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INTRODUCTION

Attempts to write 'intelligent' computer programs have commonly involved
the choice for attack of some particular aspect of intelligent behaviour,
together with the choice of some relevant task, or range of tasks, which the
program must perform. The emphasis is sometimes on the generality of the
program's ability, sometimes on the importance of the particular task which
it can perform. Well-known examples of such programs are Newell, Shaw,
and Simon's General Problem Solver (1959; see also Ernst and Newell,
1967), which is applicable to a wide range of simple problems, Samuel's
checker (draughts) playing program (1959, 1967), and the program written
by Evans (1964), which solves geometric analogy problems.
However, there is another approach to the goal of machine intelligence

which stresses the relationship of an organism to its environment and which
sets out from the start to understand what is involved in this relationship.
Long ago Grey Walter (1953) experimented with mechanical 'tortoises'

which could range over the floor in a lifelike manner. Toda (1962), in a
whimsical and illuminating paper, has discussed the problems facing an
automaton in a simple artificial environment. Friedman (1967), a psycholo-
gist, has described a computer simulation of instinctive behaviour involving
an automaton equipped with sensory and motor systems. Andreae and Gaines
(Andreae, 1964), in their STELLA project, have considered the design of an
automaton faced with general control tasks. Sandewall (1967) has gone deeply
into an automaton/environment relationship with a rather more formal
approach. This list is far from complete. In particular, robots of various kinds
are under construction at a number of research centres, notably at the Stanford
Research Institute (Nilsson and Raphael, 1967).
The reader may find it helpful to meditate on the situation of, say, a rat in a

cage, as seen by the rat. I hope the reader will agree that the animal perceives
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its rather simple environment in a variety of ways, that it remembers, learns,
predicts, and acts towards goals which ultimately derive from basic necessities
such as food, sleep, and the avoidance of pain. Can one write a computer
program which, however primitively, simulates the rat and its surroundings

and which demonstrates the simulated rat displaying such rudimentary
intelligence as it is reasonable to require?
In attempting to write such programs I suggest that the ultimate objective is

a classification of possible environments for the automaton (e.g. the simu-
lated rat) from the standpoint of the automaton, together with an optimal
automaton design in some non-trivial and useful sense for each class of en-
vironment. The approach described in this paper involves setting up a fairly
'natural', if simple, environment in the hope that the automaton design ulti-
mately achieved by a combination of insight and trial and error experimenta-
tion will not only perform well in that environment, but will also display
acceptable marks of intelligence.

THE AUTOMATON AND ITS ENVIRONMENT

I shall now try to specify a little more precisely the various concepts at issue,
with the objective of constructing a helpful frame of reference. First of all I
wish to distinguish three things:
(a) the running computer program, together with associated data, which

mimics, however primitively, a portion of the real world. At this
level the automaton is only arbitrarily distinguished from its environ-
ment;

(b) the 'objective' view of the automaton in its environment. This
corresponds to looking at a rat in a cage from outside the cage, and
implies a separate observer and viewpoint. I shall refer to the
automaton's objective environment, that is, its surroundings as we
see them;

(c) the environment as perceived by the automaton, corresponding to
the rat's perception of its surroundings. This paper is primarily
concerned with the automaton's efforts to understand and control

this subjective environment. The reader must bear this last
distinction in mind throughout.

The subjective environment involves a sequence of (subjective environment)

states, each of which is the total possible perception by the automaton at any
instant. There is a (subjective environment) transition rule, unknown to the
automaton, which gives the next state in the sequence, given the history of

the system including the automaton's actions. This rule will often be con-
veniently expressed in terms of the objective environment. Each of the actions

available to the automaton may be applied at any time. They are distinguish-

able but otherwise unstructured. The following points are important.

1. 'time' means time as measured by a clock within the running program

((a) above);
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2. the use of a sequence of states is a convenient approximation to one
continuously varying state;

3. states will typically be very complex including (from the viewpoint
(b) above) perceptions of the automaton's own internal functioning;

4. the actions will in general enable the automaton to achieve some
measure of control over its future.

To motivate the automaton we associate with a state some idea of its desirabi-
lity. Suppose that certain variables appearing in the state have bounds within
which their values should lie. The desirability of a state then refers to the extent
to which these constraints are met. The automaton must act so as to maximize
the desirability of the states it encounters. If the desirability may be repre-
sented by an integer, then the automaton's motivation may be made more

precise, if a little artificial, by assigning to it a fixed, known, lifetime and
requiring it to maximize the mean desirability of its states over that lifetime.
Notice that the desirability function cannot be varied by the automaton.
The automaton performs information processing operations needed to

decide which actions to select and when. It is natural to suppose that process-
ing proceeds at a finite speed (program time), and that information storage
capacity is limited. These constraints form part of the design problem. The
rate of processing achieved by the automaton relative to the rate of change of
its subjective environment and to the lifetime available to it is very important.
The design of the automaton must take into account the anticipated pro-

perties of its subjective environment. The reader may find it illuminating to
imagine himself (the automaton) before a screen on which is displayed a
complex pattern which changes from time to time (sequence of states). He has
access to a row of buttons (actions) any of which he can press at any time,
and he has a given scale of preference for the patterns which occur. He has a
limited supply of pencil and paper. His task is so to press buttons that over a
given period of time the preference level is kept as high as possible. Naturally
the reader's strategy will vary according to the information he is given re-
lating button-pressing to the patterns displayed.
I shall now take as an example a particularly simple, if artificial, class of

subjective environments which will serve to introduce some further concepts.

SUBJECTIVE ENVIRONMENT GRAPHS

Let the reader again imagine himself before the screen introduced in the last
section, but now given the following additional information:

1. that no information is contained in any similarity between patterns
shown. That is, patterns may only usefully be said to be identical or
non-identical;

2. that the pattern displayed changes only when a button is pressed;
3. that the effect of pressing a particular button when a particular pattern

is displayed is always the same, and that the effect is always immediate.
The reader may care to consider the strategy he would adopt.
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Figure 1. An environment graph—one way of specifying a simple subjective environ-
ment transition rule. The nodes correspond to states, the labelled arcs to action
transitions, and the figures give the corresponding desirabilities

Figure 1 represents this situation in abstract form. The transitions of the
subjective environment are described by a graph with 'labelled' arcs, the
nodes of the graph representing states, and the arcs with a particular label
representing the consequences of a particular action. Thus if the automaton
is 'at' state D of figure 1, and applies the action a, then it immediately finds
itself 'at' state C. The figures give the desirability of each state. How can the
automaton be designed so that it performs well in any subjective environment
of this type, without it ever knowing which particular graph it is faced with?
At any instant the automaton will be in some state, and we may assume

that its history is accessible. Thus it might have stored that its history is as
shown in figure 2 (a). If so we can now distinguish three relevant graphs.
These are:

1. the subjective environment graph (figure 1),
2. the stored graph which is that portion of the subjective environment

graph which the automaton has stored in its memory as a result of
its experience (figure 2 (b)), and

3. the option graph which is that fragment of the stored graph which
the automaton 'knows' how to reach (figure 2(c)).

The automaton has, I suggest, a broad choice between exploration and exploi-
tation. Thus it can either decide to 'move' to some state in its option graph,
and once there try out a new action, or it can select some suitably desirable
state in its option graph, move to it, and do no more. In the first case the
goal might be B and the plan /3 a p, and in the second the goal might be c and
the plan p*. Which of these two types of plan the automaton should adopt
will depend upon (1) the expected mean desirability to be achieved by
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a (3 a
A D ---> C --> C ----> B D -->

(7) (12) (27) (27) (14) (12)

(a)

(7) (12) (27) (14)

(b)

p 0 
D 

a
C B

(12) (27) (14)

(c)

Figure 2. A transition history based on the graph of figure 1, together with the
corresponding stored and option graphs (see text)

history

stored graph

option graph.

exploration at the best exploration goal, and (2) the desirability of the best
exploitation goal.
The reader should note that I am using the word 'plan' to refer to a situa-

tion where a course of action is determined upon in advance, and then
carried through without further 'thought'. For this class of subjective en-
vironments at least, there is clearly no point in reconsidering a plan part way
through its implementation.
An important complication is introduced by the time that the automaton

must take to select a plan, which has the consequence that the selection pro-
cess will involve a succession of steadily more promising plans (of either
type) until the time cost of further improvement tilts the balance in favour of
actual implementation of the current best plan. The time cost of decision
making is more pressing the lower the desirability of the current state.

After an exploratory action the automaton may either be forced to explore
again, since it has encountered a quite new state, or it may find itself at a
state it recognizes when there will be a non-trivial option graph and therefore
an opportunity for further plan formation.
In practice, heuristics will be needed at many points in the automaton

design. The difficulty of finding optimal decision strategies taking into account
the time and storage constraints is far too great for precise solution. Whenever
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there is a choice between a small benefit immediately and a possibly large
benefit in the future, then a plausible heuristic will probably be needed.
The difficulties which arise as soon as more interesting subjective environ-

ments are considered are best introduced in a more concrete context. I shall
therefore now describe the present computer program which involves a
subjective environment with complex states, and with a more complicated
transition rule. For a more extensive general discussion the reader is referred
to Doran (1967, 1967a).

THE POP-2 PROGRAM: OBJECTIVE AND SUBJECTIVE
ENVIRONMENTS

The program now to be described is written in the list processing language
Pop-2 (see the paper by R. J.Popplestone in this volume) which has been
developed at the Department of Machine Intelligence and Perception of the
University of Edinburgh. The language is implemented on an Elliott 4100
computing system and is oriented towards machine intelligence work.
The reader may find his understanding of this program and its behaviour

aided if he keeps in mind the following analogy. A small boy lives at the
busy centre of a large city. One day he is taken to a quiet suburb where he has
never been before, and left to find his own way home. We suppose that he is
too shy to ask someone the way and that he does not think of buying a map.
He therefore starts walking, always preferring streets or districts where there
is traffic and bustle, the more the better, since he remembers that he lives in a
very busy place. Sometimes he realizes that he has walked in a circle, and then
he sets off in some new direction from the busiest point he remembers how to
reach. Ultimately, we suppose, he arrives home after a very long walk. Sup-
pose that he is now taken back to the remote suburb and left there a second
time. Now he should return home in less time and by a much more direct
route, for he has the memory of his previous trek to guide him and therefore,
for example, can plan ahead to some extent.

This small boy is very much in the situation of the simulated automaton
now to be introduced. The automaton's surroundings, which I shall describe
first, correspond to the city in the foregoing analogy.
The objective environment or 'enclosure' provided for the automaton con-

sists of a square area (10 units x 10 units) with boundary and interior walls.
Figure 3, which is an example of program output, shows this enclosure. The
walls are not uniform but are 'formed' of letters of the alphabet. The automa-
ton is represented by an asterisk and has location, and orientation to the top,
left, right, or bottom of the picture. The automaton's co-ordinates are always
integral. Note that 'objective' output is preceded by a double set of asterisks,
'subjective' by a single set.
The actions available to the automaton are the following:
(a) STEP-t0 move forwards into the next unit square. .
(b) LEFT-t0 turn through a right angle to its left.
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*** SAMPLE IS [ C 1 STAND 40 1138 ]**• I KNOW THIS
*** I HAVE A PLAN
*** STEP
*** *** TIME 1378 x4 Y2 FACING TOP

CCCCCCCCCC
E * a
E DDD B
E HHD B
E Ii HHHAG
E 11 IIHIlliG
E Ii G
E 13 G
E G
FFFFFFFFFF

*** SAMPLE IS [ CO STEP 41 1379 ]
*** FORSEEN
*** RIGHT
*** *** TIME 1398 x4 Y2 FACING RIGHT

CCCCCCCCCC
E * B
E DDD B
E HHD B
E II HHHAG
E Ii HHHHG
E 13 G
E Ii 0
E 0
FEFFEFFEFF

*** SAMPLE IS [ a 5 RIGHT 39 1399 ]*** FORSEEN
*** EXPLORE
*** STEP
*** *** TIME 1425 x5 Y2 FACING RIGHT

CCCCCCCCCC
E * 

B
E DDD B
E HHD B
E IS HHHAG
E IS HHHHG
E 13 0
E 13 0
E 0
FFFFFFFFFF

Figure 3. Sample output from the automaton/environment program showing theobjective environment, typical subjective state vectors, and the automaton's 'chatty'remarks
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(c) RIGHT—to turn through a right angle to its right.
(d) STAND—t0 remain still.

If STEP is impossible since the automaton is against a wall, then STEP has the
effect of STAND. Selecting the action STAND must not be confused with select-

ing no action at all.
Note that the automaton knows nothing of the effect of these actions except

what it learns through experience.
The automaton's subjective environment state is a 5-vector of the following

form:

[ ( wall >, < distance >, (last action >, < desirability >, ( time > ]

Examples of state vectors appear in figure 3 after the words 'SAMPLE Is'. The
first shown is

[C 1 STAND 40 1138]

and this implies that the automaton is facing the c wall, that there is one
empty square between it and the wall, that its last action was STAND, that the
desirability of the current state is 40, and that the system time is 1138.
Note that the automaton's view of its surroundings is very restricted. It

can see only which 'letter' is in front of it, and how far away it is. Thus the
subjective environment is very different from the objective environment. Let
us call the first two elements of the state vector the reduced state (Cl in the
above example). This reduced state is the unit used by the automaton in its
processing. Now a given reduced state does not uniquely specify the automa-
ton's true location, and this turns out to be both a source of confusion and of
assistance to the automaton. Confusion occurs because the subjective en-
vironment may not react in the future as it has in the past, assistance because
the automaton may react correctly in quite new situations because from its
point of view they are not new but are identical to previously experienced
situations.
Two further points need comment. First, the appearance of the automaton's

last action in the state vector means that the automaton remembers past
actions in much the same way as it remembers other information. Second, the
desirability is included as a direct perception in this program for simplicity.
It is calculated as a simple numerical function of the reduced state, namely:

50—(DISTANCE+3*WALL)

where WALL is 1 in the case of A, 2 in the case of 13, and so on. The desirability
is maximized when the automaton is facing and against the letter A, and we
may then say that the automaton is in its 'nest'. There are local maxima
elsewhere.
The automaton is typically placed at some point in its enclosure and ex-

pected to find its way to the nest and remain there. If moved out of the nest it
should quickly return. More generally, it should always behave 'sensibly'.
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Simple program facilities are provided which permit the automaton to be
moved about, guided, and reset to some point in its history by an 'on-line'

experimenter.

THE POP-2 PROGRAM: ORGANISATION OF THE
AUTOMATON

Figure 4 shows a skeleton flow chart for the automaton. The cycle is as follows.
The automaton first reads a state vector (SAMPLE), and stores in its memory

EXPLORE

ACT

SAMPLE

STORE

FIN DACT

1
DOPLAN MAKEPLAN

Figure 4. Outline flow-chart of the automaton

SLEEP

the last state vector transition (sToRE). It then enters FINDA cr and decides
which of the following alternatives is appropriate:
EXPLORE—select randomly an action never before tried at this reduced state.

MAKEPLAN—Carry out a lookahead and form a plan.
DOPLAN— select the next action of the current plan or go to EXPLORE

MAKEPLAN or SLEEP if this is indicated by the current plan.
SLEEP—stop.
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In ACT the automaton actually implements an action, and the state vector and
objective environment change appropriately before the automaton again goes

to SAMPLE.

Sufficient has been said about the action Of SAMPLE in the previous section.
STORE will now be explained by reference to figure 5, which shows the arrange-
ment of the automaton's 'memory' as a sort tree. The sequence of transitions
shown at the top of the figure is represented as the tree structure shown. In
general suppose that the automaton has observed a transition from state
vector x to state vector Y. It stores this as follows:
(a) the tree node corresponding to the reduced state of x is located by

starting at the top and branching appropriately;
(b) relevant information kept at this node, for example, the desirability

of the reduced state and the time of the last encounter is updated
(not shown in figure) ;

(c) the appropriate terminal node is located (by reference to item 3 of
y) and a pair containing the time of x and the reduced state of Y
(a consequence) is added to the list of observed consequences already
there.

Branches are created if they do not already exist.
The length of the list of observed consequences kept at each terminal node

is limited by the program parameter FORGETP. If a new addition would
cause the length of the list to exceed the limit set, then the oldest consequence
is deleted to make room.
This storage system has the following properties:

1. the detailed history of the automaton can be recovered (with a
little difficulty) provided that no information has been erased in the
manner just indicated, and

2. the consequences in the past of applying a particular action to a
particular reduced state are very easily retrieved.

The function of the plan vectors shown in the figure will be explained in the
next section.

EXPLORATION AND PLAN FORMATION

In FINDACT the automaton must choose between the options EXPLORE,
DOPLAN, MAKEPLAN, and SLEEP. To do this the automaton first refers to its
memory to establish if it has ever before encountered the current reduced
state. If not, and if the desirability of the reduced state is at the target value,
then SLEEP is chosen, otherwise EXPLORE. The general significance of this
target value will be explained below.

If the reduced state is recognized then the automaton inspects the correspon-
ding plan vector (see figure 5) to establish whether it has already decided
what to do in this situation. If so then it selects DOPLAN. Note that the stored
plan instruction implemented in DOPLAN may cause entry to EXPLORE,
MAKEPLAN, or SLEEP, rather than merely indicating a basic action.
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step left right step left right
C3 ---> C2 -> El ----> C2 --> Cl --> El -> Cl
0

12 24 36 74 86 130

I

step left step left right

(0, C2) (12, El) (36, C1) (74, El) (24, C2)

(86, Cl)

Figure 5. The memory tree. The transition history at the top of the figure is stored
as the tree shown below. [ ] indicates location of plan vector. For details see text

MAKEPLAN is entered if the current reduced state is recognized, but not
anticipated as part of a plan. Its main function is to grow a ̀lookahead tree'
of a type analogous to that used in many game-playing programs, and to
select a plan. Figure 6(a) shows this tree with unimportant details omitted.
The tree is grown (downwards) by reference to the automaton's memory,

and corresponds to the option graph earlier defined. Each node in the figure
represents a reduced state. Each branch labelled with a Greek letter corre-
sponds to the selection of a particular action. The unlabelled branches re-
present the observed consequences of applying given actions to given reduced
states. Thus in the figure the root node corresponds to the automaton's
current reduced state. The actions cc and fl have been tried previously in this
state. cc has been applied twice with differing consequences. 13 has been applied
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(a)

(15)

a[15

•
13[10y 12]

(18)
•

a[15/V 8]

action

consequence

(14)
•

V[14

action

•

consequence

• • • • •
(3) (17) (10) (12) (15) (18) (14)

(b) (c)

(—I) sleep

explore a 13 makeplan

Figure 6. The lookahead mechanism. The tree (a) is grown by reference to the
memory tree of figure 5, and values are assigned to the terminal states and
tacked-up' as indicated. Diagrams (b) and (c) show in greater detail non-terminal
and terminal nodes respectively. For full details see text

once. The first consequent reduced state of the application of a has itself had
p and 8 applied to it, and so on. This lookahead tree is taken out to a fixed
'depth' determined by the program parameter DEPTHP. Having 'called to
mind' the relevant information, the automaton now selects an action for its
current reduced state, and for all of the consequences that that action may
have, and so on out to the depth of the tree. That is, the automaton selects a
plan. In more detail, it uses the following process which is a crude form of the
`expectimaxing' process described by Michie and Chambers (1968a).
(a) Values are assigned to the reduced states forming the branch tips.

These values are loosely to be interpreted as the future mean
desirability level to be expected if the automaton actually reaches
the corresponding reduced state, and continues planning from there.
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(b) The reduced states one step back from the terminal states now have
values assigned to them. Each action tried is considered and a value

associated with it which is the mean of the values of its observed

consequences. The greatest such action value is then assigned to the

reduced state, and the corresponding action is adopted as the plan

action for that reduced state.
(c) This process is carried up the tree until the root state is given a

value.
In figure 6(a) a consistent set of values has been indicated (square brackets for

action values and round brackets for state values) and the plan actions are
shown by double lines. The most important information kept in the plan
vector of a reduced state is the plan value together with the corresponding
plan action.
The process is rather more complicated than has been described, for at each

non-terminal state of the lookahead tree the automaton has additional
SLEEP and EXPLORE options. The true situation is indicated in figure 6 (b).
At terminal states the automaton has a choice between the MAKEPLAN
Option—corresponding to the assigned value already mentioned—and SLEEP
(figure 6 (c)). Each option is assigned a value, the greatest value is selected
and passed up the tree, and the corresponding choice ( say from a, fi, EXPLORE,
SLEEP) is stored away in the plan vector for use if the corresponding reduced
state should actually be encountered.
How are these various values estimated? This involves a target value which

is a desirability level the automaton is 'told' it can achieve but not exceed
(compare the 'level of aspiration' used by the BOXES program (Michie and
Chambers, 1968a)).
SLEEP—the corresponding value is simply the desirability of the reduced
state at which sleep is proposed.
EXPLORE—the value assigned lies between the corresponding SLEEP value
and the target value, according to the expression

S+ (TV— .3)*EXP VALP

where S is the SLEEP value, TV the target value and EXPVALP is a program

parameter lying between 0 and 1.
MAKEPLAN (i.e. tip value)—this is calculated in a manner akin to that
used for EXPLORE, but is made rather larger following the argument that
planning can be expected to give better performance than random explora-
tion. This increment is made a decreasing function of the number of times
the corresponding reduced state has been encountered using the parameter
TRANSITP.

This outline description of the functioning of the lookahead and planning

mechanism has avoided a number of complexities which, although trying in

practice, have little general significance. For example, branches of the look-
ahead tree often coalesce or loop with consequent difficulties.
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An important question concerns the situation once a plan has been used or

has gone awry (the latter is quite possible—an action may have a consequence
never before observed). Should any part of the information gathered during

the plan's formation be used again? More concretely, should the plan vectors
be erased or kept for future use? Several possible answers to this question
will be considered in the next section. It will suffice here to state that the
basic version of the program effectively deletes the plan vectors once the
corresponding plan has been used.

EXPERIMENTAL FINDINGS

As already stated, figure 3 shows a fragment of output from the program. The
'chatty' remarks made by the automaton serve to indicate the type of pro-
cessing it is currently engaged upon. They are not part of the automaton

17777 A
Incarnation E, Trial 1

NEST

r7771721

Incarnation E, Trial 2

Figure 7. The first route the automaton finds to its nest will typically be very cir-
cuitous. Starting from the same point the second route will be far better but not
necessarily optimal
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means

1 2 3 4
TRIALS

5 6 7 8 9

DORAN

10 totals

449 179 322 344 265 203 211 1625 288 427 4313
43 14 22 18 19 18 17 50 16 20 237

528 129 122 111 143 143 143 143 143 144 1749
41 12 12 12 12 12 12 12 12 12 149

722 194 295 257 451 245 297 394 227 269 3351
66 18 21 22 28 16 17 21 14 16 239

3436 525 157 486 265 257 378 259 321 452 6536
191 18 12 16 13 14 14 13 14 14 319

858 193 374 417 426 303* 623 535* 688* 2275* 6692
58 14 19 18 19 13 23 18 20 52 254

589 183 270 215 249 179 200 200 222 189 2496
46 14 16 14 14 12 12 12 13 12 165

1097 234 257 305 300 222 309 526 315 626
74 15 17 17 18 14 16 21 15 21

Table 1. Sample results showing the automaton's performance in the environment of
figure 3. Each incarnation involved a blank initial memory and ten successive trials from
the starting point of figure 7. The upper figure of each entry is time taken to reach the nest
and the lower figure is the number of actions used. Asterisks indicate unsuccessful trials.
The minimum possible number of actions required was 12.

design. As a result of experimentation with the program the following remarks
may be made.
The automaton successfully uses its record of its past explorations to form

and implement plans. These plans enable it to find its way to its nest by a much
more direct route on the second or subsequent trials than that followed on the
first trial. The planned route need not be optimal, however. Figure 7 shows a
typical example of this improvement. Note that the automaton does much
more than merely retrace its steps, and that the improved route involves an
objective location not previously visited by the automaton. Prior to trial 1,
the automaton's memory was quite blank. Table 1 presents some sample
detailed results. In each of six 'incarnations' the automaton was placed at the
starting point of figure 7 with a blank memory, and left to find its way to the
nest. It was then replaced nine times, but allowed to cumulate its memory.
The upper figure of each entry in the table is the time taken to reach the nest in
tens of basic units, and the lower figure is the number of actions used. The
following points are worthy of note:
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(a) the incarnations are not all identical since, particularly in the initial
stages, the automaton sometimes engages in random exploration;

(b) performance on trial 2 is uniformly much better than on trial 1;
(c) the automaton's behaviour does not necessarily become stereotyped

(see TRANSITP below). During trial A8, for example, the automaton
tries an exploration action and gets thoroughly 'lost' in consequence;

(d) the asterisks indicate trials when the automaton 'gave up' just
before reaching the nest (for fairly sensible reasons).

Figure 8 shows trials, A, B, C of Table 1 plotted as graphs.
The behaviour of the automaton depends heavily upon the values chosen

for the parameters mentioned previously.
FORGETP—this fixes the maximum number of consequences held at each
branch tip of the memory tree. A value of 6 rather than 3 for this parameter
increased the automaton's thinking time significantly. The automaton was
also slower to escape from the fairly common type of situation in which it
is misled by events recalled from the past which are not in fact relevant,
and in consequence loops repeatedly (see below).
ExPvALB—this is involved in value setting as indicated above. If it is set too
low (0.2 rather than 0.6) then, in the type of environment described, the
automaton will tend to 'sleep' at points of locally high desirability.
DEP Tx P—taking the lookahead to a fixed depth of 7 rather than 3 made
the automaton less likely to be trapped in locally desirable areas, but
markedly increased the thinking time.
TRANSITP—this helps determine the relative value which the automaton
assigns to planning rather than exploration. Suitably set it causes the
automaton to vary from time to time an apparently fixed route.

The point has already been made that the automaton has a deliberately
limited view of its surroundings. This causes it to generalize a response judged
best in one situation to all situations which have the same reduced state. In

the type of objective environment used here, the automaton will sometimes
benefit from this built-in tendency to generalization, and will sometimes
repeatedly go astray. In passing we may note that the automaton is assuming

a truly stochastic transition rule, when this is not the case in reality.
Finally, consider again the question raised at the end of the last section.

The basic version of the program makes no further use of plans once they
have been fully or partially implemented. However, two variants of this
program have been tested, the first of which (Variant A) uses an old plan
value attached to a reduced state as a source of information when calculating
a makeplan value, and the second of which (Variant B) uses an old plan
vector as if it had been calculated as part of the current lookahead. Both
variants are generalizations of the basic program in that they still reject plan
information of over a fixed age.

Simple experiments with these programs suggest that Variant A is superior
to the basic program in situations where a particularly deep lookahead is
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essential. It is using a rote learning technique analogous to that of Samuel

(1959) to increase effective lookahead depth. Variant B has the effect that

when a planned route has once been followed, it is thereafter always followed
'without further thought' until the plans defining the route become too old.
The automaton then forms fresh plans. Following a route 'without further

thought' implies much more rapid movement, but no chance at all of possibly
beneficial variation.

MINOR LINES OF DEVELOPMENT

It will be clear to the reader upon reflection, if not before, that the program
that I have described is no more than a first attempt at a very large and com-
plex objective. Even without considering any major modification to the
automation design, there are the following directions in which improvements
to it could certainly be made.
(a) The lookahead tree used in forming plans is organized in a very

arbitrary way. There are surely better ways for the automaton to
decide whether or not to continue consideration of some part of the
option graph than for it to use a fixed depth rule. For example, the
work on the Graph Traverser program (Doran and Michie, 1966)
immediately indicates the use of a state evaluation function of some
kind to direct the growth of the tree. This could merely use the
desirability, but more complex mechanisms can easily be imagined.
A complementary approach is to consider the probability that a

given branch will ever be reached. In the extreme case when this
probability is zero, further growth of the lookahead tree from that
branch is entirely wasteful. Some probabilistic generalization of the
'a —13 heuristic' is perhaps required here (Edwards and Hart, 1963;
see also Samuel, 1967).

(b) Once the lookahead tree has been grown there comes the problem of
selecting a plan. The current simple method of selecting actions is
open to the criticism that one 'unlucky' consequence of an action in
a given situation can damn it for ever. This is essentially the 'Two-
Armed Bandit' problem, and the reader is referred elsewhere for a
discussion of its significance (e.g. Jacobs, 1967; Michie, 1966).

(c) The repeated use of plan information has already been discussed
above. There are certainly more possibilities than those which have
been actually tried.

(d) The present method of deleting information from the memory is
very simple. More complex methods could be tried and could be
chosen to use the expected properties of the subjective environment.

These various improvements to the design of the automaton, though of

considerable interest, would not in themselves add up to any major step for-

ward. Nor would this be achieved by a study of the automaton's performance
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in a variety of environments. I propose now to introduce some ideas which
perhaps dig a little deeper.

MAJOR LINES OF DEVELOPMENT

The present automaton can ultimately learn the truth of such statements as

the following (figure 3):

If I am facing the G wall and two steps from it, and if I turn right, then

I shall be facing the F wall and against it, or facing the F wall and one

step from it, or facing the F wall and two steps from it, with (pseudo-)

probabilities P1, P2, P3, respectively.

It cannot, however, learn the truth of either of the two following statements:

(A) If I am facing the G wall and I turn right, then I shall be facing the
F wall.
(B) The action STAND never has any effect.

If the automaton is to learn such facts as this it must be able to generate them
in some representation. (A) might be handled as follows. Consider again the
sort tree shown in figure 5, and find the node corresponding to the reduced
state c3. Both the plan information at that node, and the recorded conse-
quence of the action STEP, can be regarded as statements about c3. We would
like the automaton to record and use broadly similar statements about c,
more generally, about all nodes higher in the tree. A method of achieving this
is to enable the automaton to seek statements which are true for all nodes on
branches out of some node and to associate them with that higher-level node,

(compare the proposed 'lumping' of boxes by the BOXES program (Michie
and Chambers, 1968)). Plan formation would then involve a more complex

lookahead' tree which would be grown using the simplest statements which
would give satisfactory prediction.
This latter step leads us to the realization that the automaton need not

always sample the full state vector—it need only note that part of the vector
needed for its current planning.
To cope with statement (B)

The action STAND never has any effect.

a further mechanism seems necessary. Each node of the sort tree can be

regarded as a test. Suppose that we allow these tests to be not merely a matter
of looking at the next element in the current state vector, but general tests on
both the current state vector and on immediately preceding ones (compare
the EPAM program of Feigenbaum, 1961,). Statement (B) can now perhaps
also be handled for it is saying that the action STAND always leads to a

situation which is (effectively) identical with that preceding it, and we have
now allowed the automaton to test for this. Of course there is now the pro-

blem of how the automaton should decide which tests to apply and in which
order to apply them; but at least the door seems open.
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Objective environment

FOOD

cold

warm

State vector

[<wall), <distance), (last action>,

(hunger), <temperature>, <time)]

Figure 9. An environmental situation requiring major improvements in the design
of the automaton

Consider finally figure 9, which shows a more complex environment and

state vector. The automaton is provided with a 'nest' which is 'warm' but
which it must leave to obtain 'food' which is kept outside in the 'cold'. The

state vector is augmented by elements indicating the degree of hunger and the
temperature, and the explicit perception of desirability is omitted. A new

action, EAT, is provided.

The kind of behaviour we require of the automaton is that it should be

able to find its way to the nest, and that it should only leave the nest when it

is sufficiently hungry to brave the cold, returning to the nest immediately it has

eaten. This 'sensible' behaviour is to be learned from an initial naive state,

perhaps with some simple 'tuition'.

The automaton must take into account two desirability factors, namely

the hunger and the temperature, and must use the remainder of the state

vector to help it control these factors. There is a conflict between these two

factors, and more important hunger is essentially discontinuous even for

optimal automaton behaviour, for it changes sharply with the single action

EAT.

Consider the following sequence of events which might overcome these

difficulties:
(a) Initially the automaton is in the nest, is warm, and is not hungry.

It therefore sleeps.

214



DORAN

(b) The automaton wakes because it becomes hungry. This implies a
basic scan of the state vector while asleep.

(c) The automaton notices that it is hungry (rather than cold) and

recalls its subjective state when it last ate. This state it adopts as a

goal. This is a new ad hoc mechanism which can be regarded as a
first step towards ̀ means end analysis' in the General Problem

Solver program sense, and ultimately towards the complex type of

planning discussed in Miller, Galanter, and Pribam (1960).
(d) The automaton then seeks a plan directed towards achieving its

goal. Both the growth of the lookahead tree and the choice of plan

can be guided by an evaluation function using the features of the
automaton's goal. Note that the feature of the goal state that it
is cold can be used to help guide the search.

(e) Having formed and implemented one or more plans the automaton
will ultimately reach its goal. At this point the 'food' goal is can-
celled, to be replaced at once by a directly analogous ̀ warmth'
goal.

(f) Plans are made and implemented for the new goal. It is ultimately
achieved and the automaton is returned to (a) above.

The automaton would learn to carry out the above operations in the sense
that it would gather for itself the experience needed to form the plans involved.
The goal setting and planning capacity would be inbuilt. 'Tuition' might
prove necessary in the initial stages and could take the form of forcing the
automaton to choose certain actions and thus perceive the consequences of
them.

CONCLUDING REMARKS

In this paper I have described a program which simulates a heuristic auto-
maton in a very primitive but natural environment. The environment is
natural in the sense that its properties are analogous to those of the world

around us, but primitive in the sense that those properties are vastly simplified.
The reasoning behind this program argues that intelligence is very much a

response to our own everyday environment and that to understand its nature
it is desirable, perhaps essential, to study the properties of that environment.
By environment I must emphasize that I mean subjective environment. Thus
we have been primarily concerned with the automaton's world as the auto-
maton sees it, not as we the outsiders see it. Both this stress on the subjective
nature of the automaton's problems, and the fact that I have proposed no

formal representation of the information gathered and processed by the

automaton are open to dispute. What does seem clear, however, is that the
only way to make concrete progress is to write computer programs and to see
how they perform.
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