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1. INTRODUCTION

Distributed systems are multi-processor information processing systems which
do not rely on the central shared memory for communication. The importance
of distributed systems has been growing with the advent of "computer networks"
of a wide spectrum: networks of geographically distributed computers at one end,
and tightly coupled systems built with a large number of inexpensive physical
processors at the other end. Both kinds of distributed system are made available
by the rapid progress in the technology of large-scale integrated circuits. Yet
little has been done in the research on semantics and programming methodologies
for distributed information processing systems.

Our main research goal is to understand and describe the behaviour of such
distributed systems in seeking the maximum benefit of employing multi-processor
computation schemata.

The contribution of such research to Artificial Intelligence is manifold. We
advocate an approach to modelling intelligence in terms of cooperation and com-
munication among knowledge-based problem-solving experts. In this approach,
we present a coherent methodology for the distribution of active knowledge as
a knowledge representation theory. Also this methodology provides flexible
control structures which we believe are well suited to organizing distributed
active knowledge. Furthermore, we hope to make technical contributions to the
central issues of problem solving, such as parallel versus serial processing, centra-
lization versus decentralization of control and information storage, and the
"declarative-procedural" controversy.

This paper presents ideas and techniques in modelling distributed systems
and their application to Artificial Intelligence. In Secs. 2 and 3, we discuss a
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model of distributed systems and its specification and proof techniques. In
Sec. 4 we introduce the simple example of an air line reservation system and
illustrate our specification and proof techniques by this example in the subse-
quent sections. Then we discuss our further work.

2. A MODEL OF DISTRIBUTED SYSTEMS

The actor model of computation (Grief and Hewitt 1975, Grief 1975, Hewitt
and Baker 1977) has been developed as a model of communicating parallel
processes. The fundamental objects in the model of computation are actors.
An actor is a potentially active piece of knowledge (procedure) which becomes
active when it is sent a message which is also an actor. Actors interact by sending
messages to other actors. More than one transmission of messages may take place-
concurrently. Two events will be said to be concurrent if they can possibly
occur at the same time. Each actor decides how to respond to messages sent to it.
An actor is defined by its two parts, a script and a set of acquaintances. Its script
is a description of how it should behave when it is sent a message. Its acquain-
tances are a finite set of actors that it directly knows about. If an actor A
knows about another actor B, A can send a message to B directly. The concept
of an event is fundamental in the actor model of computation. An event is an
arrival of a message from actor M at a target actor T and is denoted by the
expression IrT <= Mt A computation is expressed as a partially ordered set of
events. We call this partial order the precedes ordering. Events which are un-
ordered in the computation are concurrent. Thus the partial order of events
naturally generalizes the notion of serial computation (which is a sequence of
events) to that of parallel computation.

A collection of actors which communicate and cooperate with each other in
a goal-oriented fashion can be implemented as a single actor. In essence, actors
are procedural objects which may or may not have local storage. Some may
behave like procedures, and some may behave like data structures. Modules in
distributed systems are modelled by actors and systems of actors. In this regard,
IC (integrated circuit) chips can be viewed as actors.

Knowledge and intelligence can be embedded as actors in a modular and
distributed fashion. For example, frames (Minsky 1975), (Kuipers 1975),
units (Bobrow, and Winograd 1976), beings (Lenat 1975), stereotypes (Hewitt
1975) etc. which represent modular knowledge with procedural attachments,
are modelled and implemented as actors. In the context of electronic mail
systems and business information systems, objects such as forms, documents,
customers, mail collecting stations, and mail distributing stations are easily
modelled and implemented as actors.

Messages which are sent to target actors usually contain continuation actors
to indicate where the replies to the messages should be sent. By virtue of con-
tinuations in messages, the message-passing in the actor model of computation
realizes a universal, yet flexible control structure without using implicit mechan-
isms such as push-down stacks. Various forms of control structure such as go-to's,
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procedure calls, and co-routines can be viewed as particular patterns of message

passing (Hewitt 1977).
This model of computation has been implemented as a programming lan-

guage, PLASMA (Hewitt 1977). The script of an actor can be written as a
PLASMA program. We believe that message-passing semantics provide a basis
for programming languages for distributed systems. In Sec. 5, an example of a
PLASMA program is given as a script of a flight-data actor in the model of
a simple air line reservation system.

3. TECHNIQUES FOR SPECIFICATION AND VERIFICATION

In designing and implementing a distributed (message-passing) system, it is
desirable to have a precise specification of the intended behaviour of the dis-
tributed system. Also we reed sound techniques for demonstrating that imple-
mentations of the system meet its specifications. Below, we give some of the
central ideas of our specification and proof techniques based on the model
introduced in the previous section. More detailed work will be found in Yonezawa
(1977).

In specifying the behaviour of a distributed system, it is not only practically
infeasible, but also irrelevant to use global states of the entire system or the
global time axis which governs the uniform time reference throughout the
system. We are concerned with states of modular components of a distributed
system which interact with each other by sending messages. Thus we are inter-
ested in the states of actors participating in an event at the instance at which the
message is received.

In our specification language, conceptual representations are used to express
local states of actors (modules). Conceptual representations were originally
developed to specify the behaviour of actors which behave like data structures
(Yonezawa and Hewitt 1976). We have found them very useful to express states
of modules in distributed systems at varying levels of abstraction and from
various view-points. The basic motivation of conceptual representations is as an
aid in the provision of a specification language which serves as a good interface
between programmers and the computer, and also between users and imple-
menters. Conceptual representations are intuitively clear and easy to understand,
yet their rigorous interpretations are provided. Instead of going into the details
of syntactic constructs of conceptual representations, we shall give a few examples.
Below !(exp) is the unpack operation on (exp), that is individually writing out
all the elements denoted by (exp).

(CELL (contents: A)) ;a cell containing A as its contents.
(QUEUE (elements: [A B CI)) ;a queue with elements A B C.
(NODE (car: A)(cdr: B)) ;a LISP node containing A and B.
(CUSTOMER (letters: {! m})(#-of-stamps-needed: n))

;a customer visiting a post office
;who carries letters !m and wants n stamps.

(POST-OFFICE (customers: {!c].) (collectors: PcID)
;a post office which contains customers lc and mail collectors lcl.
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It should be noted that a conceptual representation does not represent the

identity of an actor. It only provides a description of the local state of an actor.
Thus to say that an actor 0 is in the state expressed by a conceptual repre-

sentation (QUEUE (elements: [A B )), an assertion of the following form is
used:

(0 is-a (QUEUE (elements: [A B C])))

Some examples of specification using conceptual representation are given in the

later sections.
Symbolic evaluation is a process which interprets a module on abstract data

to demonstrate that the module satisfies its specification. Symbolic evaluation

differs from ordinary evaluation in that (1) the only properties of input that can

be used are the ones specified in the pre-requisites, and (2) if the symbolic

evaluation of a module M encounters an invocation of some module N, the

specification of N is used to continue the symbolic evaluation. The implementa-

tion of N is not used. The technique of symbolic evaluation has been studied by

a number of researchers, for example Boyer and Moore (1975), Burstall and

Darlington (1975), Hewitt and Smith (1975), Yonezawa (1975), King (1976).

Our method for symbolic evaluation of distributed systems is an extension

of the one developed for symbolic evaluation of programs written in SIMULA-like

languages (Yonezawa and Hewitt 1976). One of the main techniques we employ

in symbolic evaluation is the introduction of a notion of situations (McCarthy

and Hayes 1969). A situation is the local state of an actor system at a given
moment. The precise definition of locality in the actor model of computation

is found in Hewitt and Baker (1977). By relativizing assertions with situations,

relations and assertions about states of modules in different situations can be

expressed. Explicit uses of situational tags seems to be very powerful in symbolic

evaluation of distributed systems. A simple example is given in Sec. 7.

Another technique we employ in symbolic evaluation is the use of actor

induction to prove properties holding in a computation. Actor induction is a

computational induction based on the precedes ordering (cf. Sec. 2) among

events. It can be stated intuitively as follows:

"For each event E in a computation C, if preconditions for E imply pre-

conditions for each event E' which is immediately caused by E, then

the computation C is carried out according to the overall specification."

The precedes ordering has two kinds of suborderings, (1) the activation ordering,

"activates", which is the causal relation among events, and (2) the arrival ordering,

"arrives-before", which expresses ordering among events which have the same

target actor. Thus there are two kinds of actor induction according to these

suborderings. An example of the induction based on arrival ordering is used in

Sec. 7.
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4. MODELLING AN AIR-LINE RESERVATION SYSTEM

A specification of an air line reservation system

As an example of distributed systems, let us consider a very simple air-line

reservation system. Suppose we have just one flight which has a non-negative

number of seatst . A number of travel agencies (parallel processes) independently

try to reserve or cancel seats for this flight, possibly concurrently. We model the

air-line reservation system as a flight actor F which behaves as follows. The
flight actor F accepts two kinds of message, (reserve-a-seat:) and (cancel-a-seat:).

When F receives (reserve-a-seat:), if the number of free seats is zero, a message

(no-more-seats:) is returned. Otherwise a message (ok-its-reserved:) is returned
and the number of free seats is decreased by one.When F receives (cancel-a-seat:),
if the number of free seats is less than the maximum number of seats of the
flight, a message (ok-its-cancelled:) is returned and the number of free seats is
increased by one, otherwise (too-many-cancels:) is returned. Furthermore,
requests by (reserve-a-seat) and (cancel-a-seat) are served on a first-come-first-
served basis.

To write a formal specification of the air-line reservation system, we need
to describe the states of the flight actor. For this purpose, we use the following
conceptual representation:

(FLIGHT (seats-free: (m)) (size: (s)))

The number of free seats is (in), and (s) is the size of the flight in terms of the
total number of seats. The formal specification of the air-line reservation system
using this conceptual representation is depicted in Fig. 1.

The first (event.....)-clause states that a new flight actor F is created by an
event where the create-flight actor receives a positive number S. (Actor)* means
that (actor) is newly created. The second (event:...)-clause has two cases according
to the number of free seats at the moment when the flight actor F receives
(reserve-a-seat:). When the number of free seats is zero (Case-1), the state of F
does not change. When it is positive (Case-2), the number of free seats decreases
by one as stated by the assertion in the (next-cond:...)1-clause. The notation in
Fig. 1:

(event: [1" (=
(pre-cond: ...)
(next-cond: ... (assertion)...)
(return: (actor)))

means that when an event [1- (= M takes place, if the preconditions are satis-
fied, (assertion)s in the (next-cond: ...)-clause hold immediately after the event

t A model of air-line reservation systems which deal with more than one flight is discussed
in Yonezawa (1977).
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until the next message arrives at T. (Actor) in the (return: ...)-clause is returned as
a result of the event. A (next-cond:...)-clause differs from a (post-cond: ...)-clause
in that assertions in a (post-cond:...)-clause hold at the time (actor) is returned,
whereas assertions in a (next-cond: ...)-clause hold at the time the next message
arrives. The next message may arrive at T before or after a reply for the previous
message is returned. The third (event.....)-clause is for the cancelling event, which
is interpreted in a similar way.

(event: [create-flight (= Si
(pre-cond: '(S) 0))
(return: F*)
(post-cond: (F is-a (FLIGHT (seats-free: S) (size: S)))))

(event: [F (= (reserve-a-seat:)]]
(case-1:

'(pre-cond:. (F is-a (FLIGHT (seats-free: 0) (size: S))))
(next-cond: (F is-a (FLIGHT (seats-free: 0) (size: ,S))))
(return: (no-more-seats:)))

(case-2:
(pre-cond:
(F is-a (FLIGHT (seats-free: N) (size: S)))
(N ) 0))

(next-cond: (F is-a (FLIGHT (seats-free: N —1) (size: IS))))
(return: (ok-its-reserved:))))

(event: 1[F (= (cancel-a-seat:)]]
(case-1:

(pre-cond: (F is-a (FLIGHT (seats-free: S) (size: IS))))
(next-cond: (F is-a (FLIGHT (seats-free: S) (size: S))))
(return: (too-many-cancels:)))

(case-2:
!(pre-cond:
(F is-a (FLIGHT (seats-free: N) (size: S)))
(N (

(next-cond: (F is-a (FLIGHT (seats-free: N + 1)(size:IS))))
(return: (ok-its-cancelled:))))

Fig. 1 — A specification of the air line reservation system (a specification for the flight
actor).

5. IMPLEMENTING THE AIR LINE RESERVATION SYSTEM

Our strategy for implementing the air line reservation system (specified in the
previous section) is as follows. First, we implement a flight-data actor which

satisfies the specification in Fig. 1.
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In Fig. 2 we give an implementation of the flight-data actor in PLASMA.

(create-flight-data =s) Ea ;create-flight-data receives a size s of flight.

(create-serialised-actor (size initially s) ;a variable size is set to s.

(seats-free initially s) ;a variable seats-free is set to s.

then ;the following cases-clause is

;returned as an actor which behaves as a flight-data.
(receivers

(E) (reserve-a-seat) ;when a (reserve-...) message is received,

(rules seats-free
(E) 0
(no-more-seats:))

()(>O)
(seats-free (seats-free
(ok-its-reserved:))))

(E)(cancel-a-seat:)
(rules seats-free
(-7--) size

(too-many-cancels:))
(E) (< size)

(seats-free 4-- (seats-free
(ok-its-cancelled:))))))

;if seats-free is zero,
;(no-...) message is returned.

;otherwise
;seats-free is decreased by one.

;(ok-...) message is returned.
;when a (cancel-...) message is received,

Fig. 2 — An implementation of a flight actor.

;if seats-free is equal to size,
;(too-...) is returned,

;otherwise
;seats-free is increased by one.

;(ok-...) is returned.

It is fairly straightforward to write a specification for this flight F by using a
conceptual representation:

(FLIGHT (seats-free: (m)) (size: (s)))

which describes the state of a flight actor. The number of free seats is (m)
and (s) is the size of the flight in terms of the number of seats. Note that if F
were sent more than one message concurrently, anomalous results would be
caused unless we take precautions. For example, in the implementation in
Fig. 2 if (reserve-a-seat:) and (cancel-a-seat:) messages are sent concurrently, a
(no-more-seats:) message might be returned even if there are vacant seats. There-
fore in order to model the air line reservation system by using the above imple-
mentation of a flight-data actor, the way it is used must be restricted so that
inference between different activations may not take place. As suggested in the
beginning of this section, the restriction we impose is that F must be used
serially in the sense that F is not allowed to receive a message until the activation
by the previous message is completed. Now the flight actor can be used to
implement the air line reservation system under this restriction.
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7. SYMBOLIC EVALUATION OF THE AIR LINE RESERVATION
SYSTEM

Our implementation of the air line reservation system is expressed by the
following simple PLASMA code:

(create-a-flight S)

which creates a flight which initially has the following conceptual representation:

(FLIGHT (seats-free: S)(size: S))

This establishes the first clause of the specification of the air line reservation
system. The other clauses are established in the same way using symbolic
evaluation.

8. FURTHER WORK

We are currently working to establish a coherent methodology for demonstrating
that a distributed message-passing system will meet its task specifications. As an
example, an actor model of a simple post office is studied in Yonezawa (1977).
It is shown that the overall task specifications of the post office are implied by
specifications of the individual behaviour and mutual interaction of actors in
the model.

By using the technique of symbolic evaluation, we would like to analyse
the relationships and dependencies between modules in a distributed system.
This approach will be instrumental in assisting us with the evolutionary develop-
ment of distributed systems.

We are also working on the application of procedural objects (such as actors)
to the area of business automation. In order to replace paper forms and paper
documents, we use "active" forms and "active" documents which are displayed
on the TV terminal as images accompanied by procedures. Active forms and
documents are sent from one site to another whereby clerks are requested to
provide necessary information with the guidance of the accompanying pro-
cedures. Such procedures may also check the consistency of filled items and
point out errors and inconsistencies to persons who are processing forms. Thus
active forms and documents accompanied by procedures enormously increase
the flexibility and security of message and document systems. Furthermore, we
propose to use the "language" of forms and documents as the basis for the user
to communicate with the information processing system. One of the ultimate
objectives of our research is to develop a methodology for the construction of
real-time distributed systems which can be efficiently and effectively used by
non-programmers.

Note added in proof
Since this paper was written the message-passing semantics group has continued
to develop the preliminary ideas in this paper. Recent results are reported in
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