
PROCEEDINGS
CONFERENCE
1980
VICTORIA, B. C.

14, 15, 16 MAY 1980

3. Goal Subsumption - Goal subsumption gives
rise to dramatic situations when a subsumption
state is terminated. For example, if John is
happily married to Mary, and then Mary leaves
him, all the goals subsumed by their
relationship may now be problematic - John may
become lonely, and miss his social interactions
with Mary, for instance. Closely related to
problems based on goal subsumption are those
caused by the elimination of normal physical
states. For example, becoming very depressed or
losing a bodily function can give rise to the
inability to fulfill recurring goals, and can
therefore generate some interesting problems.

The resolution of goal subsumption
termination involves establishing a new
subsumption state to re-subsume the recurring
goals.

4.0 GOAL RELATIONSHIP POINTS

Goal subsumption termination is a problem
point component because previously subsumed
goals become problematic. Goal conflict and
goal competition endanger the fulfillment of
some of a character's goals, and therefore
generate dramatic impact. On the solution side,
we have goal conflict resolution, goal
abandonment, antiplanning, re-subsuming
subsumption states, and spontaneous conflict and
competition removal.

However the dramatic nature of goal
relationships is not independent of how these
relationships are presented in a text. For
example, consider the following misuse of n
potentially poignant goal relationship:

(7) John lost his job. Then he found another
one.

This is not a particularly dramatic situation.
It contains an instance of goal subsumption
termination (John losing his job) and a solution
to the problem this creates (John getting a new
job). Nevertheless, (7) hardly qualifies as an
interesting story.

The problem with (7) is that it contains
the cause of the problem, the termination of a
subsumption state, but no description of the
problem itself. Contrast (7) with the Xenon
story given at the beginning of this paper.
John also lost his job in that story, but the
situation contains considerably more dramatic
impact. In the Xenon story we are given a
description of John's problem state. He could
no longer afford all the things he had become
used to. Since the problem is spelled out in
this story, its dramatic effect is more fully
realized.

Thus the mere appearance of s problematic
goal relntionship does not guarantee its
poignancy. The problem must appear in a form
that spells out its implications. I call these
forms point prototypes. A point prototype is a
kind of distilintion of the dramatic element of
which the goal relationship is a part. The
Xenon story above will serve to illustrate such
a prototype.

The problem for John in the Xenon story is
caused by a goal subsumption state terminating.
To make this poignant, the story uses the
problem point prototype in Figure 2 to fill out
the circumstances of the problem.

260

Figure 2
Goal Subsumption Termination Prototype

1. Subsumption state

2. Cause of termination event

3. Problem state description

1. Unfilled precondition

2. Problematic goals

3. New goal (optional)

4. Emotional reactions (optional)

That is, to use subsumption state termination as
a problem point, first state the subsumption
state, followed by the cause of termination
event. Then describe the problem state itself
by listing the goals that are no longer
subsumed; the goal of re-establishing a
subsumption state may be stated also, along with
any emotional reactions to the termination.

In the Xenon story, this prototype is
instantiated as is shown in Figure 3.

Figure 3
Instantiated GST Prototype

1. Subsumption state - John has job.

2. Cause of termination event - Boss fires
John.

3. Problem state description

1. Unfilled precondition - John
doesn't hove enough monsy.

2. Problematic goals - Maintaining car
and house.

3. New goal - John wants to resubsume
these goals.

4. Emotional reactions
explicitly stated.

not

This problem is resolved in the story
through a very common solution point called
Fortuitous Circumstances. Spontaneous goal
conflict resolution and external goal
competition removal are also instances of this
solution point component, which is shown in
Figure 4.

Figure 4
Fortuitous Circumstance Solution Prototype

1. Undesired state

2. Fortuitous event

1. Incidental action

2. Fortuitous outcome

New state

3. State consequence description

This solution prototype is instantiated in
the Xenon story as Figure 5 shows.

Figure 5
Instantiated FC Solution Prototype

1. Undesired state - John doesn't have
enough money.

2. Fortuitous event

1. Incidental action - John saves rich
man.

2. Fortuitous outcome - Rich man gives
John money.

3. New state - John is rich.

3. State consequence description - John is
happy and gets lots of possessions.

4.0.1 f7OMP More Solution Point Components

Solution point components and their
associated prototypes have not yet been analyzed
in as much detail as the problem components have
been. However, in addition to the fortuitous
circumstances solution given above, several
other solution point components seem to be
common.

One such solution is called "More Desperate
Measures". In this point, a problem is attacked
by some plan that is normally not considered
because of its high risk. Because of this risk,
More Desperate Measures solutions tend to
generate goal conflicts their user, thus
creating another problem point component for the
story. For example, in the Xenon story, after
John loses his job, he might decide to rob a
bank to get some money. Robbery entails a
number of risks, so the use of this plan would
create a goal conflict for John between his
desire to have money and to preserve his
well-being. This point would then be developed
further in the story.

Overcoming a Limitation is another solution
point seen with some frequency. This case can
occur when a problem is based in part on
character's inability or lack of courage. Here
the character attempts to overcome his personal.
limitation or see the error of his ways in order
to resolve a problematic situation. For
example, a typical fairy tale type plot might
involve a character who is a subject of ridicule
by his piers because he is a coward, and then
overcomes his cowardess in some heroic deed.

5.0 CURRENT STATE OF PAM

As was mentioned previously, the naive
explanation algorithm fails to find proper
explanations for events in stories involving
goal relationships. However, a more
sophisticated version of PAM has been
implemented that possesses knowledge about the
goal relationships described above. PAM can use
this knowledge to infer explanations for events
in many complex goal relationship situations.

The following simple examples illustrate
some of the situations involving goal
relationships that PAM can understand:

261

Goal Subsumption:

Input text:

JOHN AND MARY WERE MARRIED. THEN ONE DAY, JOHN
WAS KILLED IN A CAR ACCIDENT. MARY HAD TO GET
A JOB.

Input:
Output:

WHY DID MARY NEED EMPLOYMENT?
JOHN DIED AND SO SHE NEEDED A SOURCE OF
MONEY.

* ***************** * ****** ***** ******** **********

Pam infers that John's death terminates a
subsumption state for Mary, and that she may
seek to replace it. PAM uses this inference to
infer that the explanation behind Mary's goal of
getting a job.

******** ****** **** ******* * ********

Goal Conflict:

Input texts:

WILMA WANTED TO HAVE AN ABORTION. WILMA WAS
CATHOLIC. WILMA CONVERTED FROM CATHOLICISM TO
EPISCOPALIANISM.

WILMA WANTED TO HAVE AN ABORTION. WILMA WAS
CATHOLIC. WILMA WENT TO A ADOPTION AGENCY.

FRED WANTED TO TAKE HIS GUN HUNTING. FRED
WANTED WILMA TO HAVE A GUN AT HOME. FRED ONLY
HAD ONE GUN. FRED BOUGHT ANOTHER GUN.

**

In the first two stories, PAM detects n
conflict between Wilma's goal of having an
abortion and her inferred goal of not having an
abortion because she is Catholic. In the first
story, PAM infers that Wilma resolved the
conflict by changing the circumstance that gives
rise tg one of her goals, and fulfilled the
other (i. e., she decided to have the abortion).
In the next case, PAM infers that Wilma
abandoned her goal of having an abortion because
it menat less to her than violating her
religious beliefs.

The third story is a goal conflict based on
a resource shortage. Here PAM infers that Fred
bought another gun so he could take one with him
and leave one at home.

**** ***** ***************************************

Goal Competition:

Input text:

JOHN WANTED TO WIN THE STOCKCAR RACE. BILL ALSO
WANTED TO WIN THE STOCKCAR RACE. BEFORE THE
RACE, JOHN CUT BILL'S IGNITION WIRE.

Input: WHY DID JOHN BREAK AN IGNITION WIRE?
Output: BECAUSE HE WAS TRYING TO PREVENT BILL

FROM RACING.

**

This story contains an instance of a goal
competition situation involving anti-plynnin.
PAM explains John's action as part of a plan to
undermine Bill's efforts by undoing
precondition for Bill's plan.

PAM also have been given some knowledge
about poignancy. In particular, PAM knows about
goal subsumption termination problem components,
and fortuitous circumstance solution points.
With this knowledge, pam can now understand the
following version of the Xenon story:

JOHN GRADUATED COLLEGE. JOHN LOOKED FOR A JOB.
THE XENON CORPORATION GAVE JOHN A JOB. JOHN WAS
WELL LIKED BY THE XENON CORPORATION. JOHN WAS
PROMOTED TO AN IMPORTANT POSITION BY THE XENON
CORPORATION.
JOHN GOT INTO AN ARGUMENT WITH JOHN'S BOSS.

JOHN'S BOSS GAVE JOHN'S JOB TO JOHN'S ASSISTANT.
JOHN COULDN'T FIND A JOB. JOHN COULDN'T MAKE A
PAYMENT ON HIS CAR AND HAD TO GIVE UP HIS CAR.
JOHN ALSO COULDN'T MAKE A PAYMENT ON HIS HOUSE,
AND HAD TO SELL HIS HOUSE, AND MOVE TO A SMALL
APARTMENT.
JOHN SAW A HIT AND RUN ACCIDENT. THE MAN WAS

HURT. JOHN DIALED 911 THE MAN'S LIFE WAS SAVED.
THE MAN WAS EXTREMELY WEALTHY, AND REWARDED JOHN
WITH A MILLION DOLLARS. JOHN WAS OVERJOYED.
JOHN BOUGHT A HUGE MANSION AND AN EXPENSIVE CAR,
AND LIVED HAPPLY EVER AFTER.

**

In addition to the many inference that are made
to understand this story, PAM also recognizes
that John's losing his joh is an instance of a
Goal Subsumption Termination problem, and that
the hit and run victim rewarding John is an
instance of a Fortuitous Circumstance solution
to this problem. This representation could then
be used by a summarization program to produce a
summary that included only the events of John
losing his job, the problems this caused, John's
saving the rich man, and the rich men rewarding
him (A summarization component that actually
performs this taks in nresently under
construction. Although it has not yet been
completed, it does not appear to be problematic,
since all the information it needs is present in
the structures PAM already produces).

6.0 SUMMARY

Stories constitute a subset of coherent
natural language texts. For texts to be
stories, they must be poignant in addition to
being coherent. This point structure of a story
serves to organize the representation of a story
in memory so that more important episodes are
more likely to be remembered than trivial
events. Points also serve to generate
expectntions about what will happen next in a
story, since a story reader is looking for the
point of a story as the text is being read.

An important class of story points deals
with human dramatic situations, and these most
often contain a set of interacting goals that
create difficulties for a character. A taxonomy
of these goal relationships and the situations
they give rise to is useful for detecting a
point of a story, as well as fo- establishing
its coherence as a text. When a goal
relationship situation occurs as a problem point
component, it will occur as part of a point
prototype. These prototypes specify those
aspects of the situations that should be
mentioned in order to produce a dramatic effect.

The notion of a story point competes with
the idea of story grammars as a way to
characterize story texts. The story grammar
approach attempts to define a story as a text
having a certain form, while the story point
idea defines a story as a text having a certain
content. The form of a story is viewed here as
being a function of the content of the story,
ne a reasonably independent object.
Prolor:11nding atories t then, is not so much
qt1,!ItiON of understnndIng the structure of a
text, but of understanding the point of what the
text la about.

References

Black, J. B. and Wilensky, R. (1979). An
evaluation of story grammars. Cognitive
Science, vol. 3, no. 3.

21 Charniak, E. (1972). Towards a model of
children's story comprehension. Al
TR-266, MIT.

3] Cullingford, R. E. (1970). Script
Application: Computer Understanding of
newspaper stories. Yale University
Research Report #116.

41 DeJong, G. F. (1979). Skimming stories in
real time: An experiment in integrated
understanding. Yale University Research
Report #158.

51 Kintsch, W., and Van Dijk, T. A. Recalling
and summarizing stories. Language, 40,
98-116.

61 Mandler, J. M. and Johnson, N. S.
Remembrance of things parsed: Story
structure and recall. Cognitive
Psychology, 9, 111-151.

Co71

gnitive
Psychology,

M. (1974). A framework for
representing knowledge. MIT. AT Memo No.
306.

ol Rumelhart, D. E. (1975). Notes on a ruhema
for storjes. Tn D.C. Bobrow and A.
Collins (eds.) Representation and
Understanding: otuCies in COghrrTve
cience. Academic Press-T-Iew foFk.

91 Rumelhart, D. E. (1976). Understanding and
Summarizing brief stories. Center for
Human Information Processing Technical
Report No. 58. University of California,
San Diego.

101 Schank, R. C. and Abelson, R. P. (1977).
Scripts, Plans, Goals, and
understanding. Lawrence Eribaum Press,
hiiisdaie, N.J.

11 1 Schank, R. C. and Wilensky. R. (197e). A
Goal Directed Production System for
Story Understanding. In D. A. Waterman
and F. Hayes-Roth (Eds.),
Pattern-directed Inference Systems.
Academic Fress, NFtif—Tork.

121 Schank, R. C. and Yale A. I. Project
(1975). SAM -- A story understander.
Yale University Research Report

131 S- tein, N. L. and Glenn, C. C. (1077). An
analysis of story comprehension in
elementary seholl children. In R.
Freedle (Ed.) Multidisciplinau
perspectively in discoUFse ----
ftmpPetension.—tayrenceltrlhaum
Associates, Hilldale, New Jersey.

141 Thorndyke, P. (1977). Cognitive Structur,s
in Comprehension and Memory of Narrative
Discourse. Cognitive Psychololy,
9:88-110.

151 W- ilensky, P. (1978a). Why John married
Mary: Understandind Stories Involvirg
Recurring Goals. Cognitive Science, vol.

161 W- ilensky, R. (1978b). Understanding
goal-based stories. Yale University
Research Report #140.

Speech Acts and the Recognition of Shared Plans

Philip R. Cohen
Center for the Study of Reading
University of Illinois 6,
Bolt Beranek and Newman, Inc.
Cambridge, MA

Introduction

The purpose of this paper is to simplify
Perrault, Allen, and Cohen's [1,2,9,10,19,20]
plan-based theory of speech acts by revealing an
important redundancy -- illocutionary acts. We
show that illocutionary act definitions can be
derived from more basic statements describing the
recognition of shared plans -- plans based on the
shared beliefs of the planner and some intended
recognizer. Eliminating the redundancy is
Important for competence models of speech acts
[10,19], but maintaining and exploiting it may be
useful for computational and linguistic models
[1,11,32] especially for those dealing with the
"short-circuiting" of certain implicatures
[4,18,32]. Our primary interest here is in
competence models.

A plan-based theory of speech acts specifies
that plan recognition is the basis for inferring
the illocutionary force(s) of an utterance. The
goal of such a theory is to construct a plan
generation and recognition formalism that treats
communicative and non-communicative acts
uniformly. Such a theory should therefore state
the communicative nature of an illocutionary act
as part of that act's definition. A reasoning
system would then not have to employ special
knowledge about communicative acts; it would
simply attempt to achieve its goals.

Communication and the recognition of shared plans

Communication is intimately tied to
plan-recognition. Grice [14] showed that
"simple" recognition of intention(1) as might be
performed by an unseen observer (cf. [24,31]) is
insufficient as a basis for defining
communicative acts. Instead he argued that
speakers must plan for hearers to recognize their
plans, and hearers must recognize the plans they
were intended to recognize. Unifying Grice's
analysis with Austin's [3], Searle [27,28]
proposed that a speaker who is performing a
speech act, such as a request, must intend to
produce the effect of that action (to get the
hearer to want to perform the requested act) by
means of getting the hearer to recognize the
speaker's intention to produce it. It was on
this basis that Perrault and Allen [1] developed
a scheme for recognizing indirect speech acts.

This research was supported primarily by the
Advanced Research Projects Agency of the
Department of Defense, monitored by the Office of
Naval Research under Contract N00014-77-C-0378,
and also, in part, by the National Research
Council of Canada.

(1) For this paper, "intention" and "plan" should
be considered synonymous

Hector J. Levesque
Dept. of Computer Science
University of Toronto
Toronto, Ontario

However, Schiffer [26] has argued that, to
avoid counterexamples based on deception, the
Gricean program (and its amendments [30,27])
produce an infinite regress of intending that one
recognize an intention. To avoid this
difficulty, he claims that the recognition of
intention must be mutually believed. In other
words, in order to communicate, speakers must
make their plans shared or public knowledge.

In view of this problem, Perrault and Allen
have suggested that their model be reformulated
in terms of mutual beliefs. Since we are
proposing such revisions, we shall discuss the
essentials of their scheme.

Allen and Perrault's Model

Building on prior attempts to link speech

acts to plans [5,6,7,9,10,24], Allen and Perrault
proposed two levels of speech act operators:
surface and illocutionary. Illocutionary
operators, e.g., REQUEST, are defined by stating
propositions as preconditions, bodies, and
effects with the understanding that:

263

a) preconditions are necessary for the
successful "execution" of the act (or
procedure) described by the operator;

b) effects are conditions that become true
after the execution, and

c) the body is "a set of partially ordered
goal states that must be achieved in the
course of executing the procedure." [19,
p.23].

Searle's recognition of intention" condition on
speech acts is incorporated by defining an
illocutionary operator's body to be "hearer
believes speaker wants E" (abbreviated HBSW(E)),
where E is the operator's effect. So, given the
above understanding of operators, the
illocutionary acts' operator's body needs to be
achieved in the course of executing the operator.

The standard ways of achieving them are by
surface operators.

The classification of an utterance as a
surface operator depends on the utterance's mood
-- declaratives become S-INFORMs, imperatives
become S-REQUESTs, and questions become
S-REQUESTs to INFORM. Surface operators are
considered to be primitive -- they represent what
agents actually perform -- and consequently have
no bodies. Their effects are defined to match
the corresponding illocutionary operators' bodies
-- i.e., HBSW(E). Thus, the standard way of
achieving the body of a REQUEST is via an
S-REQUEST. However, different combinations of
surface act and propositional content can
ultimately yield the same effect.

Mediating between the effects of surface
operators and the bodies of the illocutionary
ones is a set of plan-recognition inferences.
Generally speaking, the inferences take the form:
"the agent wanted P to be true because that would
enable him to do A (precondition/action
inference), which would result in E
(Action/effect), which is a means of achieving B
(body/action). The agent is then regarded as
having wanted [to do] A, E, and [to do] B.

The inference process begins by observing an
act and then assuming it was intentional -- the
agent wanted to do it. The application of the
action/effect inference speech act operator thus
results in a proposition of the form:
HBSW(HBSW(E)). Perrault and Allen supply rules
for inferring new propositions E' such that
HBSW(HBSW(E')). Each such E', inferred by these
intended plan recognition rules, is regarded as
having been communicated, in the Gricean sense.

Illocutionary act identification occurs when
the body/action inference applies to the embedded
HBSW(E) proposition, yielding, for instance,
HBSW(REQUEST(S,H,B)). If the body/action
inference occurs immediately after the expansion
of a surface act, then a literal interpretation
has been found. If there are intervening
inferences, an indirect interpretation has been
inferred.

Their uncovering of the inferences needed to
arrive at indirect interpretations is the key
accomplishment. But once those inferences are
known, formal (and perhaps computational) models
need not recognize illocutionary operators in
order to communicatively infer their effects.
Since, for their model, illocutionary force is
being discovered by a hearer motivated to
recognize the speaker's plan in order to
facilitate it, the effects are all that is
needed. We suggest, then, that the body/action
inference collapses two distinct kinds of
inference processing -- means/end reasoning and
summarizing. The latter has not been shown to be
essential to helpful plan recognition.

To demonstrate this point, Perrault and
Allen's model will be elaborated upon in two
ways:

I) To relate an illocutionary operator's
body and effect, a plan will be stated
that produces the effect once the body is
achieved.

2) To capture the communicative nature of
illocutionary acts more accurately, the
steps of those plans should be mutually
believed.

Surface speech act operators will be redefined to
produce mutual beliefs about the speaker's goals,
much as Perrault and Allen suggested (cf. Clark
and Marshall's [8] analysis discussion of
situations producing mutual beliefs). Once these
steps are taken, the body/action inference will
be unnecessary and illocutionary operators will
reduce to redundant theorems.

264

The Formalism

This section formalizes actions and plans,
in conjunction with a planner's beliefs and
desires. The style of formalization owes much to
the literature on axiomatic specification of
programming languages, and to Moore(17J. We do
not intend to give the impression that a complete
language with proof and model theories is lurking
somewhere offstage. Although we will describe
the formalism in terms of axioms, rules of
inference and possible world states, it should be
understood that these are intended to be more
suggestive than definitive and that the formalism
itself remains a topic of on-going research.

The formalism is a language with expressions
of various types formed from primitive elements
through rules of composition. Among the types of
expressions we will discuss here are logical
expressions (or wffs), action terms and terms
denoting agents. For the remainder of this
section, we will use "p", "q" and "r" as
meta-variables ranging over wffs, "a" and "b"
ranging over action terms and "x" and "y" ranging
over agent terms. In addition, we will use
as a predicate over wffs holding when the wff is
a theorem.

By an action, we mean something an agent can
do to change the state of the world. For
example, the action term

(GIVE x o)

denotes the giving of the object denoted by "o"
to the person denoted by "x". Notice that the
action term does not mention the agent involved.
This allows actions to be combined into more
complex ones without having to fuss over the
resulting agent. Examples of complex acts are

(IF p a b) a conditional action
(SEQ al ... ak) a sequence of

actions
(WHILE p a) an iterated action

Among the actions required for communication, we
assume

(S-INFORM x p) saying to x that p
is true

(S-REQUEST x p) asking x to make p
be true

Among the wffs, we assume the usual
connectives

(IMPLY p q) (NOT p)
(AND pl pk) p - q
(FORALL v p)

In addition, there are wffs pertaining to
communication

(ATTEND x y) true iff x is
attending to y

(BEL x p) true iff p follows from
what x believes [15,16]

(WANT x p) true iff p follows from

what x wants

Note that just because a BEL or WANT is true does
not mean that the agent involved actively
believes or wants the proposition in question.
All that can be said is that in every world state
that is consistent with what the agent believes,
the second argument to BEL will be true. One
particular kind of wff peculiar to actions is

(RESULT x a p)

which is true iff "p" is true in the world state
resulting from the execution of "a" by "x" (or
"a" does not terminate).

The behaviour of the expressions is governed
by the axioms and rules of inference of the
formalism. For example, action terns are
specified using RESULT as in

I- (IMPLY (OWN x o) (RESULT x
(GIVE y o)

(OWN y 0)))

The composite actions can be treated much like
the axiomatic specification of programming
language constructs. The IF rule, for example is

I- (IMPLY (AND (KNOWIF x p)
(IMPLY p (RESULT x a q))

(IMPLY (NOT p)
(RESULT x b q)))

(RESULT x (IF p a b) q))

where

I- (KNOWIF x p) (OR (KNOW x p)
(KNOW x

(NOT p)))

and

I- (KNOW x p) (AND p (BEL x p))

Similarly, the rule of consequence becomes

If 1- p then I- (RESULT x a p)

Note that this must be a rule of inference in
that the corresponding axiom (as an implication)
cannot be a theorem. A related notion to this
rule is the wff

(CAUSE x p q)

governed by the axiom

1- (CAUSE x p q) (FORALL a/ACTION
(IMPLY (RESULT x a p)

(RESULT x a q)))

so that a CAUSE is true iff anything that "x"
does to bring about "p" also results in "q" being
true. In other words, making "p" true makes "q"
true.

Of crucial importance to the definition of
speech acts, is the concept of mutual belief (or
MB) governed by

and

If I- p then I- (MB x y p)

I- (MB x y p) .• (BEL x (AND p

(MB y x p)))

The axiom states that mutual belief is equivalent
to an infinite conjunction of beliefs in that,
allowing that

265

I- (BEL x (AND p q)) (AND (BEL x p)
(BEL x q))

then the following are implied by a mutual
belief:

(BEL x p)
(BEL x (BEL y p))
(BEL x (BEL y (BEL x p))) ...(1)

Given the notion of mutual belief, we can now
state the two rules governing two primitive
communication acts, S-INFORM and S-REQUEST:

I- (IMPLY (MB x y (ATTEND y x))
(RESULT x (S -INFORM y p)

(MB y x (WANT x (BEL y
(BEL x p)

I- (IMPLY (MB x y (ATTEND y x))
(RESULT x (S -REQUEST y p)

(MB y x (WANT x (BEL y
(WANT x p)

When discussing the behaviour
goal-directed agents, a useful concept is that
an agent being able to bring about some state
affairs that he wants:

I- (CAN x p) (EXISTS a/ACTION
(KNOW x

(RESULT x a p)))

of
of
of

Note that this is an example of "quantifying in"
in that it is not sufficient for "x" simply to
know the existence of an action that results in
"p", he must also know what action it is. On the
other hand,

(BEL y s(CAN x p))

could be true without "y" knowing how "x" will
achieve "p" since, in this case, the quantifier
is within the belief context. Given this
characterization, we now turn our attention to
plans, which, loosely speaking, are simply proofs
that, given some set of beliefs, an agent is able
to achieve some goal. More formally, the
definition is

(1) Schiffer's [26] definition of mutual belief
also includes an infinite conjunction starting
from (BEL y p). Since we shall only be concerned
about one person's point of view, we only deal
with beliefs about mutual beliefs, which reduce
to the above.

ne

wffs

A plan for agent "x" to achieve some goal
is an action term "a" and two sequences of
"p0", "p1", "pk" and "q0", "ql",
where "qk" is "q" and satisfying

1. I- (BEL x (IMPLY p0
(RESULT x a q0)))

2. I- (BEL x (IMPLY pi
(CAUSE x qi-1 qi)))

im1,2,...k

In other words, given a state where "x" believes
the "pi", he will believe that if he does "a"
then "q0" will hold and moreover, that anything
he does to make "0-1" true will also make "qi"
true. Consequently, a plan is a special kind of
proof that

I- (BEL x (IMPLY (AND p0 pk)
RESULT x a q)))

and therefore, assuming that

I- (IMPLY (BEL x p) (BEL x
(BEL x P)))

and

I- (IMPLY (BEL x (IMPLY p q))
(IMPLY (BEL x p)

(BEL x q)))

a plan is a proof that

I- (IMPLY (BEL x (AND p0 pk))
(BEL z (CAN x q)))

Notice that the assumptions "pi" may be
simplified in a plan in that if we have that

I- (BEL x (IMPLY p (RESULT x b
(AND p0 pl pk))))

then we have a reduced plan for "x" to achieve
"q" since

I- (BEL x (IMPLY p (RESULT x
(SEQ b a) q)))

This process can, of course, be iterated on the
new assumptions. (Since action "b" achieves all
the prerequisites, the "non-linearity" problem
(21) remains.)

Among the corollaries to a plan are

I- (BEL x (IMPLY (AND p0 ... pi)
(RESULT x a qi)))

and

I- (BEL x (IMPLY (AND pi ... pj)
(CAUSE x qi-1 qj)))

il,...k

There are two main points to be made about these
corollaries. First of all, since they are
theorems, the implications can be taken to be
believed by the agent "x" in every state. In

266

this sense, these wffs express general methods
believed to achieve certain effects provided the
assumptions are satisfied. The second point is
that these corollaries are in precisely the form
that is required in a plan and therefore can be
used as justification for a step in a future plan
in much the same way a lemma becomes a single
step in the proof of a theorem.

We therefore propose a notation for
describing many steps of a plan as a single
summarizing operator (akin to MACROPs in STRIPS
[ll)). An operator consists of a name, a list of
free variables, a distinguished free variable
called the agent of the operator, an effect which
is a wff, a optional body which is either an
action or a wff and finally, an optional
prerequisite which is a wff. The understanding
here is that operators are associated with agents
and for an agent "x" to have an operator "u",
then there are three cases depending on the body
of "u":

1. If the body of "u" is a wff, then

(BEL x (IMPLY prerequisite
(CAUSE agent body effect)))

2. If the body of "u" is an action
term, then

(BEL x (IMPLY prerequisite
(RESULT agent body effect)))

3. If "u" has no body, then it is
simply an action and

(BEL x (IMPLY prerequisite
(RESULT agent u effect)))

An example of this last kind of operator is the
action GIVE, described above, which becomes the
operator

(GIVE y col agent: x
effect: (HAVE y 0)
prereq: (HAVE x 0)

One thing worth noting about operators is that
normally the wffs used above

(-(EEL x (IMPLY prerequisite ...))

will follow from the more general wff

(-(IMPLY prerequisite ...)

as in the case of the GIVE example. However,
this need not be the case and different agents
could have different operators (even with the
same name). Saying that an agent has an operator
is no more than a convenient way of saying that
the agent always believes an implication of a
certain kind.

Before considering some examples of
operators and their use in plans, we introduce
the notation for describing plans.

qk goal

qk -1

1
u0 p0

uk pk

where the "pi" and the "qi" are as before and the
"ui" are the operators justifying the transition
given "pi" from "qi-1" to "qi". In the simplest
case, "pi" will be the prerequisite of "ui", with

"qi-l" and "qi" the body and effect respectively.
More generally, we need only require that

1- (BEL
1- (BEL
I- (BEL

x (IMPLY pi prerequisite))
x (IMPLY qi-1 body))
x (IMPLY effect qi))

to satisfy the definition of a plan.

Operator Definitions

Given the above understanding of operator
definitions, we present those operator schemas
needed for our derivation of REQUEST. The first
argument in the parameter list for a schema will
be the agent.

[CAUSE-TO-WANT x y p]

effect: (WANT y p)
body: (BEL y (WANT x p))
prereq: (AND -(WANT y -p)

(HELPFUL y x))

Provided y doesn't want NOT(p), and y thinks she
is feeling helpfully disposed towards x, then
getting y to believe that x wants p will get y to
want p. Though this may be one way to influence
someone's goals, more generally, one would like
to state "y is given a reason for wanting p".

The SHARED-RECOG operator describes shared
recognition of the agent's goals:

1SHARED-RECOG x y p q]

effect: (MB y x (WANT x q))
body: (MB y x (WANT x p))

prereq: (MB y x (CAUSE x p q))

Of course, not every action produces mutual
beliefs about someone's goals. Usually, the two
parties must be mutually aware of the other's
presence. However, once it is shared knowledge
that x wants p, if its mutually believed that
anything x does to make p true makes q true, then
it will be mutually believed that x wants q.
Clearly, we are exploiting the "follows from what
the agent wants" interpretation of WANT here --
an agent wants all the inevitable results of his
wants. Since this interpretation is currently
forced on us by our formal tools, and since we

267

want to formalize shared plans, we WANT this
interpretation.

The next operator provides for private
recognition of the agent's goals. It is similar

to Perrault and Allen's [19] Plan-Deduce

operator.

[PRIVATE -RECOG x y p q]

effect: (BEL y (WANT x q))

body: (BEL y (WANT x p))
prereq: (BEL y (BEL x (CAUSE x p q)))

PRIVATE-RECOG should appear in plans when
SHARED-RECOG is inappropriate, fur instance when
the conditions implying CAUSE statements are not

mutually believed. Lack of shared knowledge can
arise because of third parties (e.g., someone
tells you what I want), becauae of the modality
of communication (e.g., telephone conversations),
or because one of the parties is an unseen

observer.
The operator ACHIEVE models getting someone

else to make p true.

(ACHIEVE x y p]

effect: p
body: (WANT y p)
prereq: (CAN y p)

All that is required is that y know of some
action resulting in p (x does not have to know

which action that is). Then, simply by getting y

to WANT p will CAUSE p to hold. Of course this
idealization ignores the possibility of y's being

unable or unwilling to actually perform the

action. Future versions of CAN, using Moore's
[17) RES modal operator, may ensure that y can

also perform the action.
To allow for another way of influencing

someone's goals, we define:

[FORCE-TO-WANT x y p]

effect: (WANT y p)
body: (BEL y (WANT x p))
prereq: (BEL y (HAS-AUTHORITY-OVER x y))

The semantics of HAS-AUTHORITY-OVER
(interpreted as x has authority over y) could be
stated by filling out an organizational chart, or
determining the status relationships between the
parties.

Finally, the last operator we shall need is
S-REQUEST, as defined earlier, to produce mutual
beliefs about the speaker's goals. The

prerequisite is that it be mutually believed
between x and y that y is attending to x. (Note
the order of x and y x must actually believe y
is attending.) A crucial but as yet unanalyzed
condition on classifying an utterance as an

S-REQUEST to some particular hearer H is that it
be mutually believed between the speaker, S, and

H, that H is the intended addressee. This

condition is not always satisfied, since some
computer systems are conceptualized as
"overhearing" (e.g., Genesereth's [13) ADVISOR).

A Plan

The following is x's plan to achieve E:

[ACHIEVE y E] --0--(CAN y E)

(WANT y E)

[CAUSE-TO-WANT --0--(AND
y E J (WANT Y -E)

(HELPFUL y x))
(BEL x (WANT y E))

(MB y x (WANT x E))

[SHARED -RECOG - - -0 - -(MB y x (CAN y E))
x y (WANT y E)

El
(MB y x (WANT x (WANT y E)))

[SHARED -RECOG - --0 - -(MB y x
x y (BEL y 1 (AND

(WANT x E)) 1 -(WANT y -E)
(WANT y E)] (HELPFUL y x)))

(MB y x (WANT x (BEL y
(WANT x E))))

[S -REQUEST y E] ---0--(MB x y
(ATTEND y x))

Given the individual operators and the
interpretation of operators as theorems, the plan
itself should be relatively self-explanatory.
The prerequisites of the SHARED-RECOG operators
shown imply those necessary for each individual
step. For instance, since all theorems are
mutually believed:

I-(BEL x (MB x y [IMPLY (CAN y E)
(CAUSE x (WANT y E)

El,

therefore

I- (BEL x (IMPLY [MB y x (CAN y E)]
[MB y x (CAUSE x

(WANT y E) F)]))

the precondition of

(MB y x (CAN y E)) is shown. We have made one
such implication explicit in the diagram -- the
one marking the transition from shared to private
beliefs.

Summarizing the plan

Various portions of the plan can now be
summarized. First of all, consider the summary
operator REQUEST:

[REQUEST x y E]

268

effect: (MB y x (WANT x E))
body: (MB y x (WANT x (BEL y

(WANT x E))))
prereq: (AND (MB y x (CAN y E)

(Ms y x -(WANT y -E))
(MB y x (HELPFUL y x))

If the prerequisite holds, any action making the
body true achieves the effect. The propositions
in the plan not summarized by this operator are
achieved by virtue of y's private beliefs. The
decision to include illocutionary or
perlocutionary effects as part of some operator
cannot be made solely on formal grounds. Also,
notice that the third argument in the REQUEST
schema is a proposition and not an action. While
it would be desirable to derive a REQUEST to use
an action, the formalism forbids its use since
WANT takes a proposition as its argument.

We can also define other operators from this
same plan. For instance,

[COMPLY y x E]

effect: E
body: (MB y x (WANT x E))
prereq: (AND -(WANT y -E)

(HELPFUL y x))
(CAN y E))

Clearly, we could have made the effect (WANT y
E). COMPLY subsumes the remainder of the above
plan, and progresses from shared beliefs to
private ones (which cause y to achieve F).
However, it is unclear which proposition should
be chosen as the body. Should the body be a
mutual belief (therefore involving a previous
communication act) or need it only be a private
belief! Finally, if E is a KNOWIF or KNOWREF
proposition [1,2,10,19], then a more specific
operator, ANSWER, can be defined.

Multiple summaries can occur because of some
indirect uses of surface speech acts -- as in
with an S-INFORM of x's WANT that leads to the
same effect as an S-REQUEST [1,2,10,19]. Not
only could the early part of the plan be
summarized as an INFORM, and the later stages as
a REQUEST, but a perhaps computationally useful
operator would be one subsuming both the INFORM
and REQUEST; call it a WANT-REQUEST. This
formalizes the technique used in Woods et al's
[32) system to "short-circuit" various chains of
reasoning involving indirect speech acts.

Substituting FORCE-TO-WANT for CAUSE-TO-WANT
into the above plan allows us to create a summary
termed COMMAND as follows:

[COMMAND x y El

effect: (MB y
body: (MB y
prereq: (MB y

COMMAND diff
insensitive
non-helpful)
desires.

x (WANT x E))
x (WANT x (BEL y (WANT x E)]
x (BEL y

(HAS-AUTHORITY-OVER x y1
ers from REQUEST in its being
to the hearer's helpful (or
disposition and to her prior

Finally, we can create a plan in which the
effect takes hold in a non-communicative manner:

1
[ACHIEVE y E] -0--(CAN y E)

1
(WANT y E)

1
1

[CAUSE-TO-WANT 0---(AND

1 -(WANT y -E)
x y (BEL y 1 (HELPFUL y x))

(WANT x E))
(WANT y E)1

1

1
(BEL y (WANT x E))

1
IFRIV-RECOG ---0--(BEL y (BEL x (CAN y E)))
x y (WANT y E)1

El 1
1

(BEL y (WANT x (WANT y E)))

1
[PRIV-RECOG y (BEL x (AND
x y (BEL y 1 -(WANT y -E)))

(WANT x E) (HELPFUL y x))))
(WANT y E)]

1
(BEL y (WANT x (BEL y (WANT x E))))

et

(M1 y x (WANT x (BEL y

1 (WANT x E))))
IS-REQUEST x y (ATTEND y x))
y El

Again, the implication marks the shift from
mutual beliefs to private ones. By Schiffer's
[261 definition, any effect obtained on the basis
of private beliefs was not communicated. Thus,
on philosophical grounds, one would not classify
a summary of this plan as describing an
illocutionary act.

Possible Uses of Illocutionary Operators

The formalism indicates that certain
illocutionary operators are redundant--they can
be derived from other independently motivated
operators. However, the redundancy is only
relevant to achieving the illocutionary
operator's effects. For the reasons stated
below, the redundancy may be useful.

Illocutionary operators might be used to
represent the meaning of illocutionary verbs.
Consider verbs that report on social interaction.
Corresponding operators can be defined to span
multiple agents' achievements (e.g., COMPLY and
ANSWER). Summary operators can perhaps be used
for verbs requiring "uptake" [3]. Thus, a plan
summarizable as a bet could contain portions
summarizable as offerings and acceptances. The
major questions for this approach would be when
and to what end would those summaries expanded in
the course of processing an utterance. Obviously

269

the linguistic questions related to performatives
are also relevant but as yet remain unanswered.

From a computational perspective, summary
operators are useful in limiting a planner's
search, as demonstrated by the use of MACROPs in
STRIPS [12]. Summary operators allow for
"short-circuiting" the interpretation of certain
indirect speech acts ([18,2,4,31,32]). Further
reduction in search could follow ABSTRIPS [22] in
assigning priorities to the summary operator's
prerequisites. Speech act plans could first be
sought using high priority preconditions and
later pruned by lower ones. Given suitable
priority and threshold schemes, indirect
achievement of a communicative goal may be as
efficient as direct achievement.

Finally, the issues of dynamically acquiring
summary operators, as in STRIPS, become relevant.
Though a system may summarize a shared plan,
there may be no corresponding illocutionary verb
in its lexicon to describe that plan. This
problem then presents an interesting challenge to
a model of language use -- how could a system
plan communicative acts to establish a jointly
agreed upon vocabulary?

In summary, our model proposes a foundation
for defining a class of illocutionary verbs.
However, as the next section shows, there are
formal and descriptive limitations to be
overcome. Furthermore, other tests need to be
applied to support the model.

Limitations

Our scheme has only been applied to a narrow
range of phenomena. First of all, we have only
shown the redundancy for two illocutionary verbs
("requests" and "command") though a similar
analysis has been done on "inform." Since these
verbs are prototypical of Searle's [29]
"directive" and "representative" classes, our
hope is that this style of formalism can be
extended to other members of those classes. Such
an analysis is currently limited by our
understanding of concepts such as benefit (for
suggestions) and danger (for warnings).

We have not yet attempted to handle the
class of indirect speech acts addressed by
Perrault and Allen. Our efforts are currently
hampered by the KNOWIF(P) P(or -P)
recognition inference stating that if you believe
an agent wants to know whether or not P is true,
then it is plausible to believe that agent wants
P (or, wants -P). The inference arises because a
planner must determine whether or not an action's
preconditions hold. In order to formalize the
inference, an axiomatization of the behavior of a
planner or a plan-recognizer is needed. Such a
formalism would also have to capture stopping
conditions for shared and private
plan-recognition (1,2,13,25,32], and perhaps
rating schemes for choosing the best plan
[1,2,321.

Regarding the formalism, a major difficulty
is the lack of an adequate axiomatization and
semantics for BEL and WANT. For instance, the
distinction between actively desiring, and
"putting up with" (as the lesser of two evils)

needs to be drawn formally. BEL, given
Hintikka's [15,16] treatment is the better
understood concept.

A bothersome quirk of the formalism is that
actions cannot appear as objects of want, and
hence do not appear in the REQUEST summary
operator. We are therefore searching for a
propositional way to state that an action was
done.

Conclusions

The primary reason for pursuing this
formalism is that is allows one to express
naturally the communicative nature of
illocutionary operators in terms of shared plans.
It leads us to conclude that summarizing an
utterance as the performance of an illocutionary
,act is not necessary to helpfully motivated plan
recognition. The illocutionary operators that we
have studied are redundant for achieving their
effects, since the shared plans provide all the
power, and their components are independently
motivated. However, though we have suggested
such operators are unnecessary, we cannot
formally prove the point without further
research, especially on the logic of WANT. The
formalism has led to a foundation for
"short-circuiting" certain implicatures, as
recommended by Morgan[18], Perrault and
Allen[19], and as attempted in Woods et al's
[32] natural language system. Finally, it
reveals the arbitrary nature of operator
definition. Some choices can be decided using
the adequacy test of third-party speech acts
proposed by Cohen and Perrault [10]. Other
decisions must await empirical evidence.

References

1. Allen, J. A plan-based approach to speech act
recognition (Doctoral dissertation, University
of Toronto, 1979). Technical Report No.
131/79, Dept. of Computer Science, University
of Toronto, January, 1979.

2. Allen, J.F., & Perrault, C.R. Analyzing
intention in dialogue, forthcoming.

3. Austin, J.L. How to do things with words.
J.O. Urmson (Ed.), Oxford University Press,
1962.

4. Brawn, G.P. Indirect Speech Acts in
Task-Oriented Dialogue: A Computational
Approach, unpublished ms, MIT, 1979.

5. Bruce, B. Belief systems and language
understanding (BBN Report No. 2973). January,
1975(a).

6. Bruce, B., Generation as a Social Action,
Proceedings of the Conference on Theoretical
Issues in Natural Language Processing,
Cambridge, MA, 1975(b)

7. Bruce, B., & Schmidt, C.F. Episode
understanding and belief guided parsing.
Presented at the Association for Computational
Linguistics Meeting at Amherst, Massachusetts
(July 26-27, 1974).

8. Clark, H.H.. & Marshall, C. Definite reference
and mutual Knowledge. In A.K. Joshi, I.A.
Sag, & B.L. Webber (Eds.), Proceedings of the

270

Workshop on Computational Aspects of
Linguistic Structure and Discourse Setting.
New York: Cambridge University Press, in
precis.

9. Cohen, P.P. On knowing what to say: Planning
speech acts (Doctoral dissertation, University
of Toronto, 1978). Technical Report No. 118,
Department of Computer Science, University of
Toronto, January 1978.

10. Cohen, P.R. and Perrault, C.R., Elements of a
plan based theory of speech acts, Cognitive
Science, 1979, 3, 177-212.

11. Fikes, R., & Nilsson, N.J. STRIPS: A new
approach to the application of theorem
proving to problem solving. Artificial
Intelligence, 1971, 2, 189-208.

12. Fikes, R., Hart, P., & Nilsson, N.J.
Learning and executing generalized robot
plans, Artificial Intelligence, 1972, 3,
251-288.

13. Genesereth, M.R., Automated consultation for
complex computer systems, (Doctoral
dissertation), Dept. of Computer Science,
Division of Applied Sciences, Harvard
University, September, 1978.

14. Hintikka, J. Knowledge and belief. Ithaca:
Cornell University Press, 1962.

15. Hintikka, J. Semantics for propositional
attitudes. In J.W. Davis et al. (Eds.).
Philosophical Logic. Dordrecht-Holland: D.
Reidel Publishing Co., 1969.

16. Grice, H.P. Meaning. The Philosophical
Review, 1957, 66, 377-388.

17. Moore, R.C. Reasoning about knowledge and
action (Doctoral dissertation, Massachusetts
Institute of Technology, 1979). Artificial
Intelligence Laboratory, Department of
Electrical Engineering and Computer Science,
Massachusetts Institute of Technology,
February, 1979.

18. Morgan, J.L. Two types of convention in
indirect speech acts. In P. Cole (ed.).
Syntax and Semantics, Volume 9: Pragmatics,
New York: Academic Press, 1978.

19. Perrault, C.A., & Allen, J.F. A plan-based
analysis of indirect speech acts.

20. Perrault, C. R., Allen, J. F., & Cohen, P.
R., Speech acts as a basis for understanding
dialogue coherence, in Proceedings of the
second conference on theoretical issues in
natural language processing,
Champaign-Urbana, Illinois, 1978.

21. Perrault, C.R., & Cohen, P.R. Inaccurate
Reference, In A.K. Josh', I.A. Sag, & B.L.
Webber (Eds). Proceedings of the Workshop on
Computational Aspects of Linguistic Structure
and Discourse Setting. New York: Cambridge
University Press, in press.

21. Sacerdoti, E.D. A structure for plans and
behavior (Doctoral dissertation, 1975).
Technical Note 109, Artificial Intelligence
Center, Stanford Research Institute, Menlo
Park, California, August 1975.

22. Sacerdoti, E.D. Planning in a Hierarchy of
Abstraction Spaces. Proceedings of the Third
International Joint Conference on Artificial
Intelligence, Stanford, Calif., 1973.

23. Schank, R., & Abelson, R. Scripts, plans,
goals, and understanding. Hillsdale, N.J.:
Lawrence Erlbaum Associates, 1977.

24. Schmidt, C.F., Understanding human action,
Proceedings of the conference on theoretical
issues in natural language processing,
Cambridge, MA, 1975.

25. Schmidt, C.F., Sridharan, N.S., & Goodson,
J.L., The plan recognition problem: An
intersection of artificial intelligence and
psychology, Artificial Intelligence 10, 1979.

26. Schiffer, S. Meaning. Oxford: Oxford
University Press, 1972.

27. Searle, J.R. Speech acts: An Essay in the
philosophy of language. Cambridge: Cambridge
University Press, 1969.

28. Searle, J.R. Indirect speech acts. In P. Cole
& J.L. Morgan (Eds.), Syntax and semantics,
(Vol. 3), Speech acts. New York: Academic
Press, 1(175.

29. Searle, J. R. A Ta7onomy of Illocutionary
Acts, in K. Gunderson (ed.), Language, Mind,
and Knowledge. University of Minnesota Press,
1976.

30. Strawson, P.F. Intention and convention in
speech acts. In The Philosophical Review,
1964, 5, 73.

31. Wilensky, R., Understanding goal-based
stories, (Doctoral dissertation), Research
report # 140, Dept. of Computer Science, Yale
University, September, 1978.

32. Woods, W.A., Bobrow, R., Brachman, R., Cohen,
P., Klovstad, J., Sidner, C., & Webber, B.,
Natural language understanding, Annual
Report, Bolt Beranek and Newman, Inc., 1980

271

UNDERSTANDING ARGUMENTS

Robin Cohen

Department of Computer Science

University of Toronto

Toronto,

Abstract

Ontario M5S 1A7

This paper outlines a preliminary design

for a system to understand one-sided

arguments. These are a particular kind of

conversation, where the speaker has one

main objective: to convince the hearer of

a particular point of view. Arguments are

thus characterized by having an overall

point, defended by some logical chain of

reasoning. We develop methods to analyze

arguments, considering them as intentional

behaviour. For this first design, we

concentrate on developing methods to

recognize the logical form of the

argument, by examining the relations

between sentences.

1. The problem area

We are studying a particular kind of

conversation the one-sided argument.

This is a speech with a main objective

opinion (ii) the chain of reasoning

supporting the point. The restricted form

of arguments is used to develop a

classification for each sentence as either

claim, evidence for some claim, or a

statement of control (i.e. a sentence

about the structure of the argument - e.g.

"We now present our conclusion"). To

classify sentences

relationships between

defined for each of the basic logical

rules of inference. The main operation of

our analysis is thus a matching onto

frames, which hold our representation and

facilitate further processing.

and record the

them, frames are

The underlying philosophy of this system

is that arguments may be considered as

intentional behaviour. One motivation

this pragmatic approach is that there

some clear distinctions between shared

for

are

and

private knowledge in arguments. Speaker

of (S) and hearer (H) share

convincing the hearer of a particular

point of view. Arguments differ from

other texts in that: (i) there is an

overall point (untrue of stories) (ii) the

point is an opinion which is to be

defended (untrue of news reports) (iii)

the individual sentences serve to support

the point (untrue of informing rather than

convincing arguments) (iv) there is an

overall logical form: a method of

reasoning, holding the argument together

(untrue of

conversations).

non task oriented

Our main objective is to analyze

arguments, producing a representation

which reveals (i) the point and overall

272

some knowledge:

both know that the main purpose is to

convince; both are aware of standard

techniques to convince (e.g. using

analogies, contrast, examples, etc.). On

the other hand, both the statements of S

and the connections between them may be

unknown to H. So H's task is both to

recognize the logical forms being used and

to believe that they are appropriate.

Another important reason for considering

intentions is to facilitate the

understanding process. H's comprehension

process often involves deciphering and

interpreting unstated assumptions. H may

be able to determine unstated opinions of

S or overall argument structuro by

examining,

words (e.g.

also knows

for example, the choice of

"however", "only"). But H

S must facilitate H'sthat

understanding, in order to

convincing H of his

thus postulate

interpret S's

rules

main point. H

of coherence

intentions

analyzing the argument.

succeed in

can

to

and aid in

There seem to be two main levels to H's

processing: determining what S believes,

and deciding whether or not he, himself,

believes it. The second task involves

judging the credibility of arguments, and

will not be addressed in this paper (See

Section 3: Future Work).

This problem area,

different from

understanding projects.

as defined, is

other language

DeJong's FRUMP <DeJong 79> analyzes

newspaper stories. This kind of text is

similar to arguments in that (i) there may

be statements of evidence and sources

quoted (ii) it is important to believe the

story. However, FRUMP does not concern

itself with the underlying opinion on the

overall topic, or with credibility. In

contrast to FRUMP, we must distinguish the

evidence in the argument and determine how

the evidence supports the main opinion.

Further, there is a basic representational

difference between arguments and stories.

DeJong himsE'f addresses the issue in

<DeJong 79>, indicating that his program

can't handle editorials because these

present arguments in a novel form, and

scripts can't be written ahead to include

these new ramifications.

Carbonell's POLITICS <Carbonell 78>

analyzes opinionated text. But his system

is given the underlying opinion (in the

form of an ideology, represented as a set

of goals). In our case, H assumes that

273

the argument will conform to one ideology,

but he must determine that ideology by

examining the form of the argument.

Furthermore, the main purpose of our

analysis is distinct from Carbonell's: we

are concerned with the overall form - why

sentences are put together in a particular

order. Carbonell concentrates more on

analyzing individual events.

Allen <Allen 79> analyzes conversation as

intentional behaviour. But again the goal

of his system is distinct from ours. He

is interested in recognizing speech acts;

we know that the main purpose is to

convince, but must determine how the form

of the argument succeeds in convincing.

Some of Allen's methods of plan deduction

to uncover intentions may be useful to us.

In sum, our problem area presents us with

a new language understanding task. We are

concerned with determining form and

uncovering intentions to perform analysis.

2. The Analysis Process

2.1 Overview

This section describes the basic

procedure the hearer (H) follows to

determine the logical form of an argument,

leaving aside the issue of credibility.

The basic step in the analysis process is

for H to take a sentence of the argument

and to determine whether it is a new claim

or evidence for some previously stated

claim. In this way, H can uncover the

intended function of each sentence. The

basic unit of analysis is actually a

proposition - the propositional content

extracted from a sentence. (A simplifying

assumption for our system right now is

that the propositional content is made

available).

To help H in classifying a proposition,

there is a standard set of frames,

representing rules of inference. In

addition to frames representing correct

rules like modus ponens and modus tollens,

there are some representing bad logic,

which is often used in arguments (either

intentionally or in an attempt to justify

bad evidence). Consider the following set

of frames:

SET OF FRAMES:

(Abbreviations: MAJOR - major premise,
MINOR - minor premise, CONC - conclusion)

(correct)

MODUS PONENS

MODUS TOLLENS

MAJOR

A-->B

A-->B

MODUS TOLLENDO PONENS Aor"B

MODUS PONENDO TOLLENS Aor B

(incorrect)

ASSERTING CONSEQUENT A-->B

DENYING ANTECEDENT A-->B

MINOR

A

-B

CONC

-A

A

-A

This selection of frames is motivated by

<Sadock 77>, which indicates those correct

and incorrect logical rules that occur

most often in conversation. Our analysis

of examples so far seems to function well

with this restricted set.

For each of these frames representing

rules of inference, it is often the case

that they are not completely spelled out

in the argument. Any one of the major

premise, minor premise or conclusion may

be omitted, and H must still be able to

recognize the logical form intended, by

filling in the missing detail. (This kind

of argument is referred to as "modus

brevis" in <Sadock 77>). H is aware of

these variations in frames.

CLASSIFICATION OF FRAMES(e.g:Modus Ponens)

normal

normal MAJOR

normal MINOR

MAJOR

MINOR

CONC (hard)

/B

/B

/B

(assume

(assume

(assume

rest)

rest)

rest)

How can H make use of these frames to

represent the logical form of an argument?

Consider MAJOR premise, MINOR premise, and

CONCLUSION to be slots of a frame, with

the constraint that the premise slots must

lead to the conclusion. H is motivated in

filling frames in order to classify

propositions: we say that A is evidence

for B iff they both fill slots in a frame

such that A is a premise for B. H tries

to instantiate a frame by filling its

slots with propositions of the argument,

possibly inferring premises that are not

"spelled out", and thus choosing one of

the "missing" versions of frames. The

result is an indication of the logical

relations between propositions in an

argument.

2.2 Details

The overview illustrates the basic frame

matching technique used to classify

propositions. This section examines the

analysis process in detail. In

particular, a proposition may be

classified in many different ways. We

develop a scheme which formulates

hypotheses for each proposition as to how

it can fit with the rest of the argument,

and then rates these hypotheses to

determine the most likely interpretation.

The rating scheme is based partly on

fitting into our logic frames, and partly

on other heuristics - e.g. based on the

actual choice of words. In addition, this

section describes

entire argument in

classification of

274

the processing of the

more detail: how the

one proposition affects

another, how to isolate sub-arguments, and

what kind of representation to build for

the overall argument.

Rating Hypotheses

Consider the following classification

scheme for a single proposition:

HYPOTHESES FOR CLASSIFICATION OF PROP(i)

ri) new claim0) evidence for some future claim
ii) evidence for PROP(1-1)

evidence for PROP(i-2)

evidence for PROP(1)

To illustrate that more than one

hypothesis is probable for a given

proposition, and that rating is thus

necessary, consider the following example:

EX1: 1)There is too much crime in thp city
2)We need more police

This example gives insight into the

possible functions of a proposition, 'and

the need to rate hypotheses. Consider 1)

in isolation: it can be either a claim

(and we'd expect evidence about the amount

of crime) or evidence for some claim.

Upon seeing 2), a connection is found

between 1) and 2) (e.g. "more police -->

less crime"), so 1) is interpreted as

functioning as evidence for 2).

Determining whether a proposition is

evidence for another is done by trying to

fill slots in a frame, as described in

Section 2.1. Since there are many frames

in our system, each of the hypotheses in

(iii) really represents a variety of

options - e.g. evidence for PROP(i-1) by

modus ponens, evidence for PROP(i-1) by

modus tollens, etc. Since propositions

are processed one at a time from the

start, the only options that can be

directly measured are those using

propositions that have already been

processed - hence the distinction between

(ii) and (iii) above.

275

TRYING FRAMES

The first step is to determine the

ratings for

actually trying

that correct

hypotheses in (iii) by

to fit frames. To ensure

logic frames are given

preference over bad logic frames, consider

a frame system where the bad logic frames

are connected to their correct logic

counterparts using SIMILARITY links (as

described by <Minsky 75)). In the spirit

of <Tsotsos 80>, similarity links trigger

alternatives when an exception is raised

in trying to fill a slot in a frame. For

example:

EX2: 1)Whenever the stock market crashes
Carter refuses to appear on TV
2)Carter has refused to appear on TV
3)So the stock market must have crashed

With 1) and 2), modus ponens fails - we

have A-->B, then B. So we try "asserting

consequent", and with A asserted in 3),

find that the bad logic frame succeeds.

So bad logic frames are only tried when

correct logic ones fail.

Each hypothesis in (iii) thus gets

expanded into a list of options: one for

each of the correct logic frames. Then,

each option is tried. If frame

constraints can't be satisfied, the option

is given a very low rating. AS H tries to

instantiate frames, he must be aware that

he is often interpreting beliefs of the

speaker. So, for instance, modus ponens

is usually recognized as: (S believes

(A-->B)), (S believes A) thus (S believes

B). (And not as "(A-->B) is believed

be true by H"...etc.). This introduces

interesting sub-topic of how

distinguishes beliefs, wants, and goals

to

an

of

S to aid analysis (see Section 3: Future

Work).

Even when H succeeds in instantiating a

frame, the rating for that frame may be

lowered if it was "difficult" to fill in

the necessary "chains of reasoning".

Consider the following:

EX3a: 1) There is a national railroad
system in the US today
2) Railroads serve more than local needs

EX3b: 1) Railroads deliver goods
state lines
2) Railroads operate on a national

To determine 2) as evidence for 1)

across

scale

in 3a

requires a rather long chain of reasoning

(something like "exists national system

--) operates on national scale --> carries

goods between localities --> serves more

than local needs"). In 3b, the chain is

brief ("across state lines national").

H may wish to lower the ratings for

longer, less certain chains.

In addition to actually measuring the

options in (iii), we also consider some

heuristics to affect ratings, which

include an assessment for (i) and (ii).

LINGUISTIC CLUES

Sometimes H is aided in the

classification of propositions by the

actual choice of words. For example, H

can recognize (and S knows that he will

recognize) the organizational function of

certain words and phrases, and can thus

detect structure. For example, a

classification like <Hobbs

reasonable:

CATEGORY

SUMMARY
PARALLEL
EXAMPLE
DETAIL
CONTRAST
CAUSAL

EXAMPLE

in conclusion
in the first place
for example.
in particular
on the other hand
therefore

common topic for their clauses - but the

presuppositions attached to the words can

indicate the function of each clause in

the overall form. We are working on a

precise description of connectives, and of

particular constructions like analogy,

with a view to developing a description

for overall logical form that further

specifies the evidence claim

distinction. It is also interesting to

examine the motives of S in choosing a

particular construction - an issue which

relates more to "credibility".

SYSTEM RULES

Furthermore, there are heuristics called

SYSTEM RULES to indicate preferred

classifications. These are rules

motivated by the intentional nature of

arguments. H expects S to conform to

certain coherence rules, because he knows

S must be clear in order to convince H of

his point of view. H thus has some

defaults about how propositions relate.

Consider the following:

1) a proposition which is a statistic is

likely to be evidence

2) a proposition which quotes a particular

authority is likely to be evidence

78> is (based on the idea that claims are

considered to be disputable, while

statistics and quoting authorities are

less disputable material)

The different functions can be interpreted

In terms of claims and evidence for H to

expect.

In addition, the choice of connective

between propositions should provide H with

an insight into S's intentions.

Certainly, compound sentences suggest a

276

3)a change in topic often signals a new

claim

4) repetition of topic suggests some

connection (propositions may support one

or another, or both support a common

third)

(judging continuity of topic)

5) rules of distance: prefer connections

between propositions located closer

together in the argument

* when a proposition rates high as a new

claim, strenghten the ratings of previous

propositions which let them relate to each "1) as evidence for 2)" is measured. This

other (since it should be hard to find works with modus ponens and missing

evidence located after this new train of premise "caused lots of deaths -->

thought) dangerous".

something like the rule of distance

applies for frame fitting:

* if the "chain of inference" needed to

instantiate a frame is long, decrease the

rating for that hypothesis

(other sub-rules based on distance may

develop)

EX4: 1) Peter is a good musician
2) He has produced 50 songs this year

2) can be either:
*new claim
*evidence for future claim.
*evidence for previous claim

Not only does 2) --> 1) fit into a frame

(with chain "prolific --> good") but

because of the statistic in 2), all

evidence options are strengthened.

Updating ratings

So far we have described how H can do a

thorough analysis of a single proposition.

We now consider how the ratings for one

proposition can affect others. Recall

that our control structure is such that

propositions are processed one at a time.

the

are

Now, once a proposition is processed,

ratings of previous propositions

re-evaluated. Consider the following

interactions:

(i) when PROP(i) is processed, go back and

evaluate the "evidence for future claim"

option for previous propositions, using

PROP(i)

EX5: 1)Motorcycle gangs caused 50% of the
deaths in our small town

2)These gangs are dangerous

None of the hypotheses for 1) can be

directly measured since it is the first

277

sentence. When 2) is processd, the

hypothesis "2) as evidence for 1)" is

measured and rates low (hard to

establish). Then 1) is re-processed, and

(ii) when PROP(i) rates high as evidence

for PROP(j), increase the claim rating for

PROP(j)

(iii) if a new proposition is created

i.e. filled in as missing detail in a

frame - then this proposition is added to

our system. Then, if a future proposition

rates high as being related to one of

these derived propositions, we increase

the rating for the hypothesis which

"created" it

Overall form

We now begin to have

rating propositions can

an argument. We must

a feel for how

propagate through

as well try to

develop a representation for the overall

argument. What our classification of

propositions has done so far is to

indicate logical connections between sets

of propositions. This, in fact, isolates

sub-arguments, each with its own claim and

set of supporting evidence. To complete

the analysis, H must first of all

determine the boundaries, where one

sub-argument ends and another begins.

Consider a methodology in the spirit of

<Tsotsos 80>, strengthening hypotheses

that indicate good "continuation" into a

separate unit. Since a proposition can

participate in more than one frame, the

most likely option must be chosen. Some

ideas

using

"new

on how to measure boundaries include

(i) change of topic (ii) ratings for

claim" option (iii) combined ratings

for hypotheses indicating a unit: claim

plus some evidence.

EX6: 1)Rogers is a talented songwriter
2)He has won 6 Junos
3)His son Peter has been active on

Broadway for the past 15 years
4)Peter has won 4 Tony awards
5)80th Rogers and son are very talented

Here 2) rates high as evidence for 1), and

1) as a claim. Then 3) rates high as a

new claim (new topic), so we strengthen

ratings for 2) and 1) to consider them a

separate unit.

Once sub-arguments have been isolated,

using the hypotheses for propositions with

the highest ratings, the overall argument

structure can be analyzed. For now, this

process is done at the end of processing.

We try to relate all the individual claims

from the sub-arguments into some overall

form. Our final output is thus an

indication of the most likely structure

for the argument, in the form of relations

between sub-arguments and forms

sub-arguments, represented as

rules of inference.

of

instantiated

Continuing with EX6:

4) and 3) share a common topic. 4) as

evidence for 3) is possible, but with a

weak inference. 3) and 4) both as

evidence for a common claim rates high.

Then, with 5) we reach the end and have to

wrap up. 5) splits into 5a)Rogers is

talented and 5b)Son is talented. We find

3) and 4) are evidence for 5b), and 1) is

evidence for 5a). The most likely overall

form is thus: two sub-args, one with 5a)

as claim, with 1) as evidence (and 2) as

evidence for it) and one with 5b) as claim

and 3) and 4) as evidence.

Our next step will be to develop a more

sophisticated control structure. Ideally,

we will be analyzing overall form in

parallel with our detection of

sub-arguments.

278

3. Future Work

Section 2 presented a preliminary design

for the analysis of arguments. In fact,

most of the ideas for the design developed

from an examination of many examples of

arguments (including a good selection
from <Holmes and Gallagher 17>). The set

of rules developed so far seem to function

well, but are certainly not presented as

an optimal solution.

We have already

that need more

(1) more precise

clues (2) more

alluded to several areas

development, including:

formulation of linguistic

precise measure of frame

fitting (3) more sophisticated overall

control structure and (4) thorough

description of the rating mechanism,

including some actual figures to show

comparative worth of different rules.

The major area for future work, however,

is to develop mechanisms for H to

determine and interpret the intentions of

S. Issues of concern include:

recognizing and making use of control

sentences - sentences about the structure

of the argument (We have skipped

discussion of this kind of sentence in

this paper) (ii) distinguishing the wants,

beliefs, and goals of S to aid in analysis

(as alluded to before, H often recognizes

relations between propositions not as

logical truths but as beliefs of S. In
addition, H may recognize wants, in
particular with claims suggesting a

"course of events". For example, when S
says "There should be less war", H must
recognize this as "S wants (less war)",
and when S then says "Less war would mean
more prosperity", H must recognize this as

a belief of S, and through some logical

reasoning conclude "S wants (more

prosperity)".) (iii) determining the

motive behind S's choice of argument form

and content - examining issues like order

of presentation, choice of evidence, and

deliberate deception. Furthermore, this

investigation of intentionality should

lead to some comments on credibility - the

factors that H has available to influence

his bflief in the argument.

4. Conclusion

This paper presents some ideas for the

design of a system to understand

arguments. We give insights into how

analysis can proceed: the rules available

and the form of representation we want to

build. We have only begun to look at the

intentional aspect of arguments: how H

can guide his analysis by his expectations

about S. But we begin to see how this

particular natural language task has

restrictive characteristics which enable

us to formulate specific methods of

analysis: not only is there an overall

form, but the speaker is forced to limit

his choice of overall form so that the

hearer can recognize all the points, and

be convinced.

Acknowledgements

I am grateful to Ray Perrault for his

supervision of this research, and to Alex

Borgida for his comments on this paper.

Bibliography

<Allen 79> Allen, J.; "A Plan Based

Approach to Speech Act Recognition"; U.

of Toronto Dept. Comp. Sc. Tech. Rept.

No. 131

<Carbonell 78> Carbonell, J.; "POLITICS:

Automated Ideological Reasoning";

Cognitive Science 2,1

279

<DeJong 79> DeJong, G.;

Substantiation: Two

Comprise Understanding";

"Prediction and

Processes that

IJCAI 79

<Hobbs 78> Hobbs, J.; "Why is Discourse

Coherent?"; SRI International Tech. Note

No. 176

<Holmes and Gallagher 17> Holmes, H.W.

and Gallagher, 0.; Composition and

Rhetoric

<Minsky 75> Minsky, M.; "A Framework for

Representing

Psychology of

Winston, ed.

Knowledge"; in The

Computer Vision, P.

<Sadock 77> Sadock, J.; "Modus Brevis:

The Truncated Argument"; in Papers from

the 13th Regional Meeting, Chicago

Linguistic Society

<Tsotsos 80> Tsotsos, J.; "A Framework

for Visual Motion Understanding"; PhD

Thesis, Dept. Comp. Sc., U. of Toronto

Example Generation

Edwina L. Rissland

Department of Computer and Information Science
University of Massachusetts

Amherst, MA 01003

Abstract

This paper addresses the problem of
generating examples that meet specified
properties which are used to direct and
constrain the generation process, which
we call CONSTRAINED EXAMPLE GENERATION.
We begin by presenting a few examples of
CEG taken from protocols. Based upon
such examples, we present a model of the
CEG process. We describe the
architecture of a system that generates
examples from specifications and present
examples of problems that it has solved.

1. INTRODUCTION

The ability to generate examples that
have specified properties is important in
many intellectual areas, such as
mathematics, linguistics and computer
science [Collins 1979]. It is important
from the standpoints of learning and
teaching as well as performing research.
For instance, examples are needed for
inductive reasoning, sharpening of
conjectures, and concept formation and
refinement [Polya 1968, 1973; Lakatos
1963; Winston 1975; Lenat 1976;
Soloway 1978]. Having a rich stock of
examples is intimately related to
understanding [Rissland 1978a, b]. Thus,
examples lie at the heart of efforts to
learn and reason in a subject.

When an example is called for, one can
search through one's storehouse of known
examples for an example that matches the
properties of the desired example. If a
satisfactory match is found, then the
problem has been solved through
retrieval.

However, when a match is
does one proceed? In
modifies an existing
judged to be close

not found, how
many cases, one

example that is
to the desired

example, or to have the potential for
being modified to meet the constraints.

In some cases, generation through
modification fails. Experienced
researchers, teachers and learners do not

280

give up however. Rather they switch to
another mode of example generation which
involves building up an example from very
elementary consituents through careful
attention to the desiderata and
"unpacking" of the concepts involved.
This phase of CEG is usually more
difficult than either retrieval or
modification.

This paper presents a model of CEG that
incorporates three phases: RETRIEVAL,
MODIFICATION, and CONSTRUCTION. This
model is based upon analyses of protocols
of example generation tasks taken from
mathematics and computer science
[Rissland 1979, Woolf and Soloway 1980].

2.PROTOCOLS OF CEG

In this section, we describe some
protocols for CEG tasks taken from the
domain of elementary function theory in
mathematics (which deals with concepts
such as continuity) and from elementary
LISP programming (especially with regard
to concepts concerning list structure).

2.1 Examples of Retrieval

The type of questions that most people
answered through retrieval is:

Give an example of a function that is
continuous

but not differentiable (at a point).

Give an example of a list
with three elements.

Most people handled these problems by
offering their favorite standard
"reference" examples [Rissland 1978a, b]:
for the first problem, the absolute value
function (at the origin) and for the
second, a list like "(A B C)". Responses
were usually immediate indicating that
the retrieval was very readily made.

2.2 Examples of Modification

An example of a problem solved through
modification of a known example is:

There were several clusters of
according to the initial
selected and the stream
modifications pursued.
protocol went as follows:

responses
function

of the
A typical

Give an example of a list "Start with the function for a "normal
with three elements distribution". Move it to the right so

where the depth of the first atom is 3. that it is centered over x.71. Now make
it "skinny" by squeezing in the sides and
stretching the top so that it hits the

Subjects frequently modified an example, point (1, 1000)."
such as "(A B C)" by adding two more
parentheses around the first element, to "I can make the area as small as I please
produce the list by squeezing in the sides and feathering

off the sides. But to demonstrate that
(((A)) B C) the area is indeed less than 1/1000, I'll

have to do an integration, which is going
Other subjects truncated a longer list to be a bother."
such as the list of digits or added to a
shorter list such as (0 1), as well as
adding parentheses. The example chosen
for modification depends on the context
of the problem (e.g., the sequence of
recently solved problems) and the
subject's data base of examples and its
epistemology (e.g., his favorite
references).

An example of a mathematics problem which
every subject solved by modification is
the following:

Give an example of a non—negative,
continuous function

defined on the entire real line
with the value 1000 at 1, and

with area under its curve less than 1/1000.

Most protocols for this question began
with the subject selecting a function
(usually, a familiar reference example
function) and then modifying it to bring
in into agreement with the specifications
of the problem.

FIG La

"Hmmm. My candidate function is smoother
than it need be: the problem asked only
for continuity and not differentiability.
So let me relax my example to be a "hat"
function because I know how to find the
areas of triangles. That is, make my
function be a function with apex at (1,
1000) and with steeply sloping sides down
to the x—axis a little bit on either side
of of x.1, and 0 outside to the right and
left. (This is OK, because you only
asked for non—negative.) Again by
squeezing. I can make the area under the
function (i.e., the triangle's area) be
as small as I please, and I'm done."

Comments

Notice the important use of such
operations as "squeezing", "stretching"
and "feathering", which are usually not
included in the mathematical kit—bag
since they lack formality, and
descriptors such as "hat" and "apex".
All subjects made heavy use of curve
sketches and diagrams, and some used
their hands to "kinesthetically" describe
their functions. Thus
representations and techniques used
very rich.

1
(1, 110)

FIG 1B

281.

(1, 1000)

the
are

FIG 1C

Another thing observed in all the
protocols (of which there were about two
dozen for this problem) is that subjects
make implicit assumptions about the
symmetry of the function (i.e., about the
line x.1) and its maximum (i.e., occuring
at x..1 and being equal to 1000). There
are no specifications about either of
these properties in the problem
statement; however, they
mathematically simplifying
cognitively natural.

are
and

These are the sort of tacit assumptions
that Lakatos talks about [Lakatos 1963];
teasing them out is important to study
both mathematics and cognition.

Example functions for protocols are shown
in Figures la and lb; another
mathematically permissible example is
shown in lc.

2.3 An example of Construction

In this subsection, we present a protocol
of example generation in which the
example is built largely "from scratch"
by working with the concepts involved in
the specifications of the desiderata,
instantiating them, and combining
exemplars to produce a new example. The
problem is:

Give an example of a list of lists
each of which has two elements

the first of which is a literal atom.

A typical protocol began with the subject
sketching out the overall structure of
the desired list as:

((Al L1)
(A2 L2)
(A3 L3)

where in each sublist, Ai stands for a
literal atom, and Xi the second element.

The subject next focussed his attention
on instantiating the Xi's. Since he
wanted to emphasize the fact that the
elements of the sublists could themselves
be lists -- "there's a lot of
embeddedness possible here" -- he made
each of the Xi's a list of atoms (a
"LAT").

The subject began to write each Xi as
(Ail Ai2 ... Ain) and then remarked that
this level of generality was more than
the problem called for. In particular,

282

nothing was said about keeping the Xi's
different: "So, why not make them all
the same, like (00 01)".

The candidate example now looks like:

((Al (00 01))
(A2 (00 01))
(A3 ...

The subject next decided to pin down the
length of the "big" list by making it be
"not too short, like 2, and not too long
either; why not 7". He tended to the
Ai's by noting that Al, A2, A3, ... AT
are perfectly fine literal atoms.

The list thus offered is:

((Al (00 01))

(A2 (00 01))

(A3

(A7 (00 01)))

Even though the subject was satisfied
with this answer, he noted that it really
didn't have to be so complex or long;
the following list would do:

((Al 1) (A2 2) (A3 3))

He said he made his list have a length
longer than 2 because he didn't want it
to be confused with the length of the
sublists (i.e., 2). However, he said
that a list of length two would be
acceptable, but a list of length one
would not since "after all the problem
called for a list of lists".

"The list:
((A B) (A B))

would also do just fine. In fact, the
possibilities are endless."

Comments

There are several observations to be made
on this protocol. First, the subject had
a general model of a list and procedures
to instantiate it (e.g., generate literal
atoms and lists) and he had procedures to
modify lists and properties of lists.
Second, the subject made several implicit
assumptions on the example to be
generated, such as (1) its length, (')
the non-repeatedness of some elements,
(3) its complexity (e.g., depth), and (4)
uniformity (e.g., of list-structure).

3. A CEG MODEL 4. ARCHITECTURE OF A CEG SYSTEM

From analyses of protocols such as

presented in Section 2, we developed the

following general model of the CEG

process. Presented with a task of

generating an example that meets

specified constraints, one:

(1) SEARCHES for and (possibly)

RETRIEVES examples satisfying the

constraints. This is done by

searching through the knowledge base

and judging examples for their match

(or partial match) to the desiderata;

(2) MODIFIES an existing example

judged to be close or having the

potential for fulfilling the

desiderata;

(3) CONSTRUCTS an example

elementary knowledge, such

definitions, principles and

elementary examples from

knowledge base.

from
as

more
the

Thus, there is a spectrum of responses to

a CEG task ranging from having a ready

answer as in (1) to having no especially

close fitting candidate as in (3). In

general, Task N depends on and follows

Task N-1.

This information processing model of CEG

is useful not only in describing human

protocols, but also precisely specifying

a computational model.

AGENDA—KEEPER

FIG 2

283

From the model of the last section, we

have developed a system that solves CEG

problems in the LISP domain. It has also

been used to hand-simulate CEG problems

In the mathematics of linear and

piece-wise linear functions.

We have implemented this CEG model in the

LISP domain. Written in LISP, it

currently runs interpretively on a VAX

11/780 running under VMS. Examples of

problems and solutions are given in

Section 6.

The knowledge in our CEG system resides

in two major sources: the knowledge base

upon which the system runs, and the

knowledge embedded in the processes

operating on that base. The knowledge

consists of general epistemological

knowledge (e.g., the structure and types

of examples) and domain-specific

knowledge (e.g., particular example

modification techniques).

The system consists of several components

-- roughly one for each of the three

phases of the model -- which handle

different aspects of CEG. The flow of

control between the components is

directed by an EXECUTIVE procedure.

Figure 2 shows the general architecture

of our system.

The components use a common knowledge

base which consists of two parts: (1) a

"permanent" knowledge base of

"Representation-spaces" (Rissland 19783;
and (2) "temporary" knowledge generated

during the solution of a CEG problem.

There are four representation spaces,

each of which is a set of items,

represented as frame-like data
structures, and organized according to

predecessor-successor relationships.

Examples-space, which is by far the most

heavily used in our current system,

consists of known examples organized

according to the relation of

constructional derivation reflecting

which examples are constructed from which

others. The other spaces and their

relations are: Concepts-space:

definitional dependency; Results-space:

logical dependency; and

Procedures-space: procedural dependency.

Before the system is given any CEG

problems to work on, we create an initial

set of representation spaces. The

initial state of the Examples-space for

the set of problems described in this

paper is shown in Figure 3. The spaces

are modified -- mostly through the

addition or exnmples to Examples-space rn the problems described in Section 6as the system works through CEG problems. the "retrieval order" used was:

The temporary knowledge held by the
system during a CEG problem run includes
a list of the constraints of the problem,
an agenda of candidate examples, and
various bookkeeping parameters such as
"boxscores", "constraint satisfaction
counts" and "recency counts".

reference examples before
counter-examples before
start-up examples before
examples without epistemological

class attribute

and in the case of ties

predecessors before
5. CEG SYSTEM COMPONENTS successors.

(1) The EXECUTIVE is responsible for
initializing the system for a CEG
problem, directing the flow of control
among the components, and cleaning up
afterwards. It accepts a CEG problem in
prescribed format from the user and sets
up the problem specifications in the
temporary knowledge base.

The problem desiderata are kept on the
CONSTRAINT-LIST, which has as many
entries as there are constraints. Each
constraint is recorded as a pair of
properties DESIRED-PROPERTY and
DESIRED-VALUE. For instance, the
specification of the three constraint
problem of "a list, of length 3, where
the depth of the first atom is 1" is
recorded by the following properties
(PLIST's) for the constraints:

CONSTRAINT-1

CONSTRAINT-2

CONSTRAINT-3

DESIRED-PROP: (TYPE X)
DESIRED-VALUE: LIST

DESIRED-PROP: (LENGTH X)
DESIRED-VALUE: 3

DESIRED-PROP: (DEPTH
(FIRST-ATOM X) X)

DESIRED-VALUE: 1

Problem 1

The EXECUTIVE dictates the behavior of
the system as a whole by specifying the
orderings used by the other processes,
such as the order of retrieval of
candidate examples used by the RETRIEVER
and the order of application for
modification techniques used by the
MODIFIER.

(2) The RETRIEVER searches the knowledge
base for examples on request from the
EXECUTIVE. It searches through
Examples-space by examining examples in
an order specified in terms of attributes
such as "epistemological class" [Rissland
19783. position in the Examples-graph,
and recency of creation.

284

This retrieval order biases the system to
examine ubiquitous and earlier-contructed
examples before others. The order of
CANDIDATES retrieved from the initial
Examples-space of Figure 3 is thus:

(A B C)

(0 1 2 3 4 5 6 7 8 9)

(0 1)

()

(A)

(A B C D E)

With each new example selected, the
RETRIEVER calls the JUDGE to evaluate the
example to ascertain how well it
satisfies the desiderata.

<DATA>

(A) (0123456789)

B () (01)

(A B C D E)

FIG 3

(3) The JUDGE evaluates a CANDIDATE

example by cycling through all of the

DESIRED-PROPERTY/DESIRED-VALUE pairs on

the CONSTRAINT-LIST, comparing them with

the actual properties of the CANDIDATE,

and recording the results of the

comparison. Thus, the JUDGE's basic

cycle is evaluation, comparison and

record.

The JUDGE records the results of the

comparison by FILLING-IN the BOX-SCORE

and the CONSTRAINT-SATISFACTION-COUNT

("CSC") slots in the representation frame

of the CANDIDATE. The CSC is simply the

number of desiderata met by the

CANDIDATE.

The BOX-SCORE is a list of 2-tuples, one

for each constraint, of the form

(ACTUAL-VALUE, T or NIL). The

ACTUAL-VALUE is the CANDIDATE's value for

the DESIRED-PROPERTY; T is entered if

the ACTUAL-VALUE equals the

DESIRED-VALUE, and NIL if not.

The BOX-SCORE for the example "(A B C)"

in Problem 1 would be:

((LAT T) (3 T) (1 T))

The CSC for this example would be 3, that

is. all the constraints are met; the
success of this example would be recorded

as a T in its "SF" (SUCCESS/FAILURE)
slot. With the above retrieval order on

the Examples-space of Figure 3, Problem 1

DIFFERENCE as an index In a

difference-reducing table, the MODIFIER's
DIFFERENCE-REDUCER finds and then applies
modification techniques to the example.

For instance, for the example "(A)" with

a CSC of 2 for Problem 1, the property
not met is that of having a length equal
to 3. The DIFFERENCE between the

DESIRED- and ACTUAL-VALUE is +2. The

difference-reducing technique MAKE-LONGER

is found by looking for modification

techniques affecting the LENGTH attribute

of a list and reducing the DIFFERENCE,

i.e., by making it longer by 2. (If the
difference were -2, as would be the case
for the example "(A B C D E)", the

appropriate technique would be
MAKE-SHORTER).

When there is more than one unsatisfied
constraint, the MODIFIER orders its

modification attempts according to the
order specified by the EXECUTIVE. For

the sample problems of this paper, the

modification order is to apply techniques

that affect:

TYPE before
LENGTH before
DEPTH before
GROUPING

The modified example is then re-judged

and a new BOX-SCORE and CSC calculated.
If the CSC is improved, the MODIFIER
prints a message to the user of "success"

would be solved with the first example or "failed" and asks whether it should

retrieved, continue modifying this example by going

through another difference analysis,
If the example "(A)" were judged, its difference reduction, judgement cycle.
BOX-SCORE would be: If the CSC goes down, the MODIFIER

abandons its attempt to bring the example
((LAT T) (1 NIL) (1 T)) into line, goes on to the next example on

the AGENDA, and does not re-queue the
The CSC for this example would be 2. example. Thus the MODIFIER engages in a

form of hill-climbing.
(4) The MODIFIER is invoked by the
EXECUTIVE when the RETRIEVER has been
unable to find an example meeting the
constraints from its search through
Examples-space.

The MODIFIER calls the AGENDA-KEEPER to
set up an agenda of examples to be
modified. The MODIFIER then works down
the AGENDA trying to modify each entry in
turn until success is achieved or the
agenda exhausted.

To modify an example, the MODIFIER
examines its. BOX-SCORE for the
constraints that were unsatisfied. It
calculates the DIFFERENCE between the

DESIRED-VALUE and the ACTUAL-VALUE for
each DESIRED-PROPERTY not satisfied.
Using the DESIRED-PROPERTY and the

285

The modified example must be re-judged
for two reasons: (1) some techniques are
heuristic and do not guarantee successful
modification; and (2) there can be
interaction between the constraints, that
is, a successful modification for one
constraint may undo satisfaction of
another.

For instance, the system can make a
NESTED-LIST from the LAT "(A B C)" by
GROUPing "A" and "B", i.e., "((A B) C)".
However, before the modification
technique was applied the LENGTH was 3,
but now, after modification, it is 2.
Satisfaction of the NESTED-LIST

constraint has undone the LENGTH 3
constraint.

In the next version of our system, we
shall re—judge an example after each
modification, and also protect some
contraints.

(5) The AGENDA—KEEPER is called by the
MODIFIER and CONS'ER to set up the AGENDA
of examples to be modified or
instantiated.

When called by the MODIFIER, the
AGENDA—KEEPER compiles an agenda of items
to be modified based upon the CSC's
calculated and recorded during the
retrieval phase: the examples are ranked
in order of their CSC's. Thus, the CSC
is used as a measurement of the closeness
of the example to meeting the
constraints. In the case of a tie, the
retrieval ordering is used.

(6) The CONS'ER is called by the
EXECUTIVE when the MODIFIER is
unsuccessful in its attempts to produce a
solution or a model needs to be
instantiated. The CONS'ER uses the
procedural formulations of
stored in Concepts—space.

6. SAMPLE PROBLEMS

concepts

[NOTE: Text in this section is actual
computer output generated by our CEG
system: however explanatory text has
been added (indicated by a "$") and some
output modified to improve readability.]

Problem 2

$Problem 2 asks for a list of length 3
whose first atom has a depth of 3:

(x1 (desired—value list desired—prop
(typep candidate)))
(x2 (desired—value 3 desired—prop (length
candidate)))

(x3 (desired—value 3 desired—prop (depth
(first—atom candidate) candidate)))

$The retrieval phase is entered with the
Examples—space of Figure 2. The
retrieval order of candidates is:

candidate name . <abc>
candidate—value = (a b c)

csc = 2 sf = nil
(entry—x1 (lat t))
(entry—x2 (3 t))
(entry—x3 (1 nil))
"failed"

candidate name = Oiltdigits>
candidate—value = (0 1 2 3 4 5 6 7 8 9)

csc 1 sf = nil
(entry—x1 (lat t))
(entry—x2 (10 nil))
(entry—x3 (1 nil))
"failed"

candidate name = < 0111 bits>
candidate—value = (0 1)

csc = 1 sf = nil
(entry—x1 (lat t))
(entry—x2 (2 nil))
(entry—x3 (1 nil))
"failed"

candidate name = <empty>
candidate—value = nil

csc = 0 sf = nil
(entry—x1 (atom nil))
(entry—x2 (0 nil))
(entry—x3 (0 nil))
"failed"

candidate name = <a>
candidate—value = (a)

csc = 1 sf = nil
(entry—x1 (lat t))
(entry—x2 (1 nil))
(entry—x3 (1 nil))
"failed"

candidate name = <abode>
candidate—value = (a b c d e)

csc = 1 sf = nil
(entry—x1 (lat t))
(entry—x2 (5 nil))
(entry—x3 (1 nil))
"failed"

$The problem desiderata are not met by
any example in the data base, and thus
the modification phase is entered.

$The AGENDA of candidates for
<abc> modification is (the CSC is given after

the candidate's name):
<olibits>
<empty> (<abc> 2)
<a> (<"bits> 1)
<abode> (<a> 1)

(<"digits> 1)
$The RETRIEVER reports on each candidate (<abcde> 1)
tried, by printing out its BOXSCORE, CSC (<empty> 0)
and SF:

286

$The MODIFIER goes to work on the first
candidate, (A B C):

constraint = ((typep candidate) list)
actual score = (entry-x1 (lat t))

modify-candidate ok

constraint = ((length candidate) 3)
actual score = (entry-x2 (3 t))

modify-candidate ok

constraint = ((depth (first-atom
candidate) candidate) 2)
actual score = (entry-x3 (1 nil))

"find-diff" (increase-depth-by 2)
"apply-diff"

reducer = make-deeper-x
new-candidate = Ma)) b c)

modify-candidate modified

$The candidate's depth attribute has been
modified by the modification routine
MAKE-DEEPER-X to produce a new example,
which is then judged and added to the

$The order of candidates retrieved and
judged is:

<abc>
0141digits>
<"bits>

<empty>
<a>
<abcde>
mar11-009

$Since no example meets the constraints,
the modification phase is entered with
the following AGENDA:

(<abcde> 2)
(mar11-009 2)
(<"bits> 1)
(<a> 1)
(<"digits> 1)
(<abc> 1)
(<empty> 0)

$The MODIFIER sets to work on the first
candidate (A B C D E):

constraint = ((typep candidate) list)
actual score = (entry-x1 (1st t))

modify-candidate ok

constraint = ((length candidate) 5)Examples-space: actual score (entry-x2 (5 t))

candidate value = (((a)) b c)
csc = 3 sf = t

(entry-x1 (nlist t))
(entry-x2 (3 t))
(entry-x3 (3 t))
("created new frame for example"
mar11-009 (((a)) b c))

"success!!"

Problem 3

$The CONSTRAINT-LIST for the next problem
is:

(x1 (desired-value list
desired-prop (typep candidate)))

(x2 (desired-value 5
desired-prop (length candidate)))

(x3 (desired-value 2
desired-prop (depth

(first-atom candidate)
candidate)))

(x4 (desired-value 3
desired-prop (depth

(first-atom (cdr candidate))
candidate)))

287

modify-candidate ok

constraint = ((depth (first-atom
candidate) candidate) 2)

actual score = (entry-x3 (1 nil))

"find-diff" (increase-depth-by 1)
"apply-diff"

reducer . make-deeper-x
new-candidate = ((a) b c d e)

modify-candidate modified

constraint . ((depth (first-atom (cdr
candidate)) candidate) 3)
actual score r (entry-x4 (1 nil))

"find-diff"
"apply-diff"

reducer =
new-candidate =

(increase-depth-by 2)

make-deeper-x
((a) ((b)) c d e)

modify-candidate modified

candidate value = ((a) ((b)) c d e)
csc = 4 sf = t

(entry-x1 (nlist t))
(entry-x2 (5 t))
(entry-x3 (2 t))
(entry-x4 (3 t))

$The modification is successful and the References

new example is added to the

Examples-space. Collins, A. and A. Stevens (1979) Goals

and Strategies of Effective Teachers

("created new frame for example " Bolt Beranek and Newman, Inc.,

mar11-011 ((a) ((b)) c d e)) "success!!" Cambridge, Mass.

The Examples-space after the successful

solution of Problems 2 and 3 is shown in
Figure 4.

<DATA>

(A) (0123 1456789)

(A B C) () (01)

(A B C D E)
B C)

((A) ((B)) C D E)

FIG 4

7. CONCLUSIONS

In this paper we have described a
computer system that models Constrained
Example Generation ("CEG") in domains
from computer science and mathematics.
We described how the CEG system generates
examples of data in LISP.

We are currently using the system to

explore issues such as

1. the effect of the initial

contents of Example-space and the

sequence of solved problems on the

evolution of Examples-space;

2. the effect of alternative

orderings on the retrieval
modification processes;

and

3. the effect of interacting
constraints, e.g., impossible
constraints.

Friedman, D. (1974) The Little LISPer,
Science Research Associates, Menlo
Park, Calif.

Lakatos, I. (1963) Proofs and
Refutations, British Journal for the
Philosophy of Science, Vol. 19, May
1963. Also published by Cambridge
University Press, London, 1976.

Lenat, D.B. (1976) An Artificial
Intelligence Approach to Discovery

in Mathematics as Heuristic Search,
Stanford Univ. Artificial

Intelligence Memo 286.

Polya, G. (1968) Mathematics and
Plausible Reasoning, Volumes I and
II, Second Edition, Princeton Univ.

Press, N.J.

Rissland (Michener), E. (1978a)

Understanding Understanding
Mathematics, Cognitive Science, Vol.
2, No. 4.

Rissland (Michener), E. (1978b) The
Structure of Mathematical Knowledge,
Technical Report No. 472, M.I.T
Artificial Intelligence Lab,
Cambridge.

Rissland, E. (1979) Protocols of Example
Generation, internal report, M.I.T..
Cambridge.

Soloway, E. (1978) "Learning
Interpretation + Generalization"; A
Case Study in Knowledge-Directed
Learning. Univ. of Massachusetts,
COINS Technical Report 78-13,
Amherst.

Winston, P. (1975) Learning Structural
Descriptions from Examples, in The
Psychology of Computer Vision, P.
Winston (Ed.), McGraw-Hill, New
York.

Woolf, B., and Soloway, E. (1980)

Analysis of Student Protocals:
Misconceptions in Understanding
Programming in LISP, in preparation.

We also plan to use our system to study

machine learning by the incorporation of Acknowledgments
adaptive techniques, e.g., by keeping

track of the performance of various

orderings and techniques and choosing the

ones that perform best. Such extensions

of our system will enable it to "learn"

from its own experience.

288

Special thanks to my colleagues Elliot M.
Soloway, for his invaluable assistance in
bringing up the CEG system, and Oliver G.
Selfridge, for many useful discussions
and critiques.

An Adaptive Sorting

Oliver G. Selfridge
Valerie I. Congdon
Stephanie R. Davis

Program

Computer and Information ScienceUniversity of Massachusetts
Amherst, Massachusetts

ABSTRACT

This paper discusses the design, construc-
tion, and use of an adaptive sorting pro-
gram, which selects and tunes the sorting
algorithm according to its recent experi-
ence with the algorithms available to it.
That is, the program adapts its behavior
to try and minimize a cost function speci-
fied by the users.

The point of this exercise is to explore
ways in which the computer program can
carry some of the responsibility of opti-
mizing its performance, instead of relying
on a user to set rigid specifications.
The purpose of choosing a good sorting
algorithm is to minimize some kind of
cost; the cost function used here is "vir-
tual CPU time," computed by the program;
we use that instead of measuring real CPU
time because of the difficulties and un-
reliabilities of measuring it in a time-
sharing environment.

Some of the adaptive programs discussed
here perform better on some populations of
lists than the standard workhorses found
in many computer centers.

1.0 Introduction and Overview

There are a number of different algorithms
that can be used to sort lists. Each has
advantages and disadvantages that depend
on the nature of the lists. This paper
discusses an adaptive sorter, which se-
lects the particular algorithm it uses ac-cording to the efficiency it has previous-ly found. The sorter restricts itself to
three algorithms: Straight Insertion,
MergeSort, and QuickSort. It should be
noted that each has operating parameters
that have to be set before it can be con-
sidered well specified.

332

The task domain is the selection of algo-rithms to sort lists. For this paper, the
lists were generated by a program. For
some of the exercises, the characteristics
of the lists changed slowly in time --
that is, there is not merely a single op-
timum sorting algorithm that is to be
searched for, and, once found, maintained.
Rather, the program must be capable of
changing its selections as its environment
changes.

In Artificial Intelligence (Al), there is
another approach to this problem, namely
the use of experts: find out from them the
rules they follow, the diagnostics they
use, and so on, and design those rules
into a program. Such a technique has been
very successful in some cases. (1) But
sometimes the domains are too large to
have rules of the necessary precision; or
the rules seem to involve human judgment
in a profound way, as if in artistic se-
lection; or the best experts are just not
very good; and so on. Sometimes the cri-
teria for an "optimum" change -- in our
example, the evaluation or cost function
might be changed to include some measure
of the cost of storage. That is, our
underlying interest here is the use of
adaptive techniques where there may be no
experts, or where the problems may be too
hard to understand or even to state. We
use sorting as a domain, where there are
experts, so that we can compare the effi-
ciency of the adaptive techniques with
that of the experts.

Our purpose here is to see to what extent
we can give the program the responsibilityof choosing the "optimum" algorithm, by
providing it the experience of trying
several alaorithms and rpmPmhPrina how

(1) For example, see Feigenbaum and
Lederberg (1974), with Dendral and
Metadendral.

they performed (with respect to the cost
function that defines the optimum).

Any program that can track a moving op-
timum must spend some extra effort decid-
ing what the current optimum is, just as
the experts spend effort on their diag-
nostic analyses. Our program is constant-
ly checking the current best algorithm
against its competitors; it does so less
often when, whenever it does, the compari-
son is very one-sided, and more often when
it isn't.

In general it is not possible to compare
two algorithms with just two trials, be-
cause each has parameters that must be set
for it to do best, so that the ideal set-
tings have to be tracked. In the first
set of experiments, however, we set the
parameters by hand. A second set tries to
optimize the parameter settings as well.
A third set tries to find a good combina-
tion of useful diagnostics to help the
program determine a good threshold func-
tion to help make a good selection of
algorithm.

The general adaptive approach that the
program exemplifies is discussed at
length, considering especially its in-
herent limitations and the underlying as-
sumptions about its application. For many
domains of Al, we suggest that Al cannot
afford the time spent to tap experts, and
ought to try giving the program some res-
ponsibility in improving its behavior;
that would be even truer if the experts
were scarce or not very good. This pro-
gram is, we hope, a beginning exploration
of ways to do that.

At least one of the programs shown here
seems to do better on the average than
some of the workhorses used at computer
installations; while we cannot be certain
that it would be profitable to substitute
them, it would certainly be worthwhile to
check them with a broader range of sorting
problems and algorithms, perhaps referring
to human interaction, and to the expert
work of, for example, Knuth (1974).

An example of the kind of problem that
might be susceptible to the approach is
the scheduler on a time-sharing system,
where it is hard to decide what is the
best way to satisfy user requirements, es-
pecially as they and the system change in
unknown and unpredictable ways; another
example is the control of a communication
net with large swings in the volume and
nature of the traffic, subject to changing
priorities and channel capacities.

333

We use three sorting algorithms, Straight
Insertion, Mergesort, and QuickSort, each
of which is good for some applications,
and which are described in section 2. The
adaptive techniques are not particularly
subtle, and are described in section 3.
The structure and functions of the program
as a whole are described in section 4, and
section 5 presents the results of the
several experiments. The final section
discusses the results and draws con-
clusions from them.

2.0 Background: Sorting

Sorting is the task of arranging items in
some desired order, like alphabetical. It
was one of the first tasks assigned to
automatic data processing machines, and
was one of the first such problems to be
thoroughly analyzed.

We chose sorting as a task domain for
several reasons:

1. It is a well-known problem with
commonly used algorithms, whose
tive costs vary widely with the
problems presented to them.

several
rela-
sorting

2. Sorting algorithms have been thoroughly
analyzed, so that experts can be
reasonably sure about the rules they
follow; in that way the performance of
the program can be properly evaluated.

3. We felt that it was likely that if the
program worked as well as we hoped, it
could lead to profitable improvements
over some of the standard work horses
now being used in computer installa-
tions.

The program deals with 3 sorting algo-
rithms: Straight Insertion (I), MergeSort
(M), and QuickSort (Q). These are des-
cribed in the following subsections.

2.1 STRAIGHT INSERTION (I)

Insertion adds items one at a time to a
previously ordered list. Since each inser-
tion leaves the list ordered, a list n
long takes merely (n-1) insertions. In the
worst case, I makes i-1 comparisons to in-
sert the ith item, so that the number of
comparisons is 0(n*n). Note that if the
list is highly ordered to start with, then
each insertion may be done with very few

comparisons. It is also usually a fast
method for lists with few items, say,
fewer than 15.(1) The program itself is
short and easy to understand. Some other
sorting methods may use it with short
lists or sublists.

2.2 MERGESORT (M)

Merging is the technique of combining
lists (in this case, two) by sequentially
comparing the first elements of sublists,
and moving them in the correct order into
the merged list. M combines pairs of
single elements into sublists, then the
pairs themselves, and so on, each time
dealing with sublists twice as large, un-
til the process terminates.

M is an efficient sort, and is currently
the system choice at the computer center
at UMASS. It does, however, require a lot
of storage. In running time, it takes
0(n*log n). Its worst case is never much
worse than that average.

2.3 QUICKSORT (Q)

Q is on the average the best sorting algo-
rithm according to the experts. (2) Q is
based on the notion that exchanges of
items should be made over large distances
in order to minimize the number of ex-
changes -- it is the diametric opposite of
bubble sort, for example, which exchanges
items out of order only with their neigh-
bors. Q makes an arbitrary partition of
the list into two parts, comparing items
from both parts, and interchanging them
when needed.

The running time for Q is on the average
0(n*log n), but its disadvantage is that
its worst case performance can be 0(n*n),
which is not true of M.

3.0 Background: Adaptation and Computer
Learning

There is a long and rich history of at-
tempts to make the computer (program)
learn in the sense that children learn and
grow. Nearly twenty years ago, there was a
great deal of interest in 'self-
organization, by which the computer was

(1) See Knuth (1974).
(2) Ibid, and Wirth (1976).

334

to organize its data and restructure
itself so as to perform better. Some of us
remember the perceptron of the late Frank
Rosenblatt(1) and its numerous companions.
Recently such activity has waned, perhaps
because of a more or less conscious de-
cision by the Al researchers that it was
not very productive. One of the questions
that we raise here is whether the simple
control mechanisms that we discuss can be
applied to hard problems so as to make a
beginning of an attack on the larger area
of learning by computers.

The advantages of adaptation and learning,
if any, are not had for nothing: it will
always cost extra resources to make checks
on the efficiency of the particular algo-
rithms being used.

One method of improving a strategy is to
try small changes in it, observing the
changes in performance. If they are posi-
tive, continue to make such changes; if
negative, undo them, and try other ones.
This is generally known as hill-climbing,
and it has a venerable history. Much of
the power and difficulty of hill-climbing
depends on the particular representation
of the strategy, so that the changes are
in some way related to the changes in per-
formance. Indeed, Al researchers have
long considered that the problem of
finding good representation is one of the
truly central ones in AI.(1)

4.0 The Adaptive Sorter

We deal with three different kinds of
adaptive mechanisms. In the first, the
program is given the cost of the algorithm
when it tries it; its goal is to minimize
the total cost of a long series of sorting
problems. In order to make sure that the
algorithm it is using is the best (that
is, the cheapest), it must occasionally
try the other algorithms, which costs it
more resources. The underlying assumption
behind this strategy is that the sorting
problems in the series vary their charac-
teristics only slowly, so that the best
algorithm stays best for some long time.

(1) For example, see Rosenblatt (1960).
For the best discussion of perceptrons,
see Minsky and Papert (1969).

(1) See Winston (1976) for a good general
discussion.

The characteristics of the lists to be
sorted that are relevant here are two: the
length L, and the degree of randomness R.
The latter is interesting Q, for ex-
ample, takes nearly as long to sort a list
that is already sorted as to sort one that
is in random order. Straight insertion, on
the other hand, takes but L - 1 compari-
sons to establish that a list is well-
ordered.

-500***.*
.* * *
*.*** *

***;:*.*. ***
*

*;***;. ;*** *
*14 ** ;; * \
* ;******* *

\\\ ***;.;..***..*..** *
\ 4,.;** ; *.***.* *

-400**** .** *
\\\\

******* * .****.** * *
******;*;

*.**•
** .** * *

..*** *.*;*..*;.*;.*** *
; * **.. .* *. *...**

***** *** **** * *. * .; ;..; *
;;* * ; ;; ;*; 44;

.•
.; *

\\\\
; .***** **;* ** ; *; ; ;

**** **** ***;*** *:;;** 14.;; ' "' ;;; •
4.30 ***;****;*****;*;*..*.*;*..** * *

\ :::::*:**:::::::::;;::**;:*:::::** *** *..*

\
* ****;*;;***********..;;**:*.*.*;.;** •
* .*** *
*** * * *
*** *** * * *
; **
* **;.* ** *

;44** ;;; * * * *** * *
...*..*. ..*

*******;** * 44 ;* ; ; * ;
****** **;*;**;****** * *. *....***..

* ; *
** *** **** *****. ;** .4,.* * ** *•

.

*******************;;;*;;

.

;; ...***:***;..;**
...*** *** * *

;:!!*;.:;... ;**:. * ..

******* ********;***** ***; *****...

\\\

** .1*;1* ;:;:;::;;; . ;; ...;;:;*.::;:. ;;*
***;**;

+100

* *

\ * . \.*. *

 -4--- --4_ -4-

Cptimum Method for Sorting
Randomness R
Length L

\ : I . : M * : Q

Ordered

Figure 4.1
X-axis:
Y-axis:

Figure 4.1 is a length-randomness plot,
with the length shown vertically, and ran-
domness horizontally. The figure shows the
regions where the three algorithms are
superior to the others. The figure was
constructed by generating 2500 lists using
a random number generator. In general,
small lengths or low randomness suggest T;

335

M and Q are in fact fairly close over the
remaining region, and the superiority of
one over the other is usually but slight.
It is possible to observe the extra time
taken by M as the length rises above each
power of 2. Clearly, if the program could
detect the best method cheaply enough,
perhaps it could make significant savings
in resources.

In the second kind of adaptation, the pro-
gram takes advantage of knowing, either by
experiment or by our having told it, the
contents of figure 4.1. The program's task
is then to make good estimates of length
and randomness. In our sorting, the length
is provided as a given with the submission
of the list; the question is then how to
estimate the rand,)alness cheaply enough to
make it profitable.

A third experiment in adaptation selects a
good simple combining function of L and R.

There is a kind of zeroth order adapta-
tion, in which the best overall method is
used consistently; given the population of
lists that we presented to the machine,
and presuming a uniform distribution of
lists over the variables L and R, that
method was in fact M. the first job of any
adaptive scheme, obviously, must be to do
better than M.

5.0 Experiments and Results

We ran a number of experiments with some
interesting results. The first task was
to generate the lists; how we did that is
described in section 5.1 below. Each list
was in fact evaluated separately with each
of the three methods, and what was pre-
sented to the program was merely the char-
acteristics of each list and the resources
it would take according to the three
methods. In that way, it was possible to
compare different adaptive strategies
without actually running the algorithms
over and over again, which would have con-
sumed considerable computer time.

5.1 Generation of Lists

The lists had two controllable attributes
-- length L and randomness R. The value R
set the fraction of the list that was con-
structed at random, the other elements
being generated in order. For example, for
a list 100 long, the ith element defaults

to just i itself, for R = 0, the perfectly
ordered case. If R is 0.5, then in exactly
half the elements, the value chosen is
just 100 times a random number uniformly
distributed between 0 and 1.

Note that lists can be generated with
negative ordering, that is, backwards, but
we did not use such lists in our experi-
ments.

For each experiment we generated lists
that form the basis of the data used in
the adaptation. Each list was then sorted
by all the three methods. The data is con-
tained in an array whose columns were:

1. The length of the list
2. The randomness of the list
3. How long it took to sort with I

4. How long it took to sort with Q

5. How long it took to sort with M

For each test of the adaptive strategy, we
computed the costs by merely referring to

the array, instead of generating lists and

sorting them. In this way the individual

adaptive run could be tried with very

little CPU time.

Inspection of figure 4.1, generated in

this way, will reveal a certain noisiness

in the data. That arises from the use of

the random number generator in making the
lists.

5.2 First Adaptive Scheme

In the first scheme, the program initially
tries the three algorithms, and then con-
tinues by using only the best one. Best is
defined by an estimate of the CPU time

used by the algorithms. The program checks

the validity of its choice by trying the
other ones occasionally; if one of the
other algorithms proves to be shorter, the
program switches. The underlying assump-
tion for this scheme is that the attrib-
utes of the lists do not change very fast.

In fact, the lists were selected from a
population whose characteristics followed
the trajectory shown in figure 5.1, which
covered 1000 lists. Note, by comparing
that figure with figure 4.1, that the
trajectory runs through all three regions
where the different algorithms were op-
timum.

The program worked by computing the cost
of the preferred sorting algorithm. Some
fraction of the time, it also tested by

336

trying the other algorithms; that meant
adding their costs to the costs already
incurred. The cost of the tests on the
non-preferred algorithms was minimized by

ceasing the test whenever its cost ex-
ceeded that of the preferred one.

500

250

0+
Sorted Random

Fig. 5.1 Trajectory for
a Population of Lists

The behavior of the program is about equal
to the best single algorithm, M. In this
case, then, adaptation does not provide
any real profit. The extra expense of
making checks causes the program not to
outperform the best single algorithm in a
significant way.

This kind of scheme is efficient only when
the population characteristics change
slowly, of course. In that sense, it is
unrealistic to expect that it can provide
a vast improvement in sorting efficiency
in an operational environment. By analogy,
however, we might hope that such a scheme
applied to tasks harder to analyze, like
certain kinds of scheduling in time-
sharing systems, could lead to really
worthwhile savings.

5.3 Second Adaptive Scheme

The second scheme used the data shown in
figure 4.1. The program has but to know
where on the figure the new list is, and
it can choose the best sorting method. The
length L is given; since the program is
not given R, it has to estimate it. The
adaptation here is how much resources to
put into estimating R. If the whole list
is examined, that represents a fairly mas-
sive expense; and if, say, but ten items
are examined, then there is a fairly large

chance of making a bad estimate. The

parameters of the procedure for estimating

R are tuned so as to minimize the cost. X

COSTS of
Sorting Estimating Total

The difficulty with such a scheme is the .05 2930 16 2946

length of time needed to be sure of the .10 2817 33 2850

results of tuning. It is clearly cheaper .15 2856 50 2906

to use short samples, except that then the .20 2833 68 2900

probability of picking the wrong selection .30 2808 102 2910

by chance increases; that may lead to the .50 2823 171 2994

selection of a much more expensive algo-

rithm.
1.00 2812 344 3156

We decided that the parameter of esti-
mation that ought to be optimized was the
fractional size X of the sample that gave

the estimate of R. That is, if X were 0.10

then a list of length 500 would be tested

for R with a sample of length 500*0.10=50.

The estimation does not pretend to be an
accurate measure of randomness, which is

in any case undefined except insofar as it

is defined by the generation process

itself.

If Y is the fraction of successive differ-
ences between successive elements in the
list that are negative, then the program
makes the randomness estimate R = 2*Y.
The process is illustrated

The COSTS are in arbitrary units. This
shows a shallow but definite minimum at
X=0.10.

Using this value of X, then, let us com-
pare this program with the single algo-
rithms separately, and with the best pos-
sible selection (BP):

Program M Q I BP
2821 3457 3476 17991 2744

So it is clear that the program is not
quite the best possible, but is still some
20% better than M or Q, even allowing for
the extra resources used in making the es-
timate.

LIST
0 1 2 3 4 5 0.0 0.0 5.4 Third Adaptive Scheme
0 6 2 3 4 5 0.2 0.4
6 10 1 5 4 9 2 3 8 7 0.5 1.0

and these agree obviously with the gener-
ation process in a gross way. The cost of
the estimate is some approximately linear
function of the number L1=L*X of the items
in the sample. There is no a priori
reason why the optimal value of X should
not be a function of L, and in truth it
may be; furthermore, the optimum is not
even well defined in any absolute sense,
and must depend on the distribution of the
population. This point is considered fur-
ther in section 6.

Once the (R,L) was established for the
given list, the method to be selected was
found by examining the region around the
point (R,L) in figure 4.1. Since that
figure is drawn from noisy data, as dis-
cussed in section 5.1, we averaged the
region around (R,L), using a 5X5 window,
and the program chose the most frequent
best algorithm in that window.

We selected a population of lists so as to
exaggerate the effects and success of the
scheme, by picking lists where the differ-
ences in performance are marked. The re-
sults for various values of X, that is,
the fractional sample size for estimating
S, are shown in the table:

337

The third scheme illustrates the selection
of a usable adaptive method from a set of

possibilities. Each method is not pre-
cisely prespecified, but must be adap-
tively improved before it can be reason-
ably evaluated. This does not demonstrate
the full construction of a possible com-
plex processing scheme from a tabula rasa,
but it does show how easy it is to test
possible combinations of simple sub-
processes to generate useful processes.

The supposition is that the program knows,
from previous experiences that we do not
specify, that the values R and L are sig-
nificant parameters in the choice of the
best sorting algorithm. What the program
does not know is how best to combine those
two parameters to get a reasonable func-
tion that will help to make the decision
about the algorithm to be selected.

Again, we used the data that produced
figure 4.1. The figure was divided in
regions bounded by smooth curves, so as to
smooth over the irregularities caused by
the random number generation that made the
figure. The boundary of the region where I
is the best policy is like a hyperbola,
for example, separating it from where Q is

best. The boundary between Q and M is
somewhat more complicated, and shows
clearly that M (if we didn't know) is a
binary merge, losing a little efficiency
relative to Q every time the length L
rises above another power of 2. For the
sake of simplicity, this scheme selects
only between Q and I, ignoring M: that is
because the boundary between Q and M is
not easily describable.

The point of this scheme is not to have to
store the relatively large amount of data
in figure 4.1, but to approximate its con-
tents with a simple formula. We suppose
that the program does not initially have
the concept or idea of hyperbolas, and
cannot make algebraic inferences from pic-
tures like the figure. What it can do is
to try schemes and pick the best perfor-
ming one. This conceptually simple plan
is complicated by the fact that each
scheme will be seen to have parameters of
operation, just like the one in section
5.3 above. Since we need to compare the
best examples of each scheme, that means
that we must optimize each one before we
compare them all and choose the best.

We decided to do that in parallel. The
schemes we tried were all to use a func-
tion of L and R in combination with a
threshold; if the function was greater
than the threshold, select Q, and other-
wise I. The functions were simple arith-
metic combinations of L and R:

(L) (R) (L*R) (R/L)

There are obviously others; and those can
be generalized in obvious ways. But per-
haps they can be considered a fair sample.
Remembering the observation two paragraphs
above that the boundary between Q and I
was approximately hyperbolic, the reader
will suspect that the best function ought
to be (L*R), since L*R=constant is a
family of hyperbolae.

The program ran all of those schemes,
represented by the different function
forms, in parallel, keeping track of the
costs; after adapting the thresholds to
somewhere near optimum, the costs were
compared and the best one chosen. The ex-
periment used 2500 lists, the ones that
were used to make figure 4.1. Using L as
the function, the best threshold turned
out to be 40; using R, the best threshold
was .08 - .10. This is shown in the fol-
lowing table, using arbitrary units for
the costs:

338

LENGTH
THRESHOLD TOTAL COST

10 6185
20 6182
30 6181
40 6179
50 6180
60 6187
70 6194

RANDOMNESS
THRESHOLD TOTAL COST

.03 5995

.04 5944

.05 5944

.06 5916

.07 5916

.08 5912

.09 5912

.10 5912

.11 5933

.12 5990

Using L*R, the best threshold was 30, and
the cost was better than for either L or R
by themselves.

L*R
THRESHOLD

10
20
30
40
50
60

TOTAL COST
5957
5881
5877
5942
6066
6268

Using the other functions produced no
usable threshold at all. The differences
in performance are not enormous, it must
be remarked, but they are all in the right
direction.

6.0 Discussion

What we have tried to show here is that
some conceptually very simple methods of
adapting certain parameters that govern
the selection of an algorithm in a com-
puter program can produce profit for the
system. Learning what is the best thing to
do, and when to do it, always entails more
work than merely doing what is the stan-
dard; sometimes, however, it more than
pays for itself. If one is in a situation
that is hard to model -- like a fickle and
changing set of computer users -- the de-
fault procedure has to be to see experi-
mentally what works best, and then to take
advantage of what one finds out.

In our paradigm, sorting lists in an adap-
tive way, testing to see which is the best
algorithm is expensive; usually more ex-
pensive than doing the task. It is as
though we are slogging through mud of
varying depth on submerged wooden tracks,
but we do not know which is the track that
is nearest the surface. To test the other
tracks may require complete submersion,
but it may result in finding a track that
is only a couple of inches deep. So how
often should one take the plunge?

Adaptation at another level is shown by
the second scheme. Here we are provided
with a good map of the terrain, showing
the depth of the tracks. It's just that we
do not know where we are unless we swim
around in the mud getting bearings -- the
more we swim the better the estimate.

The third scheme handles two adaptations
at once. One of them is a simple tuning of
a threshold, the other a simple discrete
choice. The important aspect is that the
second choice depends on having done the
first adaptation well. It is an easy ex-
ample of a hierarchy of adaptations. We
use it not so much as to produce a useful
program by itself, but to illustrate the
kind of adaptations that must be used in
the development of systems that may be
hard to model or even understand.

It will be clear that a crucial role in
this attack is played by the representa-
tion of the possibilities, the different
functions in our case. As we have men-
tioned already, Winston (1976) lays much
stress on that point. Behind it lie some
other ideas. Before the representation can
help, there must be the possibility of
searching for help in the first case. L
and R are merely two attributes of a situ-
ation where a program has a task to do. In
some way the program seeks to use the in-
formation in R and S; and furthermore, it
seeks to optimize the diagnostic functions
of the observables R and S, by improving
them. Typically in current system design,
the possible realm of modifications is
sharply restricted and tightly delineated,
so as to make it less likely that bugs
will arise. Systems, it is claimed, should
always work in known ways with tried and
true algorithms. What we are talking
about here is a system that ought to be
able to notice, for example, that small
values of L should mean to use I; and from
noticing, to make inferences about good
rules of behavior. Good rules of behavior

339

-- in our case, that L can be used as an
indicator or diagnostic, and that so can R
-- can be combined or modified to make
better ones. That process of course does
not stop in a single application, but con-
tinues, guided by the enlarging set of
tasks that the system is faced with. In-
deed, the rules of combination and modifi-
cation themselves ought to be considered
as modifiable in the same way, but perhaps
that is more ambitious than we are dealing
with here.

The efficient functioning of the adap-
tations described here does not depend on
having an accurate model of what sorting
is or how the individual algorithms work.
Rather, we claim, the program tries to
learn from various kinds of experience.
This is far from saying that good models,
mathematical or otherwise, should be
avoided. If we can get good models, we
should use them. But there are many in-
stances when it is difficult to produce
and deal with accurate models of the tasks
ahead; in such cases, some of the adaptive
techniques shown here, or ones like them,
may be useful.

That may be true, for example, in the con-
trol of a complex communications net, or
in setting or tuning the scheduling algo-
rithm of a time-sharing system. Typically
such models have to assume certain kinds
of random distributions in order to be
mathematically tractable; and all too
often those assumptions are grossly incor-
rect.

7.0 BIBLIOGRAPHY

Feigenbaum, E., and Lederberg, J., "Heur-
istic Programming Project," in Earn-
est, L., "Recent Research in Artifi-
cial Intelligence, Heuristic Program-
ming, and Network Protocols,"
Stanford Al Lab Memo AIM-252, July
1974.

Knuth, D., The Art of Computer Program-
ming; Volume 3: Sorting and Search-
ing, Addison-Wesley, Reading, Mass.,
1973.

Minsky, M., and Papert, S., Perceptrons;
an Introduction to Computational Geo-
metry, M.I.T. Press, Cambridge, Mass,
1969.

Rosenblatt, F., "The Perceptron - a Theory
of Statistical Separability in Cog-
nitive Systems," Cornell Aero. Lab.,
Report VG 1196, G1 & G2, 1958.

Winston, P.R., Artificial Intelligence,
Addison-Wesley, Reading, Mass., 1977.

Wirth, N., Algorithms + Data Structures =
Programs, Prentice-Hall, Englewood
Cliffs, N.J., 1976.

340

