might include the sum of the VAL UES of the two original objects, the maximum VALUE.
the minimum VALUE. and so on. The LENGTH of the segment would not be of interest. since by definition, it
is a constant. However, if the [color(gi)=color(qi-1)] condition is used, the LENGTH of the segment
could be quite interesting and should be derived. Also, the rCOLOR shared by all of the cards in the segment
might be of interest. In our implementation, the user specifies which attributes should be derived.  All

user-specified attributes arc derived unless the program can prove from the segmentation condition that those
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attributes would not have a well-defined value for each segment in the sequence or else would be trivially
constant for all segments.

Often, a scgmentation condition leads to the creation of incomplete segments at the beginning and end of

the original sequence. These boundary cases can create difficulties during model instantiation, so they are

ignored during rule discovery, but checked during rule evaluation.

4.2.3 Splitting

The splitting transformation splits a single scquence into a sequence of P separate subsequences: <ph1, phz'
..>. Sequence ph starts with object q, (the object at the i-th position in the original sequence) and continues
with objects taken from succeeding positions at distance P apart in the original sequence. Each of the derived

sequences is called a phase. P is the parameter of the splitting transformation that denotes the number of
phascs. Figure 4 shows the splitting operation for P = 3.

Original sequence: <q1 q2 q3 q4 qb6 g6 q7 q8 q®
Derived sequence: <ph1 ph2 ph3>, where
phi: <q1 q4 - q7>
ph2: <q2 qb q8>
ph3: <q3 q6 q9>

Figure 4: Splitting transformation with P=3

The objests within cach phase retain the lincar ordering that they had in the original sequence. The phases
themsclves can be considered to be cyclically ordered so that ph ) Precedes ph,, which precedes phs, and so
on, untl pk . which is followed by ph, again. Consider, for example, the following sequence:

<18293 104 11>
The splitting transformation with P=2 would produce the scquence <ph1 ph2> where

phl = <1 2 3 4
ph2 = <8 9 10 11>

Since the splitting transformation simply breaks the original sequence of objccts into subsequences, no new
objects are created. Furthermore, no new descriptors are defined. The st of descriptors used to characterize
the objects in cach of the phases is the same as the set of descriptors used to characterize the objects in the

original scquence.

The splitting transformation can be applied to break one sequence-prediction problem into several

subpreblems—one for cach phase. This is how periodic rules are discovered.
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4.2.4 Blocking

The blocking transformation converts the original scquence into a new scquence made up of a new set of
objects B’ and a new sct of attributes F'. The new sequence is created by breaking the original sequence into
overlapping segments called blocks. Each object b, in the new sequence describes a block of L+ 1 consccutive
objects from the original sequence, starting at object q, (called the /head) and proceeding backwards to object
Q.. (where L is the lookback parameter of the blocking transformation). Figure 5 shows the blocking

opcration for L=2 (Block length of 3).

Original sequence: <q1 q2 q3 q4 q6 q6 q7 q8>

Derived sequence: <b3 b4 b5 b6 b7 b8>
where bi are derived objects defined as follows:

b3: <q1 q2 q3>

b4: <q2 q3 gq&

b5: <q3 q4 ag5>

b6: <q4 q5 6>

b7: <q6 ¢q6 q7>

b8: <q6 q7 g8>

The underlined object in cach block is the head object.

Figure 5: The Blocking Transformation with L=2.

Several attributes are derived to describe cach block. For cach attribute A applicable to the objects in the
original sequence, the attributes A0, Al, ..., AL are defined that are applicable to the objects in the derived
scquence. AO(bl) has the same value as A(qi); Al(bl) has the same value as A(q.l_l); and so on until AL(bi),
which has the same value as A(qH_). In other words, the original attributes are retained in the new sequence,
but they are renamed so that they apply to whole blocks rather than to individual objects in the original

sequence.  The numerical suffix on the new names encodes the relative position of the original object g, in
block bj.

For example, supposc we have the sequence <q1 q2 q3 q4 g5> with attributes RANK and SUIT, where

[rank(q1)=2][suit(ql)=H)
[rank(q2)=4][suit(q2)=S]
[rank(q3)=6][suit(q3)=C]
[rank(q4)=8][suit(q4)=D]
[rank(g5)=10][suit(q5)=H]

Now suppose we apply the blocking transformation to this sequence with =2 to obtain the derived
sequence of blocks <b3 b4 b5>. Then the descriptors RANKO, RANKI, RANK2, SUITO, SUIT, and SUIT2 will

be derived with the values
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[rank2(b3)=2][suit2(b3)=H]
{rank1(b3)=4][suit1(b3)=S]
[rank0(b3)=6][suit0(b3)=C]

[rank2(b4)=4][suit2(b4)=S]
[rank1(b4)=6][suitl(b4)=C]
(rank0(b4)=8][suit0(b4)=D)

[rank2(b6)=6][suit2(b5)=C]
[rank1(b5)=8][suit1(b6)=D]
[rank0(b5)=10][suit0(b5)=H]

This transformation leads to a highly redundant representation of the information in the original scquence.
For example, the information about SUIT and RANK of the original object q, is repeated as SUITO and RANKO
of block b,, SUIT1 and RANK} of block b,. and SUIT2 and RANK?2 of block bs. However, this derived sequence
of blocks facilitates the representation of the relationships between objects in the original sequence. Many

sequence-prediction rules involve such relationships.

To represent relationships between objects, additional descriptors called sum and difference descriptors are

defined.  In the case of the above sequence, the descriptors S-RANKOL, S-RANK02, D-RANKO01, D-RANKO02,

D-SUITO1, and D-SUIT02 arc created. The value ofs-RAxxox(bl) is the sum of RA.\'KO(bi) and RA.\'K](bi). The
value of D-RANKO!(bI) is the diffcrence between R,\.\‘Ko(l)l) and RA.\’Kl(bl). Thus, in addition to the selectors
shown above, the following sclectors would also be derived for the new scquence:

[s-rank01(b3)=10][s-rank02(b3)=8]
[d-rank01(b3)=2][d-rank02(b3)=4]
[d-suit01(b3)=1][d-suit02(b3)=2]

[s-rank01(b4)=14][s-rank02(b4)=12]

; [d-rankOl(b4)=2][d-rank02(b4)-4]
[d-suit01(b4)=1][d-suit02(b4)=2]

[s-rank01(b5)=18][s-rank02(b56)=16]
[d-rankOl(b5)-2][d-rank02(b5)-4]
[d-suit01(b6)=1][d-suit02(b5)=2]

From this representation, it is relatively casy to discover that [d-rank01 (bi)=2]is truc for all blocks b1.

Ordinarily, sum and difference attributes only make sensc for attributes such as RANK whose domain sets
arc linearly ordered. We have extended the definition of difference to cover unordered and cyclically ordered
domain sets as well. For an unordered attribute such as COLOR, whose domain set is {red. black}, D-COLOROL
takes on the value 0 if the COI.ORO(bl) = COLORl(bl) and 1 otherwise. For auributes with cyclically-ordered
domain scts, such as SUIT (with values {clubs, diamonds. hearts, spades}), b-SUITO is equal to the number of
steps in the forward direction that are required to get from Su‘rl(bl) to SL'l'l'o(bl). lfsu‘rl(bl)z diamonds and
SL'ITD(bi) =clubs, D-SL‘l'l‘Ol(bl) =3

The sum and difference attributes make the ordering of the original scquence explicit in the attributes that

describe cach block. Consequently, it is no longer necessary to represent the ordering between blocks.
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Hence, the model-fitting algorithms discussed below treat the derived sequence (of blocks) as an unordered

sct of cvents.

Onc difficulty with the above approach is that the numerical suffix notation is not very casy to read,
especially when it is combined with a sum or difference prefix. Hence, we have developed an alternative
representation that is more comprechensible. In this notation, selectors that refer to blocks, such as
[suit1(bi)=H], are written as selectors that refer to objects in the original sequence, such as
[suit(qi-1)=H]. Similarly, seclectors such as [d-rank01(bi)=3] are written as
[rank(qi)=rank(qi-1)+3]. This notation makes the meaning of the selectors clear without having to
explicitly mention the blocks bi. For purposes of implementation, the first notation is better because it
cnables the program to treat all sequences—including derived scquences—uniformly. However, the second

notation is more understandable and hence will be used for the rest of this paper.

S Representing Sequence-generating Rules and Models

A sequence-generating rule is a function g that assigns to cach sequence of objects, < Tt
q 8 8 g } q,. 49, qy

non-empty sct of admissible next objects Q. T
8 {€q). g5 . 92} > {Q, , )
Qk+1 is the sct of all objects that could appear as the next object in the sequence. For exampile, in the rule

“Play a card whosc rank is one higher than the previous card”, g(<... 4C>):QH1 is the set of cards {5C, SD,
SH, 5S}.

The set Qk+l may contain only onc event, or it may contain a large set of possible events. If for all k, the
sequence €q. q,. ..., q,” is mapped by g into a singleton set, then the rule is a deterministic rule: otherwise, it
is @ nondeterministic rule. This paper addresses the problem of discovering a nondeterministic sequence-

generating rule, g, given the sequence <q1, Qp wome qk>.

The sequence <q,. g,. - Q> can be viewced as the set of assertions

q, € 8(<)
q, € 8(<q)?)

q, € 8<q). ... q, )

These assertions are positive instances of the desired sequence-gencrating rule.

In Eleusis, ncgative instancces arc provided by the cards on the sidclines—that is, the cards rcjected by the

dealer for being incorrect. A sideline card q,~ played after card q, provides a negative instance of the form:
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;" €8(<q), 9,9,
The goal is to find a description for g that is consistent with these training instances and satisfics some

preference criterion.

The preference criterion in our methodology (and in all Icarning systems) attempts to evaluate a candidate
rule in terms of its generality, predictive power, simplicity, and so on. These semantic propertics are difficult
to compute, however. Instead, virtually all learning systems employ syntactic criteria that correspond in some
way to these semantic criteria. Syntactic criteria—such as the number of selectors in a conjunction and the
number of conjuncts in a disjunction—will only correspond to the semantic criteria if the representational
framework is well chosen (See McCarthy [1958]). As we noted in the introduction. most previous Al rescarch
on learning has employed a single representational framework or modecl for describing the rules or concepts to
be learned. In Eleusis, a single framework is insufficient. Instead, we have developed three basic models that

were found to be useful: the DNF model. the decomposition model, and the periodic model. When these

modecls are employed, syntactic criteria can be used to approximate scmantic criteria during cvaluation.

A model is a logical schema that specifics the syntactic form of a class of descriptions (in our case, sequence-
generating rules). A model consists of model parameters and a set of constraints that the model places on the
forms of descriptions. The process of specifying the values for the parameters of a model is called
parameterizing the model. The process of filling in the form of the paramcterized model is called insiantiating
the model. A fully-parameterized and fully-instantiated modcl forms a scquence-gencrating rule. Models can

be instantiated using the original sequence, or, more typically, using a sequence derived by applying some of
the data transformations discussed in the previous section,

All three models use the representation language VL22 as a building block for expressing scquence-
generating rules. VI.22 is an extension to the predicate calculus that uscs the selector as its simplest kind of

formula. The VL22 sclector is substantially more expressive than the simple selector presented above in
section 4.1. The simple selector has the form:
[fi(aj)=r]
whercas the VL22 sclector has the form:
(PLAS, X2, ... ) oMl vrlty ... » rm]

In the VI.22 sclector, attributes fl can take any number of arguments (xl, Xgs ey xn). Furthermore, the

attributces fl can takec on any onc of a ser of valucs {rl, Tye v rm}. The v denotes the internal disjunction
operator. Thus, the selector

[rank(gi)=9 v 10 v I v Q v K]
indicates that the rank of object q, can be cither 9, 10, J, Q, or K. The internal disjunction represents

disjunction over the values of a single variable. In this cuse, it could be expressed alternatively as
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[rank(qi1)>9],
since the domain of the RANK attribute is known to be lincarly ordered with a maximum valuc of K (King).
To aid comprehensibility, VI.22 provides the operators <, , <. 2, and #, in addition to the basic =

operator.

Examples of typical selectors include:

(rank(qi)#rank(qi-1)]
(paraphrase: the RANK of'ql is different from
the RANK orql_l)

[suit(qi)=suit(qi-1)+1]
(paraphrase: the SUIT increases by one from q., o ql)

[rank(qi)+rank(qi-2)>10]
(paraphrase: the sum of the RANKS ot‘ql
and q., is greater than 10)

Now that we have introduced the basic notation of V.22, cach of the three rule modeis is presented in turn,

5.1 The DNF model

The DNF model supports the broad class of rules that can be expressed as a universally quantified VL.22
statement in disjunctive normal form. The DNF model has one parameter, the degree of lookback, L. An
example of a DNF rule (with L=1) is:

Vi ([color(qi)=color(qi-1)] V
[rank(qi)=rank(qi-1)])

In general, a DNF rule is a collection of conjuncts of the form
FIiSE VYRR VYERY ... VY r)

The universal quantification over 1 indicates that this description is true for all objects q, in the sequence.

An additional constraint specified in the DNF model is that the number of conjuncts, k, should be close to

the minimum that produces a description consistent with the data.

5.2 The Decomposition Model

The decomposition model constrains the description to be a sct of implications of the form:
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L1 => R1
L2 => R2

Lm => Rm

where the =) sign indicates logical implication.,

The model states that the left- and right-hand sides, Lj and RJ, must all be VL22 conjunctions. The
left-hand sides must be mutually exclusive and exhaustive—that is,

L1 \Y L2 o Lm = TRUE, and
Vik (#k => (l.j A Lk = FALSE)).

A decomposition rule describes the next object in the sequence in terms of characteristics of the previous

objects in the sequence. For example, the rule

Vi([co1or(q1-1)=b‘lack]=>[parity(q1)=odd] v
[color(qi-1)=red] =>[parity(qi)=even])

is a decomposition rule that says that if the last card was black, the next card must be odd, and if the last card

was red, the next card must be even.

‘The decomposition model has a lookback parameter, L, that indicates how far back in the sequence the
description “looks” in order to predict the next object in the sequence. The above rule has a lookback

paramcter of 1, because is examines Q.

5.3 The Periodic Model

This model consists of rules that describe objects in the sequence as having attribute values that repeat
periodically.  For example, the rule "Play alternating red and black cards” is a periodic rule. The periodic
modcl has two parameters: the period length, P, and the lookback, L. The period length paramcter, P, gives
the number of phases in the periodic rule. A periodic rule can be viewed as applying a splitting
transformation to split the original sequence into P scparate sequences. Each separate phase sequernice has a
simple description. The lookback parameter, L, tells how far back, within a phase sequence, a periodic rule
“looks™ in order to predict the attributes of the next object in that phase. The periodic mod-! imposcs the
additional constraint (or preference) that the different phases be disjoint (i.c., any given card is only playable

within one phase).

A periodic rule is represented as an ordered P-tuple of VL22 conjunctions. The j-th conjunct describes the
j-th phase sequence. The rule

{[color(qi)=red], [rank(qi)>rank(qi-1)]>
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is a periodic rule with P=2 and L.=1, which says that the sequence is made of two (intericaved) phases. Each
card in the first phase is red; cach card in the sccond phase has at lcast as large a rank as the preceding card in

that phase. Hence, one sequence that satisfies this rule is <2H 3C 10H 5S AD 6S 64 6C>.

A more complex periodic rule is the rule used to generate the scquence shown in Figure 1. It can be
represented as

< [texture-of-nodes(qi)=solid black] &
[shape(qi)=T-junction] &
[or*lent.at'lon(q1)-or1entat10n(q1-1)-45].

[texture-of-nodes(qi)=clear] &
< [number-of-nodes(qi)=4],
[number-of-nodes(qi)=8] >,

[texture-of-nodes(qi)=cross] &
[shape(qi)=bar] &
[orientat1on(q1)=or1entation(q1-1)+45] >

Notice that this is a periodic rule with three phases and a lookback of 1. The middle phasc of the period 1s

itsclf a periodic rule with the NUMBER-OF-NODES alternating between 4 and 8.

5.4 Derived models

The three basic modcls can be combined to describe more complex rules. Basic models can be joined by
conjunction, disjunction, and ncgation. For example, the rule “play alternating red and black cards such that
the cards arc in non-decreasing order” is a conjunction of the periodic rule

< [color(qi)=red], [color(qi)=black] >
and the DNF rule

[rank(qi) = rank(gqi-1)].

5.5 Model Equivalences and the Heuristic Value of Models

The reader may have noticed that the decomposition and periodic models appear to be special cases of the

DNF modecl. For instance, given that the clauses in a decomposition rule are mutually-exclusive and

cxhaustive, the decomposition rule

L1 :)Rl&

L2 =) Rz&

.. >R
m m

can be written as the DNF rule
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[I.l & R{] \Y [L2 RRJV ..V [l.m &R ]
Similarly, if the clauses of a periodic rule are mutually-exclusive and exhaustive, then the periodic rule
<C, Cy C>

can be expressed as a decomposition rule of the form

C, => C,
G, => C3

C,.,=>C
€ =T

Even when the constraints of mutual exclusion and exhaustion are violated, it is usually possible to develop
some cquivalent DNF rule for any periodic or decomposition rule. For instance, in the periodic rule

< [color(qi-0)=red], [rank(qi-0)=even] >
(paraphrase: play alternating red and even cards)

the different phases are overlapping. The above transformation into a decomposition rule

[color(q1-1)=red]=)[par'ity(q1)=even] &
[parity(q‘i-1)=even]=>[co‘lor(q1)=red]

docs not work, because, for example, the sequence

<an 20 6C ...
satisfics the second rule (the first if-then clause can be applied twice), but not the first rulc (since the 4C is not
red). However, it is possible to get around this particular problem by defining a new descriptor for each
object in the original sequence, called POSITION, that has the value i for object q,. With this descriptor, the

above rule can be encoded as

(position(qi)=0dd] => [color(qi)=red]
[position(gi)=even] => [parity(qi)=even]

Hence, it appears that all rules can be written as DNF rules.

Given this fact, it is rcasonable to ask why multiple models should be used at all. The answer is that the
primary value of multiple models is that they provide heuristic guidance to the scarch for plausible rules.
Hence, though the DNF model is capable of representing all of these rules, it is not helpful for discovering
them. In short, it is epistemologically adequate but not heuristically adequate (sce [McCarthy and Hayes, 1969;
McCarthy, 1977}). Fach model dirccts the attention of the learning system to a small subspace of the space of
all possible DNF VL22 rules. The next section shows how the constraints associated with each modcl are

incorporated into special model-fitting induction algorithms.




6 Architecture and Algorithms

In section 3 we described the three basic processes involved in discovering sequence-generating rules: (a)
transformation of the original scquence to obtain a derived sequence, (b) selection of appropriate models for
the given sequence, and (c) fitting of the models to the derived sequence. In sections 4 and 5, the four data
transformations and the three models were presented. This section covers the third step of fitting the
specialized models to the transformed sequence. The model-fitting process is most casily understood in the

context of the program architecture, so this section also discusses the architecture in detail.

6.1 Overview of the Program

The® processes in the program (see Figure 6) are structured into four components—the three basic
components mentioned above plus an evaluation step. The processes of transforming the initial sequence and

of selecting and parameterizing a model are performed in parallel. Then, specialized model-fitting algorithms

use the transformed sequence to instantiate the model to obtain a candidate sequence-gencrating rule. These

candidate rules are then evaluated to determine a final set of rules.

The reason for performing data transformation and model selection in parallel is that these two processes
are interdependent.  For example, if a periodic model is sclected (with period length P), then a splitting
transformation (with number of phascs P) necds to be applied to the scquence. These two processes can be

viewed as simultancous cooperative scarches of two spaces: the space of possible data transformations and the

spacc of possible paramecterized models.

6.2 Overview of the Concentric Ring Architecture

In order for the learning program to be easily modificd to handlc entire classes of NDP problems, the
program is structured as a sct of concentric knowledge rings (see Figure 7). A knowledge ring is a set of
routines that perform a particular function using only knowledge appropriate to that function. The
procedures within a given ring may invoke other procedures in that ring or in rings that are inside the given

ring. Under these constraints, the concentric ring structure forms a hierarchically organized system.

Idcaliy, the rings should be organized so that the outermost ring uses the most problem-specific knowledge
and performs the most problem-specific operations and the inner-rost ring uses the most general knowledge
«nd performs the most general tasks. Such an architecture improves the program's gencrality because it can
be applied to increasingly different NDP problems by removing and replacing the outer rings. In order to

apply the program to radically different learning problems, all but the inner-most ring may need to be
replaced.
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Figure 6: The Model-fitting Approach
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Figure 7. The knowledge ring architecture

The ring architecture is used here as follows. The outer-most rings perform user-interface functions and
convert the initial scquence fromn whatever domain-spccific notation is being used into a sequence of VL22
events. The inner-most ring performs the model-fitting functions. It expects the data to be properly

transformed so that the data have the same form as the models to which they are to be fitted. The intervening
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rings conduct the simultancous processes of developing a properly parameterized model and transforming the

input scquence into an appropriate form.

The intervening rings also evaluate the rules discovered by the inner-most ring using the knowledge
availablc in cach ring.

6.3 The Program SPARC (ELEUSIS version)

SPARC (Scquential PAttern ReCognition) is a general program designed to solve a variety of NDP
problems using the ring architecture. So far, we have implemented only a more specific version of the
program, called SPARC/F, wilored specifically to the problem of rule discovery in the game Eleusis. SPARC
is made up of five rings, as shown in Figure 7. This section describes the functions of cach ring in the
SPARC/E version of the program. To illustrate these ring functions, we use the Eleusis layout shown in
Figurc 8. Recall that in an Eleusis layout, the main line shows the correctly-played sequence of cards (positive
examples). The side lines, which branch out below the main line, contain cards that do not satisfy the

rule—that is, incorrect continuations of the sequence (negative examples).

Main 1ine: 3H 9S 4C JD 2C 100 8H 7H 2C

Side lines: JD AH AS 10H
6D 8H 108
QD

Figure 8: Sample Eleusis l.ayout

6.3.1 Ring 5: User Interface

Ring 5, the outer-n.ost ring, provides a user interface to the program. It exccutes user's commands for
playing the card game Eleusis, as well as commands for controlling the scarch, data transformation,
generalization, and cvaluation functions of the program. One command in Ring § is the INDUCE command
that instructs SPARC/E to look for plausible NDP rules that describe the current sequence. When the

INDUCE command is given, Ring 5 calls Ring 4 to begin the rule discovery process.

6.3.2 Ring 4: Adding Derived Attributes

Ring 4 applies the adding-derived-attributes transformation to convert the Elcusis layout into a secquence of
VL22 events. This involves creating derived attributes that make cxplicit certain commonly known
characteristics of playing cards that are likely to be used in an Elcusis rule: COLOR, PARITY, FACED versus

NON-FACLD cards, and so on. FFigure 9 shows the layout from Figure 8 after it has been processed by Ring 4.
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‘The plusses and minuses along the right-hand side of the figurc indicate whether the event is a positive

example or a negative example of the sequence-gencrating rule. These derived events are passed o Ring 3 for
further processing.

VL22 event positive or
negative

[rank(cardl)=3][suit(cardl)=H]
[parity(cardl)=odd][color(cardl)=red]
[primo(cardl)=N][faced(cardl)=Y] +

[rank(card2)=9][suit(card2)=S]
[parity(card2)=odd][color(card2)=black]
(prime(card2)=N][faced(card2)=N] +

[rank(card3)=J][suit(card3)=D]
[parity(card3)=odd][color(card3)=red]
[prime(card3)=Y][faced(card3)=Y] -

[rank(card3)=56][suit(card3)=D]
[parity(card3)=odd][color(card3d)=red]
[prime(card3)=N][Taced(card3)=Y] -

[rank(card3)=4][suit(card3)=C]
[parity(card3)=even][color(card3)=black]
[prime(card3)=N][faced(card3)=N] +

[rank(cardd4)=J][suit(card4)=D]
[parity(card4)=odd][color(cardé)=red]
[prime(card4)=Y][faced(card4)=Y] +

etc.

Iigure 9: Derived layout after Ring 4 processing.

6.3.3 Ring 3: Segmenting the Layout

Ring 3 is the first Eleusis-independent ring. It applics the segmenting transformation to the sequence
supplicd by Ring 4. In the present implementation, the end points of each scgment are determined by
applying a segmentation predicate, P(card, ,, card) to all pairs of adjacent cvents in the sequence. When the
predicate P evaluates to FALSE, the sequence is broken between card.l_l and cardi to form the end of a
segment. Typical scgmentation predicates used arc:

[rank(card)) = rank(cardH)]
[rank(cardl) = rank(cnrdi_1)+ 1]
[color(card) =co]or(cardi_l)]
[suit(cardi)-:sui((cardi_l)]
[parity(card,) = parity(card_ )

Other techniques for performing segmentation, such as providing a predicate that becomes TRUE at a

scgment boundary (sce section 4.2.2), are not implemented in SPARC/E.
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Ring 3 scarches the space of possible segmentations using two search pruning hcuristics. After cach

auempt to scgment the sequence, it counts the number of derived objects (segments), k, in the derived

sequence. If k is less than 3, the segmentation is discarded since there are too few derived objects to use for

gencralization. Ifk is more than half of the number of objects in the original sequence, the segmentation is
also discarded because in this casc many segments contain only one original object. Scgmented scquences

that survive thesc two pruning heuristics are passed on to Ring 2 for further processing.

One segmentation that Ring 3 always performs is the "null” scgmentation—that is, it always passcs the

unscgmented sequence directly to the inner rings. Figure 10 shows a sample layout and the resulting derived
layout after segmentation using the segmentation condition: [suit(car‘d'l)-su1t(card1+1)]. The

derived  objects  (segments) are  denoted by variables stringl. The negative cvent

[su1t(str1ngZ)=D][co1or(str1n92)=red][1ength(stringZ)=3] is obtained from the
scginent <6D 2D 4D). ?

The layout:

3H 6D 2D 7C AC 9C JH 6H 8H QH KS
6S 4D AH

7S

The derived sequence:

description of pesitive or
derived object negative
[su1t(str1ng1)-H][color(stringl)=red]
[langth(stringl)=1] +
[su1t(str1ngZ)=D][color(str1ng2)-red]
[Tength(string2)=2] -
[su1t(str1ngZ)=D][color(str1ngZ)=red]
[length(string2)=3] -
[su1t(str1n93)=C][color(str1ngs)=black)
[Tength(string3)=3] +
[su1t(string4)=H][co]or(str1ng4)-red]
[Tength(stringd)=4] -

Figure 10:  Sample layout and segmented sequence.

SPARC/E dcrives the descriptors COLOR, SUIT, and LENGTII to describe each derived object. The choice

of which descriptors to derive involves three steps.  First, LENGTH is derived whenever the segmentation

transformation is applied. Sccond, any descriptor that is tested in the segmentation predicate (in this case,

SUIT) is alo derived. Third, any descriptor is derived whose value can be proved to be the same for all cards
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in cach segment. In this case, COLOR is derived because, if SUIT is a constant, then COLOR is also a constant.
Using this segmentation, SPARC can usc the DNF model to discover that the scgmented sequence can be
described as

[Tength(stringi )=length(stringi-1)+1]
That s, the LENGTII of cach segment of constant SUIT (in the main line) increases by 1.

6.3.4 Ring 2: Parameterizing the Models

Ring 2 scarches the space of parameterizations of the three basic models. Fach model is considered in turn.
For cach model, Ring 2 develops a set of derived events based on each allowed value of the lookback
parameter, L, and the number of phases parameter, P. The user can control which models should be inspected
and what range of values for L and P should be investigated. By default, the program will inspect the

decomposition model with L = 0, 1, or 2, and the periodic model with P = 1 or2and L = Qor 1.
Specifically, Ring 2 performs the following actions depending on which model is being parameterized:

A. For the decomposition model with lookback parameter L, Ring 2 applies the blocking transformation to
break the scquence received from Ring 3 into blocks of length L. After blocking, all of the attributes that
described the original objects are converted into attributes that describe the whole block (as described in
section 4 above). Furthermore, sum and difference descriptors are derived to represent the relationships
between adjacent objects in the original sequence. The resulting derived events can be viewed as very specific
if-then clauses of the following form.

Given an initial scquence of objects €q,. Gy, - q,,,>. letus look at block b, which describes the subsequence
Q.- Q9> Let Fj denote the sclectors of object G renamed so that they apply to b,. For example, F,
could be the sclectors [suit1(bi)=H][rank1(bi)=3]—sclectors that originally referred to object q;;
Let d(FJ.,Fk) denote all of the difference selectors obtained by “subtracting” event Fk from cvent Fj. and let
s(Fj. Fk) denote all of the summation selectors obtained by "summing” events FJ. and Fk. For example, d(F,,

F,) could include the selectors [d-suit01(b1 )=2][d-rank01(bi)=-3] obtained from "subtracting”
F, from Fo.

With these definitions, the derived events for the decomposition model have the form:

Fl&..&F = F &dF F)&..&d(F, F)&
s(Fy F) & .. & (Fy, F))

These derived cvents no longer need to be ordered since the ordering information is made cxplicit within

the events. These events have the form of very specific if-then clauses. ‘This facilitates the model-fitting

process in Ring 1.
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B. For the DNF model with lookback parameter L., the sequence derived in Ring 3 is blocked in a very
similar manner, except that only the sclectors describing q, are retained in the description of block b. The

derived cvents have the following form:

Fo& d(Fy, F)) & .. & d(F, ) & s(Fy, F)) & ... s(F,, F, )

These events are very specific conjuncts that are passed to the A9 algorithm in Ring 1, where they are

- generalized to form a DNF description.

C. For the periodic model with period length P and lookback L, Ring 2 performs a splitting transformation
followed by a blocking transformation. First, the sequence obtained from Ring 3 is split into P separate

sequences. Then cach scparate sequence is blocked into blocks of length L.+ 1. The derived events have the

same form as the events derived for the DNF model. Note that because the blocking occurs after the

splitting, the lookback takes place only within a phase.

To provide an example of the function of Ring 2, Figure 11 shows some events from Figurc 9 after they

have been transformed in preparation for fitting to a decomposition model with L=1.

[rank1(b2)=3][suit1(b2)=H]
[parityl(bZ)-odd][colorl(b2)=red]
[prime1(b2)=Y][faced1(b2)=N] =>

[rankO(bZ)=9][su1tO(b2)=S][par1ty0(b2)=odd]
[co]orO(bZ)-b1ack][pr1meO(b2)=N]
[faced0(b2)=N][d-rank01(b2)=+6]
[d-suit01(b2)=+1][d-parity01(b2)=N]
[d-color01(b2)=Y][d-prime01(b2)=Y]
(d-faced01(b2)=Y][s-rank01(b2)=12]

[rank1(b3)=9][suit1(b3)=S]
[parity1(b3)=odd][color1(b3)=black]
(prime1(b3)=N][faced1(b3)=N] =)

[rankO(b3)-J][su1tO(b3)=D][par1tyO(b3)=odd]
[color0(b3)=red][prime0(b3)=Y]
[faced0(b3)=Y][d-rank01(b3)=+2]
[d-suit01(b3)=+2][d-parity01(b3)=N]
[d-color01(b3)=Y][d-prime01(b3)=Y]
(d-faced01(b3)=Y][s-rank01(b3)=20] -

Figure 11: Some events of Figure 9 transformed for decomposition L=1.
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6.3.5 Ring 1: The basic model-fitting algorithms

Ring 1 consists of three scparate modcl-fitting algorithms: the A9 algorithm, the decomposition algorithm
and the periodic algorithm.

The A% algorithm [Michalski and Kulpa, 1971] is used to fit the DNF model to the data. A% attempts to
find the DNF description with the fewest number of conjunctive terms that covers all of the positive examples
and nonc of the negative cxamples. The algorithm operates as follows. First, a positive example, called the
sced, is chosen, and the set of maximally-general conjunctive cxpressions consistent with all of the negative
examples is computed. This sct is called a star, and it is equivalent to the G-set in Mitchell's [1978] version
space approach. One clement from this star is chosen to be a conjunct in the output DNF description, and all
positive examples covered by it are removed from further consideration. If any positive examples remain, the
process is repeated, sclecting as a new seed some positive example that was not covered by any member of any
preceding star. In this. manner, a DNF description with few conjunctive terms is found. If the stars are
computed without any pruning, then A9 can provide a tight bound on the number of conjuncts that would

appear in the optimal DNF description with fewest conjunctive terms,

The decomposition algorithm is an iterative algorithm that secks to fit the data to a decomposition model.
The key task of the decomposition algorithm is to identify a few attributes, called decomposition attributes,
from which the decomposition rule can be developed. A decomposition attribute is an attribute that appears

on the left-hand side of an if-then clause of a dccomposition rule. For example, the decomposition rule

[color(cardi-1)=black] => [parity(cardi)=odd] V
(color(cardi-1)=red] => [parity(cardi)=even]

decomposes on COLOR. Hence, COLOR is the single decomposition attribute.

The algorithm uses a gencrate-and-test approach of the following form:
decompositionattributes := {}  The empiy set

while rule is not consistent do
begin

generate a trial decomposition
(based on positive evidence only)
for each possible decomposition attribute

test these trial decompositions against
the data

select the best decomposition attribute and
add it to the set decompositionattributes

end
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The process of gencrating a trial decomposition takes place in two steps. First, a VL22 conjunction is
formed for cach possible valuc of the decomposition attribute. All positive events that have the same value of
the decomposition attribute on their left-hand sides arc merged together to form a single conjunction of
sclectors.  This VL22 conjunction forms the right-hand side of a single clause in the decomposition rule.
Within this conjunction, a selector is created for cach attribute by forming the internal disjunction of the
values in the corresponding sclectors in the events. For example, using all of the events derived in Ring 2 for

the sample layout in Figure 8, the decomposition algorithm generates the trial decomposition shown in Figure
12 for the PARl’lY(Cardi_ 1) attribute.

[parity(cardi-1)=0dd] => [rank(cardi)=9 v 4"y 2]
[suit(cardi)=S v Cl[parity(cardi)=even v odd]
[color(card1)=b1ack][prime(card1)-Y v N]
[faced(cardi)=N]

[d-rank(cerdi,cardi-1)=+6 v -5 v i §
[(d-suit(cardi,cardi-1)=1 v 2 v 3]
(d-parity(cardi,cardi-1)=Y v N]
(d-color(cardi,cardi-1)=Y v N]
[d-prime(cardi,cardi-1)=Y v N]
(d-faced(cardi,cardi-1)=Y v N]
[s-rank(cardi,cardi-1)=12 v 13 v 9]

[parity(cardi-1)=even] =>
[rank(cardi)=J v 10 v 8 v 7]
[suit(cardi)=H v D][parity(cardi)=even v odd]
[co]or(card1)=red][pr1me(card1)=Y v N]
[faced(cardi)=Y v N]
[d-rank(cardi,cardi-1)=7 v 8 v -2 v =11
(d-suit(cardi,cardi-1)=0 v 1]
[d-parity(cardi,cardi-1)=Y v N]
[d-color(cardi,cardi-1)=Y v N]
[(d-prime(cardi,cardi-1)=Y v N]
[d-faced(cardi,cardi-1)=Y v N]
[s-rank(cardi,cardi-1)=15 v 12 v 18]

Figure 12: Trial decomposition on the PAR!TY(cardl_l) attribuce

Since there arc only two values (ODD'and EVEN) for the decomposition attribute in the scquence shown in

Figure 8, two conjunctions are formed. The first conjunction is obtained by merging all of the positive cvents
for which [parity( cardi-1)=odd]. There arc four such events. The first selector in that conjunction,

[rank(cardi)=9 v 4 v 2], is obtained by forming the internal disjunction of the values of
rank(cardi) in cach of the four cvents.

The second step in forming a trial decomposition is to generalize cach clause in the trial rule. The
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genceralization is accomplished by applying ruies of gencralization to extend internal disjunctions and drop
selectors.  (See [Michalski, 1983] for a déscriplion of various rules of generalization.) Corresponding
attributes in the different clauses of the decomposition rule are compared, and selcctors whose value sets
overlap are dropped. When these rules of generalization are applied to the trial decomposition for PARITY,
for example, the following generalized trial decomposition is obtained:

[parity(cardi-1)=o0dd] =>
[suit(cardi)=C v S][color(cardi)=black]

(parity(cardi-1)=even] =>
[suit(cardi)=H v D][co]or(car‘d1)-red]

This is a very promising trial decomposition. However, it has been developed using only positive evidence,
and it has been generalized without considering that the generalization may have causcd the rulc to cover
negative events. Hence, the trial decomposition must be tested against the negative events to determine
whether or not it is consistent. It turns out that the gencralized trial decomposition shown above is indeed

consistent with the negative evidence.

After a trial decomposition has been developed for each possible decomposition attribute, the best
decomposition attribute is sclected according to a heuristic attribute-quality functional. The attribute-quality
functional tests such things as the number of negative cvents covered by the trial decomposition, the number
of clauses with non-null right-hand sides, and the complexity of the trial decomposition (defined as the
number of sclectors that cannot be written with a single operator and a single value). The chosen trial

decomposition forms a candidate sequence-prediction rule.

If the candidate rulc is not consistent with the data (i.e., still covers some negative cxamples), then the
decomposition algorithm must be repeated to select a second attribute to add to the left-hand sides of the
if-then clauses. This has the effect of splitting each of the if-then clauscs into several more if-then clauses.
For example, if we first decomposed on PARlTY(cardH) and then on FACED(cardi.l), we would obtain four
if-then clauses of the form:

[parity(cardi-1)=odd][faced(cardi-1)=N] => ..,
[parity(cardi-1)=odd][faced(cardi-1)=Y] => ...
[parity(cardi-1)=even][faced(cardi-1)=N] => ..,
[parity(cardi-1)=even][faced(cardi-1)=Y] => .

.«

The periodic algorithm is nearly the same as the decomposition algorithm. For cach phase of the period, it
takes all of the positive events in that phase and combines them to form a single conjunct by forming the
internal disjunction all of the value sets of corresponding selectors. Next, rules of gencralization are applied
to extend internal disjunctions and drop sclectors. Finally, corresponding attributes in different phases are

compared, and sclectors whose values sets overlap are dropped if this can be done without covering any

ncgative examples.




6.3.6 Evaluating the NDP rules

Once Ring 1 has instantiated the parameterized models to produce a set of rules, the rules arc passed back
through the concentric rings of the program. Each ring evaluates the rules according to plausibility criteria
based on knowledge available in that ring. Ring 2, for example, checks to see that the rule does not predict an
end to the sequence. It is assumed that a valid sequence can be continued indefinitely. Ring 3 checks the last
(partial) segment to see if it is consistent with the rule. It is possible to induce a rule, using only the complete

segments, that is not consistent with the final segment. Ring 4 tests the rule using the plausibility criteria for
Elcusis. These criteria are:

1. Prefer rules with intermediate degree of complexity. In Eleusis, Occam’s Razor does not always
apply. The dealer is unlikely to choose a rule that is extremely simple, because it would be too
easy to discover. Very complex rules will not be discovered by anyone, and, since the rules of the
game discourage such an outcome, the dealer is not likely to choose such complex rules cither.

2. Prefer rules with an intermediate degree of non-determinism. Rules with a low degree of non-

determinism Icad to many incorrect plays, thus rendering them casy to discover. Rules that are
very nondcterministic gencrally lead to few incorrect plays and are therefore difficult to discover.

Rules that do not satisfy these heuristic criteria are discarded. The remaining rules are returned to Ring §
where they are printed for the user.

7 Examples of Program Execution

In this section, we present some example Eleusis games and the corresponding sequence-gencrating laws
that were discovered by SPARC/E. Each of these games was an actual game among pecople, and the rules are
presented as they were displayed by SPARC/E (with minor typesctting changes).

The raw sequences presented to SPARC/E had only two attributes: SUIT and RANK. SPARC/E was given
definitions of the following derivable attributes:

® COLOR (red for Hearts and Diamonds; black for Clubs and Spadcs)
® FACE (truc if card is a faced, picture card, false otherwisc)

e PRIME (true if card has a prime rank, falsc otherwise)

® MOD2 (the parity value of the card, 0 if card is even, 1 otherwisc)

® MOD3 (the rank of the card modulo 3)
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¢ L ENMOD2 (When SPARC/E segments the main sequence into derived subse

quences, it computes
the LENGTH of cach of the subscquences modulo 2)

Three examples of the program execution are presented: one showing the program at its best, onc showing
some of the shortcomings of the program, and onc demonstrating weaknesses of the program. A few
explanations are required. First, cach rule is assumed to be universally quantified over all cvents in the
scquence. This quantification is not explicitly printed. Second, when the value set of a selector includes a set
of adjacent values (c.g., [rank(cardi)=3 v 4 v 6], this is printed as [RANK(CARDI)=3, .6]. The
computation times given are for an implementation in PASCAL on the CDC CYBER 175.

7.1 Example 1

In this example, we show the program discovering a segmented rule. The program was presented with the

following layout:

Main 1ine: AH 7C 6C 9S 10H 7H 10D JC AD
Side lines: KD 6S QD
JH

continued: 44 80 7C 03 10C kS 2¢ 108 38
3s 9H QH
6H AD

The program only discovered one rule for this layout, precisely the rule that the dealer had in mind (1.2
scconds required):
RULE 1: LOOKBACK: 0 NPHASES: 1 PERIODIC MODEL

CRITERION=[COLOR(CARDI)=COLOR(CARDI-1)]:
PERIOD([LENMOD2(STRINGI)=1])

The rule states that one must play strings of cards with the same color. The strinés must always have odd
length. The CRITERION = gives the segmentation criterion that a segment is a string of cards all of the same.
color. CARDI refers to the I-th card in the original sequence. STRINGI refers to the I-th string in the
scgmented sequence. SPARC/E discovered this rule as a degenerate periodic rule with a period length, P, of
1. Actually, the rule that the dealer had in mind had one additional constraint: a queen must not be played

adjacent to a jack or king. Rules containing such exception clauses cannot be discovered by SPARC/E.
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7.2 Example 2

The second example requires the program to discover a fairly simple periodic rule. SPARC/E discovers
three cquivalent versions of it.

Here is the layout:

Main line: JC 4D QH 3S QD 9H QC 7H 1D
Side 1lines: KC &S 4S 10D

78
continued: 90 QC 3H KH 4C KD 6C JD 8D
continued: JH 7C JD 7H JH 6H KD

The program discovered the following descriptions of this layout (0.49 seconds were required):

RULE 1: LOOKBACK: 1 NPHASES: 0
DECOMPOSITION MODEL

[FACE(CARDI-1)=FALSE] =>
[RANK (CARDI ) >JACK]
[RANK (CARDI ) >RANK (CARDI-1) ]
[FACE(CARDI)=TRUE] v

[FACE(CARDI-1)=TRUE] =>
[RANK(CARDI)=3..9]
[RANK(CARDT ) <RANK( CARDI-1)]
[FACE(CARDI) =FALSE]

RULE 2: LOOKBACK: 1 NPHASES: 1 PERIODIC MODEL

PERIOD([RANK(CARDI)>3]
[RANK(CARDT ) #RANK(CARDI-1)]
[FACE(CARDI )#FACE (CARDI-1)])

RULE 3: LOOKBACK: 1 NPHASES: 2 PERIODIC MODEL

PERIOD([RANK(CARDI)=>JACK]
[RANK ( CARDI)=>-RANK(CARDI-1)+20]
[FACE(CARDI)=TRUE],

[RANK(CARDI)=3..9]
[RANK (CARDI )=-RANK(CARDI-1)+6..14]
[FACE(CARDI)=FALSE])

Rule 1 is a decomposition rule with a lookback of 1. Rule 2 expresses the rule as a single conjunction. This
is possible because FACE versus NON-FACE is a binary condition, and there are precisely two phases to the rule.

Rule 3 expresses the rule in the “natural™ way as a periodic rule of length 2.
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Notice that, although the program has the gist of the rule, it has discovered a number of redundant
conditions.  Tor cxample, in rule 1, the program did not use knowledge of the fact that
[rank(cardi)=>jack] implics [face(cardi)=true], and therefore, it did not remove the former
selector. Similarly, because of the interaction of the two conditions, [rank (cardi )>rank(cardi-1)]is
completely redundant.  SPARC/E already has enough background knowledge about the meanings of its
attributes to support these inferences. Additional routines need to be written to actually perform them (as is
donc in the INDUCE-2 program--sce [Michalski, 1983)).

7.3 Example 3

The third example shows the upper limits of the program’s abilities. During this game, only one of the
human players cven got close to guessing the rule, yet the program discovers a good approximation of the rule

using only a portion of the layout that was available to the human players. Here is the layout:
Main line: 44 B0.8C J8 2C &S AC 8S 10

Side lines: 7C 6S KC AH 6C AS
JH 7H 3H KD
4C 2C QS
10S 78
8H 6D
AD 6H
<0  4C

The program produced the following rules after 6.5 seconds:
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RULE 1: LOOKBACK: 1 NPHASES: 0 DNF MODEL

[RANK(CARDI)<6][SUIT(CARDI)=SUIT(CARDI-1)+1] V
[RANK(CARDI)>6][SUIT(CARDI)=SUIT(CARDI-1)+3]

RULE 2: LOOKBACK: 1 NPHASES: 1 PERIODIC MODEL

PERIOD( [RANK(CARDT)=RANK(CARDI-1)-9]
[RANK(CARDI )=-RANK(CARDI-1)+4,5,7,11,13,17]
[SUIT(CARDI)=SUIT(CARDI-1)+1,2,3])

RULE 3: LOOKBACK: 1 NPHASES: 2 PERIODIC MODEL

PERIOD([RANK(CARDI)=ACE,2,8,10]
[RANK(CARDI )=-RANK(CARDI-1)+1,8,9,10],

[RANK(CARDI)=5. .JACK][SUIT(CARDI)=SPADES]
[RANK(CARDI ) =RANK(CARDI-1)+-0..6]

[RANK(CARDI )=-RANK(CARDI-1)+8..14]
[SUIT(CARDI)=SUIT(CARDI-1)+0..2]
[COLOR(CARDI)=BLACK ][ PRIME(CARDI)=PTRUE]
[PRIME(CARDI)=PRIME(CARDI-1)]

[MOD2 (CARDI )=1][MOD2( CARDI)=HMOD2(CARDI-1)+0]
[MOD2 (CARDI )=-MOD2(CARDI-1)+0][*0D3(CARDI)=2]
[MOD3(CARDI)=MOD3 (CARDI-1)+0]

[MOD3 (CARDI)=-MOD3(CARDI-1)+1])

The rule that the dealer had in mind was:
[SUIT(CARDI)=SUIT(CARDI-1)+1]
[RANK(CARDI)>RANK(CARDI-1)] V

[SUIT(CARDI)=SUIT(CARDI-1)+3]
[RANK(CARDI ) <<RANK(CARDI-1)]

There is a strong symmetry in this rule: the players may cither play a higher card in the next "higher” suit

(recall that the suits are cyclically ordered) or a lower card in the next "lower” suit. The program discovered a

slightly simpler version of the rule (rule 1) that happencd to be consistent with the training instances. Note
that adding 3 to the SUIT has the effect of computing the next lower suit.

The other two rules discovered by the program are very poor. They arc typical of the kinds of rules that the
program discovers when the model does not fit the data very well.  Both rules are filled with irrelevant
descriptors and valucs. The current program has very little ability to assess how well a model fits the data.

These rules should not be printed by the program since they are highly implausible.
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8 Summary

We have presented here a methodology for discovering sequence-gencrating rules for the nondcterniinistic
prediction problem. The main ideas behind this methodology are

1. the usc of task-oriented transformations of the initial data and

2. the use of different rule models to guide the scarch for sequence-gencrating rules.

Four different task-oriented transformations (adding attributes, blocking, splitting into phases, and

segmenting) and three models (DNF, periodic, and decomposition) have been presented.

The main part of the methodology has been implemented in the program SPARC/E and applicd to the
NDP problem that arises in the card game Eleusis. The performance of the program indicatcs that it can

discover quite complex and interesting rules.

This methodology is quite general and can be applied to other nondeterministic prediction problems in
which the objects in the initial sequence are describable by a small set of finite-valued attributes. The main
strengths of the method are (a) that it can solve learning probiems in which the initial training instances
require substantial task-oriented transformation and (b) that it can search very large spaces of possible rules

using a sct of rule modcls for guidance.

Many aspccts of this methodology remain to be investigated. We have not considered NDP problems in
which (a) the training instances are noisy, (b) the training instances have internal structure so that an attribute
vector representation cannot be used, and (c) the sequence-generating rules are pcrmitted to have exceptions.
Application of this methodology to real world problems will probably also require the devclopment of
additional sequence transformations and rule models. Also, more heuristics need to be developed that can be

used to guide the application of transformations and models.

The implementation of the methodology in program SPARC/E has demonstrated that the method can be
used to discover many Eleusis sccret rules. There are some shortcomings of the implementation, however.
The program presently conducts a nearly exhaustive depth-first scarch of the possible models and
transformations. Much could be gained by having the program conduct a best-first heuristically-guided
scarch instead. Another weakness of SPARC/E is its poor ability to cvaluate the plausibility of the rules it
discovers. It is also not able to simplify rules by removing redundant selectors, nor is it able to estimate the
degree of nondeterminism of the rule. Both of these can be implemented without too much difficulty by
including inference routines that make more complete use of the background knowledge alrcady available to

the program.  Finally, an important weakness of the program is its inability to form compositc modcls.
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SPARC/E is not presently able to handle the NDP problem shown in Figure 1, because it involves a periodic

rule in which one of the phascs contains an imbedded periodic scquence (see section 5.3).

In addition to these specific problems, there are some more gencral problems that further rescarch in the
arca of scquence-gencrating laws should address.  First, in some real world problems, there are scveral
example scquences available for which the sequence-gencrating law is believed to be the same. Such
problems occur, in particular, in describing the process of discase devclopment in medicine and agriculture,
A specific problem of this type that has been partially investigated involves predicting the time course of
cutworm infestation in a cornfield and estimating the potential damage to the crop (see [Davis, 1981], [Baim,
1983], and [Boulanger, 1983]). In this problem, several sequences of obscrvations are available—one for each

ficld—and there is a need to develop a sequence-generating law that predicts all of these sequences.

A sccond general problem for further research is to handle continuous processes. Al research has so far

given little attention to this case.

9 Notational conventions

The following notational conventions are employed in this paper. In genceral, lowercase letters denote
objects in some sequence (q, ph, b) or index variables (i, j, k) or the lengths of sequences (m, n). Uppercase
letters denote sets of objects, attributes, and so on (Q, F, S) as well as parameters of models and

transformations (L., P). Small capitals denote attributes (COLOR, RANK) and their valucs (RED, KING).

O Angle brackets denote sequences of objects, ¢.g., <2 4 6 8> and also periodic rules, e,
<[color(qi) = red] [color(qi) = black]>.

q,or qi The i-th object in an input scquence.

q; The i-th object in a derived sequence.

Q" An object that constitutes an incorrect extension of the sequence after object Q.
b, orbi The i-th block in a sequence derived by the blocking transformation.

phl The i-th phasc derived by the splitting transformation.

F The starting set of attributes for a transformation.

S The starting sct of sequences for a transformation.

Q The starting sct of objects for a transformation.
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The set of derived attributes from a transformation.
The set of derived sequences from a transformation.
The set of derived objects from a transformation.

The set of sclectors describing object 9 in block b,

The sequence-generating function that maps a sequence into a sct of objccts Q that can
appear as continuations of the sequence.

The sct of objects that can appcear as continuations of the sequence <q,, Qy - G

The number of phases parameter of the splitting transformation and the periodic model.

The lookback parameter of the blocking transformation and all three models,

[f(a)=rJor [t1(aj)=rk]

A simple sclector, which asserts that feature fl of object q has the value M

[(fi(qj)=r1l v r2 v r3]
A selector containing an internal disjunction. It asserts that f'l can have the value ryorr,or
fy.

d prefix The d prefix on an attribute name indicates that it is a difference attribute. Hence,
D-RANK(q,.q,.,) is equal to RANK(q) - RANK(q, ).

s prefix The s prefix on an attribute name indicates that it is a summation attribute. Hence,
$-RANK(q,.q, ;) is equal to RANK(q) + RANK(q; ).

d(F, FJ) The set of difference selectors obtained by "subtracting” selectors Fj from F,.

s(F,, Fj) The sct of summation selectors obtained by u”adding” selectors Fi and F..

Logical implication.
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