
S
Report 83-27
Stanford KSL

all % stlentillc DataLink

Discovering Patterns in Sequences of Objects.
Thomas G. Dietterich, Ryszard S. Michalski,
May 1983

heuristic Programming Project
1\lay 1983

Memo I IPP-83-27

Discovering Patterns in Sequences of Objects

Thomas G. Dicttcrich
Stanford University

Stanford, California 94305

Ryszard S. Michalski
University of Illinois
Urbana, Illinois 61801

The authors gratefully acknowledge the partial support of the NSF under grant MCS-82-05166 and of the
Office of Naval Research under grant No. N00014-82-K-0l 86.

Table of Contents

1 Introduction
11.1 Task-oriented transformation of description space
31.2 Learning with multiple models
52 Problem Statement
72.1 An exemplary NDP problem: the card game Eleusis
93 Overview of Solution
104 Describing and Transforming Training Instances
124.1 Representing the initial sequence
124.2 Transforming the Sequence
134.2.1 Adding derived attributes
134.2.2 Segmenting
144.2.3 Splitting
154.2.4 Blocking
165 Representing Sequence-generating Rules and Models 185.1 The DNF model
205.2 The Decomposition Model
205.3 The Periodic Model
215.4 Derived models
225.5 Model Equivalences and the Heuristic Value of Models 226 Architecture and Algorithms
246.1 Overview of the Program
246.2 Overview of the Concentric Ring Architecture 246.3 The Program SPARC (ELEUSIS version) 26

6.3.1 Ring 5: User Interface
26

6.3.2 Ring 4: Adding Derived Attributes 26
6.3.3 Ring 3: Segmenting the Layout

27
6.3.4 Ring 2: Parameterizing the Models

29
6.3.5 Ring 1: The basic model-fitting algorithms 31
6.3.6 Evaluating the NDP rules

347 Examples of Program Execution
347.1 Example 1
357.2 Example 2
367.3 Example 3
378 Summary
399 Notational conventions
4010 References
41

11

List of Figures

Figure 1: A simple NDP problem 8
Figure 2: A sample Eleusis layout 9
Figure 3: Schematic description of the rule discovery process 11
Figure 4: Splitting transformation with P= 3 15
Figure 5: The Blocking Transformation with 1_, 2. 16
Figure 6: The Model-fitting Approach 25
Figure 7: The knowledge ring architecture 25
Figure 8: Sample Eleusis Layout 26
Figure 9: Derived layout after Ring 4 processing. 27
Figure 10: Sample layout and segmented sequence. 28
Figure 11: Some events of Figure 9 transformed for decomposition L=1. 30
Figure 12: Trial decomposition on the PARITY(card) attribute 32

List of Tables

Table 1: Spectrum of learning problems in increasing order of difficulty
Table 2: Spectrum of model-based methods in increasing difficulty
Table 3: Some examples of sequence-generating rules in Elcusis

BLANK PAGE

1

Abstract

A more general kind of sequence-prediction problem—the non-deterministic prediction problem—is

defined, and a general methodology for its solution presented. The methodology, called SPARC, employs
multiple description models to guide the search for plausible sequence-generating rules. Three different
models are presented along with algorithms for instantiating them to discover rules. The instantiation process
requires that the initial input sequence be substantially transformed to make explicit important features of the

sequence. Four different data transformation operators arc described. The architecture of a system called

SPARC/E is presented, which implements most of the methodology for discovering sequence-generating
rules in the card game Elcusis. Examples of the execution of SPARC/E are presented.

•

Kev terms: Machine !earning, sequence-extrapolation, data transformation, model-directed learning.
Elcusis.

1 Introduction

Inductive learning—that is, learning by generalizing specific facts or observations—is a fundamental
strategy by which we acquire knowledge about the world. This form of learning is rapidly becoming one of

the central research topics in Al. Most research on computer models of inductive learning has addressed the
problem of inducing a general description of a concept from a collection of independent instances of that

concept (the so-called training instances). Thus, the research has dealt with learning concepts that represent a

certain class of instances. The instances can be specific physical objects, interactions, actions, processes, and

so on. The learned concepts arc general descriptions of classes of such instances.

Learning problems of this type include

• learning a checkers evaluation function [Samuel, 1963, 1967] that assigns to a given class of board
situations a certain value,

• learning descriptions of block structures [Winston. 19701,

• determining rules for interpreting mass spectrograms [Buchanan and Mitchell, 19781,

• formulating diagnostic rules for soybean diseases [Michalski and Chilausky, 19801, and

• discovering heuristics to guide the application of symbolic integration operators [Mitchell, Utgoff,
and Bailed', 1983i.

2

In Samucl's checkers program, for example, each training instance was a board situation represented as a

vector of 16 attributes. The learned concept was an evaluation function that computed the "value" of any

board position for the side whose turn it was to move. No relationships between different board positions

were considered. Similarly, Michalski's AQ1I program [Michalski and Chilausky, 1980] was given

independent training instances, each describing a diseased soybean plant in terms of 35 multi-valued

attributes. Each plant could have one of 19 possible soybean diseases. From several hundred training

instances, the program inferred general diagnostic rules for each of these diseases.

This type of inductive learning can be called instance-to-class generalization. A review of several methods

for .such instance-to-class generalization can be found in [Nlichalski. Carbonell, and Mitchell, 1983]. A

comprehensive review of learning research is given in [Diettcrich, London, Clarkson, and Dromcy, 1982].

Another type of inductive learning involves constructing a description of a whole object by observing only

selected parts of it. For example,' given a set of fragments of a scene, the problem is to hypothesize the

description of the whole scene. A very important case of such part-to-whole generalization is where the "part"

consists of a fragment of a sequence of objects (or a process evolving in time) and the problem is to induce the

hypothetical description of the whole sequence (the process). Once such a description is found, it can be used

to predict the possible continuations of the given sequence or process. This class of part-to-whole inductive

learning problems we will call prediction problems.

This paper investigates the prediction problem for a sequence of objects characterized by a finite set of

attributes. An elementary problem of this type is letter-sequence prediction, in which each object in the

sequence is characterized by only one attribute: the name of the letter. For example, given a sequence of

letters such as

ABXBCWCDV...

the learning program must discover a "pattern"—that is, a rule that governs the generation of letters in the

sequence. In this case, such a rule might state that the sequence is a periodically repeating subsequence of

three letters in which the first two letters are successors of the letter appearing in the previous period, while

the third letter is the predecessor of the corresponding letter in the previous period. Early papers by Simon

and Kotovsky [1963, 1972, 1973] show that just a few relationships (such as successor, predecessor, and

equality) arc sufficient to represent most such patterns. Related work by Solomonoff [1964] and Hedrick

[1976] has investigated grammatical approaches to describing letter sequences.

The sequence prediction problem becomes more difficult when the sequence consists not of simple objects

with only a single relevant attribute (like the problem just described), but instead of objects with many

relevant attributes. Further complexity is introduced if the pattern describing the sequence also involves a

3

variety of relationships among these attributes. For example, the pattern may involve the periodicity of

recurrence of certain properties or the dependence of the next object in the sequence on the properties of

objects preceding it at some arbitrary distance in the past. A sequence prediction problem exhibiting the

above-mentioned complexities arises in the card game Fleusis [Abbott, 1977; Gardner, 1977]. Examples from

this game will be used to illustrate the general methodology or discovering patterns in sequences described in
this paper. The rules for Fleusis are briefly explained in section 2.1.

Before we formulate precisely this problem of discovering patterns in sequences, let us first explain why it

is important for current Al research. There are three major AI problems that must be addressed in any

solution to this discovery task: (a) the representation problem, (b) the problem of performing model-driven

inductive learning with multiple models, and (c) the oroblcm of reasoning about temporal processes. The

specific representation problem of interest here is that of automatically determining an appropriate series of

transformations of the initial sequence description so that the pattern can be found. The multiple-model

inductive learning problem arises because no single model can provide sufficient guidance to the search for

plausible descriptions in this domain. The relationship of this problem to reasoning about time is not as

strong as the other two problems. However, since temporal processes include as a special case discrete-time

linear sequences, some of the techniques developed for sequence prediction may be relevant to the more

general problem.

In the next two sections, we discuss in detail the representation problem and the problem of multiple-

model induction as they arise in this domain.

1.1 Task-oriented transformation of description space

The problem of transforming the initial problem description arises in many practical domains in which the

given data (e.g., the training instances in inductive learning) are observations or measurements that do not

include the information most rcicvant to the task at hdnd. For example, in character recognition, the input

typically consists of a matrix of light intensities representing a character, but the relevant information includes

position-invariant properties of letters such as the presence of a line on the left or right of a character,

occurrence of line endings, closed contours, and so on (e.g.,[karpinski and Michalski, 19661). These position-

invariant properties can be made explicit by applying task-oricnied transformations to the raw data.

An example of a learning program that performs task-oriented transformations is INTSUM (a part of the

Meta-DENDIZAL system, [Buchanan and Mitchell, 1978]). INTSUM is presented with raw training instances

in the form of chemical structures (graphs) and associated mass spectra (represented as fragment masses and

their intensities). For each fragment in the mass spectrum, INTSUM must ,letermine the bonds that could

4

have broken to produce that fragment.- A simple mass spectrometer simulator is used to develop these
hypothesized bond breaks. Each of the resulting transformed training instances has the form of a chemical
structure and a set of bonds that broke when that structure was placed in the mass spectrometer. It is this
information that is provided to the remaining parts of the Meta-DENDRAL system (programs RULEGEN
and RULEMOD).

In character recognition programs and in Meta-DF.NDRAL, the data transformations arc fixed in advance.
Future learning systems, however, may not know the proper transformations a priori. These learning systems
will need to select or invent appropriate task-oriented transformations for each learning situation.

This description-space transformation problem has been called by various authors the data interpretation
problem [Dietterich, et al., 1982] or the reformulation problem [Amarel, 1968]. We prefer the term
task-oriented transformation problem, since it emphasizes that the proper choice of data transformations
depends upon the task being performed. In the sequence prediction problem discussed in this paper, the
desired sequence-generating rules arc described in a language quite different from the language used to
describe the raw sequence. The learning system determines appropriate data transformations from four
general classes of transformations and applies them to the raw sequence to produce a transformed sequence
amenable to pattern discovery.

The task-oriented transformation problem is part of a spectrum of problems faced by learning programs.
The simplest learning algorithms (e.g., linear regression) determine the coefficients for a predetermined, fixed
set of variables. Slightly more sophisticated are learning algorithms, such as the Aq algorithm [Michalski and
Kulpa, 1971] or the candidate elimination algorithm [Mitchell, 1978], that are able to determine which terms
are relevant and how they should be combined (i.e., with operators such as A and V). Learning algorithms
that perform interpretative transformations (e.g., Soloway [1981], Meta-DENDRAL [Buchanan and Mitchell,
1978]) augment these basic inductive algorithms by applying a set of predetermined transformations to the
data prior to inductive generalization. Not yet developed are learning algorithms that could select
description-space transformations under guidance of special heuristics. And very few researchers have
addressed the problem of discovering new descriptors (predicates, functions, operators, etc.). Table 1 shows
this spectrum of inductive learning problems.

The method presented in this paper falls under category 4, since it searches four general classes of
transformations and employs heuristics reflecting domain-specific knowledge.

S

1. Determine coefficients

2. Select relevant variables and combine

3. Apply predetermined transformations
4. Select transformations under heuristic guidance
S. Discover new descriptors

Table 1: Spectrum of learning problems in increasing order of difficulty

1.2 Learning with multiple models

The second major problem that arises in sequence prediction is the problem of learning using multiple
description models. This problem has not received much attention in previous Al research. Most existing
systems employ a singte. model that provides guidance to the induction algorithm as it searches a space of
possible descriptions. Many systems, for example, use conjunctive descriptions to represent concepts. By
constraining the search to consider only conjunctive dmriptions, the learning problem is greatly simplified.
Michalski [Michalski and Kulpa, 19711 constrains descriptions to be in disjunctive normal form with fewest
disjunctive terms. This constraint is satisfied (approximately) by having the induction algorithm find first one
conjunction, and then another, and so on until all of the training instances are covered. Meta-DENDRAL
[Buchanan ani Mitchell, 1978] employs a fairly elaborate model of the operation of the mass spectrometer to
guide its search for cleavage rules. In general, all of these systems use a single model, and very few authors
have made their models explicit.

One researcher who has employed multiple models is Persson [1966]. I-Ic applied four different models to
the problem of extrapolating number- and letter-sequences. Briefly, these models were

1. a model that computes the coefficients and the degree of a polynomial by applying Newton's
forward-difference formula (the degree can be arbitrarily large);

2. an extended model that discovers exponential rules of the form ABC, where A is a polynomial of
degree 4 or less and B and C arc polynomials of degree 1 or less (i.e., II and C arc of the form ax
+ b);

3. a simple periodic model for periods of length 2 (i.e., intertwined sequences); and

4. a generalization of the Kotovsky and Simon model for Thurstone letter-series that can discover
simple periodic and segmented sequence-generating laws.

6

These models arc applied in an artificial learning situation in which the program is given a sequence of
sequence-extrapolation problems. Thus, in addition to attempting to solve each individual sequence-
extrapolation problem, Pcrsson's program tries to predict the kind of sequence-prediction problem that it will
next receive—that is, it tries to predict which model will best fit the next sequence-prediction problem.
Hcncc, when the program is attempting to solve one of the base-level problems, it selects models to apply

based on its predictions about the kind of sequence that it is expecting.

Pcrsson's work shows the value of employing multiple description models to search for sequence-
generating rules. The major limitation of Persson's approach, however, is that it is specific to number- and

letter-sequence prediction. His methods cannot solve the more general problem described in this paper in
which objects have multiple attributes and the task is to find a nondeterministic sequence-prediction rule.

Table 2 shows a spectrum of five model-based learning methods. The simplest approach is to use a single
fixed model. This has been the common approach in Al thus far. The next step is to provide a learning
program with a set of models from which it would choose the most appropriate ones. This is the approach

used by Pcrsson. The third level of sophistication would be to have the program generate a predetermined set

of models, just as the learning program applies a predetermined set of data transformations. This could be

improved by having the program decide which models to generate on the basis of special heuristics. Finally,

an even more sophisticated program would be able to invent new models and apply them to guide the

learning process.

1. Single model

2. Selection from a few models

3. Predetermined generation of models

4. licuristically-guided generation of models
5. Discovery of new models

Table 2: Spectrum of model-based methods in increasing difficulty

The approach described in this paper searches a predetermined space of possible models in a depth-first

fashion, and hence, falls under point 3 of this table.

It is the development of techniques for addressing these two problems—of selecting task-oriented

transformations and of applying multiple description models—that is the main theoretical contribution of this
research. In the remainder of this paper, we

7

1. define the sequence prediction problem under consideration,

2. describe the methods used for representing and transforming the initial training instances,

3. present techniques for representing the models and sequence-generating niles, and finally,

4. provide the details of the program SPARC/F., which implements most of the described
methodology. The pi ogram is illustrated by a few selected examples of its operation when applied
to the inductive card game Elcusis.

2 Problem Statement

Suppose we are observing a process that generates some objects, one after another, and arranges them into

a sequence. Suppose that the objects are generated from a known set and that there exists an underlying law

that specifics at least some of the properties of every new generated object. We will call such a law a

sequence-generating rule. It is assumed that the law is expressed in terms of properties that arc either

observable properties of objects present in the sequence up to the moment when a new object is generated or

properties that can be derived from such observable properties by some known inference rules.

We arc interested in the most general kind of sequence-generating law in which the law does not

necessarily completely determine which objects can or cannot appear next in the sequence. The law merely

states some properties that constrain the next object to be a member of a restricted set. Thus, such a

generating rule is nondeterministic. The task of discovering such a generating law is a difficult learning task,

requiring task-specific data transformations and model-guided induction. Vv'c will call this learning problem a

non-deterministic prediction problem (NDP, for short). If the law guiding the generation of the sequence

completely defines the next object at every point in the sequence, then the NDP problem reduces to a

deterministic prediction problem (DP, for short). In the DP problem, it is assumed that there is no randomness

in the generation of the next object. The next object is strictly a function of the past objects.

Many researchers have previously considered DP problems such as letter-sequence prediction, number-

series extrapolation, economical prediction, and prediction of the behavior of a computer system. Most

recently, the BACON system [Langley, 19801 has addressed a wide range of DP problems that arise in

scientific discovery situations. BACON and most of its predecessors make strong use of the constraint that in

a DP problem, all attributes of the next object in the sequence arc determined by the previous objects in the

sequence. The NDP problem is more difficult to solve, because only a partial description of the original

sequence is sought. Consequently, many more plausible hypotheses must be considered during the inductive

learning process.

8

Let us illustrate a simple NDP problem by an example. Suppose we arc given a snapshot of an ongoing
process that has already generated the objects (graphs) shown in Figure 1.

• •

2. 3. tA,
t° • 11 •

10. 12.

Figure 1: A simple INIDP problem

7. 1

14.

9.

The observable properties of each graph arc: the NUMBER OF NODES, the SIIAPE of the graph (T-junction,
square, bar, wheel, triangle, star, diamond), the TEXTURE of each node (solid black, blank, and cross), and the
ORIENTATION of the graph (applicable only to graphs that are elongated in some direction, expressed as
degrees clockwise from vertical). Suppose we would like now to predict what could be the next object.

By examining the given string in Figure 1, we can observe that it can be partitioned into segments of three
graphs in length. The nodes of the graphs in each triplet have TEXTURE in the order (solid black, blank,
cross>. The SHAPES of the graphs arc always <T-junction, *, bar> (where * denotes any shape). We can also
notice that the ORIENTATION of the T-junction changes by —45 degrees each time, while the ORIENTATION of
the bar increases by +45 degrees each time. Finally, the NUMBER OF NODES in the center graph alternates
between 4 and 8. If the above regularities indeed constitute the generating law, we can hypothesize that the
next graph in the sequence will have 8 blank nodes, and then after that there will be a graph that is a slanted
bar with crossed nodes and ORIENTATION of 225 degrees (slant downwards to left). Thus, with regard to the
first predicted object, we know only two.properties (NUMBER and TEXTURE of nodes), and with regard to the
second predicted object, we know it completely. It is easy to see that the problem of letter-sequence
prediction (or extrapolation) is a special case of the NDP problem where each object is a letter of an alphabet
whose observable property is its name. It also has one derived property that is its position in the alphabet
(The order of letters in the alphabet is externally-provided domain knowledge.) Since each object (in this case

a character) is defined completely by specifying its name (or as position in the alphabet), letter series
prediction is necessarily a DP problem.

9

2.1 An exemplary NOP problem: the card game Eleusis

An interesting NIA problem occurs in the card game Eleusis, invented by Robert Abbott [Abbott, 1977;
Gardner, 1977]. Fleusis is an inductive game in which players attempt to discover a "secret rule" invented by
the dealer. The secret rule is the generating rule for a sequence of cards. Each player, in his or her turn, adds
one card to the sequence, and the dealer indicates whether the card is a correct extension of the sequence (i.c.,
satisfies the secret sequence-generating rule). Players who play incorrectly are penalized by having additional
cards added to their hands. The goal of each player is to get rid of all of the cards in his hand, which is only
possible if correct car:Is arc played. The cards played during the game arc displayed in the form of a layout in
which the correct cards form "main line" and incorrect cards form "side lines" branching down from the
main line at the card that they followed. Figure 2 shows a typical Elcusis layout for the sequence-generating
rule "Play alternating red and black cards." In this game, the 3 of hearts was played first, followed by a 9 of
spades, and a Jack of diamonds. All of these were correct. Following the Jack, a 5 of diamonds was played.
It appears on a sideline below the Jack, because it was not a correct extension of the sequence. (At this point a
black card is required.) The 4 of clubs was then correctly played, and so on.

Main line: 3H 9S JD 4C JD 2C 10D 2C 6H
Side lines: 6D AH AS 8H

8H 10S 7H
QD 10H

Figure 2: A sample Eleusis layout

Elcusis provides a good domain for studying the use of task-oriented data transformations to aid learning.
Frequently, the generating law for an Elcusis sequence is stated in terms of descriptors that are not present in
the initial sequence. In this example, for instance, the generating law is stated in terms of the color of the
cards, but the original sequence supplies only the RANK and SUIT of each card. Table 3 provides some
examples of generating laws from Elcusis. Note that the terms in which these laws arc expressed (e.g., "strings
of cards of the same suit", "alternating sequence") arc quite different from terms such as RANK and SLIT that
described the original sequence. To bridge this difference, appropriate description-space transformations
have te be performed.

Elcusis also provides a good domain for studying the use of models for guiding the induction process. The
space of possible Eleosis rules using descriptors such as SUIT, RANK, COLOR, FACIDNESS, PARITY, PRIMENESS,
and RANK MODULO 3 is very large. In our description language, there are more than 10137 possible sequence-

10

generating rules involving four or fewer conjunctive expressions' A breadth-first search of this space, such as
is conducted by the candidate-elimination algorithm, would clearly be impossible. Fortunately, the rules used
by people tend to cluster into certain classes that can be well-described by three models: periodic rules,
decomposition rules, and DNF rules. Thus, a model-directed approach can be used to discover sequence-
generating rules in Elcusis.

• If the last card was a spade, play a heart; if last card was a heart, play diamonds: if last was
diamond, play clubs; and if last was club, play spades.

• The card played must be one point higher than or one point lower than the last card.

• If the last card was black, play a card higher than or equal to that card; if the last card was red,
play lower or equal.

• Play alternating even and odd cards.

• Play strings of cards such that each string contains cards all in the same suit and has an odd
number of cards in it.

Table 3: Some examples of sequence-generating rules in Elcusis

3 Overview of Solution

This section gives an overview of the approach taken to solving the NDP problem defined in section 2. The
approach is a combination of bottom-up data transformation, top-down model specialization, and data-driven
instantiation of the specialized models to fit the transformed data. These three processes can be briefly
explained as follows:

1. Bottom-up data transformation involves applying various transformation operators to the initial
sequence description to obtain a derived sequence description. We use four basic data

L
rhis estimate is based on computing the space of all syntactically legal VU conjuncts containing the following set of descriptors (after

gen descriptor Is listed the number of elements in its value set and the number of possible selectors that can be fortr.ed using those
elements): suit (4.9), RANK (13, 91), Col.oR (2,3), rAclusEss (2.3), PARITY (2.3). PRIMENFSS (2,3), RANKMOD3 (3.7), D-SUTIO1 (4.9). D-SUITD2
(4,9), D-RANK01 (25300). D-RANK02 (25.300). S-KANKOI (25.300), s RANK02 (25.300), DCOLOR01 (2,3). D-COLOR02 (2.3). D-FACEDNESSO1 (2,3).
D-FACIDNFSSO2 (2,3), D-PARITY01 (2.3). nPARITY02 (2.3). imustFNesso) (2.3). araistENisso2 (2.3), D-HANKmon3ei (3,7), D-RANKmou3.02
(3.7). The sun' and RANI:mom descriptors arc cyclically ordered. while the RANK descriptors arc interval descriptors. All others arc
nominal. In a block or three adjacent cards (with lookback L=2), tlic first seven descriptors appear three tinicsi-ionce for each card.
Hence, the total number of possible conjuncT, (9'91•3*39•7) • (9'3003003'3'3'3'7r = 2.1122110 . If there arc four
conjuncts in a rule, then we obtain 12.11221'10 4] 1.99'10 .

11

transformations: adding derived attributes, segmenting, splitting, and blocking. Details of these
are described in section 4.

2. Top-down model specialization involves specifying particular values for the parameters of general
rule models to obtain a parameterized model. We use three general models: the disjunctive normal
form model the decomposition model, and the periodic model. Each of these models has
one otornore parameters. For example, both the DNF and decomposition models have a single
parameter: the lookback, L (i.e., the number of objects back from the given object in the sequence
that are assumed to determine the next object). The periodic model has two parameters: the
lookback, L, and the period length, P, which indicates the length of the repeating period in the
sequence. Details of the model specialization process are described in section 5.

3. The model-instantiation process attempts to fit the parameterized model to the derived sequence
description to produce an instantiated parameterized model. A model that has been
parameterized and instantiated serves as a sequence-generating rule. This process is described in
section 6.

The above three steps are illustrated schematically in figure 3.

Generate

specific

model

Fit model

to data

Transform

original

description

Classes of models

Original sequence

Figure 3: Schematic description of the rule discovery process

Specific

model

Derived

sequence

Model instantiation, as used in this paper, is an extension of the well-known AI technique of schema
instantiation. Schema instantiation has been applied, for example, by Schank and Abelson (19751 to interpret
natural language, by Eneelmore and Terry [1979] to interpret X-ray diffraction data in protein chemistry, and
by Friedland [19701 to plan genetics experimen' . Model instantiation differs from schema instantiation in

12

the complexity of the instantiation process. Model instantiation involves not only filling in predetermined

slots or substituting constants for variables, but also synthesizing a logical formula of an assumed type. For

example, in order to instantiate each of the three models described below, the program must synthesize a

conjunction of predicates or a disjunction of such conjunctions that satisfies certain constraints. Model-

instantiation methods share with schema-instantiation methods the advantagt. that they are efficient, and also

effective with noisy and uncertain data. The constraints provided by the models (or schemas) drastically

reduce the size of the space that the program must search.

The principal disadvantage of model- and schema-instantiation methods is that they require substantial

amounts of domain knowledge to be built into the program. In order to keep this domain knowledge explicit

and easily modified, we employ a ring architecture in the design of the learning program, as described in

section 6. This architecture facilitates the application of the system to a variety of problems by simplifying the

process of changing the domain-specific parts of the program.

4 Describing and Transforming Training Instances

Now that we have defined the problem to be solved (the NDP problem) and sketched the solution, we

launch into the details of that solution. This section presents the description language for representing the

original sequences and the transformation operators that can be applied to modify that representation.

4.1 Representing the initial sequence

A sequence of objects is represented as an indexed sequence2

(cir (12-- (10

It is assumed that the only relevant relationship between two objects is their ordering in the sequence. Each

object is described by a set of attributes (also called descriptors) f, f2, fn, which can be viewed as functions

mapping objects into attribute values. To state that attribute fi of object q j has value r, we write

[fi(0)-11.

This notation is called a selector. For example, if fi is color and r is red, then the selector

[color(0)=red]

states that the color of the j-th object in the sequence is red.

Each attribute is only permitted to take on values from a finite value set called the domain, D(fi), of that

attribute. This constraint is part of the background knowledge that has to be given to the program. For

2
A summail of the notational co:1%1:116°ns used in this paper appears m section 9.

13

example, in a deck of cards, the domain of the SUIT attribute is (clubs, diamonds, hearts, spades). Additional

knowledge about the domain set can be represented. In partici.:lar, the domain set may be linearly ordered,

cyclically ordered (i.e., in a circular, wrap-around ordering), or tree ordered. We will see below how these

domain orderings arc applied to the problem of representing cards in an Elcusis game.

A complete initial description of a single object, q, called an event, is an expression giving the values for all
of the attributes of qi. This is usually written as a conjunction of selectors:

Ef1(0)=r1][f2(0)..r2]...[fn(qj)irn].

It can also be represented as a vector of attribute values:

(1.1' r2-- rd.
This vector notation suggests that each object description can be viewed as a point in the event space E:

E = D(f1) X D(f2) X... X D(fn)

This event space contains all possible events.

A complete description of the initial sequence is a sequence of conjunctions of selectors (or alternatively, a
sequence of attribute vectors)—one conjunction for each object in the sequence. The space of all possible
sequences can be generated by selecting all possible sequences of events chosen from E.

4.2 Transforming the Sequence

As we mentioned in section 1, it is often necessary to transform the initial sequence into a derived sequence
in order to facilitate the discovery of sequence-generating rules. Such a data transformation can be viewed as
a mapping T from one set of sequences S. containing objects Q, described by attributes F, to another set of
derived sequences S', containing derived objects Q', and described by derived attributes F'.

: <S, Q, F> --> <S', Q., F>
Pt' "'' Pk

where pi, ..., pk are parameters of the transformation that control its application. We have found four basic

transformations to be especially useful for discovering sequence-generating rules: (a) adding derived attributes.
(b) segmenting, (c) splitting into phases, and (d) blocking. Each of these is described in turn.

4.2.1 Adding derived attributes

The simplest transformation does not change the set of sequences. S. or the set of objects, Q, but only the

set of attributes, F. For example, in Elcusis, the initial set F contains only two attributes: the RANK and SUIT

of a card. These can be augmented by deriving such attributes as COLOR (red or black), FACEDNESS (faced or

nonfaced), mut"((odd or even), and PRIMENESS (prime or not prime in rank). The adding-derived-

attributes transformation has no parameters.

14

4.2.2 Segmenting

'The segmenting transformation derives a new sequence made up of a new set of objects, Q', and described
with a new set of 3ttributes, The new sequence is produced from the original sequence by dividing the

original sequence into non-overlapping segments. Each segment becomes a derived object in the new

sequence. The only parameter of the segmenting transformation is the segmentation condition that tabs how

the original sequence should be divided into segments. Three types of segmentation conditions can be

distinguished: (a) those that use properties of the original objects to determine where the sequence should be
broken, (b) those that use properties of the original objects to determine where the sequence should not be
broken, and (c) those that use properties of derived objects to determine where the original sequence should be
broken.

For example, suppose the original sequence consists of physical objects described by attributes such as

WEIGHT, COLOR, and !WIGHT. An example of each type of segmentation condition follows:

1. Break when [weight(qi-1)>10][weight(qi)‹IO].

According to this condition, the original sequence is to be broken (between go_ and q1) at the
point where the weight of an object changes from above 10 to under 10.

2. Don't break as lone as [color(q1)=color(q1-1)][weight(q1)>10].

This condition states that the original sequence will not be broken (between q1.1 and q1) if the
color stays the same and the weight remains above 10. It will he broken at any point where these
conditions do not both hold.

3. Break so that [length(qi)=2].

This condition states that derived objects (q1') should be subsequences of length 2 from the
original sequence (i.e., pairs of adjacent objects from the original sequence).

The choice of attributes, F, for describing the newly-derived objects. Q', depends on the segmentation

condition used to segment the sequence. For example, if the pength(q1')= 2] condition is used,

attributes of interest might include the sum of the wo tits of the two original objects, the maximum VALUE,

the minimum VALUE, and so on. The LENGT1i of the segment would not be of interest, since by definition, it

is a constant. However, if the [color(qi)•co1or(q1-1)3 condition is used, the LENGTH of the segment

could be quite interesting and should be derived. Also, the rcOL.0R shared by all of the cards in the segment

might be of interest. In our implementation, the user specifics which attributes should be derived. All

user-specified attributes arc derived unless the program can prove from the segmentation condition that those

15

attributes would not have a well-defined value for each segment in the sequence or else would be trivially
cons= for all segments.

Often, a segmentation condition leads to the creation of incomplete segments at the beginning and end of
the original sequence. These boundary cases can create difficulties during model instantiation, so they arc
ignored during rule discovery, but checked during rule evaluation.

4.2.3 Splitting

The splitting transformation splits a single sequence into a sequence of P separate subsequences: <phi, ph2,
...>. Sequence phi starts with object (11 (the object at the i-th position in the original sequence) and continues
with objects taken from succeeding positions at distance P apart in the original sequence. Each of the derived
sequences is called a phase. P is the parameter of the splitting transformation that denotes the number of
phases. Figure 4 shows the splitting operation for P = 3.

Original sequence: <ql q2 q3 q4 q6 q6 q7 q8 q9>
Derived sequence: <phi ph2 ph3>, where

phi: <ql q4 q7>
ph2: <q2 q6 q8>
ph3: <q3 q6 clg>

Figure 4: Splitting transformation with P= 3

The objects within each phase retain the linear ordering that they had in the original sequence. The phases
themselves can be considered to be cyclically ordered so that phi precedes ph2, which precedes ph3, and so
on, until pl- which is followed by phi again. Consider, for example, the following sequence:

<1 8 2 9 3 10 4 11>

The splitting transformation with P=2 would produce the sequence <p h 1 ph 2> where

phi • <1 2 3 4>
ph2 • <8 9 10 11>

Since the splitting transformation simply breaks the original sequence of objects into subsequences, no new
objects are created. Furthermore, no new descriptors are defined. The set of descriptors used to characterize
the objects in each of the phases is the same as the set of descriptors used to characterize the objects in the
original sequence.

The splitting transformation can be applied to break one sequence-prediction problem into several
subproblems—one for each phase. This is how periodic rules are discovered.

IIMPOPIEMPOPIPPIMMIREPPImmilimemporemm •••••■•■•

16

4.2.4 Blocking

The blocking transformation converts the original sequence into a new sequence made up of a new set of

objects IV and a new set of attributes F'. The new sequence is created by breaking the original sequence into

overlapping segments called blocks. Each object 1)1 in the new sequence describes a block of L + 1 consecutive

objects from the original sequence, starting at object q i (called the head) and proceeding backwards to object
(where L is the lookback parameter of the blocking transformation). Figure 5 shows the blocking

operation for L=2 (Block length of 3).

Original sequence: <q1 q2 q3 q4 q5 q6 q7 q8>
Derived sequence: <b3 b4 b6 b6 b7 b8>
where b are derived objects defined as follows:

b3: <ql q2 g).>

b4: <q2 q3 g4>

b5: <q3 q4 15>

b8: <q4 q5 gt>
b7: <q6 q6 g2>
b8: <q6 q7 >

The underlined object in each block is the head object.

Figure 5: The Blocking Transformation with L=2.

Several attributes arc derived to describe each block. For each attribute A applicable to the objects in the

original sequence, the attributes AO, Al, ..., AL arc defined that are applicable to the objects in the derived

sequence. Ao(bi) has the same value as A(q,); Al(b1) has the same value as A(qi_ i): and so on until AL(b1),

which has the same value as A(q..L). In other words, the original attributes are retained in the new sequence,

but they are renamed so that they apply to whole blocks rather than to individual objects in the original

sequence. The numerical suffix on the new names encodes the relative position of the original object qi in

block b.

For example, suppose we have the sequence <ql q2 q3 q4 q5> with attributes RANK and sun., where
[rank(q1)=2][suit(q1)=H]
[rank(q2)=4][suit(q2)=S]
[rank(q3)=6][suit(q3)-C]
[rank(q4)=8][suit(q4)=D]
[rank(q5)=10][suit(q5)-H]

we apply the blocking transformation to this sequence with L=2 to obtain the derivedNow suppose

sequence of blocks <b3 b4 b5>. Then the descriptors RANKO, RANK1, RANK2, surro, SUITl, and SUM will
be derived with the values

17

[rank2(b3)=2][suit2(b3)=H]
[rank1(b3)=4][suit1(b3).S]
[rank0(b3)=6][suit0(b3)=C]

[rank2(b4)=4][su1t2(b4)-S]
[rankl(b4)=6][suitl(b4)=C]
[rank0(b4)=8][suit0(b4)=0]

[rank2(b5)=6][suit2(b5)=C]
[rank1(b5)=8][suitl(b5)=D]
[rank0(b5)=10][suit0(b5)=H]

This transformation leads to a highly redundant representation of the information in the original sequence.
For example, the information about SUIT and RANK of the original object q3 is repeated as SUITO and RANKO
of block h SUIT1 and RANK 1 of block b

4' and SUIT2 and RANK2 of block b5' However, this derived sequence

of blocks facilitates the representation of the relationships between objects in the original sequence. Many
sequence-prediction rules involve such relationships.

To represent relationships between objects, additional descriptors called sum and difference descriptors are
defined. In the case of the above sequence, the descriptors S-RANK01, S-RANK02, D-RANK01, D-RANK02,
D-SL:11-01, and D-SUITO2 arc created. The value of s-RANkol(bi) is the sum of RANK0(bi) and RANK1(bi). The
value of D-RANK0i(bi) is the difference between RANko(b.) and RAmo(b1). Thus, in addition to the selectors
shown above, the following selectors would also be derived for the new sequence:

[s-rank01(b3)=10][s-rank02(b3)=8]
[d-rank01(b3)=2][d-rank02(b3)=4]
[d-suit01(b3)=1][d-suit02(b3)=2]

[s-rank01(b4)=14][s-rank02(b4)=12]
[d-rank01(b4)=2][d-rank02(b4)=4]
[d-suit01(b4)=1][d-suit02(b4)=2]

[s-rank01(b5)=18][s-rank02(b5)=16]
[d-rank01(b5)=2][d-rank02(b5)=4)
[d-suit01(b5)=1][d-su1t02(b5)=2]

From this representation, it is relatively easy to discover that [d- rank01 ()1)=2] is truc for all blocks

Ordinarily, sum and difference attributes only make sense for attributes such as RANK whose domain sets

arc linearly ordered. We have extended the definition of difference to cover unordered and cyclically ordered

domain sets as well. For an unordered attribute such as COLOR, whose domain set is (red. black), D-COLOR01

takes on the value 0 if the cot.oRo(bi) = coLum(bi) and I otherwise. For attributes with cyclically-ordered

domain sets, such as Sul' (s%ith values {clubs, diamonds, hearts, spades)), e-serroi is equal to the number of

steps in the forward direction that arc required to get from surn(bi) to surro(bi). If surn(b1)= diamonds and
surrotbd= clubs, D-surroi(9= 3.

The sum and difference attributes make the ordering of the original sequence explicit in the attributes that

describe each block. Consequently, it is no longer necessary to represent the ordering between blocks.

18

Hence, the model-fitting algorithms discussed below treat the derived sequence (of blocks) as an unordered

sct of events.

One difficulty with the above approach is that the numerical suffix notation is not very easy to read,
especially when it is combined with a sum or difference prefix. Hence, we have developed an alternative
representation that is more comprehensible. In this notation, selectors that refer to blocks, such as
[suitl(b1)H], are written as selectors that refer to objects in the original sequence, such as
[sui t (qi-1).41]. Similarly, selectors such as (d-rank01(bi)-3) are written as
[rank(qi)urank(qi -1)+31 This notation makes the meaning of the selectors clear without having to
explicitly mention the blocks bi. For purposes of implementation, the first notation is better because it
enables the program to treat all sequences—including derived sequences—uniformly. However, the second
notation is more understandable and hence will be used for the rest of this paper.

5 Representing Sequence-generating Rules and Models

A sequence-generating rule is a function g that assigns to each sequence of objects, <q 1, q,. q>. a
non-empty set Of admissible next objects Qk

g: {Kci I. C12-- (Ik>}
Qk+ 1 is the set of all objects that could appear as the next object in the sequence. For example, in the rule

"Play a card whose rank is one higher than the previous card", g(<... 4C>) = Qk + 1 is the set of cards 15C, 5D,

5H, 551.

The set Qk + 1 may contain only one event, or it may contain a large set of possible events. If for all k, the

sequence <q1, q2. q> is mapped by g into a singleton set, then the rule is a deterministic rule: otherwise, it
is a nondeterministic rule. This paper addresses the problem of discovering a nondeterministic sequence-

generating rule, g, given the sequence <q1, q2. q>.

The sequence <q1, q2.q> can be viewed as the set of assertions

q i E g(0)

q2 e wq,>)

qm E g(<qi•
These assertions are positive instances of the desired sequence-generating rule.

In EICUSIS, negative instances arc provided by the cards on the sidelines—that is, the cards rejected by the

dealer for being incorrect. A sideline card q played after card q3 provides a negative instance of the form:

19

Ci3- g(<C11' C12, q3))
The goal is to find a description for g that is consistent with these training instances and satisfies somc
preference criterion.

"Me preference criterion in our methodology (and in all learning systems) attempts to evaluate a candidate
rule in terms of its generality, predictive power, simplicity, and so on. These semantic properties arc difficult
to compute, however. Instead, virtually all learning systems employ syntactic criteria that correspond in some
way to these semantic criteria. Syntactic criteria—such as the number of selectors in a conjunction and the
number of conjuncts in a disjunction—will only correspond to the semantic criteria if the representational
framework is well chosen (See McCarthy [195S]). As we noted in the introduction, most previous Al research
on learning has employed a single representational framework or model for describing the rules or concepts to
be learned. In Elcusis, a single framework is insufficient. Instead, we have developed three basic models that
were found to be useful: the DNF model, the decomposition model, and the periodic model. When these
models are employed, syntactic criteria can be used to approximate semantic criteria during evaluation.

A model is a logical schema that specifies the syntactic form of a class of descriptions (in our case, sequence-
generating rules). A model consists of model parameters and a set of constraints that the model places on the
forms of descriptions. The process of specifying the values for the parameters of a model is called
parameterizing the model. The process of filling in the form of the parameterized model is called instantiating
the model. A fully-parameterized and fully-instantiated model forms a sequence-generating rule. Models can
be instantiated using the original ,sequence, or, more typically, using a sequence derived by applying some of
the data transformations discussed in the previous section.

All three models use the representation language VL22 as a building block for expressing sequence-
generating roles. V1,22 is an extension to the predicate calculus that uses the selector as its simplest kind of
formula. The VL22 selector is substantially more expressive than the simple selector presented above in
section 4.1. The simple selector has the form:

[f1(0)=r]
whereas the VL22 selector has the form:

[fi(xl, x2, xn) = rl v r2 v v rm]
In the VI.22 selector, attributes fi can take any number of arguments (x1, x2, ..., xn). Furthermore, the
attributes fi can take on any one of a set of values {r1, r2, rrn}. The v denotes the internal disjunction
operator. Thus, the selector

[rank(q1)=9 v 10 v v Q v K]
indicates that the rank of object qi can be either 9, 10. J. Q. or K. The internal disjunction represents
disjunction over the %Alio of a single vai iahle. 1 n this case, it could he expressed alternatively as

20

(rank(qi)>9],

since the domain of the RANK attribute is known to be linearly ordered with a maximum value of K (King).

To aid comprehensibility, V1_22 provides the operators <, >, <, >, and *, in addition to the basic -=
operator.

Examples of typical selectors include:

[rank(q1)*rank(q1-1)]
(paraphrase: the RANK of q, is different from

the RANK of q1.1)

[suft(q1)=suit(q1-1)+1]
(paraphrase: the SUIT increases by one from q1.1 to qi)

[rank(qi)+rank(qi-2)>10]
(paraphrase: the sum of the RANKS of

and q1.2 is greater than 10)

Now that we have introduced the basic notation of VL22, each of the three rule models is presented in turn.

5.1 The DNF model

The DM' model supports the broad class of rules that can be expressed as a universally quantified VL22
statement in disjunctive normal form. The DNF model has one parameter, the degree of lookback, L. An

example of a DNF rule (with l_= 1) is:

V1 ([color(qi)=color(q1-1)] V
[rank(qi)=rank(qi-1)])

In general, a DNF rule is a collection of conjuncts of the form

Vi (C1 V C2 V C3 V ... V Ck)

The universal quantification over I indicates that this description is true for all objects ql in the sequence.

An additional constraint specified in the DNF model is that the number of conjuncts, k, should be close to

the minimum that produces a description consistent with the data.

5.2 The Decomposition Model

The decomposition model constrains the description to be a set of implications of the form:

21

Ll R1
L2 0 R2

Lm > Rm

where the => sign indicates logical implication.

The model states that the left- and right-hand sides, L and R must all be VL22 conjunctions. The
left-hand sides must be mutually exclusive and exhaustive—that is,

L1 V L2 V ... 1.m a.-- TRUE, and
Vj,k (j*k => (Li A Lk ...a2 FALSE)).

A decomposition rule describes the next object in the sequence in terms of characteristics of thc previous
objects in the sequence. For example, the rule

Vi([co1or(q1-1)=b1ack]=>[parity(qi)3odd] V
[color(qi-1)=red] O[parity(qi)=even])

is a decomposition rule that says that if the last card was black, the next card must be odd, and if the last card
was red, the next card must be even.

'Me decomposition model has a lookback parameter, 1., that indicates how far back in the sequence the
description "looks" in order to predict the next object in the sequence. The above rule has a lookback
parameter of 1, because is examines q1.1.

5.3 The Periodic Model

This model consists of rules that describe objects in the sequence as having attribute values that repeat
periodically. For example, the rule "Play alternating red and black cards" is a periodic rule. The periodic
model has two parameters: the period length, P. and the lookback, L. The period length parameter. P, gives
the number of phases in the periodic rule. A periodic rule can be viewed as applying a splitting
transformation to split the original sequence into P separate sequences. Each separate phase sequence has a
simple description. The lookback parameter, L, tells how far back, within a phase sequence, a periodic rule
"looks" in order to predict the attributes of the next object in that phase. The periodic mod^1 imposes the
additional constraint (or preference) that the different phases be disjoint (i.e., any given card is only playable
within one phase).

A periodic rule is represented as an ordered P-tuplc of VL22 conjunctions. The j-th conjunct describes the
j-th phase sequence. The rule

qcolor(q1)-red], [rank(q.1) -rank(q.1-1)]>

22

is a periodic rule v, ith P=2 and L=1, which says that the sequence is made of two (interleaved) phases. Each
card in the first phase is red: each card in the second phase has at least as large a rank as the preceding card in
that phase. Hence, one sequence that satisfies this rule is <211 3C 10H 5S Al) 6S 681 6C>.

A more complex periodic rule is the rule used to generate the sequence shown in Figure 1. It can be
represented as

< [texture-of-nodes(q1)solid black] &
[shape(0)=T-junction] &
[orientation(0)=orientation(0-1)-45],

[texture-of-nodes(qi)=clear] &
< [number-uf-nodas(qi)=4],
[number-of-nodes(qi)=8] >,

[texture-of-nodes(q1)*cross] &
[shape(qi)=bar] &
[orientation(qi)=orientation(q1-1)+45] >

Notice that this is a periodic nile with three phases and a lookback of 1. The middle phase of the period is
itself a periodic rule with the N UM BER -OF- NODES alternating between 4 and 8.

5.4 Derived models

The three basic models can be combined to describe more complex rules. Basic models can be joined by
conjunction, disjunction, and negation. For example, the rule "play alternating red and black cards such that
the cards are in non-decreasing order" is a conjunction of the periodic rule

< [color(cui)zred], [color(qi)=black] >
and the DNF rule

[rank(qi) > rank(q1-1)].

5.5 Model Equivalences and the Heuristic Value of Models

The reader may have noticed that the decomposition and periodic models appear to be special cases of the
DNF model. For instance, giver. that the clauses in a decomposition rule are mutually-exclusive and
exhaustive, the decomposition rule

L1 =>R1&

1-2 =>R2&

L =>R
!II RI

can be written as the DNF rule

23

[Li & V 1L2' lt2) V ... & R m]

Similarly, if the clauses of a periodic rule are mutually-exclusive and exhaustive, then the periodic rule

< Cr C . , C >2' • • k
can be expressed as a decomposition rule of the form

C
1
=>C2

C
2
=>C3

C
k-1 => Ck
C
k =>Cl•

Even when the constraints of mutual exclusion and exhaustion are violated, it is usually possible to develop
some equivalent DN17 rule for any periodic or decomposition rule. For instance, in the periodic rule

< [co1or(q1-0)-red], [rank(qi-0)=even] >
(paraphrase: play alternating red and even cards)

the different phases are overlapping. The above transformation into a decomposition rule
[color(qi-1)=red]=>[parity(qi)=even] &
[parity(qi-1)=even]=>[color(qi)=red]

does not work, because, for example, the sequence

<3D 2D 4C . >

satisfies the second rule (the first if-then clause can be applied twice), but not the first rule (since the 4C is not
led). However, it is possible to get around this particular problem by defining a new descriptor for each
object in the original sequence, called POSITION, that has the value i for object q.. With this descriptor, the
above rule can be encoded as

[posltion(qi)=odd] => [color(qi)=red]
[position(qi)=even] => [parity(qi)=even]

Hence, it appears that all rules can be written as DNF rules.

Given this fact, it is reasonable to ask why multiple models should be used at all. The answer is that the
primary value of multiple models is that they provide heuristic guidance to the search for plausible rules.
Hence, though the DNF model is capable of representing all of these rules, it is not helpful for discovering
them. In short, it is epistemologically adequate but not heuristically adequate (see [McCarthy and Hayes, 1969;
McCarthy. 19771). Each model directs the attention of the learning system to a small subspace of the space of
all possible DNF VL22 rules. The next section shows how the constraints associated with each model are
incorporated into special model-fitting induction algorithms.

24

6 Architecture and Algorithms

In section 3 we described the three basic processes involved in discovering sequence-generating rules: (a)

transformation of the original sequence to obtain a derived sequence, (b) selection of appropriate models for
the given sequence, and (c) fitting of the models to the derived sequence. In sections 4 and S. the four data

transformations and the three models were presented. This section covers the third step of fitting the
specialized models to the transformed sequence. The model-fitting process is most easily understood in the

context of the program architecture, so this section also discusses the architecture in detail.

6.1 Overview of the Program

The' processes in the program (see Figure 6) are structured into four components—the three basic
components mentioned above plus an evaluation step. Thc processes of transforming the initial sequence and
o:'<elccting and parameterizing a model are performed in parallel. Then, specialized model-fitting algorithms
use the transformed sequence to instantiate the model to obtain a candidate sNuence-generating rule. These
candidate rules are then evaluated to determine a final set of rules.

The reason for performing data transformation and model selection in parallel is that these two processes
are in:crdependent. For example, if a periodic model is selected (with period length P), then a splitting
transformation (with number of phases P) needs to be applied to the sequence. These two processes can be

viewed as simultaneous cooperative searches of two spaces: the space of possible data transformations and the
space of possible parameterized models.

6.2 Overview of the Concentric Ring Architecture

In order for the learning program to be easily modified to handlc entire classes of NDP problems, the

program is structured as a set of concentric knowledge rings (sec Figure 7). A knowledge ring is a set of

routines that perform a particular function using only knowledge appropriate to that function. The

procedures within a given ring may invoke other procedures in that ring or in rings that are inside the given

ring. Under these constraints, the concentric ring structure forms a hierarchically organized system.

Ideally, the rings should be organized so that the outermost ring uses the most problem-specific knowledge

and performs the most problem-specific operations and the inner-most ring uses the most general knowledge

nd performs the most general tasks. Such an architecture improves the program's generality because it can

be applied to increasingly different NDP problems by removing and replacing the outer rings. In order to

apply the program to radically different learning problems, all but the inner-most ring may need to be

replaced.

25

Initial Sequence

Transform by applying

adding attributes,

segmenting.

Splitting, and

blocking operations

Model Space

Instantiate model
to fit derived data

Evaluate resulting

candidate rules

Final set
of rules

Figure 6: The Model-fitting Approach

Search model

space to develop

a parameterized

model

Figure 7: The knowledge ring architecture

The ring architecture is used here as follows. The outer-most rings perform user-interface functions and
convert the initial sequence from whatever domain-specific notation is being used into a sequence of VL22
events. The inner-most ring performs the model-fitting functions. It expects the data to be properly
transformed so that the data have the same form as the models to which they arc to be fitted. The intervening

26

rings conduct the simultaneous processes of developing a properly parameterized model and transforming the
input sequence into an appropriate form.

The intervening rings also evaluate the rules discovered by the inner-most ring using the knowledge
available in each ring.

6.3 The Program SPARC (ELEUSIS version)

SPARC (Sequential PAttern ReCognition) is a general program designed to solve a variety of NDP
problems using the ring architecture. So far, we have implemented only a more specific version of the
program, called SPARC/E, tailored specifically to the problem of rule discovery in the game Elcusis. SPARC
is made up of five rings, as shown in Figure 7. This section describes the functions of each ring in the
SPARC/E version of the program. To illustrate these ring functions, we use the Elcusis layout shown in
Figure 8. Recall that in an Elcusis layout, the main line shows the correctly-played sequence of cards (positive
examples). The side lines, which branch out below the main line, contain cards that do not satisfy the
rule—that is, incorrect continuations of the sequence (negative examples).

Main line: 3H 9S 4C JD 2C 10D 8H 7H 2C
Side lines: JD AN AS 10H

60 8H 10S
QD

Figure 8: Sample Eleusis Layout

6.3.1 Ring 5: User Interface

Ring 5, the outcr-n.ost ring, provides a user interface to the program. It executes user's commands for
playing the card game Eleusis, as well as commands for controlling the search, data transformation,
generalization, and evaluation functions of the program. One command in Ring 5 is the INDUCE command
that instructs SPARC/E to look for plausible NDP rules that describe the current sequence. When the
INDUCE command is given. Ring 5 calls Ring 4 to begin the rule discovery process.

6.3.2 Ring 4: Adding Derived Attributes

Ring 4 applies the adding-derived-attributes transformation to convert the Elcusis layout into a sequence of
VL22 events. This involves creating derived attributes that make explicit certain commonly known

characteristics of playing cards that are likely to be used in an Elcusis rule: COI OR, PARITY, FACED versus
NON-FACED cards, and so on. Figure 9 shows the layout from Figure 8 after it has been processed by Ring 4.

27

The plusses and minuses along the right-hand side of the figure indicate whether the event is a positive

example or a negative example of the sequence-generating rule. These derived events arc passedio Ring 3 for

further processing.

VL22 event positive or
negative

[rank(card1)=3][suit(card1)=H]
[parity(card1)=odd][color(card1)=red]
[primo(card1)=N][faced(card1)=Y]

[rank(card2)=9][suit(card2)=S]
[parity(card2)=odd][color(card2)=black]
[prime(card2)=N][faced(card2)=N]

[rank(card3)=J][suit(card3)=D]
[parity(card3)=odd][co1or(card3)=red]
[prime(card3)=Y][facod(card3)=Y]

[rank(card3)=6][suit(card3)=D]
[parity(card3)=odd][co1or(card3)-red]
[prime(card3)=N][faced(card3)=Y]

[rank(card3)=4][suit(card3)=C]
[parity(card3)=evon][color(card3)=b1ack]
[prime(card3)-N][facod(card3)=N]

[rank(card4)=J][suit(card4)=D]
[parity(card4)=odd][color(card4)=red]
[prime(card4)=Y][faced(card4)=Y]

etc.

Figure 9: Derived layout after Ring 4 processing.

6.3.3 Ring 3: Segmenting the Layout

Ring 3 is the first Eleusis-independent ring. It applies the segmenting transformation to the sequence

supplied by Ring 4. In the present implementation, the end points of each segment are determined by

applying a segmentation predicate, P(cardil, cardi) to all pairs of adjacent events in the sequence. When the

predicate P evaluates to FALSE, tfic sequence is broken between cardi.i and card. to form the end of a

segment. Typical segmentation predicates used arc:

Irank(card)= rank(cardr1)1

[rank(cardi)= rank(cardi.d+ I]

leolor(card)=color(carcli.di
[suit(carcli)=suit(cardi.1)]

[parity (carda)= parity(cardi.dj

Other techniques for performing segmentation, such as providing a predicate that becomes TRUE at a

segment boundary (see section 4.2.2). arc not implemented in SPARC/E.

28

Ring 3 searches the space of possible segmentations using two search pruning heuristics. After each
attempt to segment the sequence, it counts the number of derived objects (segments), k, in the derived
sequence. If k is less than 3, the segmentation is discarded since there are too few derived objects to use for
generalization. If k is more than half of the number of objects in the original sequence, the segmentation is
also discarded because in this case many segments contain only one original object. Segmented sequences
that survive these two pruning heuristics arc passed on to Ring 2 for further processing.

One segmentation that Ring 3 always performs is the "null" segmentation—that is, it always passes the
unsegmented sequence directly to the inner rings. Figure 10 shows a sample layout and the resulting derived
layout after segmentation using the segmentation condition: [sui t(cardi)=suit(card1+1)]. The
derived objects (segments) are denoted by variables string,. The negative event
[suit(string2)=D][color(string2)=red][length(string2)=3] is obtained from the
segment <60 2D 4D>.

The layout:

3H 50 20 7C AC 9C JH 6H 8H QH KS
5S 40 AH

is

The derived sequence:

description of
derived object

positive or
negative

[suit(string1)=H][color(string1)=red]
[1angth(string1)=1]

[suit(string2)=D][color(string2)=red]
[length(string2)=2]

[su1t(string2)=D][color(string2)=red]
[length(string2)=3]

[suit(string3)=C][color(string3)=black]
pength(string3)=3]

[su1t(string4)=H][color(string4)-red]
[length(string4)-4]

Figure 10: Sample layout and segmented sequence.

SPARC/E derives the descriptors COLOR. SUIT, and LENGTH to describe each derived object. The choice
of which descriptors to derive involves three steps. First, LENGTH is derived whenever the segmentation
transformation is applied. Second, any descriptor that is tested in the segmentation predicate (in this case,
sur) is air.° derived. Third. any descriptor is derived whose value can be proved to be the same for all cards

29

in each segment. In this case, COLOR is derived because, if SUIT is a constant, then COLOR is also a constant.
Using this segmentation, SPARC can use the DNF model to discover that the segmented sequence can be
described as

pength(stringi)10ength(stringi-1)+1]
That is, the IINGTII of each segment of constant sun (in the main line) increases by 1.

6.3.4 Ring 2: Parameterizing the Models

Ring 2 searches the space of parameterizations of the three basic models. Each model is considered in turn.
For each Model, Ring 2 develops a set of derived events based on each allowed value of the lookback
parameter, L, and the number of phases parameter. P. The user can control which models should be inspected
and what range of values for L and P should be investigated. By default, the program will inspect the
decomposition model with L = 0, 1, or 2, and the periodic model with P = 1 or 2 and L = 0 or 1.

Specifically, Ring 2 performs the following actions depending on which model is being parameterized:

A. For the decomposilion model with lookback parameter L, Ring 2 applies the blocking transformation to
break the sequence received from Ring 3 into blocks of length L. After blocking, all of the attributes that
described the original objects are converted into attributes that describe the whole block (as described in
section 4 above). Furthermore, sum and difference descriptors arc derived to represent the relationships
between adjacent objects in the original sequence. The resulting derived events can be viewed as very specific
if-then clauses of the following form.

Given an initial sequence of objects <q1, q2.q> let us look at block 1)1 which describes the subsequence
q1.1, ql>. Let Fi denote the selectors of object (111 renamed so that they apply to bi. For example, F1

could be the selectors [sui tl (bi).41][rankl(bi)3J—selectors that originally referred to object go..
Let d(F J,F1) denote all of the difference selectors obtained by "subtracting" event Fk from event F. and let
s(F j, Ft) denote all of the summation selectors obtained by "summing" events Fi and Fk. For example, d(F0,
F1) could include the selectors [d-sui tO 1(b)*2][d-r an k0 1 (b) • -3) obtained from "subtracting"
F1 from Fo.

With these definitions, the clerked events for the &composition model have the form:

Fi & & FL => Fo & d(Fo. Fi) & & d(Fo, FL) &
s(Fo. F1) & & s(Fo, FL)

These derived events no longer need to be ordered since the ordering information is made explicit within

the events. These events have the form of very specific if-then clauses. This facilitates the model-fitting

process in Ring 1.

30

13. For the DNF model with look back parameter L the sequence derived in Ring 3 is blocked in a very
similar manner, except that only the selectors describing q, are retained in the description of block b1. The
derived events have the following form:

F0 & d(Fo, F1) & & d(Fo, FL) & s(Fo, F1) & s(F0, FL)

These events are very specific conjuncts that are passed to the Aq algorithm in Ring 1, where they are
. generalized to form a DNF description.

C. For the periodic ?nodel with period length P and lookback L, Ring 2 performs a splitting transformation
followed by a blocking transformation. First, the sequence obtained from Ring 3 is split into P separate
sequences. Then each separate sequence is blocked into blocks of length L+1. The derived events have the
same form as the events derived for the DNF model. Note that because the blocking occurs after the
splitting, the lookback takes place only within a phase.

To provide an example of the function of Ring 2. Figure 11 shows some events from Figure 9 after they
have been transformed in preparation for fitting to a decomposition model with L=1.

[rank1(b2)=3][suit1(b2)=H]
[par1ty1(b2)flodd][co1or1(b2)=red]
[primel(b2)=Y][facedl(b2)=N]

[rank0(b2)=9][suit0(b2)=S][parity0(b2)=odd]
[co1or0(b2)=b1ack][pr1me0(b2)=N]
[faced0(b2)=N][d-rank01(b2)=+6]
[d-suit01(b2)=+1][d-parity01(b2)=N]
[d-co1or01(b2)=Y][d-prime01(b2)=Y]
[d-faced01(b2)=Y][s-rank01(b2)=12]

[rankl(b3)=9][suitl(b3)=S]
[parityl(b3)=odd][colorl(b3)-black]
[primel(b3)=N][facedl(b3)=N]

[rank0(b3)=J][suit0(b3)=D][parity0(b3)=odd]
[co1or0(b3)=red][pr1me0(b3)=Y]
[faced0(b3)=Y][d-rank01(b3)=+2]
[d-suit01(b3)=+2][d-parity01(b3)=N]
[d-co1or01(b3)=Y][d-prime01(b3)=Y]
[d-faced01(b3)=Y][s-rank01(b3)=20]

Figure 11: Some events of Figure 9 transformed for decomposition L=1.

31

6.3.5 Ring 1: The basic model-fitting algorithms

Ring 1 consists of three separate model-lining algorithms: the Aq algorithm, the decomposition algorithm
and the periodic algorithm.

The Aq algorithm [Michalski and Kulpa, 1971) is used to fit the DNF model to the data. Aq attempts to
find the DNF description with the fewest number of conjunctive terms that covers all of the positive examples
and none of the negatk c examples. The algorithm operates as follows. First., a positive example, called the
seed, is chosen, and the set of maximally-general conjunctive expressions consistent with all of the negative
examples is computed. This set is called a star, and it is equivalent to the G-sct in Mitchell's [1978] version
space approach. One clement from this star is chosen to be a conjunct in the output DNF description, and all
positke examples covered by it are removed from further consideration. If any positive examples remain, the
process is repeated, selecting as a new seed some positive example that was not covered by any member of any
preceding star. In this. manner, a DNF description with few conjunctive terms is found. If the stars are
computed without any pruning, then Aq can provide a tight bound on the number of conjuncts that would
appear in the optimal DNF description with fewest conjunctive terms.

The decomposition algorithm is an iterative algorithm that seeks to fit the data to a decomposition model.
The key task of the decomposition algorithm is to identify a few attributes, called decomposition attributes,
from which the decomposition rule can be developed. A decomposition attribute is an attribute that appears
on the left-hand side of an if-then clause of a decomposition rule. For example, the decomposition rule

[color(card1-1)=Plack] x> [parity(cardi)=odd] V
[color(card1-1)-red] > [parity(cardi)-even]

decomposes on COLOR. Hence, COLOR is the single decomposition attribute.

The algorithm uses a generate-and-test approach of the following form:
decompositionattributes 0 The empty set

while rule is not consistent do
begin

generate a trial decomposition
(based on positive evidence only)
for each possible decomposition attribute

test these trial decompositions against
the data

select the best decomposition attribute and
add it to the set decompositionattributes

end

32

The process of generating a trial decomposition takes place in two steps. First, a VL22 conjunction is
formed for each possible value of the decomposition attribute. All positive events that have the same value of
the decomposition attribute on their left-hand sides arc merged together to form a single conjunction of
selectors. This VL22 conjunction forms the right-hand side of a single clause in the decomposition rule.
Within this conjunction, a selector is created for each attribute by forming the internal disjunction of the
values in the corresponding selectors in the events. For example, using all of the events derived in Ring 2 for
the sample layout in Figure 8, the decomposition algorithm generates the trial decomposition shown in Figure
12 for the PARrrY(card.) l attribute.e

[par1ty(cardi-1)=odd] => [rank(card1)=9 v 4'v 2]
[suit(cardi)=S v C][parity(card1)=even v odd]
[color(cardi)=black][prime(cardi)=Y v N]
[faced(cardi)=N]
[d-rank(cc.rdi,cardi-1)=4-6 v -5 v -7]
[d-suit(cardi,card1-1)=1 v 2 v 3]
[d-parity(cardi,cardi-1)=Y v N]
[d-co1or(cardi,cardi-1)=Y v N]
[d-pr1me(cardi,card1-1)=Y v N]
[d-faced(card1,cardi-1)=Y v N]
[s-rank(cardi,card1-1)=12 v 13 v 9]

[parity(cardi-1)-even]
[rank(cardi)=J v 10 v 8 v 7]
[su1t(cardi)=H v D][parity(cardi)=even v odd]
[color(cardi)=red][prime(cardi)=Y v N]
[facod(cardi)=Y v N]
[d-rank(card1,cardi-1)=7 v 8 v -2 v -1]
[d-suit(cardi,cardi-1)=0 vi]
[d-parity(cardi,cardi-1)=Y v N]
[d-co1or(card1,card1-1)=Y v N]
[d-prime(cardi,cardi-1)=Y v N]
[d-faced(card1,cardi-1)=Y v N]
[s-rank(card1,cardi-1)=15 v 12 v 18]

Figure 12: Trial decomposition on die PAFtivri(card1.1) attrib.ue

Since there are only two values (ODD and EvFN) for the decomposition attribute in the sequence shown in
Figure 8, two conjunctions are formed. The first conjunction is obtained by merging all of the positive events
for w hich [par i ty(card i -1)=odd]. There are four such events. 'Ile first selector in that conjunction,
[rank(card i) =9 v 4 v 2]. is obtained by forming the internal disjunction of the values of
rank(car d) in each of the four events.

The second step in forming a trial decomposition is to generalize each clause in the trial rule. The

33

generalization is accomplished by applying rules of generalization to extend internal disjunctions and drop
selectors. (Sec [Michalski, 1983J for a description of various rules of generalization.) Corresponding
attributes in the different clauses of the decomposition rule are compared, and selectors whose value sets
overlap arc dropped. When these rules of generalization arc applied to the trial decomposition for PARITY,
for example, the following generalized trial decomposition is obtained:

[par1ty(card1-1)=odd] g>
[suit(cardi)gC v S][co1or(card1)=b1ack]

[par1ty(card1-1)=even] g>
[su1t(cardi)=H v D][color(card1)gred]

This is a very promising trial decomposition. However, it has been developed using only positive evidence,
and it has been generalized without considering that the generalization may have causcer the rule to cover
negati% c events. Hence, the trial decomposition must be tested against the negative events to determine
whether or not it is consistent. It turns out that the generalized trial decomposition shown above is indeed
consistent with the negative evidence.

After a trial decomposition has been developed for each possible decomposition attribute, the best
decomposition attribute is selected according to a heuristic attribute-quality functional. The attribute-quality
functional tests such things as the number of negative events covered by the trial decomposition, the number
of clauses with non-null right-hand sides, and the complexity of the trial decomposition (defined as the
number of selectors that cannot be written with a single operator and a single value). The chosen trial
decomposition forms a candidate sequence-prediction rule.

If the candidate rule is not consistent with the data (i.e., still covers some negative examples), then the
decomposition algorithm must be repeated to select a second attribute to add to the left-hand sides of the
if-then clauses. This has the effect of splitting each of the if-then clauses into several more if-then clauses.
For example, if we first decomposed on PARITY(cardi.i) and then on FAcED(card we would obtain four
if-then clauses of the form:

[par1ty(card1-1)godd][faced(cardi-1)=N] g>
[parity(card1-1)=odd][faced(card1-1)gY] g>
[par1ty(card1-1)=even][faced(card1-1)=N] g>
[parity(card1-1)-even][faced(card1-1)=Y] g>

The periodic algorithm is nearly the same as the decomposition algorithm. For each phase of the period, it
takes all of the positive events in that phase and combines them to form a single conjunct by forming the
internal disjunction all of the value sets of corresponding selectors. Next, rules of generalization are applied
to extend internal disjunctions and drop selectors. Finally, corresponding attributes in different phases are
compared, and selectors whose values sets overlap arc dropped if this can be done without covering any
negative examples.

34

6.3.6 Evaluating the NDP rules

Once Ring 1 has instantiated the parameterized models to produce a set of rules, the rules arc passed back

through the concentric rings of the program. Each ring evaluates the rules according to plausibility criteria

based on knowledge available in that ring. Ring 2, for example, checks to see that the rule does not predict an

cnd to the sequence. It is assumed that a valid sequence can be continued indefinitely. Ring 3 checks the last

(partial) segment to see if it is consistent with the rule. It is possible to induce a rule, using only the complete

segments, that is not consistent with the final segment. Ring 4 tests the rule using the plausibility criteria for

Elcusis. These criteria are:

1. Prefer rules with intermediate degree of complexity. In Eleusis, Occam's Razor does not always
apply. The dealer is unlikely to choose a rule that is extremely simple, because it would be too
easy to discover. Very complex rules will not be discovered by anyone, and, since the rules of the
game discourage such an outcome, the dealer is not likely to choose such complex rules either.

2. Prefer rules with an intermediate degree of non-determinism. Rules with a low degree of non-
determinism lead to many incorrect plays, thus rendering them easy to discover. Rules that are
very nondeterministic generally lead to few incorrect plays and are therefore difficult to discover.

Rules that do not satisfy these heuristic criteria are discarded. The remaining rules are returned to Ring 5

where they are printed for the user.

7 Examples of Program Execution

In this section, we present some example Eleusis games and the corresponding sequence-generating laws

that were discovered by SPARC/E. Each of these games was an actual game among people, and the rules are

presented as they were displayed by SPARC/E (with minor typesetting changes).

The raw sequences presented to SPARC/E had only two attributes: SUIT and RANK. SPARC/E was given

definitions of the following derivable attributes:

• COLOR (red for Hearts and Diamonds; black for Clubs and Spades)

• FACE (true if card is a faced, picture card, false otherwise)

• PRIME (true if card has a prime rank, false otherwise)

• MOD2 (the parity Nalue of the card, 0 if card is even, 1 otherwise)

• moD3 (the rank of the card modulo 3)

35

• I FNNIOD2 (When SPARC/E segments the main sequence into derived subsequences, it computes
the LENGTIi of each of the subsequences modulo 2)

Three examples of the program execution are presented: one showing the program at its best, one showing
some of the shortcomings of the program, and one demonstrating weakness of the program. A few
explanations are required. First, each rule is assumed to be universally quantified over all events in the
sequence. This quantification is not explicitly printed. Second, when the value set of a selector includes a set
of adjacent values (e.g., [rank (card I)■3 v 4 v 6], this is printed as [RANK(CARDI) . .6]. The
computation times given arc for an implementation in PASCAL on the CDC CYBER 175.

7.1 Example 1

In this example, we show the program discovering a segmented rule. The program was presented with the
following layout:

Main line: AH 7C 6C 9S 10H 7H 100 JC AD
Side lines: KD 6S QD

JH

continued: 4H 8D 7C 9S 10C KS 2C 10S JS
3S 9H QH

611 AD

"Flic program only discovered one rule for this layout, precisely the rule that the dealer had in mind (1.2
seconds required):

RULE 1: LOOKBACK: 0 NPHASES: 1 PERIODIC MODEL

CRITERION-[COLOR(CARDI)gCOL0R(CARDI-1)]:
PERIODULENMOD2(STRINGI)=1])

The rule states that one must play strings of cards with the same color. The strings must always have odd
length. The CRITERION = gives the segmentation criterion that a segment is a string of cards all of the same
color. CARDI refers to the 1-th card in the original sequence. STRINGI refers to the 1-th string in the
segmented sequence. SPARC/E discovered this rule as a degenerate periodic rule with a period length, P. of
1. Actually, the rule that the dealer had in mind had one additional constraint: a queen must not be played
adjacent to a jack or king. Rules containing such exception clauses cannot be discovered by SPARC/E

36

7.2 Example 2

The second example requires the program to discover a fairly simple periodic rulc. SPARC/li discovers

three equivalent versions of it.

HCR: is the layout..

Main line: JC 40 QH 3S QD 9H QC 7H QD
Side lines: KC 6S 4S 100

7S

continued: 90 QC 3P KH 4C KD 6C JD 80

continued: JH 7C JD 7H JH 6H KD

The program discovered the following descriptions of this layout (0.49 seconds were required):
RULE 1: LOOKBACK: 1 NPHASES: 0
DECOMPOSITION MODEL

[FACE(CARDI-1)=FALSE] =>
[RANK(CARDI)>JACK]
[RANK(CARDI)>RANK(CARDI-1)]
[FACE(CARDI)=TRUE]

[FACE(CARDI-1)=TRUE]
[RANK(CARDI)=3..9]
[RANK(CARDI)<RANK(CARDI-1)]
[FACE(CARDI) =FALSE]

V

RULE 2: LOOKBACK: 1 NPHASES: 1 PERIODIC MODEL

PERIOD([RANK(CARDI)>3]
[RANK(CARDI)RANK(CARDI-1)]
[FACE(CARDI)#FACE(CARDI-1)])

RULE 3: LOOKBACK: 1 NPHASES: 2 PERIODIC MODEL

PER IOD(RANK(CARDI)>JACK]
[RANK(CARDI)>-RANK(CARDI-1)+20]
[FACE(CARDI)=TRUE],

[RANK(CARDI)=3..9]
[RANK(CARDI)=-RANK(CARDI-1)+5..14]
[FACE(CARDI)=FALSE])

Rule 1 is a decomposition rule with a lookback of I. Rule 2 expresses the rule as a single conjunction. This

is possible because FACE versus NON-FACE is a binary condition, and there are precisely two phases to the rule.

Rule 3 expresses the rule in the "natural" way as a periodic rule of length 2.

37

Notice that, although the program has the gist of the rule, it has discovered a number of redundant
conditions. For example, in rule 1, the program did not use knowledge of the fact that
[rank(cardi)>ack] implies [f ace (card9=true], and therefore, it did not remove the former

selector. Similarly, because of the interaction of the two conditions, [rank(ca rdi))rank (card i-i)) is
completely redundant. SPARC/I: already has enough background knowledge about the meanings of its

attributes to support these in fe:ences. Additional routines need to be written to actually perform them (as is

done in the INDUCE-2 program—see [Michalski, 1983]).

7.3 Example 3

The third example shows the upper limits of the program's abilities. During this game, only one of the

human players even got close to guessing the rule, yet the program discovers a good approximation of the rule

using only a portion of the layou; that was available to the human players. Here is the layout:
Main line: 4H 6D 8C JS 2C 6S AC 6S 10H
Side lines: 7C 6S KC AH 6C AS

JH 7H 3H KD
4C 2C QS
10S 7S
8H 60
AD 6H
20 4C

The program produced the following rules after 6.5 seconds:

gliPPOgimuippownpowiellb, _ _

38

RULE 1: LOOKBACK: 1 NPHASES: 0 DNF MODEL

ERANK(CARDI)<51[SUIT(CARDI) =SUIT (CARDI -1)+1] V
[RANK(CARDI)>5][SUIT(CARDI)=SUIT (CARDI -1)+3]

RULE 2: LOOKBACK: 1 NPHASES: 1 PERIODIC MODEL

PERIOD([RANK(CARDI)=RANK(CARDI-1)-9]
[RANK(CARDI)=-RANK(CARDI-1)+4,5,7,11,13,17]
[SUIT(CAMI)=SUIT(CARDI-1)+1,2,3])

RULE 3: LOOKBACK: 1 ?PHASES: 2 PERIODIC MODEL

PERIOD([RANK(CARDIACE.2,8,10]
[RANK(CARDI)=-RANK(CARDI-1)+1,8,9,10],

[RANK(CARDI)=5..JACK][SUIT(CARDI)=SPADES]
[RANK(CARDI)=RANK(CARDI-1)+-0..6]
[RANK(CARDI)=-RANK(CARDI-1)+8..14]
[SUIT(CARDI)=SUIT(CARDI-1)+0..2]
[COLOR(CARDI)=BLACK][PRIME(CARDI)=PTRUE]
[PRIME(CARDI)=PRIME(CARDI-1)]
[M0D2(CARDI)=1][MOD2(CARDI)=MOD2(CARDI-1)+0]
[M002(CARDI)=-MOD2(CARDI-1)+0][MOD3(CARDI)=2]
[M0D3(CARDI)=MOD3(CARDI-1)+0]
[MOD3(CARDI)=-MOD3(CARDI-1)+1])

The rule that the dealer had in mind was:

[SUIT(CARDI)=SUIT(CARDI-1)+1]
[RANK(CARDI)>RANK(CARDI-1)] V

[SUIT (CARDI)-SUIT(CARDI-1)+3]
[RANK(CARDI)<RANK(CARDI-1)]

There is a suong symmetry in this rule: the players may either play a higher card in the next "higher" suit

(recall that the suits are cyclically ordered) or a lower card in the next "lower" suit_ The program discovered a

slightly simpler version of the rule (rule 1) that happened to be consistent with the training instances. Note

that adding 3 to the SUIT has the effect of computing the next lower suit.

The other two rules discovered by the prcgram are very poor. They are typical of the kinds of rules that the

program discovers when the model does not fit the data very well. Roth rules are filled with irrelevant

descriptors and values. The current program has very little ability to assess how well a model fits the data.

These rules should not be printed by the program since they are highly implausible.

39

8 Summary

We have presented here a methodology for discovering sequence-generating rules for the nondeterniinistic
prediction problem. The main ideas behind this methodology are

1. the use of task-oriented transformations of the initial data and

2. the use of different rule models to guide the search for sequence-generating rules.

Four different task-oriented transformations (adding attributes, blocking, splitting into phases, and
segmenting) and three models (DNF, periodic, and decomposition) have been presented.

The main part of the methodology has been implemented in the program SPARC/E and applied to the
NDP problem that arises in the card game Elcusis. The performance of the program indicates that it can
discover quite complex and interesting rules.

This methodology is quite general and can be applied to other nondeterministic prediction problems in
which the objects in the initial sequence arc describable by a small set of finite-valued attributes. The main
strengths of the method are (a) that it can solve learning problems in which the initial training instances
require substantial task-oriented transformation and (b) that it can search very large spaces of possible rules
using a set of rule models for guidance.

Many aspects of this methodology remain to be investigated. We have not considered NDP problems in
which (a) the training instances arc noisy, (b) the training instances have internal structure so that an attribute
vector representation cannot be used, and (c) the sequence-generating rules arc permitted to have exceptions.
Application of this methodology to real world problems will probably also require the development of
additional sequence transformations and rule models. Also, more heuristics need to be developed that can be
used to guide the application of transformations and models.

The implementation of the methodology in program SPARC/E has demonstrated that the method can be
used to discover many Eleusis secret rules. There are some shortcomings of the implementation, however.
The program presently conducts a nearly exhaustive depth-first search of the possible models and
transformations. Much could be gained by having the program conduct a best-first heuristically-guided

search instead. Another weakness of SPARC/E is its poor ability to evaluate the plausibility of the rules it
discovers. It is also not able to simplify rules by removing redundant selectors, nor is it able to estimate the
degree of nondeterniinism of the rule. Both or these can be implemented without too much difficulty by
including inference routines that make more complete use of the background knowledge already available to
the program. Finally, an important weakness of the program is its inability to form composite models.

40

SPARC/E is not presently able to handle the NDP problem shown in Figure 1, because it involves a periodic
rule in which one of the phases contains an imbedded periodic sequence (see section 5.3).

In addition to these specific problems, there are some more general problems that further research in the
area of sequence-generating laws should address. First, in some real world problems, there are several
example sequences available for which the sequence-generating law is believed to be the same. Such
problems occur, in particular, in describing the process of disease development in medicine and agriculture.
A specific problem of this type that has been partially investigated involves predicting the time course of
cutworm infestation in a cornfield and estimating the potential damage to the crop (sec [Davis, 1981], (Bairn,
19831 and [Boulanger, 1983]). In this problem, several sequences of observations are available—one for each
field—and there is a need to develop a sequence-generating law that predicts all of these sequences.

A second general problem for further research is to handle continuous processes. Al research has so far
given little attention to this case. '

9 Notational conventions

The following notational conventions are employed in this paper. In general, lowercase letters denote
objects in some sequence (q, ph, b) or index variables (i, j, k) or the lengths of sequences (m, n). Uppercase
letters denote sets of objects, attributes, and so on (Q, F, S) as well as parameters of models and
transformations (L, P). Small capitals denote attributes (COLOR, RANK) and their values (RED, KING).

0 Angle brackets denote sequences of objects, e.g., <2 4 6 8> and also periodic rules, e.g.,
<[color(qi)= red],[color(qi)= black)).

qi or qi

rb o 1)1

phi

The object in an input sequence.

The i-th object in a derived sequence.

An object that constitutes an incorrect extension of the sequence after object q1.

The i-th block in a sequence derived by the blocking transformation.

The i-th phase derived by the splitting transformation.

The starting set of attributes for a transformation.

The starting set of sequences for a transformation.

The starting set of objects for a transformation.

41

The set of derived attributes from a transformation.

S' The set of derived sequences from a transformation.

Q' The set of derived objects from a transformation.

The set of selectors describing object (4,1 in block bi.

The sequence-generating function that maps a sequence into a set of objects Q+1 that can
appear as continuations of the sequence.

The set of objects that can appear as continuations of the sequence <q1, q2. q>.

The number of phases parameter of the splitting transformation and the periodic model.

The lookback parameter of the blocking transformation and all three models.

[fi(q3)= rk] or [f i(qj)=rk]

A simple selector, which asserts that feature fi of object q,, has the value rk.

[fi(q.1)=r1 v r2 v r3]

A selector containing an internal disjunction. It asserts that f can have the value r1 or r2 orr
3'

d prefix The d prefix on an attribute name indicates that it is a difference attribute. Hence,
D-RANK(q I,Cl1.1) is equal to RANK(q1) — RANK(Cli.d.

$ prefix The s prefix on an attribute name indicates that it is a summation attribute. Hence,
s-RANK(qi,%_i) is equal to RAN K(q1) + RAN tc(q1.1).

d(Fc F3) The set of difference selectors obtained by "subtracting" selectors Fi from F.

s(F,, F3) The set of summation selectors obtained by u"adding" selectors Fi and Fi.

.> Logical implication.

10 References

Abbott, R., "The New Elcusis," Available from the author, Box 1175, General Post Office, New York, NY
10116, 1977.

Amarel, S.. "On Representations of Problems of Reasoning About Actions," Machine InIelligence 3, Michic.
11, (ed.). University of Edinburgh Press, Edinburgh, pp. 131-171, 1968.

42

Bairn, P. W., "Automated Acquisition of Decision Rules: Problems of Attribute Construction and Selection,"
M.S. thesis, Department of Computer Science, University of Illinois, Urbana. Illinois, 1983.

Boulanger, A. G., "The Expert System PLANT/CD: A Case Study in Applying the General Purpose
Inference System ADVISE to Predicting Black Cutworm Damage in Corn," M.S. thesis. Department of
Computer Science, University of Illinois, Urbana, Illinois, 1983.

Buchanan, B. G., and Mitchell, T. M., "Model-Directed Learning of Production Rules," in Pattern-directed
Inference Systems, Waterman, D. A., and Hayes-Roth, F., (eds.), Academic Press, New York, 1978.

Cohen, P., and Feigenbaum, E. A., The Handbook of Artificial Intelligence. Vol. III, Kaufmann, Los Altos,
1982.

Davis, J., "CONVART: A Program for Constructive Induction on Time-Dependent Data," M.S. thesis,
Department of Computer Science, University of Illinois, Urbana, Illinois, 1981.

Dictterich, T. G.. London, R., Clarkson, K, and Dromey, G., "Learning and Inductive Inference," Chapter
XIV in Vol. 3 of The Handbook of Artificial Intelligence, Cohen, P. R., and Feigenbaum, E. A., (eds.).
1982.

Diettcrich, T. G., and Michalski, R. S., "Inductise Learning of Stnictural Descriptions: Evaluation Criteria
and Comparative Review of Selected Methods," Arrificia/ Intelligence, 1981.

Engelmore, R.. and Terry, A., "Structure and Function of theSosalis System," Proceedings of the Seventh
International Joint Conference on Artificial Intelligence. 179.

Friedland, P. E., "Knowledge-Based Experiment Design in Molecular Generics," Rep. No. HPP-79-29,
Department of Computer Science, Stanford University, 1979.

Gardner, M., "On Playing the New Elcusis, the game that simulates the search for n-uth," Scientific American,
No. 237, pp. 18-25, October, 1977.

Hedrick, C. L. "Learning Production Systems from Examples," Artificial Intelligence, Vol. 7, No. 1, pp.
21-49, 1976.

Karpinski, J., and Michalski, R. S., "A System that Learns to Recognize Hand-written Alphanumeric
Characters." Proce Institute Automatyki, Polish Academy of Sciences, No. 35, 1966.

Kotovsky, K., and Simon, H. A., "Empirical Tests of a Theory of Human Acquisition of Concepts for
Sequential Patterns," Cognitive Psychology, No. 4, pp. 399-424, 1973.

Langley. P. W., "Descriptive Discovery Processes: Experiments in Baconian Science," Rep. No. CMU-
CS-80-121, Department of Computer Science, Carnegie-Mellon Unkersity, 1980.

•

43

McCarthy, J.. "Programs with Common Sense," in Proceedings of the Symposium on the Mechanization of
Thought Processes, National Physical Laboratory. pp. 77-84, 1958.

McCarthy, J., "Epistemological Problems of Artificial Intelligence," Proceedings of the Fifth International
Joint Conference on Artificial Intelligence. pp. 1038-1044, 1977.

McCarthy, J.. and I layes, P., "Some Epistemological Problems from the Standpoint of Artificial Intelligence,"
in Machine Intelligence 4, Meltzer, B., and Michic, 13., (eds.), Edinburgh University Press, Edinburgh,
pp. 463-502, 1969.

Michalski, R. S., "A Theory and Methodology of Inductive Learning," Artificial Intelligence, Vol. 20,
111-161, 1983.

Michalski, R. S., and Chilausky, R. L., "Learning by Being Told and Learning From Examples: An
Experimental Comparison of the Two Methods of Knowledge Acquisition in the Context of Developing
an Expert System for Soybean Disease Diagnosis," Policy Analysis and Infonnation Systems, Vol. 4, No.
2, June 1980.

Michalski, R. S., and Kulpa, Z., "A System of Programs for the Synthesis of Switching Circuits Using the
Method of Disjoint Stars," Information Processing 71, pp. 61-65, North-Holland, 1971.

Mitchell, T. M., "Version Spaces: An approach to concept learning," Rep. No. STAN-CS-78-711, December,
1978.

Mitchell, T. NI., Utgoff, P. E., and Banerji, R. B., "Learning by Experimentation: Acquiring and Refining
Problem-Solving Heuristics," in Machine Learning, Michalski, R. S., Carbonell, J. G., and Mitchell,
T. M., (eds.), Tioga, Palo Alto, 1983.

Persson, S., "Some Sequence Extrapolating Programs: A Study of Representation and Modeling in Inquiring
Systems," Rep. No. CS50, 1966.

Samuel, A. L., "Some Studies in Machine Learning using the Game of Checkers," in Computers and Thought,
Feigenbaum, E. A.. and Feldman, J., (eds.) McGraw-Hill, New York, pp. 71-105, 1963,

Samuel, A. L., "Some Studies in Machine Learning using the Game of Checkers Il—Recent Progress," IBM
Journal of Research and Development, Vol. 11, No. 6, pp. 601-617, 1967,

Schank, R., and Abelson, R., "Scripts, Plans, and Knowledge," Proceedings of the Fourth International Joint
Conference on Artificial Intelligence. pp. 151-157, 1975.

Simon, H. A., "Complexity and the Representation of Patterned Sequences of Symbols,".Psych. Review, Vol.
79, No. 5, 369-382, 1972.

44

Simon, H. A., and Kotovsky, K., "Human Acquisition of Concepts for Sequential Patterns," Psychological
Review, Vol. 70, pp. 534-546, 1963.

Solomonoff, R. S., ''A Formal Theory of Inductive Inference," Information and Control, Vol. 7, pp. 1-22,
224-254, 1964.

Soloway, E. M., "Learning = Interpretation + Generalization: A Case Study in Knowledge-Directed
Learning," Rep. No. COINS TR-78-13, Computer and Information Science Dept., U. Mass. at Amherst,
1978.

Winston, P. H., "Learning Structural Descriptions from Examples," Rep. No. Al-TR-231, MIT, 1970.

Copyright E 1985 by KSL and
Comtex Scientific Corporation

FILMED FROM BEST AVAILABLE COPY

