
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-8, NO. 8, AUGUST 1978 585

The Inference of Regular LISP
Programs from Examples

ALAN W BIERMANN

Abstract—A class of LISP programs that is analogous to the
finite-state automata is defined, and an algorithm is given for
constructing such programs from examples of their input-output
behavior. It is shown that the algorithm has robust performance for a
wide variety of inputs and that it converges to a solution on the basis
of minimum input information.

1. INTRODUCTION

TIE DREAM of many a computer programmer has
been a system that would accept a few randomly chosen

examples of the desired behavior and that would im-
mediately print out a general program for achieving the
desired behavior in all possible situations. Thus the system
user might type in the input-output pairs (6, 13), (2, 3), (7,
17), and (1, 2) and expect to have the system type out a
program that reads an integer i (such as 6) and then prints
the ith prime number (13 in this case). The system has the
incredibly difficult task of discovering from this weak source
of information

1) an algorithm for doing the desired computation, and
2) a correct implementation of the algorithm in some

programming language.

It is, in fact, doubtful that any system could ever ist which
could create a class of large and general programs

ex
from such

minimal information within a practical amount of time.
There are, however, some very limited domains in which

such performance is achievable, and one of those domains,
the class of small "regular" LISP programs, is the subject of
this paper. The synthesis of LISP programs from input-

EI

out put behaviors is at least minimally tractable because
these behaviors are given in terms of LISP S-expressions,
and such expressions contain considerable structural infor-
mation about how they were forma For example, if a
program is to be constructed such that input
X = ((A • B) • C)is to yield its reversal Y = (C • (B • A)), we
knS w that Y can be computed from X using the primitive
LISP functions cONS, CAR, and CDR *Scribed below) as
follows:

Y = (coNs(cDR X)(coNs(cDR(cAR X))(cAR(cAR X)))).

Manuscript received March 24, 1977; revised March 14, 1978. This
work was supported in part by the National Science Foundation under
Grant DCR 74-14445 and in part by the Health Resources Administration
under Grant HS 01613.
The author is with the Department of Computer Science, Duke Univer-

sity, Durham, NC 27706.

This ability to directly decompose Y in terms of X is a huge
step in the direction of creating a general program for
reversing any S-expression and is the key reason that at least
some LISP programs can be generated from just input-
output information.
Having adjusted to the fact that we will probably never be

able to generate very large and general classes of programs
from such weak information, it is interesting to see how good
a synthesis system can be built for a limited class. It is
specifically desired that the synthesis system have the follow-
ing properties (described below):

1) robust behavior for a variety of inputs,
2) convergence to a solution on the basis of minimum

input information,
31 convergence to a known class of programs.

Concerning 1), it is desired that the program that is
generated be relatively independent of whichever examples
are presented. Thus it is desired that the program for
reversing an S-expression should be generated from any one
of the following input-output pairs or from any similar
input-output pairs which might be presented by anyone.

Input Output

(A • 8)

(A • (8 • C))

((G • F) • (H • A))

(D • R)

(((A • B) • (R • Z)) • X)

(A • (B - (R • (M • (V • Q)))))

(8 • A)

((C • B) A)

((A • H) • (F • G))

(R D)

(X • ((Z • R) • (13 • A)))

(((((Q • V) M) • R) 13) • A)

Furthermore, the system should correctly generate the
program if any subset of these examples is used, if all of them
are presented, or if any similar set is chosen. The system
should be similarly robust on every program within its
range.
Concerning 2), suppose a user inputs a behavior example

and is dissatisfied with the program that is generated. That
is, he has found the created program to be incorrect either by
testing it on some other examples or studying its code. Then
he should be able to input a second exarnple, a third
example, and so forth, with the knowledge •that the system
will find the desired solution after only a finite number of
examples. In fact, we would like our system to be such that
not only will it find the solution, but it will have the property

0018-9472/78/0800-0585$00.75 C) 1978 uiIEEE

586 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-8, NO. 8, AUGUST 1978

that no other system could generate all programs on the
basis of fewer examples than our current system. That is,
we want our system to, in some sense, use input information
optimally.
Concerning 3), we are interested in being able to predict

exactly when a particular target program can be generated
by the system and when it cannot. For our system the regular
LISP programs are exactly the class of programs that can be
converged to in the sense of 2). Membership in the class of
regular LISP programs is decidable, and a method is given
in Section V for showing that certain LISP computations
cannot be done by any regular LISP program. Furthermore,
the length of time required to generate a program grows
exponentially with the size of the program, and because of
this, our system is not able to generate programs that are
much more then about five or six lines in length without
using many minutes or hours of computation time. In
summary, we can assure our user that the system will
converge to a program to do the desired computation after a
finite number of examples if there is a regular LISP program
to do that computation. It will converge to the target
program within a reasonable length of time if it has no more
than about five or six lines of code.
These three properties are achieved by the system

described in the paper by employing an enumerative syn-
thesis algorithm. The search, of course, is highly pruned
through the use of the structural information from the
example input-output behaviors. General inference
techniques using enumeration are described in [6]-[8], and
the current work is built upon these results. Two critical
theorems are restated and reproven in terms of the termino-
logy of this paper in Section VI.
LISP program synthesis has been studied previously by

Green et al. [9], Hardy [10], Shaw et al. [12], Siklassy and
Sykes [13], and Summers [14], [15]. The approach of this
paper is particularly influenced by Summers, who created
"fragments" much like our "computations traces" and who
did "differencing" which corresponds to our node mergers.
However, all of the above synthesis systems were "heuristic"
in the sense that the class of problems that they could solve
was unknown. The method described here is "algorithmic"
in that it is capable of generating absolutely any program or
its equivalent in the class of regular LISP programs
(although it obviously may take an unacceptable amount of
time to generate large ones). Also, none of these other efforts
can make all of the claims 1), 2), and 3) above.
The reader interested in a general survey of the literature

on automatic programming might wish to examine [3].

II. LISP AND AN OVERVIEW OF THE SYNTHESIS METHOD

The only data structure in the LISP language is the
S-expression which may be defined to be any string of
symbols that can be generated by the grammar <5--
expression> <atom> I (<S-expression > • <S-expression>),
where (atom) may be either an identifier or NIL. NIL is a
special reserved symbol, a LISP language constant. Any
S-expression which is defined by the rule (S-expression)
(atom) will be called an atom. An example S-expression is

A

Fig. I. Graphical representation of ((A • B) • C).

X = ((A • B) • C), which can be represented graphically as
the tree shown in Fig. 1.
A LISP convention that will be followed here is that a

function f and its arguments x l, x2, • • • , x„ are often given in
the list form (f x, x2 x3 • • • Xn). Using this notation, the
definitions of several common LISP functions are

if X = (S, • S2),

(CAR X) = where S, and S2 are S-expressions

undefined, if X is an atom

S2, if X = (S1 • S2),

(CDR X) = where S, and S2 are S-expressions

undefined, if X is an atom

(CONS S, S2) = (S, S2),

where Siand S2 are S-expressions.

We will also be using one predicate which can yield a value
true T or false NIL:

, if X is an atom
(ATOM X)== ,

‘NIL, otherwise.

If X = ((A • B) • C), then some example evaluations of these
functions are

(CAR X) = (A • B)

(CDR X) = C

(CONS X X) = (((A • B) • C) • ((A • B) • C))

(ATOM X) = NIL.

The program synthesis method will function by assembl-
ing a program from a set of primitive functions of the form
(FiX)= (LISP code), where (LISP code) could be theo-
retically almost any LISP program. In this paper only five
different forms have been considered:

(F X) = NIL

(F , X) = X

(F , X) = -(CAR X))

(F X) = (F i(cDR X))

(F X) = (coNs(F X)(F X)).

Other primitive functions could have been used, such
as (F, X) = (cAR(FjX)) Or (F1 X) = (CONS(CAR(CDR X))
(F A')), but modifications to the original set did not seem to
result in a more interesting class of synthesized functions.
The program synthesis method will proceed approxi-

mately as follows. If it is desired to generate a LISP program
which converts, for example, X = ((A B) • C) to
Y = (C • (B • A)), the first step is to write Yin terms of X as
was given in the previous section. Decomposing this expres-

BIERMANN: INFERENCE OF LISP PROGRAMS

sion into the primitive functions given above results in
Y = (F1 X), where F, is the top-level function in the decom-
position and where F1 and the lower level functions are
defined as follows:

Y = (F1 X)

where

(F, X) = (coNs(F 2 X)(F 3 X))

(F 2X) = (F 4(cDR X))

(F3 X) = (F 5(cAR X))

(F, X) = X

(F5 X) = (coNs(Ft, X)(F X))

(F6 X) = (F8(cDR X))

(F7 X) = (F 9(cAR X))

(F8 X) = X

(F9 X) = X.

The synthesis procedure then searches for a way to merge
these nine functions to obtain a program of minimum size.
The only tool used is the insertion of McCarthy conditionals
[11] with their associated predicate tests. In this example the
functions are partitioned as IF 1, F4, F5, F8, F9{, (F2, F6{,
and (F3, F71 to obtain the program

(F , X) = (coN0A-r0m X)X)

(T(coNs(F 2 X)(F 3 X))))

(F2 = (FI(CDR X))

(F3 X) = (F i(cAR X)).

The COND function is defined in Section IV and means in this
case, "If X is an atom yield X. Otherwise yield
(coNs(F2 X)(F3 X))."

This whole process may be visualized graphically as
shown in Fig. 2, where the composition of Yin terms of X
with all intermediately defined functions is shown at the left
and the synthesized program after merger is shown at right.
The resemblance to finite-state automata is clear, giving rise
to the name of the class of programs to be studied here: the
"regular" LISP programs. We will, in fact, often represent
LISP programs in this graphic fashion and refer to the parts
of a program using graphic terminology. For example, we
will say that F1 has two transitions leading away, ((ATOM
X)X) and (T(coNs(F2 X)(F3 X))). The only significant de-
viation from the usual graph notions is that the transitions
leading away from a program node will have an order,
namely the order indicated in the McCarthy conditional
representation.

Section III will study the problem of finding a unique
decomposition of Y into primitive functions. Section IV will
give a definition of regular programs, Section V will discuss
one of their properties, and Section VI will give the synthesis
method. The final two sections will give examples of system
behavior and a discussion of results.

.5g7

Trace

Fig. 2. Computation of Y = (C (8 .4)) from X = ((.-I • B) C') in
terms of intermediate functions and synthesized program after merger.

III. THE GENERATION OF COMPUTATION
TRACES FROM EXAMPLES

We will be interested in finding a unique sequence of LISP
operations for converting an input S-expression X into some
output S-expression Y. In order to assure uniqueness, we
will first require that all atoms in X be non-Nu. and distinct.
This means that it will be known that whenever an atom
appears in Y it will have come from a uniquely defined
position in X. Therefore, ((A • B) • C) will be an allowed
argument X while ((A • B) • A) will not be. The philosophy
is that the user of the automatic program synthesizer should
want to express through his examples the desired computa-
tion in as direct a manner as possible and should not want to
introduce unnecessary ambiguities. This assumption about
argument X will be maintained throughout this paper.
The composition c(X, Y) of Y in terms of X can thus be

uniquely defined as

NIL, if Y is NIL

••
Y written in terms of X,

c(X, Y) =
if Y is equal to some atom of X

(CONS c(X, (CAR Y))c(X, (('DR Y))), otherwise.

Thus for the example X and I from Section II,

c(X, Y) = (coNs c(X, C)c(X, (B • A)))

= (coNs(cDR X)(coNs c(X B)c(X,

= (coNs(cDR X)(coNs(cDR(cAR X))

(cAR(cAR X)))).

While c(X, Y) specifies which operations must be applied
to A' to obtain I, the computation trace t (X, Y) will specify
the exact order in which those operations are to be applied.
That is, the composition c(X. Y)does not uniquely define the
sequence of computations in terms of the primitive func-
tions. This can be verified by noting that the example I given

588 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-8, NO. 8, AUGUST 1978

above could also be computed by the following set of

primitives:

(F1 X) = (coNs(F2 X)(1,3 X))

(F2 X) = (F4(CDR X))

(F3 X) = (coNs(F5 X)(F6 X))

(F4 X) = X

(F 5X) = (F 7(cAR X))

(F 6X) = (F 8(cAR X))

(F, X) = (F 9(cDR X))

(F 8X) = (F ,o(c AR X))

(F 9 X) = X

(FioX)= X.

There may be many possible orderings for the primitive

operations, and the efficiency of the program synthesis

technique depends on discovering the correct one directly

and without search. t(X, Y) succeeds in doing this by giving

CAR and CDR a higher precedence than CONS. Thus if there is

ever a choice between applying a CAR or CDR operation to X

or applying CONS to build output Y, the CAR or CDR

operation is always executed first. Therefore, in the example

X and Y given, (F3 X) could have been defined as (F5(cAR

X)), as shown in Section II, or (coNs(F5 X)(F 6X)), as shown

here. t(X, Y) resolves this ambiguity by choosing the former

and computing (CAR X) first.
The idea of precedence for CAR and CDR can also be

thought of in another way. If not all of input X is used in

computing output Y, then that portion of X which is not

used is thrown away immediately before any CONS opera-

tions are applied. In the above example, no portion of (CDR

X) appears in the result of (F3 X); so (CDR X) is thrown

away immediately, and (CAR X) is computed and passed on

to the next stage of computation. This method of computa-

tion is called direct, as described in the next section.

The computation trace t(X, Y) for computing Y from X is

defined as

(N), if c(X, Y) = NIL

(f), if c(X, Y) = X

(A t((cAR X), Y)),
if (CAR X) appears in c(X, Y) and no
(CDR X) or X as an argument of CONS or

t(X, Y) = X alone appears in c(X, Y)

(1) t((cDR X), Y)),
if (CDR X) appears in c(X, Y) and no
(CAR X) or X as an argument of CONS or
X alone appears in c(X, Y)

(0 t(X, (CAR Y)) t(X, (CDR Y))), otherwise.

Intuitively, the codes N, 1, A, 15, and 0 represent the
application of the operators nil, identity, CAR, CDR, and

5

Fig. 3. Computation trace t(X, Y) for example X and Y.

CONS, respectively. The nil operator always yields NIL as its

result regardless of the input. The identity operator yields an

output which is equal to its input. This notation A, D,
0) is used instead of (NIL, identity, CAR, CDR, CONS) to pre-

vent confusion between the composition c(X, Y) and the

trace t(X, Y).
Computing t(X, Y) for the example X and Y yields

t(X, Y) = (0 t(X, C)t(X, (B • A)))

= (0(13 t(C, C))(A t((A B), (B • A))))

= (0(13(1))(A(0 t((A • B), B)t((A • B), A))))

= (0(13(I))(A(0(D t(B, B))(A t(A, A)))))

= (0(0(0)(A(0PTMA(1))))).

This expression can be represented graphically as shown in

Fig. 3.
The interpretation of Fig. 3 is that Y is computed from X

as follows. Y is equal to two things coNsed together. The first
item is found by computing (CDR X) and returning the

result. The second item is found by computing (CAR X) and
passing the result X' = (A • B) to another calculation. In

this calculation, two things are coNsed together, the results

of computing (CDR X') and (CAR X'), respectively. Thus the

total computation yields the value Y = (C • (B • A)).

The program synthesis method of this paper begins with a

set of input-output pairs (X Yi) for the desired program and

first computes the associated traces t(Xi, Yi) as described in

this section. These traces then form the basis for the

synthesis procedure which is presented in Section VI.

IV. REGULAR LISP PROGRAMS

This section will begin by defining the concept of a

"semiregular" LISP program. Then the regular programs
will be defined to be a certain well-behaved subset of the

semiregular programs. Two theorems will be proven, one

showing that the property of regularity is decidable and the

other showing that the t operator of the previous section

provides the correct trace for the synthesis of regular

programs.
Many times the CAR and CDR functions are composed to a

considerable depth; so space can be saved with an ab-

breviated form. Specifically, the middle letters of the

composed functions can be concatenated between a c and R

to represent the composition. Thus (cDR(cDR(cAR X))) will

be written (CDDAR X). The set of such expressions can be

written (c(A + D)*R X) with the understanding that (cR X)

is just the identity function.

BIERMANN: INFERENCE OF LISP PROGRAMS 589

The conditional operator in LISP is written

(coND(pi)

(P2 f2)

(P. M)

and is evaluated as follows. The predicates p„ i = 1,2, • , n,
are evaluated sequentially until one is found which yields
true. In this study it will be assumed that p,, is the predicate T
which is always true so that there will always be a first k such
that p„ is true. Then the value returned by the COND function
is the value of the function
A chain of predicates will be defined to be a sequence of

predicates Pi/ P2> • • ', pn such that

1) pi = (ATom(c w, R X)), where w, E (A D)* for i = 1,
2, • • • , n — 1 and where w, is a proper suffix of w, ,for
i = 1, 2, • • , n — 2, and

2) pn = T.

Predicates synthesized by the system described here will be

in such chains. An example chain of predicates is

Pi = (ATom(cAR X))

P2 = (Krom(cADAR X))

p3 = (ATOM(CDDDADAR X))

= T.

A semiregular LISP program P will be defined to be a
finite nonempty set of component programs F i = 1, • • • , m,
with one of them F1 being designated as the initial compon-
ent. The value of P operating on X, written (PX), is equal to

(F1 X). A component program F, of P is of the form

(F, X) = (coND(pi .1;)

(P12 .1:2)

(Pin fin))

where nr it,. i25 • is a chain of predicates with argumentsn
X and where each j = 1, • • • , n, is one of the following:

1) the nil function,
2) the identity function,
3) (Fh(cAR X)),
4) (Fh(cDR X)),
5) (coNs(Fh X)(F k X)),

where F„ and F,, are component programs of P.
The predicates p,i, j = 1, 2, • • • , n, in the above definition

are known as the predicates associated with component F1.

An argument X will be said to satisfy a particular predicate

Pi if

p,(X) = false, for k = 1, 2, • • • ,j — 1

and

p(X) = true.

The pairs (pi; fo) are said to be parts or transitions of F

Finally, if n = 1 in the above definition, we will often write

(F X) = rather than (F, X) = (coND(pi, where

pi, = T. An example of a semiregular program appears in
Section II.
An S-expression J/1 is a possible argument for component

F in P if there is an S-expression X such that evaluation of

(P X) involves (depends on) evaluation of (F ;14 For exam-
ple, if P has initial component

(F1 X) = (coNDUATom(cDAR X))(F 2(c AR X)))

(T(F 3(cDR X)))),

then we know that possible arguments for F2 include all
S-expressions Y such that (Krom(cDR #)) is true. Further-
more, F3 can have absolutely any S-expression as a possible
argument. An algorithm for determining the set of possible
arguments for all of the components of a semiregular
program is given in the Appendix.
The regular LISP programs will be differentiated from the

semiregular programs by two properties, the first of which
will be referred to as directness. Suppose X = (A • B) and
Y = (A • A). Then we can write Y = (F1 X), where

(F, X) = (coNs(F2 X)(F3 X))

(F2 X) = (F4(cAR X))

(F3 X) = (F5 (CAR X))

(F4 X) = X

(F5 X)= X.

However, Y can also be written as (F1 X), where

(F1 X) = (F2(cAR X))

(F2 X) = (coNs(F3 X)(F4 X))

(F3 X) = X

(F4 X)= X.

Here CAR iS to be applied to both of the arguments of the
CONS operator so that the decision must be made whether to
apply it after the CONS operator, as shown in the first case, or
before, as shown in the second case. Regular programs will
always use the second more efficient option and are differen-
tiated from the semiregular programs by this characteristic.
The other major characteristic of regular programs con-

cerns the absence of "CAR-NIL" or "CDR-NIL" instances.
Suppose a program F1 has the form

(F, X) = (F 2(cAR X))

(F 2 X) = NIL.

Then it is clear that the value of (F1 X) is NIL and that the
computation of (CAR X) is wasted. This is called a CAR-NIL

590

(F p = T)
' 3' 31

(F4' P' (F5, p517T)

Fig. 4. Example CONS tree.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-8, NO. 8, AUGUST 1978

instance, and it can be avoided by defining F, as (F,X)=
NIL. The existence of a CAR-NIL or CDR-NIL instance is not
always as obvious as in the example because one may have

(F, X) = (coND(pi, ,f;,)

(P12 ./i2)

(p NIL)

(Pin fin))

where (Fi(cAR X)) may occur somewhere else in the
program. If it ever occurs that (Fi(cAR X)) is evaluated and

is true, then a CAR-NIL instance will have occurred.
Another example of a CAR-NIL instance occurs here:

(F, X) = (F 2(cAR X))

(F 2 X) = (CONS(F 3 X)(F , X))

(F3 X) = NIL

(F4 X) = NIL.

In this case, F, will have a value (NIL • NIL), but one must
trace down through F,, F 3. and F, to discover that the CAR
operation is wasted. These ideas are made more precise in
the following paragraphs.
An executable CONS tree for a semi regular program P is a

binary tree of component-associated predicate pairs (F,
such that there is a possible argument 1/ for the top
component of the tree which satisfies every predicate in the
tree and such that

1) if (F,, Pk) is a nonleaf node in the tree, then
(p,(coNs(F„ X)(F„ X))) is a part of j, and (F41, p,,,,)
and (F,,, ph„..,) are the immediate successor nodes to
(17,, pik) in the tree, and

2) if (F p 4) is a leaf node in the tree, then it is not true that
(pik(CoNS Z Z,)) is a part of F, for any Z1 or Z2.

Any given program I' may have many such executable CONS
trees. Suppose (F1 X) = (coNs(F, X)(F3 X)), (F, X) =
(coNs(F4 X)(F X)). and (F; X) = X for.) = 3,4, and 5. Then
the associated EONS tree appears in Fig. 4.
An executable EONS tree is direct if it is finite and if one of

the following hold:

1) at least one leaf (F pi.) is such that (pi;(F,(cAR X))) is a

part of Fi, and at least one leaf (Fi, p,7) is such that
(po(F,(cDR X))) is a part of F,;

2) at least one leaf (F, pii) is such that (pi; X) is a part of
F1;

3) every leaf (F, mi) is such that (p NIL) is a part of F

For example, the CONS tree of Fig. 4 would not be direct if the
F.; were defined as follows because none of 1), 2), or 3) would
hold:

(F1 X) = (coND(P „(coNs(F 2 X)(F X))))

(F 2 X) = (c0ND(p21(coNs(F4 X)(F5 X))))

(F3 X) = (coND(p31(F6(cAR X))))

(F 4 X) = (c0ND(p41 NIL))

(F 5 X) = (coND(p51 NIL)).

However, if the definition of F, were changed to (F , X) =
(coND(p41(F dcDR X)))), then Fig. 4 would give a direct
CONS tree because 1) would be satisfied. If F4 were not
changed but F3 were modified to be (F3 X) = (coND(p31
X)), then Fig. 4 would give a direct CONS tree by 2). The idea
of directness is related to the idea of CAR-CDR precedence
discussed in the previous section. If all unused information
in argument X is thrown away by applying a series of CAR'S
and CDR'S before using the CONS operator, then every CONS
tree that has references to X will be followed by references to
all of X, either 1) both (CAR X) and (CDR X) or 2) simply X.
An executable CAR-NIL instance for a semiregular program

P is a quadruple (F4. phi, F Pik) such that there is a possible
argument X for F, with the following properties: X satisfies

(p,i(F j(cAR X))) is a part of F4; (CAR X)satisfies Pik; and
either

1) (p;,, NIL) is a part of F1, or
2) (F1, p.m) is the top node of an executable CONS tree

where every leaf (Fr, p „) is such that (p „NIL) is a part of
F,.

An executable CDR-NIL instance is similarly defined. An
executable CAR-NIL or CDR-NIL instance represents wasted
computation in that the CAR or CDR operation is performed
on the argument even though it will never be used because
NIL will be returned as the value. If (F X) = (F 2(cAR X))
and (F2 X) -= NIL, then (F,, p,,, F2. it21) is a CAR-NIL
instance (where p„ = L and p21 = L).
A semi regular program is regular if every executable CONS

tree is direct and if there are no executable CAR-NIL or
CDR-NIL instances. In other words, the regular programs are
the well-behaved members of the semiregular class which
always do direct computations without any wasted CAR or
CDR operations.
There are two important results about regular programs

that will be asserted. First, we will note that it is possible to
test whether a given program is regular so that we will have a
precise characterization of the class of programs which can
be generated by the system. Second, we will observe that if P
is a regular program. there is always an equivalent regular
program P which performs its computations in the order
given by t(X. Y). Thus we can be sure that if we want to

BIERMANN: INFERENCE OF LISP PROGRAMS

generate P or an equivalent program, synthesis on the basis
of traces t(X, Y) is a correct approach to the problem.

Theorem 1: There exists an algorithm to determine
whether semiregular program P is regular.

Proof: Construct all CONS trees for P and check whether
they are direct. Use the procedure given in the Appendix to
determine whether any of the nondirect CONS trees are
executable. That is, determine whether there exists an
argument X such that evaluation of (PX)involves execution
of a nondirect CONS tree. Next construct all CAR-NIL and
CDR-NIL instances for the given program, and similarly
check whether any of them are executable. If every execut-
able CONS tree is direct and there are no executable CAR-NIL
or CDR-NIL instances, the program is regular.
A computation trace t' of a semiregular program P operat-

ing on an input X is a tree which traces the operations
performed by P as it executes its calculation. Specifically,
C(P, X) = r(F ,, X), where F1 is the initial component of P
and t'(F„ X) is defined as follows. Suppose X satisfies p,i and
(pij 1,j) is a part of F,; then

(N), if f,i = NIL

(0, iff=X

t'(Fi, X) =
(A t'(Fk, (CAR X))), if = (Fk(cAR X))

(D t'(Fk, (CDR X))), if/, • = (Fk(cDR X))

(0 t'(Fk, X) t'(Fh, X)),
if ,f;i = (coNs(Fk X)(F,X)).

A trace t' is a tree like the one shown in Fig. 3, and all
graph-associated concepts may be used. For example, the
parent of any node is the node immediately above it in the
tree.
Two programs P, and Pi will be called eguiralent (written

Pi= Pj) if (P X) is defined, if and only if (P X) is defined,
and if (Pi X) = (P j X) when both are defined.

Theorem 2: If P is a regular program, then there is an
equivalent regular program P, such that (Po X) = Y implies
e(P0, X) = t(X, Y).

Proof: In order to obtain the desired result that
(P, X) = Y implies e(P0, X) = t(X, Y), we must have the
guarantee that (call this Property A), whenever the identity
function is executed in the computation of Y performed by
Po, it operates with an atom as an argument. In other words,
because t(X, Y) expresses Yin terms of the atoms of X, t'(Po,
X) = t(X, Y) only if P, computes Y from the atoms of X.
Consider as an example the case of computing the identity
function. If X = (A • B) and Y = (A • B), then t(X,
Y) = (0(A(T))(D(11)), and an identity function Po must be
found such that (P0 X) = Y and e(Po, X) = (0(A(0)(D(1))).
In fact, Po may be defined as follows:

(Po X) = (F I X) = (coND((ATom X)X)

(T(coNs(F2 X)(F3 X))))

(F2 X) = (F (cAR X))

(F3 X) = (F (cDR X)).

It is easy- to construct Po from P in general such that

591

Property A will hold. Suppose (FX)= X is a component of
P; then F may be replaced by F,, F2, and F, of the above
paragraph without affecting the input-output behavior of P.
Suppose (pX) is a part of some component of P. where pis
not (ATOM X). Then this component may be replaced by
(p(coNs(F2 X)(F3 X))) using the same F1, F2, and F3 from
the above paragraph. Here again, the input-output charac-
teristics of P will be unchanged, and Property A will be made
to hold. So the desired Po can be constructed from P and
Po = P.
Assume that (P0 X) = (F, X), where F, is the initial

component of P0. We can show by induction on the length of
the trace tr(Po, X) that for each F„ if (F, X) = Y, then t'(F
X) = t(X, Y). Assume in each case that X satisfies pi; and
(pij,fj) is a part of Fi.

Basis: Assume the length of the trace t'(F„ X) is one so
thatf is either NIL or the identity function. Then in these
two cases e(Fi, X) is either (N) or (1), respectively. Also c(X,
Y) is NIL or X (using Property A), meaning t(X, Y) is (N) or
(l), respectively. Therefore, t'(F„ X)= t(X, Y).

Induction: Assume the length of the trace t'(F„ X) is
greater than one so that/;i is (F,(cAR X)), (Fk(cDR X)), or
(coNs(F, X)(F, X)) for some F, and Fh. Consider, for exam-
ple, ft; = (F,(cAR X)). Assume (Fk(cAR X)) = Y, and con-
sider c(X, Y). Assume Y contains at least one reference to X.
Then c(X, Y)will contain a (CAR X) and no reference to (CDR
X) or X alone because only (CAR X) was available for
computing Y. Therefore,

t'(F„ X)

= (A t'(Fk, (CAR X))) by definition of t'

= (A t((cAR X), Y)) by the induction argument

t(X, Y) by definition of t.

The above assumption that Y contains at least one reference
to X must hold by definition of the regularity of P. If Y
contained no reference to X, then all atoms in Y would be
NIL and (F,, pij, Fk, Pk„,) would constitute a disallowed
executable CAR-NIL instance in P. The induction argument
for the case where ./,, = (F,(cDR X)) is similar to the
argument just given.
Suppose f = (coNs(Fk X)(Fh X)) for some F, and Fh.

Then (F„ po) is the head of an executable CONS tree for this
program. Then by the definition of regularity this CONS tree
must be direct, meaning that either 1), 2), or 3) of the
definition of CONS tree directness must hold. One can check
that in all three cases

t(X, Y) = (0 t(X, (CAR Y)) t(X, (CDR Y)))
by definition of t(X, Y)
and CONS tree directness

= (0 t'(Fk, X) t'(Fk, X))

by the induction argument

= t'(Fi, X)

by definition of t'(F„ X).

This completes the proof of Theorem 2.

592 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-8, NO. S. Al:Gl'ST 1978

V. ON THE BEHAVIOR OF REGULAR LISP PROGRAMS

If someone has a LISP function in mind, he may wish to
know whether there is a regular LISP program which can
compute that function. It is shown in [1] that the set of
executable p4hs (defined below) through a semiregular
program is a finite-state language. If the computation of the
desired function involves the execution of paths which do
not constitute a finite-state language, the desired function
cannot be computed by any semiregular program.
An executable path through a semiregular program P is a

string a,az •••a i such that aj G 1.\r, I, A, D, O} for j = 1,2, • • • ,
i and such that there is an S-expression X with the property
that in tree t'(P, X), a j is a parent of a1 _,, for j = 1, 2, • • • ,
i — 1.
Theorem 3: The set of executable paths through a semi-

regular program P is a finite-state language.
The proof of Theorem 3 appears in [1], and an example of

its usage is as follows. Suppose it is desired to generate a
program which converts (.1 (B • (C • NIL))) into
(A • (B (B • (C (C (C • Nit.)))))), where in general, the
ith item in the input appears i times in the output. But a
study of the form of the traces t(X. Y) for this computation
reveals that they have paths of the form

ODOODOOODOOOOD•••DO`Ow,

where w has length i + 2 or less. But this is not a regular set,
proving that no regular LISP program can do the desired
computation.

VI. PROGRAM SYNTHESIS

A class of programs will be called admissible if it is
enumerable and if the halting problem is solvable for each
member of the class. Let C = P i = 1, 2, 3, • • .} be any
admissible class of programs. A method for generating a
program from a set S of example input-output pairs (X 1, Yi)
is to examine sequentially P 1, P2, P3, • • • until Pj is found
such that (P1 Xj) = Y, for all (Xi,)c) in S. This technique has
the advantages that it always finds a program which can do
the given examples (soundness) and that it can always
generate every program (or its equivalent) in the class C
(completeness). Such a technique can also be shown to make
optimal use of its input information (the input-output pairs)
in the sense that no other synthesis technique can be found
which will generate every program P1 on the basis of less
input- output information than the technique given here.
An enumerative approach to program synthesis would be

totally impractical if it were naively implemented, because
most programs of any interest will have astronomically large
indexes in the enumeration. However, in the case of regular
LISP programs. the computation trace for obtaining each
from its associated X; is known (because of the regularity
assumption). This means that the only programs which need
be examined are those which can execute the given traces,
and very powerful techniques exist for hurrying through this
enumeration. This section will present a synthesis algorithm
which is efficient enough to generate LISP programs of
significant complexity and which has all of the desirable
properties of a completely enumerative program.

Before beginning these discussions, it is important to note
that the halting problem for the regular LISP programs is
decidable.

Theorem 4: If P is a regular LISP program, then P will
halt after a finite time on any argument.

Proof: If P fails to halt when operating on argument X,
then t'(P, X) must have an infinite path w =
a; e {N, I, A, D, U. w could not have an N or an I because
this would terminate the path. It could not have an infinite
number of A's or D's because this would imply an infinite
number of CAR'S or CDR'S applied to finite X resulting in an
undefined (thus halting) operation on an atom at some
point. Thus w = w w2, where w 1 e {A, D, 0}* has finite
length and where w2 is an infinite string of O's. But regular
LISP programs are incapable of executing an infinite string
of O's because this would imply an infinite executable CONS
tree which contradicts the directness requirement included
in the definition of regularity.
The general enumerative algorithm for program synthesis

will now be given along with statements of some of its
properties.

Algorithm Al :

Input: A finite set S of input-output pairs (X y) for
the desired program.

Output: A program Pj from class C with the property
that (P1 X,) = Y, for each given (Xi, Y;) in S.

1) ./ 1.
2) while there is (X 1, E S such that (P 1X1) Yi, in-

crement j.
3) return with result pi.

The result obtained if algorithm .41 enumerates class C and
has input S will be denoted .4 1(C, S).
A program synthesis algorithm A will be called sound if,

whenever S represents the behavior of a program in C, (4(C,
S)X;) = Y, for each (Xi, Y,) S.
Program Pj will be said to corer program P if the fact that

(Pi X) is defined implies that (Pj X) is defined and that
(I', X) = (P1 X). Algorithm A will be called complete over
class C if for each P e C there is a finite set S of pairs (X, Y)
such that A (C, S) will halt, yielding P j which covers P.

Algorithm A will be called stable if (A (C, S)X) = Y for all
(X, Y) c S' implies .1(C, S i 5') = A(C, S). Thus if A
chooses a program P on the basis of information S and if
additional information S is compatible with P„-.1 will not
make a different choice on the basis of S u S.

Theorem 5: If C is admissible, then A 1 enumerating class
C is sound, complete, and stable.

Proof: The soundness and stability properties follow
trivially from the construction of Al. The completeness
property requires only a simple proof. Let P be an arbitrarily
chosen program from C, and let P j be the first program in the
enumeration of C which covers P. For each i = 1, 2, 3, • •
— 1, choose an (X,. Yi) such that (P./X i) = and (P i X i) is

undefined or (Pi Xi) = Y. Such an (Xi,),) can be found for
each i = 1,2, • • • , j — 1 because the absence of such (X i, Yi)
would imply P, covers Pj and I' for i <j, which contradicts

BIERMANN: INFERENCE OF LISP PROGRAMS

'AR

I IX, Xi

X = ((AA) •C)

Y (C• (BA))

arritIPtograir

Fig. 5. Computation trace and partially synthesized program.

the definition of P. If 41 operates on finite set S = 1(X

= 1'2'
11, it will halt and return Pias its answer.

This completes the proof.
Suppose AO is a program synthesis algorithm which is

sound, complete, and stable over C. If for every S there is an
associated S S such that AO(C, S') = 4 1(C, S) and if not
all such S with associated S' are such that Al(C,S') = 4 1(C,
S), then AO will be said to be more input efficient than A 1 .

Theorem 6: If a program synthesis algorithm AO is sound,
complete, and stable over C, then AO is not more input
efficient than Al.

Proof: Assume AO is more input efficient than Al. Then
there must be an S and an S' g S such that A 1(C, S) = P,
AO(C,S')= P, and Al(C, 5') = Pi for i </. Then there must
be a subset S" S' such that AO(C, S' — S")= P, since AO is
more input efficient than Al, and AO is complete. But for
each (X, Y) c S", (Pi X) = Y by the soundness of A 1 . So by
the stability property of AO, AO(C, (S' — S") u S") = P But
this contradicts the fact that AO(C, S') = P.; for i <j; so it
must not be true that AO is more input efficient than Al. This
completes the proof.
Theorems 5 and 6 are adaptations of results by Gold [8] to

the domain of this study.
Returning to the example of Section I, it is desired to

generate a program that outputs Y = (C • (B • .1)) from
input X = ((A • B) • C). If the desired program is regular, we
know that the trace of the computation must be as shown in
Fig. 5. A wise synthesis procedure is to carry out the
enumeration P1, P2, P3, • • • of the regular LISP programs,
being sure to skip every program which cannot execute the
"first part" of this trace t(X, Y). "First part" in this case
means all of the trace out to the trace frontier, which is an
imaginary line across the trace showing how much of the
trace has been processed at any given time. Fig. 5 shows one
such frontier and a partial program which can execute the
trace up to the indicated frontier. The synthesis procedure
given here is thus strictly enumerative in the sense of
algorithm AL but tile trace is used to drastically reduce the
search.

593

Two S-expressions will be said to have identical templates
if they become identical when all atoms are changed to NIL.
Thus ((A • B) • C) and ((B • NIL) • D) have identical
templates.

Notice that in the trace of Fig. 5 each node has an
associated input S-expression. Thus node 3 has ((A • B) • C)
which becomes (A • B) at node 5 after the CAR operation.
Notice also that each trace node above the frontier has
associated with it the component name from the partial
program which executed that portion of the trace. At each
point in the synthesis process, a set of active nodes will be
chosen along the frontier for processing. The set of active
nodes will have the property that they all have the same
associated component names and identical associated input
templates. Along the frontier shown, there are three possible
(singleton) sets of active nodes to choose from: 12} with
associated component F2 and template ((NIL NIL) • NIL),

{6} with associated component and template (NIL • NIL)
and, {7} with associated component F, and template
(NIL • NIL). In general, a set of active nodes may be quite
large so that many nodes in the trace can be processed in one
algorithmic step. The component of the program which is
associated with the active nodes is called the active
component.
The synthesis procedure chooses a set of active nodes on

the frontier and attempts to advance the frontier at those
nodes by adding, if necessary, a transition to the active
component of the program. Suppose that 12} is chosen as the
set of active nodes. Then a transition in the program from
active component F2 on an input of the form
((NIL • NIL) • NIL) is to be added to the program. In terms of
LISP, F2 is about to be defined as (F2 X) = (F;(cDR X)),
where each i = 1, 2, 3, and 4 is tried. All possible values of i
are tried because we are enumerating all possible programs
which could execute the trace. In this case i = 1 succeeds,
leaving the definition as (F2 X) = (F,(cDR X)). The frontier
is thus advanced from 12, 6, 71 to 14, 6, 71 and a new set of
active nodes may be chosen.

If 161 is chosen as the next set of active nodes, we notice
that the above definition of F2 provides the proper CDR
operation enabling the procedure to advance the frontier to
14, 8, 71 without additional modifications to the partial
program. Here we say that the trace transition below161was
merged with a transition from F2. If node 6 had been
followed by an A instead oft, the merge would have failed,
and the definition of F2 would have been modified (if
possible) to yield a CDR operation for inputs of type
((NIL • NIL) • NIL) and a CAR operation for inputs of type
(Nit. • NIL):

(F, X) = UATOM(CAR X))(FACAR X))
(T(Fi (CDR X)))

for some i = 1, 2, 3, 4, or 5.
The regular LISP program synthesizer will be called 42. It

has three major routines: MAIN which sets the maximum
allowed number of synthesizable transitions and then sends
the system off looking for a solution, NODE PROCESSOR which

594 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-8, NO. 8, AUGUST 1978

attempts to find a way to advance the frontier either by
creating a new program transition or by merging trace
transitions with a program transition as explained above,
and CREATE NEW TRANSITION which creates a new transition
in the program.
The program MAIN sets the maximum allowed number of

transitions (MAXTRANS) to one, and then the complete space
of one transition programs is searched for a program which
can execute the given traces. If NODE PROCESSOR returns
having found no solution, MAXTRANS is incremented and the
search begins again. The program MAIN may be summarized
as follows.

MAIN:
MAXTRANS = 1;
NO SOLUTION FOUND = TRUE;
WHILE NO SOLUTION FOUND;

INITIALIZE SYNTHESIZED PROGRAM AS ONE COMPONENT
AND NO TRANSITIONS;
CALL NODE PROCESSOR
MAXTRANS = MAXTRANS 1;

END.

The program NODE PROCESSOR begins by updating the
frontier on the traces and picking out a set of active nodes. If
a contradiction is found among the active nodes, NODE
PROCESSOR immediately fails and returns to the calling
routine. Thus if two active nodes are both associated with
component F2 and have input template (NIL • NIL) but are
followed by A and D transitions, respectively, no transition
can be added to F2 which can execute both portions of the
trace. If no such contradictions are found, NODE PROCESSOR
begins looking for a way to advance the frontier at the active
nodes. If no transition leaves the active component, then
CREATE NEW TRANSITION IS called to create the first such
transition. If there are transitions leaving the active compon-
ent, an attempt is made to merge the trace transitions below
the active nodes with the first transition leaving this active
component. The merge will be successful if the operations
associated with the transitions below the active nodes are
identical to the operation associated with the proposed
program transition and if the predicates of the active
component can be revised to enable the program to cor-
rectly execute the traces up to the new frontier. If the merge is
successful, NODE PROCESSOR is called recursively to update
the frontier again, to choose a new set of active nodes, and to
make further additions to the program being created. If the
merge fails or if it succeeds but NODE PROCESSOR returns with
failure, another transition from the active component is
chosen for possible merger.

It may be that NODE PROCESSOR will not be able to merge
the trace transitions with any existing transition from the
active component. Then attempts are made to create a new
transition leaving the active component. The new transition
may be either before or after any existing transition, and
every possibility must be tried. At first the new transition is
proposed to precede the first existing transition. An attempt
is made to build predicates for the active component so that
this new transition and all others correctly execute the traces

to the new frontier. If the attempt is successful, CREATE NEW
TRANSITION is called to add this new transition at the
appropriate position with the appropriate predicate. If the
attempt fails or CREATE NEW TRANSITION returns with failure,
a different location for the new transition is tried.

If all of the above attempts to account for the transitions
leaving the active nodes fail, then NODE PROCESSOR returns
with failure. There is no addition to the given partial
program which will enable it to execute the given traces.
Backup to a higher level routine will cause the partial
program to be modified and the frontier to be raised to an
earlier position. The NODE PROCESSOR routine may be sum-
marized as follows.

NODE PROCESSOR:
IF NO TRANSITIONS HAVE BEEN CREATED, THE FRONTIER IS THE

SET OF INITIAL NODES OF THE TRACES
ELSE THE FRONTIER IS ADVANCED TO ACCOUNT FOR THE

TRANSITION PROCESSED IN THE CALLING ROUTINE;
IF THERE ARE UNPROCESSED NODES ON THE FRONTIER, CHOOSE

A NEW SET OF ACTIVE NODES
ELSE PRINT THE SOLUTION PROGRAM;
NO SOLUTIONS FOUND = FALSE;
RETURN;

IF CONTRADICTIONS ARE FOUND AMONG THE ACTIVE NODES,
RETURN;

IF NO TRANSITION LEAVES THE ACTIVE COMPONENT, CALL
CREATE NEW TRANSITION; RETURN;

FOR EACH TRANSITION LEAVING THE ACTIVE COMPONENT, IF IT
IS MERGABLE WITH THE TRANSITIONS LEAVING THE ACTIVE
NODES, CALL NODE PROCESSOR;

FOR EACH LOCATION BEFORE AND AFTER AN EXISTING TRANSI-
TION, IF PREDICATES CAN BE BUILT SO THAT A NEW TRANSI-
TION CAN BE INSERTED AT THIS LOCATION, CALL
CREATE NEW TRANSITION;

RETURN FROM NODE PROCESSOR.

The CREATE NEW TRANSITION routine first checks to see
whether the existing number of transitions in the program
being generated has reached the maximum MAXTRANS set by
MAIN. If the maximum has been reached, CREATE NEW
TRANSITION fails immediately. If the operation below the
active nodes is N or /, then the appropriate NIL or identity
transition is added to the active component, and NODE
PROCESSOR is called to advance the frontier and continue the
processing. If the active nodes are followed by .1 or D,
the appropriate transition CAR or CDR is added to the active
component. That is, part (p(F,(c u R X))). u E A. D. is
added to the active component where p and the location of
the addition were set by the calling routine NODE PROCESSOR.
Then NODE PROCESSOR is called to advance the frontier, and
so forth. If NODE PROCESSOR returns with failure, the parts
(p(F2(c u R X))). (p(F3(c H R X))). etc.. are tried sequen-
tially' until every possible destination has been attempted
including a new component which was not previously
created. If all such attempts fail. CREATE NEW TRANSITION
returns with failure. If the active nodes are followed by U. a
new transition (p(coNs(E,)(f- j.V)) is attempted. and every

BIERMANN I INFERENCE OF LISP PROGRAMS

possible pair of destinations Fi and Fi is tried. This routine
may be summarized as follows.

CREATE NEW TRANSITION:
IF THE CURRENT NUMBER OF TRANSITIONS IN THE PROGRAM IS
MAXTRANS, RETURN;

IF A NIL OR IDENTITY TRANSITION IS TO BE CREATED,
CREATE THE TRANSITION;
CALL NODE PROCESSOR;
RETURN;

IF A CAR OR CDR TRANSITION IS TO BE CREATED,
FOR EACH POSSIBLE DESTINATION OF THE TRANSITION,
CREATE THE CORRECT TRANSITION TO THAT
DESTINATION;
CALL NODE PROCESSOR;

RETURN;
IF A CONS TRANSITION IS TO BE CREATED,

FOR EACH POSSIBLE PAIR OF DESTINATIONS,
CREATE A TRANSITION TO THAT PAIR;
CALL NODE PROCESSOR;

RETURN;
END.

The reader interested in seeing this type of algorithm
stated in much more precise form and accompanied by
proofs of correctness should consult [5] or [2]. Even though
these references are not concerned with LISP synthesis, they
give two different methods by which the current algorithm
could be formalized and proven correct.

In the following. A2 will be illustrated by working through
a synthesis from the trace of Fig. 5. Many steps will be
omitted where unsuccessful searches are performed.

ENTER MAIN
MAXTRANS = 1 (FAILURE)
MAXTRANS = 2 (FAILURE)
MAXTRANS = 3 (FAILURE)
MAXTRANS = 4
INITIALIZE SYNTHESIZED PROGRAM AS ONE COMPONENT

(Fig. 6(a))
ENTER NODE PROCESSOR
NO TRANSITIONS HAVE BEEN CREATED: FRONTIER = {1}
THERE ARE UNPROCESSED NODES: ACTIVE = {1}
NO CONTRADICTIONS FOUND
NO TRANSITION LEAVES THE ACTIVE COMPONENT F,

ENTER CREATE NEW TRANSITION
A CONS TRANSITION IS TO BE CREATED
TRY DESTINATIONS F1, F, (FAILURE, VIOLATES
REGULARITY)

TRY DESTINATIONS F1, F2 (FAILURE, VIOLATES
REGULARITY)

TRY DESTINATIONS F2, F1 (FAILURE, VIOLATES
REGULARITY)

TRY DESTINATIONS F2, F2 (FAILURE REPORTED FROM
NODE PROCESSOR)

TRY DESTINATIONS F2, F3 (Fig. 6(b))
ENTER NODE PROCESSOR

TRANSITIONS HAVE BEEN CREATED: FRONTIER = {2, 3}
THERE ARE UNPROCESSED NODES: ACTIVE = 131

(a)

CDR

(b)

CAR

(d) (e)
Fig. 6. Creation of example program.

595

CAR

NO CONTRADICTIONS FOUND
NO TRANSITION LEAVES THE ACTIVE COMPONENT F3

ENTER CREATE NEW TRANSITION
A CAR TRANSITION IS TO BE CREATED
TRY DESTINATION F1 (Fig. 6(c))

ENTER NODE PROCESSOR
TRANSITIONS HAVE BEEN CREATED: FRONTIER = {2, 5}
THERE ARE UNPROCESSED NODES: ACTIVE = 151
NO CONTRADICTIONS FOUND
A TRANSITION LEAVES THE ACTIVE COMPONENT F,
TRY MERGE OF TRANSITIONS FROM ACTIVE NODE AND
ACTIVE COMPONENT (SUCCESS)

ENTER NODE PROCESSOR
TRANSITIONS HAVE BEEN CREATED: FRONTIER = {2, 6, 7}
THERE ARE UNPROCESSED NODES: ACTIVE = 121
NO CONTRADICTIONS FOUND
NO TRANSITION LEAVES THE ACTIVE COMPONENT F2

ENTER CREATE NEW TRANSITION
A CDR TRANSITION IS TO BE CREATED
TRY DESTINATION F1 (Fig. 6(d))

ENTER NODE PROCESSOR
TRANSITIONS HAVE BEEN CREATED: FRONTIER = {4, 6, 7}
THERE ARE UNPROCESSED NODES: ACTIVE = {6}
NO CONTRADICTIONS FOUND
A TRANSITION LEAVES THE ACTIVE COMPONENT F2
TRY MERGE OF TRANSITIONS FROM ACTIVE NODE AND
ACTIVE COMPONENT (SUCCESS)

ENTER NODE PROCESSOR
TRANSITIONS HAVE BEEN CREATED: FRONTIER = {4, 8, 71
THERE ARE UNPROCESSED NODES: ACTIVE = {7}
NO CONTRADICTIONS FOUND
A TRANSITION LEAVES THE ACTIVE COMPONENT F3
TRY MERGE OF TRANSITIONS FROM ACTIVE NODE AND
ACTIVE COMPONENT (SUCCESS)

ENTER NODE PROCESSOR
TRANSITIONS HAVE BEEN CREATED: FRONTIER = {4, 8, 9}
THERE ARE UNPROCESSED NODES: ACTIVE = 14, 8, 91
NO CONTRADICTIONS FOUND
A TRANSITION LEAVES THE ACTIVE COMPONENT F,
TRY MERGE OF TRANSITIONS FROM ACTIVE NODE AND
ACTIVE COMPONENT (FAILURE)

596 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-8, NO. 8, AUGUST 1978

TRY CREATING A PREDICATE SO THAT A NEW TRANSITION
CAN BE INSERTED BEFORE THE EXISTING TRANSITION
(SUCCESS: p= (ATOM X))

ENTER CREATE NEW TRANSITION
AN IDENTITY TRANSITION IS TO BE CREATED (Fig. 6(e))

ENTER NODE PROCESSOR
TRANSITIONS HAVE BEEN CREATED: FRONTIER = 1
THERE ARE NO UNPROCESSED NODES
PRINT THE SOLUTION PROGRAM
NO SOLUTIONS FOUND = FALSE

POP TO THE TOP LEVEL OF THE NESTED RECURSIVE CALLS AND
HALT.

Our implementation of A2 completes this computation in
about half a second. It is interesting to note that even though
for illustrative purposes this program was generated from
the input-output pair ((1A • B) • C), (C • (B A))), the same
program could have been generated from ((A • B), (B • A))
or any other example with a nonatomic input.

Before concluding this section, it may be helpful to briefly
discuss the predicate generation process which is largely
ignored above. The partial program must be able at each
step of the synthesis process to execute all of the given traces
down to their respective frontiers. Let po be the jth predicate
in component F1. Let To be the set of S-expressions taken
from the traces which are inputs to F. when the transition
with predicate p,i is taken. Then for each component F. a
chain of predicates pii, p,2, • • • , pin, must be found such that
for all X E To, for j = 1,2, • • , — 1, pii(X) = T and such
that for all X E Ti„„ for all j = 1,2, • • • , n, — 1, po{X) = NIL.
Each time that a program transition is created or a merge is
made, the predicate generation routine must discover for
some Fi whether such a chain of predicates can be found and
must produce that chain if it exists. That such a predicate
generation routine can be built can be verified easily by any
programmer, and no details of its design need be included
here.

VII. SOME SYNTHESIZED PROGRAMS

Algorithm A2 was implemented on a PDP-11/45, and
some of the generated programs are included here. Because
A2 is enumerative, the time required to complete a synthesis
rises exponentially with the size of the target program. With
the current system, programs with three transitions or less
usually could be created in a second or less. Four transitions
often required several seconds, five transitions took most of
a minute, and six or more transitions could require much
more than a minute of time. No special search pruning
techniques were employed to speed up A2 although many
are known. For example, [4] explains a failure memory
technique which was successful in speeding up a similar
algorithm by two or more orders of magnitude for problems
similar to the ones discussed here.
The construction of the trace t(X, Y) was not automated;

so the examples given below were generated by constructing
the traces by hand and submitting them to A2. List notation
is used in this section as is common in the LISP literature:
(x1 x2 x3 •• • xn) is used to represent the S-expression
(x • (x2 (x3 • (• • • (x„ • Nit..)) • • •).

Example 1: Find the last element of a list: (A B C) yields

an output C. (A B C) is defined as (A (B • (C • NIL))),
which is changed to (A • (B (C • D))) to accommodate the
input specification of the program synthesizer. (All input
atoms must be distinct and non-NIL)

Example Input Output

(A • (B (C • D)))

Program:

(F1 X)= (coND((ATom X)X)

((Amm(cDR X))(Fi(cAR X)))

(T(F i(cDR X)))).

s.
The same program would have been generated if any

other input list of length two or more had been used. Similar
behavioral robustness would be exhibited on any other
example in this section.
Example 2: Find the third from last element of a list:

(A B C D E) yields an output C. The input list is converted
for submission to the algorithm as in Example 1.

Example Input Output

(.4 • (B • (C • (D (E F)))))

Program:

(F1 X)= (coND((ATom X)X)

((ATom(cDDDR X))(Fi(cAR X)))

(T(F,(cDR X)))).

Time: -I s.
Example 3: Suppose the user has submitted the behavior

example of Example 2 with the goal in mind of producing a
program to output the third element of a list. Then he tests
the program on the input (A B C D) and obtains B as an
output. Clearly something is wrong; so he resynthesizes the
program with two examples, (A B C D E) yields C and
(A B C D) also yields C. This time he obtains the program
he wanted. (List notation is converted as in Example 1.)

Example Input Output

(4 • (B • (C • (D (E • F)))))
(4 (B • (C • (D • E))))

Program:

(F,X)= (coND((ATom X)X)

(T(F2 (CDR X))))

(F2 X) = (F3(CDR X))

(F3 X) = (Fi(CAR X)).

Time: 3 s.
In order to illustrate behavioral robustness, it should be

mentioned that the same program would be generated if any
two or more of the following input-output pairs had been
used.

BIERMANN: INFERENCE OF LISP PROGRAMS 597

Input Output

(R S T A)
(X Z)

(A B C D E)
(ROBUST)
(REGULAR)
(ABCDEFGH)

Example 4: If an S-expression is linear with an atom on at

least one side of every coNsed pair, go to the bottom of the

chain and give the atom furthest to the right.

Example Input Output

(A • ((B • C)- D))

Program:

(F, X) = (coND((ATom X)X)

((ATom(cAR X))(F i(cDR X)))

(T(Fi(cAR X)))).

Time: 1 S.
Example 5: Sequentially take CDR, CDR, CAR, CDR, CAR,

CDR, and so forth until an atom is found. Return that atom as

the result.

Example Inputs Outputs

A
(A • B)

(A (B • C))
(A • (B • (C • D)))

(A • (B • ((C • (D • E))- Fp)

A

Program:

(F, X) = (coND((ATom X)X)

(T(F2(cDR X))))

(F2 X) = (coND((ATom X)X)

((ATom(cDR X))(F ,(cDR X)))

(T(F3(cDR X))))

(F3 X) = (F2(cAR X)).

Time: 152 s.
E\-ample 6: Find the atoms at the extreme left and right in

an S-expression.

Program:

Example Input Output

((A • B) • (C• D)) (.4 • D)

(F, X) = (coNs(F2)(F3 X))

(F2 X) = (COND((ATOM)

(T(F2(CAR X))))

(F3 X) = (coND((ATom X)X)

(T(F3(CDR X)))).

Example 7: Double all of the elements of a list: (A B C)

yields (A /4 B B C C). First these lists are converted to

S-expressions as described in Example 1.

Example Input Output

(A • (B • (C • D))) (A • (A • (B • (B • (C • (C • D))))))

Program:

(F,X)= (coND((ATom X)X)

(T(coNs(F2X)(F3X))))

(F2 X) = (Fi(cAR X))

(F 3 X) = (coNs(F 2 X)(F 4 X))

(F4 X) = (F i(cDR X)).

Time: 10 S.
Example 8: In a list of lists, obtain the first element of each

list: ((A) (B)) yields (A B). First these lists are converted to

S-expressions as described in Example 1.

Example Input Output

((A • D)- ((B • E) • C)) (A • (B • C))

Program:

(F, X) = (coND((ATom X)X)

((ATom(cAR X))(F i(cAR X)))

(T(coNs(F 2 X)(F3 X))))

(F2 X) = (F 1(cAR X))

(F3 X) = (F i(cDR X)).

Time: 18 s.
Example 9: In a list of atoms and lists, collect the first

atoms of the lists: (A (B)C (D)(E) F) yields (B D E).

Example Input Output

(((B • H) • (C • ((D • I) • ((E J) • (F • G)))))) (B • (D (E • G)))

Program:

(F, X) = (coNOATom X)X)

qATom(cAR X))(F i(cDR X)))

(T(coNs(F 2 X)(F))))

(F2 X) = (coND((ATom X)X)

(T(F2(cAR X))))

(F3X)= (F,(cDR X)).

Time: About h.
Example 10: Collect the atoms in a list of atoms and lists:

(A (B)C (D) (E) F) yields (A C F).

Example Input Output

(.4 • ((B • H) • (C • ((D I) • ((E • J) • (F • G)))))) (A • (C • (I' • G)))
Time: 24 s.

598 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-8, NO. 8, AUGUST 1978

Program:

(F1X)= (coND((ATom X)X)

((ATom(cAR X))(coNs(F 2 X)(F3 X)))

(T(F,(cDR X))))

(F2X)= (Fi(cAR X))

(F3X)= (Fi(cDR X)).

Time: 39 s.
Example 11: Interchange the atoms of the bottom pairs of

a uniform S-expression.

Example Input Output

((A • B) ((C • D) (E F))) ((B • A) • ((D C) (F • E)))

Program:

(F1 X)= (coND((ATom X)X)

(T(coNs(F2 X)(F3 X)))

(F2X)= (coND((ATom(cAR X))(Fi(cDR X)))

(T(F (c A R X))))

(F3X)= (coND((ATom(cAR X))(Fi(cAR X)))

(T(Fi(cDR X)))).

Time: 27 s.
Example 12: One might wonder what happens if random

S-expressions are typed into the system. The answer is that
the synthesizer will do the best it can.

Example Inputs Output

A
(A • B)

((A • B) • C)
(A (((B C) • D) E))

A
(A • NIL)

A

Program:

(FI X) = (coND((A-rom X)X)

((ivrom(cDR X))(F2(cAR X)))

(T(F2(cDR X))))

(F 2 X) = (coND((ATom X)(coNs(F X)(F 3 X)))

(T(F,(cAR X))))

(F3 X) = NIL.

Time: 69 s.
Example 13: Output a constant:

(NIL ((NIL • NIL) • NIL)).

Example Input Output

A (NIL • ((NIL NIL) • NIL))

Program:

(FI X) = (CONS(F2 X)(F3 X))

(F2 X) = NIL

(F3 X) = (CONS(F4 X)(F2 X))

(F4 X) = (CONS(F2 X)(F2 X)).

Time: Ifs.
Example 14: Distinguish between two complex S-

expressions. This example simply tests the predicate-
building mechanism.

Example Input Output

((A • B) • ((((C • D) E) (((F • G) • H) • I)) • J)) NIL
((A B)- ((((C • D) • E) (((F (L • iVI)) • H) • I)) • J)) (NIL • NIL)

Program:

(F1 X) = (COND((ATOM(CDAADADR X))NIL)

(T(CONS(F2 X)(F2 X)))

(F2 X) = NIL.

Time: s.

VIII. DISCUSSION

The class of regular LISP programs probably can com-
pute most of the LISP functions that one might think of
which do not require the EQUAL predicate or the use of
additional variables. One might consider modifications
of the definition and examine what kind of synthesis perfor-
mance might be achieved. Broadening the definition some
might add interesting programs to the class, but it would
also increase the time required to generate programs. Too
great an increase in the class size would also cause the
halting problem to become unsolvable, in which case even
enumerative methods run into difficulties. The system
described here is able to discard quickly huge classes of
candidate programs because of the regularity assumption
(which implies the solvability of the halting problem). If the
halting problem is not solvable, then the astronomical
number of programs which are not known to halt on the given
examples must be saved as possible solutions to the syn-
thesis problem until one is found which can do the examples.
One could also narrow the class and greatly speed up the

system. For example, in one experiment the enumeration
was limited to linear recursions, and the program of
Example 9 was generated in less than 1 min, indicating a
speedup of about 30. A narrow enough definition makes
it possible to discard enumerative techniques and to gener-
ate programs in polynomial time. The author will report on
such a system at a later time, or the reader might wish to
study some of the other efforts in LISP synthesis [9], [10],
[12]4151

Continued research in this area will look for a narrowed
class of control structures which will make it possible to
search more deeply in the set of all possible programs and
still be able to generate many programs of interest. It is also
important to try to eliminate the limitations listed above,

RIERMANN: INFERENCE OF LISP PROGRAMS

inability to use the EQUAL predicate or additional variables.
If some success can be achieved in these areas and if this
method can be used to sequentially generate a hierarchy of
programs, truly large and useful programs will be created
automatically.

APPENDIX

DISCOVERING THE SET OF ALL POSSIBLE ARGUMENTS FOR

EACH COMPONENT FUNCTION

It is necessary to begin by developing some notation. We
will be using predicates p of the following form:

(A-rom(c w R X)) Or (G(ATOM(C W R X)))

where w E (A + D)*. The length of such a predicate will be
defined to be the length of its associated w. The second form
may be understood intuitively to mean "the S-expression
(c w R X) is greater than an atom." Specifically,

(G)= T
1 , if p is defined and p = NIL

p ,
INIL, otherwise.

For example, if X = (A • (B • C)), then

(G(ATom(cDR X))) = T

(G(ATOM(CDDR X))) = NIL

(G(ATOM(CDDDR X))) = NIL.

If R = {p1, p2, • • p„} is a set of predicates, define

SR = {X IX is an S-expression, p(x) = T for all p e R{.

By convention, if 0 is the empty set, So will be defined to be
the set of all possible S-expressions. Suppose
R = {(ATOM(CAAR X)), (G(ATOM(CDR X)))1. Then SR is the
set of all S-expressions with an atom in the CAAR location
and a nonatomic S-expression at the CDR location; e.g.,
((4 • B) • (C • D)) is in S.

If S is a set of S-expressions, define

(CAR S) = {Y1X e S and Y = (cAR X)}

(CDR S) = {Y1X ES and Y = (CDR X)

One can check that, if R is a set of predicates, then another
set R' of predicates can be found such that SR = (CAR SR). R'
is constructed by 1) deleting from R all predicates with
innermost function (A-rom X) or (CDR X) and 2) replacing
(CAR X) by X in all remaining predicates. Thus, using the
above example R, we can construct R' = {(ATom(cAR X)){.
This leads to the definition of a new function car on sets of
predicates. car (R) = R' if SR. = (CAR SR). The function cdr
is similarly defined.
The general method for finding the set of all possible

arguments for each component function is as follows. 'SR is
a set of possible arguments to F, and Fi has, for example, the
form

(F, X) = (coND(Pi (coNs(Fh X)(Fk X)))

(pi2(Fi(cAR X)))

(m3(F„,(cAR X)))),

599

some sets of possible arguments for other component func-
tions can be found. Thus Fh and FI, have SR as possible
arguments. F; has (CAR X) for all X in SR („21 as possible
arguments, which is written Scar(, tp, 2 • Since pi3 = T, F„,
will have as possible arguments (CAR X) for all X in
SR i(Gp,2)1, which is written Scar(,
The goal of this computation is to find for each F.; the set

Q; of all sets S, of possible arguments. The Q, will be
computed in stages VP, Vi), 02), • • • such that
(210) ..., and for some finite k, Vk) = V. Initially,
QT) = {So} since F1 can have any S-expression as an
argument, and V' = 0 for i> 1. Each Qr 1) is computed
by adding to Q1j) all new possible argument sets SR. which
result from the fact that SR c QV for some component F
and that Fh evaluates by calling F. The algorithm is as
follows.

1. Initialize the V) as described above, and set k = 1.
2. While k = I or there is a j such that VP') VP, do:

For each i, compute " from Vik), V2k), • • , Qh(k) as
follows, and then increment k:

Initialize + n to be equal to Q(k).
If there is an /1 such that SR is in 0), then
1) if (Fh X) = (Fi(cAR X)), add Scar(,) to (2(," n, if F,

has part (p,,„(Fi(cAR X))), m > 1, p = T, add

Scar(R ((G p(,,,_ 1)))) to
Q(k+ 1), if Fh has part

(pi,„(Fi(cAR X))), m> 1, p1„, T, add Sear(R
to i2(" 1),

2) add set SR, similar to those in 1) to Qr " if F
calls F, with argument (CDR X),

and
3) if (FI, X) = (coNs(F X)(Fr, X)), where either

r, = i or r2 =- i, add SR to + if Fh has part
(p,m(coNs(F,., X)(F,.2 > 1, pi = T, add
S R 10) t if F„ has part
(puh(coNs(FQ,., kX+)1()F. ,.2 X))), m> 1, p,„, T, add
SR to

3. For each i, Q, = Q(k)

Because the predicates are bounded in length by the longest
one found among the components F„ there are only a finite
number of them. So there are only a finite number of sets of
such predicates. And because (2(;) + ", there must be a
k such that 0- 1) = Q!" for all i. So the algorithm must halt.

ACKNOWLEDGMENT

The author is extremely grateful to Dr. P. Summers,
whose writings and discussions have led to many of the
insights described here. D. Smith is also involved in the LISP
synthesis effort and has contributed to this work. One of the
referees provided helpful suggestions which have been incor-
porated into the final version of the paper.

REFERENCES

[1] A. W. Biermann, "Regular LISP programs and their automatic syn-
thesis from examples," Dep. Computer Science, Duke Univ.,
Durham, NC, Rep. CS-1976-12, June 1976.

[2] , "Automatic indexing in program synthesis processes," Dep.

600 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-8, NO. 8, AUGUST 1978

Computer Science, Duke Univ., Durham, NC, Rep. CS-1976-4, June
1975.

[3] —, "Approaches to automatic programming," in Advances in Com-
puters, vol. 15, M. Rubinoff and M. Yovits, Eds. New York:
Academic, 1976, pp. 1-63.

[4] A. W. Biermann, R. I. Baum, and F. E. Petry, "Speeding up the
synthesis of programs from traces," IEEE Trans. Corn put., vol. C-24,
no. 2, pp. 122-136,1975.

[5] A. W. Biermann and R. Krishnaswamy, "Constructing programs
from example computations," IEEE Trans. Software Eng., vol. SE-2,
Sept. 1976

[6] L. Blum and M. Blum, "Toward a mathematical theory of inductive
inference," Inform. Contr., vol. 28, pp. 125-155,1975.

[7] J. A. Feldman, "Some decidability results on grammatical inference
and complexity," Inform. Contr., vol. 20, no. 3, pp. 244-262,1972.

[8] M. Gold, "Language identification in the limit," Inform. Contr., vol.
10, no. 5, pp. 447-474,1967.

[9] C. C. Green et al., "Progress report on program understanding

systems," Stanford Artificial Intelligence Laboratory, Stanford, CA,
Memo AIM-240,1974.

[10] S. Hardy, "Synthesis of LISP functions from examples," in Advance
Papers 4th Int. Joint Conf. Artificial Intelligence, Tbilisi, Georgia,
USSR, Sept. 1975, pp. 240-245.

[11] J. McCarthy, P. W. Abrahms, D. J. Edwards, T. P. Hart, and M. I.
Levin, LISP 1.5 Programmer's Manual. Cambridge, MA: M.I.T.,
1962.

[12] D. Shaw, W. Swartout, and C. Green, "Inferring LISP programs from
examples," in Advance Papers 4th Int. Joint Conf Artificial Intel-
ligence, Tbilisi, Georgia, USSR, Sept. 1975, pp. 260-267.

[13] L. Siklossy and D. A. Sykes, "Automatic program synthesis from
example problems," in Advance Papers 4th Int. Joint Conf. Artificial
Intelligence, Tbilisi, Georgia, USSR, Sept. 1975, pp. 268-273.

[14] P. D. Summers, "Program construction from examples," Ph.D.
dissertation, Yale Univ., New Haven, CT, 1975.

[15] —, "A methodology for LISP program construction from
examples," J. Ass. Comput. Mach., vol. 24, pp. 161-175,1977.

