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1 Introduction

The use of computers in chemistry and biochemistry has been widespread
for many years, with machines performing many complex numerical calcula-
tions, e.g. solving quantum mechanical problems. However, some of the most
interesting and challenging problems encountered in these domains are not nu-
merical in nature. In particular, the interpretation or rationalization of many ob-
served phenomena cannot be reduced to an equation or series of equations.
Such problems are typically solved using intuition and experience and draw
upon a great deal of empirical knowledge about the problem area. It is not sur-
prising therefore, that these domains have proved such a fertile area for the ap-
plication of artificial intelligence techniques. In this chapter we describe one
such application, designed to assist a spectroscopist in the task of interpreting
the Nuclear Magnetic Resonance (NMR) spectra of proteins [Edwards, 1989].



There are a number of scientific and medical applications of nuclear mag-
netic resonance spectroscopy and magnetic resonance imaging (MRI). The
greatest impact of NMR in the chemical sciences has without doubt been in
the elucidation of molecular structures. During the 1980s rapid developments
in two-dimensional Fourier transform NMR made possible the determination
of high quality structures of small proteins and nucleic acids. NMR spec-
trometers (in common with other laboratory experiments) invariably produce
experimental data subject to noise, corrupted or missing data points, etc.
User judgements in interactive processing of these data inevitably bias re-
sults, often unintentionally. The aim of the system currently under develop-
ment is the automation of part of this task for NMR spectra of proteins. Our
hope is that automation will limit the introduction of such user biases.

We now provide a brief introduction to proteins before describing the
technique of nuclear magnetic resonance which can be used to elucidate the
structure of such molecules.

2 Protein Chemistry

2.1 The Nature of Proteins

Proteins are probably the most diverse biological substances known. As
enzymes and hormones, they catalyze and regulate the reactions that occur in
the body; as muscles and tendons they provide the body with its means of
movement; as skin and hair they give it an outer covering; in combination
with other substances in bone they provide it with structural support, etc.
Proteins come in all shapes and sizes and by the standard of most organic
molecules, are of very high molecular weight. In spite of such diversity of
size, shape and function, all proteins have common features that allow their
structures to be deciphered and their properties understood. Proteins are
biopolymers composed of amino acid building blocks or monomers. There
are 20 common amino acids used to synthesize proteins; their structures and
names are shown in Figure 1. The amide linkages that join amino acids in
proteins are commonly called peptide linkages and amino acid polymers are
called polypeptides. Figure 2 shows a piece of protein backbone with the
peptide linkages labeled.

2.2 Protein Structure

The structure of a protein molecule is considered at three levels of detail:
primary, secondaryand tertiary structure. The primary structure describes
the chemical composition of the protein; the secondary structure describes
common structural arrangements of parts of the backbone; while the tertiary
structure details the folding of these chains in three dimensional space.

Primary Structure The first stage in the process of protein structure pre-
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Figure 1  The protein backbone unit and the 20 amino acid side chains, shown with
the three and one letter abbreviations for each.  Proline is an imino acid, and  its N
and Cα backbone atoms are shown.  Greek letters (α, β, γ, δ, ε, ζ, η) identify the dis-
tance (number of bonds) from  the central (α) carbon atom.  C=carbon, H=hydrogen,
N=nitrogen, O=oxygen, S=sulphur atoms.  



diction is the determination of its primary structure, i.e., the linear arrange-
ment of the amino acid residues within the protein. This is determined by
chemical means. 

Secondary StructureThe major experimental technique that has been used
in the elucidation of secondary structure of proteins is X-ray crystallographic
analysis. When X-rays pass through a crystalline substance they produce
diffraction patterns. Analysis of these patterns indicates a regular repetition of
particular structural units with certain specific distances between them. The
complete X-ray analysis of a molecule as complex as a protein can take many
months. Many such analyses have been performed and they have revealed that
the polypeptide chain of a natural protein can assume a number of regular con-
formations. Rotations of groups attached to the amide nitrogen and the carbonyl
carbon are relatively free, and it is this property that allows peptide chains to
adopt different conformations. Two major forms are the β sheet and α helix. 

The β sheet consists of extended polypeptide chain with backbone
residues forming hydrogen bonds between the chains. The sheet is not flat,
but rather is pleated, in order to overcome repulsive interactions between
groups on the side chains. The α helix is a right-handed helix with 3.6 amino
acid residues per turn. Each NH group in the chain has a hydrogen bond to
the carbonyl group at a distance of three amino acid residues. The side chain
groups extend away from the helix. Certain peptide chains assume what is
called random coil arrangement, a structure that is flexible, changing and sta-
tistically random. The presence of proline or hydroxyproline residues in
polypeptide chains produces another striking effect. Because the nitrogen
atoms of these residues are part of five-membered rings, the groups attached
by the N - Cα bond cannot rotate enough to allow an α helical structure.
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gen atoms and one oxygen atom are released, and the remaining portion of the amino
acid is called a residue.



Tertiary Structure The tertiary structure of a protein is the three dimen-
sional shape which arises from foldings of its polypeptide chains. Such fold-
ings do not occur randomly: under normal environmental conditions, the ter-
tiary structure that a protein assumes will be its most stable arrangement, the
so-called “native conformation.” Two major molecular shapes occur natural-
ly, fibrous and globular. Fibrous molecules have a large helical content and
are essentially rigid molecules of rod-like shape. Globular proteins have a
polypeptide chain which consists partly of helical sections which are folded
about the random coil sections to give a “spherical” shape.

A variety of forces are involved in stabilizing tertiary structures including
the formation of disulphide bonds between elements of the primary structure.
One characteristic of most proteins is that the folding takes place in such a
way as to expose the maximum number of polar groups to the aqueous envi-
ronment and enclose a maximum number of nonpolar groups within its inte-
rior. Myoglobin (1957) and haemoglobin (1959) were the first proteins
whose tertiary structures were determined by X-ray analyzes.

3 Protein NMR

The first NMR experiments with biopolymers were performed over thirty
years ago. The potential of the method for structural studies of proteins was
realized very early on. However, in practice, initial progress was slow be-
cause of limitations imposed by the instruments and the lack of suitable bio-
logical samples. In recent years there has been a huge increase in interest in
the technique, primarily due to the development of two-dimensional NMR
which makes the task of interpreting the data more straightforward [Jardet-
zky, 1981; Wüthrich, 1986; Cooke, 1988].

NMR techniques are complementary to X-ray crystallography in several
ways:

• NMR studies use non-crystalline samples e.g. solutions in aqueous or non-
aqueous solvents. If NMR assignments and spatial structure determination
can be obtained without reference to a corresponding crystal structure, a
meaningful comparison of the conformations in single crystals and non-
crystalline states can be obtained. 

• NMR can be applied to molecules for which no single crystals are avail-
able. 

• Solution conditions for NMR experiments (pH, temperature, etc.) can be
varied over a wide range. This allows studies to be carried out on interac-
tions with other molecules in solution.

We shall now define a number of terms commonly used by NMR spectro-
scopists. 
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Chemical shift defines the location of an NMR signal. It is measured rel-
ative to a reference compound. The chemical shift is normally quoted in
parts per million (ppm) units and is primarily related to the magnetic envi-
ronment of the nucleus giving rise to the resonance. 

Spin-spin coupling constantscharacterize through-bond interactions be-
tween nuclei linked by a small number of covalent bonds in a chemical struc-
ture.

NOEs (Nuclear Overhauser Enhancement/Effect) are due to through-
space interactions between different nuclei and are correlated with the in-
verse sixth power of the internuclear distance.

3.1 Two Dimensional NMR

Conventional (one dimensional) NMR spectra of proteins are densely
crowded with resonance lines. There is no straightforward correlation be-
tween the NMR spectrum of the simple, constituent amino acids and the
macromolecules. This makes it difficult to detect individual residues within
the spectrum. There are a number of reasons for this, including the spatial
folding of proteins, which has an effect on chemical shift values; and physi-
cal side-effects due to the size of proteins. As a consequence of the difficul-
ties involved in interpreting such data, spectroscopists choose to produce two
dimensional spectra of proteins and other biopolymers1. 

With 2D NMR the natural limitations of 1D NMR can largely be over-
come. The main advantages of 2D NMR relative to 1D NMR for proteins are
that connectivities between distinct individual spins are delineated, and that
resonance peaks are spread out in two dimensions leading to a substantial
improvement in peak separation, thus making the spectra far easier to inter-
pret.

Two main types of 2D experiment are important for proteins. One records
through-bond interactions between 1H nuclei (HOHAHA, COSY) while the
other detects through-space interactions (NOESY). We shall not go into the
details of how these different experiments are performed, suffice it to say that
the first pair of techniques allow one to study interactions occurring within
amino acid residues while the second illustrates longer-range interactions oc-
curring between amino acids. Figure 3 shows a piece of protein backbone
with selected through-bond and through-space interactions labeled.

The selection of techniques for the visualization of the data from a 2D ex-
periment is of considerable practical importance. Spectral analysis relies pri-
marily on contour plots of the type shown in Figure 4. Contour plots are suit-
able for extracting resonance frequencies and for delineating connectivities
via cross peaks, but care must be taken when attempting to extract quantita-
tive information from such a plot.

Limitations for the analysis of 2D NMR spectra may arise from a phe-
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nomenon termed “t1 noise”, i.e. bands of spurious signals running parallel to
the ω1 axis at the position of strong, sharp diagonal peaks. These signals may
arise due to spectrometer instability or other sources of thermal noise. They
may also be an artifact of inadequate data handling during the Fourier trans-
form. Ideally, NOESY or HOHAHA spectra should be symmetrical with re-
spect to the main diagonal. In practice, however, noise, instrumental artifacts
and insufficient digitization tend to destroy perfect symmetry. A number of
2D NMR experiments, including COSY and NOESY are described by Mor-
ris [1986].

We shall now describe how NMR techniques may be used to determine
protein structure.
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polypeptide)



4 Protein Structure Prediction

The process of determining the structure of a protein by NMR relies on a
chemical sequence for the protein (assumed to be correct) being available.
Each residue in the protein will give rise to a characteristic set of peaks in the
HOHAHA and COSY spectra and interactions between residues will lead to
cross peaks in the NOESY spectrum. The interpretation of these spectra in-
volves detection of the residue spin-systems in the HOHAHA and COSY,
followed by analysis of the NOESY in order to link these spin-systems to-
gether. The steps involved are: 

1. The spin systems of individual amino acid residues are identified using
through-bond 1H - 1H connectivities. Each spin system produces a pattern
of signals within the HOHAHA and COSY spectra that is characteristic of
one or more amino-acid residue. (Section 4.1)

2. Residues which are sequential neighbors are identified from observation of
signals in the NOESY spectrum indicating sequential connectivities2 αN,
NN and possibly βN. (Section 4.2)

3. Steps (1) and (2) attempt to identify groups of peaks corresponding to pep-
tide segments that are sufficiently long to be unique in the primary struc-
ture (sequence) of the protein. Sequence specific assignments are then ob-
tained by matching the segments thus identified with the corresponding
segments in the chemically determined amino acid sequence.3 Note that
for larger proteins, crystallographic data may also be used here. (Section
4.2)

4. The occurrence of certain patterns of NMR parameters along the polypep-
tide chain is indicative of particular features of secondary structure.
NOESY signals are used to detect interactions between residues in the
protein. (Section 4.3)

4.1 Assignment of Spin Systems

HOHAHA & COSY techniques A COSY spectrum consists of the con-
ventional NMR signal along the diagonal and off-diagonal peaks (cross
peaks) corresponding to 1H - 1H interactions. The peaks along the diagonal
represent a normal spectrum of the system. Figure 5 is a schematic 2D plot
showing the approximate positions of different types of protons along the di-
agonal.

With few exceptions COSY cross peaks are only observed between pro-
tons separated by three or less covalent bonds and thus are restricted to pro-
tons within individual amino-acid residues. Some of the 20 residues found in
proteins give rise to unique patterns in the COSY spectrum. Not all residues
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produce unique patterns as a number of them have similar structures and thus
give rise to very similar COSY cross peak patterns. Often one can only identi-
fy something as belonging to a class of residues. NH protons and aromatic
protons are relatively easy to identify. However, multiple methylene (CH2)
groups often cause problems as it becomes difficult to ascertain their ordering.

In order to make the signals easier to analyze, a variation on the standard
COSY technique is employed, HOHAHA. Whereas COSY only shows inter-
actions occurring between neighboring protons, such as αβ, βγ and so on,
HOHAHA provides in principle, an overall picture by showing all 1H - 1H
interactions occurring for each proton within the residue. Thus for a residue
containing N, α, β and γ protons, the HOHAHA spectrum will contain a
peak for each interaction with the N proton: Nα, Nβ, Nγ; a peak for each in-
teraction with the α proton: αβ, αγ and so on. This technique has only been
in routine use relatively recently, and has largely superseded COSY as it pro-
vides additional information. However, as noted below in point (3) it is often
necessary to use these two techniques together. Thus, in the NH region of the
HOHAHA spectrum one sees cross peaks due to each of the protons in the
residue. In the Cα region one sees peaks caused by the Cβ, Cγ protons, etc.
and in the Cβ region peaks resulting from Cγ, Cδ, etc. Figure 6a shows the
HOHAHA spectrum for the threonine residue. Even with this technique we
find that not all residues can be uniquely identified.

Correlations to δ protons are often not observed from the amide (NH) pro-
tons. The δ protons can however be observed in the Cα and Cβ regions and it
is therefore quite common for different regions of the spectrum to be exam-
ined in order to detect the differing signals belonging to a spin system. In
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order to make the δ protons observable in the NH region it is necessary to
adjust the experimental parameter known as the mixing time. Unfortunately,
as this parameter is increased information starts to be lost from the spectrum
due to relaxation processes.

For small proteins it is usually possible to pick out all of the spin systems
despite there being many hundreds of protons contributing to the spectrum.
The interpretation process begins with an attempt to assign the individual
spin-systems within the HOHAHA spectrum. The region of the spectrum
displaying peaks due to interaction between the N and Cα protons (approxi-
mately 3.8 - 5.5 / 7.6 - 9 ppm) is termed the “fingerprint” region and all inter-
pretations begin in this area. Study of the HOHAHA spectrum of Nisin4

shown in Figure 4 serves to illustrate the reason for this decision, as the reso-
lution in this region is a great deal better than in the Cα or Cβ regions. Spin
systems are detected by the following procedure: 

1. Find a group of peaks which are aligned5 along a vertical in the NH re-
gion.

2. As it is possible to have more than one set of spin system peaks on the
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same vertical, it is often necessary to resolve such overlapping systems.
This is accomplished by the choice of a Cα signal in the NH region (Fig-
ure 7); a horizontal line is then traced to the diagonal; looking up the verti-
cal from this point, all the Cβ, Cγ, etc. signals belonging to the same
residue as the Cα are observed. If these signals are compared with the sig-
nals in the original part of the NH region, the group of peaks in that region
belonging to the same spin-system should become obvious, as they will
have a constant chemical shift value in the vertical direction.

3. For certain residues, the chemical shift values of the α, β, γ and other pro-
tons can be very similar, leading to the ordering of signals becoming con-
fused (Table 1). From the HOHAHA spectrum it is impossible to say
which signals are due to which protons and in such a situation it is neces-
sary to resort to a COSY spectrum as this makes explicit the “adjacent”
protons. Figures 6b and 6c show the COSY spectra for threonine with the
chemical shift values of the α and β protons occurring in slightly different
positions. As COSY only shows cross peaks for “one step” interactions it
is quite easy to differentiate between the α and β protons, regardless of
their chemical shift values; the α interacts with N and β, while the β inter-
acts with α and γ. From the HOHAHA spectra in Figure 6a it is impossi-
ble to distinguish between these protons.

4. Often, all the signals for a particular spin system are not present, due to
peak overlap and other effects. In such a situation the spectroscopist will
often resort to “intelligent” guesswork based upon his knowledge of the
technique to “fill the gaps.” This knowledge is used to provide a plausible
NMR reason why signals do not appear and may, for example, involve de-
cisions based upon the similarities of chemical shift values for individual
protons.

5. Once a pattern of signals has been detected within the spectrum, it is la-
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beled as having been produced by one or more of the 20 amino-acid
residues. In the case of some patterns the spin system may only be labeled
as belonging to a group of residues with similar structure, such as those
with long side chains or aromatic groups.

Chemical shift values could be used to distinguish between the different
residue types, but in practice such values are regarded as being too unreliable
and are little used. 

Thus, in order to perform a complete spin-system assignment, it is neces-
sary to have both the HOHAHA and COSY spectra of the protein. The HO-
HAHA spectrum is used to identify the spin-systems while the COSY spec-
trum is used to identify troublesome α and sidechain protons prior to the
sequential assignment process. 

This entire process is currently performed using a ruler and pencil (to link
signals in the spectrum together) and can take several days of a spectro-
scopists time.

4.2 Connecting the Spin Systems

NOESY techniqueDepending on the actual settings used during the ex-
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periment, NOESY cross peak signals (off-diagonal peaks) can be obtained
for pairs of protons at varying distances apart. Figure 3 illustrates the interac-
tions that can occur between 2 adjacent residues. 

Which through-space interaction is prevalent will depend upon the geo-
metric shape of the protein. It is possible to get non-sequential NOE interac-
tions due to hydrogen-bonded interactions between adjacent sheets, etc. The
NMR experiment may be “fine-tuned” to indicate only those interactions oc-
curring within a certain distance. For example, those occurring between adja-
cent residues. This is achieved by use of the experimental parameter, mixing
time (τm). It is usual to set τm initially to exclude all but the shortest range
NOEs which are due to sequential interactions and very short through-space
interactions6. This type of experiment is used during the sequential assign-
ment process. For the determination of secondary structure it becomes neces-
sary to alter τm to allow the longer range NOEs to give rise to signals. The
region 3.8 - 5.5 / 7.6 - 9.0 ppm is the “fingerprint” region of a NOESY spec-
trum (c.f. HOHAHA).

It is possible to set τm in order to exclude all but onesequential neighbor
of each residue and the shortest through-space interactions. This technique is
particularly useful for sequence confirmation experiments when segments of
polypeptide chain can be constructed based on the spectrum and checked
against the chemically derived sequence.

The sequential assignment process requires that the chemical sequence of
the protein be available.

Sequential assignmentUsing the three sequential connectivities αN, NN,
βN it is possible to “walk” the entire length of the residue chain. Using just
one of these types of connectivity is often not sufficient, due to absent or
overlapping peaks, etc. The HOHAHA and NOESY spectra both possess di-
agonal peaks corresponding to correlations between protons from the residue.
As these peaks occur in the same positions in both spectra, this gives us a
means of relating cross peaks in the NOESY to the spin systems identified in
the HOHAHA. Figure 8 illustrates the process of sequential assignment using
these techniques. One begins by selecting a diagonal peak, such as a Cα peak,
in the HOHAHA spectrum which belongs to a known spin system (d1). A is
an off-diagonal peak within that spin-system. The corresponding diagonal
peak in the NOESY is then detected (d1’) and a horizontal line drawn away
from the diagonal to find the NOESY off-diagonal peak. (If more than one
peak is present along the horizontal, then they are all treated as possibly being
due to sequential connectivity.) A vertical line is then drawn back to the diag-
onal (d2). The corresponding diagonal peak in the HOHAHA spectrum is
then identified (d2’) and the fact that the two residues are adjacent is noted. B
is an off-diagonal peak in the adjacent spin-system7. This process is repeated
until a peptide segment of perhaps five or six residues has been detected, e.g.
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GCA*L , where * indicates a residue which cannot be identified with abso-
lute certainty from the HOHAHA/COSY spectra

The chemically determined amino acid sequence is then searched for pep-
tide segments that will match the partial sequences identified by sequential
NMR assignments. The sequence is needed at this stage to eliminate erro-
neous sequential assignment pathways, which may have resulted because
non-sequential NOE connectivities have been interpreted as sequential
ones8. In principle, all the information missing in incomplete spin system
identifications can be obtained during the sequence specific assignment pro-
cess. Patterns in the HOHAHA spectrum that have been labeled as one of a
group of residues can be uniquely identified once their sequence positions
are known. Once all the spin systems in the HOHAHA have been fully iden-
tified, they are labeled with their residue name and sequence position.

The sequence specific assignment technique described here works well for
small proteins up to approximately 100 residues. If there are too many
residues, signal overlap becomes a major problem. For larger proteins it is
often necessary to use crystallographic data to help with NMR assignments.

4.3 Secondary Structure Prediction

We have already seen that the short range NOESY interactions allow us to
determine which of the residues detected in the HOHAHA spectrum are ad-
jacent. This same information can also be used to indicate some features of
secondary structure. Non-sequential interactions also indicate secondary
structure, e.g. interaction between the ith and ith+3 residues is seen in α-he-
lices. Accurate identification of the ends of a helix can be difficult. Table 2
summarizes the type of interactions seen in the NOESY spectrum for partic-
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ular secondary structures, together with a guide to the peak intensity. 
Coupling constant values (determined from the spectrum) can also be

used to provide support for a particular structure.

4.4 3D Structure Determination

As we have seen, the NOESY spectrum can be used to indicate features of
secondary structure. They can also be used to determine a tertiary (3D) struc-
ture for the protein.

The NOESY data is converted into a set of limits on the distances be-
tween pairs of interacting protons. Tables containing all internuclear dis-
tances in the protein are constructed with the spectroscopic information used
to provide some of the entries and the geometry of common structural fea-
tures used to provide others. Upper and lower limits are recorded for each
distance. It should be noted that this is an approximate technique as there is
no straightforward mapping from NOE to distance (as the general environ-
ment complicates the signal). Strong, medium and weak NOEs are taken to
indicate upper distance limits of 2.5, 3.5 and 4.5Å respectively. Known
molecular bond lengths, bond angles and standard geometries are used to
provide interatomic distances for atoms separated by one or two bonds. Pep-
tide dihedral angles obtained from coupling constants can also be recast as
limits on distances between atoms separated by three bonds. A lower limit on
interatomic distances is normally set as the sum of the van der Waals radii.

Generating a three dimensional structure from this data is not straightfor-
ward and a number of different approaches exist including Distance Geome-
try algorithms [Havel, 1983], Molecular Dynamics [Hermans, 1985] and sys-
tems employing geometric constraint satisfaction, such as the PROTEAN
system (see below). Distance Geometry and Molecular Dynamics are exam-
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ples of methods within the adjustment paradigmfor interpretation of NMR
data [Altman, 1988], i.e. they generate starting structures, usually at random,
and then search the neighboring conformational space until the mismatch be-
tween the data predicted from the adjusted structure and the experimental
data is minimized in terms of some chosen function. By contrast, methods
within the exclusion paradigmgenerate starting structures in a systematic
manner and test them for agreement with the given data set. All structures
compatible with the data are retained as possible solutions, and all incompat-
ible structures are excluded from further consideration.

Distance Geometry algorithms work with distances between points rather
than Cartesian coordinates. They allow the choice of three mutually perpen-
dicular axes to be made such that a “best fit” emerges as a 3D description of
the structure. This fit usually contains some small incompatibilities with the
distance information. These are minimized according to user supplied crite-
ria, often some kind of energy relaxation calculation is required to relieve
strain in the structure. Alternative solutions are generated by repeating the
calculation with a random choice for the distances, each somewhere within
its limits. The effect is to sample the conformation space. Confidence in a so-
lution grows if repeated calculations arrive at a similar end point.

The input to Molecular Dynamics programs consists of the covalent struc-
ture of the molecule and a number of energetic terms, e.g. energy to stretch
bonds, energy for van der Waal’s repulsion. Other energy terms are linked to
distance constraints. The program then solves Newton’s equations of motion
using the energy terms. Balance between the energy terms is important.
There is no known test for uniqueness, but confidence increases if repeated
simulations from different starting points converge to give a similar final re-
sult. 

5 Computational Aspects of NMR

The earliest use of computers in NMR was for time-averaging of multiple
scans in the mid-1960s. Systems for performing the first Fourier transforms
in commercial NMR instrumentation appeared in 1969. From the early 1970s
the majority of NMR instruments were interfaced to minicomputers which
controlled data acquisition and performed FFT (Fast Fourier Transform) and
standard post-FT processing. By the mid-1970s NMR instrumentation was
designed around 16-20 bit word minicomputers with low resolution colour
graphics and digital plotters used for output. In the early 1980s NMR instru-
ment computers began to be replaced by modern microcomputer and mini-
computer systems, augmented by array processors. The current generation of
NMR instruments incorporate microcomputers performing tasks ranging
from sample temperature control to data acquisition and supervision and con-
trol of the user interface. Most NMR instruments make use of high resolution
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graphics for data display. The current trend is to perform data reduction away
from the spectrometer using general-purpose commercial workstations. Levy
[1986] reviews some of the computational aspects of NMR.

The application of computers to NMR can be separated into two areas: 1)
data acquisition and experiment control and 2) data reduction. The task of
acquiring data and performing control over the spectrometer is handled by
computers embedded in the instrumentation, usually through proprietary
software that is not available to the user. The timing of experimental events,
pulse programming and so on occurs on a rapid time scale. The data reduc-
tion task, on the other hand, has relatively light real-time constraints. Data
reduction is usually performed using ex-spectrometer computers, which fa-
cilitate the use of new data reduction techniques and which remove lengthy
processing from the instrument and thus lead to an increase in spectrometer
throughput. The most common language in scientific computing remains
FORTRAN, although recently C has begun to be widely used also. Artificial
intelligence languages such as LISP, PROLOG and POP-11 are finding use
in scientific software, but as yet only on a very small scale.

5.1 AI Applications & NMR

Chemistry was one of the first disciplines, aside from Computer Science,
to actively engage in research involving AI techniques. The Dendral project
[Carhart, 1977; Lindsay, 1980; Smith, 1981; Djerassi, 1982] is almost cer-
tainly the most well-known of these attempts to use AI for chemical applica-
tions, and aimed to develop computer programs to assist structural organic
chemists in the process of structure elucidation. Dendral was the first major
application of heuristic programming to experimental analysis in an empiri-
cal science, a practical problem of some importance. It was the first large
scale program to embody the strategy of using detailed, task-specific knowl-
edge about the problem domain as a source of heuristics, and to seek general-
ity through automating the acquisition of such knowledge. The structure elu-
cidation process involves a number of steps. First, chemical and
spectroscopic data (including NMR data) are interpreted to provide a number
of structural constraints. These constraints are substructures that must either
be present, or absent from the molecule under investigation. All possible
candidate structures consistent with these constraints are then generated. Ad-
ditional discriminating experiments are then planned so that the one correct
structure can be determined. 

Heuristic Dendral was constructed from a simple acyclic structure genera-
tor and a planning module (the preliminary inference maker) that performed
a classification based on mass spectral data. The early version of the system
dealt only with ketone molecules while subsequent versions of the system
were extended to handle additional classes of molecules such as ethers and
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amines [Schroll, 1969]. At the same time other spectral data were incorporat-
ed into the system in the form of one dimensional 1H NMR spectra. 

Another aspect of the Dendral project was the Meta-Dendral system
[Buchanan,1971; Buchanan, 1973]. This arm of the project was concerned
with the production of useful tools for chemists at a lower level than the
complete structure elucidation system. The system was originally devised for
the analysis of mass spectral data although it was extended by Mitchell and
Schwenzer [Schwenzer, 1977; Mitchell, 1978] to the analysis of 13C NMR
data. The principles governing 13C NMR are similar to those of 1H spec-
troscopy, although the scale of observed shifts is greater for the former.
Again, as in 1H NMR, the precise chemical shift of a nucleus depends on the
atom or atoms attached to it. The system generated rules which relate precise
13C shift ranges to specific environments for the resonating carbon atom.
The chemical shift range associated with a particular environment is found
by matching the generated structure against a training set of molecules and
their spectra. The minimum and maximum values of the shift corresponding
to that environment are recorded and form the range used in the rules. Goal
states can be characterized by various criteria such as requiring a rule to have
a sufficiently narrow range or to be supported by a minimum number of ex-
amples in the training data. The system begins with a very primitive sub-
structure (e.g. a simple carbon atom) and a correspondingly vague chemical
shift range (-∞ → +∞). Operators modify this structure by adding hydrogen,
carbon, and so on The generated rules are used to predict spectra for a set of
candidate molecules and the structures ranked by comparison of the predict-
ed spectrum with that of the unknown.

The use of a database of 1H NMR data to eliminate incompatible candi-
dates from the list of structures produced by exhaustive generation of iso-
mers is described by Egli [1982]. Structures obtained by a generator program
are evaluated by prediction of their 1H NMR spectra. The predicted and ob-
served spectra are then compared and the candidates ordered based on such
comparisons. The approach to spectrum prediction is strictly empirical and
involves the derivation of a set of expected chemical shifts for the protons in
each candidate. Egli describes a suite of programs which allow a user to
build and maintain a 1H NMR database that correlates substructural environ-
ments with observed proton resonances; to predict the spectrum of one or
more candidate structures for an unknown compound; to compare the pre-
dicted and observed spectra of the molecule and to order the candidates
based upon this comparison. 

A similar database of 13C NMR correlations containing 10,350 distinct
substructure/chemical shift pairs is described by Gray [1981]. This database is
also used for prediction of spectra for generated structures. It is also used to
perform the interpretation of the 13C NMR spectra of unknown molecules (to
arrive at a set of substructural fragments). This interpretation is performed so
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as to arrive at the minimal, internally consistent set of substructures.
The use of structural constraints provided by two-dimensional NMR is de-

scribed by Lindley [1983]. Partial structures obtained from the two-dimen-
sional NMR spectrum are combined with other spectral data in an effort to
elucidate the correct structure of an unknown molecule. All the constraints are
provided by a chemist, who is required to interpret the spectroscopic data.

A number of workers (other than those involved in the Dendral project)
have addressed the problem of constructing computer programs to automate
or semi-automate the task of structure elucidation. The use of a number of
different techniques for computer-assisted structure elucidation is described
in Hippe [1985]. These include library-search algorithms which perform the
comparison of an unknown spectrum with those in a standard collection
stored on disc. Such algorithms typically return a list of spectra and their as-
sociated structures ranked according to some matching function. Hippe also
describes integrated methods of structure elucidation. Three major compo-
nents are common to all systems which attempt the structure elucidation task.
First, some interpretation of the chemical and spectral data is performed, in
order to derive structural fragments. The next step involves molecule assem-
bly, i.e. the generation of complete structures compatible with the fragments
and constraints provided by the first phase. Finally, spectra of the generated
structures are simulated and compared with the observed data. This allows
structures to be ranked on the basis of the quality of the fit between predicted
and observed data.

The CASE system [Shelley, 1977; Shelley, 1981; Munk, 1982] is a suite
of programs designed to accelerate and make more reliable the entire process
of structure elucidation.The task of reducing chemical and spectroscopic data
to structural information is currently shared by the chemist and the system.
Interpreters capable of detecting the presence of structural fragments based
on infrared and 13C NMR data [Shelley, 1982] exist. Two-dimensional NMR
data may be used to provide information about the connectivity of atoms in a
molecule. The INTERPRET2D module of the system [Christie, 1985] ac-
cepts 2D-NMR data input by the chemist and generates the structural conclu-
sions consistent with this information as a set of alternative fragment sets.
These sets describe all possible carbon-carbon atom connections consistent
with the data and may also be used as input to a structure generator program.

CHEMICS [Sasaki, 1971; Yamasaki, 1977; Sasaki, 1981] uses 1H NMR,
13C NMR, infrared and ultra-violet data to decide which of a set of 150
structural fragments are present in an unknown molecule. The fragments be-
lieved to be present are arranged into sets which satisfy the molecular formu-
la and 1H and 13C NMR spectra. A structure generator uses these sets as
input to create molecular structures. CHEMICS analyzes the 1H NMR data
by first calculating the area of each group of signals in the spectrum. The
number of protons associated with each group is thus assigned. Recognizable
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spin-system patterns are then identified. The most probable structural frag-
ments are then inferred based on chemical shift values. The number of each
of these fragments is estimated based on the peak area values. 13C NMR data
is interpreted as follows: first, the number of carbons associated with each
peak in the spectrum is computed, based on signal intensities; next, the split-
ting of each peak is examined and individual signals are labeled as arising
due to protonated or non-protonated carbons and the number of protons on
each carbon recorded. Finally, based on the information already extracted to-
gether with the chemical shifts of the signals, a set of structural fragments
consistent with the information are obtained.

The STREC system [Gribov, 1977; Gribov, 1980; Elyashberg, 1987] also
uses the plan, generate and test approach. During the plan phase, infrared and
1H NMR data are examined and a set of plausible fragments computed. A
generator uses these fragments to generate all possible structural isomers.
Each structure is then checked against a library of structural fragments for
which spectroscopic data are available. The fragments detected have their
characteristic spectral information compared with the experimental data for
the unknown. If the experimental data do not confirm the presence of the
fragment, analysis of that structure is terminated. Each fragment in the li-
brary has data for infrared, 1H NMR, ultra-violet and mass spectra. STREC2
[Gribov, 1983] is an enhanced version of the original STREC system, capa-
ble of handling larger structures, which makes use of 13C NMR data in addi-
tion to the techniques described above.

SEAC (Structure Elucidation Aided by Computer) uses infrared, 1H NMR
and ultraviolet data to infer the structure of an unknown molecule [Debska,
1981]. A system for the interpretation of infrared, 13C NMR and mass spec-
tral data, based on the idea of intersecting the interpretations of each of these
techniques has been developed by Moldoveanu [1987]. Each of the three
spectra is interpreted to generate three sets of plausible fragments; the inter-
section of these sets is then found and the resulting group of fragments is
output to the user. The output also indicates the number of each of these
functional groups present in the molecule and the possible positions of sub-
stitution of these groups in the unknown molecule.

Knowledge-based techniques have also been applied to the interpretation
of other kinds of spectroscopy, including gamma ray activation spectra
[Barstow, 1979; Barstow, 1980], ESCA (Electron Spectroscopy for Chemical
Analysis) [Yamazaki, 1979], X-ray fluorescence spectroscopy [Janssens,
1986] and X-ray diffraction spectra [Ennis, 1982]. 

5.2 Computational Aids for Protein NMR

A number of attempts have been made to automate part of the protein
structure determination process. One of these systems [Billeter, 1988] starts
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from a well-defined list of spin-systems which have been identified by the
user. The program considers all possible assignments that are consistent with
the data currently available. If new data are provided the program eliminates
assignments that are inconsistent. It performs logical decision-making and
bookkeeping functions and avoids making ambiguous decisions when multi-
ple assignments are possible. Uncertain decisions, i.e. decisions based on
NMR data that do not allow a unique interpretation are left to the user. An-
other system, developed by Cieslar [1988], identifies potential spin-systems
within the HOHAHA spectrum by locating aligned peaks. However, attach-
ing residue labels to these spin-systems is left to the user. Once spin-systems
have been labeled, the program endeavors, through the use of NOESY sig-
nals, to identify sequential connectivities. Partial sequences are identified in
this manner and then located within the chemical sequence. The system then
constructs all possible assignments for all partial sequences that are consis-
tent with the input data. In order to achieve consistency the partial sequences
must not contain overlaps and no particular spin-system should be used in
more than one position. All solutions for the assignment of the complete se-
quence are then generated and checked by the system. Eads [1989] describes
a suite of programs which assist in the sequential assignment process and
which use peak coordinates and intensity values directly as input. The pro-
grams trace spin-systems out to the β protons, look for NOESY cross peaks
between relevant protons and create lists of sequential spin-systems. Tracing
the spin-systems beyond the β protons and establishing correspondence with
the primary sequence is left to the user.

The ABC system [Brugge, 1988] automates the process of determining
secondary structure from NMR data. The program is able to identify α heli-
cal and β strand segments of chain by means of a set of qualitative criteria
that are used in analyzing data derived from the NMR spectra. ABC is imple-
mented within the BB1 architecture [Hayes-Roth, 1988]. Input to ABC
consists of the primary sequence of the protein, lists of observed NOEs and
residue information. The output of the program is a set of secondary struc-
ture elements, defined by their extent over the primary sequence. Each struc-
ture is also labeled with the evidence used to derive it and pointers to partial
structures from which it was constructed. The output of ABC can be used as
part of the input to programs for determining the tertiary structure of pro-
teins. ABC has been tested using published data on nine different proteins
and its ability to locate regions of secondary structure, and its precision in
defining the extent of these regions have been measured. The system per-
forms well and comes close to reproducing the results of expert analysis of
NMR data.

The PROTEAN system [Lichtarge, 1986; Altman, 1988; Altman, 1989] is
based on the exclusion paradigm described earlier. Its purpose is to sample
the conformational space of a protein systematically and to determine the en-
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tire set of positions for each atom that is compatible with the given set of
constraints. To maintain computational feasibility, PROTEAN solves the
protein structure problem in a hierarchical fashion. The program uses knowl-
edge of the protein sequence together with NMR data to determine the sec-
ondary structure. It next defines the coarse topology of the folded structure
and then specifies the spatial distribution of atomic positions using a descrip-
tion of accessible volumes. From these values, the original data are predicted
to verify the resulting family of structures.

The secondary structure of the protein is determined using the ABC sys-
tem described above. The units of secondary structure and a set of experi-
mental constraints (primary structure, NOE distances, surface and volume in-
formation) are then passed to the SOLID GS module. This computes the
accessible volume for the units of secondary structure. SOLID GS uses ab-
stract representations to reduce the number of objects whose positions need
to be sampled. For example, helices are represented by cylinders. The next
module, ATOMIC GS, refines the secondary structures and coils using dis-
crete sampling for atoms. The output of this module is then processed by an-
other (KALMAN) which employs a probabilistic refinement method9 for de-
termination of the uncertainty in each atom. The final component of the
system, BLOCH, calculates NMR data and evaluates the match between ob-
served and predicted values. The system has been used to investigate the ter-
tiary structure of the lac-repressor headpiece, a protein with 51 amino acid
residues. The structural solution proposed by PROTEAN closely matches
that proposed by a manual interpretation of the data performed by an expert
protein spectroscopist.

6 The Protein NMR Assistant
We are in the process of developing a Protein NMR Assistant (PNA)

which will aid a spectroscopist in the identification of residue spin systems
and the prediction of secondary structure. (We are not currently interested in
the problem of tertiary structure prediction.) Previous systems which have
addressed this problem, such as those described earlier, have tackled only
part of the task and have left much of the interpretation to the spectroscopist.
PNA aims to provide a complete system for the identification and assignment
of spin-systems, leading to the prediction of secondary structure.

Two previous attempts at inferring protein structure using AI techniques
are CRYSALIS [Engelmore, 1979; Terry, 1983] and PROTEAN [Hayes-
Roth, 1986]. CRYSALIS attempted to infer the structure of a protein of
known composition but unknown conformation using X-ray diffraction data.
Both these systems made use of the blackboard architecture to integrate di-
verse sources of problem-solving knowledge and to partition the problem
into manageable “chunks”. We are currently investigating whether such an
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approach would be appropriate for the task of interpreting 2D NMR of pro-
teins. The characteristics of this task are: a large solution space; noisy data;
likelihood of multiple, competing solutions; and the use of a number of co-
operating sources of knowledge. This would seem to make it suitable for the
blackboard approach. 

6.1 The Blackboard Architecture

A blackboard system consists of three main components: the blackboard,
a set of problem-solving knowledge sources and a control mechanism. The
blackboard serves to partition the solution space of the problem domain into
one or more domain-specific hierarchies, representing partial solutions. Each
level in the hierarchy possesses a unique vocabulary that serves to describe
the information at that level. Objects on the blackboard can be input data,
partial solutions as well as final solutions and possibly control information.
Relationships between objects are denoted by named links. Domain knowl-
edge is partitioned into separate modules which transform information at one
level into information on the same or different levels. These modules are
termed knowledge sources (KSs) and perform transformations using rules or
procedures. The KSs are separate and independent. Each KS is responsible
for knowing the conditions under which it can contribute to the solution and
thus has a precondition which indicates the conditions on the blackboard that
must exist before the main part of the KS can be activated. The choice of
which KS to use is based on the state of the solution, the latest additions and
modifications to the solution and on the existence of KSs capable of improv-
ing the state of the solution. A controller monitors the changes to the black-
board and decides what to do next. The solution evolves one step at a time
with any type of reasoning step (data-driven, goal-driven and so on) being
applied at each stage. 

For a particular application it is necessary to define a solution space and
the knowledge needed to find the solution. This space is divided into levels
of analysis corresponding to partial solutions and the domain knowledge is
divided into specialized KSs that perform the subtasks necessary to arrive at
a final solution. How the problem is partitioned into subproblems makes a
great deal of difference to the clarity of the approach, the resources required
and even the ability to solve the problem at all. This discussion has been nec-
essarily brief; a number of excellent articles on this subject exist [Hayes-
Roth, 1983; Nii, 1986a; Nii, 1986b], together with two books [Engelmore,
1988; Jagannathan, 1989].

A blackboard system can serve as a powerful research tool, allowing the
solution space and domain knowledge of an application problem to be parti-
tioned in different ways and a variety of reasoning strategies to be evaluated.
The robustness of blackboard systems stems primarily from the way in

418 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY



which they are organized which tends to localize changes. The answer pro-
duced by a blackboard system is often a complex datastructure, different
parts of which may have been computed through different reasoning paths. A
trace of the system’s execution history is unlikely to prove very useful to the
user. We are addressing the problem of visualization of results as part of the
development of the current system.

The blackboard architecture has been used in a wide variety of applica-
tions, including speech understanding [Erman, 1980]; submarine detection
[Nii, 1982]; image understanding [Nagao, 1979]; and computer controlled
manufacturing [Ayel, 1988]. A number of generalized architectures have also
been developed to allow blackboard application systems to be constructed
more easily. Examples of such tools include: AGE [Nii, 1979], Hearsay-III
[Balzer, 1980], BB1 [Hayes-Roth, 1988], GBB [Corkill, 1986], PCB [Ed-
wards, 1990]. The PCB system is a problem-solving architecture designed to
ease the construction of complex knowledge-based systems in chemical do-
mains. Although the system we shall describe below is not built within this
framework, its design and implementation owe much to the PCB system.

We shall discuss the Protein NMR Assistant in terms of the components
of the blackboard architecture described above, i.e. the blackboard (its levels
and objects), the knowledge sources (structure and function) and control. The
system architecture is shown in Figure 9.

6.2 The PNA Blackboard

The blackboard is divided into five levels (as shown in Figure 9): data,
spin-system, segment, labeled residue and secondary structure. The contents
of each level are as follows:

data: Spectroscopic data (HOHAHA, COSY and NOESY) plus the chemical
sequence.

spin-system: Hypotheses describing the identification of residue spin-sys-
tems within the HOHAHA spectrum.

segment: Partial sequences of 5 or 6 residues assembled from the spin- sys-
tem hypotheses.

labeled residue: Fully labeled residue hypotheses each of which describes
the sequence position of a residue, together with the spectroscopic data
used to identify it.

secondary structure: Units of secondary structure identified through exami-
nation of the NOESY spectrum.

Objects on each of these levels are represented using a frame-based repre-
sentation. The chemical sequence is represented by a frame containing a
number of slots, the first of which contains the full sequence represented as a
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list of the usual one letter abbreviations. Other slots contain the length of the
sequence and the number of each of the twenty amino-acid residues present
within the sequence. The spectroscopic data is represented on a peak-by-
peak basis. Each peak in the HOHAHA spectrum is represented using the
following slots: id (unique identification number for the peak); xcoord(x co-
ordinate of the peak center); ycoord (y coordinate of the peak center); xsize
(“width” of the peak in the x direction); ysize( “width” of the peak in the y
direction); peak-type(label indicating whether or not the peak is noise); in-
fers(list of the spin-system hypotheses which the peak is associated with).

Objects on the spin-system level define the nature of the residue spin-sys-
tems identified from the HOHAHA spectrum. Each hypothesis contains the
following slots: infers (list of segment hypotheses supported by the spin-sys-
tem); supported-by(list of HOHAHA peaks which make up the spin-sys-
tem); residue-type(name of the amino-acid residue giving rise to the spin-
system); peak-list(identification numbers and coordinates of the HOHAHA
peaks which make up the spin-system); diagonal-peaks(positions of each of
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the diagonal peaks involved in the spin-system); protons (label indicating
whether the COSY spectrum should be used o distinguish between peaks in
the spin-system). If the system is unable to uniquely assign a spin-system to
a particular residue, the residue-typeslot contains a list of the possible
residues associated with that spin-system, instead of an individual residue
name.

Segment level hypotheses also contain infers and supported-byslots. in-
fers is used to indicate which of the objects on the labeled residue level the
segment hypothesis has provided evidence for, while supported-bylists those
spin-systems which were connected to form the segment. Other slots within
the segment hypotheses are: segment-sequence(the partial sequence stored
as a list); noesy-links(peak data indicating the sequential connectivities for
each of the residue pairs in the segment). In the event that a residue is not
uniquely identified on the spin-system level, the segment-sequenceslot will
contain a list of possible residues in place of a single residue.

A fully labeled residue hypothesis contains all the information associated
with the identification of a residue. As well as infers and supported-byslots
(which indicate which secondary structure unit the residue is involved in and
which segment supports it), objects on this level also contain the following:
residue-type(residue name); sequence-position(position of the residue with-
in the chemical sequence); peak-list(identification numbers and coordinates
of the HOHAHA peaks which comprise the residue spin-system); diagonal-
peaks(positions of each of the diagonal peaks involved in the residue spin-
system); noesy-links(NOESY peak data used to assemble the segment in
which the residue occurs).

The final level of the PNA blackboard contains the secondary structure hy-
potheses. These objects detail the exact nature and extent of any secondary
structure unit identified within the protein. Structural hypotheses contain the
following: supported-by(list of labeled residues which make up this unit);
structure-unit(type of unit, i.e. α helix, β sheet); start (position in the chemical
sequence at which the unit commences); finish(position in the sequence where
the unit terminates); spatial-noesy(NOESY interactions used to infer the pres-
ence of the unit). In cases were there is uncertainty as to the exact point in the
sequence where the structural unit begins or ends, the startand finishslots con-
tain lists of residues, indicating a region of the protein sequence.

6.3 The PNA Knowledge Sources

The system currently consists of eight knowledge sources: INITIAL (Ini-
tialization) NOISE (Noise removal), SID (Spin-system identifier), CSA
(Chemical shift analyzer), COSI (COSY interpreter), SAM (Sequential as-
signment module), SLOC (Sequence locator) and STAN (Structure analyz-
er). We shall now describe each of these KSs in turn.
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INITIAL The first of the PNA KSs deals with the initialization of the
blackboard and with the loading of spectroscopic and chemical sequence
data. The coordinate data representing the HOHAHA, COSY and NOESY
spectra are held in text files which are compiled by this KS into the internal
representation described above. The chemical sequence is also compiled
from a file containing the one letter residue symbols. In addition to loading
the sequence, INITIAL also calculates its length and the number of each of
the amino-acid residues that are present within it.

NOISE As described earlier (Section 3.1), the HOHAHA spectrum con-
tains bands of noise (t1 noise) which run parallel to the ω1 axis. Before the
system attempts to identify spin-systems within the spectrum, it first uses the
NOISE KS to identify peaks which may be due to noise. NOISE examines
the spectroscopic data and searches for groups of peaks which run parallel to
the ω1 axis, i.e. peaks which possess approximately the same y coordinate
value. These peaks, once identified, have noisewritten to their peak-type
slot. This information is then used by the other KSs during analysis of the
spectrum.

SID This KS uses the coordinate representation of the HOHAHA spec-
trum10 together with the chemical sequence of the protein and attempts to
identify residue spin-systems. The chemical sequence is used in order to pre-
vent residues absent from the protein being proposed. SID contains knowl-
edge describing each of the twenty common amino acid residues and the ap-
proximate chemical shift values of each of their protons. Each of the residues
is represented by a frame containing a description of the protons found in
that residue, represented by a list. For example, isoleucine is represented by
the list [N Ca Cb Cg1 Cg1 Cg2 Cg2 Cg2 Cd1 Cd1 Cd1], i.e. 1 amide proton,
1 Cα, 1 Cβ, etc. Another slot contains a list of the approximate chemical
shift values of each proton. Thus, for isoleucine, the chemical shift list is:
[8.26 4.13 1.74 1.30 1.01 0.78 0.78 0.78 0.69 0.69 0.69], i.e. the amide pro-
ton has a value of approximately 8.26, the Cβ a value of 1.74, etc. The ap-
proximate chemical shift values we are using were obtained from a statistical
analysis of water soluble polypeptides and proteins [Groß, 1988]. It should
be noted that the values are only approximate and are merely used as a guide
to the likely nature of the spin-system.

The spin-system identification process proceeds as follows. Beginning at
the limit of the amide proton region of the HOHAHA spectrum (9.0 ppm), a
peak is selected that is close to the diagonal. All peaks with the same x coor-
dinate as this peak (+/- some threshold value) are detected. SID then exam-
ines the spectrum for peaks in other regions with the same y coordinate as the
peaks in this list. The set of peaks which are aligned in the NH region of the
spectrum and which have companion peaks in other regions which are also
aligned along a vertical, are then labeled as possibly belonging to the same
spin-system. This list is then processed to remove all but one peak with any
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y coordinate value. The contents of this list correspond to the protons in an
individual spin-system. This list is compared against the list of chemical
shifts held by SID for each residue and all those residues which match the
pattern of peaks are retained. By match here, we mean that the shift values
for the spin-system peaks are equal to those in the residue chemical shift lists
+/- some scatter parameter. We are assuming (for the moment) that the spec-
tral data is complete, i.e that each residue in the protein gives rise to the cor-
rect number of cross peaks and that there are no missing or extraneous peaks. 

All peaks in the spectrum that have been assigned to a spin-system are la-
beled as such and a spin-system hypothesis created. This hypothesis holds
the identification numbers and coordinates of each peak involved in a spin-
system together with the name of the residue. As we have already seen
(Table 1), it can be difficult to detect the Cα and Cβ protons of certain
residues due to very similar chemical shift values for different protons. It is
important that the N, Cα and Cβ protons are clearly labeled as it is the posi-
tions of these protons that are used by the sequential assignment module
(SAM). Figure 10 shows the alignment of cross-peaks in the Nisin spectrum
corresponding to an isoleucine residue, while Figure 11 contains the spin-
system hypothesis created by PNA to describe the identified isoleucine
residue. 

One of the problems to be solved within SID is a means of resolving peak
overlap, i.e. how to distinguish between a number of peaks which occur in
very close proximity. It is obvious that for spin-system identification to be
successful, such peaks must be differentiated. 

CSA This KS examines spin-system hypotheses which have been created
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by the SID KS and uses knowledge of chemical shift data in order to check
whether the residue has Cα and Cβ protons which may be confused with
other protons. From an examination of Table 1, it is obvious that the residues
listed there are likely to lead to just this kind of assignment difficulty. If such
confusion occurs, the hypothesis is labeled accordingly. For example, in
isoleucine residues, the Cβ and Cγ1’ protons may easily be confused and
thus [Cb Cg1] is placed in the protons slot of the spin-system hypothesis. If
protons with difficult to assign resonances are not believed to occur in the
residue, CSA writes completeto the protons slot.

COSI Using the COSY coordinate data, this KS attempts to distinguish
between protons within spin-system hypotheses which have been labeled by
the CSA KS. It performs this task using the list of coordinates of the protons
within the spin-system together with the information provided by the CSA
label. The y coordinates are used to detect the appropriate diagonal peaks in
the COSY coordinate map. Cross peaks which occur between these diagonal
peaks are then traced. The representation of the structure of the residue (de-
scribed above) is then called upon and the system determines (based on
knowledge about COSY interactions) which of the COSY cross peaks is due
to each of the one step interactions. Thus, each of the important α, β and N
protons is correctly labeled within the spin-system hypothesis and the value
of the protons slot set as complete. 

To illustrate the solution adopted by PNA to these problem assignments,
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spin-system hypothesis 23:

[ ]

peak list : [ 835  310.8  712.34 ] [ 1076  889.76  920.13 ]

[ 1285  310.7  976.6 ] [ 1153  923.51  974.18 ]

[ 1154  923.58  984.78 ] [ 1085  890.7  974 ]

[ 1086  890.65  984.05 ] [ 1082  890.6  957.56 ]

knowledge-source :

[ spin-system-id ]

infers :

supported-by :
]peak1154 peak1285peak1153

[ peak835 peak1076 peak1085 peak1086peak1082

residue type : ile

protons : [ Cb  Cg1 ]

diagonals peaks: [

]

310.8  N 712.34  a 890.7  b 923.58  g1 957.56  g1

974  g2 974  g2 974  g2 984.78  d 984.78  d

984.78  d

Figure 11.  The spin-system hypothesis corresponding to the isoleucine spin-system
shown in Figure 10.



consider Figure 6. From the HOHAHA spectrum of Threonine (6a) it is im-
possible to distinguish between the Cα and Cβ proton. However, as COSY
only has cross peaks due to adjacent interactions (6b, 6c), the Cα - Cβ inter-
action can be seen, as can the N - Cα and Cβ - Cγ interactions. As the Cα
proton gives rise to two cross peaks, one with N and the other with Cβ, while
the Cβ proton is involved with Cα and Cγ, it is quite straightforward to dif-
ferentiate between the α and β protons.

SAM This KS uses the chemical sequence and the spin-system hypothe-
ses, together with a coordinate representation of the short τm NOESY spec-
trum with an additional descriptor for each peak to provide intensity infor-
mation. The sequential assignment process then proceeds as follows. The
chemical sequence is examined and either a unique residue, or unique dipep-
tide segment (pair of adjacent residues) is detected. In the case of a unique
residue, the system then looks through the spin-system hypotheses for a hy-
pothesis corresponding to this residue. For dipeptides, one of the residues in
the pair is selected and the appropriate hypothesis retrieved. The coordinates
of the Cα peak are extracted and the NOESY spectrum examined for a cross
peak with the same y coordinate. The x coordinate of this peak is then re-
trieved and the spin-system hypotheses examined for a N proton with the
same x coordinate. This group of connected peaks corresponds to a αN short
range interaction. If the search for an interaction is unsuccessful, then the co-
ordinates of the N proton peak in the starting residue are used and if this
fails, the Cβ peak is used. If such an interaction is detected, SAM notes that
the two residues are adjacent and the process is repeated using the spin-sys-
tem hypothesis for the second residue. This continues until a 5 or 6 residue
segment has been assembled at which point SAM creates a segment hypothe-
sis. This hypothesis contains the partial sequence and the NOESY peak data
used to construct it. SAM then selects another spin-system hypothesis and at-
tempts to generate another 5 or 6 residue segment.

SLOC Once a peptide segment has been created by the SAM KS, the
SLOC KS may be invoked. This KS attempts to locate the partial sequence
defined by the segment hypothesis within the overall chemical sequence of
the protein. The sequence is searched for a matching segment and the se-
quence position numbers of each of the residues are noted. At this stage, un-
certainties as to the exact nature of a residue spin-system are resolved using
the sequence. Each of the spin-system hypotheses used to generate the seg-
ment are then examined and the appropriate fully labeled residue hypotheses
created.

STAN This KS uses the fully labeled residue hypotheses and a coordinate
representation of the NOESY spectrum with an intensity descriptor for each
peak. It contains information on the type of interactions expected for each
secondary structure unit. This information is represented as a series of frames
containing details of the type of protons involved, their relative positions in
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the sequence, the intensity of the signal and the secondary structure. For ex-
ample, to represent that an αN (i, i+4) interaction with weak intensity indi-
cates an α-helix, a frame would contain the following: [a n 4 weak alpha].
STAN examines the NOESY data for cross peaks indicating particular sec-
ondary structure units and creates structure hypotheses (described above) de-
tailing the nature and extent of these structures. Table 3 contains a summary
of the function of each of the PNA knowledge sources.

6.4 Control

The control component of PNA must integrate the performance of each of
the domain knowledge sources described above with intervention by the
spectroscopist during problem-solving. Unlike the KSs, each of which is a
specialized problem-solving entity dealing with a small part of the overall
task, the user is able to contribute at any stage of the process. The user may
choose to interrupt the performance of the system and may, for example, cre-
ate a new hypothesis or modify an existing one on any level of the black-
board. The control task faced by PNA is therefore a dynamic constantly
changing one, with the system requiring a flexible control structure.

Rather than encoding a fixed control strategy into the system we are im-
plementing a control framework which will allow the user to intervene dur-
ing problem-solving. However, we have restricted the amount of user inter-
action which is allowed during the analysis of the data. For example, the SID
knowledge source generates all potential spin-system hypotheses without
any interruption by the user. One the spin-system identification process is
complete the user is free to intervene and to inspect the hypotheses and if
necessary to modify or even delete some of them. Other KSs, such as COSI
or SAM modify or create only one hypothesis before allowing the user to in-
tervene. This approach is, we feel, a useful compromise between no user in-
teraction during problem-solving and allowing the user to intervene at any
point during problem-solving - with all its inherent difficulties.

It should be noted that although Figure 9 indicates the flow of reasoning
moving upwards from the data level, that the system also supports top-down
reasoning. For example, the identification of a segment hypothesis within the
chemical sequence may remove an uncertainty as to the nature of a residue
spin-system, which will result in modifications to lower-level hypotheses.

7 Discussion

The Protein NMR Assistant aims to provide a spectroscopist with a pow-
erful tool for the analysis of nuclear magnetic resonance spectra of proteins.
Currently, much of this task is performed by hand and is extremely time con-
suming. By providing an interactive environment for the analysis of HOHA-
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HA, COSY and NOESY spectra, it is hoped that the time required to perform
the analysis of such data will be reduced and that the reliability of results will
be increased.

A user interface, consisting of a series of windows displaying the spectra
and allowing the user to interact during the interpretation process is under
development. Such an interface is, we feel, a vital part of the overall archi-
tecture. We are investigating how the partial solutions created on the black-
board can be displayed in such a way that they are meaningful and assist the
user in comprehending the actions of the system. Once fully implemented,
PNA will be used to examine a number of proteins for which NMR data are
available and the results and performance of the system evaluated.

We are currently investigating the application of machine learning tech-
niques to the 2D NMR of Carbohydrates [Metaxas, 1991]. This study aims to
generate an empirical theory relating the structural form of a molecule with
its 2D NMR spectrum. It is hoped that the experience gained through this
project will allow us to investigate the applicability of such methods to 2D
NMR of Proteins. Empirical rules relating spectral features to protein struc-
ture could be used to assist in secondary structure prediction and perhaps
during the sequential assignment process. The existence of some rules, such
as those relating peaks in the NOESY spectrum to secondary structure, gives
us confidence that this domain will prove suitable for the application of ma-
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Knowledge Source Function

NOISE Identifies noise bands and other spurious peaks in the
HOHAHA spectrum prior to the spin-system identification
process.

SID Attempts to identify residue spin-systems within the coordinate
representation of the HOHAHA spectrum.

CSA Using knowledge of approximate residue chemical shifts,
examines spin-system hypotheses and labels those which contain
"troublesome" protons.

COSI Examines the COSY coordinate map in an effort to distinguish
between troublesome signals identified by CSA.

SLOC Searches the chemical sequence for a segment generated by
SAM and generates a residue hypothesis labeled with its
sequence position.

STAN Infers the presence of secondary structure units using residue
hypotheses and the NOESY spectrum.

SAM Links spin-system hypotheses together to form segment
hypotheses.

INITIAL Initialises the PNA blackboard by loading spectroscopic and
sequence data.

Table 3  Summary of the Protein NMR Assistant Knowledge Sources.



chine learning techniques. Any knowledge obtained using such techniques
could be tested within the problem-solving environment provided by the Pro-
tein NMR Assistant.

Notes

1 It should be noted that three dimensional NMR experiments are also now
possible.

2 Figure 3 illustrates these sequential NOE connectivities.

3 Proline residues can present a problem during the interpretation process,
as they do not possess an amide proton and thus any residue adjacent to a
proline will appear to be a terminal residue.

4 A 34 amino-acid peptide with molecular formula C143H230N42O37

5 By aligned we mean that the peak centers lie along the same vertical line
allowing for some scatter value.

6 As some NOEs due to secondary structure features may appear in this ex-
periment, it is necessary to refer to the chemical sequence during sequen-
tial assignment of spin systems.

7 If the NOE cross peak occurs between two protons within the same
residue it is ignored.

8 We are of course assuming that the sequence is correct.

9 The double-iterated Kalman filter.

10 The transformation from the original HOHAHA spectrum to this coordi-
nate representation is performed using a commercial 2D “peak picking”
program.
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