
Consistency in Networks of Relations

Alan K. Mackworth
Department of Computer Science, University of British Columbia,
Vancouver, B.C., Canada

ABSTRACT

Artificial intelligence tasks which can be formulated as constraint satisfaction problems, with which
this paper is for the most part concerned, are usually solved by backtracking. By examining the
thrashing behavior that nearly always accompanies backtracking, identifying three of its causes and
proposing remedies for them we are led to a class of algorithms which can profitably be used to
eliminate local (node, arc and path) inconsistencies before any attempt is made to construct a complete
solution. A more general paradigm for attacking these tasks is the alternation of constraint manipula-
tion and case analysis producing an OR problem graph which may be searched in any of the usual
ways.
Many authors, particularly Montanan i and Waltz, have contributed to the development of these

ideas; a secondary aim of this paper is to trace that history. The primary aim is to provide an
accessible, unified framework, within which to present the algorithms including a new path consistency
algorithm, to discuss their relationships and the many applications, both realized and potential, of
network consistency algorithms.

I. Introduction

A concern for the efficiency of our programs is not a major component of the
current artificial intelligence zeitgeist, and yet, as the focus shifts from small, toy
problems to large ones, that concern should become more central. Even if, as some
claim by way of excuse, the technology is advanced at an exponential rate, if our
programs consume a quantity of resources that is exponential in the size of the
task, 0(k"), then each doubling of available resources only means an additional
(In 2/In k) words, regions or clauses can be handled. This paper is concerned with
the effectiveness of algorithms designed to solve a certain class of problems.

2. The Task

Many tasks can be seen as constraint satisfaction problems. In such a case the task
specification can be formulated to consist of a set of variables, each of which must
be instantiated in a particular domain and a set of predicates that the values of the

variables must simultaneously satisfy. Restricting the discussion for the moment
to unary and binary predicates the task consists, then, of providing a constructive
proof for the wff:

(3x1)(3x2) . . . (3x„)P1(x1) A P2 (X2) A . . . A P,(X) A
Pi 2 (Xi , X2) A PI 3 (Xi , X3) A . . . A P._

where Pu is only included in the wff if i < j for we require pii(vi, vi) = P,,(v„ vi).
Imposing a further restriction that the variable domains each consist of a finite
number of discrete values then there are several candidate solution schemes.
Among these are generate-and-test, formal theorem-proving methods and back-
tracking.

3. Backtracking and Three of its Maladies

Backtracking consists, in general, of the sequential instantiation of the variables
from ordered representations of their domains. As soon as all of the variables of
any predicate are instantiated its truth value is tested. If it is true the process of
instantiation and testing continues but if it is false the process fails back to the
last variable instantiated that has untried values in its domain and reinstantiates it
to its next value. The intrinsic merit of backtracking is that substantial subspaces
of the generate-and-test search space, the Cartesian product of all the variable
domains, are eliminated from further consideration by a single failure.
On the other hand, backtracking can still be grotesquely inefficient. See Sussman

and McDermott [19] and Gaschnig [10] for particular samples of pathological
behavior. Bobrow and Raphael [2] have labeled this class of behavior "thrashing".
In particular, the time taken to find a solution tends to be exponential in the
number of variables both in the worst-case and on the average. It is important to
identify the causes of this poor behavior and to suggest remedies.

(A) The most obvious source of inefficiency and the easiest to prevent concerns
the unary predicates. If the domain for variable vi, D„ includes a value that does
not satisfy P,(x) then it will be the cause of repeated instantiation and failure
which could be eliminated by simply discarding once and for all those domain
elements that do not satisfy the corresponding unary predicate.

(B) A second source of inefficiency occurs in the following situation. Suppose
the variables are instantiated in the order v1, v2, ..., v. and for vi = a, Pii(a, v j)
(where j > i) does not hold for any value of 1,1. Backtracking will try all values of
up fail and try all values of vj_i (and for each of these try all values of vi) and so on
until it tries all combinations of values for vi,„ v1+2, ..., v./ before finally dis-
covering that a is not a possible value for vi. What's worse this identical failure
process may be repeated for all other sets of values for v l, v2, ... vi_1 with v, = a.

(C) A third phenomenon that causes gross inefficiency and replication of effort
occurs when vi = a, vj = b, and P,(a), pi(b) and P,;(a, b) do hold but there is no
value x for a third variable vt such that Pda, x), Pk(x) and .13,,(x, b) are simul-
taneously satisfied as they must be in any solution. As in the previous case, this is

CONSISTENCY IN N
E
T
W
O
R
K
S
 O
F
 RELATIONS

not only expensive to discover but may also be rediscovered many times by a
backtracking solution process.

It is the purpose of this paper to provide a unified treatment of these phenomena
and algorithms designed to prevent their occurrence thereby leading to solution
strategies that do not require exponential time for particular task domains.

It is convenient to view the task specification as a network which consists of a
labeled, directed graph in which the variables are represented by the nodes each
with an associated set representing the variable's domain, the unary predicates are
represented by loops on the nodes, and the binary predicates by labeled, directed
arcs. For each arc from node i to node j corresponding to PO <j) there is an arc
from node j to node i corresponding to Pii(vi, vi) = P ii(vi, 1,j). Suitable terms to
name each of the state of affairs that lead to the three phenomena described above
are, respectively, node inconsistency, arc inconsistency, and path inconsistency.

FIG. 1. A network exhibiting inconsistency.

As an example of arc and path inconsistencies consider the network of Fig. 1.
The domains associated with the nodes are DI = D2 = {a, b, c} and D3 = D4 =
D5 = {a, b}. The binary predicate P denotes strict lexicographic ordering of its
arguments so that P(a, b) = P(a, c) = . . . = T and P(a, a) = P(b, a) = . . . = F.
The arcs for Pr(x, y) = P(y, x) are omitted. A backtrack search demonstrating
that no solution exists is shown in Fig. 2. The network nodes are treated in the
order 1, 2, 3, 4, 5. Each node in the search tree is labeled with the partial solution
developed to that node. As usual, as soon as a partial solution fails to satisfy one
of the network relations backtracking occurs.
Arc inconsistency appears at, for example, arc 2-3. The value a e D2 has no

corresponding x e D3 such that P(x, a). In the search tree this is reflected as one of

the reasons for the failure of the subtree rooted at aa, (aa(aaa)(aab)), and re-

discovered in the failure of the subtree (ba(baa)(bab)) and again in the subtree

(ca(caa)(cab)).

a
as

ass
aab

ab
aba
abb

Sc
SCII

acb

ba
baa
bab

bb
bba

bbb
bc

bca

bcb

ea
caa
cab

cb
cba

cbb
CC

CCO

bbaa
bbab

bcaa
bcab

bbaba
bbabb

bcaba
bcabb

cbaa
cbab

cbaba
cbabb

ccaa
ccab

cc abs
ccabb

ccb
ccba
ccbb

Fla. 2. A backtracking search of the solution space of the network in Fig. 1.

Path inconsistency appears on the path 3-5-4. The values a e D3 and b e D4

satisfy the vacuous unary predicates and the non-vacuous binary predicate P(a, b);

however, there is no value xe Ds such that P(a, x) A P(x, b). This is discovered in

the search tree in the failure of the subtree (bbab(bbaba)(bbabb)) and rediscovered

three more times in the failure of the subtrees rooted at nodes bcab, cbab, and ccab.

This example was chosen to be as small as possible and yet still demonstrate these

effects. Clearly with larger domains and larger networks these problems multiply.

In particular, in this example there are no nodes intervening between the nodes

causing the failure. If there are such intervening nodes that are irrelevant to the

0

S
E
A
R
C
H
 AND SEARCH REPRESENTATIONS

failure then the failed subtrees can be very much larger besides reoccurring often.
It should also be clear that although here the ordering of the nodes was somewhat
malicious in intent (although it could have been worse: consider 1, 2, 4, 5, 3) these
inefficiencies of backtracking cannot be removed by such minor palliatives as
reordering the nodes.

4. Consistency: A State of Affairs that Forestalls Thrashing

The state of affairs that ensures that those phenomena do not occur can be defined
as follows:

(A) Node consistency

Node i is node consistent if for any value X E Di, Pi(x) holds.

(B) Arc consistency

Arc (i,j) is arc consistent if for any value x e Di such that Pi(x), there is a value
y E Di such that pi(y) and Pii(x, y).

(C) Path consistency

A path of length m through the nodes (is, i„ . . i„,) is path consistent if for
any values x e Di° and y E Di„, such that Pax) and Pi,„(y) and Pit,i,,,(x, y), there is a
sequence of values z1 E Di„ . . z„,._, E Di„,_, such that

(i) Pazi) and... and Pi„,_,(z„,...1),

(ii) z,) and P11i2(z1, z) and... and y).

The definition and example of path inconsistency given in Section 3 was only for
path length m = 2. This definition of path consistency does not require that the
nodes (is, i„ . . i„,) all be distinct. That is, path consistency applies to both simple
and non-simple paths. Moreover, a non-simple path may be consistent even though
different occurrences of the same node on the path correspond to different occur-
rences of the associated variable.
A network is said to be node, arc or path consistent if every node, arc or path

of its graph is consistent.

5. How to Achieve Node Consistency

Since node consistency is concerned only with the unary predicates, in achieving
it there is no interaction between the nodes; thus, it is achieved by a simple one-pass
algorithm NC-I that applies the node consistency procedure NC to each node i.

procedure NC(i):

Di 4— Di r.) {x 1 Pi(x)}

begin

for i 4- 1 until n do NC(i)

end

NC-I: the node consistency algorithm

6. How to Achieve Arc Consistency

The algorithms in this section are all based on the following observation (first

made by Fikes [6]): given discrete domains, Di and Di, for two variables vi and vj

which are node consistent, if x e D, and there is no y e D., such that Pi,(x, y) then

x can be deleted from D. When that has been done for each x E Di then arc (i,j)

(but not necessarily (j, i)) is consistent. As this is the basic action of the arc

consistency algorithms we embody it in a Boolean procedure:

procedure R EVIS E((i, I)):

begin

DELETE 4— fake

for each x E Di do

if there is no y e Di such that Pi(x, y) then

begin

delete x from Di;

DELETE 4— true

end;

return DELETE
end

Note that immediately after applying REVISE to arc (i,j) it must be consistent;

however, it may not remain consistent because values in Di may subsequently be

removed by applications of REVISE to some arc (j, k). A single pass through all

the arcs applying REVISE to each is not sufficient. The simplest algorithm to

achieve arc consistency, AC-1, iterates such a pass until there is no change on an

entire pass at which point the network must be arc consistent.

begin

for i - I until n do NC(i);

Q 4- {('i) 1(1,]) e arcs (G), i & j)

repeat

begin

CHANGE 4- fa 1 se

for each (i, j) e Q do CHANGE 4— (REVISE ((i,j)) or CHANGE)

end

until CHANGE

end

AC-1: the first arc consistency algorithm

The obvious inefficiency in AC-1 is that a single, successful revision of an arc on

a particular iteration causes all the arcs to be revised on the next iteration whereas

in fact only a small fraction of them could possibly be affected.

CONSISTENCY IN N
E
T
W
O
R
K
S
 O
F
 RELATIONS

In noting this fact Waltz [24] implemented an elegant algorithm that he described
as follows: (to convert to our framework, for "junction" read "node", for "label"
read "value" and for "branch" read "arc").
"[The result] is obtained by going through the junctions in numerical order and:

(1) Attaching to a junction all labels which do not conflict with junctions
previously assigned, i.e., if it is known that a branch must be labeled from the set S.
do not attach any junction labels which would require that the branch be labeled
with an element not in S.

(2) Looking at the neighbors of this junction which have already been labeled;
if any label does not have a corresponding assignment for the same branch, then
eliminate it.

(3) Whenever any label is deleted from a junction, look at all its neighbors in
turn, and see if any of their labels can be eliminated. If they can, continue this
process iteratively until no more changes can be made. Then go on to the next
junction (numerically)."

The idea behind this algorithm is that arc consistency can be achieved in one pass
through the nodes by ensuring that following the introduction of node i all arcs
(k, m) where k,m < i and k m are made consistent. When node 1+1 is intro-
duced all arcs leading from it and all arcs leading to it (to and from nodes intro-
duced earlier) may be inconsistent and so must be revised. If a REVISE((k, m)) is
successful (i.e., modifies Dk) then the only additional arcs that need to be recon-
sidered are all those that lead to k, {(p, k)), with the important exception of (m, k).
(m, k) is excepted because it cannot have become inconsistent as a direct result of
the deletions made in Dk by REVISE((k, m)): any deletions were made precisely
because there was no corresponding value in D..
These notions are captured in AC-2 which follows that Waltz' filtering algorithm

in spirit (see p. 106).
When node i is introduced on the ith iteration of lines 3-18, Q and Q' are initialized

on lines 5 and 6 to contain all arcs directed away from and toward node i respec-
tively. When Q is exhausted by the iteration of lines 10-14, Q is set to Q' and Q'
emptied ready to hold all arcs directed at nodes one arc removed from node i that
need to be revised. At the start of the sth (s > 2) iteration of lines 8-17, Q consists
of all arcs directed at nodes (s-2) arcs removed from i that are to be revised while
Q' is ready to hold all the arcs directed at nodes (s -1) arcs removed from i that
need to be revised as a result of the revising of the arcs on Q. This process initially
spreads out from node i but may return to it if there are any cycles in the graph
of arc length greater than 2. The particular form of AC-2 derives, in part, from
considering just such a situation in which the spreading wave of arc revision will
cross itself.
Another approach to the arc consistency problem abandons the idea of making

the network arc consistent on a single pass through the nodes. Instead simply make
a queue of all the arcs in the network and apply REVISE to them sequentially. If

1 begin

2 for i 1 until n do

3 begin

4 NC(i);

5 Q 4" {(0) (1,j) e arcs(G), j <
6 Q' 4- {(j, (j, e arcs(G), j < 1)
7 while Q not empty do

8 begin

9 while Q not empty do
10 begin

11 pop (k,m) from Q
12 if REVISE((k,m)) then

13 Q' Q' u {(p, k) I (p, k) e arcs (G), p
14 end

15 Qi-Q'
16 Q' 4- empty
17 end
18 end
19 end
AC-2: the second arc consistency algorithm

REVISE is successful on any arc (reduces a node domain) then one need only
(re)apply REVISE to those arcs that could possibly have the result of applying
REVISE changed from false to true. (Contrast this with AC-1 which would
subsequently reapply REVISE to all the arcs.) Some of these arcs may already be
waiting on the queue. If so, they should not be reentered on it. AC-3 embodies this
approach.

begin

for i 4- 1 until n do NC(i);
Q {(4i) I (i,j)E arcs(G), i e j}
while Q not empty do

begin

select and delete any arc (k, m) from Q;
if REVISE ((k, m)) then Q 4- Q {(i, k) k) e arcs(G), i k, i 0 m}

end

< i,p 0 m

end

AC-3: the third arc consistency algorithm

Although AC-2 appears more complex than AC-3 it is just a special case of the
latter algorithm corresponding to the cl..: ce of a particular ordering of AC-3's

N.)

SEARCH AND SEARCH REPRESENTATIONS

priority queue, with the exception of one minor discrepancy. The discrepancy is

that in AC-2 it is possible if the graph has cycles of arc length greater than 2 for an

arc to be waiting on both Q and Q' simultaneously.

7. How to Achieve Path Consistency

Montanan i [14] has provided an elegant, formal treatment of the concept of path

consistency. The purpose of this section is to introduce some of Montanari's

notation and theorems and his algorithm for achieving path consistency and,

furth.rmore, to show how the same result can be achieved by doing considerably

less computation by refining the algorithm in a manner somewhat analogous to

the progression from AC-1 to AC-3.

7.1. Representing relations

The arc consistency algorithms operate on an explicit data structure representation

of the unary predicates, (i.e., the sets of all values that satisfy them, Di) deleting

values that cannot be part of a complete solution because of the restrictions im-

posed on adjacent nodes by the binary predicates. However, it is a matter of

indifference to those algorithms whether the binary predicates are represented by

a data structure or a procedure. The path consistency algorithms can be seen as

generalizations in that although the predicate P13(x, y) may allow a pair of values,

say, P13(a, b) that pair may actually be forbidden because there is an indirect

constraint on v, and v3 imposed by the fact that there must be a value, c, for v2

that satisfies P12(a, c), P2(c) and P23(c, b). If there is no such value then that fact

may be recorded by deleting the pair (a, b) from the set of value pairs allowed

initially by Po, in a fashion directly analogous to the deletion of individual values

from the variable domains in the arc consistency algorithms. In order to perform

that deletion it is necessary to have a data representation for the set of pairs

allowed by a binary predicate. If the variable domains are finite and discrete then

a relation matrix with binary entries is such a representation. Predicate Pi; is

represented by a relation matrix Ri; whose nii rows correspond to the mi values of
v, and whose rn; columns correspond to the tn; values of v./.

A useful example of the concepts involved is the set of n-queens problems. Used

by Floyd [7], Fikes [6] and Djikstra [4] to illustrate backtrack programming,

REF—ARF and structured programming respectively, this example is also of

historical and comparative interest. The task is to place n queens on an n x n

chessboard so that no queen is on the same row, column or diagonal as any other.

Since each queen must be in a different column the task can be put in the constraint

satisfaction paradigm by creating n variables (v1, v2, v„), one for each column.

The value of each variable is the row number of the queen in that column. Consider

the 5-queens problem of Fig. 3(a). The queen shown in column 2, (v2 = 3), forbids

the values v, = 2, v, = 3 and v, = 4 hence column 3 of the initial value of R12

is as shown in Fig. 3(b). For uniformity the currently permitted values for each

variable are not given by a set Di as for the arc consistency algorithms but by a
matrix Rif whose off-diagonal entries are required to be zero.

2

Rows 3

4

$

2

Colorant

3

2

2 2

2 Q 2 2 2

2 2

2

0 0 1

0
Ru

Flo. 3. Illustrating the 5-queens problem.

0

0

1 1

1 1

O 1

O 0

O 0

(b)

7.2. Operations on relations

Two operations on relations are needed: intersection and composition.

7.2.1. Intersection of relations

If two separate relations are both required to hold between v, and vp R;./ and KJ,
then their intersection is written Ri; = ki; & 127 where the entry in the rth row
and sth column of R1 : R,1•,5 = /27j.„ A R71,„.

7.2.2. Composition of relations

Suppose relation R12 holds between v1 and v2 and R23 between v2 and v3 then the
induced relation transmitted by v2 is the composite relation R13 = R12 • R23.
A pair (a, c) is allowed by R13 only if there is a pair (a, b) allowed by R12 and a
pair (b, c) allowed by R23. That is,

R13 = R12 R23
if

rn2

R13,r, = tV (R12.,, A R23,,i).

CONSISTENCY IN N
E
T
W
O
R
K
S
 O
F
 RELATIONS

In the matrix representation, composition is simply binary matrix multiplication.
Composition of relation matrices takes precedence over intersection.

7.3. Direct and induced relations

If, in the example above, 43 was the original direct relation between v1 and v3
then it can be intersected with the induced relation R12 * R23 to give a new and
possibly more restrictive constraint R',13 = Rh and R12 • R23.

7.3.1. Two examples of induced relations

7.3.1.1. 5-queens. In Fig. 4, R35 permits the pair of queens shown but there is no
value of vi that satisfies both R21 and R15 so R'25= Rh and R21 • Ri3 forbids the
pair of queens shown. In the matrix notation R35.31 = 1 but (R21 R15)31 = 0
hence R25.31 = 0.

2

Rows 3

4

2

Columns

3 4

x x x x Q

x x x

x Q x x x

x x x

x x

FIG. 4. Induced relations in the 5-queens problem.

7.3.1.2. Arc consistency. The basic arc consistency procedure of Section 6, REVISE
((i,j)), can be written in the current notation as:

& • RH • Bit (7.1)

To see that this is so, note that Rif = Rrj and RD = RE - Rjj so (7.1) can be
written as

= R & Ru • Rif • Rij

= Rg & (Ru • RH) • (Ru • R.u)T
Each row of Rii, corresponding to each value of vi, has a 1 fo: each value of vj
allowed. Rij • R." is the same except that all columns corresponding to non-

permitted values of vj will be zeroed. (Ru • Rif) • (Ru • Ru)T will h.-.ve a 1 at
position rr on the main diagonal if Ru • RH has at least one 1 in row r (that is,
there is at least one value for vj for the rth value of vi). R9 is zero off the diagonal
and 1 at position rr if the rth value of vi was previously allowed; this position is
zero in Rh if there is no corresponding value of vi. Thus the effcct of (7.1)
parallels exactly the side effect of REVISE((i, j)).

7.4. The minimal network

Having introduced the notion of induced relations it is natural to enquire if there
is an algorithm that makes explicit all the induced relations implicit in a network.
To specify the task properly we need two definitions:

(a) Two networks N1 and N2 each with n nodes are equivalent iff the set of
n-tuples satisfying N1 is identical to the set of n-tuples satisfying N2

(Rii,xixj

(b) A network M is minimal if

1) (3v1)(3v2) • • • (3v„)(vi = x,)(vi = xj)010(VP)(Rkp.vo, = 1).

In English, in a minimal network the remainder of the network does not add any
further constraint to the direct constraint Ru between vi and v1. If any pair of
values is permitted by its direct constraint then it is part of at least one solution.
The task that Montanan calls the central problem is to compute for a given network
N, a network M that is minimal and equivalent to N. The central problem is
clearly solvable: generate the set of all solutions by backtracking and then for all i
and j set Rii.ab = 1 if there is a solution (xl, x2, ..., x„) where xi = a and xj = b.
However, that is expensive.
In fact, the central problem is NP-complete, that is, putatively exponential.

(Montanan i [15] credits this observation to a private communication from R. M.
Burstall.) It is easy to see that this must be so. If it is solvable in polynomial time then
so is the problem of deciding if a planar, undirected graph with at most four edges
incident at a node has a chromatic number of at most 3 which in turn is known to
imply that P = NP (which conjecture is thought unlikely to be true) [9, 1]. The
chromatic number of a graph is the minimum number of different colours needed
to paint the nodes so that each node is a different colour from every adjacent node.
To put the chromatic number problem into our framework, the relations R can
all be 3 x 3 Boolean matrices. Rii is the 3 x 3 identity matrix while Ru (i j) is 0
on the main diagonal and 1 off it if there is an arc (i,j) otherwise the entries of

(i j) are all I. If the central problem for this network can be solved in
polynomial time then one can simply inspect any Rii: if there is a non-zero entry
then the 3-colorability decision problem is answered affirmatively otherwise
negatively. This sharp result, due to Garey, Johnson and Stockmeyer in [9], shows
that even quite restricted network consistency problems can be inherently expo-
nential; here, for example, we have domains of size 3 and only four non-vacuous
relations out of each node.

I
S
E
A
R
C
H
 AND S

E
A
R
C
H
 REPRESENTATIONS

7.5. Path consistency

Given that the central problem is not likely to admit of an efficient (polynomial
time) solution, it seems judicious to attack an easier problem: the task of computing

a path consistent network equivalent to a given network. To recall, a network is
path consistent if any pair allowed by any direct relation Ru is also allowed by
all paths from vi to vi. A pair is allowed by a path from vi to vi if at every inter-
mediate vertex values can be found that satisfy the unary and binary predicates

along the path. The following theorem due to Montanan i [14] can be used to justify

the first path consistency algorithm.

THEOREM. If every path of length 2 of a network with a complete graph is path

consistent the network is path consistent.

Proof By straightforward induction on the length of the path.

Observe that in our notation a path of length 2 from node i through node k to

node j is consistent if Ru = R11 & R, Rkk • Rkj. The algorithm given by Monta-

nan i to compute a path consistent network equivalent to R is then as follows:

1

2

3

4

5

6

7

8

9

10 end

11 until Y" = Y°;

12 Y 4- Y"

13 end

PC-I: the first path consistency algorithm

begin

Y" 4- R

repeat

begin
yo 4__ r
for k 1 until n do

for i 4- 1 until n do

for j 4- 1 until n do

Yt; YIT & Y 1 . Yt;

Montanan [14] gives an inductive proof for the correctness of PC-1. Another
justification derives directly from the theorem above. To see that the algorithm
halts observe that the & operation of line 9 has a monotonic effect on Yu. On the
iteration of lines 4-10 that the algorithm halts on, Y = r = r° = Y& (l < k n)

and so line 9 has had no effect at all: for all i,j,k, Yu = Y, & Yu • Yip All
paths of length 2 (vi, Vj, uk) are consistent so Y is path consistent.

Parenthetically, Algorithm PC-1 should be compared to Algorithm 5.5 of Aho,
Hoperoft and Ullman [I] which is a generalization of Warshall's [25] transitive
closure algorithm and Floyd's [8] shortest path algorithm. Algorithm 5.5 needs

only one iteration of the equivalent of lines 4-10 because they require that • be

distributive over+ (& in our case) whereas here there is no guarantee that
composition is distributive over intersection of binary matrices.
PC-1 is correct but it consumes more time and space than it need. In pursuing

this thought it is profitable to see that PC-1 is a generalization of AC-1. PC-1
essentially becomes AC-I if we substitute

8 4- Yr 1 & Yr l YV • Yt-

for lines 8-9 of PC-1. (See Section 7.3.1.2 if this is not clear.)
Pursuing the comparison with AC-I, we ask if it is necessary to keep n+2

copies of the network of relations: R, Y° and Yk (1 k < n), each of which will
be very large even for moderate n. R is clearly unnecessary. To avoid keeping Y°
use a flag which is set to true when any Yu is changed. Line 9 requires that one use
rck-j, 110 and I even though one or more of the updated versions 11, nk
and I% may already have been computed. Clearly the only possible effect of
using the updated versions of those relations is to speed convergence. The outcome
is then that only a single copy of Y which is continually updated need be used.

Secondly, some computations predictably have a null effect (e.g., Y = Yç 1)
so need not be done. Third, since Yfi = Y6 almost half the computation can be
avoided.
But these improvements are matters of detail not substance. A substantial

improvement can however be effected by pursuing further the analogy with AC-1.
There we noted that whenever an arc was made consistent by deleting values from the
node at its tail rather than require another complete iteration through the entire
set of arcs one could specify just which arcs might be affected and put them on a
queue either to be dealt with when the current set of arcs was exhausted (AC-2) or
whenever was convenient (AC-3). Here we can see that we are considering the entire
set of paths of arc length 2. If a path is not consistent we make it so by changing
the necessary l's to O's in the binary matrix relating the two terminal nodes of the
path. When we do so every path of length 2 that has as one of its component arcs
the arc between the terminal nodes of the path just made consistent must be
(re)checked for consistency. However, some of these paths may already be waiting
in the queue to be considered. As in the case of arc consistency we define a pro-
cedure REVISE which checks a path of length 2 from node i through node k to
node j for consistency. If it must be made consistent by modifying Yu REVISE
returns true otherwise false.

procedure REVISE k,D)
begin

, Z Yii & Yik • irk k • Ykj

if Z = Yu then return false

else Yji 4-* Z; return true

end

We also need a procedure RELATED PATHS((i, k,j)) that returns a set of

CONSISTENCY IN N
E
T
W
O
R
K
S
 O
F
 RELATIONS

01

length 2 paths that need to be REVISEd if REVISE((i, k,j)) returns true. Since
= Yji we need only compute Yij if i j so RELATED PATHS has two

cases to consider: (a) I <j and (b) I = j.

(a) I <f. i and j are distinct nodes so we want the set of all paths of length 2 that
have arc (i,j) or arc (j, 0 as one of their arcs. Also, we want to exclude paths
(i,j,j) and (i, i,j) because on both REVISE will predictably return false.

In this case, the set of paths to be returned is

S. = j, m) 1(1 in < n), (m i))
L) {(m, 0)1(1 in < j), (in 0 1)}
.0 {(j, i, in) If < m n}

{(m, j, 011 < m <

Sa has 2n-2 members.

(b) i = j. In this case Yu has changed so every path of length 2 that uses i as its
intermediate node must be checked with the exception of paths (i, 1, i) and (k, I, k).
The set of paths to be returned is Sb = {(p, I, tn)1 (1 p in), (1 < in n),
—1(p = i = in), —1(p = in = k)} S, has n(n+ 1)12-2 members. The paths (i, i, i)

and (k, i, k) are excluded because they would result in REVISE returning false.
Note that the exclusion of (k, I, k) from the set of paths related to (i, k, i)

corresponds exactly to the exclusion of arc (in, k) when REV1SE((k, m)) Nus
predictably false there as REVISE((k, 1, k)) is predictably false here.

Finally,
procedure RELATED PATHS((i, k, j)):

if i <j then return S,, else return Sb

Now we have the components for a more efficient path consistency algorithm,

PC-2.

1 begin

Q {(i, = k = ..1)}
3 while Q is not empty do

4 begin

5 select and delete a path (i, k ,j) from Q;

6 if REVISE((i, k, j)) then Q Q u RELATED PATHS((i, k, j))

7 end

8 end
PC-2: the second path consistency algorithm

The order of path selection from Q does not affect the outcome of the algorithm

but it may affect its efficiency. In particular if Q is ordered on the value of k then

the initial set of paths is processed in essentially the same order as in PC-1. If the
relations are such that composition does distribute over intersection then we are
guaranteed that the value of Yn after the first iteration of PC-1 lines 4-10 will be
its final value, Y: on the second iteration there will be no further change. (This is

so because in that case the task is that of Aho, Hoperoft and Ullmar's [I] Algorithm

5.5. See that reference for a precise specification of a set or conditions sufficient to
ensure that only one iteration of PC-1 is necessary.) Thus, if Q is so ordered in

PC-2 then only on the original set of paths in Q (of which there are (n3+ n2— n)/2)
will REVISE return true and hence possibly increase the length of Q. Any other
ordering may not have that effect.

8. The Use of Consistency Methods in Problem Solving

The consistency methods discussed were initially motivated here by reference to
three situations that caused pathological thrashing behavior in a backtracking
problem solver. How then are these consistency algorithms to be used? Clearly,
applying PC-2 before backtracking will ensure that none of the thrashing behaviors
discussed in Section 3 will occur; however, it is possible to do better. As Fikes
showed in REF-ARF alternating constraint manipulation and instantiation of a
variable is a good strategy for Boolean constraint problems. Burstall [3] in a pro-
gram for solving cryptarithmetic puzzles alternated constraint manipulation and the
bisection of variable domains. A formulation that includes these two approaches as
special cases is the alternation of constraint manipulation and case analysis. By
case analysis is meant the creation of p subproblems by adding to each of p copies
of the network an additional case constraint where the p case constraints OR'ed
together constitute a tautology. (The additional tautological constraint may
involve more than one variable.) The resultant OR graph may be searched in any
of the usual ways [16]; a solved subproblem has a unique instantiation of the vari-
ables after PC-2 has been applied (i.e., each Yu has exactly one 1 on the diagonal)
whereas an unsolvable subproblem has some ri with all entries 0 (in fact in that
case all Y1, will have all entries zero after PC-2 has been applied.)

• 9. Applications

9.1. Finite, discrete state space problems

9.1.1. Puzzles

The most obvious applications of these techniques are to the traditional puzzle-
solving problems. Gaschnig [10], for example, has used an iteration of a modifica-
tion of AC-3 and instantiation to solve Instant Insanity and cryptarithmetic
puzzles and has shown how the search space is drastically reduced. That version
of AC-3 does not, however, distinguish between the arc (0) and the arc U, i) so
that the equivalent of REVISE((i,D) must check every value of Di and find a
corresponding value in Di and also must similarly check every value of Di for the
existence of a compatible value in Dr, although as shown in Section 6 when REVISE
is called on a pair of adjacent nodes it is known which of the two arcs is possibly
inconsistent.

Other puzzles to which these methods apply are magic square problems and the
n-queens problem. The list could be longer.

a)

I
S
E
A
R
C
H
 AND S

E
A
R
C
H
 REPRESENTATIONS

9.1.2. Other combinatorial problems

It remains to be seen whether the approach suggested will lead to more effective

algorithms for such traditional combinatorial tasks as computing the chromatic

number of a graph and the graph isomorphism problem although it is clear that

Unger's [23] approach to graph isomorphism contains some of the seeds of this

approach. In a similar vein Suzman and Barrow [21] have been applying an arc

consistency algorithm to clique detection.

9.2. Continuous variable domains

The requirement that the relations between variables be explicitly represented does

not lead of necessity to the Boolean matrix representation. As Montanan i points out,

any representation of the relations that allow composition and intersection is

sufficient. For example, using as the domains subsets of R" allows one to treat

space planning [5] and n-dimensional space packing problems such as cloth cutting

[II] and the FINDSPACE problem [20].

9.3. Vision

In the Waltz filtering algorithm the variables are picture junctions w hose values

are their possible interpretations as corners. The initial variable domains arise

from the shape of the junctions; the unary predicates arise from lighting inferences

while the binary predicates simply require each edge to have the same interpretation

at both of its ends. An interesting question to pursue is to ask how the processing

time depends on the complexity of the picture. From the available results [24], the

dependence could well be linear. Waltz suggests that this is so because when each

new junction is introduced the propagation of arc revision is restricted for the most

part to that set of lines forming the image of a single body of which that junction is

a part. The effect is so restricted because T junctions do not transmit constraining

action from the stem to the crossbar or vice versa. Unless this decoupling effect

obtains in other domains there is no reason to expect linear behavior from AC-2

or AC-3. Moreover, in this domain, the interpretation of pictures of more and

more complex individual polyhedra rather than of more and more polyhedra of

fixed complexity would not presumably display linear behavior. Worst case analysis

of AC-1 suggests that the processing time is 0(a2) where a is the number of arcs in

in the graph. Turner [22] has generalized the Waltz' algorithm to apply to certain

curved objects.
The author has previously proposed [12] the use of arc consistency algorithms in

the task of interpreting pictures of polyhedral scenes. In that application, the

variables are the regions whose values are the positions and orientations of their

possible interpretations as surfaces. The unary and binary predicates arise both

from
(a) Constraints on the surface positions and orientations taken individually and

pair-wise together, if they intersect in an edge, imposed by the geometry of the

picture formation process. (These are the constraints exploited by the aathor's
earlier program, POLY [13].)
And

(b) Constraints on surface size, shape and pairwise connectivity imposed by
a priori knowledge of the objects that can appear in the world.

Barrow and Tenenbaum [17] have an application of arc consistency in which the
variables are picture regions and the values are the names of their interpretations as
surfaces (such as, "door", "wall" and "picture"). Rather than just satisfy the
constraints they seek an assignment of values to variables that will maximize the
likelihood of the region interpretations being correct. In a related study, Rosenfeld,
Hummel and Zucker [18] investigate various probabilistic models using AC-1.

Finally, Montanan i [14] suggested that the variables be distinctive, recognizable
subpictures of the picture one is interpreting. If the values are the pictorial location
of these subpictures then one could use the consistency algorithms and subpictures
already located to constrain the search area for an as yet unlocated subpicture.

9.4. Al programming languages

Consistency methods could well solve some of the problems of retrieval from a
data base that essentially takes the form of a semantic network. The criticisms that
Sussman and McDermott [19] leveled at the crucial position occupied by automatic
backtrack control in PLANNER were well founded and yet it is also clear that,
unless we are to abandon completely the goal of a high-level programming language
for Al, default search and data base retrieval mechanisms should be available to
the user. (And yet again, these should not be forced upon the user. If he wants to
program his own, the primitives should be available as they are in Conniver.)
The consistency methods advocated here are clearly more effective than auto-

matic backtracking and so deserve to be considered as a default database retrieval
mechanism.
As an example, "Find a large rectangle which is touching a triangle and inside

a circle" could appear in MICRO-PLANNER as

(THPROG (X Y Z)

(THGOAL (OBJ $?X RECTANGLE))

(THGOAL (SIZE $?X BIG))

(THGOAL (TOUCHING VY $?X))

(THGOAL (OBJ $?Y TRIANGLE))

(THGOAL (OBJ $?Z CIRCLE))

, (THGOAL (INSIDE $?X $?Z))
(THRETURN $?X))

or in network form as in Fig. 5. One need not enumerate again all the thrashing
problems that the execution of that MICRO-PLANNER code would encounter in
various configurations of the world. As a simple example, just consider a situation

CONSISTENCY IN N
E
T
W
O
R
K
S
 O
F
 RELATIONS

in which there are a large number of rectangles only one of which is inside the
only circle. Backtracking could thrash for a very long time before discovering the
right rectangle whereas a "truly smart" procedure would take the circle, find out
what is inside it, The effect of that smart procedure would be achieved by the
consistency algorithms described here.

RECTANGLE

FIG. 5. A network representation of a retrieval task.

10. Conclusion

In this paper, we have been concerned with a class of algorithm, which could be
named network consistency algorithms, designed to aid in the discovery of a
situation that satisfies a set of simultaneous constraints that has been imposed on
any candidate solution.
By being presented and extended in a uniform framework these algorithms will

perhaps become more accessible to others as will the pursuit of their development
in the context of a variety of applications many of which have been discussed here.

ACKNOWLEDGMENTS

I am indebted to F. O'Gorman for some initial conversations on this topic. The support of the
National Research Council of Canada, under Grant A9281, is gratefully acknowledged.

REFERENCES

1. Aho, A. V., Hoperoft, J. E. and Ullman, J. D., The Design and Analysis of Computer Algo-
rithms, Addison-Wesley, Reading, Mass., 1974.

2. Bobrow, D. G. and Raphael, B., New programming languages for At research, Comput. Sum.

6 (1974), 153-174.
3. Burstall, R. M., A program for solving word sum puzzles, Comp. J. 12 (1969) 48-51.

4. Dahl, 0. J., Djikstra, E. W. and Hoare, C. A. R. Structured Programming, Academic Press,

1972.
5. Eastman, C. M. Automated space planning, Artificial Intelligence, 4 (1973), 41-64.

6. Fikes, R. E. REF-ARF: A system for solving problems stated as procedures, Artificial

Intelligence, 1 (1970), 27-120.
7. Floyd. R. W., Nondeterministic algorithms, J. Assoc. Comput. Mach. 14 (1967), 636-644.

8. Floyd, R. W. Algorithm 97: shortest path, Comm. ACM 5 (1962), 345.

9. Carey, M. R., Johnson, D. S. and Stockmeyer, L. Some simplified NP-complete problems.

Proc. 6th Annu. ACM Symp. Theory Comput., Seattle, Wash. (1974), pp. 47-63.

10. Gaschnig, J. A. Constraint satisfaction method for inference making. Proc. 12th Annu.

Allerton Conf. Circuit System Theory, U. Ill., Urbana-Champaign (1974).

11. Haims, M., On the optimum two-dimensional allocation problem, Ph.D. Thesis, Dept. of

Electrical Engineering, New York University, New York (1966).

12. Mackworth. A. K. Using models to see. Proc. Artificial Intelligence and the Simulation of

Behaviour Summer Conf, University of Sussex (1974), pp. 127-137.

13. Mackworth, A. K. Interpreting pictures of polyhedral scenes, Artificial Intelligence, 4 (1973),

121-137.
14. Montanan, U. Networks of constraints: fundamental properties and applications to picture

processing, Inform. Sci. 7(1974), 95-132.
15. Montanan, U. Optimization methods in image processing. Proc. IFIP Congress, North-

Holland, 1974, pp. 727-732.
16. Nilsson, N. J. Problem-solving Methods in Artificial Intelligence, McGraw-Hill, 1971.

17. Nilsson, N. (Ed.), Artificial intelligence-research and applications, progress report, Stanford

Research Institute (1975).
18. Rosenfeld, A., Hummel, A. and Zucker, S. W. Scene labelling by relaxation operations,

Computer Science TR-379, University of Maryland (1975).

19. Sussman, G. J. and McDermott, D. V., Why conniving is better than planning, Artificial

Intelligence Memo. No. 255A, MIT (1972).
20. Sussman, G. J. The FINDSPACE problem, Artificial Intelligence Memo. No. 286. MIT

(1973).
21. Suzman, P. and Barrow, H. G. Private communication, 1975.
22. Turner, K. J. Computer perception of curved objects using a television camera, Ph.D. Thesis,

Dept. of Machine Intelligence, School of Artificial Intelligence, University of Edinburgh (1974).

23. Unger, S. H., GIT-a heuristic program for testing pairs of directed line graphs for isomor-

phism, Comm.-ACM, 7 (1964), 26-34.
24. Waltz, D. L., Generating semantic descriptions from drawings of scenes with shadows, MAC

AI-TR-271, MIT (1972).
25. Warshall, S. A theorem on Boolean matrices, J. Assoc. Comput. Mach. 9 (1962), 11-12.

03

SEARCH AND SEARCH REPRESENTATIONS

