




MACHINE
INTELLIGENCE 11



MACHINE INTELLIGENCE

Machine Intelligence 1 (1967) (eds N. Collins and D. Michie) Oliver &
Boyd, Edinburgh

Machine Intelligence 2 (1968) (eds E. Dale and D. Michie) Oliver & Boyd,
Edinburgh

(1 and 2 published as one volume in 1971 by Edinburgh University
Press) (eds N. Collins, E. Dale, and D. Michie).

Machine Intelligence 3 (1968) (ed. D. Michie) Edinburgh University
Press, Edinburgh

Machine Intelligence 4 (1969) (eds B. Meltzer and D. Michie) Edinburgh
University Press, Edinburgh

Machine Intelligence 5 (1970) (eds B. Meltzer and D. Michie) Edinburgh
University Press, Edinburgh

Machine Intelligence 6 (1971) (eds B. Meltzer and D. Michie) Edinburgh
University Press, Edinburgh

Machine Intelligence 7 (1972) (eds B. Meltzer and D. Michie) Edinburgh
University Press, Edinburgh

Machine Intelligence 8 (1977) (eds E. W. Elcock and D. Michie) Ellis
Horwood, Chichester/Halsted, New York

Machine Intelligence 9 (1979) (eds J. E. Hayes, D. Michie, and L.
Mikulich) Ellis Norwood, Chichester/Halsted, New York

Machine Intelligence 10 (1982) (eds J. E. Hayes, D. Michie, and Y.-H.
Pao) Ellis Norwood, Chichester/Halsted, New York

Machine Intelligence 11 (1988) (eds J. E. Hayes, D. Michie, and J.
Richards) Oxford University Press, Oxford



MACHINE
INTELLIGENCE 11
Logic and the acquisition of knowledge

edited by

J. E. HAYES
Research Associate,
Turing Institute

D. MICHIE
Chief Scientist,
Turing Institute

and

J. RICHARDS
Head of Industrial Studies,
Turing Institute

CLARENDON PRESS OXFORD
1988



Oxford University Press, Walton Street, Oxford 0X2 6DP

Oxford New York Toronto
Delhi Bombay Calcutta Madras Karachi
Petaling Jaya Singapore Hong Kong Tokyo
Nairobi Dar es Salaam Cape Town
Melbourne Auckland

and associated companies in
Berlin lbadan

Oxford is a trade mark of Oxford University Press

Published in the United States
by Oxford University Press, New York

© J. E. Hayes, D. Michie, and J. Richards 1988

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without
the prior permission of Oxford University Press

British Library Cataloguing in Publication Data

Machine Intelligence.
1. Artificial Intelligence
I. Title II. Michie, Donald HI. Richard J.
006.3
ISBN 0-19-853718-2

Library of Congress Cataloging in Publication Data
Data available

Typeset and printed in Northern Ireland at The Universities Press (Belfast) Ltd.



PREFACE

Held at intervals in Scotland, the first seven International Machine
Intelligence Workshops spanning the period of 1965-71 were involved in
developing the new subject internationally—in those early days mainly as
a mid-Atlantic phenomenon. Japan and continental Europe had yet to
enter in strength. Also in the wings was the ill-famed ̀ Lighthill report'
which in 1973 stigmatized machine intelligence as a mirage and in the UK
demolished its local infrastructure.
Two and a half millennia ago, the historian Thucydides observed that it

is not fortifications which make a city but people. In spite of dispersion,
the Al culture under challenge evinced both hardiness and solidarity.
Included in the exodus from Britain's 'AI winter' were the MI Work-
shops themselves. Successively they found hospitality in Santa Cruz,
USA (1975), Repino, USSR (1977), and Cleveland, USA (1981), by
which time the distant tidings of Japan's Fifth Generation presaged the
coming thaw. Preparations were begun to found a new UK centre, the
Turing Institute at Glasgow. By 1985 sufficient critical mass existed for
the new Institute to be able to host a return after fourteen years to the
series' land of origin. With additional, support from the University of
Strathclyde, the eleventh Workshop took place at the University's study
centre at Ross Priory near the banks of Loch Lomond.
The titles of the twenty papers which now emerge are indicative of a

continuing trend towards unity of approach. Logical models of deductive
and inductive reasoning become ever more central and find a common
frame in interactive environments for practical problem solving. We also
see the first demonstrations that the fruits of past solutions can be
systematically digested by an automated solver and built into incremental
bodies of new, human-type, knowledge.
The long expected maturation of machine intelligence is evidently at

last occurring apace. An adolescent's elders not uncommonly warn, as
elders of the physical sciences have of AI, that the youth may have
outgrown his own strength. Has the maturation of machine intelligence
been of this kind? With some confidence we commit this eleventh volume
to the hands of its readers and invite them to pursue the question to their
own conclusions.

February 1988 Donald Michie
Editor in Chief





CONTENTS

COMPUTATION AND LOGIC

1. Partial models and non-monotonic inference 3
K. KONOLIGE

2. Equational programming 21
N. DERSHOWITZ and D. A. PLAISTED

3. Beyond LOGLISP: combining functional and relational
programming in a reduction setting 57
J. A. ROBINSON

4. Concurrent computer architecture for unification operations 69
J. V. OLDFIELD and C. D. STORMON

DEDUCTIVE PROBLEM-SOLVING AND PROOF

5. Integrating decision procedures into heuristic theorem
provers: a case study of linear arithmetic 83
R. S. BOYER and J S. MOORE

6. A problem simplification approach that generates heuristics
for constraint-satisfaction problems ' 125
R. DECHTER and J. PEARL

7. The relation between programming and specification
languages with particular reference to Anna 157
A. D. MCGETTRICK and J. G. STELL

LOGIC PROGRAMMING TOOLS AND APPLICATIONS

8. YAPES: yet another PROLOG expert system 167
T. B. NIBLETT

9. LogiCalc: a PROLOG spreadsheet 193
F. KRIWACZEK

10. Representing legislation as logic programs 209
M. SERGOT

MACHINE LEARNING: METHODS AND INSTRUMENTS

11. Incremental learning of concept descriptions: a method and
experimental results
R. E. REINKE and R. S. MICHALSKI

vii

263



CONTENTS

12. Generating expert rules from examples in PROLOG 289
B. ARBAB and D. MICHIE

13. Decision trees and multi-valued attributes 305
J. R. QUINLAN

14. RuleFactory: a new inductive learning shell 319
S. RENNER

15. Intelligence architecture and inference: vLsi generalized
associative memory devices 333
D. R. MCGREGOR and J. R. MALONE

AUTOMATING THE ACQUISITION OF KNOWLEDGE FOR
COMPLEX DOMAINS

16. Expert against oracle 347

A. J. ROYCROFT
17. Inductive acquisition of chess strategies 375

S. H. MUGGLETON
18. Validation of a weather forecasting expert system 391

S. ZUBRICK
19. Comparison of ACLS and classical linear methods in a

biological application 423
B. SHEPHERD, J. PIPER, and D. RUTOVITZ

20. Automatic synthesis and compression of cardiological
knowledge 435
I. BRATKO, I. MOZETIe, and N. LAVRAt

INDEX 455

viii



COMPUTATION AND LOGIC





1

Partial Models and Non-monotonic
Inference

K. Konolige
Artificial Intelligence Center, SRI International and
Center for the Study of Language and Information, Stanford University, USA

Abstract

The non-monotonic character of common-sense reasoning is well recog-
nized, as we often jump to conclusions that are not strictly justified by
our partial knowledge of a situation. Most formalizations of this idea are
best described as syntactic transformations on theories, with little or no
semantic underpinnings. In this paper we develop a method of non-
monotonic reasoning from a strictly semantic viewpoint, namely, as
conjectures about how the missing information in a partial model should
be filled in. The advantages of this approach are a natural and intuitively
satisfying formalization of diverse types of non-monotonic reasoning,
among them domain closure, the unique names hypothesis, and default
reasoning.

1. INTRODUCTION

The importance of non-monotonic reasoning for common-sense domains
is widely recognized in the field of Artificial Intelligence (AO. In this
paper we will be concerned with such reasoning in its most general form,
that is, in inferences that are defeasible: given more information, we may
retract them.
The purpose of this paper is to introduce a form of non-monotonic

inference based on the notion of a partial model of the world. We take
partial models to reflect our partial knowledge of the true state of affairs.
We then define non-monotonic inference as the process of filling in
unknown parts of the model with conjectures: statements that could turn
out to be false, given more complete knowledge. To take a standard
example from default reasoning: since most birds can fly, if Tweety is a
bird it is reasonable to assume that she can fly, at least in the absence of
any information to the contrary. We thus have some justification for
filling in our partial picture of the world with this conjecture. If our
knowledge includes the fact that Tweety is an ostrich, then no such
justification exists, and the conjecture must be retracted.

3



PARTIAL MODELS AND NON-MONOTONIC INFERENCE

Of course, there are many different ways to represent partial knowl-
edge of the world; in Al, first-order theories (Fars) are a widely used
method. However, FOTs are in a sense too partial for the purpose of
non-monotonic inference—it is often difficult to decide just how the
'partial' should be filled. For example, consider the sentence

Bird(Tweety)v Bird(Opus) (1.1)

This sentence gives us partial information about the world, in the sense
we know either Tweety or Opus (or both) is a bird; but given just (1.1) it
is impossible to conclude that we know Tweety to be a bird, or that we
know Opus to be a bird.
Now suppose we are given a default rule stated informally as

In the absence of conflicting information, assume that
a bird flies.

How can this rule be applied to our bird theory (1.1) to make conjectures
about the ability of Tweety and Opus to fly? One approach is to relate
the application of the default to a consistency condition on the theory, as
in the default theories of Reiter (1980). Roughly speaking, our informal
rule translates into the following rule for extending an FOT:

If in a theory x is a bird and it is consistent to assume
that x can fly, do so.

Unfortunately such a default rule yields no new information when
applied to (1.1). The disjunction does not permit us to conclude that any
particular individual is a bird, and so it is impossible to instantiate the
variable x in the antecedent of the default rule.
But clearly our intuitions are that (1.2) tells us something more about

the theory (1.1). Suppose we ask what possible partial states of affairs
would make (1.1) true. One of the following two is a minimally necessary
condition:

1. Tweety is a bird.
2. Opus is a bird.

Now the application of the default rule is straightforward for each case,
so we conjecture that either Tweety or Opus can fly.
One conclusion to be drawn from this example is that default reasoning

should be based on an analysis of the models that a theory admits. It is
the claim of this paper that partial models are an appropriate and natural
level of description for the application of default rules, and other types of
non-monotonic reasoning as well. In the next section, we support this
claim by discussing general principles for implementing non-monotonic
reasoning as conjectures on partial models, and by criticizing another
model-based framework for non-monotonic inference, McCarthy's
(1980, 1984) circumscription schema, from this point of view. The rest of

(1.2)

(1.3)

4



KONOLIGE

the paper is devoted to illustrating the general principles using a
particular type of partial model based on Hintikka interpretations,
defined in Section 3. Because these models use the constants of a theory
as their domain, they admit very natural treatment of assumptions
involving equality and the naming of individuals, which are illustrated in
Section 4, along with other types of default reasoning, including domain
closure and the assumption of disjoint domains.

2. A SEMANTICS FOR NON-MONOTONIC INFERENCE

In this section we consider some general principles of a partial-model
approach to non-monotonic inference, and introduce notation to be used
throughout the paper. An analysis of circumscription based on these
principles is also presented.

2.1. Conjectures on partial models

Any consistent set of sentences (or theory) T in a first-order language is
satisfied by a set of (first-order) models. To continue the example from
the Introduction: let Tweety refer to the individual TWEETY, and Opus to
OPUS, and let BIRD and FLY be the properties of being a bird and flying,
respectively. Now consider the models of Tird(Tweety) v Bird(Opus):

= BIRD: {TWEETY}
M2= BIRD: (TWEETY)
M3 = BIRD: {TWEETY, el}
M4= BIRD: {TWEETY, el}
M5 = BIRD: {TWEETY, el}
M6 = BIRD: {TWEETY, el, e2}

= BIRD: {OPUS}
M14.1 = BIRD: {OPUS}
Mi+2 = BIRD: {OPUS, el}
M1+3 = BIRD: {OPUS, el}
M1+4 = BIRD: {OPUS, el}

M= BIRD: {OPUS, TWEETY}
•

FLY:
FLY: {TWEETY}
FLY:{}
FLY: {TWEETY}
FLY: {TWEETY, el}
FLY:

FLY:
FLY : {OPUS}
FLY:
FLY: {OPUS}
FLY: {OPUS, el}

FLY: {}

(2.1)

These models naturally fall into two groups, corresponding to one of the
two disjuncts in the theory: either Tweety is a bird, or Opus is (there are
models such as Alf in which both these are true; such models fall into both
groups). We can represent these groups by using the notion of a partial
model. A partial model contains only a part of the information necessary
in a (complete) model; by extending the partial model, we arrive at a set
of models. In this example, we could construct two partial models by

5



PARTIAL MODELS AND NON-MONOTONIC INFERENCE

specifying just a part of the extension of the BIRD relation:

/T11 = TWEETY E BIRD

M2 = OPUS E BIRD.
(2.2)

The extension of m1 includes M1 — M5 and Mi; the extension of m2
includes Mi — M1+4 and Mk We write E(m) for the set of extensions of a
partial model m.
We have in m1 and m2 a formal model-theoretic counterpart of the

informal reasoning we carried out in the Introduction. We can formulate
the default rule 1.2 as the following conjecture:

If within a partial model x is a bird and it is consistent
to assume that x flies, do so.

(2.3)

Note that this is exactly the default rule (1.3), except that 'theory' has
been changed to 'partial model'. A proposition P is consistent with a
partial model m if there is an extension of m satisfying P. In the case of
m1 there are models in which Tweety flies, and so (2.3) picks out just that
subset {M2, M5, . .} of E(mi); similarly, for m2 we get the subset
{M1+11 A ii+41 • • .}. Since the world could be described by either m1 or
m2, we take the union {M2, M5, M1+1, M1+4, • . } of these models as the
result of default reasoning. Obviously, Fly(Tweety)v Fly(Opus) is sat-
isfied by each of these models.
To sum up: let T be a theory and a a conjecture on partial models. A

conjecture picks out a non-empty subset of the extensions of a partial
model. Non-monotonic inference can be viewed as the following process:

1. Let M be all models of T. Form a set of all partial models m. Let M'
be M — E(m), i.e. all models not in the extension of some member of m.
2. Let C(a, m) be the set of extensions of m chosen by the conjecture.
3. We say that a set of sentences T' is inferred by a from T if every

member of T' is satisfied by each of M' U C(a, m). We write this as

Remarks. The general nature of non-monotonic inference here is the
pruning of the set of models of a theory. For any given language L, we
may have in mind certain types of models, the intended interpretations of
L. For example, in studying resolution, we restrict our attention to
Herbrand interpretations, in which all terms denote themselves.
We consider some general technical points of this definition. First, the

inference operator TI-cy can be non-monotonic in T, as is easily shown by
example. Let a be the conjecture that picks out only those extensions of
a partial model in which •P is false. We have:

{Q}1-„—IP (2.4)



but

{Q, A`ce-1P.

KONOLIGE

(2.5)

A special case, which is monotonic in T, is the conjecture (5 that picks out
all extensions of a partial model. The operator Fa is simple logical
deduction, that is, for TI-6 T' , T' is the set of logical consequences of T,
and hence also deductive consequences, by the completeness theorem for
first-order logic.
Because conjectures pick out a subset of the possible models of T, the

inference operator has the reflexive property

TI-T. (2.6)

Conjectures are thus appropriate for default reasoning or defeasible
reasoning in general, where the initial facts, though sparse, are assumed
to be accurate. There are, of course, other types of non-monotonic
reasoning that are not naturally expressed as conjectures: for example,
events are often treated formally as arbitrary transformations on models,
and the revision of belief on the basis of new information requires
changing a theory to admit models it did not originally have.
There is no guarantee that partial models exist, or if they do, that their

extensions fully cover the set of models M. M' is designed to take up the
slack in these situations, so that all models of M are 'accounted for'. This,
and the fact that conjectures are a pruning operation on sets of models,
yield the following consistency property for the inference operator: if the
initial theory T is consistent, then any set of inferred sentences is also
consistent; that is, it is impossible to have

Map A (2.7)

The notion of the coverage of partial models is an important one, and
is in some sense a completeness criterion for this method. If there are no
partial models for a given theory, then for every conjecture a the
operator Fa, becomes logical deduction, and no non-monotonic inference
takes place. If the partial models of a theory fully cover the intended
models (that is, every intended model is an extension of some partial
model), then a conjecture on the partial models takes into account all of
the interpretations of the theory. For example, the two partial models
(2.2) cover all the models of T = Bird(Tweety) v Bird(Opus), and so the
conjecture (2.3) gives us the maximum restriction on the models of T. An
important feature of conjectures is that they degrade gracefully when
some models are not covered, either because of theoretical or computa-
tional limitations. If for some reason only m1 is used as a partial model of
T, then the conjecture (2.3) produces the weaker result

TI-cr Bird(Tweety) Fly(Tweety). (2.8)

7



PARTIAL MODELS AND NON-MONOTONIC INFERENCE

One of the strengths of the method is that there are many different
ways to construct partial models of the world. The type of partiality we
choose to represent will influence the nature of the non-monotonic
operator Fa. For example, we might take partial models to be a subset of
each relation's (positive) extension, as we did in (2.2); data bases are
often viewed in this way (Gallaire et al., 1978). A partial model of this
sort covers a set of models that agree on the common subset, but can
otherwise disagree. It invites the conjecture that the subset is the
complete extension: there are no other true positive facts about the world
(sometimes referred to as the closed-world assumption; see Section 4).
An important type of partiality, and one we will exploit for most of the

remainder of this paper, is the ability to leave unspecified the equality
(or inequality) of terms in a theory. One way to do this is by intro-
ducing syntactic elements into the partial models, as we do with Hintikka
sets in Section 3. Partial models then become sets of atoms and their
negations, including equality predications. For example, the set
(Bird(Tweety),Bird(Opus)) has extensions in which Tweety and Opus
are the same individual, and in which they are different. Assumptions
about the uniqueness of named individuals can be framed in terms of
conjectures on this partial model.

2.2. Circumscription

Predicate circumscription is a proof-theoretic technique in which an FOT T
is augmented by a circumscription formula. We can summarize its current
formulation (from Etherington et al., 1984) as follows: let P be a
predicate, and P' a finite sequences of predicates of a finite theory T.
Then Circ(T, P, P') is a particular second-order formula expressing the
circumscription of P. letting the predicates P' vary.
The semantics of circumscription come from the notion of P-minimal

models. A model M is P-minimal if there is no other model N, agreeing
with M everywhere except for the predicates P and P', such that the
extension of P in N is a proper subset of that in M. Circumscription is
sound with respect to minimal models, in the sense that Circ(T, P, P') is
true in all P-minimal models of T; however it is known to be incomplete
(these results are summarized in Minker and Perlis, 1985).

Partial model conjectures have close ties with reasoning about minimal
models. In fact, we can express the intended semantics of circumscription
as a conjecture in the following way. We take partial models to be the
P-minimal models, where the extension of a partial model M is the set of
all models N which agree with M, except possibly on P and P'. The
conjecture a is to pick only the minimal model itself.

Reasoning about minimal models was first employed in Al by
McCarthy (1980) in an attempt to deal with what he called the
qualification problem. In brief, this is the problem of stating formally

8



KONOLIGE

what objects and conditions do not obtain in a given situation. Using
minimal models is a means of applying Occam's razor: only those objects
are assumed to exist that are actually required by the statements of a
theory.

It is not clear, however, that reasoning in minimal models is the best
means of performing defeasible reasoning in general. For example, it can
lead to a complicated statement of defaults by means of an abnormality
predicate. Compare the compact formulation of Example 4.9 with the
corresponding circumscriptive rendering on pp. 300-302 of McCarthy
(1984). But the evidence here is not yet in, and awaits a fuller exploration
of the application of circumscription.
With regard to assumptions about equality, certain inherent limitations

are already known (see Etherington et al., 1984). Because minimal
models are defined with respect to a fixed denotation function for the
terms of a theory, it is impossible to perform non-monotonic inferences
about the equality of terms by reasoning in such models. However, there
have been attempts to account for equality by importing names and their
denotations as objects of the domain (Lifschitz, 1984; McCarthy, 1984).
By contrast, we can choose partial models in such a way that

non-monotonic inferences about equality are possible. As we show in the
next section, partial model conjectures enjoy a natural treatment of
assumptions about equality, including domain closure and the unique
names hypothesis.

Finally, non-monotonic inference using partial model conjectures has
been defined to always yield a consistent extension for a theory. For
circumscription this is not the case, unless every model of the theory is an
extension of a minimal model. In those instances where this is not the
case, it has been shown that the circumscription formula can be
inconsistent with an originally consistent theory (Etherington et al.,
1984).

3. HINTIKKA SETS AS PARTIAL MODELS

We now introduce a particular type of partial model, based on the
method of analytic tableaux. [We do not give more than a cursory
presentation of this method. See Smullyan (1968) for a general introduc-
tion; the method used here is based on work by Hintikka (1955).]
Consider a theory T, which may be infinite. A tableau for T is a tree
whose nodes are sentences, constructed in the following manner. The
root of the tree is an arbitrary element of T. The tree is grown in a
systematic manner from its leaves by adding new nodes, either elements
of T or sentences derived from previous nodes by a small set of rules.
Some of these rules, those dealing with disjunction, cause splits in the
tree. The end result is a (perhaps infinite, but finitely branching) tree

9



PARTIAL MODELS AND NON-MONOTONIC INFERENCE

with an important property. All of the branches which are not closed (no
sentence and its negation both appear on the branch) are partial models
of T of a certain sort. To take a very simple example, here is a tableau
for the theory T = Bird(Tweety)v Bird(Opus):

Bird(Tweety)v Bird(Opus)

ZN
Bird(Opus) Bird(Tweety)

There are two open branches, each comprising one partial model. The
partial models are just sets of atoms and their negations. Our intended
models, then, are Herbrand interpretations of the theory, in which all
terms of the language denote themselves.
The method of analytic tableaux has two pleasing properties, which we

state here without proof. The first is that a tableau for T forms a
complete survey of all of the Herbrand interpretations of T: any such
interpretation is isomorphic to the extension of some open branch of the
tableau. The second is that the partial models make the minimal
assumptions about the equality of terms. This is a consequence of the
particular effect of the rule that operates on existential statements. If a
node in the tree has the form 3x. A[x], this rule allows the introduction
of a node A[a], where the constant a is new, that is, has not been
previously used in the tableau. So, in effect, this rule makes no
assumption about the identity of the individual satisfying A[x], since a
could be equal or not equal to any term already in the tableau.

3.1. Hintikka sets

We now give a formal definition of partial models based on tableaux. Let
L be a first-order language with equality and constant symbols, but no
other function symbols. A[i] is a formula in which the free variables
=x1, x2, ..., xn occur. A[d] is the result of substituting ai for each

corresponding xi. If S is a set of formulas, the universe of S is the set of
constants of S.
The set of sentences on an open branch of a tableau is called a

Hintikka set. A Hintikka set S with universe U satisfies the following
conditions.

1. IfiA€S,thenAS.
2. If A A B e 5, then both A E S and B E S.
3. If A v BE S, then either A E S or B E S.
4. If 2x. A[x] E S, then for some constant a E U, A[a] ES.
5. If Vx A[x] ES, then for all constants a E U, A[a] ES
6. a*a S for all a E U.
7. If a = b E S, then A[a] S if and only if A[b] E S.
In a Hintikka set, the equality predicate obeys the standard

10



KONOLIGE

constraints of symmetry, reflexivity, transitivity, and substitution. Here
are some examples of Hintikka sets that are open branches of tableaux,
rooted in the first element of the set.
Example 3.1. {Pa v Pb, Pa) with universe {a, b}.
Example 3.2. {Pa A Pb A Vx.x = a, Vx.x = a, Pa, Pb, a = a, b = a}

with universe {a, b).
Example 3.3. {3x.Vy.Rxy,Vy.Ray, Raa} with universe {a}.
Example 3.4. {Vx.3y.Rxy, 3y.Ra1y, Ra1a2, 3y.Ra2y, Ra2a3, 3y.Ra3y,

Ra3a4, .} with universe {al, a2,. ..}.
Example 3.4 has an infinite domain.
Example 3.5. Let H be the conjunction of

1. Vx. 3y.Rry
2. 3y.Vx.-iRxy
3. Vxyz.Rxy A Rxz y = z
4. Vxyz.Ryz A Rzx y = z
There is one Hintikka set S of T, for which

v(S) = U {Ratai+i}U U {-iRatai}
j*i+l

If we interpret the constant a, as the natural number i, this model is the
natural numbers with ao =0 being the least -element.
In a Hintikka set S with universe U, the atoms (atomic sentences) and

their negations comprise a partial interpretation over the domain U, by
specifying some of the positive and negative instances of relations. This
interpretation is Herbrand in the sense that each constant in U refers to
itself. We call the set of atoms and their negations v(S). v(S) is complete
if for every atom p it contains either p or
A complete set v(S) is called an interpretation set with domain U. It

generates an interpretation by assigning the atom Ra the value true if it is
in v(S), and false if its negation is. The truth value of compound
statements is determined by the normal rules for quantifiers and Boolean
operators. We write v(S) T if every member of T is assigned the value
true (i.e. is satisfied) by v(S), and call v(S) a model set for T.
A partial interpretation is an atom set v(S) that is not complete. It is an

important property of a Hintikka set S that v(S) can always be extended,
by the addition of atoms and their negations, to a complete Hintikka set;
further, every such extension satisfies every sentence in S. This result is
Hintikka's Lemma. If every extension of a partial interpretation satisfies
a sentence T, we write v(S) Iz T, and say that v(S) is a partial model for
T. Using this notation, we can write Hintikka's lemma as

v(S) (3.1)

Example 3.2 has a complete atom set except for equality statements of
symmetry and reflexivity (which we will generally ignore from now on,

11



PARTIAL MODELS AND NON-MONOTONIC INFERENCE

assuming they are always present); it is easy to verify that v(S) k S.
Example 3.3 is also complete. Example 3.1 has three extensions, one
with {a = b, Pb}, one with {a b, Pb}, and one with {a #
Example 3.4 has an infinite number of extensions. Example 3.5 has only
one extension, formed by including U ai 0 aj.

Jo;
Finally, we want to make sure that the partial models contain the least

information compatible with satisfying a theory. Consider the theory
T = Pa v (Pa A Pb), which is equivalent to Pa. A tableau for T generates
two partial models, {Pa} and {Pa, Pb}. However, the second partial
model is an extension of the first. So we consider only those partial
models of a theory that are minimal: there are no partial models which
are proper subsets. We have not yet been able to prove that such minimal
partial models always exist. However, the situation appears hopeful,
because we are restricting our attention to Herbrand models generated
by the tableau method. A case in point is the theory T of Example 3.5,
which has no minimal model in general, but has a single partial model in
its tableau. This corresponds well with our intuitions, since all models of
T are isomorphic to the natural numbers.

4. NON-MONOTONIC INFERENCE ON PARTIAL MODELS

We consider four types of non-monotonic inference: the 'unique names'
assumption, domain closure, disjoint domains, and default reasoning. All
can be defined as conjectures about the extension of partial models, that
is, we derive a theory T' from T by considering only a subset of the
possible extensions of partial models for T.
By way of exposition, we first present a simple conjecture called

negative extension (or NE) which is closely related to circumscription and
the closed world assumption. Given a partial model, NE picks out that
subset of its extensions which are maximal in negative atoms. Put another
way, NE 'fills in' the missing information in a partial model by always
adding negated atoms. There is an exception for equality: no equality
atoms are added.
Example 4.1. Let T = Pa v (Pb A Pc); there are two partial models,
{Pa} and {Pb, Pc}. These give the following conjectured extensions
under NE:

{Pa}

{Pa, --1Pb}

{Pa, -1.13b ,

{Pa, -Pb, Pe j}

12

(4.1)



and

{Pb, Pc)

{Pb, Pc, —1Pa}

{Pb, Pc, -'Pa, -"Pe

KONOLIGE

(4.2)

In the first of these, the sentence Vx Px x = a is satisfied; in the
second, Vx Pxm(x=bvx=c). We have

TI-NE T A [(Vx Pxmx=a)v(Vx.Px=(x=bvx=c))1 (4.3)

or, equivalently,

(Pa AVx Px x = a) v (Pb A Pc AVx Px (x = b v x = c)). (4.4)

This result can be compared with the circumscription of T (with respect
to P), which yields:

(Pa A VX. Px x = a) v

(Pb A Pc Atfx. Px=(x=b v x=c)na*b,c). (4.5)

The difference lies in the treatment of equality. In general, the conjecture
NE will make fewer assumptions about the equality of terms than the
corresponding circumscription.

4.1. The unique names hypothesis

This is the assumption that distinct names refer to distinct objects. The
term was introduced by Reiter (1980) in formalizing a common naming
convention in data bases. It is often useful to make this assumption in
some form in common-sense reasoning. There are three additional
criteria in this case:

1. It should be possible to state in the theory T that some distinct
terms are equal (e.g. Morningstar = Eveningstar).

2. It should also be possible to exclude terms from the unique names
hypothesis by saying for a term that it may be equal to another term,
without saying what that other term is. Skolem constants, for example,
have this property.
3. The assumption of unique names should be defeasible, because it

may turn out later that two distinct names actually do refer to the same
individual.

It is very easy to implement the unique names assumption for partial
models, because they are defined to minimize equality assumptions
among names: it is the conjecture that adds as many equalities as possible
to a partial model. More formally, we define UN: {al, a2, .} as the
conjecture that picks out those extensions of a partial model which are

13



PARTIAL MODELS AND NON-MONOTONIC INFERENCE

maximal in inequalities of the form ai*a1, i*j. This forces the names
al, a2, . . . to be maximally unique, i.e. two names ai and a; are
considered to refer to different individuals unless the partial model forces
them to be the same.
Example 4.2. Continuing Example 4.1, let T = Pa v (Pb A Pc).
TFUN:{a,b,c)a *b Ab*C A a* c.
Example 4.3. Let T be as defined in Example 3.5. TI-um(a,,.. ) T.
Example 4.4. Let T be the sentence ins = es A xo c. In this example, es
and ms are constants that refer to the same individual, while xo is a
skolem constant, i.e. it may refer to some individual already named;
however it cannot refer to c. We form the UN conjecture for the
constants ms, es, and c:

TFUN:{ms,es,c)T A C *MS. (4.6)

That is, c is different from ms (and es), and it is not known whether xo is
the same as ms or not. The conjecture that c * ms is defeasible, because
if it is later learned that c = ms, this can be added to T, and

T A C = MSFUN:{ms,es,c)T A C = MS. (4.7)

This last example shows that the three criteria above for the unique
names hypothesis are satisfied by the conjecture UN.

4.2. Domain closure

This term was originated by Reiter (1980) in the logical reconstruction of
data base theory, as the assumption that only the individuals mentioned
by the data base exist. If al, a2,. . are the constants of the data base,
then the domain closure axiom is

Vx (x =ai vx= a2 v • • •). (4.8)

This axiom is finite if the number of constants is finite. In data base
theory, domain closure is usually invoked along with the unique names
hypothesis, so that there are as many individuals as there are constants.
We will pursue a more semantically oriented form of domain closure,

so that we can work with theories (such as T =Vx.3y.Rxy) that have
models containing individuals not explicitly named in the theory. Call DC
the assumption that only those individuals exist that are minimally
required to satisfy a theory. This idea was first articulated by McCarthy
(1980). Note that it is a stronger assumption than domain closure,
because it picks out models that are minimal in their domains. For
T = Pa v Pb, domain closure only implies Vx (x = a v x = b), while the
minimality requirement forces (Vx x = a) v x x = b), i.e. either
everything is a, or it is b.
In terms of conjectures on partial models, DC picks out the extensions

of a partial model with the fewest individuals. For Hintikka sets, DC is

14



KONOLIGE

implemented by picking extensions V of a partial model v(S) with the
following properties:

1. The universe of V is the universe of S.
2. V is maximal in positive equality atoms, i.e. there is no extension of

v(S) that contains more occurrences of positive equality atoms.
The first condition conjectures that all actual individuals have already

been named in S (this is Reiter's domain closure), and the second
attempts to give as many names as possible a common interpretation.
Example 4.5. Let S be the Hintikka set of Example 3.4. All equalities of
the form ai = ai can be consistently added, so DC picks out the single
extension

fv(S) U {ai= ai}}. (4.9)

This is the Hintikka set with the smallest number of individuals satisfying
Vx.3y.Rxy. We thus have

Vx.3y.RzyFDCVxy x = y (4.10)

which means that DC conjectures a one-element domain.
As noted, in general DC is a stronger assumption than domain closure.

As this next example shows, DC tries to identify different names with the
same individual, thereby reducing the size of the domain; often this is not
the desired result.
Example 4.6. Let T be Pb A Pc. Then

TI-DcVx.x=c AVx.x=b Ab -=c. (4.11)

In practice, it would be useful to couple DC with a conjecture about
the uniqueness of names, as is done in data base theory (see Reiter,
1980). We define the conjecture UN:a; DC as first taking the subset of
complete extensions based on UN: a, then further pruning these exten-
sions by the DC conjecture.
Example 4.7. Let T be as in Example 4.6.

TFUN:{b,c};DCb * C A VX . b v x c). (4.12)

4.3. Disjoint domains

Often we wish to assume that individuals cannot belong to two
different groups, e.g. one is normally either a Democrat or a Republican
(or neither), but not both. However, we would like this assumption to be
defeasible, since it could turn out that a person is registered for both
parties, but in different states.
Let P1,. 13„ be a set of monadic predicates that we assume to be

disjoint. The disjoint domain axioms are expressed as:

A vx Pix (4.13)
i*;

15



PARTIAL MODELS AND NON-MONOTONIC INFERENCE

We cannot just add these axioms to a theory, however, because of the
defeasibility condition. However, the disjoint domain assumption can be
stated as the following conjecture: DD : {P1 • Pn} picks out those
complete extensions of a partial model with exactly one positive atom
from the set {Pia, , Po} , for every constant a.
Example 4.8. Let Dem x and Rep x be predicates we wish to be disjoint,
and let {Dem a} be a partial model. DD : {Dem,Rep} picks out the
following extensions:

{Dem a,-iRep a}

{Dem a, --Rep a, Dem el, -1Rep el}

{Dem a, --Rep a, -Dem el, Rep el}

and thus

(4.14)

Dem a I-DD:(Dem,Rep) Dem a A --IRep a

Vx . DemxiRepx

Vx . Rep x --Dem x. (4.15)

The following theorem shows that DD implies the disjoint domain
axioms when there is no evidence to the contrary.
Theorem 4.1. Let T be any tautology.

TI-DD:{Pi•••P.} A vx Pix =-1Pix (4.16)
i*;

Proof. The single partial model of a tautology is the empty set.
DD : {P1 • • • P} will pick out all models in which Pia and Pia do not
coexist, for all a and i j.

4.4. Default reasoning

Default reasoning is the assumption of propositions that have a reason-
able chance of being true, given the available information. Formally, we
implement defaults as conjectures on partial models, where the conjec-
ture mentions specified and unspecified parts of the model. Consider, for
example, the default rule that birds normally fly. Let Bird x and Fly x be
the relevant predicates. We express the application of the default to a
partial model v(S) by the rule

If Bird x is specified by v(S) and -IFfy x is not specified
by v(S), then only consider those extensions of v(S) (4.17)
that specify Fly x.

We need a language for expressing default conjectures of this sort. A
simple one can be formed by considering quantifier-free formulas,

16



KONOLIGE

perhaps with free variables, together with the monadic operators 0 and
Q. The default rule 4.17 would be expressed as

= OBird x A <>Fly x Fly x (4.18)

Op means that p is true in all extensions of the partial model, and Op
that p is true in some extension (.0 = If the formula to the left of
the sign is satisfied by a partial model v(S) for some instantiation
x = a, then a picks out only those extensions of v(S) containing Fly a, the
instantiated expression to the right of . Again, it is useful to think of a
as 'filling in' a partial model that contains Bird x, by adding Fly x if
possible.
Example 4.9. This is from McCarthy (1984). There are ostriches,
penguins, and canaries. Unless a bird is known to be an ostrich or
penguin, we assume that it can fly. Let

T = V x . Ostrich x x A VX. Penguin x m-TFly x (4.19)

and let a be the conjecture (4.18) above. We have

T A Bird al-a Fly a. (4.20)

It is interesting to combine the default rule_with assumptions about the
disjointness of canaries, ostriches, and penguins:

T A Canary al- a;DD:{Ostrich,Penguin,Canary} Fly a A -iOstrich a

-iPenguin a (4.21)

and

T A Ostrich a Fa;DD:{Ostrich,Penguin,CanaryriFly a A -Canary a

-'Penguin a

5. CONCLUSION: SOME ISSUES

(4.22)

5.1. Multiple conjectures

One of the pleasing aspects of a partial model approach is that
conjectures of different sorts can be intermixed, as in the domain closure
and unique names hypothesis of Example 4.7, and disjoint domain and
default rules in Example 4.9. In both these examples there is an obvious
order of application of the conjectures. Ordering is important because we
first prune possible extensions with one conjecture, and then apply
another conjecture to the result; doing this in a different order can lead
to different sets of extensions. Ordering is a useful property when
conjectures have readily defined priorities; however, especially in the
case of default rules, conjectures may have roughly equal weights. Reiter
(1980) gives the example the Republicans are normally non-pacifists and
Quakers pacifists, so what about Richard Nixon, who is both a Quaker

17



PARTIAL MODELS AND NON-MONOTONIC INFERENCE

and Republican? As conjectures, these are
1. EIRep x A0.-"Pacifist x -1Pacifist x.
2. OQuaker x <>Pacifist x Paafist x.
If we apply (1) first, Nixon will be a non-pacifist; if (2), a pacifist. If

both defaults are equal in their plausibility, it would be better not to
conclude anything. We could try applying them in parallel, that is, taking
the intersection of the extensions allowed by (1) and (2). However, this
intersection would be empty in the present case, an undesirable result
(and, by definition, not a conjecture). Instead, we might use the
following rules:

1. ORep x A-10 Quaker x A 0-1Pacifist x -1Pacifist x.
2. El Quaker x A-10Rep x A Pacifist x Pacifist x.
But this is not entirely satisfactory either, because the modularity of

the rules is compromised.

5.2. Proof theory

This is still unexplored. However there are some directions that appear
promising.

1. Theories with finite tableaux. If a theory has a finite tableau, then it
has a finite number of partial models, and it is possible to work directly
with these. The chief syntactic class with this property are the 3V-
theories: those whose existential quantifiers all precede universals in
prenex form.
2. Approximations based on one or a few partial models of a theory.

All of the atoms (positive and negative) of the theory are kept as a partial
model, while the more complicated axioms of the theory are treated
procedurally as a means of deriving more atoms. Important disjunctions
may be split into cases, producing more than one partial model. Note
that this is the strategy of typical first-order Al knowledge bases (Nilsson,
1980). For syntactic classes that have a unique partial model, this is a
complete technique. An interesting example here is provided by Horn-
clause theories, for which the unique partial model is the intersection of
all their Herbrand models.

Acknowledgements

I thank Benjamin Grosof and especially David Israel for enlightening discussions on this
topic. This research was made possible in part by a gift from the System Development
Foundation. It was also supported by Grant N00014-80-C-0296 from the Office of Naval
Research.

REFERENCES

Etherington, D. W., Mercer, R. E., and Reiter, R. (1984) On the adequacy of predicate
circumscription for closed-world reasoning. AAAI Workshop on Non-Monotonic Reason-
ing. American Association for Artificial Intelligence, Menlo Park, Calif.

18



KONOLIGE

Gallaire, H., Minker, J., and Nicholas, J. M. (1978) An overview and introduction to logic
and data bases. In Logic and data bases (eds H. Gallaire and J. Minker). Plenum Press,
New York.

Hintikka, K. J. J. (1955) Form and content in quantification theory. Acta Philosophica
Fennica 8, 7-55.

Lifschitz, V. (1984) Some results on circumscription. AAAI Workshop on Non-Monotonic
Reasoning. American Association for Artificial Intelligence, Menlo Park, Calif.

McCarthy, J. (1980) Circumscription—a form of non-monotonic reasoning. Artificial
Intelligence 13, 1-2.

McCarthy, J. (1984) Applications of circumscription to formalizing common sense
knowledge. AAAI Workshop on Non-Monotonic Reasoning. American Association for
Artificial Intelligence, Menlo Park, Calif.

Minker, J. and Perlis, D. (1985) Completeness results for circumscription. University of
Maryland, College Park, Md. Unpublished manuscript.

Nilsson, N. (1980) Principles of artificial intelligence. Tioga, Palo Alto, Calif.
Reiter, R. (1980) A logic for default reasoning. Artificial Intelligence 13, 1,2.
Reiter, R. (1980) Equality and domain closure in first-order data bases. J. Association for
Computing Machinery 27(2), 235-49.

Smullyan, R. M. (1968) First-order logic. Springer-Verlag, New York.

19





2

Equational Programming
N. Dershowitz and D. A. Plaisted*
Department of Computer Science,
University of Illinois at Urbana-Champaign, USA

Abstract

Conditional (directed) equations provide a paradigm of computation that
combines the clean syntax and semantics of both PRoLoc-like logic
programming and (first-order) Lisp-like functional (applicative) program-
ming in a uniform manner. For functional programming, equations are
used as conditional rewrite rules; for logic programming, the same
equations are employed for 'conditional narrowing'. Increased expressive
power is obtained by combining both paradigms in one program.

1. INTRODUCTION

Equations can be used to compute by repeatedly substituting equal terms
in a given formula, until the simplest possible form is obtained. Such a
computation scheme is • similar to that of (first-order) 'functional', or
`applicative', programming languages, such as LISP (McCarthy et al.,
1965) and its 'pattern-directed' derivatives. Programs can also be written
as a set of equations between formulas.. or equivalences between
statements in logic, and then executed by applying a special-purpose
theorem prover that derives consequences from the given formulas until
the desired output values are obtained. This latter form of computation is
similar to the ̀ logic-programming' paradigm, as exemplified by PROLOG
(Clocksin and Mellish, 1984). In this paper, we explore the possibility of
using conditional equations to provide a uniform framework for combin-
ing PRoLoc-like logic programming with Lisp-like functional
programming.
A functional (applicative) program is a set of directed equations used

for computing. For example, a Lisp-like program for concatenating two
lists of elements where nil is the empty list and • denotes the func-
tion cons is shown below. The symbol 4 has the declarative meaning 'is

* Now at the Department of Computer Science, University of North Carolina, USA.

21



EQUATIONAL PROGRAMMING

Functional list append

append(U, V) 4 if U= nil

then V

else car(U) • append(cdr(U), V)

equal', but operationally restricts the use of an equation to replacing
instances of the left-hand side with the corresponding right-hand side.
[Throughout this paper we follow the convention of using lower-case
words for individual and function constants, lower-case letters are
arbitrary terms or functions, upper-case for free (universally quantified)
variables. Bold-face is used for standard built-in functions and constants;
italics for user-defined ones.] Given the term

append (cho • co • nil, la • te • va • nil),

the above program will compute the result of appending the two-element
list cho • co • nil [with parentheses, that should be cho • (co • nil)] to the
front of the list /a • te • va • nil. With the usual 'call-by-value' semantics,
the leftmost innermost occurrence of a defined function symbol in a term
is replaced by the value of the right-hand side of its definition.
Furthermore, after evaluating the condition in an
if. ... then ... else ... expression to either true or false, only the cor-
responding then or else branch is evaluated, not both.

Pattern-directed functional languages include SASL (Turner, 1979),
HOPE (Burstall et al., 1980), 0BJ2 (Futatsugi et al., 1985), ML (Gordon et
al., 1979), rewrite languages (O'Donnell, 1985), and PLANNER-like
languages (Hewitt, 1971). In these languages, the left-hand side of an
equation need not be of the restricted form f(Xi, Xn) where f is a
defined function and X1,. X„ are distinct variables. More than one
equation may be given for f, though some restrictions on the form of
left-hand sides are often imposed. For example, the following version of
append has two equations for the two list constructor functions nil and
cons:

Pattern-directed append

append(nil,V) V

append(A • U, V) 4 A • append(U, V)

A logic program, as described in Kowalski (1974), is a set of Horn
clauses used as a pattern-directed program that searches for output terms

22



DERSHOWITZ AND PLAISTED

satisfying a given goal for given input terms. In this paradigm, the append
program could be expressed as demonstrated below.

Logic list append

append(nil, V, V)

append (A • U, V, A • W) append(U, V. W)

Here, the symbol :— has the declarative meaning 'is implied by';
operationally such an implication is used to replace a goal of the same
form as the left-hand side with the corresponding right-hand side
subgoal(s). Given a goal

append(cho • co • nil, la • te • va • nil, Z),

the above program generates the subgoals

append(co • nil, la te • va • nil, Y)

append(nil, la • te • va • nil, X),

and then returns the answer Z = cho • Y = cho • co X =

cho • co • la • te • va • nil. In PROLOG, 'SLD-resolution' is used to always
solve subgoals from left to right. Furthermore, applicable clauses are
attempted in the order of appearance in the program.
In previous research (Dershowitz, 1983, 1984; Dershowitz and Joseph-

son, 1984), we investigated the use of unconditional rewrite systems for
logic programming. A rewrite system (see Huet and Oppsn, 1980) is a set
of directed equations (or equivalences) used as a non-deterministic
pattern-directed program that returns as output a simplified term equal to
a given input term. An example is given below using a four-rule rewrite
system for append.

List append

append(nil, V) ---> V

append(U, nil) U

append(A • U, V) —> A • append(U, V)

append(append(U, V), W) —> append(U, append(V, W))

Rules may be applied in any order to any matching subterm until no
further applications are possible; the order of rules is immaterial. Thus

23



EQUATIONAL PROGRAMMING

applying the rules to the term

append(va • nil, nil),

one gets either the rewrite sequence

append(va • nil, nil) va • append(nil, nil) va • nil,

or, using only the second rule,

append(va • nil, nil) z va • nil.

The same rules are also used to solve goals by a process called
'narrowing'. If the left-hand side of a rule unifies with any subterm of a
goal, then the goal is narrowed by applying the unifying substitution to
the goal and then applying the rule to rewrite the subterm.

Conditional equations provide a coherent means for combining func-
tional programming with logic programming. A conditional equation is a
formula of the form

p I = r,

meaning that the term I is equal to the term r when the condition p holds.
In general, there may be variables X, Y, etc. in p, I and/or r, in which
case the conditional equation is meant to hold for all terms X, Y, etc. If
any term containing an instance of 1 is 'less defined' than the correspond-
ing term with r in place of I, then the conditional equation may be
directed. (See Section 5.1.) A directed equation is used to 'substitute
equals for equals' only from left to right, and we write it as a conditional
rule:

1 p r.

Either (or both) of the rule parts :— p and —* r may be omitted, in which
case it is taken to the true. (Variables on the right-hand side should also
appear in one of the other two parts, and no left-hand side should be the
term true.) A rule with only a left-hand side 1 is called as assertion; one
with no condition p is a rewrite rule; one with no right-hand side r is a
logic rule.
A (conditional) rewrite program is a system of such conditional,

directed equations. Each equation may be used in two distinct ways: it
can be used to simplify a subterm that matches its left-hand side, and it
can be used to narrow a subterm that unifies with its left-hand side. Thus,
a rewrite system can be used to compute by repeatedly substituting equal
terms in a given term, until the simplest form possible is obtained. A
system can also be used to compute by deriving consequences of given
equations until the desired output values are obtained. As we will see,
simplifications are irrevocable, while narrowings are provisional.

24



DERSHOWITZ AND PLAISTED

In the next section we consider functional programming using equa-
tions for simplification and rewriting, and in the section that follows it we
consider logic programming using equations for unification and narrow-
ing. Section 4 shows some of the benefits that can be obtained by
combining both programming forms in one program. Correctness issues
are addressed in Section 5 and implementation issues in Section 6. They
are followed by a comparison with related work.

2. FUNCTIONAL PROGRAMMING

A (conditional) rewrite system R is a finite set of rewrite rules, each of the
form

— p[g] r [g],

where 1 and r are terms and p is a predicate. Terms in general contain
variables (these are the X), but the right-hand side r and the condition p
should only contain variables that appear in the left-hand side 1. (This
restriction will be relaxed in the next section.) Such a rule may be applied
to a term t if a subterm s of t matches (by 'one-sided' unification) the
left-hand side 1 with some substitution a of terms for the variables in 1,
and if the corresponding condition pa is true, where pa denotes the term
p after making the substitution a for its variables. The rule is applied by
replacing the subterm s = la in t with the right-hand side ra. The choice
of which rule to apply where is made non-deterministically from among
all possibilities. We write t t' to indicate that a term t' is derivable
from the term t by a single application of some rule in R. When we said
above that pa must be true for the rule to be applied, we meant
pa • • • true, i.e. that pa reduces to the constant true via zero or
more rule applications. There is no backtracking over reductions. (There
is backtracking over deductions, as we will see in the next section.)
A functional program definition of the form

f() 4 if p[g] then die] else s[g]

can be translated into an unconditional system

fig) ---0 f(p[gl,g)
r(true, Ar) —÷ r[g]

f '(false, At) —> s[g],

where f ' is a new function symbol. This has the effect of ensuring that the
condition is evaluated only once before either branch is_explored. If the
condition p[X] evaluates to true for the given values of X, the term f (X)
gets eventually replaced by r[X]; if p[X] evaluates of false, then f (X) is

25



EQUATIONAL PROGRAMMING

replaced by sM. The one-line rule

f —> if p[g] then r[fi] else s[g]

may be considered, then, as an abbreviation for the above three rules.
An alternative rewrite program for conditional expressions, using

conditional rules and no new symbols, would be

PM —°
f not(p[g]) —0 0],

where not(false) evaluates to true. Often, conditions may instead be
expressed as left-hand side patterns. Consider, for example, the following
program for computing the union of two sets (of numbers, say)
represented as lists without repetitions. That is, given two lists X and Y,
it returns a list union(X, Y), containing those elements that appear in at
least one of the input lists, as shown below.

List union

union (nil, Y) —0 y

union(X, nil) --0 X

union (A • X, Y) member(A, Y) —0 union(X, Y)

union (A • X, Y) not(member(A, Y)) —0 A • union(X, Y)

member(A, nil) --0 false

member(A, A • Y)

member(A, B • Y) not(A = B) —0 member(A, Y)

I = J number(/, J) —0 eq(/, J)

Here union is the function being defined, member is an auxiliary
predicate testing for membership of an element in a list, eq is a built-in
predicate that tests for equality of numbers, and number is a built-in
predicate that returns true if all its argument are numbers (and false
otherwise). In place of the logic rule

member(A, Z) :— A = car(Z),

this program has an assertion

member(A, A • Y)

with the pattern A • Y. The condition number is necessary in

I = J number(/, J) —> eq(I, J),

since eq is only intended to work for built-in data types. Note that we

26



DERSHOWITZ AND PLAISTED

must have the false case for member for the fourth union rule to work,
since negation is not being handled 'by failure' (cf. Clark, 1978).

3. LOGIC PROGRAMMING

Rewrite systems may be used as 'logic programs' (Kowalski, 1974), in
addition to their straightforward use for computation by rewriting,
illustrated in the previous section. The programming paradigm described
below allows for the advantageous combination of both computing
modes. The result is a PRoLoo-like programming language, the main
difference being that rewrite rules are conditional equivalences, rather
than implications in Horn-clause form. Any (pure) PROLOG statement
may be directly translated into a rewrite rule: the clause

I p, r

corresponds to the identical rule. A rule of the form

I p —0 r

is stronger than the above Horn clause and means that p (1 r). A rule
like

I —0 p & r

is even stronger; it has 1 true if, and only if, p and r both hold.
The next example given is a program div(a, b, Q, R) to compute the

quotient Q and remainder R of non-negative integer a and positive
integer b.

Integer division

div (X, 1', Q +1, R) :— X a Y —0 div (X — Y, Y, Q, R)

div (X, Y, 0, X) :— Y > X

div(X, Y, 0, R) :— X a. Y —o false

I> J number(/, J) —0 greater(/, J)

I J number(/, J) —0 not(less(J, I))

I — J number(/, J) —0 diff(/, J)

The first rule is the recursive case; the second is the base case; the third
covers false cases; the remainder apply built-in functions to numbers.
The resolution procedure (Robinson, 1963) derives consequences of

logical formulas written in 'clausal' form. Resolving a clause of the form

p v q

27



EQUATIONAL PROGRAMMING

with another clause

nr v s,

when p and r are unifiable by a, results in the new clause

qa v sa.

The completion procedure (Knuth and Bendix, 1970) was introduced as a
means of deriving canonical term-rewriting systems to serve as decision
procedures for given unconditional equational theories. More recently, it
has been applied to other aspects of equational reasoning (see, for
example, Dershowitz, 1982), and in Dershowitz and Josephson (1984),
Durand (1984), and Itety et al. (1985) it has been applied to logic
programming, as well. Completion is, in a • sense, an extension of
resolution in that it allows unification at subterms. That is, a rule

l —0 r

may be overlapped on a rule of the form

u[s] t,

whose left-hand side u contains a subterm s that is unifiable with 1 via
substitution a (the variables in the two rules are treated as disjoint). The
result is one of the two rules:

u[r]a —o to

or

ta —0 u[r]a

where u[r]a is u with its subterm s replaced by r and a applied. Which
orientation is chosen depends on a well-founded ordering > supplied to
the procedure. If u[r]a > to in that ordering, the former is chosen; if
to> u[r]a, the latter is. (If the ordering is partial, it may be that neither
orientation works.) Narrowing (Slagle, 1974) is a 'linear' restriction on
completion, analogous to 'linear input resolution'. That is, program rules
1 —0 r are only overlapped on goal rules, not program rules on program
rules, nor goal rules on goal rules. The orientation of subgoal rules is
fixed, so no ordering is needed.

Formally, a rewrite program is a set of rewrite rules of the form

1[X] :— p[k, 11-0 r[g, 1],

where the condition may contain variables I' not also on the left-hand
side. To execute a rewrite program, we must adapt the narrowing
process to rules with conditions; we call this adaptation conditional
narrowing. In the next few paragraphs, we describe the details of rewrite
program interpretation.

28



DERSHOWITZ AND PLAISTED

To begin a computation with a rewrite program, a goal rule is added to
the system. Goal rules are of the form

g[i, 2] —0 answer(2),

where g is the calling term containing input values (i.e. irreducible
variable-free terms) 2 and output variables 2, and answer is the predicate
symbol that will store the result. PROLOG goals of the form

q, r

correspond to goal rules

true :— q, r —0 answer(2),

where 2 are the variables in q and r. At each point in the computation,
the current subgoal is of the general form

h ql, qn —0 answer(s),

meaning that the answer is g if the subgoals q1,. q„, and h are
achieved (in that order). Given such a subgoal, and a rule

1:—p r

whose left-hand side / can be unified with a non-variable subterm of q1
via most general unifier a, i.e. qia which contains la when the goal and
rule variables are treated as disjoint, the subgoal is conditionally
narrowed to

ha :— pa, qicr[ra], q2a, , qna —o answer(ga).

At each such step, all possible simplifications (as in the previous
section) are applied throughout. That is, if a left-hand side matches any
subterm of a subgoal, that subterm is reduced. (Recall that for a
conditional rule to apply, the condition must reduce to true. If the
condition reduces to anything else, the rule is not applied. If it reduces to
a term containing variables, rather than to true or false, then the
potential simplification needs to be considered as a possible narrowing,
since the reduced condition must first be narrowed to true.) Simplifying
gives a new subgoal

h' p', ql, q„' answer(s).

where h', p', q;, etc. are all irreducible. If any of these is reduced to
the term false, then the whole subgoal should be abandoned. (If, as can
conceivably happen, the simplified condition p' is just a Boolean
variable X, then true needs to be substituted for X throughout.) Only
when all the conditions become true, and the subgoal is of the
unconditional form

h' —0 answer(s),

29



EQUATIONAL PROGRAMMING

are narrowing unifications attempted within h', thereby possibly intro-
ducing new conditions. Computation ends when a solution rule

true —> answer(u)

is generated, giving an answer a such that
g[i, a]

holds. Since in general, there may be many ways to achieve a subgoal,
alternative narrowing computations must be attempted, either in parallel
(until one succeeds) or sequentially (by backtracking upon failure).

Conditions, when separated by commas, are executed from left to
right, and must all be true before the left-hand side is replaced by the
right-hand side. Conditions separated by the symbol &, on the other
hand, may be executed in any order. Such commas are just 'syntactic
sugar' in that a rule

1 p, q —0 r

can always be replaced by a rule

I p f(q, r),

along with the general rule

f(Q, R) Q —o R,

each having only one condition.
To compute, for example, the quotient and remainder of two non-

negative numbers a and b with the above program, the rule

div(a, b, Q, R) —o answer(Q, R)

is added, meaning that Q and R are the answer if and only if they are the
quotient and remainder, respectively, of a and b. The interpreter then
generates a rule

true —> answer(c, d),

containing the answer values c and d for Q and R. For example, to
compute the quotient and remainder of 7 and 3, the rule

div(7, 3, Q, R) —o answer(Q, R)

is added. Narrowing generates

div(7 — 3, 3, U, R) —> answer(U +1, R),

by applying the first program rule, which simplifies to

div(4, 3, U, R) answer(U +1, R),

applying the last rule for built-in subtraction. Using the first rule again

30



DERSHOWITZ AND PLAISTED

gives

div(1, 3, V, R) —o answer(V +1+1, R).

Now the second rule yields the answer

true —0 answer(0 +1+1, 1).

Note that this program can test whether or not two numbers have the

given quotient and remainder. It is not, however, in a form that would

allow computing the first argument, say, from the other three, unless the

built-in number(/, J) generates all instances of I and J that are numbers.

A goal like

.div(X, 3, 2, 1) —* answer(X)

generates the subgoal

div(X — 3, 3, 2, 1) :— X a- 3 answer(X),

but we gave no rules for reducing X — 3 or solving X 3 when X is not a

number satisfying number(X, 3). See Section 6.1.

4. FEATURES

The two paradigms of computation illustrated in the preceding sections,
viz, simplification and narrowing, can be combined in a single rewrite

program. Every narrowing step is followed by as much simplification as
possible. Simplification steps employ pattern matching, while narrowing
involves unification. Simplifications are irrevocable, while narrowing
steps are subject to backtracking.
As an example of the utility of applying simplifications at more than

one level of a goal, consider the list generator situation.

List generator

listp(nil)

listp(A • Y) —o listp(Y)

length (nil) --0 0

length(A • Y) length(Y) + 1

length(Y)< 0 —0 false

I <J number(/, J) —0 less(/, J)

I +1<J :— number(J) —> / < subl(J)

P & false —0 false

31



EQUATIONAL PROGRAMMING

A subgoal lLstp(Z) can, by repeating the second rule, generate arbitrarily
large lists Z = Al• A2 ' • • An • nil. But when combined with a test for
length, as in

ILstp(Z) & length(Z)< 10,

it will reduce to false after 10 narrowings (because at that point the
second subgoal becomes false), thereby pruning an otherwise potentially
infinite computation path.

4.1. Solving equations

The functional union program in Section 2 can be used, for example, in a
logic program to find a list Z and element A such that

{1} U Z = {A, 1} U {2, 3}.

That goal can be expressed as

union(1 • nil, Z)= union(A • 1 • nil, 2 . 3 • nil) & not(A = 1) —o

answer(A, Z),

where the condition not(A = 1) is needed to ensure that the list A • 1. nil
is a proper encoding of a set. To solve equations, we will also need an
additional assertion

U = U.

The computation could then proceed as follows: beginning with the goal

union(1 • nil, Z)= union (A • 1 • nil, 2 . 3 . nil) & not(A = 1) —0

answer(A, Z),

the third rule for union is applied, giving

union(1 • nil, Z)= 1 • 2 • 3 • nil & not(A = 1) :—

member(A, 2 • 3 • nil) ---0 answer(A, Z).

(The first rule for union cannot be used, since nil does not unify with
1 • nil; the second rule makes Z = nil, but then the equality fails; the
fourth rule leads to other solutions.) Now the condition
member(A, 2.3.nil) needs to be solved before anything else. One way
to solve it is by letting A =2, yielding

union(1 • nil, Z)= 1 • 2 • 3 • nil —0 answer(2, Z)

after simplification. Using the third rule again, gives

Z =1. 2 • 3 • nil :— member(1, Z) --0 answer(2, Z).

If Z = 1 • Y, the condition is satisfied and it remains to solve

1 • Y = 1 • 2 • 3 • nil —> answer(2, 1. Y).

32



DERSHOWITZ AND PLAISTED

Unifying the two sides of the equality, using the assertion U = U, solves
the original goal:

true —> answer(2, 1 • 2 . 3 . nil).

This computation yields as an answer, A =2 and Z =1. 2 . 3 nil, one
solution out of many.
The union program can also be extended with rules like

member(A, union(X, Y)) member(A, X) v member(A, Y)

to help find, say, an X such that A is (or is not) a member of
union(X, Y), given A and Y.

4.2. Assignment

The conditional part can be used for generalized assignment (subsuming
setq in LISP and is in PROLOG) as in the insertion sort program.

Insertion sort

> nilsort(nil) -- 

>sort(A • nil) — A • nil

sort(A • Y) Z sort(Y) insert (A, Z)

insert(A, nil) —> A • nil

insert (A, B • Z) not(greater(A, B)) —3 A • B • Z

insert (A, B • Z) not(less(A, B)) B • insert (A, Z)

nil -= nil

A•Z-÷-A•Z

nil = A • Z —*false

A • Z nil —> false

The purpose of the condition Z sort(Y) is to assign the sorted list to Z.
Only when sort(Y) is partially evaluated to a list of the form A • Y can
the rules for = be applied; the term sort(Y) itself cannot be assigned to
Z, as would be the case were = used. This has an effect similar to that of
the 'read-only' function in Concurrent PROLOG (Shapiro, 1983). In
general, one would want to have built-in assignment rules of this form for
each built-in data type.

4.3. Functionality

The two main uses of 'cuts' in PROLOG are to avoid backtracking in the
presence of 'functional dependencies' and to handle negation (see
Clocksin and Mellish, 1984). With rewrite rules, functions can be handled

33



EQUATIONAL PROGRAMMING

directly by simplification which does not allow for backtracking. Thus, a
goal of the form

p(f(t), Z) —0 answer(Z),

for some term t, will first have f (t) simplified, before continuing with the
subgoal p. If p then fails, no attempt is made to undo the computation of
f. In particular, a goal of the form

Z = f (t) —> answer(Z)

makes the functional dependency explicit, and leaves no room for
backtracking. After evaluating f (t), only the equality axiom

U = U

applies.

4.4. Negation

The second use of 'cuts', negation, can be handled by evaluating false
cases as well as true ones. For example, the program shown below
computes the first prime numbers up to (but not including) N.

Prime number generator

prime(N) —> sift(integers(2, N))

integers(K, N) less(K, N) —> K • integers(K +1, N)

integers(K, N) not(less(K, N)) —> nil

sift(N • L) —> N • sift(filter(N, L))

sift(nil) —> nil

filter(M, nil) —0 nil

filter(M, N • L) divides(M, N) —0 filter(M, L)

filter(M, N • L) not(divides(M, N)) —0 N filter(M, L)

divides(M, N) div (N, M, Q, 0)

Here div is the division program given earlier. Since divides(M, N)
returns false when M does not divide N, the program can test for
not(divides(M, N)) without recourse to a new predicate 'not-divides', an
additional argument to divides, or to 'negation by failure'.
Any 'closed-world' assumption can be made explicit, using the

If-and-only-if meaning of , as in the next example.

34



DERSHOWITZ AND PLAISTED

Adam and Eve

female(X) person(X) —o —Imale(X)

male(X) person(X) —0 X = adam

person (adam)

person (eve)

X= Y person(X) & person(Y) —o eq(X, Y)

—'true

—false

--> false

Here, -1 is not the built-in negation function and eq works for people,
too. The goal female(Y) results in the following computation:

female(Y) —0 answer(Y)

nmale(Y) person(Y) —0 answer(Y)

true answer(eve)

This works since it is explicitly given that a -person is female if and only if
she is non-male, and that adam is the only male in the (primeval) world.
The first step replaces female(Y) with —Imale(Y). Then the condition
person(Y) is solved. Letting Y = adam fails, since -imale(adam) reduces
to false; letting Y = eve succeeds.

It is this ability to express negation, and say that some goal is false,
which allows for the pruning of fruitless paths. The slow sort example
illustrates this.

Slow sort

sort(nil) —0 nil

sort(Y) perm(Y, Z), ordered(Z) —0 Z

ordered(nil)

ordered (A • nil)

ordered (A • B • Z) not(less(B, A)) —0 ordered(B • Z)

ordered (A • B • Z) less(B, A) —0 false

perm(Y, B • Z) append(U, B • V) = Y

A•Y-=B•Z

A • Y -= nil

perm(append(U, V),Z)

—*A=B&Y=Z

--0 false

35



EQUATIONAL PROGRAMMING

It uses the previous program for append. Any permutation being
generated by perm is pruned by ordered as soon as it contains two
inverted elements. The definition for = prunes impossibly long instances
of append(U, B • V).
A more general logical facility than negation that works for all Boolean

combinations of predicates is provided by the rewrite system given below.

Propositional calculus

—111 false

U v V --> (U&V)--=. V

U V —> (U&V)E--- U

U & true —> U

U & false --* false

U& U—* U

U true —> U

U

(UV) & W—* ((U&W)=---- W

Using these rules requires associative—commutative unification (Stickel,
1981; Fages, 1984) for & and (equivalence). The advantage is that any
propositional formula has a unique irreducible form. Propositionally
valid formulae reduce to true; propositionally unsatisfiable ones reduce to
false (Hsiang and Dershowitz, 1983).
Note that negation, combined with simplification, makes the ordering

of subgoals less crucial, since pruning can be used to guarantee
termination (Fribourg, 1985).

4.5. Streams

The use of 'streams' is illustrated in the modification of the prime number
program shown on the next page. Invoking

prefix(Z, sift(integers(2))) —> answer(Z)

generates arbitrarily long sequences of prime numbers. Notice how new
(primed) function names (e.g. integers') are used for otherwise infinite
'streams'; a 'call-by-need' effect is obtained with the last set of rules for
reinstating the original (unprimed) function names (cf. Tamaki and Sato,
1983). Other potentially non-terminating function definitions of the form
f(s) —> g(f(t)) can always be systematically replaced by clauses of the
form f (s, g(u), N +1) f(t, u, N) in which an additional (artificial)
argument bounds recursion depth (and may be solved for by narrowing).

36



DERSHOWITZ AND PLAISTED

Prime number stream

prefix(N • K, N • L)

prefix(nil, L)

integers(K)

sift(N • L)

filter(M, N • L)

filter(M, N • L)

divides(M, N)

filter(M, integers '(K))

sift(filter' (N, L))

filter(M, filter'(N, L))

prefix(Z, sift' (L))

—+ prefix(K, L)

—+ K • integers'(K +1)

—+ N • sife(filter(N, L))

divides (M, N) —0 filter(M, L)

not(divides(M, N)) --o N • filter'(M, L)

div(N, M, Q, 0)

--0 filter(M, integers(K))

—0 sift(filter(N, L))

--o filter(M, filter(N, L))

—o prefix(Z, sift(L))

In this way, simplification will always terminate for correct programs; any
possible non-termination has been confined to the narrowing process.

5. CORRECTNESS

In this section we look at what it means for rewrite programs to be
correct. Some related issues are considered in Zhang and Remy (1985),
Bergstra and Klop (1986), and Kaplan (1987).

5.1. Termination

As mentioned earlier, a correct rewrite system should not allow an
infinite sequence of simplifications. Formally; we require that for some
well-founded ordering > on terms and for each rule 1:—p—orwe have
u[lal> pa and pa implies u[la] > u[ra] for all contexts u and substitu-
tions a for variables in 1. In particular, if a partial ordering > on terms
satisfies the conditions u[t] > t and s > t implies u[sa]> u[ta] (for all
terms s and t, all contexts u, and all substitutions a), and if for each rule
1:—p—orwe have />p, r,

then termination is guaranteed. See Dershowitz (1987) for a survey of
orderings used for proving termination of unconditional term-rewriting
systems. An example of a non-terminating system is

a :— —1(a = b) —o b;

it does not terminate, since the left-hand side a also appears in the
condition.

37



EQUATIONAL PROGRAMMING

This termination requirement does not, however, preclude there being
an infinite narrowing sequence. For example, the rules

listp (nil)

listp(A • Y) listp(Y),

though terminating whenever used to simplify, go on generating solutions
for the goal ILstp(Z) forever.
For programs that mix simplification and narrowing by allowing

variables in the condition p that do not appear in the left-hand side 1, we
need to modify the termination requirements so that only substitutions
that can result from narrowing are considered. Suppose the condition p
contains variables IC that do appear in 1 and variables Y that do not. Then
we require, for some well-founded ordering >, that

u[laj> pa

PUT implies u[la]> par

par implies u[lcd> u[rar],

for all rules 1:— p --> r, contexts u, and substitutions a for g and r for I.'.
The first requirement guarantees that simplifying the condition will
terminate; the second, that simplifying a solution to the condition
terminates; the third, that for any solution, rewriting results in a smaller
term. These conditions may be weakened further by considering only
irreducible r.

5.2. Confluence

A rewrite system is said to be confluent if, whenever a term t reduces to
two terms u and v, both u and v reduce to the same term s. Note that if a
system is terminating and confluent, then every term reduces to a unique
irreducible term. Terminating Lisp-like programs (with mutually ex-
clusive conditions that do not introduce free variables) are confluent, as
are PRoLoo-like programs (with only the term true for right-hand sides).
An example of a non-confluent system is

X+0—>

0 + s(Y) —> s(Y)

X + s(Y) —> s(X + Y).

The term 0 + s(Y) reduces to both s(Y) and s(0 + Y), neither of which
are reducible.
For the purpose of computation, a system need not be confluent. As

we will see shortly it is usually enough if it is ground confluent, i.e. if for
every ground (variable-free) term t (constructed from a given set of
function symbols and individual constants) that reduces to two terms u

38



DERSHOWITZ AND PLAISTED

and v, both u and v reduce to the same term s. If a system is ground
confluent and terminates for all (ground) terms, then every ground term
reduces to a unique irreducible term. (We assume throughout that the set
of ground terms is non-empty.) The above system is ground confluent,
since all terms constructed from constant symbols 0, unary function
symbols s, and at least one binary symbol + are reducible, while those of
the form s(s( . . . s(0) . . . )), containing no +, are irreducible. Interpret-
ing 0 as zero, s as successor, and + as addition, each rule preserves
equality. Hence, a term can reduce to only one of those irreducible
terms. For 'syntactic' methods of demonstrating confluence of conditional
systems, see Dershowitz et al. (1987) and Kaplan (1988); for 'semantic'
methods, see Plaisted (1985).

5.3. Completeness

An interpreter is said to be complete for a logic-programming language, if
for every logically satisfiable goal there is a successful computation path.
The question we need to address now is under what conditions is
conditional narrowing complete.
The answer to this question will be given in parts, for which we need to

define a number of possible relations between terms for any given
conditional rewrite system R.
(a) When we write RE- (s = t), we mean that the equation s = t follows

logically (i.e. by first-order predicate calculus with equality) from the
rules in R interpreted as conditional equations. By R p, we mean that
the formula p (i.e. p =true) is provable from the rules in R. By the
completeness of first-order predicate calculus with equality, provability
and validity coincide.
(b) When we write

s t

we mean that, assuming c, the equation s = t follows conditionally from
the rules in R. That is, there are n (n .1:)) instances l;:— p:— r; of
rulin R such that R F- (c mp:) for all i (1 i n) and t can be obtained
from s by replacing occurrences of ri with r; or vice versa. By s 4 t we
mean s t.true

(c) When we write

s <2-10 t

we mean that the equation s = t follows by cases from the rules in R. That
is, there are n 1) formulae cl, cn such that R F (c1 v • • • v c„)
and s t for all i n).

(d) When we write

s 4-0 t

39



EQUATIONAL PROGRAMMING

we mean that the equation s = t follows equationally from the rules in R.
That is, there are n (n 0) instances i;:-p;--or; of rules in R such that
p;4 true for all i (15.i n) and t can be obtained from s by replacing
occurrences of i; with r; or vice versa (and 4 is the least such relation).
(e) When we write

s t

we mean that, assuming c, the term s reduces to t using the rules in R.
That is, there are n 0) instances i; r; of rules in R such that
R 14) for all i (15-i n) and t can be obtained from s by replacing
occurrences of 1; with 4. By s t we mean s t.
(f) When we write

s t

we mean that s reduces to t using the rules in R. That is, there are n
(n 0) instances i; p; —> r; of rules in R such that p;4 true for all i
(15i 5n) and t can be obtained from s by replacing occurrences
of i; with r; (and is the least such relation). The condition pi may
contain variables not in 4; we only insist that the particular instance p;
reduce to true. Note that for any two (ground) terms s and t, if s 4 t and
R is (ground) confluent, then there is a term u such that s-4 u and t-4 u.
If t is irreducible, then it must be that s t.
(g) When we write

s7t

we mean that s narrows (in a single step) to t via a. That is, s contains a
non-variable subterm u that unifies with the left-hand side 1 of a rule
I p —0 r in R via a most general unifier z (the variables of 1 and s are
considered disjoint), 17 true, and a is the composition of the two

substitutions it and p. By s t we mean that s narrows to t via

P1.. • p„ in n 0 steps, i.e.

S A'••• • • • A'•-•
121

In the unconditional case (see Dershowitz, 1985; Rety et al., 1985) one
can show that narrowing with simplification is complete for any terminat-
ing ground confluent system (provided the term true is irreducible). For
conditional systems the analogous result is that (under the same
assumptions) any equationally satisfiable goal will be solved by condi-
tional narrowing with simplification.

Firstly, with no assumptions regarding R, we can show that whenever
sa reduces to t for some irreducible substitution a and terms s and t, it is
the case that s narrows to a term u via some substitution v such that t is

40



DERSHOWITZ AND PLAISTED

an instance of u and v is at least as general as a. More precisely, if sa-4 t
and the terms that a substitutes for the variables in s are irreducible, as
are the substitutions a makes for any new variables introduced by
conditions in the reduction sequence (as pointed out in Giovanetti and
Moiso, 1987), then s u, ur = t, and yr = a, for some term u and
substitutions v and r. This can be shown by induction on the size of
the derivation scr t (that is, the number of rule applications in
conditions as well as in terms): trivially, if the derivation is empty, then
Sc = t, and an empty narrowing via an empty (identity) substitution gives
the desired result. (Note that if s is just a variable, then the derivation
must be empty, since a is irreducible.) Suppose then that scr is first
reduced using some rule 1:- p-* r in R. Since a is irreducible, it must be
that s has a non-variable subterm u such that ua is an instance 10 of 1, i.e.
sa[ua]= sa[10]-4sa[r0] '-lot and p0 true for some substitution 0 of
terms for the variables in 1 and p. Let p. be the most general unifier of u
and 1. Then, for some substitution r, a is pr and 0 is Mr when /4 is
restricted to variables in 1. Note that r is irreducible because a is. Since
p0 = pyr -4 true, by induction pp ÷ true and r = pv for some irreducible
substitution v. (If pit narrows to some Boolean variable X, then p needs
to be composed with the substitution of true for X.) By the definition
of a single narrowing step, s[i] .-..sup[rIzp]. Since sa[rO]=
sppv[rizpv]-4 t, by induction sitp[ritp]7u, v= op, and t = uip for
some substitution tp . Together we have s[ti] u, a = itpOtp, and
t = utp, as desired.

If R is terminating and ground confluent, then whenever there is any
(not necessarily irreducible) ground substitution a such that sa-4 t and t
is irreducible, then there is also an irreducible substitution it such that
s .0 where t is an instance of u and 1 is at least as general as a
substitution a' to which a reduces. The following system is not ground
confluent:

r(a)

q(b)

a b

p(X) q(X) -> r(X).

Note that despite the fact that p(a) r(a) true, since q(a) q(b).
p(X) narrows only to r(b) and not beyond.
The straightforward simplification relation • • is a special case of

-% in which new variables introduced by conditions are not substituted for
(since that would require narrowing). A sequence of conditional narrow-
ing steps from one unconditional goal to another corresponds to a single

step, except that our operational semantics insists on fully simplifying
terms and conditions before conditionally narrowing any further. For

41



EQUATIONAL PROGRAMMING

ground confluent R, this does not matter, since it can easily be shown
that if s u and s *A.jrt, where t is an irreducible ground term, and a' is a
ground instance of a, then uA'it.; v for some substitution p and term v such
that t is an instance of v and p is at least as general as a'. For
programming purposes, t is always the irreducible ground term true.

It follows from the above argument that for terminating and ground
confluent R and given goal g, if ga can be shown equationally to be equal
to true, for some ground substitution a, then from the goal rule

g —> answer(f)

conditional narrowing will generate an answer

true —> answer(41),

where p is a substitution that is at least as general as one to which a
reduces. For a similar result, see Kaplan (1988).
Next, we show that if conditions are restricted so that equations appear

only as un-negated conjuncts, then whenever an equation s = t follows
logically from a satisfiable system R, it also follows by cases. This
restriction is not adhered to by the system

c:— a=b—> a

c —1(a = b) b

which has a negated equality in a conditional part. Though the equation
b = c is a logical consequence of the two conditional equations, it is not
the case that b 4 c.
For Boolean equations s = t, this result does not hold. We will discuss

Boolean equations later. To prove this for non-Boolean equations, we
assume that the syntax does not allow for non-Boolean operators to take
Boolean operands and that standard Boolean simplifications for eliminat-
ing the truth constants true and false from Boolean terms (a small part of
the propositional calculus system) are provided. Also, we assume that in
an equation u = v, u is Boolean if and only if v is. (This proof does not,
however, require that R be confluent or terminating.)
Suppose that /21-s=t for non-Boolean s and t. Consider any variables

in s and t to be Skolem constants. By Herbrand's theorem, for some finite
conjunction H of ground instances ei A pi n li= ri of conditional equations
in R, the formula Hns = t is valid. Here ei is a conjunction of equations
and pi is a Boolean expression. Consider the set of all ground predicates
appearing in the pi, li, and ri. Let D be a conjunction of each such
predicate, or its negation, such that R A D is satisfiable. Note that R
logically implies the disjunction of all such D. Also, since R is satisfiable,
there is at least one such D. For any such D, the formula (H A D)m s = t
must also be valid. Let H' be the finite conjunction of conditional

42



DERSHOWITZ AND PLAISTED

equations ei m 1 = r; for which D implies pi, where i; and r; are li and ri,
respectively, unless the latter are Boolean, in which case l'i (4) is true if
D I, (D ri), and false otherwise. We have that H' A D is equivalent to
H A D and, hence, that (H' A D)D s = t. However, since non-Boolean
operators may not have Boolean arguments, D (which is satisfiable) does
not influence the rest of this formula, so 11' s = I. Also, H' is
satisfiable, since H A D must be. Let C be the conjunction of equations
= r such that H' implies ei and D implies pi; let C' be the conjunction

of (disjunctions of) inequations --1(e,) such that H' does not imply ei and
D does imply pi. (In C, if 1 and r; are Boolean then 1; = r: is interpreted
as /: 4.) Now, H' is a Horn set, since equations do not appear negated
in conditions. Thus H' (together with the equality axioms) has a minimal
model, in which C A C' is true. In addition, C A C' implies H', so
(C A C') s = t. But C' contains only inequations and so does not
contribute to this formula (since C A C' is satisfiable). Thus, C s = t.
Also, if G and r; are Boolean then the equation i; = r; cannot contribute
to the proof of s = t, since non-Boolean operators may not have Boolean
arguments. Therefore, by the completeness of equational reasoning, s = t
is provable from non-Boolean equations in C by replacement of equals by
equals. Let E be the conjunction of formulae ei A pi such that H' implies
ei and D implies pi. Then D A H implies E (since D A H implies H').
Also, s t since E implies the condition for each equation of C. Now,

H implies the disjunction of all such D, hence of all such E. Therefore,
S t.

It remains to determine under what conditions any logically satisfiable
goal is also equationally satisfiable. The crux of the problem is the
inability to express equationally the fact that Boolean terms only take on
the values true and false. We say that a theory is disjunctively complete
for a rewrite system R if for all true disjunctions c1 v • • • v c„ of ground
instances of conditions appearing in rules, at least one of the ci is itself
true, i.e. if R (c1 v • • v c„), then R F ci for some i (1 n). In par-
ticular, this condition holds if the theory has an initial model and all
conditions are non-negated literals. It also holds if all ground instances of
conditions are provably true or provably false. If R is disjunctively
complete, then whenever a ground equation s = t follows by cases from
R, it also follows conditionally. An example of a disjunctively incomplete
system is

a :— p b

a :— p —* b.

Though the equation a = b is a logical consequence of the two conditional
equations, it cannot be derived by replacement of equals for equals.
To see that s t implies s t for disjunctively complete systems,

consider the definitions. If s 41'0 t, then for some ci such that R F V ci we have

43



EQUATIONAL PROGRAMMING

s t for all i. Let 14.; be the instances of the conditions needed to show

s t, in which case R (ci= A pi). Hence, R V A/4. which can be
1 J

re-expressed as R F AV for instances qji of the conditions. It follows

that R V q; for each j and, by disjunctive completeness, that R F q;k, for

some k. In other words, there are k such that R A 6, and thus s t.

Note that if R Fs=t implies R Fs4t and R is disjunctively complete,

then RI-s=t implies s t, for ground terms s and t. We would like to
show that R s = t implies s 4 t. For this we consider a number of
restrictions on R. We say that a system R is conditionally confluent if for
all ground terms s and t, whenever s 4 t, there exists a term u such that

s u and t u. An atom is a non-equality predicate which is not a truth
constant; a literal is an atom or its negation. We say that R is weakly
complete for Booleans if R F p implies p <4 true and R F —1p implies

p A false, and that it is strongly complete for Booleans if R F p implies
p ++ true and R implies p 4 false, both for all ground instances p of
atoms appearing in R. Note that both forms of Boolean completeness are
true of Horn-clause programs and also if all atoms are reducible (as in
Lisp-like programs) and R is terminating.

Conditional confluence and weak Boolean completeness suffice for our
overall completeness result. We say a Boolean equation 1= r is simple if 1
is an atom and r is a truth constant, and that a formula is standard if it is
a conjunction of non-Boolean equations and Boolean literals. If for some
terminating, conditionally confluent, and weakly Boolean-complete R
having standard conditions, it is the case that R Fs=t implies s 4 t for all
ground terms s and t such that s is non-Boolean or s = t is simple, then it
must also be the case that R Fs =t implies s 4 t for all such s and t. This
can be shown by induction. (The restriction that conditions be conjunc-
tion of equations and literals is not severe, since a rule 1: —c v d—> r can
be re-expressed as two rules, 1: —c--pr and 1:—d—or. Also, a non-simple
Boolean rule p : e may be transformed into the rules p :—c A e—*
true and p:—c —> false, and then disjunctions in e can be eliminated
as above.) On the other hand, for the terminating non-confluent program

q p —pp

q -+ p

we have p 4 true, but not p 4true. Similarly, for the non-terminating

44



DERSHOWITZ AND PLAISTED

confluent system

p p

we have p A true, but not p 4 true.
Note that conditional confluence implies ground confluence for ter-

minating systems R such that RE-s=t implies s A t. As noted above, if
R is ground confluent, then s 4 true implies true, for any ground
term s, since true is irreducible (it may not appear alone on the left-hand
of any rule).
To recapitulate, we have shown that if R is satisfiable, terminating,

conditionally confluent, disjunctively complete, weakly complete for
Booleans, and has standard conditions, then our interpreter is complete
for any logically satisfiable standard goal. These conditions are satisfied
by correct Lisp-like and PRowo-like programs.
We can also show that if R F s = t implies s A t for all ground terms s

and t, then R F s = t implies s 4 t for all such s and t, provided that R
possesses the stronger form of Boolean completeness, is ground confluent
(but not necessarily terminating), conditions are standard, and Boolean
rules are simple. Without disjunctions in conditions, this means that
equality reasoning suffices for establishing conditions, and by the
completeness of positive-unit resolution for equational Horn clauses, the
result follows. Under these conditions, for any non-Boolean ground
equations s = t which follows logically from a satisfiable and disjunctively
complete R, there is some term u such that s u and t:-10` u. (If
confluence, disjunctive completeness, and Boolean completeness hold for
non-ground terms, then these results may be extended to non-ground s
and t.)

6. IMPLEMENTATION

Currently, we have an experimental implementation in FRANZ LISP
(Foderaro et al., 1984), named RITE. See Josephson and Dershowitz
(1986) for details. In this section, we briefly touch on some of the
engineering issues that are addressed.

6.1. Built-in functions

With full functional notation, one can make full use of built-in functions
(cf. Futatsugi et al., 1985). An example is the binary-search program.

Given a goal bin(Z, x, a, n) and a non-decreasing function f, this
program searches for a Z among the positions a, a + 1,. . ., a + n — 1,
such that f(Z) --sX <f(Z + 1). To use this program, a system for
computing f must also be provided; it presumes that f (a) 5- x < f (a + n).

45



EQUATIONAL PROGRAMMING

Binary search

bin(Z, X, Z, 1)

bin(P, X, Z, Y) less(X, f(mid(Z, Y)))

—> bin(P, X, Z, ha 11(Y))

bin(P, X, Z, Y) even(Y), not(less(X, f (mid(Z, Y))))

—0 bin(P, X, mid(Z, Y), half (Y))

bin(P, X, Z, odd(Y), not(less(X, f (mid(Z, Y))))

—0 bin(P, X, mid(Z, Y), half (Y) + 1)

mid(I, J) number(/, I)

—> plus(/, half (J))

half (I) number(J)

—> quotient(J, 2)

1+ 1 number(/)

—0 addl(/)

Built-in functions are not narrowable, i.e. they only work when given
constructor arguments. Note that one can mix the use of built-in
functions (when the arguments are fully evaluated) and defined functions
(that can be applied even to nonground terms) as in:

I + 0 -4!

I + J number(/, J) —0 plus(/, J)

I + J = K number(/, K) —> J = diff(K, I).

6.2. Destructive assignment

Since there is no backtracking over simplifications, arrays can be handled
cheaply by destructive assignments. Consider the array increment
program.

Array increment

incr(A, 1, N) less(/, N) --0 incr(assign(A, 1, A[I] + 1), addl(/), N)

incr(A, N, N) —0 assign(A, N, A[N]+ 1)

In applying it to a goal containing the subterm

incr(array, 0, 9),

46



DERSHOWITZ AND PLAISTED

there is no need to preserve old values of array. If, say, array[i]= i, then

incr(array, 0, 9) • • • incr(assign(array, 0, 1), 1, 9)

• • • incr(assign(assign(array, 0, 1), 1, 2), 2, 9) • • • .

As long as the array A only appears within the built-in array assignment
function, its intermediate values may be overwritten.

6.3. Queuing

The effect of a single rule application on future applications is localized:
the only new possibilities for applications are within the new subterm
introduced by the right-hand side of a rule and at nearby, enclosing
function symbols. Thus, in most cases only an area bounded by the size
of the rules in the program needs to be examined at each step. This
suggests maintaining a queue of positions at which rules can be applied,
rather than searching through the whole term again and again.
Congruence-closure algorithms (Nelson and Oppen, 1980), which work
on ground terms, go a step further and speed things up by remembering
partial matches, obviating the need to re-examine enclosing function
symbols. Our implementation (Josephson and Dershowitz, 1986) avoids
searching through terms by preprocessing_the program and setting up
demons that let partial matches progress.
There is a space—time tradeoff in deciding whether an implementation

should save the results of previous simplifications. 0BJ2 (Futatsugi et al.,
1985), for example, maintains a hash-table of terms and their fully
simplified forms.

6.4. Parallelism

Confluence guarantees that the order in which simplifications are applied
is immaterial, making simplification of non-overlapping subterms a
natural candidate for concurrent execution. No communication between
processes or storage overhead would be required. Alternative narrow-
ings, on the other hand, can lead to success or failure; to guarantee that
an existing answer will be found (see Section 5.3) requires that no
possible narrowing be 'starved'. Ensuring this by breadth-first search,
however, would, in general, make heavy storage demands.
There are cases when certain potential narrowings are sure to be

redundant and can be eliminated. Particularly with parallel execution, it
would be desirable to prune such unproductive paths. By including rules
for false cases, as outlined above, unsatisfiable goals will not be pursued
(cf. Fribourg, 1985). By not just narrowing goals, but also comparing one
with another, duplicate goals can be pruned. In particular, given two
rules for some subgoal g, one of the unconditional form

g --> answer(0,

47



EQUATIONAL PROGRAMMING

and the other of the more restrictive form

go p —> answer(I),

where a is any substitution, the latter rule can be ignored—assuming any
one solution suffices (cf. Ray et al., 1985). Similarly, using program rules
to overlap assertions, as well as goals, provides a 'forward reasoning'
capability, generating new facts from old ones (cf. Dershowitz, 1985).

7. DISCUSSION

The approach outlined here is an attempt to combine features of
functional and logic programming in a unified way. Functional notation
and an evaluation mechanism are borrowed from functional program-
ming; free variables and narrowing are added so that solutions to a given
goal can be sought. Pattern-directed invocation and assignment by
unification are borrowed from logic programming; unification within
literals and replacement of subterms are added so that equations can be
handled.
For a programming language to be justifiably called 'logical', it ought

to aspire to have a declarative and sound semantics, and a complete and
efficient interpreter. That is, each statement should have a local
declarative meaning and each procedural step should follow logically
from the meaning of the statements. Any logically satisfiable goal should
be solvable by an interpreter with predictable (and reasonable) time and
space requirements for executing a single statement. We believe that the
language proposed in this paper comes reasonably close to meeting these
criteria.
Various proposals have been made over the past few years for

combining features of functional programming and logic (relational)
programming. Two surveys are BeIlia and Levi (1986) and Reddy (1986).
See also the collection in DeGroot and Lindstrom (1986).
In some cases, the proposed language provides a convenient interface

between resolution-based goal reduction and rewrite-based term evalua-
tion, without fully integrating the two. A few examples are QLoo
(Komorowski, 1982), LOGLISP (Robinson and Sibert, 1982), the original
Qute (Sato and Sakurai, 1983), and Funlog (Subrahmanyam and You,
1984). In these languages, terms are rewritten to normal forms before
unification is attempted. Function definitions do not, however, cause free
variables to be instantiated during goal reduction. Consequently, such
languages are incomplete, in the sense that a solution to a goal will not
necessarily be found whenever one provably exists. Prolog-with-Equality
(Kornfeld, 1983) allows the programmer to explicitly include additional
facts about functions—to be used in solving goals—but is not inherently
complete.

48



DERSHOWITZ AND PLAISTED

Paramodulation (unifying one side of an equation with a non-variable
subterm of a clause and replacing with the other side) is the natural and
customary way of handling equality in resolution-based theorem provers,
and—for some proof strategies, at least—is a (refutationally) complete
theorem-proving method. Uniform (Kahn, 1981) is an early combination
of LISP and PROLOG, incorporating such an equality rule. Paramodulation
can be simulated by resolution when functions are represented by
predicates and terms are decomposed (Brand, 1975; see also Plaisted and
Greenbaum, 1984); an approach like this to solving goals with equalities
is taken in Cox and Pietrzykowski (1985).
Though completeness is achievable (in the first-order case, at least) by

harnessing a full-fledged theorem prover to the search for solutions, that
would not constitute a programming language. In our opinion, an
interpreter for a language—as contrasted with a theorem prover—should
not be required to deduce new facts from comparisons between program
statements, nor draw conclusions from alternative subgoals generated by
a non-deterministic computation. (A compiler, on the other hand, may
do some such things for reasons of efficiency.) In the purely relational
case (Kowalski, 1974), the need for any kind of forward reasoning is
avoided by insisting that program statements be Horn clauses; then, a
'linear' resolution strategy suffices for conipleteness. A similar sort of
linear operational semantics is desirable in the presence of function
definitions. The proposals for handling functions and equality in Der-
showitz (1982), Durand (1984), and Fribourg (1984) require non-linear
reasoning (see also Bandes, 1984).
Whereas paramodulation uses both sides of an equation in the same

way, narrowing is more directed, allowing unification just with left-hand
sides. Narrowing, too, can be simulated (in PROLOG) by decomposing
terms, as done by Deransart (1983). A programming language with
narrowing-like operational semantics was first suggested by Dershowitz
(1983, 1984); its implementation is described in Dershowitz and Joseph-
son (1984). There, both Horn clauses and function definitions were
expressed as unconditional rules and 'linear completion' (a slight general-
ization of narrowing which helps handle conditions) was used to solve
goals. Independent suggestions of narrowing, or close variants thereof,
for languages incorporating functions and goal reduction include: the use
of 'clausal superposition' for Horn clauses with equality in SEC (Fribourg,
1984); the interleaving in Eqlog (Goguen and Meseguer, 1984, 1986) of
narrowing for solving equations with linear resolution for Horn clauses;
the use of an 'equality rule' within TABLOG (Malachi et al., 1984);
unification with conditional expressions in (the newer) Qute (Sato and
Sakurai, 1984); the use of oriented, decomposed equations within
PROLOG by Tamaki (1984); the use of 'logical variables' in the determin-
istic functional language FGL LV (Lindstrom, 1985); and the

49



EQUATIONAL PROGRAMMING

constructor-based 'object refinement' method used in EqL (Jayaraman
and Silbermann, 1986). Some related proposals are Dershowitz and
Plaisted (1985), Kanamori (1985), McCabe (1985), Reddy (1985),
Smolka (1985), Barbuti et al. (1986), Darlington et al. (1986), You and
Subrahmanyam (1986), and Robinson (1987).

Using conditional (if-then-else) terms, one can always express condi-
tional equations (or equivalences) unconditionally. For completeness of
narrowing, (ground) confluence of the system of oriented equations is
required. With confluence, any irreducible solution to a goal can be
found by narrowing. (Without confluence, one could only say that
narrowing must come up with a solution if there is an irreducible
substitution which, applied to the goal, gives an instance that simplifies to
'true'. See Section 5.3.) Happily, there are syntactic means of ensuring
(full) confluence for unconditional systems of rules, by restricting
overlaps of left-hand sides and allowing, on the left, only one occurrence
of each variable. Pragmatically, these relatively severe restrictions also
make it easier to determine which rules are applicable at each stage of
the computation. Proposals imposing such restrictions include Reddy
(1985), Jayaraman and Silbermann (1986), and You and Subrahmanyam
(1986).
The problem with using conditional terms to encode conditional

equations is that the resultant unconditional equations are not, in
general, terminating rewrite rules—even when the corresponding condi-
tional rules would be. Without termination, solutions having no ir-
reducible normal form may be lost (but see You and Subrahmanyam,
1986). More importantly, it cannot be said that rewriting 'simplifies'
anything, and uninhibited rewriting need not lead to an irreducible term.
(Rewriting is the special case of narrowing in which no free variables
appearing in the goal are instantiated.) Thus, alternative rewrite paths
must be explored, even if one is satisfied just with irreducible solutions.
(Actually, given confluence, rewriting of goals need never be undone,
and it suffices to try all narrowing paths after any finite amount of
rewriting.)

Using conditional equations, on the other hand, allows one to program
with rules that can never lead to infinite sequences of rewrites. For
conditional rules, appropriate notions of rewriting, narrowing, termina-
tion, and confluence have been developed (see Section 5). With
termination and confluence, full advantage can be taken of the evaluation
mechanism available to functional languages, restricting narrowing to
irreducible terms, without jeopardizing completeness.
We contend that predicating completeness on the programmer's

defining only terminating functions is justified, since any potentially
infinite computations may be coded so as to be handled by the narrowing
mechanism (as we illustrated in Section 4.5). Instead of demanding full

50



DERSHOWITZ AND PLAISTED

confluence, we prefer to make the guarantee of completeness subject to
the programmer's supplying a ground confluent system of rules. Ground
confluence is essentially a consistency requirement; it means that
different ways of evaluating the same ground term can not result in
distinct values (ground normal forms). Methods for establishing ground
confluence are given by Plaisted (1985), Zhang and Remy (1985), and
others. Syntactic methods for full confluence are also available (Der-
showitz et al., 1987; Kaplan, 1988).

Distinguishing between narrowing (by unification) and rewriting (by
pattern matching), provides us with a clean, run-time distinction between
'don't know' and 'don't care' non-determinism. Rewriting may proceed in
any fashion and no immediate results need be remembered (the don't
care part); narrowing is used to explore alternative routes when the right
path to a solution is unknown (the don't know part) and need only be
resorted to when further rewriting is no longer possible. In this way,
unneeded backtracking is avoided and many narrowing paths share the
results of one rewrite path (see Josephson and Dershowitz, 1986).

Simplification, that is rewriting via terminating rules, is a very
powerful feature, particularly when—as in our language—defined func-
tion symbols are allowed to be arbitrarily nested in left-hand sides. It is,
of course, important not to incur heavy costs in searching for applicable
rewrites. We believe that it is possible to minimize the overhead involved
in various ways, including taking advantage of the fact that rewrites that
fail only because of a mismatch with a free variable signify a potential
narrowing (see Josephson and Dershowitz, 1986). Exactly how much
simplification is performed before each narrowing step is a matter of
taste, since completeness is not affected by this decision. Narrowing only
fully simplified goals has been advocated, in the unconditional case, by
Dershowitz (1983) and Rety et al. (1985), and in the conditional case, by
Dershowitz and Plaisted (1985) and Fribourg (1985). In our current
implementation, we do not solve (i.e. narrow) conditions containing new
variables when looking for applicable rewrites; Fribourg (1984, 1985) had
simplification by unconditional rules only; at most one rewrite step
precedes narrowing in the implementation described by Fribourg (1986).

Questions of efficiency and control are paramount in the design of a
practical programming language. The avoidance of 'occur checks' when
attempting to unify terms, as in Fol.. + IN (Lindstrom, 1985), 'surface
deduction' (Cox and Pietrzykowski, 1985), LEAF (Barbuti et al., 1986),
and EqL (Jayaraman and Silbermann, 1986), trades off logical soundness
(in the traditional sense) for efficiency and can cause spurious (and
unprintable) solutions to be found. TABLOG (Malachi etal., 1984), on the
other hand, employs true unification, with 'occur check'. We recommend
avoiding the expensive check only when soundness is maintained; see
Plaisted (1984).

51



EQUATIONAL PROGRAMMING

Even if a program is confluent and terminating, alternative narrowing
derivations must be explored if completeness is to be assured. Narrowing-
based languages, such as FOL IN (Lindstrom, 1985), which deterministi-
cally choose one possible narrowing over others, cannot guarantee that
solutions will be found. Restrictions and variations of narrowing which do
preserve completeness are described in Hullot (1980) and Martelli et al.
(1986). Some superfluous narrowing paths can be avoided by making a
distinction between constructor symbols and defined ones (assuming that
terms built entirely from constructors are irreducible). Two terms headed
by different constructors can never be equal; when headed by the same
constructor, they are equal if, and only if, their respective arguments are
equal. This distinction can be programmed in with appropriate 'eager'
simplification rules as illustrated in Dershowitz and Plaisted (1985) and

_ described in Fribourg (1985); generated automatically, as in Josephson
and Dershowitz (1986); or built in—usually with a 'lazy' narrowing
strategy—as in Reddy (1985), Kanamori (1985), Jayaraman and Silber-
mann (1986), and Barbuti et al. (1986).
To force conditions to be evaluated (or solved) before the branches of

a conditional expression, some authors impose a leftmost strategy (e.g.
Reddy, 1985; You and Subrahmanyam, 1986). Our approach is based,
instead, on conditional rules, which give the programmer a measure of
local control over the computation by letting a rewrite or narrowing go
through only when the condition holds. SLOG (Fribourg, 1985) and Eqlog
(Goguen and Meseguer, 1986) are similar in this regard. Deransart
(1983) showed how to effect conditional narrowing within Prolog;
Dershowitz and Plaisted (1985) and Fribourg (1985) combine conditional
narrowing with eager rewriting.
With terminating rules, there is no need for an outermost (or lazy)

evaluation strategy to ensure that a value for a term will be reached.
Assuming ground confluence and termination, any strategy can be used
for simplification. For narrowing, TABLOG (Malachi et al., 1984), for
example, adopted an innermost-first search strategy. We believe that
avoiding a declared strategy will encourage more logical logic-
programming, by preventing the programmer from presuming anything
about the global context in which a rewrite or narrowing is performed.
Instead, our language provides an order-independent notion of simplifi-
cation, over and above narrowing. SLOG (Fribourg, 1985) also incorpor-
ates eager simplification, but always chooses the leftmost-innermost
narrowing path, and hence is complete only in certain situations.
Some narrowing languages, e.g. Fresh (Smolka, 1985), implement

negation 'by failure'. We prefer (as does Fribourg, 1985) to handle
negation by incorporating negative information in the form of rewrite
rules, which are then used to simplify subgoals to 'false'. Combined with
eager simplification, this approach has the advantage of allowing unsatis-

52



DERSHOWITZ AND PLAISTED

fiable goals to be pruned, thereby avoiding some potentially infinite
narrowing paths (and should allow for finite representation of solution sets
in more cases than would be possible without simplification). An
equational approach to negation is also taken in Goguen and Meseguer
(1984). In the purely equational Horn-clause case, ground confluence and
termination are necessary and sufficient for completeness of conditional
narrowing (with or without simplification); in this paper, we have also
investigated completeness in more general situations.

Narrowing-based languages with extensions for handling set constructs
include: Goguen and Meseguer (1984), Darlington et a/. (1986), and
Jayaraman and Silbermann (1986). Two languages that incorporate
'higher-order' functions are Fresh (Smolka, 1985) and IDEAL (Bosco and
GioVannetti, 1986). An 'order-sorted' logic underlies Eqlog (Goguen and
Meseguer, 1984, 1986). Preprocessing and compilation techniques for
rewriting and narrowing are explored in Fribourg (1987), Josephson and
Dershowitz (1987), and Kaplan (1987).

Acknowledgements

We thank Alan Josephson for his suggestions and for his implementation, RITE, Uday
Reddy and Jean-Luc Remy for stimulating discussions, and Joe Goguen, Naomi
Lindenstrauss, Eric Muller, and Jia You for their comments. This research was supported in
part by the National Science Foundation under Grants DCR 85-13417 and DCR 85-16243.

REFERENCES

Bandes, R. G. (1984) Constraining-unification and the programming language Unicorn..

Proc. Eleventh ACM Symp. on Principles of Programming Languages, Salt Lake City,
Utah, pp. 106-10. Also (1986) in Logic programming (eds. D. DeGroot and G.
Lindstrom) pp. 397-410. Prentice-Hall, Englewood Cliffs, N.J.

Barbuti, R., Bellia, M., Levi, G., and Martelli, M. (1986) LEAF: a language which
integrates logic, equations and functions. In Logic programming (eds D. DeGroot and G.
Lindstrom) pp. 201-38. Prentice-Hall, Englewood Cliffs, N.J.

Bellia, M. and Levi, G. (1986) The relation between logic and functional languages: a
survey. J. Logic Programming 3(3), 217-36.

Bergstra, J. A. and Klop, J. W. (1986) Conditional rewrite rules: confluence and
termination. J. Computer Syst. Sci. 32, 323-62.

Bosco, P. G. and Giovannetti, E. (1986) IDEAL: an ideal deductive applicative language.
Proc. IEEE Symp. on Logic Programming, Salt Lake City, Utah, pp. 89-94.

Brand, D. (1975) Proving theorems with the modification method. SIAM J. Computing 4,
412-30.

Burstall, R. M., MacQueen, D. B., and Sannella, D. T. (1980) HOPE: an experimental
applicative language. Conference Record of the 1980 LISP Conference, Stanford, Calif.
pp. 136-43.

Clark, K. L. (1978) Negation as failure. In Logic in data bases (eds H. Gallaire and J.
Minker) pp. 292-322. Plenum Press, New York.

Clocksin, W. F. and Mellish, C. S. (1984) Programming in Prolog, 2nd edn. Springer-
Verlag, New York.

Darlington, J., Field, A. J., and Pull, H. (1986) The unification of functional and logic
languages. In Logic programming: functions, relations, and equations (eds D. DeGroot
and G. Lindstrom) pp. 37-70. Prentice-Hall, Englewood Cliffs, N.J.

53



EQUATIONAL PROGRAMMING

DeGroot, D. and Lindstrom, G., eds. (1986) Logic programming: functions, relations, and
equations, Prentice-Hall, Englewood Cliffs, N.J.

Dershowitz, N. (1982) Applications of the Knuth—Bendix completion procedure. Proc.
seminaire d'informatique theorique, Paris, pp. 95-111.

Dershowitz, N. (1983) Computing with rewrite systems. Proc. NSF Workshop on the
Review Rule Laboratory, Schenectady, N.Y., pp. 269-98. Revised version (1985) in,
Information and Control 64 (2/3), 122-57.

Dershowitz, N. (1984) Equations as programming language. Proc. Fourth Jerusalem
Conference on Information Technology ;Jerusalem, pp. 114-24.

Dershowitz, N. (1987) Termination of rewriting. J. Symbolic Computation 3(1/2), 69-115.
Dershowitz N. and Josephson, N. A. (1984) Logic programming by completion. Proc.
Second Int. Logic Programming Conf, ., Uppsala, pp. 313-20.

Dershowitz, N., Okada, M., and Sivakumar, G. (1987) Confluence of conditional rewrite
systems. Proc. First Int. Workshop on Conditional Term Rewriting Systems, Orsay. In
press.

Dershowitz, N. and Plaisted, D. A. (1985) Logic programming cum applicative program-
ming. Proc. IEEE Symp. on Logic Programming, Boston, Mass., pp. 54-66.

Durand, J. (1984) Une strategie de redcriture pour les programmes logiques. Rapport
84-R-029, Centre de Recherche en Informatique de Nancy, Nancy.

Fages, F. (1984). Associative—commutative unification. Proc. Seventh Int. Conf. on
Automated Deduction, Napa, Calif., pp. 194-208.

Foderaro, J. K., Sklower, K. L., and Layer, K. (1984) The FRANZ LISP manual. In Unix
programmer's manual: supplementary documents (eds M. J. Karels and S. J. Leffler).
University of California, Berkeley, Calif.

Fribourg, L. (1984) Oriented equational clauses as a programming language. Proc. Eleventh
EATCS Colloquium on Automata, Languages, and Programming, Antwerp, pp. 162-73.
Revised version in J. Logic Programming 1 (2) 179-210.

Fribourg, L. (1985) SLOG: a logic programming language interpreter based on clausal
superposition and rewriting. Proc. 1985 Symp. on Logic Programming, Boston, Mass.,
pp. 172-184. Earlier version in Proc. First Int. Conf. on Rewriting Techniques and
Applications, Dijon, pp. 325-44.

Fribourg, L. (1986) Prolog with simplification. Report 86-41, LITP, Paris.
Futatsugi, K., Goguen, J. A., Jouannaud, J.-P., and Meseguer, J. (1985) Principles of
OBJ2. Conference Record of the Twelfth ACM Symp. on Principles of Programming
Languages, New Orleans, La., pp. 52-66.

Giovannetti, E. and Moiso, C. (1987) A completeness result for conditional narrowing.
proc. First Int. Workshop on Conditional Term Rewriting Systems, Orsay. In press.

Goguen, J. A. and Meseguer, J. (1984) Equality, types, modules and generics for logic
programming. Proc. Second Int. Logic Programming Con!, Uppsala, pp. 115-25.
Revised version in J. Logic Programming 1(2), 179-210.

Goguen, J. A. and Meseguer, J. (1986) EQLOG: equality, types, and generic modules for
logic programming. In Logic programming (eds D. DeGroot and G. Lindstrom) pp.
295-363. Prentice-Hall, Englewood Cliffs, N.J.

Gordon, M., Milner, R., and Wadsworth, C. (1979) Edinburgh LCF. Lecture notes in
computer science, Vol. 78, Springer-Verlag, Berlin.

Hewitt, C. (1971) Description and theoretical analysis (using schemata) of PLANNER: a
language for providing theorems and manipulating models in a robot. Ph.D. thesis,
Massachusetts Institute of Technology, Cambridge, Mass.

Hsiang, J. and Dershowitz, N. (1983) Rewrite methods for clausal and non-clausal theorem
proving. Proc. Tenth EARCS Int. Colloquium on Automata, Languages, and
Programming, Barcelona, pp. 331-46.

Huet, G. and Oppen, D. C. (1980) Equations and rewrite rules: a survey. In Formal

54



DERSHOWITZ AND PLAISTED

language theory: perspectives and open problems (ed. R. Book) pp. 349-405. Academic
Press, New York.
Hullot, J.-M. (1980) Canonical forms and unification. Proc. Fifth Conf. on Automated
Deduction, Les Arcs, pp. 318-34.

Jayaraman, B. and Silbermann, F. S. K. (1986) Equations, sets, and reduction semantics

for functional and logic programming. Proc. ACM Con! on LISP and Functional

Programming, Cambridge, Mass., pp. 320-31.
Josephson, N. A. and Dershowitz, N. (1986) An efficient implementation of narrowing:

The RrrE way. Proc. IEEE Symp. on Logic Programming, Salt Lake City, Utah, pp.

187-97. Revised version to appear in J. Logic Programming.
Kahn, K. N. (1981) Uniform—a language based upon unification which unifies much of

Lisp, Prolog and Act 1. Proc. Seventh Int. Joint Conf. on Artificial Intelligence,
Vancouver, B. C., pp. 933-9. Revised version (1986) in Logic programming (eds. D.
DeGroot and G. Lindstrom) pp. 411-38. Prentice-Hall, Englewood Cliffs, N.J.

Kanamori, T. (1985) Computation by meta-unification with constructors. Report TR-152,
Institute for New Generation Computer Technology, Tokyo.

Kaplan, S. (1987) Simplifying conditional term rewriting systems. I. Symbolic Computation.

In press.
Kaplan, S. (1987) A compiler for conditional term rewriting systems. Proc. Second Int.

Con! on Rewriting Techniques and Applications, Bordeaux, pp.. 25-41.
Kapur, D., Sivakumar, G., and Zhang, H. (1986) RRL: a rewrite rule laboratory. Proc.

Eighth Int. Con! on Automated Deduction, Oxford, pp. 691-692.
Knuth, D. E. and Bendix, P. B. (1970) Simple word problems in universal algebras. In
Computational problems in abstract algebra (ed. J. Leech) pp. 263-97. Pergamon Press,

Oxford.
Komfeld, W. (1983) Equality for PROLOG. Proc. Eighth Int. Joint Conf. on Artificial

Intelligence, Karlsruhe, pp. 514-9. Revised version (1986) in Logic Programming (eds D.
DeGroot and G. Lindstrom) pp. 279-93. Prentice-Hall, Englewood Cliffs, N.J.

Kowalski, R. A. (1974) Predicate logic as programming language. Proc. IFIP Congress,

Amsterdam, pp. 569-74.
Lindstrom, G. (1985) Functional programming and the logical variable. Proc. Twelfth ACM
Symp. on Principles of Programming Languages, New Orleans, La., pp. 266-80.

Malachi, Y., Manna, Z., and Waldinger, R. J. (1984) TABLoG: the deductive tableau
programming language. Proc. ACM Lisp and Functional Programming Conf. Austin,
Texas, pp. 323-30. Revised version (1986) in Logic Programming (eds D. DeGroot and
G. Lindstrom) pp. 365-94. Prentice-Hall, Englewood Cliffs, N.J.

McCabe, F. G. (1985) Lambda PROLOG. Report, Department of Computing, Imperial
College, London.

McCarthy, J., Abrahams, P. W., Edwards, D. J., Hart, T. P., and Levin, M. I. (1965) LISP

1.5 programmer's manual. MIT, Cambridge, Mass.
Nelson, C. G. and Oppen, D. C. (1980) Fast decision procedures based on congruence
closure. J. Association for Computing Machinery 27(2), 356-64.

O'Donnell, M. J. (1985) Equational logic as a programming language. MIT Press,
Cambridge, Mass.

Plaisted, D. A. (1984) The occur-check problem in Prolog. New Generation Computing

2(4), 309-322.
Plaisted, D. A. (1985) Semantic confluence tests and completion methods. Information and
Control 65(2/3), 182-215.

Plaisted, D. A. and Greenbaum, S. (1984) Problem representations for backchaining and

equality in resolution theorem proving. Proc. First Annual Al Applications Conference,

Denver, Colo., pp. 417-23.
Reddy, U. (1985) Narrowing as the operational semantics of functional languages. Proc.

55



EQUATIONAL PROGRAMMING

1985 Symp. on Logic Programming, Boston, Mass., pp. 138-51.
Reddy, U. S. (1986) On the relationship between logic and functional languages. In Logic
programming (eds D. DeGroot and G. Lindstrom) pp. 3-36. Prentice-Hall, Englewood
Cliffs, N.J.

Ray, P., Kirchner, C., Kirchner, H., and Lescanne, P. (1985) NARROWER: a new algorithm
for unification and its application to logic programming, Proc. First Int. Conf on
Rewriting Techniques and Applications, Dijon, pp. 141-57.

Robinson, J. A. (1963) Theorem proving on the computer. J. Association for Computing
Machinery 10(2), 163-74.

Robinson, J. A. (1987) Beyond LOGLISP: combining functional programming. In Machine
intelligence 11 (eds J. E. Hayes, D. Michie, and J. Richards) pp. 57-67. This volume.

Sato, M. and Sakurai, T. (1984) QtrrE: a functional language based on unification. Proc.
Int. Conf.  on Fifth Generation Computer Systems, Tokyo, pp. 157-65. Revised version
(1986) in Logic programming (eds D. DeGroot and G. Lindstrom) pp. 131-55.
Prentice-Hall, Englewood Cliffs, N.J.

Shapiro, E. Y. (1983) A subset of Concurrent Prolog and its interpreter. Technical Report
TR-003, Institute for New Generation Computer Technology, Tokyo.

Slagle, J. R. (1974) Automated theorem-proving for theories with simplifiers, com-
mutativity, and associativity. J. Association for Computing Machinery 21(4), 622-42.

Smolka, G. (1985) FRESH: a higher-order language with unification and multiple results. In
Logic programming: functions, relations and equations (eds D. DeGroot and G.
Lindstrom) pp. 469-524. Prentice-Hall, Englewood Cliffs, N.J.

Stickel, M. E. (1981) A unification algorithm for associative-commutative functions. J.
Association for Computing Machinery 28(3), 423-34.

Subrahmanyam, P. A. and You, J.-H. (1984) FUNLOG = functions + logic: a computational
model integrating functional and logic programming. Proc. IEEE Symp. on Logic
Programming, Atlantic City, N.J., pp. 144-53. Revised version (1986) in Logic
Programming (eds D. de Groot and G. Lindstrom), pp. 157-98. Prentice-Hall,
Englewood Cliffs, N.J.

Tamaki, H. (1984) Semantics of a logic programming language with a reducibility predicate.
Proc. IEEE Symp. on Logic Programming, Atlantic City, N.J., pp. 259-64.

Turner, D. A. (1979) SASL language manual. Report CS/79/3, Department of Computa-
tional Science, University of St. Andrews, St. Andrews.

Zhang, H. and Rdmy, J.-L. (1985) Contextual rewriting. Proc. First Int. Conf on Rewriting
Techniques and Applications, Dijon, pp. 46-62.

56



3

Beyond LOGLISP: combining

functional and relational

programming in a reduction setting

J. A. Robinson
School of Computer and Information Science, Syracuse University, USA

The initial plan for LOGLISP [1] was simply that it would offer, within LISP,
a Horn-clause relational programming facility akin to PROLOG. This it
does, but with some differences from PROLOG, notably the use of a
breadth-first, rather than depth-first, elaboration of the underlying tree of
alternative linear proofs, and the consequent avoidance of explicit
backtracking as a control mechanism. It was because of these differences
that the facility was called LOGIC rather than PROLOG, which would have
been misleading. The name LOGLISP then refers to the combined system:
LOGIC ± LISP.

It soon became apparent, however, that the main interest of LOGLISP
lay rather in its (relatively crude, but genuine) attempt to merge the
functional programming style of LISP with the relational programming
style of LOGIC and PROLOG. This was done by introducing the notion of
'Lisp-transforms' into LOGIC.
The Lisp-transform of a simple expression (atomic sentence or term) E

of LOGIC is an expression which in many cases is the same as that
obtained by applying Lisp's EVAL function to E.
Thus, the Lisp-transform of (PLUS 3 (TimEs- 2 6)) is 15. However, the

Lisp-transform of (pws x (TIMES 2 6)) is (PLUS x 12), assuming that x is not
defined Chas no value').

It is as though the LISP EVAL function had been modified to be more
tolerant of undefined identifiers and to return the symbol or function call
itself as its 'value' if it has no value in the usual sense.
Before seeking to unify a goal statement with the heads of appropriate

Horn clauses, LOGIC first replaces it by its Lisp-transform. This cor-
responds to PROLOG'S concept of first executing the goal statement (if it is
executable) but with the difference that it is then sent forward to the
unifier for attempted resolutions, rather than being discarded as in
PROLOG. Indeed, since real LISP has constructs whose evaluation causes
side-effects, these can occur when LOGLISP computes a Lisp-transform.
This step of replacing each selected goal by its Lisp-transform and then

57



BEYOND LOGLISP

attempting to resolve away the transformed goal has far-reaching

consequences.
An obvious and immediate consequence is to provide 'built-in'

functions and predicates for Loma any identifier with a LISP definition

(whether a system or a user definition) will 'feel' that definition during

the Lisp-transformation process. In particular a Lisp-defined goal sen-

tence such as (LESSP 3 4) would be transformed, in this case to T(Run), the

goal sentence which in LOGIC is always unconditionally provable.

A less obvious consequence is that a goal sentence can contain calls on

the LOGIC system itself (since they are LOGIC expressions as well as LISP

expressions) such as calls on SETOF or ASSERT. These calls can be nested,

so that one can compute, for example, the set of all Jim's cousins who

have no sons by Lisp-transforming the expression

(SETOF ALL X (COUSIN X nm) and (NULL (SETOF ALL y (sox y x)))

so as to get (say)

(MARY BILL GEORGE).

This rather serendipitous feature of LOGLISP led to the realization that the

SETOF construct is quite central in relational programming. Sets (repre-

sented in LOGLISP as lists) and relations (sets of tuples) are data objects

constructed by deductively evaluating set descriptions and relation

descriptions, using sets and relations defined by Horn clauses.

In constructing such sets and relations it is natural in LOGLISP to invoke

functions defined in the usual LISP manner and to engineer the overall

transaction as a mixture of LISP and LOGIC steps, but there is nothing in

the constructions themselves which demands this distinction.

This suggests seeking a more complete merger of the relational and

functional paradigms than LOGLISP provides. Locum, maintains 'separate

but equal' environment management facilities, one for LOGIC variables,

which deals with bindings made by unification, and another for LISP

variables, which deals with bindings made by assignments and by function

calls. The LISP-transformation process is distinguished from the LOGIC

process of proving goals by resolution—indeed, these two processes are

alternated in a two-phase cycle. The net overall effect is to implement, in

this awkward way, a `Locusp-reduction' process, but as a kind of

antiphonal duet. It seems clear that there really ought to be only one

process, rather than two. Definitions of functions and definitions of

relations are not essentially different, and should be invoked in the same

way. Variables are variables—there should be just one kind. There is

nothing special about 'logical' variables, nor about unification. As will be

seen, unification can be viewed as a kind of reduction process, and its

steps can be treated in the same way as steps of reduction in general are

treated.

58



ROBINSON

1. LISP VIEWED AS A REDUCTION SYSTEM

The simplest view one can usefully take of LISP is that it offers the user
two facilities: (a) a definition facility; and (b) a deduction facility.
The first of these allows one to define functions by, in effect, asserting

new axioms. Each definition is essentially an equation

F = lambda X B

which associates with a symbol F a function described in the notation of
the lambda calculus. Here, X is a list of distinct formal variables, while B
is the 'body' of the description of the function. Thus one might assert the
definition

! = lambda (n) (if n = 0 then 1 else n * (l (n — 1))

of the factorial function by introducing the symbol ! on the left-hand side
and describing the function on the right-hand side by means of an
expression in which ! occurs. Such recursive definitions are the very stuff
of functional programs.
The second facility allows one, in effect, to pose certain kinds of

deduction problem and have them solved—One might express these as:

find the expression V in normal form for
which the equation

E = V

is deducible from the (current set of) axioms.

In LISP one usually thinks of V as the result of applying EVAL IO E, and
calls it the 'value' of E. Thus if E is (! 6) one would expect that V would
be 720.
Not all expressions are in normal form. The general idea is that if an

expression contains one or more subexpressions which can be rewritten in
accordance with some definition then it is not yet in normal form and can
be further 'reduced' by rewriting one of those subexpressions, or
`redexes', as Curry called them. This 'reduction' process can be kept up
for as long as the expression contains such redexes, and in general the
replacement of some redexes may well create new redexes, and so on. To
be in normal form is, precisely, to contain no redexes.
This view of computation is the reduction point of view which comes

with the classical lambda calculus. It automatically entails a 'no error
stops' treatment of computation—an expression E always can be trans-
formed, if it is not already in normal form. The point is that, for
example, (x + 4) is not an error if x is undefined. Instead, it is
irreducible, and hence is in normal form. Thus, being in normal form is a
relative notion. It depends on the set of definitions which is currently in

59



BEYOND LOGLISP

force. For example, if the definition

x = 5

is added then the expression (x +4) is no longer irreducible and reduces
to the expression 9.

2. LoGic VIEWED AS A REDUCTION SYSTEM

The simplest view one can take of LOGIC (or indeed of 'pure' PROLOG) is
very similar to the above view of LISP. Again, two facilities are offered:
(a) a definition facility; and (b) a deduction facility.
The first of these allows one to define relations by asserting axioms,

called 'positive Horn clauses'. To define R one asserts, in effect, a single
equation with a right-hand side which describes a relation by means of a
disjunction of simple sentences each corresponding to such a clause:

R = lambda X (oR (for some Y1: (X = T1 and B1))

(for some Y„ : (X = T and Bn)))

where X is a list of distinct formal variables, Ti is the equally long list of
terms which is the argument of R in the ith clause, Yi is the (possibly
empty) list of 'local' variables of the ith clause, and 13, is a conjunction of
atomic sentences comprising the body of the ith clause.
In LOGIC and PROLOG one asserts the clauses separately for each i

in the form

for all Yi :R 7; if 13i.

Provided (as Clark [2] argues and as is surely the case) one intends R to
hold of a tuple ONLY IF one of these clauses applies, then it is
straightforward to see that the conjunction of the separate clauses is
equivalent to the single equation.
Another way of thinking about the definition of a relation R by a single

equation is that it describes R as a union of relations, namely as

(UNION lambda X (for some Y1: (X = T1 and B1))

lambda X (for some Y„ : = T„ and BO)).

Although it is not the usual custom to do so, one can read 'lambda X'
here as 'the set of all X such that', bearing in mind that, after all, a
relation is usually construed as a set of tuples.
For example, one can define the APPEND relation in this manner as the

60



ROBINSON

union of two relations:

APPEND = (UNION lambda (a, b, c) (for some x : a = [1 and
b = x and
c = x))

lambda (a, b, c) (for some x, y, z, w:
a =[x y] and
b = z and
c = [x. w] and
(APPEND y z w)))

the second of which refers recursively to the APPEND relation itself.
The deduction facility of PROLOG or LOGIC is best viewed as one for

solving problems of the form:

find the expression V in normal form such that
the equation

lambda X (for some Y: A) = V

is provable from the (current set of) axioms.

In other words, find the (normal form description of) the set of all X
such that A holds for some Y. It is assumed here that the normal form of
a set description is one which lists the set's elements, as for example:
{2, 4,6). One might note that this customary notation is insignificantly
different from

lambda (x) (x =2 or x =4 or x = 6)

or from its description as the union of the singletons

(uNioN (lambda (x) x =2) (lambda (x) x =4) (lambda (x) x = 6)).

Looic tries to provide such a 'set description' deduction facility with its
SETOF function. Different versions of PROLOG vary on this point, but the
practice is becoming more and more common to provide such a deductive
construct in addition to the basic one, which in effect solves the problem:

find a term T such that the sentence

(lambda X (for some Y: A) T)

is provable from the (current set of) axioms.

The solutions T to this problem are in general not uniquely determined
by the condition A, and so one speaks of the non-determinacy of the
process of finding such a T. In fact, however, successive posings of the
same problem are not independent, and run through the elements of the
set:

lambda X (for some Y: A)

61



BEYOND LOGLISP

in some order. Thus, PROLOGS do find the set, but they do it one element
at a time; and they do not always offer the service of representing the set
by a single expression (or what is the same, as a data object).
So it can be seen that both LISP and LoGic are essentially in the same

business: of accepting definitions in the form of equations and of solving
deduction problems by reduction of a given expression to its normal
form. Why, then, should they be kept separate from each other? I
believe that they need not and should not be.
A system being developed at Syracuse University will now be discussed

in which both functional and relational programming merge into a single
definition—deduction paradigm. The system is called SUPER (for Syracuse
University Parallel Expression Reducer).
SUPER is a reduction system with a repertory of rewrite rules including

all those one would expect in a (pure) Lisp-like lambda calculus. In
particular it will have the usual rule of beta reduction, which calls for the
replacement of a redex of the form

(lambda X B) A

by the expression resulting from substituting A for free X throughout
B. The constants

EVERY, SOME

are added to the language so as to provide the logical quantifiers via the
constructions

for all X: A = (EVERY (lambda X A))

for some X: A = (SOME (lambda X A))

which go back to Church's language [3] for the simple theory of types.
SUPER will be based on that system (which has been studied by Henkin [4]
who gave a completeness result for it, and which recently was used by
Andrews [5] as the formalism for a higher-order theorem proving
system). Thus SUPER has only two syntactic constructs: application (of
one expression as function, to another expression as argument) and
abstraction. Its expressive power comes from a suitable collection of
constants: TRUE, FALSE, NOT, AND, OR, IF, in, for the Boolean combina-
tions of elementary logic; CAR, CDR, CONS, ATOM, EQ, COND, NIL, etc., for
the Lisp-like symbolic apparatus; PLUS, TIMES, etc., together with suitable
numerals, for arithmetic. All of these constants will require appropriate
reduction rules to give them operational meaning, and all of them are
familiar and straightforward with the exception perhaps of those dealing
with the SUPER version of unification. These will be discussed next.
Let us follow a few of the transformations necessary to compute the

62



ROBINSON

normal form of the following set description:

lambda (p, q) (APPEND p q [123]) (1)

which we can see, intuitively, is

[123])
([1], [23])

([12], [3])

([123],

Here and henceforth the convention for list notation whereby, for
example, the list [1 . [2. [3 . HU] is written more readably as [123] is
used.
The expansion rule takes the definition of APPEND as the union of two

simple relations and rewrites (1) as the union of two relations

(umoN lambda (p, q) (for some x:p = [1 and
q= x and

[123] = x)

lambda (p, q) (for some x,y,z,w: p =[x. y] and (2)
q= z and

[123] = [x . w] and
(APPEND y z w)))

(In applying the expansion rule it is necessary to pay attention to the
question of clashes of bound variables and to take precautions of the
usual kind, namely, to change the local variables of the set descriptions,
if necessary, before replacing the formal variables by actual terms of the
redex.)
In the second component of the union expression there is an expansion

redex, but there are now two redexes of another kind, one in the first and
one in the second component of the union. These call for applications of
the contraction rule. According to this rule a local variable can be
dropped from the quantifier prefix of the body of a simple relation
expression provided that one of the conjuncts in the body is an equation
between that variable and some term which does not contain it. In the
first component above the variable is x and the term is [123]. In the
second component the variable is z and the term is q. In addition to
dropping the variable from the prefix all of its occurrences in the body
must be replaced by the term. So in the above x is replaced throughout
the body of the first component by [123], and z throughout the body of
the second component by q. Finally, the trivial equation thus created is
dropped. In the first component this is the equation [123] = [123]. In

63



BEYOND LOGLISP

the second component it is q = q. The resulting expression is

(uNioN lambda (p, q)(p =[] and q = [1 2 3])

lambda (p, q) (for some x, y, w: p =[x . y] and
[1 2 3] = [x . w] and (3)
(APPEND y q w)))).

It should be noted that the contraction rule applies only to redexes of the
particular kind described. The form in general is

lambda A (for some B: C1 and • • • and Cm and (V = E) and D1 and
• • • and D„)

where the list B of local variables contains the variable V and E is a term
not containing V. (The equation can also be E = V.) The redex is
replaced by

lambda A (for some B': (C1 and • • • and C„, and D1 and • • • and
D){E IV})

where B' is the list B with V omitted. That is, we replace V by E
throughout the conjunction, and drop the trivial equation E = E thus
created.

Notice that in this example contraction is applied simultaneously to two
different redexes. This is a small example of the way in which reduction
can be done in parallel.
The next step illustrates the decomposition rule. This states that a

redex of the form

lambda A (for some B: (C and [P. QJ= [R. S] and D))

where C and D are both simple conjunctions (possible empty), may be
replaced by

lambda A (for some B: (C and P = R and Q = S and D)).

All that this rule is saying is that an equation between two dotted pairs is
equivalent to two equations between their respective heads and tails.
Applying decomposition to (3) yields

(uNioN lambda (p, q) (p =a and q = [1 2 3])
lambda (p, q) (for some x,y,w: p = [x. y]

1=x (4)

[23] = w and

(APPEND y q w)))

thus creating two new equations which permit contraction to be applied

64



twice more, after which we have

(uraoN lambda (p, q) (p = [] and q = [1 23])

lambda (p, q) (for some y: p = [1 . y]

(APPEND y q [23])))

ROBINSON

(5)

and we must take stock of what has been happening to the original set
description (1) as it is step-by-step being transformed into the description
(1').

In (5) already a singleton set containing the first couple has emerged.
The other three elements have yet to emerge from the description of the
rest of the set. However, this description has been partially developed,
and now intuitively reads 'the set of all couples of lists, the first of which
starts with 1 and has a tail which, when appended to the second, yields
the list [23]'. We can intuitively see that this is the set

{([1], [2 3]), ([12], [3]), ([1 2 3], []))

Further applications of the three rules exp—ansion (using the definition of
APPEND), contraction and decomposition will carry (5) step-by-step nearer
to the union of singleton sets which is the required normal form
representing (1'). Only one further rule is required to complete the
overall transformation. This is the failure rule which states that a redex of
the form

(umoN Si • • • S„, (lambda A (for some B: C)) Ti • • • T„)

where C is a conjunction of simple sentences one of which is obviously
false, may be replaced by the expression

(UNION Si • • • Sm • • • TO .

The intuitive justification of the rule is that the deleted component
describes the empty set.
Some examples of 'obviously false' simple sentences are:

FALSE, [1= [x. A, 2 = 3.

The failure rule is so named because it corresponds to the occasions in
the unification process when an attempt to unify two expressions fails.
Let us skip forward to the point where the failure rule comes into play

in our example. The following description is reached after applying an

65



BEYOND LOGLISP

expansion:

(urnoN lambda (p,
lambda (p,
lambda (p,
lambda (p,
lambda (p,

q) p = [] and q = [1 2 3]
q) p = [1] and q = [2 3]
q) p = [1 2] and q = [3]
q)p=[123]andq=[]
q) (for some x, y, z, w:

p = [1 2 3 . y] and
y = [x z] and
= [x w] and

(APPEND y q w)))

whose final component contains the impossible equation [] = [x. w]. It

also contains a further recursive call on the APPEND definition, and hence

is an expansion redex. In addition, by virtue of containing the equation

for the local variable y it is a contraction redex. However, the rewriting

of the entire UNION expression by the failure rule simply drops these

redexes and thus would be the most advantageous choice.

The final expression is then (ensugaring the singletons):

(umoN Mb [1 2 3]))

{([1], [2 31)}
{([1 2], [3]))
(([12 3], OM

which can be further ensugared to the form of (1') if desired.

The overall computation sketched in this example corresponds, in a

reduction setting, to the complete exploration of the tree of alternative

Horn-clause resolution deductions which PROLOG or LOGIC would per-

form in response to a request to find the set of all (p, q) such that

(APPEND p q [1 2 3]). The expansions correspond to the invocations of the

two clauses of the APPEND definition; the contractions to the successive

bindings made by the unification process in attempting to unify a selected

goal with a clause head; the decompositions to the recursive calls to the

unification algorithm when two dotted pairs are to be unified; and the

failures to the moments when the unification algorithm encounters an

impossible combination.

3. SCOPE OF SUPER

Although the underlying language of SUPER is the simple theory of types,

sometimes also called the predicate calculus of order omega, at present

the experiment has not gone far enough to know whether the repertory

of rules can be usefully extended to cover higher-order unification. Huet

[6] and Pietrzykowski and Jensen [7] have given unification algorithms for

66



ROBINSON

the typed lambda calculus, but the computational problems are much
more complex than in the first order case.
The objectives so far have been limited to reorganizing the present

stock of ideas about first-order relational programming so that at least the
same capability one has in LOGIC can be reproduced in the reduction
setting. The next goal is to investigate the feasibility of implementing
SUPER, as it presently exists, in a parallel reduction architecture. Klaus
Berkling is currently designing a second version of his well-known GMD
Reduction Machine [8] which will embody the expansion, contraction,
decomposition and failure rules as well as a full set of rules suitable for a
Lisp-like functional language. This machine will have a multiprocessor
architecture and its design is at present under way.

4. FUTURE WORK

It would, of course, be very interesting to extend these rules beyond the
first-order unification level. Another line of investigation is to see how
far, if at all, one can push the combinator approach which in recent years
has been so well exploited by Turner [9]. The main problem seems to be
that transformation of a lambda abstraction to pure combinator form
disarranges the syntactic structure of the original so much that the
unification analysis cannot be carried out. In the present system this
comes out in the contraction rule: in order to apply the rule one has to
identify the term which will be substituted for the variable being
eliminated. This is easy enough in the original expression, but after
transformation into pure combinator form there are no longer any
variables and in particular no equations between variables and terms.
There seems therefore to be no way to identify the term. So the question
is: what corresponds to the unification process after all variables have
been transformed away?

It would be useful to know more about the role played by the typing of
expressions in the SUPER language. Huet's higher-order unification
algorithm makes crucial use of the types of expressions at certain stages,
but none of the rules considered in this discussion do, as witnessed by the
fact that types have scarcely been mentioned.

Finally, it should be said that aspirations do not presently extend to
building a complete proof procedure for SUPER, although this is not, in
view of Henkin's result cited earlier [4], out of the question. Rather
something like a higher-order Horn clause resolution theorem prover is
sought in which it will be possible to do logic computations A la Kowalski
[10] but without the restriction to first order. Related work is in progress
at Imperial College by Darlington and his group [11] and at Cambridge
University by Paulson [12]. The point is to retain, if possible, the directed

67



BEYOND LOGLISP

purposefulness of a computation process, and not to slide back into the
world of mere searching.

REFERENCES

1. Robinson, J. A. and Sibert, E. E. (1982) LoGusP: an alternative to PROLOG. In
Machine intelligence 10 (eds J. E. Hayes, D. Michie, and Y.-H. Pao) pp. 399-419. Ellis
Horwood, Chichester and New York, Halsted Press.

2. Clark, K. L. Negation as failure. In Logic and databases (eds H. Gallaire and J.
Minker) pp. 293-294. Plenum Press, New York.

3. Church, A. (1940) A formulation of the simple theory of types. J. Symbolic Logic 5,
56-68.

4. Henkin, L. (1980) Completeness in the theory of types. J. Symbolic Logic 15, 81-91.
5. Andrews, P. B., Miller, D. A., Cohen, E. L., and Pfenning, F. (1984) Automating

higher order logic. In Automated theorem proving: after 25 years (eds W. W. Bledsoe
and D. Loveland) Contemporary mathematics, Vol. 29, pp. 169-92. American
Mathematical Society.

6. Huet, G. (1975) A unification algorithm for typed lambda calculus. Theoretical
Computer Science 1,27-57.

7. Pietrzykowsld, T. and Jensen, D. A complete mechanization of omega-order type
theory . ACM National Conference 1972, Vol. 1, pp. 82-92.

8. Berkling, K. J. (1976) Reduction languages for reduction machines. Gesellschaft far
Mathematik und Datenverarbeitung 957, Bonn.

9. Turner, D. A. (1979) A new implementation technique for applicative languages.
Software Practice and Experience 9, 31-49.

10. Kowalski, R. A. (1979) Logic for problem solving. North Holland, Amsterdam.
11. Darlington, J., Field, A. J., and Pull, H. (1985) The unification of functional and logic

languages. Report DOC 85/3. Imperial College, London.
12. Paulson, L. C. (1985) Natural deduction theorem proving via higher order resolution.

Technical report No. 67. Computer Laboratory, Cambridge University.

68



4
Concurrent Computer Architecture
for Unification Operations

J. V. Oldfield
Department of Electrical and Computer Engineering,
Syracuse University, USA

C. D. Stormon
Centre for Computer Applications and Software Engineering,
Syracuse University, USA

1. INTRODUCTION

There is considerable and growing interest in the development and
application of logic programming languages such as PROLOG and LOGLISP.
At the same time it is increasingly clear that conventional computers are
ill-adapted to the execution of logic programs. The advent of LISP
machines inspired by the MIT CADR has improved the situation for
Lc:cusp, but considerable further improvement should be possible. All
logic programming systems are based on unification. This is a process for
calculating the most general way in which a given environment of
variable bindings can be extended (by adding further bindings if
necessary) to one in which two given symbolic expressions are identical,
or for detecting the impossibility of doing so (as the case may be). In the
first case, the extended environment is retained. Otherwise the extension
must be removed.

Since unification accounts for a great proportion of the activity of logic
programming systems, present-day systems such as LOGLISP incorporate
sophisticated techniques based on hash-coding and stack structures to
speed-up the process. The advent of LISP machines such as the Lmi
Lambda and Symbolics 3600 has improved the situation considerably
over implementations on conventional computers such as DEC KL-10, but
none of the hardware is designed specifically to carry out the unification
processes efficiently. Application of logic programming techniques in
potentially significant areas such as large-scale expert systems is presently
limited by the speed of available computers, and so it is appropriate to
look for further improvement by special purpose computer hardware.

Several years ago, Lien (1981) published a design for a unification chip
as part of an M.Sc. thesis. Although the chip was never fabricated this
work showed that a special-purpose unification processor was feasible.

69



CONCURRENT COMPUTER ARCHITECTURE

The design was a direct implementation of an early published algorithm
for unification (Robinson, 1971). More recently developed algorithms
(Morris, 1978) are much more efficient and are in wide use. Before
describing the unification process, some definitions are appropriate.
An expression is either a variable, or a constant, or a ('dotted') pair

(C.D.) of expressions in which C is its head and D is its tail. An
environment is a collection of pairs, each of which has a distinct variable
as its head. An environment E' is an extension of an environment E if
every pair in E is also in E'.
The realization of an expression X in an environment Y is:

• X, if X is a constant:
• the realization of Z in Y, if X is a variable and the pair (X.Z) is in Y;
• X, if X is a variable and there is no pair in Y whose head is X;
• the pair whose head is the realization of C in Y and whose tail is the
realization of D in Y, if X is the pair (CD).
The unification task can be described as follows. We are given two

expressions A and B together with an environment E. We are to find (if
one exists) a most general extension E' of E such that the realizations of
A and of B in E are identical; or to show that none exists, as the case
maybe.
The following algorithm solves this problem.

Let (uNIFY A B E) be:
• 'impossible', if E is :impossible';
• E, if A= B;
• (UNIFY A' BE), if A is a variable and (A.A') is in E;
• (UNIFY A B' E), if B is a variable and (B.B') is in E;
• (UNIFY Al B1 (UNIFY A2 B2 E)) if A is the pair (A 1. A2) and B is the
pair (B1.B2);
• E plus the pair (A.B), if A is a variable and no pair in E has A as head;
• E plus the pair (B.A), if B is a variable and no pair in E has B as head;
• 'impossible', otherwise.

In 1982 we began a preliminary study for a computer system which
would incorporate the latest thinking on unification algorithms, along
wit concurrent computer operation and the incorporation of custom vut
chips where appropriate. This led to an overall architectural scheme
(Greene, personal communication) which will now be described.

2. THE SYRACUSE UNIFICATION MACHINE

The Syracuse Unification Machine (Sum) is designed as an experimental
co-processor for an existing host machine running LOGLISP. SUM assists
the host in performing unifications and keeping track of the variable-to-
expression bindings which are built up during the execution of a logic
program.

70



OLDFIELD AND STORMON

2.1. Scope of operation

Many unifications are required in the course of running a typical logic
program. Some of these unifications are of a degenerate nature in that
they will fail immediately. These are the cases where two objects of
incompatible structure (e.g. a pair and an atom) are to be unified. These
are the types of unifications that can often be 'compiled away' in typical
logic program compilers. Another simple case occurs when two constants
are the objects to be unified. A unification of this type will succeed if the
constants are identical and fail otherwise. Both of these types of
unification require only the simple bitwise comparison of words in
memory and thus are judged to be best handled by the host machine
because of the communication overhead involved in passing them to a
co-processor.
The great majority of unifications required in the execution of a logic

program fall into one of the two remaining categories: the unification of a
pair with a pair, and the unification of any expression with a variable. In
order to unify a pair with another pair, it is necessary to unify the heads
of the pairs and, recursively, the tails of the pairs. Since Sum is currently
designed to deal with pointers to pairs, but not have direct access to their
heads and tails, the host machine must look these up and pass them to
Sum when appropriate. Future versions of Sum might make use of direct
memory access techniques to allow the co-processor to follow the
pointers to the heads and tails.
Thus it is only when at least one of the two expressions to be unified is

a variable that Sum becomes involved., When the execution of a logic
program requires that a variable be unified with some expression, the
host passes the task directly to Sum. This case is potentially the most
complicated, and the one where special-purpose hardware is most likely
to improve performance.

2.2. Principles of operation

Sum consists of four major types of units: the Communication Agent, the
Binding Controller, the Binding Agent, and the Analysis Agent. Each of
these units is designed to operate concurrently to increase efficiency. The
proposed configuration of Sum is depicted in Figure 1.
When operation is initiated, the host machine loads an environment of

bindings (possibly empty) into Sum. Sum maintains and extends this
environment as required while performing unification operations. The
extended environment may be reported by Sum at the request of the host
machine. During its operation Sum receives as input from the host
machine a stream of tasks of the form,

(UNIFY VX)

71



CONCURRENT COMPUTER ARCHITECTURE

to host

pairs to
look up f if

from host

(UNIFY VX)

Communication
Agent

(interface-to-host
processor)

 >—

4, (UNIFY VX)
Binding

Controller

(UNIFY V X) (UNIFY Vo X)

Binding Agent
(even)

variable
bindings

(UNIFY Xove X )

V

Analysis Agent

Binding Agent

(odd)

(UNIFY x0 0 X)

variable
  bindings

Analysis Agent

pairs to look-up    pairs to look-up

Figure 1. The Syracuse Unification Machine (Sum).

where V is a variable and X may be a variable, a pointer to a pair, or an
atom.

2.2.1. The Communication Agent

The Communication Agent provides a two-way communication interface
between Sum and the host machine. Items from the host are transferred
to the Binding Controller while items which originate in Sum are passed
to the host.

2.2.2. The Binding Controller

The Binding controller places unification tasks of the above form on a
FIFO stack. The Binding Controller has the job of assigning each task to
the appropriate Binding Agent. In the current design, there are two
Binding Agents (there may be one, two or many). Part of each variable
identifier from the host is an index which identifies the variable's location
in the search tree. If X and V are both variables, the Binding Controller
will order V and X so that the variable with higher index comes first. This

72



OLDFIELD AND STORMON

is to ensure that bindings are never cyclic. With two Binding Agents, the
Binding Controller simply assigns the task whose left side has even index
to one Binding Agent while those with odd index are sent to the other.

2.2.3. The Binding Agent

The Binding Agent is the heart of Sum; its design is discussed in Section
3. A flowchart describing the operation of the Binding Agent is shown in
Figure 2. The Binding Agent contains a stack of variable-to-expression

H(UNIFY VX)
( Binding
Controller)

Yes

retrieve X0
(the binding of V)

r—
optional path
compression

any current
extension bindings

to V?

to Analysis
Agent for
further

processing

change all such
bindings to X
( path

compression)

Figure 2. Flowchart of binding operations.

73

operation
complete

operation
complete



CONCURRENT COMPUTER ARCHITECTURE

bindings which are made in the course of executing unification tasks.
When a new task of the form (UNIFY VX) comes in, the Binding Agent
checks to see if the variable V has already been bound to something. If a
search of the stack of bindings shows no entry for variable V, the new
binding of V to X is pushed onto the stack, and the unification step is
completed.

If there is already an entry for the variable V in the stack of bindings,
the only way that • the operation (UNIFY VX) can succeed is if the
expression X can be unified with the expression to which the variable
was already bound (say XO). Thus the Binding Agent retrieves the
binding of V which is XO and produces a task which has the form,

(UNIFY X X0)

which is passed on to the Analysis Agent. The existing binding of V to
XO is left in place.

2.2.4 The Analysis Agent

The design of the Analysis Agent is described in Section 4. The Analysis
Agent performs a case analysis of the unification tasks it receives from
the Binding Agent. If one of the expressions is a variable, the task is
passed to the Binding Controller. If the expressions are of incompatible
structure the Analysis Agent signals failure of unification. If the
expressions are both simple atoms, the Analysis Agent compares them
and signals failure if they are not identical.

If the expressions are pairs or if they are pointers to complex atoms the
Analysis Agent passes the unification task to the Communication Agent
and thus back to the host machine. In the case of pairs, the host machine
will return unification tasks for the heads and tails of these pairs.

2.2.5 Success or failure

Unification can fail in the Analysis Agent or in the host machine. When a
failure is signalled, all the units can flush the work they are currently
doing. In addition, the current extension to the environment (all the
bindings that were added as a result of performing that unification) are
thrown away. In this way the machine can operate in the familiar
'backtracking' mode used in PROLOG systems.
The success of a unification task may result in bindings being added to

the environment, but there is no need to signal other units or the host of
each success. When ultimately there are no more unifications to be
performed, and no failures have been signalled, the Binding Agents can

74



OLDFIELD AND STORMON

be said to contain the 'answer' to the query given the logic program. The
'answer' consists of substitutions for the variables in the query which
make it a true statement. These substitutions may be passed back to the
host (at the request of the host) for reporting to the user, or for further
processing.

3. THE BINDING AGENT

The Binding Agent holds the binding environment in a specially designed
memory with content addressable features. At present we envisage a
total of two Binding Agents; with the work divided on the basis of index
parity, but more (or fewer) may be necessary. Unifications are carried
out as part of a higher level resolution process, and at each successful
unification the binding environment will be extended. Conversely, if
unification fails, the environment must be contracted to correspond to the
last successful step. In consequence, we have organized the Binding
Agent memory as a stack.
When presented with a binding task, the Binding Agent must

determine if the variable is already bound to an expression. We have
developed a custom Nils' chip which allows simultaneous look-up on 128
rows of 17-bit-wide variable identifiers in 100-150 ns. A full-scale Binding
Agent will employ 32 such chips and so hold a maximum of 4096 entries.
The chip uses a nine-transistor static CAM cell which is derived from the
well known six-transistor static RAM cell plus three transistors for
comparison between the cell contents and the search bit. A novel feature
is the use of a mask register which avoids the space taken by an address
decoder and which serves to indicate the extent of the current stack and
also the next free location. A prototype version, with eight rows of three
bits but otherwise complete, was designed by S.-H. Kuang and success-
fully tested after fabrication by the mosis Fast Turnaround Fabrication
Facility.

If the variable presented is not already bound, the corresponding
expression is written to the RAM memory of the Binding Agent. The
organization is conventional and uses fast static RAM chips in 4K x 4
format. If, however, the variable is already bound, the stored expression
must be unified with the newly arrived expression. This requires a read
cycle in the RAM followed by transmission to the Analysis Agent.

Figure 3 shows the general organization of the Binding Agent. Each
Binding Agent has its own controller, which maintains a stack of
environment extensions pointers. In the event of unification failure, the
controller works out the number of shifts to be applied to the mask
register and so remove recent extensions from the stack. We have found
that shifting may take place at up to 15 MHz, and so this housekeeping
operation is executed very quickly.

75



CONCURRENT COMPUTER ARCHITECTURE

chip
31
chip
30

17B 

I search pattern I

t
128x 17 bit
AM chip ' 
100 ns

search time

chip
0

stack
of I

variables

52B
input expression

 J 4K x 52 bits

40B 128

conventional
static RAM

  shit
I output pattern I mask

178 register

Binding
Agent

stack

bound
expressions

7.

output expression

52B

Binding
Agent

controller

Figure 3. Structure of the Binding Agent.

4. THE ANALYSIS AGENT

A preliminary design for the Analysis Agent was carried out by V.
Venkataraman in 1984 (Figure 4). Because of pin-out limitations and the
wide data paths required, it is necessary to break down data into
sequences of bytes. These are passed in pairs through a front end
comparator which reports if bytes match or not. By careful ordering we
can determine if unification is feasible and route the data to either the
Binding Agents or to the Communication Agent. The design uses
dynamic shift registers to hold the data prior to dispatch, and a
programmable logic array serves as a controller.

5. STATUS OF THE Sum PROJECT

At present work is proceeding on a simulation of Sum using the OCCAM
language. OCCAM allows the direct modelling of concurrent processes

76



C
A
 r
ea
dy
 t
o 
ac
ce
pt

B
C
 r
ea
dy
 t
o 
ac
ce
pt

W
M
 r
ea
dy
 t
o s

en
d 
ne
w 
ta
sk

re
se
t A
A
 b
us
y Iin

va
li
d

co
de

A
A
 r
ea
dy

to
 a
cc
ep
t

ne
xt
 da

ta

fa
il
ur
e

To
gg
le

W
M
 d
at
a 
va
li
d

3
Et
,

3

eq
ua
l

0 a
.

0

P
L
A

co
nt
ro
ll
er

1

sh
if
t

1 sh
if
t 
re
gi
st
e

2
 
3
 
4
 
5
6
7

T
 
F
F

To
 C
A

To
 B
C
 
 
0
G
—

M
U
X

s
w
a
p

_i
_L
te
se
t

CA
1 

Fi
gu
re
 4
. 
An

al
ys

is
 A
ge

nt
 p
ip
el
in
e 
ar
ci
ft
ec
tu
re
.

B
C

S
w2 + 
Re
se
t

M
U
X

se
nd
 0
/
P
 t
o 
C
A

se
nd
 0
/
P
 t
o 
B
C

sw
ip

sw
ap
pe
r

NOINUOIS QNV QUIds310 



CONCURRENT COMPUTER ARCHITECTURE

through the use of PARallel and Aurernate constructors (Hoare, 1984).
When complete, this simulation will provide information with regard to
the level of performance achievable with Sum, and assist us in evaluating
the design. We are considering implementing Sum using the Inmos
transputer, which executes OCCAM (Barron, 1978). In that case, the
simulation program would be the basis for the actual Sum system
configuration.
Our implementation plans include interfacing a single transputer to a

host machine running LOGLISP (candidate machines include the Lmt
Lambda, the Symbolics 3600, and the IBM PC AT). This would enable us to
run our OCCAM model of Sum in connection with a working LOGLISP
system. As the hardware Binding Agents and Analysis Agents are
completed, they can be interfaced to this transputer system for testing.
Eventually, the entire Sum processor will be constructed with the original
transputer system performing the functions of the Communication Agent.
Our preliminary research indicates that Sum will provide approximately

100:1 average performance improvement for binding operations over
typical software methods. The overall logic programming system
performance increase will be much more modest however. The purpose
of the Sum project is to investigate the feasibility and utility of
special-purpose unification hardware using modern integrated circuit
technology. With advances in last technologies, it should be possible to
implement an entire Unification Machine on a single chip. This will make
it practical to have several complete LOGLISP or PROLOG machines
operating concurrently on different parts of the logic program search
tree.
The attraction of the Unification co-processor in this arrangement is

that it is a general-purpose processing element which makes no assump-
tions about the execution order of logic programs. Therefore, it can be
used in a pure depth-first scheme with backtracking on a unit processor
(as in PROLOG), in a heuristic search scheme (as in LOGLISP currently on
unit processors), and in any number of multi-processing schemes. In
addition, the data structures used in Sum are quite generic which means
that the Sum architecture should be applicable to almost any logic
programming system, not just PROLOG and LOGLISP. This last fact is of
special interest to us, since work on new logic and functional program-
ming systems is also going on here at Syracuse University (Greene,
personal communication).

Acknowledgements

The authors wish to thank their colleagues for many useful discussions, and in particular J.
A. Robinson, E. E. Sibert, K. J. Greene, H. Schliitter, and S.-H. Kuang. They also are
grateful for the support of IBM Corporation by way of a Departmental Grant, and to the
CASE Center of Syracuse University.

78



OLDFIELD AND STORMON

BIBLIOGRAPHY AND REFERENCES

Barron, I. (1978) The transputer. In The microprocessor and its applications (ed. D.
Aspinall). Cambridge University Press, Cambridge.

Berkling, K. (1983) Experiences with integrating parts of the GMD-Reduction Language
Machine. In VLSI architecture (eds B. Randell and J. Treleaven). Prentice-Hall,
Englewood Cliffs, N. J.

Hoare, C. A. R. OCCAM programming manual. Prentice-Hall, Englewood Cliffs, N.J.
Lien, S.-L. C. (1981) Towards a Theorem Proving Architecture, Tech. Report 4653.
Computer Science Department, California Institute of Technology.

Luner, D. L. (1984) A concurrent procedure for unification. M.S. Dissertation, Syracuse
University.

Morris, F. L. (1978) On List Structures and their use in the programming of Unification.
Tech. Report CIS 4-78. School of Computer and Information Science, Syracuse
University.

Oldfield, J. V. and Kuang, S.-H. (1984) An associative stack chip for the Syracuse
Unification Machine. Tech. Report, CASE Center, Syracuse University.

Robinson, J. A. (1971) Computational logic: The unification computation. In Machine
Intelligence 6 (eds B. Meltzer and D. Michie), pp. 63-72. Edinburgh University Press,
Edinburgh.

Robinson, P. The Sum: an AI co-processor. Byte 10(6), 169-80.

79



/



DEDUCTIVE PROBLEM-SOLVING
AND PROOF

-

81





5
Integrating Decision Procedures

into Heuristic Theorem Provers: A

Case Study of Linear Arithmetic

R. S. Boyer and J S. Moore
Institute for Computing Science and Computer Applications,
University of Texas at Austin, USA

Abstract

We discuss the problem of incorporating into a heuristic theorem prover
a decision procedure for a fragment of the logic. An obvious goal when
incorporating such a procedure is to reduce the search space explored by
the heuristic component of the system, as would be achieved by
eliminating from the system's data base some explicitly stated axioms.
For example, if a decision procedure for linear inequalities is added, one
would hope to eliminate the explicit consideration of the transitivity
axioms. However, the decision procedure must then be used in all the
ways the eliminated axioms might have been. The difficulty of achieving
this degree of integration is more dependent upon the complexity of the
heuristic component than upon that of the decision procedure. The view
of the decision procedure as a 'black box' is frequently destroyed by the
need to pass large amounts of search strategic information back and forth
between the two components. Finally, the efficiency of the decision
procedure may be virtually irrelevant; the efficiency of the final system
may depend most heavily on how easy it is to communicate between the
two components. This paper is a case study of how we integrated a linear
arithmetic procedure into a heuristic theorem prover. By linear arithmetic
here we mean the decidable subset of number theory dealing with
universally quantified formulas composed of the logical connectives, the
identity relation, the Peano 'less than' relation, the Peano addition and
subtraction functions, Peano constants, and variables taking on natural
values. We describe our system as it originally stood, and then describe
chronologically the evolution of our linear arithmetic procedure and its
interface to the heuristic theorem prover. We also provide a detailed
description of our final linear arithmetic procedure and the use we make
of it. This description graphically illustrates the difference between a
stand-alone decision procedure and one that is of use to a more powerful
theorem prover.

83



INTEGRATING DECISION PROCEDURES

1. INTRODUCTION

Decision procedures, alone or in co-operation with other decision
procedures, are fast and predictable but often too limited to be of general
use. On the other hand, today's heuristic theorem provers are capable of
producing proofs of fairly deep theorems, but are generally so slow and
unpredictable that few users have the patience and knowledge to use
them effectively. It is generally agreed that when practical theorem
provers are finally available they will contain both heuristic components
and many decision procedures.
This paper is a case study of how we integrated into a heuristic

theorem prover a linear arithmetic procedure for the natural numbers
based on a decision procedure for the rationals. By linear arithmetic here
we mean the decidable subset of number theory dealing with universally
quantified formulas composed of the logical connectives, the identity
relation, the Peano 'less than' relation, the Peano addition and subtrac-
tion functions, Peano constants, and variables taking on natural values.
We built in linear arithmetic primarily to eliminate from the heuristic
theorem prover's search space the huge number of often irrelevant
deductions arising from such theorems as the transitivity of the 'less than'
relation.
This paper can be divided up into three distinct phases. The first,

represented by Sections 2-4, argues that it is necessary to combine
decision procedures and heuristic theorem provers. During the first phase
we also give some necessary background material on our heuristic
theorem prover and what we mean by 'linear arithmetic procedures'. The
second phase, Sections 5-7, describes chronologically our attempts to
incorporate linear arithmetic into our theorem prover. In this phase we
cite examples from program verification applications that show the
inadequacy of our early integration strategies and that illustrate and
motivate our final scheme. The third phase of the paper, Section 8, gives
a precise and detailed description of the current linear arithmetic
procedure and how it is used by the rest of the theorem prover. The final
scheme is so elaborate that reading it in isolation would prompt many
readers to ask such questions as 'why is it necessary to know which
literals contributed to the deduction?' or 'why didn't the authors use this
simpler scheme?'. Despite the tedium of this description we regard
Section 8 as the high point of the paper because it makes clear the
distinction between a stand-alone decision procedure and one that is
useful to a larger system. The last two sections of the paper give some
statistics supporting our contention that the efficiency of the stand-alone
decision procedure is often irrelevant and a summary of our conclusions.
We believe this report will be useful to those designing decision

procedures intended for eventual integration into larger systems. We

84



BOYER AND MOORE

identify many requirements for such procedures that are not obvious
when the procedures are considered in isolation.
For example, much work on linear arithmetic procedures (e.g. that of

Nelson and Oppen, 1979, and Shostak, 1979) focuses on universally
quantified formulas either with no function symbols (other than sum and
difference) or with only uninterpreted function symbols. But interpreted
function symbols play a key role in many theorem-proving applications.
In particular, they are crucial in what is perhaps the most active
application of mechanical theorem provers today: the verification of
properties of computer programs. The mathematical specification of new
programs frequently involves 'new' mathematical functions (e.g. 'the
number of non-0 elements among the first N elements of A').
Furthermore, these functions very frequently have important numeric
relations to one another (e.g. if N<M then the number of non-0
elements among the first N elements of A is less than or equal to the
number among the first M elements). Unless provision is made for one's
arithmetic procedure to take into consideration the numeric properties of
interpreted symbols, the heuristic theorem prover must deal explicitly
with such explosive theorems as the transitivity of 'less than' and the
primary advantage in having an arithmetic_decision procedure is lost.
The work reported here deals with interpreted function symbols: our

linear arithmetic procedure contains heuristics for instantiating and using
axioms or lemmas about arbitrary function symbols. For example, by
appealing to the lemma that the minimum element, MIN(A), of a
sequence is less than or equal to the maximum element, mAx(A), our
linear arithmetic procedure proves:

miN(A) A 0 < K—> L < mAx(A) + K.

The use of universally quantified axioms or theorems in the linear
procedure is very similar to the admission of universally quantified
hypotheses in the formulas being proved. Thus, our work is similar in
spirit to the work of Bledsoe and Hines (1980) in which arbitrary
quantification is permitted. However, we make no completeness claims
about our heuristics.

2. BACKGROUND

Our theorem prover deals with a quantifier-free, first-order logic. In
addition to modus ponens, instantiation, and substitution of equals for
equals, the logic provides for the axiomatic introduction of new 'types' of
inductively constructed objects (e.g. the natural numbers, sequences,
graphs), the user definition of new mathematical functions (e.g. prime,
permutation, path), and proof by induction on well-founded relations.
The logic is described precisely in Chap. III of Boyer and Moore (1979).

85



INTEGRATING DECISION PROCEDURES

Our theorem prover as it stood before we incorporated any linear
arithmetic is described in Chaps V—XV of Boyer and Moore (1979). The
theorem prover consists of an ad hoc collection of heuristic proof
techniques. The two most important ones are simplification and the
invention of 'appropriate' induction arguments. The system also contains
heuristics for eliminating 'undesirable' expressions, the use of equality,
generalization, and the elimination of irrelevance.
Because our linear arithmetic procedure interacts with our 'simplifier'

and term 'rewriter', it is necessary to explain these procedures in more
detail.
To prove a formula our system first applies the simplifier to it. The

simplifier is a procedure that takes a formula as input and returns a set of
supposedly simpler formulas as output. Under the assumption that the
input formula is false, it is equivalent to the conjunction of the output
formulas. Since we are trying to prove the formula, it is permitted to
assume its negation. If the simplifier returns the empty set of formulas we
have succeeded in proving the input formula. If the simplifier returns a
singleton set containing the input formula, it has failed to reduce the
problem and we try some other proof technique, e.g. induction.
Otherwise we try to prove, recursively, each output formula.
A formula is represented as a clause consisting of an implicitly

disjoined set of literals. Literals are in fact terms of our logic. The term p,
when used as a literal, can be thought of as the formula p * F, where F is
a distinguished constant in our logic.
The simplifier works by successively 'rewriting' the literals of the goal

clause while assuming the complements of the remaining literals. The
object is to rewrite at least one literal to T (or any other non-F value).
The rewriter is a procedure that takes a term, a substitution and a

'context' and returns a term. Among other things the context specifies a
set of assumptions. The term returned by the rewriter is equal (in a
certain sense determined by the context) to the result of instantiating the
input term with the input substitution, under the assumptions in the
context. The context contains a variety of other information which we
will explain when necessary.
The rewriter applies conditional rewrite rules derived from axioms,

recursive definitions, and previously proved theorems tagged 'rewrite
rule' by the user. Roughly speaking, a previously proved lemma of the
form:

h A h2 A • • • A hn-0 lhs = rhs

causes the rewriter to replace all instances of lhs by the corresponding
instance of rhs provided each of the instantiated hi can be established. To
establish the hypotheses the rewriter attempts recursively to rewrite them
to • non-F—a form of backwards chaining. The system contains fairly

86



BUYER AND MOORE

sophisticated search strategic heuristics for controlling the expansion of
definitions, stopping unproductive backwards chaining, using permutative
rewrites, etc.
Among the theorems proved by the theorem prover described in Boyer

and Moore (1979) are: the totality, soundness, and completeness of a
decision procedure for propositional calculus; the correctness of a 'toy'
expression compiler; the correctness of the fastest known string-searching
algorithm; and the existence and uniqueness of prime factorizations.
Other proofs discovered before the linear algorithm was implemented
include the correctness of a recursive descent parser (Gloess, 1980), the
correctness of an arithmetic simplifier now in routine use in the system
(Boyer and Moore, 1981a), and the correctness of several FORTRAN
programs (Boyer and Moore, 1981b).

3. LINEAR ARITHMETIC

The theorem prover described above can easily prove by mathematical
induction such simple theorems as:

X--Y Y:5Z-0X5Z (1)

X (2)

Y, (3)

but because of search strategic heuristics the system cannot always
employ such lemmas intelligently after they have been proved. For
example, while the system would easily recognize:

AB B

as an instance of the transitivity of , (1), it would not so easily prove:

A-1-A+B

where B is non-negative. But A — 1.A+B can be derived from (2) and
(3) using (1). The theorem prover described in Boyer and Moore (1979)
tries to derive A —1.A+ B from (1)—(3) by rewriting. In particular, it
observes that the result follows from (1) if one instantiates X with A — 1
and Z with A + B, chooses an appropriate instantiation of the intermedi-
ate variable Y, and backward chains to relieve the two hypotheses. If the
instance chosen for Y is A, then the two hypotheses are immediate from
(2) and (3) and the assumption that B is non-negative. But our system is
unable to guess that an appropriate choice for Y is A. After failing to find
a proof by simplification, the system in Boyer and Moore (1979) proves
the inequality by induction on A.
Now suppose that in a subsequent proof the rewrite routine is faced

with the task of relieving the hypothesis A — 1 5- A +B. Since it cannot

87



INTEGRATING DECISION PROCEDURES

derive this inequality from (1)—(3) by rewriting alone, and since we do
not try induction to relieve hypotheses, the inequality hypothesis can be
established only if A — 1 A + B (or some mild variation of it) is
available explicitly as a previously proved rewrite rule. There are two
undesirable aspects to this situation. First, the search space for rewrites
about 5. gets very large because it contains many derived facts involving
transitivity and addition. Second, the user is obliged to recognize when
the system is failing to find a proof because of its lack of knowledge of
such composite 'linear' facts and to state such ad hoc lemmas explicitly.
But the integers are probably the most important objects in the

mathematics of computer programming. Facts about the integers must be
second nature to any practical theorem prover for program analysis.
Therefore, after having convinced ourselves of the power of our
underlying heuristics, we decided to build-in a linear arithmetic
procedure.
The naturals, X, or Peano numbers are the most primitive inductively

constructed domain in our theory. Many other domains are constructed
on top of the naturals (e.g. the 'atomic symbols' or literal atoms, the
integers, the rationals). Thus, we decided to build-in a procedure for
deciding some linear inequalities over X, i.e. universally quantified
formulas involving the equality ( = ) and Peano 'less than' ( < ) relations,
the natural constants (0, 1, 2,. . .), and the Peano addition ( ED ) and
subtraction ( ) functions. The syntax of our logic is actually the prefix
syntax of LISP. We adopt infix here for the purposes of exposition. For
readers familiar with Boyer and Moore (1979) or our theorem prover,
x E X here denotes (NUMBERP x), x < y denotes the term (LESSP x y), x y
denotes (NOT (LEssp y x)), x ®y denotes (Pws x y), and x y denotes
(DIFFERENCE x y).

While our logic provides many different types of objects it does not
have a typed syntax. Thus, T ED 3 is a well-formed term. Our definitions
of <, , ED , and + 'coerce' non-natural arguments to 0. Thus,
T ED 3 = —1 ED 3 = 3 and T <4 is true but —3 < 0 is false. In addition, the
Peano subtraction function returns 0 if the minuend is smaller than the
subtrahend, i.e. x y =0 if x <y, so 5 + 8 = 0.
In this paper we use the more familiar signs, <, +, —, and * to denote

less than, sum, difference, and multiplication, respectively, over the
integers or rationals (according to context).

Linear integer arithmetic, and thus linear Peano arithmetic, is de-
cidable. However, integer decision procedures (e.g. Cooper, 1972) are
quite complicated compared to the many well-known decision procedures
for linear inequalities over the rationals (King, 1969; Hodes, 1971;
Bledsoe, 1975; Shostak, 1977, 1978). Therefore, following the tradition in
program verification, we adopted a rational-based procedure, exploiting
the observation that if a conjunction of inequalities is unsatisfiable over

88



BOYER AND MOORE

the rationals it is unsatisfiable over the integers. Such a procedure is
sound but incomplete. For example, 2*X = 3 is satisfiable over the
rationals but not over the integers. Thus, a rational procedure would not
prove 2*N 3, where N is an integer. Of course, it is hoped such
theorems do not arise frequently in program verification (Nelson and
Oppen, 1979). Should they, we might prove them by more powerful
methods (e.g. induction).
For efficiency reasons, the rational method we eventually adopted was

based on that described in the literature by Hodes (1971). The algorithm
is just a formalization of the high school idea of 'cross-multiplying and
adding' equalities to eliminate variables.
In its simplest form the algorithm is used to detect unsatisfiability in a

conjunction of linear inequalities over the rationals. The first step is to
convert each inequality into a 'normalized polynomial inequality' (or
simply 'polynomial') by collecting like terms, cancelling when possible,
and making all coefficients integers. Thus, the expression:

2 + X — (Y + Z) (A—X)-1

is 'linearized' to

3-1 *Z— 1* Y+ 2 *X— 1 *A-0.

Then, working one's way down through some ordering on the
multiplicands, one eliminates one multiplicand at a time from the set of
polynomial inequalities by cross-multiplying coefficients and adding
inequations so as to cancel out the selected multiplicand in all possible
ways. Eventually one obtains a set of ground inequalities whose validity
may be determined by evaluation and which is satisfiable over the
rationals if the initial set is.
To apply such a procedure to problems over the integers it is

convenient to adopt 5- as the main connective and to transform X< Y
into X+1-. Y. By making explicit the information that distinct integers
are separated by at least 1, fewer valid integer inequalities 'fall between
the cracks' in the rationals. An equality, such as X= Y, is handled as
though it were the conjunction X Y A Y X; a negative equality, such
as X* Y, is handled as though it were the disjunction X< Y v Y<X
(i.e. the main conjunction must be split into two cases).
To apply the procedure to the naturals as they are axiomatized in our

logic, we must take precautions to ensure that all quantities involved in
arithmetic expressions are of type and that the minuend of each
expression is no smaller than the subtrahend. For example, we can
linearize X Y to 1 — Y + X 0 v1+ Y—X 0 only if we know both
X E X and Y E X. Failure to consider the non-numeric case would permit
the linear arithmetic procedure to prove the non-theorem X Y A Y

89



INTEGRATING DECISION PROCEDURES

X--)X = Y.t Similarly, it is permitted to linearize X -4 Y Z to Z — Y +

X 0 only when Z Y. We call such additional conditions as X E X and

Z Y 'linearization hypotheses.' Roughly speaking, we assume the

linearization hypotheses necessary to obtain the normalized polynomials

for the main conjecture. If the linear arithmetic procedure is able to

prove the main conjecture under those hypotheses we set ourselves the

task of proving the main conjecture under the negation of each

linearization hypothesis.
Readers troubled by our desire to handle the naturals instead of the

integers or by the lack of typing in our language should not be

discouraged from reading on. These aspects of the problem only

contribute in minor ways to the difficulty of using linear procedures.

Readers troubled by our selection of such a simple and old-fashioned

decision procedure are invited to reflect upon the fact that an instan-

taneous oracle for deciding linear arithmetic problems like those above

would increase the speed of our theorem prover on typical program

verification problems by less than 3%. Furthermore, as a cursory reading

of Section 8 reveals, our final linear arithmetic procedure is an im-

plementation of the above procedure in much the same sense that the

software for the Space Shuttle is an implementation of Newton's laws.

4. ADEQUACY OF LINEAR ARITHMETIC PROCEDURES

Before we describe how we have combined the above decision procedure

with our more powerful heuristic techniques we address the question 'is

linear arithmetic alone sufficient?'. Of course, one must ask 'sufficient for

what?'. Since our major concern is the mechanization of the mathematics

underlying computer program analysis, we focus our attention on proofs

of program correctness. In this context linear arithmetic procedures, and

particularly those that are decision procedures only on the rationals, are

far from adequate. In this section we discuss three simple program

verification exercises that involve either valid integer inequalities that are

invalid over the rationals or that are non-linear.

A problem of the first type arose in the first program we tried to verify

after adding a linear procedure. The specification of the program was to

implement a simple table look-up scheme. The implementation of the

table was an array of positive even length, D, with keys and their

associated values stored in alternate locations. The access program

searched the array linearly, pushing the current index, I, up from 1 in

increments of 2, stopping when I> D. One of the verification conditions

established that when the winning key is found at I and the associated

value is fetched from I + 1 no array-bound violation occurs. That is, if the

current index, I, is a positive odd integer and I D, then I + 1:5- D. By

t A counterexample to the conjecture is obtained by letting X be T and Y be F.

90



BOYER AND MOORE

letting D be 2 * L and I be 2 * K +1, where L and K are arbitrary
positive integers, we can cast the problem as a linear arithmetic problem:

O<KAO<L A 2*K+ 1 2*L--2*K+ 2*L.

This is a theorem over the naturals. However, it is not a theorem over
the rationals and so does not yield to a rational-based linear arithmetic
procedure. Our modified system proved it by induction.
More frequently we see arithmetic problems that do not fall into the

linear domain at all. The classic verification example, Euclid's gcd
algorithm, illustrates this. Consider the verification condition (v. c.) that
states that if X < Y then the largest number that divides X and Y is also
the largest number that divides X and Y — X. Some attempts to verify
Euclid's algorithm assume this v.c. We wish to prove it. The key step in
the proof is that if X < Y and Z divides X then Z divides Y if Z divides
Y — X. The definition of 'I divides J' is that (J mod I)= 0, where mod is
defined recursively. This problem falls outside linear arithmetic.
A much more mundane example arises in the attempt to implement a

two-dimensional array access module on top of a linear storage scheme.
The element at position I,J in the two-dimensional array is mapped to
location 1+ D * J in the linear array. One of the v.c.s establishes that
every pair of distinct points in the two-dimensional array maps to a pair
of distinct points in the one-dimensional array. Roughly speaking one
wishes to establish that h + D * J1= 12 D * 12 if h =12 and J1= '2.
Because of the multiplication by D, this problem falls outside of linear
arithmetic. One might assume this obvious fact. However, attempts to
prove it—by induction (on J1 and J2 simultaneously) or by appeals to
inductively proved facts about mod and quotient—reveal that as stated it
is not a theorem. One must hypothesize that h and 12 are legal indices in
the two-dimensional array, i.e. that h <D and '2< D.
Our point is not to say that linear arithmetic is useless. We have

invested several years in building it into our system and have seen it help
out in the verification of very many programs. Our point is that it is not
unusual to see programs—mundane, everyday programs—that require
the proof of arithmetic theorems beyond those of linear arithmetic. If a
verification system cannot establish such results then one is forced to
assume, rather than prove, many verification conditions.

5. SIMPLE INTEGRATION STRATEGIES

In this and the next section we sketch the evolution of our linear
arithmetic procedure and its use by the theorem prover described in
Boyer and Moore (1979). We then illustrate the procedure in use. Our
intention in these sections is to motivate some of the elaborate bells and
whistles described in Section 8.

91



INTEGRATING DECISION PROCEDURES

Our goal was simple: build in enough information about the naturals so
that is no longer necessary for the rewriter to consider explicitly those
rewrite rules expressing the truths of linear arithmetic. For example, if
some old proof required an explicit appeal to the transitivity of -< and
some inspired 'guess' instantiating the intermediate variable, then after
building in linear arithmetic we should be able to find that proof without
an explicit appeal to transitivity or a heuristic guess. Ideally, achieving
this goal should speed up the theorem prover because certain facts are
built-in and because the search space of lemmas is reduced by the
deletion of many derived truths of linear arithmetic. Furthermore,
achieving the goal frees the user from having to bring linear facts to the
system's attention by proving them as rewrite rules.
Our first attempt at incorporating a linear arithmetic procedure was to

add it as a 'black-box' applied to every formula produced by the
simplifier. The procedure took as its input a clause to prove. If the
conjunction of the negations of the literals in the clause is unsatisfiable,
the clause is valid. The linear procedure extracted the inequalities in the
clause, negated them, introduced linearization hypotheses, formed the
set of normalized polynomials and tested the set for unsatisfiability as
described. If the set was not found unsatisfiable, the theorem prover tried
the next proof technique in its repertoire. If the set was found
unsatisfiable, the linear procedure produced as its output a set of clauses,
each obtained by adding the negation of a linearization hypothesis to the
input clause. The theorem prover then recursively set out to prove each
of those 'pathological' cases.
When we applied the modified theorem prover to the 404 definitions

and theorems in Appendix A of Boyer and Moore (1979) the linear
arithmetic procedure contributed to almost no proof except those of
rewrite rules expressing linear facts. That is, when the theorem prover
was working on interesting theorems, the simplifier did not produce many
conjectures that yielded to linear arithmetic.
Here is an example. One of the uninteresting rewrite rules proved by

the linear procedure was named GT.SUB1 and stated that X 1 X ED Y.
The only reason this rewrite rule was in the list was because it was
needed in the proof of an interesting verification condition later in the
list, named FS11u'OS.VC7. The linear procedure in the modified theorem
prover established GT.SUB1 immediately but the linear procedure did not
participate in the proof of FSTRPOS.VC7. In fact, the proof of FSTRPOS.VC7
still required the explicit use of GT.SUB1 as a lemma and if that lemma was
absent then the proof attempt failed—even though the lemma was
built-in.
The problem was that while GT.SUB1 was built into the modified

theorem prover it was not built-in in the right place. The proof of
FSTRPOS.VC7 used GT.SUB1 to relieve a hypothesis of another lemma, not to

92



BOYER AND MOORE

prove a simplified part of the main theorem. In our experience linear
arithmetic reasoning is most often required during term rewriting and is
not terribly useful if its only role is to establish simplified v.c.s.
How can we move the linear arithmetic procedure into the rewriter?

Recall that the rewriter operates in a context of assumptions. Suppose we
wish to establish an inequality—say a hypothesis of a rewrite rule we wish
to apply. We may do so as follows: negate the inequality, conjoin it to
the inequalities among our assumptions, linearize the inequalities to
obtain a set of polynomials, and then apply the cross-multiply and add
procedure to detect unsatisfiability. If the set is found unsatisfiable, the
inequality is valid under our assumptions. (Since assumptions of the form
x *y generate disjunctions of polynomials we will for the time being
simply discard any such assumptions.)
For efficiency, we implement this test incrementally. We store the

assumptions in a pre-processed internal form in which all polynomials
have been maximally 'propagated' in the sense that every admissible
cross-multiply and add has been performed. A cross-multiply and add is
admissible under our propagation rules only if it eliminates the 'heaviest'
multiplicand in both inequalities. For example, because F(G(X)) has
greater weight than G(X), a cross-multiply and add involving the
polynomial

8 + F(G(X)) —G(X)5-0

is permissible only if it eliminates F(G(X)). Thus, if no inequality in the
incremental data base has F(G(X)) occurring negatively as the heaviest
multiplicand we do not propagate the above polynomial even if there are
other polynomials about G(X). Such propagation will occur as soon as
F(G(X)) is eliminated and G(X) is exposed as the heaviest multiplicand.
This reduces the amount of work the procedure does if irrelevant
polynomials are present.
The 'heavier' relation is a total ordering on terms. We say t1 is heavier

than t2 if either the number of variables in t1 is greater than that in t2, or
the number of variables in the two are equal but the 'size' of t1 is greater
than that of t2, or the number of variables in and the sizes of the two are
equal and t1 comes later than t2 in the lexicographic ordering of terms. By
size we mean the number of open parentheses in the unabbreviated
presentation of the term.
When we introduce a new polynomial into a data base and perform all

admissible cross-multiplies and adds, we say we have 'pushed' the
polynomial into the data base. The result is a new data base representing
the conjunction of the old assumptions and the new inequality.

If pushing a polynomial destructively modifies the initial data base one
needs a 'pop' or 'undo' operation; otherwise the attempt to establish a
hypothesis by assuming its negation would permanently alter our

93



INTEGRATING DECISION PROCEDURES

assumptions. If pushing an inequality does not destructively modify the
data base, the initial data base may be recovered by the usual variable
binding mechanisms. This aspect of the problem detracts from the
efficiency and simplicity of linear algorithms that rely upon destructively
modified cyclic structures (e.g. Shostak, 1978) since the 'pop' algorithm is
usually messy. The simple procedure we chose allows the data base to be
an ordered alist (associating polynomials with the heaviest multiplicand in
them) and permits the implementation of a non-destructive push opera-
tion that constructs the new data base from the old using little new
structure.

Using such a scheme we programmed the rewriter to use the linear
arithmetic procedure when trying to establish inequalities. We found that
while the new system was an improvement over the earlier one, our
goal—of eliminating the need for explicit lemmas expressing linear
facts—was far from achieved.
The problem arises from the presence of interpreted functions. Here is

a simple, artificially constructed example. Suppose one needs to prove:

L ?-5 MIN(A) A 0 < K —> L MAX(A) 19) K (4)

where MIN(A) and MAX(A) are defined as the minimum and maximum
elements of A. This theorem is not a consequence of linear arithmetic; in
particular, since MIN and MAX are treated as uninterpreted function
symbols (4) is treated as though it were:

L -4MIN O<K--oL <MAX ED K.

However, if one adds to (4) the additional hypothesis that

MIN(A) MAX(A) (5)

the resulting linear arithmetic problem is equivalent to

L MIN AO<KA MIN MAX —0 L < MAX K,

which is a theorem.
To use a linear arithmetic procedure to prove formulas like (4) it is

necessary to identify 'interesting' additional hypotheses like (5) to
connect multiplicands in the linearization of the goal.
Many readers may object that we should not be trying to use linear

arithmetic to prove formulas like (4). But what is the alternative? If we
do not use our built-in linear arithmetic procedure we are forced to
derive (4) from (5) and explicit linear facts such as the transitivity of
But if linear arithmetic procedures are to be useful to larger systems they
should free the larger system from having to consider the truths of linear
arithmetic (such as transitivity). If we do not extend our handling of
linear arithmetic to take into account lemmas about 'non-linear' function
symbols then the only way we will prove many arithmetic facts is to

94



BOYER AND MOORE

ignore the work on linear procedures altogether and return to the
heuristic instantiation and chaining methods rejected earlier.
How shall we take into account facts about defined functions? We

decided that if after a polynomial has been pushed into the data base no
contradiction was found we would look at the multiplicands in the data
base and try to link them via additional inequalities obtained by
instantiating previously proved lemmas. We call this 'augmenting' the
data base. For example, if we have previously proved that:

miN(S) mAx(S)

and construct a linear data base containing the multiplicand MIN(A) or
mAx(A) we might push the polynomial obtained from MIN(A) mAx(A).
Of course, as Herbrand knew, the problem of which instances of which

lemmas to consider is the heart of the theorem-proving problem. We
therefore implemented heuristics to control the instantiation of pre-
viously proved inequalities and their addition to the polynomial data
base. For example, a lemma such as X < F (X) is a 'pump' that may cause
one to push, successively, N < F(N), F(N) < F (F (N)), etc. Just as with
backwards chaining, one has to decide when to stop trying to add new
multiplicands to the data base. Our heuristic is to use the same criteria
we use to limit backwards chaining, namely, add no multiplicand that is
'worse than' every multiplicand in the data base. For example, we might
go around the above loop five times if F5(N) was initially a multiplicand
in the data base.
The problem is further complicated by the need to consider inequality

lemmas with hypotheses. For example, let mEmB(X, S) be the predicate
that X occurs in the sequence, S, LEN(S) be the length of S, and
DEL(X, S) be the .result of deleting all occurrences of X from S. Then the
following lemma links the theory of lists to arithmetic.

mEmB(X, S)--> LEN(DEL(X, S))<LEN(S). (6)

Suppose we are asked to prove

mEmB(Z, A) A W LEN(A) W LEN(DEL(Z, A)) <K ED V.

The theorem is a consequence of linear arithmetic if we first add the
additional information that:

LEN(DEL(Z, A)) < LEN(A).

To obtain this inequality we must first instantiate (6), replacing X by Z
and S by A [so as to obtain a new inequality about the multiplicand
LEN(DEL(Z, A))], and then relieve the hypothesis mEmB(Z, A). Note that
to relieve the hypothesis we may have to engage in non-arithmetic
reasoning. Therefore, we relieve the hypotheses of 'linear rules' like (6)

95



INTEGRATING DECISION PROCEDURES

by the same methods we relieve the hypotheses of conditional rewrite
rules: we recursively rewrite them under our current assumption.
As a consequence, the rewrite mechanism and the linear arithmetic

procedure are mutually recursive. The rewrite mechanism calls the linear
arithmetic procedure to establish certain inequalities and the linear
arithmetic procedure calls the rewrite routine to establish the hypotheses
of lemmas providing additional information about the multiplicands in
the problem.

6. FURTHER REFINEMENTS

Thus far it has not been crucial to this discussion that we adopted the
simple propagation procedure based on Hodes's algorithm. Indeed, at
this stage in our actual experimentation we had coded several different
linear arithmetic decision procedures and used them as 'black boxes'.
However, the attempt to implement the use of 'linear rules' required
opening up the black box. In addition, other problems, not yet discussed
in detail, required significant modifications to the procedure itself.
One obvious problem is that the heuristic component of the theorem

prover must be able to determine what the multiplicands in the current
data base are. Either the linear arithmetic procedure should construct the
set of multiplicands and make that available outside, or the heuristic
component should know the structure of the internal data base. We chose
the latter because it was most efficient. However, this choice blurs the line
between the heuristic component and the linear procedure.
A second problem arises from the restrictions on the order in which

inequalities are processed by the propagation procedure. Consider our
procedure. It eliminates the heaviest multiplicands first. Thus, it is a
waste of time for the heuristic component to obtain an inequality about
G(X) in response to a polynomial such as 8+ F(G(X))— G(X) 0.
A related problem is the organization of previously proved inequalities

so that the system can rapidly determine relevant facts about the key
multiplicands in the data base. Suppose we want to pre-process and store
a lemma whose conclusion is an inequality. We store such a lemma so
that it may be accessed according to the function symbols of the terms
that might, when the lemma is instantiated, become the heaviest
multiplicands in the linearized form of the concluding inequality. For
example, if a lemma concludes with F(X) G(Y).‹. H(G(Y)) ED X, we
store it under the function symbols F and H. We further require that each
such 'key multiplicand' contain enough of the variables in the lemma so
that if the key multiplicand is instantiated and the hypotheses are relieved
(possibly requiring the instantiation of additional variables) the conclud-
ing inequality is fully instantiated.
Note that the notion that the linear procedure is a black box has been

96



BOYER AND MOORE

destroyed. Once a particular linear procedure has been selected by the
implementor, an extremely large amount of work must be done to
interface to it efficiently. In our case, the time taken to program the
linear procedure was insignificant (one man-day) compared to the time
taken to interface to it (several man-months, not counting the several
man-months devoted to the empirical evaluation of each successive
implementation). It is certainly not possible to substitute one linear
procedure for another. But the worst is yet to come. Much to our dismay
we were eventually forced to modify both the linearization subroutine
and the propagation subroutine to complete the integration. Thus, the
notion that we could choose a linear procedure 'off the shelf is also
destroyed.

It has been found useful by those who write verification systems for the
theorem prover to report which lemmas were used in a proof. Such
information is necessary if the verification system is to permit the user to
redefine or re-axiomatize concepts without having to rederive the proofs
of logically independent results. How can the heuristic theorem prover
determine whether a given linear rule was used? A 'shotgun' approach
can be used. That is, when linear arithmetic participates in a proof it can
report that it used every linear rule from which a polynomial was
generated and pushed. But the shotgun approach tends to make proofs
depend upon many irrelevant lemmas. The approach we finally took was
to modify the linearization and propagation subroutines so that every
polynomial in the data base carries with it a record of the linear rules
from which it was derived. This information is propagated in the obvious
way as new inequalities are formed from old ones. When a contradiction
is found it is possible to announce exactly which linear rules were used.
More seriously, the search for 'interesting' lemmas and the work

involved in relieving their hypotheses make it more expensive to set up
the data base for a clause initially. Our first approach was as follows. To
rewrite a literal in a clause we pushed into an initially empty data base
the polynomials derived from the negations of the remaining inequalities
in the clause initially. The data base was then closed under the operation
of pushing polynomials derived from heuristically chosen instances of
linear rules after relieving their hypotheses. An arbitrary amount of work
might be done in setting up the data base for the rewriting of a single
literal. Furthermore, the work done to set up the data base for one literal
is often very similar to that done for the adjacent literal. Thus, if there is
a set of 'expensive' literals in the clause the work they trigger is
duplicated each time an 'inexpensive' literal is set up. We found this
prohibitively expensive and abandoned the idea of setting up a different
data base for each literal.
While trying to prove p it is permitted to assume the negation of p.

Thus, we set up just one data base containing the negations of all the

97



INTEGRATING DECISION PROCEDURES

inequalities in the clause and closed under linear rules. That data base
was used during the rewriting of each literal.
Of course, while working on the literal p one must be very careful to

avoid using the assumption that p is false to rewrite p to F (This
phenomenon happens often to students learning proof by contradiction.
They assume the negation of what they wish to prove, engage in a long
sequence of steps, and then announce that the 'theorem is false'.)
'Accidentally' replacing a literal by F is sound but risky: the rewritten
literal is dropped from the disjunction being proved and one is forced to
prove a stronger goal which may in fact be invalid and hence unprovable.
When this occurs we say the simplifier has 'bitten its own tail'. If the
literal being rewritten is assumed false in the context of the rewriter then
special precautions must be taken.
Our first attempt to keep the simplifier from biting its own tail was to

prevent any attempt to push into the data base the literal we are trying to
simplify. This method failed to be effective because the inequality being
pushed might be different but linearly equivalent to the one being
simplified.
The presence of conditional rewrite rules also complicates the situa-

tion. For example, suppose the system knows the lemma:

X < Y —> (X ED 1 < y) (x * Y). (7)

This permits (X ED 1 < Y) to be rewritten to (X ED 1* Y) under the
condition that X .< Y. Suppose the current literal is —1(A ED 1 <B). We
assume its complement, A ED 1 < B , and begin simplifying --1(A ED 1 <B).
The rewriter observes that it can use (7) to simplify (A e 1 <B) to
(A e 1* B) if it can establish A <B. By appealing to linear arithmetic it
derives A <B from A e 1 <B. Therefore, it simplifies —1(A ED 1 <B) to
A ED 1 = B, biting its own tail. We abandoned the hope that we could
easily avoid tail biting when we saw such examples. (Less pathological
examples can be constructed if one considers lemmas about user-defined
function symbols.)
The solution we finally adopted required the further elaboration of the

linear algorithm itself. We programmed the linearization subroutine to
attach to each polynomial the set of literals from which it was derived. In
most cases this is a singleton set containing the inequality literal itself, but
in some cases (as when the linearization depends upon another literal to
relieve linearization hypotheses) it contains multiple literals. We pro-
grammed the propagation subroutine to merge these sets as new
polynomials are formed. Thus, we know which literals are involved in the
derivation of each polynomial in the data base. Finally, we programmed
the propagation subroutine to avoid using any polynomial whose deriva-
tion involves the literal we are currently trying to rewrite or any literal
previously rewritten to F. (The latter restriction prevents another form of

98



BOYER AND MOORE

tail biting. Suppose p and p' are two equivalent but non-identical
inequality literals. Consider simplifying the clause {pp'}. The polyno-
mial data base contains two equivalent polynomials one descending from

and the other from '. While rewriting p, we use the polynomial
descending from —1p' to derive p = F. If we permit ourselves, while
rewriting p', to use the old polynomial descending from we will bite
our tail.)
Another problem we faced is dealing with the linearization hypotheses.

These hypotheses are generated when inequalities are put into polyno-
mial form and must be relieved (i.e. either by proving them from other
hypotheses or by splitting on them and proving the entire conjecture
assuming each of them false).
For example, if the linear arithmetic procedure is applied to:

W<IKAJ<K--0WED.1<1

then, under the hypothesis K.-51 the formula is found valid. But an
additional case, obtained by assuming that I<K and I.K= 0, must be
proved:

I<KAW<0AJ<K-0WEDJ<1.

Our first attempt to handle this problem took the shotgun approach
again. That is, if the linear arithmetic procedure participated in the
simplification of a clause we added to the simplified clause(s) the
linearization hypotheses for each literal in the input clause. Furthermore,
we produced as new goals additional versions of the input clause in which
each of these added hypotheses is negated. Once again, the advantage to
the shotgun approach is that while we had to modify the subroutine for
putting literals into normal form we did not have to modify the
propagation subroutine itself.
But the difficulty with the shotgun approach was that it caused many

irrelevant splits. For example, suppose the theorem to be proved is:

X < Y A .1 I K--0 X < Y 1.

The contradiction found is actually derived from the first hypothesis and
the conclusion. The second hypothesis is irrelevant. But the I-1-K
expression in it gives rise to the additional case:

X<YA/<K

This case will be proved exactly as before, but it need not have arisen in
the first place and, in general, reproducing the proof may be quite
expensive because of the need for lemmas. Furthermore, the number of
irrelevant splits grows exponentially with the number of irrelevant
difference or predecessor expressions in the clause. Unfortunately,
irrelevant hypotheses are common in mechanically generated formulas.

99



INTEGRATING DECISION PROCEDURES

For example, in our system's first proof of the termination of the
Takeuchi function (Moore, 1979) the proof of one lemma involved 412
cases, many of which were irrelevant.
One solution to this problems is that adopted for the tail biting

problem. If the linear procedure keeps track of which literals are
involved in the derivation of each polynomial, it is possible to report
which literals are involved in the eventual contradiction found. Then one
can split on the hypotheses necessary to obtain the polynomial for those
literals.
However, one can do better. Recall that an assumption such as

I,-.1=K gives rise to two inequalities, .I -JK and If one is
asked to assume K it is permitted to assume —K — J + I 5- 0 even
if I<J. That is, the polynomial for the first inequality can be obtained
without any additional hypothesis. However, if one is asked to assume

the polynomial, K+J-1.- 0, may be obtained only under the
additional hypothesis that J I. It is possible that only one of the two
polynomials will participate in a contradiction. Thus, in our implementa-
tion of the linearization subroutine we attach to each polynomial its
linearization hypotheses, we propagate that information in the obvious
way, and split on the hypotheses necessary for those polynomials used in
the eventual contradiction found. This eliminates many irrelevant case
splits when dealing with the naturals. For example, in the proof of the
above-mentioned lemma about Takeuchi's function, 311 of the 412 cases
were eliminated.
There is one remaining aspect of our scheme. If is often the case that

the linear arithmetic procedure derives two polynomials —y + x 0 and
y — x 0. That is, under the hypothesis that x and y are both naturals,
they are equal. While the knowledge of this equality is available to the
linear arithmetic procedure it is not known to the rewriter. Therefore,
after we have set up the polynomial data base for a clause but before we
begin rewriting the literals of the clause, we search the data base for
'mated' pairs of polynomials as above and under certain circumstances
add equality hypotheses to the clause.
This concludes the casual description of how we integrated a linear

arithmetic procedure into our heuristic theorem prover. The objective of
these two sections has been to substantiate our assertion that integrating
such a procedure into a larger system is quite difficult and frequently
requires discarding the notion that the procedure is a black box: In
addition, we have attempted to motivate the rather elaborate data
structures and procedures described in Section 8.

7. TWO EXAMPLES

In this section we present two examples illustrating the co-operation
between our heuristic theorem prover and its linear arithmetic procedure,

100



BOYER AND MOORE

The first example comes from our system's proof of the correctness of
the Boyer—Moore fast string-searching algorithm (Boyer and Moore,
1977). The algorithm searches for the first occurrence of a given pattern
in a given text. Both the pattern and text are strings of characters over a
finite alphabet. The algorithm uses an array that associates with each

character in the alphabet the distance between the last occurrence of that
character in the pattern and the end of the pattern. For those characters
in the alphabet that do not occur in the pattern the array contains the
length of the pattern. A previously verified subroutine initializes this
array. In particular, after the call of this subroutine the Cth element of
the array is known to be DELTAi(PA T, LP, C), where DELTA1 is defined
recursively to be the distance specified above, PAT is the input pattern
and LP is the length of PAT. DELTA1 is another example of an interpreted
function symbol needed to specify a program. An interesting inequality
involving DELTA1 is DELTA1 LESSEQP . PATLEN, which states that
DELTAt(PA T, LP, C)< LP. This result can be proved by induction on
LP.

Repeatedly during the execution of the string-searching algorithm the
current index into the text, I, is incremented by the Cth element of the
above array. One must prove that this addition does not cause an
arithmetic overflow. The input assertion of the program assures us that
the sum of the length of PAT, LP, and that of the text, LT, is less than
or equal to the maximum representable positive integer, mAximr. Fur-
thermore, at the time of the increment we know that / is less than or
equal to LT. We must prove:

LP LT m Amy r 1 L T

-->

I® DELTA0A T, LP, C),--5 MAXINT.
This is not a consequence of linear arithmetic alone. However, after
pushing the above inequalities into the data base, DELTAI(PA T, LP, C) is
a heaviest multiplicand in an inequality in the data base. By appealing to
DELTA1 LESSEQP . PATLEN we obtain the additional information that
DEurm(PA T, LP, C)< LP, from which the above conjecture follows by
linear arithmetic.
A second example comes from our program's proof that a certain

tree-normalization algorithm terminates. The proof involves showing that
the measure ms of the nested ordered pair ( (a, b), c) is strictly greater
than ms of (a, (b, c)), where ms is defined by the user as follows:

ms(atm) = 1, if atm is not a pair, and

ms((x, y)) = ms(x) X ms(x) ms(y)

where x is the Peano multiplication function.

101



INTEGRATING DECISION PROCEDURES

Note that by induction one can prove 0< ms(X).
Consider our goal:

ms( ( a, (b, c)))<ms(((a, b), c)). (8)

After simplifying by expanding the definition of ms several times and
applying such previously proved arithmetic rewrite rules as the as-
sociativity and commutativity of addition and the distributivity of
multiplication over addition the goal becomes:

MS(C) ED ms(a)2 ms(b)2 < ms(c) ED ms(b)2 ED 2 x Ms(a)2

X ms(b) ED MS(a)4,(9)

where ms(x)2 is an abbreviation for ms(x) x ms(x) and ms(x)', for n > 1,
is an abbreviation for ms(x) x ms(x)n.
Upon trying to simplify the above inequality we push into an empty

data base the polynomial obtained from its negation:

MS(a)4 + 2 * ms(a)2 x ms(b) — ms(a)2 -.5 0

from which we hope to derive a contradiction. No linear contradiction is
found. Therefore we note that ms(a)4 is the heaviest multiplicand and
search for linear rules about x. We find the linear rule

0</--+/--4/xJ

and instantiate it by replacing I with ms(a) and J with ms(a)3 to produce:

0< ms(a)—* ms(a)3--5 ms(a)4.

The hypothesis is rewritten to T by appealing to 0 < ms(X). We then
heuristically decide whether we wish to push the polynomial produced
from the concluding inequality. Even though it contains ms(a)3, which is
a new multiplicand, we decide it is no worse than the existing ms(a)4
[indeed, it is a subterm of ms(a)4]. By pushing the concluding polynomial
into the data base and cancelling it against the negated goal we obtain:

2 * ms(a)2 x ms(b) + ms(a)3 — ms(a)2 Lc- 0.

No contradiction is found so we again look for linear rules about the
heaviest multiplicands. ms(a)2 x ms(b) is the heaviest multiplicand in the
new polynomial [since it is the same size as ms(a)3 but b is lexicographi-
cally larger than at We appeal to the same lemma about x, relieve the
hypothesis in exactly the same way as before, once again approve the
new conclusion as being no worse than existing polynomials and push:

—ms(a)2 x ms(b) + ms(a) x ms(b) 0.

Propagation produces the new polynomial:

MS(a)3 +2 * ms(a) x ms(b)— ms(a)2 0.

102



BOYER AND MOORE

Again no linear contradiction is found. This time the heaviest term is
MS(a)3. Appealing again to our lemma about multiplication we obtain and
push the polynomial:

—ms(a)3 + ms(a)2 5 0.

Cancelling again produces:

2 * ms(a) x ms(b) 5 0.

No contradiction is found. This time the largest multiplicand is ms(a) x
ms(b). Appealing again to our x lemma we obtain and push:

—ms(a) x ms(b) + ms(b) 0

which produces

2 * ms(b) -5- O.

Again no linear contradiction is found. But this time ms(b) is the heaviest
multiplicand. We search for lemmas about ms and obtain:

0 < ms(b)

which, when linearized is

1 — ms(b) O.

Pushing this polynomial produces 2 5_ 0, which is a contradiction. Thus
the goal has been proved.

It takes our system a total of 22.3 seconds to prove the goal, equation
(8). We can break the proof down into two phases: producing from (8)
the fourth-degree polynomial (9), and appealing to linear arithmetic
reasoning to prove (9). The first phase, which consists of expanding the
definition of ms and applying previous proved rewrite rules, takes a total
of 16.5 seconds. However, five of those seconds are consumed by
attempts to prove the theorem by linear arithmetic before the normalized
polynomial (9) is produced. The second phase—in which the linear
arithmetic interface performs the iterated sequence of pushes and lemma
instantiations leading to the final contradiction—consumes 5.8 seconds.
The times measured are DEC KL-10 c.p.u. seconds consumed while
running compiled INTERLISP (not counting garbage collection times and
the time taken to output the proof). During the four year period this
research was conducted we converted our system from IrrrEnisp to the
MACLISP family. The MACLISP version of the system runs about twice as
fast as the INTERusP version. However, all experimental statistics in this
paper are based on the INTERLISP version.

8. THE CURRENT IMPLEMENTATION

In this section we describe precisely the current (if not the final) version
of the linear arithmetic procedure.

103



INTEGRATING DECISION PROCEDURES

8.1. More background on the rewriter

Since the linear arithmetic procedure is mutually recursive with the new
rewriter, the description of the two are intertwined. We here explain in
greater detail aspects of the new rewriter that are mentioned as we
describe the linear arithmetic procedure.
The rewriter takes a term, a substitution, and a context and returns a

term, a set of linearization hypotheses, and the list of all rewrite and
linear rules used to derive the result. The context specifies, among other
things, some assumptions and the sense of equality to be maintained by
the rewriter. The primary specification satisfied by the rewriter is that
under the assumptions in the context plus the returned linearization
hypotheses, the output term is equal (in the specified sense) to the
instantiation of the input term with the input substitution. Two senses of
equality are supported: propositional equivalence and identity. Two
terms, p and q, are propositionally equivalent if either p = F and q = F
or p 0 F and q 0 F. Thus, 3 and T are propositionally equivalent. When
rewriting the literals of a clause, the hypotheses of lemmas, and the tests
of IFS it is sufficient to maintain propositional equivalence only. At all
other times we maintain identity.
Fundamental to the rewriter and to linearization is the notion of 'type

sets' and 'type alists'.
A type alist is an association list pairing terms with 'type sets'. If r is a

'shell recognizer' then we denote by r the set of all x such that (rx)=T;
we call r a type. For example, TRUEP is the set { T}, FALSEP is the set {F},
NUMBERP is the set of all natural numbers, and LISTP is the set of all
ordered pairs constructed with CONS. In addition, we define one addi-
tional type containing all the non-shell objects. A type set is a set of
types. If the term t is associated with the type set {r1 • • • r„} on the type
alist then we are assuming that t is an element of one of the i's.
Type alists are used in the rewriter to record the assumptions

governing the term being rewritten. This mechanism is discussed at
length in Chap. V of Boyer and Moore (1979). When the simplifier
applies the rewriter to a literal it supplies as part of the context a type
alist encoding the assumptions that all the other literals of the clause are
false.

In addition to a type alist, the context contains a polynomial data base,
set up by the simplifier by pushing the negations of all the inequalities of
the clause. The dependence on literals of each polynomial in this data
base is carefully tracked so that the rewriter can ignore polynomials
descending from the current literal and literals previously rewritten to F.
Because of the ubiquity of type sets the rewriter does not record which
type set assumptions were used by a rewrite. This makes it difficult to
track the dependencies of polynomials derived from linear rules when

104



BOYER AND MOORE

setting up the initial data base and we will describe several kludges to
mitigate these difficulties.
The polynomial data base is used by the rewriter when it encounters an

inequality: if the negation of the inequality, when pushed into the data
base, produces a contradictory polynomial, we rewrite the inequality to
7'. But we must note the hypotheses governing the contradictory
polynomial and report them with our final answer if the reduction of this
inequality to T is part of the derivation of that answer. It may not be: the
inequality just established might be the first of two hypotheses of a
rewrite rule. If we fail to establish the second one the work done on the
first is irrelevant.
To keep track of the hypotheses generated by a rewrite, we use a push

down stack called the hyps stack consisting of frames each of which
contains a set of hypotheses. It is assumed that when the rewriter is called
a frame has been pushed onto the hyps stack. The rewriter is imple-
mented so that it adds to the top frame of the stack all of the hypotheses
assumed during the derivation of the answer delivered. For example,
suppose we are rewriting some term t and try to apply a rewrite rule with
hypotheses. Then we push an empty frame on the hyps stack and rewrite
the hypotheses of the rule, accumulating the linearization hypotheses in
the new frame. If all the hypotheses of the rule are relieved and our
heuristics permit us to apply the rule, we pop the new hyps frame off the
stack and union its contents into the frame below (which is accumulating
the linearization hypotheses actually used to rewrite t). If, on the other
hand, some hypothesis of the rule is not relieved, we pop the new frame
off the stack and throw its contents away.
A similar stack, called the lemma stack is used to keep track of the

axiom, definition, and lemma names used by a given rewrite.
The context in which a rewrite takes place thus contains:
TA: a type alist encoding the assumption that each literal of the current

clause is false (except the literal we are in the process of rewriting) and,
during recursive calls to the rewriter from within the rewriter, the
assumptions of the truth or falsity (as appropriate) of the tests of IF'S
governing the occurrence of the term being rewritten.
DB: a polynomial data base encoding the assumption that every

arithmetic literal in the clause is false.
LTTS-TO-BE-IGNORED-BY-LINEAR: a list containing the current literal and all

previous literals of the goal clause rewritten to F. Polynomials in DB that
descend from any literal on this list are ignored by the propagation
routine.

LITS-THAT-MAY-BE-ASSUMED-FALSE: the clause being simplified, during the
initial construction of the linear arithmetic data base.

HEURISTIC-TA: a type alist used for heuristic purposes when setting up
the initial polynomial data base.

105



INTEGRATING DECISION PROCEDURES

OBJECTIVE: a flag that tells the rewriter whether it should try to rewrite
the input term to T, to F, or to anything it can. If the rewriter is 'trying'
to get to T it does not attempt to apply rewrite rules that would replace
the term by F. The flag is used to direct the rewriter's efforts when trying
to establish the hypotheses of rewrite and linear rules.

ID/IFF: a flag specifying whether identity or propositional equivalence is
to be maintained.
hyps stack: a stack of frames containing linearization hypotheses.

When the rewriter returns, the assumed hypotheses will have been
unioned into the top-most frame.
lemma stack: a stack of frames containing lemma names (and literals

from LITS-THAT-MAY-BE-ASSUMED-FALSE used to relieve hypotheses). When
the rewriter returns, the lemmas and literals used will have been unioned
into the top-most frame.

history: a record of the ancestry of the current clause and what proof
techniques were involved in producing each clause in the ancestry.
Other aspects to the context, not relevant to the current discussion,

include such search strategic information as the stack of lemmas through
which we are currently backwards chaining and a flag indicating whether
the term being rewritten is textually within the clause or is part of a
lemma or definition.

In addition, of course, the context implicitly contains a set of rewrite
rules and linear rules derived from axioms, definitions, and previously
proved theorems. This set of rules is here called the library.
This elaborate notion of 'context' is used implicitly not only by the

rewriter but also by the linearization and augmentation procedures.

8.2. Polynomials

A polynomial is a five-tuple, (c, alist, hyps, lits, supports). The first field,
c, is an integer constant. The second, alist, is a list of pairs (ti, ki), where
each ti is a term, called a multiplicand, and each ki is an integer, called
the coefficient of the corresponding multiplicand. The pairs in alist are
ordered according to the multiplicands, with the heaviest first, and no
two distinct pairs have identical multiplicands. The multiplicand in the
first pair of the dist (the heaviest) is called the key multiplicand of the
polynomial and the sign of the polynomial is the sign of the key
multiplicand's coefficient. The third field of a polynomial, hyps, contains
a set of terms. The fourth and fifth fields, lits and supports, contain sets
of LISP objects. (Note: the last three fields all contain LISP lists treated as
sets. However, we use EQUAL to compare elements in the hyps field but
EQ to compare elements in the other two fields.)
The formula represented by a polynomial with constant c, alist

((tD k1), • • •P (tn, kn)), and hyps h1, h„, is

hi n•••Ahn,-->c+ki *ti+•••+ kn *

106



BOYER AND MOORE

The lits field of a polynomial contains the literals linearized to produce
the polynomial or its ancestors. The hyps of a polynomial contain the
linearization hypotheses. The supports field contains a variety of things:
the names of the axioms, definitions, and lemmas used in the derivation
of the polynomial, the literals used to relieve linearization hypotheses or
the hypotheses of rewrite and linear rules contributing to the derivation
of the polynomial, and special marks explained in Section 8.7.
We say a polynomial is impossible if its constant is greater than 0 and

no coefficient is negative. We say a polynomial is vacuous if its constant
is less than or equal to 0 and no coefficient is positive. Observe that if a
polynomial is impossible the conclusion of the formula it represents is
contradictory. Similarly, if a polynomial is vacuous then the conclusion of
its formula is trivially true.

8.3. Converting terms to polynomials

The process of converting a literal into one or more polynomials is called
'linearization'. Linearization implicitly takes place in a context (as does
rewriting). The linearization of lit is either NIL or a set of sets of
polynomials. If the result is NIL, we draw no arithmetic conclusions from
assuming lit. Otherwise, the answer represents a formula, form, obtained
by disjoining (across the set) the result of conjoining (across each
element) the formulas represented by each polynomial. It is a theorem
that form is implied by the assumptions in the context.
Below we show some examples of literals linearized and the formulas

represented by the answers. In each of the cases below, the lits field of
the polynomials returned is {lit} and the support fields is 0

formula represented by
lit result of linearization

IJ—>1+ —1*J+ 2*.ls 0
I<J-40+-1*.1+2*.15.0

/*J.1 0 + l*J+ —2 4,/.0
1-4.1A1e.N'—+-1*J+2*I0

IE.ArZ4 1 + 1.*J+ —2* O.

In order to describe the linearization process we need three auxiliary
concepts. The first is the notion of the zero polynomial depending on lit,
which is the polynomial with constant 0, empty alist, hyps, and supports
fields, and lits field {lit}.
The other two concepts we mention informally here and define

precisely after discussing linearization. One concept is that of 'inserting a
hypothesis hyp into a polynomial p', which, roughly speaking, is the
construction of a polynomial identical to p except that hyp is included in
the hyps field. The third notion is that of 'adding a term t positively (or

107



INTEGRATING DECISION PROCEDURES

negatively) to a polynomial p'. Roughly speaking, this means construct-
ing a new polynomial by adding t to (or subtracting t from) p. However,
when we add a term to a polynomial we may also insert hypotheses.

Careful treatment of the hypotheses is essential to the utility of our
linear arithmetic procedure. Omitting a hypothesis that is not known to
be true can cause unsoundness. But failure to recognize that a hypothesis
is already known to be true or false can cause unnecessary case splitting
or infinite looping (as the system may case split repeatedly on the same
condition). Exactly how the linearization procedure handles the hypoth-
eses depends upon how the procedure is being used.

It is useful to distinguish two different occasions on which we linearize
terms. The first, and simpler of the two, is during the process of rewriting
a literal after we have set up our polynomial data base. Linearization is
used both to relieve hypotheses of rewrite rules and to augment the data
base. But the data base produced by pushing the polynomials is not
saved—we are only looking for a contradiction. Hence we need not track
our dependency on literals and can use the type alist, TA, supplied by the
context of the rewriter, to check the truth or falsity of some linearization
hypotheses. If a hypothesis is true under TA we need not include it. If it is
false we should avoid producing a polynomial requiring its truth.
The second occasion we use linearization is when we are setting up the

initial data base. In this case we must track our dependencies on literals
very carefully to avoid tail biting. During the initialization of the data
base we therefore use a context in which TA is empty—preventing the
unreported use of type set information—and use LITS-THAT-MAY-BE-

ASSUMED-FALSE and HEURISTIC-TA to determine the truth or falsity of
some linearization hypotheses. For example, if the complement of a
required linearization hypothesis is in LITS-THAT-MAY-BE-ASSUMED-FALSE

(which, recall, is the clause being proved), then we need not include it in
the hyps field of the polynomials but must include it in the supports field.
Looking for a hypothesis or its complement in LITS-THAT-MAY-BE-

ASSUMED-FALSE is not as powerful as computing its type set. For
example, the type set mechanism could deduce the truth of (NUMBERP t)
from the assumption t=AEBB. Nevertheless, we have adopted this
approach because we must know which literals in the clause are being
used when a required linearization hypothesis is omitted. However, recall
that if we believe a hypothesis is false we simply avoid producing a
polynomial requiring its truth. The soundness of the theorem prover is
unaffected by the validity of our belief that a hypothesis is false: at worst
we deny the system access to information it could have used. In this case
it is irrelevant to track dependencies, since no polynomial is produced.
Thus, we can afford to use a type alist as a heuristic device to avoid the
production of certain polynomials. This is the role of HEURISTIC-TA in the
context and it encodes the negations of all the literals of the clause.

108



BOYER AND MOORE

Except where noted, all type set computations are done with respect to
TA.

We say a term t is possibly numeric if the type set of t under
HEURISTIC-TA (or, if HEURISTIC-TA is NIL, under TA) iS {NUMBER*
The positive (or negative) linearization of a literal lit is either NIL or a

set of sets of polynomials as described below. In the description below we
handle the positive case only. The negative case is identical to the
positive case for the complement of lit with one exception: the lits field of
all the polynomials constructed contain lit rather than its complement.

If any polynomial in any element of the answer contains F in its hyps
field we delete that polynomial from the element.

If lit is of the form (LESSP lhs rhs) the answer is {{poly}) where poly is
the result of adding the term (ADD1 lhs) positively to the result of adding
the term r.h.s. negatively to the zero polynomial for lit.

If lit is of the form (EQUAL lhs rhs) and either lhs or rhs is possibly
numeric, the answer is {{polyipoly2}} where polyi is the result of adding
lhs positively to the result of adding r.h.s. negatively to the zero
polynomial for lit, and p0ly2 is obtained by the symmetric procedure
(swapping the roles of lhs and rhs).

If lit is (NoT (ss P lhs rhs)) the answer is {{poly}} where poly is the
result of adding rhs positively to the result of adding lhs negatively to the
zero polynomial for lit.

If lit is (NOT (EQUAL lhs rhs)) and either lhs or rhs is possibly numeric,
then let polyi be the result of inserting (NUMBERP lhs) and (NUMBERP rhs)
hypotheses into the result of adding (ADDI lhs) positively to the result of
adding rhs negatively to the zero polynomial for lit, and let po1y2 be
obtained by the symmetric procedure (swapping the roles of lhs and rhs).
If poly' is impossible, the answer is {{poly}} where poly is obtained
from poly2 by adding to its hyps field those of polyi; if po1y2 is impossible,
the answer is {{poly}} where poly 1 is obtained from poly' by adding to
its hyps field those of poly2; otherwise the answer is {{poly1}(poly2}}.

If none of the above four cases obtains, the answer is NIL.
This concludes the definition of linearization.
The result of adding a term to a polynomial involves manipulating the

alist of the polynomial (and possibly the hyps field). The following
subsidiary concept is used:
The result of inserting a term t with a coefficient of n into the alist field

of a polynomial poly is the polynomial that results from poly by
modifying its alist as follows. If the type set of t does not include
NUMBERP, do not modify the alist (since our arithmetic functions coerce
non-NUMBERP arguments to 0); if there is a pair with multiplicant tin the
alist, increment the coefficient of that pair by n; otherwise, add the pair
(t, n) to the alist (maintaining the previously noted ordering of entries).
The result of adding a term t with parity p to a polynomial poly is the

109



INTEGRATING DECISION PROCEDURES

polynomial obtained as follows:
If t is a constant, then if t is a natural number, increment (decrement)

the constant of poly by t (according to whether p is positive or negative)
and return the result; otherwise return poly (since non-NumBERps are
coerced to 0).

If t is (ADDi x), increment (decrement) the constant in poly by 1
(according to whether p is positive or negative) and add x with parity p to
the result.

If t is (SUB1 X), then if p is positive: decrement the constant in poly by 1
and add x with parity p to the result; otherwise p is negative: insert the
hypothesis (NOT (LESSP X 1)) into poly, increment the constant in the
resulting polynomial by 1, and add x with parity p to the result.

If t is (PLUS x y), add y with parity p to the result of adding x with parity
p to poly.

If t is (DIFFERENCE x y), then if p is positive: add x positively to the
result of adding y negatively to poly; otherwise p is negative: insert the
hypothesis (NOT (LESSP xy)) into poly and then to the result add x
negatively to the result of adding y positively.

If t is (TIMES n x), where n is a natural number, insert x with a
coefficient of n (or —n) (according to whether p is positive or negative)
into the alist field of poly and return the result.

Otherwise, insert t with a coefficient of 1 (or —1) (according to whether
p is positive or negative) into the alist field of poly and return the result.

This completes the definition of how to add a term to a polynomial.
The result of inserting the hypothesis hyp into a polynomial poly is

obtained as follows.
If hyp is (NOT (LESSP X 1)) and the type set of x is {NUMBERP}, insert the

hypothesis (NOT (EQUAL x 0)) into poly instead and return the result.
If hyp is (NOT (LESSPx 1)) and the complement of (NUMBERP x) occurs as

some literal lit in LITS-THAT-MAY-BE-ASSUMED-FALSE, add lit to the supports
field of poly and return the result.

If hyp is (NOT (EQUAL (DIFFERENCE 14 V) 0)), insert the hypothesis (LESSP
V u) into poly and return the result.

If hyp is (NOT (EQUAL (ADD1X) 0)), return poly.
If hyp is (NOT (EQUAL 11 0)) where n is any constant other than 0, return

poly.
If hyp is (NOT (EQUAL 0 0)), insert the hypothesis F into poly and return

the result.
If the type set of hyp is {TRUE}, return poly.
If the type set of hyp does not include TRUE, insert the hypothesis F

into poly and return the result.
If the type set of t (computed with HEURISTIC-TA) does not include TRUE,

insert the hypothesis F into poly and return the result.
If the complement of hyp occurs as some member, lit, of LITS-THAT-MAY-

110



BOYER AND MOORE

BE-ASSUMED-FALSE, add lit to supports field of poly and return the result.
Otherwise, add hyp to the hypothesis field of poly and return the

result.

8.4. Combining polynomials

Suppose pi and p2 are polynomials with the same key multiplicand, t, and
opposite signs. Let the coefficients of t in pi and p2 be ki and k2,
respectively. By cross-multiplying and adding pi and 132 we can form a
new polynomial whose key multiplicand, if any, is smaller than t. The
polynomial obtained has as its constant k2 * ci + ki c2, where ci and c2
are the constants of pi and p2, respectively. The alist of the new
polynomial is obtained from the alists of Pi and /32 by multiplying each
coefficient in the first by k2 and each coefficient in the second by ki, then
merging the two alists (adding together the coefficients of identical
multiplicands and deleting any pair with a 0 coefficient). The hyps, lits,
and supports fields of the new polynomial are the unions of the
corresponding fields of Pi and /32 (comparing with EQUAL or EQ as
appropriate).
Observe that if the formulas represented by p and /32 are both true in

the context then so is the formula represented by the result of
cross-multiplying and adding.
For each term t we define the non-negative assumption for t to be the

polynomial obtained by linearizing the theorem 0 t, i.e. the polynomial
representing 0 + —1 t 0, with empty hyps, lits, and supports fields.
Any polynomial with a positive first coefficient can be cross-multiplied
and added to the appropriate non-negative assumption to obtain a true
polynomial differing from the initial polynomial only in that the first pair
in the alist is missing.

8.5. Pushing polynomials into the data base

Conceptually, our linear arithmetic data base is just a set of polynomials.
To make it easier to find all the polynomials with a given key
multiplicand and sign, we actually partition the data base into 'pots'
according to their key multiplicands and further partition each pot
according to the sign of the polynomials. We then store the pots in order
according to the weight of the key multiplicands. However, for the
purposes of this paper we treat the data base simply as a set of
polynomials.
The fundamental operation on the data base is to add new polynomials

to it and deduce the consequences by cross-multiplying and adding.
However, recall that during the simplification of a given literal we wish
not to use polynomials that descend from LITS-TO-BE-IGNORED-BY-LINEAR.
We say a polynomial poly is available if no element of LITS-TO-BE-IGNORED-
BY-LINEAR iS EQ to any element of the lits or supports fields of poly.

111



INTEGRATING DECISION PROCEDURES

The result of pushing a set of polynomials s into a data base db is the
closure of the union of db and s under the following two operations:

1. For any available member polynomial x with positive sign, include
the result of cross-multiplying and adding x to the non-negative assump-
tion for the key multiplicand of x, provided that result is non-vacuous.
2. For any two available member polynomials x and y with the same

key multiplicand and opposite signs, include the result of cross-
multiplying and adding x and y, provided that result is non-vacuous.
The above description fails to describe our code in three respects.

First, because the initial data base is closed under the operations above,
it suffices to consider only the new polynomials and their consequences.
Second, the order in which we combine polynomials is not specified.
Third, since we are seeking to derive an impossible polynomial the code
that closes the data base halts when a cross multiply and add produces an
impossible polynomial. The hyps, lits, and supports fields of the
impossible polynomial found influence the subsequent proof attempt.
Thus, if more than one impossible polynomial can be derived from the
assumptions, the order in which polynomials are combined is relevant.

8.6. Augmenting the data base

In this subsection we explain how we use previously proved theorems to
augment the data base of polynomials.
A linear rule is a four-tuple (name, hyps, concl, max-term), where

name is the user-supplied name of a formula, hyps is a list of terms, concl
is a term of the form (LESSP x y) or (NOT (LESSP x y)), the positive
linearization of concl (under empty TA, LITS-THAT-MAY-BE-ASSUMED-FALSE,
and HEURIST1C-TA) is a singleton set containing a singleton set containing a
polynomial poly, and max-term is one of the multiplicands in the alist of
poly and has the following properties: (a) max-term is not a variable
symbol; (b) the set of variables occurring in cond is a subset of the union
of those occurring in max-term and those occurring in hyps; and (c) no
other multiplicand in the alist of poly has larger size and contains a
superset of the variables occurring in max-term.
Roughly speaking, linear rules are interpreted as follows. Whenever a

new key multiplicand is introduced into the polynomial data base we
search for applicable linear rules, finding each rule whose max-term can
be instantiated to yield the key multiplicand in question. When we find
such a rule we attempt to establish, by rewriting, the corresponding
instance of each of the hypotheses in the hyps of the rule. Provided we
succeed, we rewrite the appropriate instance of the concl of the rule and.
linearize it to obtain a polynomial. We then modify the hyps and supports
fields of the polynomial to take into account the hypotheses assumed and
lemmas and literals used during the rewriting. Then, provided certain

112



BOYER AND MOORE

heuristic conditions are met, we push the resulting polynomial into the
data base.
The restrictions on max-term above are motivated by two considera-

tions. First, we want to ensure that once the variables in a maximal term
are instantiated (by the pattern match with a key multiplicand) and the
hypotheses are relieved (possibly instantiating variables occurring in hyps
but not in max-term), then every variable in concl is instantiated. Second,

since the polynomial produced from the instantiated conclusion can only
be used to cancel its heaviest multiplicand, we try to select as our
max-terms only those terms which might, under suitable instantiation,
become the largest.

Linear rules are added to the system's library of rules whenever
certain user-supplied formulas are proved. Suppose the user submits
to the theorem prover a conjecture named name of the form
(IMPLIES hyp concl). Suppose further the conjecture was tagged as a
rewrite rule. Let hyps be the result of flattening the AND structure of hyp,
i.e. the conjunction over hyps is hyp. If the conjecture is proved, we
store in our library each four-tuple (name, hyps, concl, t) that is a linear
rule. Actually, the recognition of candidate theorems is more sophisti-
cated. For example, a simple (LESSP x y) or (NOT (LESSP X y)) theorem is
recognized as a candidate and hyp defaults to T. If concl is a conjunction,
we strip out the individual conjuncts and look for inequalities. These
details are unimportant in this paper.
Before linearizing the instantiated conclusion of a linear rule we

rewrite it to put the terms into normal form under the current set of
rewrite rules. However, rather than rewrite the entire conclusion, we
rewrite merely the two sides of the inequality to avoid applying linear
arithmetic to the conclusion before we have normalized the terms.
The rewritten form of term under substitution s, where term is a term of

the form (LESSP lhs rhs) or (NOT (LESSP lhs rhs)) is obtained as follows. Let
lhs' and rhs' be obtained by rewriting lhs and rhs, respectively, under the
substitution s. If concl is (LESSP lhs rhs), the rewritten form is (LESSP lhs'
rhs'), otherwise, it is (NOT (LESSP lhs' rhs')).
Pushing a linear rule (name, hyps, concl, max-term) for multiplicand t

into a data base db produces a data base as follows. If db contains an
impossible polynomial, return db. If there is no substitution s on the
variables of max-term such that s applied to max-term is t, return db.
Otherwise, push new frames onto both the lemma stack and the hyps
stack, and, using db as DB, attempt to relieve the hypotheses hyps. This
either fails or succeeds and delivers an extension s' of s and modifies the
top frames of the two stacks. If the attempt fails, pop and discard the two
frames added and return db. Otherwise, pop the lemma stack and let
lemmas be the resulting set of items. Pop the hyps stack and let hyps be
the resulting set of terms. Let {{poly}} be the positive linearization of

113



INTEGRATING DECISION PROCEDURES

the rewritten form of concl under s'. If for any reason the linearization
does not produce such a structure or if there is a multiplicand in the alist
of poly that is distinct from, as large as, and 'worse than' every key
multiplicand in db, then return db. (We use the same sense of 'worse
than' defined on p. 110 of Boyer and Moore, 1979.) Otherwise, let poly'
be obtained from poly by setting the hyps field to the union of the hyps of
poly and hyps, and setting the supports field to the union of {name} and
lemmas. Return the result of pushing poly into db.
The result of augmenting a data base db with linear rules for a set of

multiplicands s is a polynomial data base constructed as follows. If db
contains an impossible polynomial, return db. If s is empty, return db.
Otherwise, let db' be the result of iteratively expanding db by pushing
into it each linear rule about any multiplicand in s. Return the result of
augmenting db' with linear rules for every non-variable key multiplicand
in db' that is not a key multiplicand in db.
The resulting of pushing a set of polynomials s into a data base db and

augmenting with linear rules is the data base constructed as follows. Let
db' be the result of pushing s into db. Return the result of augmenting
db' with linear rules for all non-variable key multiplicands in db' that are
not key multiplicands in db.

8.7. The interface between linear arithmetic and rewriting

In this subsection we describe the operation of pushing terms (as opposed
to polynomials) into a data base and augmenting with lemmas. This
operation is the entry to the linear arithmetic procedure from the rest of
the simplifier. It is used both to construct the initial data base and to
rewrite inequalities by showing they contradict our previous assumptions.
Given a data base encoding our current linear assumptions and a list of

terms to assume true (or false) we desire to construct a new data base
containing the conjunction of the old and new assumptions. If each term
linearized into a conjunction of polynomials the task would be simple:
linearize each term, push each polynomial produced and then augment
the data base with linear rules. However, some terms, e.g. I OJ,
linearize to a disjunction of polynomials: either I <J or J <I. A single
data base cannot, in general, represent the assumption I *J. However, if
1<1 contradicts other assumptions, we can push J <I, and vice versa.
Our initial implementation simply ignored disjoined polynomials, but we
found several cases where that prevented proofs. We dismissed as too
expensive (without even implementing it) the much stronger approach of
producing a data base for each combination of alternatives and carrying
out the desired simplifications in each of them.
The result of pushing the list of terms s positively (or negatively) into

the data base db and augmenting with linear rules is the data base

114



BOYER AND MOORE

obtained as follows: linearize each term in s (positively or negatively, as
indicated). Each answer can be classified into one of three categories: it is
a singleton list containing a list of polynomials, in which case we say the
polynomials are conjuncts; it is a doubleton list containing two lists of
polynomials, in which case the doubleton is said to be a pair of
alternatives; or it is neither of the above, in which case the linearized
term was not recognized as an arithmetic equality or inequality. Let db'
be the result of pushing all of the conjunct polynomials into db and
augmenting with linear rules. Then, iteratively expand db' by considering
each pair of alternatives {poly-lsti poly-lst2} and doing the following: if
the result of pushing poly-1st' into db' and augmenting with linear rules
contains an impossible polynomial, modify the hyps and supports fields of
the polynomials in poly-lst2 by unioning into them the hyps and supports
fields (respectively) of the impossible polynomial found, and then replace
db' by the result of pushing the modified poly-lst2 into db' and
augmenting with linear rules; otherwise (if pushing poly-1st' produced no
contradiction), perform the symmetric test with poly-lst2 and modify and
push poly-lst" if a contradiction is found; otherwise, do not expand db'
on this iteration. When all alternatives have been considered, return the
final db'.
As described above the consideration of the alternatives is needlessly

expensive: if pushing poly-1st' into db' does not lead to a contradiction
but pushing poly-lst2 does, we push poly-1st' into db' again after
modifying its hyps and supports. Of course, the data base produced by
pushing the modified poly-1st' is exactly the same as that produced by
pushing poly-1st' except that the consequences derived from the modified
poly-1st" have additional hyps and supports. But pushing and augmenting
can be quite expensive since it causes conditional rewriting and back-
wards chaining. Our implementation avoids the near-duplicated pushes
by putting a unique mark in the supports field of poly-1st' before it is
pushed the first time. Because of the way the supports field is propagated
by cross-multiplication and adding, every consequence deduced from
members of poly-1st' is marked in the resulting data base, db. If dbi
does not contain a contradiction but pushing poly-lst2 into db' does, we
visit every marked polynomial in db i and update the hyps and supports
fields with those from the contradiction found with poly-ish.

8.8. Rewriting terms and relieving hypotheses

We now complete our description of how the rewriter has been modified
to use linear arithmetic.
At the point in rewriting where we used to 'rewrite with lemmas' (p.

122 of Boyer and Moore, 1979) we now try linear arithmetic first,
provided the atom of the term being rewritten is a LESSP or EQUAL

115



INTEGRATING DECISION PROCEDURES

expression and the objective of rewriting is either to show the term T or
to show it F. If the objective is to show the term T, we push the term
negatively into DB and augment with linear rules. If the resulting data
base contains an impossible polynomial, poly, we add to the top frame of
the hyps stack the terms in the hyps field of poly, add to the top frame of
the lemma stack the items in the supports field of poly, and return T as
the value of the rewritten term. If, on the other hand, the objective is to
show the term F, we do the symmetric operation.

In an earlier implementation we tried using linear arithmetic to
simplify LESSP or EQUAL terms even when the objective was not T or F. In
particular, we first tried pushing the term positively and if that produced
no contradiction, we tried pushing it negatively. To our surprise, this
increased the total number of conses used during the proofs of the
theorems in Appendix A of Boyer and Moore (1979) from roughly 6
million to roughly 10 million without significantly shortening the proofs
produced. We therefore abandoned the idea of using linear arithmetic
except when we had a clear objective to establish.
The remaining changes to the rewriter are motivated by the need to

track accurately which literals are being used when we augment the initial
data base with linear rules. To prevent surreptitious use of type
information, we set TA to NIL during the construction of the data base.
This cripples the rewriter described in Boyer and Moore (1979) since it
has no assumptions with which to work while trying to relieve the
hypotheses of linear rules. We use LITS-THAT-MAY-BE-ASSUMED-FALSE to
encode assumptions in a way that permits us to track dependencies.
As noted on p. 124 of Boyer and Moore (1979), just before the

rewriter returns its answer, ans, it asks whether ans has typeset {TRUEP}
or {FALSEP} under TA and, if so, returns T or F, as appropriate, instead.
Now we ask, in addition, whether ans is EQUAL to some member, lit, of
LITS-THAT-MAY-BE-ASSUMED-FALSE. If so, we return F instead, but we add LIT
to the top frame of the lemma stack. That literal will ultimately be
deposited in the supports field of any polynomial depending on this
rewrite. Similarly, if the complement of ans occurs in LITS-THAT-MAY-BE-
ASSUMED-FALSE we return T instead and store the corresponding
lit in the lemma stack, provided that ans is Boolean valued or that
the sense of equality to be preserved by this rewrite is propositional
equivalence.
As noted on p. 122 of Boyer and Moore (1979), when we are trying to

relieve a hypothesis hyp under some substitution s and s does not
instantiate every variable of hyp we use TA to try to extend s to make the
instantiation of hyp true. We now use LITS-THAT-MAY-BE-ASSUMED-FALSE in
an analogous way, recording on the lemma stack the literals used. In
addition, if any hypothesis to be established is on LITS-THAT-MAY-BE-
ASSUMED-FALSE we abandon the attempt to relieve the hypotheses.

116



BOYER AND MOORE

8.9. Deriving equalities from the data base

In this subsection we define the concepts necessary to describe how we
generate from the polynomial data base equality literals to add to the
clause being proved.
We say a polynomial p isolates ti positively (or negatively) if ti is a

multiplicand in the alist of p, the coefficient, k,, of t, is positive
(negative), the constant of p and all coefficients other than that of t, are
negative (positive) and multiples of kb and the lits field of p is not a
singleton set containing a negated equality.

Note that if a polynomial with constant c and alist
k1), (tn, k„)) isolates t, positively then the concluding in-

equality in the formula represented by the polynomial can be put into the
form:

t, c' + * + • • • + * + C+1* + • • • + *

where c' and the k's are all natural numbers. We call ti the isolated term
of the polynomial and

(PLUS c'
(TIMES CO • • -
(TIMES kii_1 4_1)
(TIMES lei +1 t +1) • • •
(TIMES k'„ t„))

the conglomerated term corresponding to t.
The result of multiplying (or dividing) a polynomial poly by an integer n

is a five-tuple <c, alist, hyps, lits, support >, where c is the constant of
poly multiplied (or divided) by n, alist is obtained from the alist of poly
by multiplying (or dividing) each coefficient by n, and the remaining
fields are those of the same name in poly. Multiplying a polynomial by n
produces a polynomial. Dividing a polynomial by n produCes a polyno-
mial only if n divides the constant and each coefficient.
We say a polynomial poly2 is a complementary multiple of a polynomial

poly, if there is a negative integer n such that the result of multiplying
poly, by n is p01y2.
We say two polynomials, poly, and poly2 are mates on a term t if poly,

isolates t (positively or negatively) and po1y2 is a complementary multiple
of the result of dividing poly, by the coefficient of tin poly,.

If a data base contains two mates, poly, and poly2, on a term t then,
under the conjunction over the union of the hypotheses in the two
polynomials, we can derive an equation between t and its corresponding
conglomerated term. In the next subsection we describe how we process
mated polynomials.

117



INTEGRATING DECISION PROCEDURES

8.10. Simplifying clauses

Roughly speaking, to simplify a clause we first set up a polynomial data
base derived by assuming all the literals of the clause false. If the data
base contains an impossible polynomial we are done. Otherwise, we look
for mated polynomials and process them. If we find no mates, we sweep
the clause from left to right rewriting each literal in turn, using the
polynomial data base previously set up but ignoring certain polynomials
in it. At each stage we must deal with the linearization hypotheses arising
from polynomials we have used.
The polynomial data base for the clause cl is constructed as follows.

First, we bind LITS-THAT-MAY-BE-ASSUMED-FALSE to ci, HEURISTIC-TA to the
type alist encoding the falsity of every term in c/, TA to NIL, and
LITS-TO-BE-IGNORED-BY-LINEAR to NIL. Then we push c/ negatively into the
empty data base and augment it with linear rules and return the result.

If a clause is a consequence of simple linear arithmetic, the polynomial
data base will contain an impossible polynomial. However, because TA is
NIL during the augmentation of the polynomial data base we sometimes
fail to find contradictions (involving linear rules) that would be found if
TA contained the negations of all the literals. Therefore, when we simplify
a clause we take time out to augment the data base under the stronger
TA, hoping to generate an impossible polynomial. If no contradiction is
found we discard the resulting data base since it contains 'hidden'
dependencies.
The control structure of clause simplification exploits the fact that

clauses are represented by sequences, not sets. In addition, we must
agree upon a way to mark the 'current literal' in a clause. We will
continue to use set brackets to denote clauses but will consider the
objects described to be sequences and will attach importance to the order
of the literals. When we use the 'union' operator, U, in connection with
clauses, we mean concatenation. The 'current literal' of a clause will be
enclosed in square brackets. Thus, {—ip [q] r} is a clause whose first literal
is —1/3 and whose current literal is q.
The result of splitting the clause {. p [q] r. .} on h1, . . h„ is the

set consisting exactly of each clause of the form {. . . p hi q [r] .),
where 1 i n. If there is no literal r to the right of the selected literal q
in the input, the clauses in the output set have no selected literal.
The result of adding the hypotheses h1, . . h„ to the clause {. p [q] r
.} is the clause {. p --Ihn[q] r. .}.
The result of splicing the clause segments segi, seg,, in place of the

selected literal in {. p [q] r .} is the set consisting exactly of the
clauses {. .p} U segi U {[r] . ..}, where 1 i s n. If there is no literal r to
the right of the selected literal q in the input, the clauses in the output set
have no selected literal.

118



BOYER AND MOORE

We now define the heuristic for controlling the introduction of derived

equalities and the way we handle the hypotheses generated by the

derivation.
The heuristics for equality introduction for two terms t and t' is the

condition that the type set of both t and t' contains NUMBERP and that no

clause in the ancestry of the clause being simplified is a 'result of adding

the equation of t and t" as defined below. (Every clause processed by the

theorem prover comes with a complete history of its derivation, including

its parent and the operations that produced it.)
The result of introducing into a clause cl the equality between t and t'

derived from two polynomials polyi and poly2 is the union of Si and 52

defined below. Let hyps be the result of unioning together the hyps fields

of the two polynomials and then adding the term (NUMBERP t) (unless the

type set of t is {NUMBERP}) and the term (NUMBERP t') (unless the type set

of t' is {NUMBERP}). Si is the singleton set containing the result of adding

the hypothesis t = t' to the result of adding the hypotheses hyps to Cl. S2 is

the result of splitting c/ on hyps. We say every clause in Si and S2 is a

result of adding the equation oft and t'.
To sweep a clause cl, {. p [q] r .}, construct a set of clauses as

follows. If there is no selected literal, return {c/}. Otherwise, let TA be

the type alist obtained by assuming false every literal in c/ except the

selected literal, q. Let LITS-THAT-MAY-BE-ASSUMED-FALSE and HEURISTIC-TA

be NIL. Let LITS-TO-BE-IGNORED-BY-LINEAR be the list containing q and every

literal to its left in a., that 'rewrote to F' as defined below. Push empty

frames onto both the hyps stack and the lemma stack. Let q' be the result

of rewriting q. If q' is F, we say q rewrote to F. Pop and discard the top

frame of the lemma stack. (Actually, the names in that frame are
accumulated and eventually printed as part of a description of the proof.
In addition, they are used to build a dependency graph when the system's
library is updated at the end of successful proofs.) Pop the top frame of
the hyps stack and let hyps be the set of terms in that frame.
Let segs be the set of clause segments obtained by normalizing the IFS

in q' and splitting out each branch, as shown on page 124 of Boyer and
Moore (1979). For example, if q' is (G (IF a b c)) then we obtain two
clause segments {—la (Gb)} and {a (Gc)}. The final answer is obtained by
recursively sweeping each clause in the union of Si and S2 (defined below)
and unioning together the results. Si is the result of splicing segs in place
of the selected literal in the clause obtained by adding hyps to Cl. S2 is the
result of splitting c/ on hyps.
To simplify a clause, cl, construct a set of clauses as follows. Select the

first literal of c/ as the current literal. Let DB be the polynomial data base

for c/. If there is an impossible polynomial, poly, in DB, return the result
of splitting c/ on the hypotheses of poly. Otherwise, let TA be the type
dist obtained by assuming all literals of c/ false. If there is an impossible

119



INTEGRATING DECISION PROCEDURES

polynomial, poly, in the result of augmenting DB with linear rules for
every key multiplicand in DB, return the result of splitting c/ on the
hypotheses of poly. If there are two polynomials in DB that are mates on

some term t with conglomerated term t' and the heuristics for equality
introduction are satisfied, return the result of introducing into c/ the

equality between t and t' derived from the two polynomials. Otherwise,
sweep c/ and return the result.

9. EFFICIENCY

The incorporation of the linear procedure sketched above has dramati-
cally improved the performance of our theorem prover on arithmetic
problems. For example, compared to the theorem prover described in
Boyer and Moore (1979) the system spends 40% less time processing the
theorems and definitions in Appendix A of Boyer and Moore (1979).
Furthermore, we have been able to eliminate the need for the user to
state explicitly linear facts. Thus, our original objective was achieved.
Among the theorems proved by the latest version of the theorem prover
are the invertibility of the Rivest, Shamir, and Adleman public key
encryption algorithm (Boyer and Moore, 1984), Wilson's theorem

(Rusinoff, 1983), Gauss's law of quadratic reciprocity (David M. Rusinoff
led the theorem prover to Gauss's law) and the Church-Rosser theorem
(Shankar, 1985). All of these proofs involved a substantial amount of
linear arithmetic reasoning.
We now turn to our 'observation that theoretical efficiency is not a good

measure of the utility of a linear procedure in a larger system. Let us
reconsider our decision to use the simple 'cross-multiply and add'
algorithm instead of more efficient ones. Might our handling of arithmetic
be sped up by the use of another propagation algorithm? The answer is
no; an insignificant portion of the time is devoted to the problem of
propagating polynomials through the data base. Consider what else must
be done. Terms must be linearized, the key multiplicands in the data base
determined, interesting lemmas must be selected and instantiated (and

their hypotheses must be relieved by nonarithmetic reasoning) with due
caution for avoiding traps like 'pumps', the lemmas, literals, and

hypotheses supporting the derivation of each inequality must be recorded
and maintained, one must avoid biting one's own tail, one must be able

to 'pop' or 'undo' the effect of pushing an inequality and all of the linear

rules it introduced, and when a linear contradiction is found one must

handle the additional cases raised by the particular contradiction found.
Consider the Ms proof sketched above. Of the total time spent in

arithmetic reasoning in the second phase of the proof (5.8 seconds) only
1.8% (0.119 seconds) is spent propagating polynomials. The rest is spent
taking care of the issues listed above. Thus, the availability of an

120



BOYER AND MOORE

instantaneous oracle for linear arithmetic problems would speed up the

Nis proof by an insignificant amount.
Perhaps more realistic data is that obtained during the proof of the

verification conditions for the FORTRAN version of our fast string
searching algorithm. We regard this set of 53 lemmas and verification

conditions to be quite representative of the verification of practical
programs. The verification conditions establish that the preprocessor

correctly sets up a global COMMON array and that the search algorithm
correctly computes the location of the first occurrence of the pattern in
the text, if there is an occurrence, or else correctly announces that no
occurrence exists. Furthermore, the v.c.s establish that there are no array
bounds violations, arithmetic overflows, or other run time errors, and
that both subroutines terminate. To prove these v.c.s the system must
first establish several important lemmas about strings and string search-
ing. These lemmas are proved inductively from the definitions of such
concepts as 'a string over a finite alphabet', 'leftmost occurrence' and our
DELTA1 function. The definitions themselves are proved satisfiable by the
system before they are admitted. The admission of the definitions, proofs
of the lemmas, and proofs of the v.c.s all require both arithmetic and
non-arithmetic reasoning, as is common in the verification of programs
that compute non-arithmetic functions on arrays and tables (e.g. search-
ing, sorting, hashing).
The total time taken is 1417 c.p.u. seconds (23.6 c.p.u. minutes). We

push terms into the polynomial data base 2637 times. Relatively few
linear rules are available for instantiation. Only once in every six calls
does the augmentation procedure find a lemma that is judged to be
relevant to the data base. (Thus, one can infer that not an inordinate
amount of time is spent pursuing instantiations.) The total time con-
sumed while pushing terms into the data base is 357 c.p.u. seconds, 25%
of the total proof time. But only 38.5 seconds is spent pushing
polynomials. That is, in this fairly representative verification problem, an
instantaneous oracle for linear inequalities would reduce the time in
arithmetic reasoning by 10.7% and would reduce the time for the overall
proof by only 2.7%.
One should not get the idea that the linear procedure is not doing

anything for us. As we have already said, the presence of built-in
arithmetic speeds up the theorem prover dramatically and makes the
system far more rugged when applied to arithmetic problems. But the
timing difference between the simple algorithm and theoretically more
efficient ones is insignificant. Furthermore, it is not necessarily the case
that a more efficient propagation algorithm would make the interface run
faster. In particular, if the faster algorithm used a more complicated data
structure for the data base and required a destructive push operation, it is
probably the case that the interface would spend more time than it does

121



INTEGRATING DECISION PROCEDURES

now in such activities as popping the data base and exploring it for the

key multiplicands.

10. CONCLUSION

We have made and documented three observations: linear arithmetic is

inadequate for the arithmetic needs of program verification; integrating a

linear arithmetic procedure into a theorem prover for a richer theory is

surprisingly difficult; and the theoretical efficiency of a linear arithmetic

procedure is a poor measure of its utility to a larger system.

We believe these same observations can be made about decision

procedures in general. Let us quickly review our observations while

considering decision procedures.
Decidable theories are inadequate for the specification of most

programs. The situation is improved somewhat by the work of Oppen

and Nelson (1979) which shows how one can construct a system of

co-operating decision procedures for disjoint theories. But in our

experience most theories of use to program verification are not disjoint.

For example, the function LEN connects the theory of lists to that of the

naturals and DELTA1 connects character strings to naturals.

But what makes it hardest to apply the work on decision procedures to

program verification is the presence of user defined functions. DELTA1 is

one example of a function that cannot be anticipated by the designer of

the decision procedure. Other examples we have seen recently are: 'the

number of times X occurs in Y', 'the number of processors that voted for

X', and 'the length of the non-circular path defined by tracing the non-0

indices stored in the array A starting at location I'. Such functions are

introduced not by the designer of the theorem prover but by the user

when he is confronted with the need to specify a given program. Since

decision procedures for these extended theories are not generally

available, one must have more powerful proof techniques or be forced to

assume the more doubtful conjectures behind a program's correctness.

But decidable theories are common fragments of the theories used in

the specification of programs. It is thus useful to integrate decision

procedures with the more powerful methods. A natural goal is to make it

unnecessary for the more powerful system to derive from explicit axioms

and lemmas the theorems of the decidable theory. To achieve such

integration is very difficult because one must identify each use to which

the heuristic theorem prover puts axioms and lemmas and make the

decision procedure serve in each of those roles.

Furthermore, the black box nature of the decision procedure is

frequently destroyed by the need to integrate it. The integration forces

into the theorem prover much knowledge of the inner workings of the

procedure and forces into the procedure many features that are unneces-

122



BOYER AND MOORE

sary when the problem is considered in isolation. Thus it is not possible
to substitute one decision procedure for another nor can the selection
(much less the implementation) of the original procedure be entirely
independent of the needs of the larger system.

Finally, the time spent in the interface between the heuristic theorem
prover and the decision procedure may dominate that spent in the
decision procedure itself. Since efficiency in the decision procedure may
not gain much overall, it is often not worth the effort to select more
efficient procedures because of the complicated data structures and
inflexible control strategies they employ to gain efficiency.
When sufficiently powerful theorem provers for program verification

are finally produced they will undoubtedly contain many integrated
decision procedures. But despite the fact that work on decision proce-
dures is elegant, easily published, mathematically pleasing, and demands
rather limited computational resources, the usefulness of that work to
program verification is not easily evaluated. The difference between a
black box and an integrated decision procedure is a lot of work. It is
probably the case that much hard work on any given black box will be
scrapped when the box is torn apart and reassembled inside a larger
system. Indeed, we believe that the work on many procedures is simply
irrelevant to the goal of constructing useful mechanical theorem provers
since the use of a faster procedure will not necessarily speed up the
overall system. We believe that the development of useful procedures for
program verification must take into consideration the problems of
connecting those procedures to more powerful theorem provers.

Acknowledgments

The research reported here was supported by National Science Foundation Grant
MCS-8202943 and Office of Naval Research Contract N00014-81-K-0634.

REFERENCES

Bledsoe, W. W. (1975) A new method for proving certain Presburger formulas. Advance
Papers, Fourth Int. Joint Conf on Artificial Intelligence, Tbilisi, Georgia, USSR, pp.
15-20.

Bledsoe, W. W. and Hines, L. M. (1980) Variable elimination and chaining in a
resolution-based prover for inequalities. In 5th Conference on Automated Deduction,
Lecture Notes in Computer Science (eds W. Bibel and R. Kowalski) pp. 70-87.
Springer-Verlag, Berlin.

Boyer, R. S. and Moore, J. S. (1977) A fast string searching algorithm. Commun. ACM 20,
762-772.

Boyer, R. S. and Moore, J. S. (1979) A computational logic. Academic Press, New York.
Boyer, R. S. and Moore, J. S. (1981a) Metafunctions: proving them correct and using them
efficiently as new proof procedures. In The correctness problem in computer science (eds
R. S. Boyer and J. S. Moore). Academic Press, London.

Boyer, R. S. and Moore, J. S. (1981b) A verification condition generator for FORTRAN. In

123



INTEGRATING DECISION PROCEDURES

The correctness problem in computer science (eds R. S. Boyer and J. S. Moore) Academic
Press, London.

Boyer, R. S. and Moore, J. S. (1984) Proof checking the RSA public key encryption
algorithm. American Mathematical Monthly 91, 181-189.

Cooper, D. C. (1972) Theorem proving in arithmetic without multiplication. In Machine
Intelligence 7 (eds B. Meltzer and D. Michie), pp. 91-99. Edinburgh University Press,
Edinburgh.

Gloess, P. Y. (1980) An experiment with the Boyer—Moore theorem prover: a proof of the
correctness of a simpler parser of expressions. In 5th Conference on Automated
Deduction, Lecture Notes in Computer Science, pp. 154-169. Springer-Verlag, Berlin.

Hodes, L. (1971) Solving problems by formula manipulation. Proc. Second Int. Joint Conf.
on Artificial Intelligence, 553-559. The British Computer Society.

King, J. C. (1969) A program verifier. Ph.D. Thesis, Carnegie—Mellon University.
Moore, J. S. (1979) A mechanical proof of the termination of Takeuchi's function.
Information Processing Letters 9, 176-181.

Nelson, G. and Oppen, D. C. (1979) Simplification by cooperating decision procedures.
ACM Transactions of Programming Languages 1,245-257.

Russinoff, D. M. (1983) A mechanical proof of Wilson's theorem, Department of
Computer Sciences, University of Texas at Austin.

Shankar, N. (1985) A mechanical proof of the Church—Rosser theorem. ICSCA-CMP-45,
Institute for Computing Science, University of Texas at Austin.

Shostak, R. (1977) On the SUP-INF method for proving Presburger formulas. JACM 24,
529-543.

Shostak, R. (1978) Deciding linear inequalities by computing loop residues, Computer
Science Laboratory, SRI International, Menlo Park, Calif.

Shostak, R. (1979) A practical decision procedure for arithmetic with function symbols.
-MGM 26, 351-360.

124



6

A Problem Simplification Approach

that Generates Heuristics for

Constraint-Satisfaction Problems

R. Dechter and J. Pearl
Department of Computer Science,
University of California at Los Angeles, USA

Abstract

Many Al tasks can be formulated as constraint-satisfaction problems
(csps), i.e. the assignment of values to variables subject to a set of
constraints. Recognition of three-dimensional objects, puzzle solving,
electronic circuit analysis and truth-maintenance systems are examples of
such problems, and these are normally solved by various versions of
backtrack search. In this work we show how advice can be automatically
generated to guide the order in which the search algorithm assigns values
to the variables, so as to reduce the amount of backtracking. The advice
is generated by consulting relaxed models of the subproblems created by
each value-assignment candidate. The relaxed problems are chosen to
yield backtrack-free solutions, and the information retrieved from these
models induces a preference order among the choices pending in the
original problem.
We identify a class of CSPs whose syntactic and semantic properties

make them easy to solve. The syntactic properties involve the structure of
the constraint graph while the semantic properties guarantee some local
consistencies among the constraints. In particular, tree-like constraint
graphs can be easily solved and are chosen therefore as the target model
for the relaxation scheme. Optimal algorithms for solving easy problems
are presented and analysed. A scheme for constructing a 'best'
constraint-tree approximation to a given constraint graph is introduced
and, finally, the utility of using the advice is evaluated in a synthetic
domain of CSP instances.

1. BACKGROUND AND MOTIVATION

1.1. Introduction

An important component of human problem-solving expertise is the
ability to use knowledge about solving easy problems to guide the
solution of difficult ones. Only a few works in Al (Sacerdoti, 1974;
Carbonell 1983) have attempted to equip machines with similar capabi-

125



A PROBLEM SIMPLIFICATION APPROACH

lities. Gaschnig (1979), Guida and Somalvico (1979), and Pearl (1983)

suggested that knowledge about easy problems could be instrumental in
the mechanical discovery of heuristics. Accordingly, it should be possible
to manipulate the representation of a difficult problem until it is
approximated by an easy one, solve the easy problem, then use the

solution to guide the search process in the original problem.
The implementation of this scheme requires three major steps: (a)

simplification; (b) solution; and (c) advice generation. Additionally, to
perform the simplification step, we must have a simple, a priori criterion
for deciding when a problem lends itself to easy solution.

This paper uses the domain of constraint-satisfaction tasks to examine
the feasibility of these three steps. It establishes criteria for recognizing
classes of easy problems, provides special procedures for solving them,
demonstrates a scheme for generating good relaxed models, and intro-
duces an efficient method for extracting advice from them. Finally, the
utility of using the advice is evaluated in a synthetic domain of problem
instances.

Constraint-satisfaction problems (csps) involve the assignment of
values to variables subject to a set of constraints. Understanding
three-dimensional drawings, graph colouring, electronic circuit analysis,
and truth-maintenance systems are examples of CSPS. These are normally
solved by some version of backtrack search which may require exponen-

tial search time (for example, the graph-colouring problem is known to

be NP-complete).
The following paragraphs summarize the basic terminology of the

theory of CSP as presented in Montanan (1974) and extended by
Mackworth (1977) and Freuder (1982). Some observations are presented
regarding the relationships between the representation of the problem
and the performance of the backtrack algorithm.

1.2. Definition and nomenclature

Formally, the underlying model of a CSP involves a set of n variables
X. each having a set of domain values D1, ., Dn. An n-ary

relation on these variables is a subset of the Cartesian product:

p c X D2 X X D„. (1)

A binary constraint Ri1 between two variables is a subset of the Cartesian
product of their domain values, i.e.

R.1 c D x D.— J• (2)

A network of binary constraints is the set of variables X1, 14, plus
the set of binary constraints between pairs of variables and it represents

an n-ary relation defined by the set of n-tuples that satisfy all the
constraints. Formally, given a symmetric network of constraints between

126



DECHTER AND PEARL

n variables, the relation p represented by it is:

P = {(x1, x2, . . . x„)I xi E Di, and (xi, X1) E Ri; for all i, j}. (3)

Not every n-ary relation can be represented by a network of binary
constraints with n variables, and the issues of finding the best approxima-
tion by such network are addressed in Montanan (1974). In this paper we
will discuss only relations induced by a network of binary constraints and
henceforth assume that all constraints are binary and symmetric.
Each network of constraints can be represented by a constraint graph

where the variables are represented by nodes in the graph and the
non-universal constraints by arcs. The constraints themselves can be
represented by the set of pairs they allow, or by a matrix in which rows
and columns correspond to values of the two variables and the entries are
0 or 1 depending on whether or not the corresponding pair of values is
allowed by the constraint. Figure 1(a) displays a typical network of
constraints, where constraints are given using matrix notation as in Figure
1(b).
Several operations on constraints can be defined. The useful ones are:

union, intersection, and composition. The union of two constraints
between two variables is a constraint that allows all pairs that are allowed
by either one of them. The intersection of two constraints allows only
pairs that are allowed by both constraints. The composition of two
constraints, R12, R23 'induces' a constraint R13 defined as follows: a pair
(x1, x3) is allowed by R13 if there is at least one value x2 E D2 such that
(x1, X2) E R12 and (x2, X3) E R23. If matrix notation is used to represent
constraints, then the induced constraint R13 can be obtained by matrix
multiplication:

R13 = Ri2 • R23. (4)

A partial order among the constraints can be defined as follows:
Rij a R:1 if every pair allowed by Rij is also allowed by lei; (this is exactly
set inclusion). In this case we say that Ri1 is smaller than K. We can also
say that R:1 is a relaxation of Rip The smallest constraint between
variables Xi and X; is the empty constraint, denoted (Dip which does not

R =

R12
X2 a b c

a (0 1 0)
b 1 0 1
c 1 0

X3

(a)

Figure 1.

127

(b)



A PROBLEM SIMPLIFICATION APPROACH

allow any pair of values. The largest is the universal constraint, denoted
Uu, which permits all possible pairs. A corresponding partial order can be
defined among network of constraints having the same set of variables.
We say that R c R' if the partial order is satisfied for every pair of
corresponding constraints in the networks.

Finally, we define the notion of equivalence among networks of
constraints: two networks of constraints with the same set of variables are
equivalent if they represent the same n-ary relation.

Consider, for example, the network of Figure 2, representing a
problem of four variables, each having the two-valued domain {1, 0}.
The constraints are attached to the arcs and are given, in this case, by a
set of pairs. The direction of the arcs only indicates the way by which
constraints are specified. The constraint between X1 and X4, displayed in
Figure 2(b), can be induced by R12 and R24. Therefore, adding this
constraint to the network will result in an equivalent network. Similarly,
since the constraint R21 can be induced from R23 and R31 it can be deleted
without changing the relation represented by the network.

J( 1,1)t
A(0,0)I

(a)

Figure 2.

(b)

The process of inducing relations in a given network makes the
constraints smaller and smaller, while leaving the networks equivalent to
each other. Montanan i called the smallest network of constraints which is
equivalent to a given network R the 'Minimal Network'. The minimal
network of constraints makes the 'global' constraints on the network as
'local' as possible. In other words, a minimal network of constraints is
perfectly explicit.

Usually a CSP problem is described by a network of constraints. A tuple
in the relation represented by the network is called a solution. The
problem is either to find all solutions, one solution, or to verify that a
certain tuple is a solution. The last problem is fairly easy while the first

128



DECHTER AND PEARL

two problems can be difficult and have attracted a substantial amount of
research.

1.3. Backtrack for CSP
The algorithm mostly used to solve at) problems is Backtrack. Given a
vertical order of the set of variables X1, X2, • • Xn and a horizontal
order of values in each variable's domain xj,i, x 2,. x, algorithm
Backtrack for finding one solution is given below:
Backtrack
Begin

1. Assign x1,1 to Xi (if allowed by a unary constraint)
2. k=1
3. while k n — 1
4. while Xk+1 has more values /* values xi, x2,. xk were

already selected */
5. choose the first value xk J of Xk+1, such that

(xi, x2, . . xk, xk.,1,;) satisfies all constraints
6. then erase (temporarily) xk+1,1, xk.,1,/ from domain of

Xk+1

7. k = k + 1
8. goto 3
9. end
10. k = k — 1 (backtrack since no value at (5) exists)
11. If k = 0 exit, no solution exists
12. end
13. exit with solution

End.
In line 5 of the algorithm all the constraints between Xk+i and previous
variables in the vertical order are checked. The value chosen should be
consistent with all the previous instantiated values under those con-
straints. For Backtrack to find all solutions the above algorithm should be
modified slightly by adding another outer loop and terminating only when
k= 0.
Montanan considered the question of finding the minimal network M

of a given network R as the central problem in CSPS implying that once it
is available the problem is solved. The following two lemmas elaborate
on this issue by relating the minimal network to the Backtrack algorithm.
Lemma 1. Let R and R' be two equivalent networks such that R' cR,
then given the same order for instantiating variables, any sequence of
values that is explicated by Backtrack with R' will be explicated also by
Backtrack with R when Backtrack looks for all solutions.
Proof. The order between the networks implies that any sequence of
values which is consistent under R' is also consistent under R.
Conclusions: Given a network R and a fixed order of variables'

129



A PROBLEM SIMPLIFICATION APPROACH

instantiation, Backtrack's performance, when looking for all solutions, is
most efficient on the minimal network, relative to all networks which are
equivalent to R, since it is contained in all of them.
We now show that when the algorithm seeks only one solution then,

with the minimal network, the solution can be found easily in many
cases. Some more definitions are required.
Given an n-ary relation p, representable by a network with n variables,

the projection Ps of the relation p on a subset S of the variables is not
always representable by a network with ISI nodes. If for any subset of
variables, Sy ps is representable by a network with ISI variables then p is
said to be a 'Decomposable relation'. Given an n-ary decomposable
relation p, represented by a minimal network M, then for any subset S of
variables the subnetwork of M restricted to the nodes in S, is a minimal
network of ps. In this case M is also said to be decomposable.
For example, the network in Figure 3 is minimal but not decom-

posable. The relation represented by M is:

p = {(x1,1y X21, X3,1, X4,1), (X1,1, X2,2, X3,2, X4,2), (X1,2, X2,2, X3,1, X4,3)}.

(5)

(Note that Xs is a non-binary variable.)
If S = {X1, X2, X3} it can be shown that

Ps = {(x1,1, x2,1, x3,1), (Y1,1, x2,2, x3.2), (x1,2, x2,2, x3,1)} (6)

cannot be represented by a network with three variables. (For more
details see Montanan, 1974.)
Lemma 2. If M is a minimal and decomposable network then Backtrack
will find one solution without backtracking at all.
Proof. From M's decomposability it follows that any projection ps has a
minimal network which is the subnetwork of M that is restricted to the
variables in S. Therefore any tuple of a subset of the variables S, that
satisfy all the constraints in the minimal subnetwork is part of an n-tuple
in the n-ary relation represented by M, and therefore it can always be
extended.
The complexity of finding a solution given a minimal and decom-

posable network M, is, therefore, 0(n21c) when n is the number of

Figure 3.

130



DECHTER AND PEARL

variables and k is the maximum cardinality of the value domain for all
variables. In the previous example of a non-decomposable minimal
network Backtrack may explore the path x1,1, x2,2, x3,1 and since it
cannot be extended to a 4-tuple relation satisfying M the algorithm will
have to backtrack. In conclusion we see that when solving a CSP, finding
all or one solution is much easier when the minimal network is available.
It is still not clear that it is always easy.

Backtracking and its performance on CSPs have been extensively
discussed in the AI literature. Most researchers are trying to identify the
major maladies in its performance, to provide a corresponding cure, and
to analyse the results. The discussion can be separated along the
following lines:

1. The problem objectives: finding all or finding one solution
2. Control parameters: controlling the order of variables' instantiation,

order of values' instantiation, or manipulating the problem's repre-
sentation by pruning values or propagating constraints.

3. Cure implementation: performing the cures themselves prior to the
start of the algorithm, as a pre-processing phase, or incorporating them
dynamically into the algorithm while it searches for solution(s).
Mentioning only a few studies, we start with Montanan i (1974) who

considered the problem of finding all solutions and discussed the solution
of a problem by propagating the constraints and pruning pairs of values
from them. In light of the previous lemmas his work can be regarded as a
pre-processing phase to a backtrack algorithm. Mackworth (1977) ex-
tended Montanari's work by considering explicitly Backtrack and trying
to cure its maladies by essentially the same approach, namely, pruning
certain values from a variable's domains altogether. Haralick and Elliot
(1980) discussed the problem of finding all solutions and examined
various methods of pruning values. They suggested possible lookahead
mechanisms which are incorporated into the algorithm. Freuder (1982)
considered the problem of finding one solution to a CSP and provided a
procedure to select a good ordering of variables which is performed in a
pre-processing phase of Backtrack. Other works in analysing the average
performance of Backtrack were reported by Nudel (1983), Purdom and
Brown (1985), and Haralick and Elliot (1980) all estimating the size of
the tree exposed by Backtrack while searching for all solutions.

It seems that the only parameter not considered for controlling
Backtrack's performance is the order in which values are assigned to
variables. Part of the reason can be explained by the following theorem.
Theorem 1. Given the objective of finding all solutions and given a fixed
vertical order for the instantiation of variables, the search tree exposed
by Backtrack is invariant to the order of the selection of values. (All
search trees which are identical up to an ordering of branches are
considered the same.)

131



A PROBLEM SIMPLIFICATION APPROACH

Proof Any sequence of values that is explored by Backtrack with
respect to a specific order of variables is consistent under this subset of
variables and it may or. may not lead to a solution. The only way
Backtrack can find out if it is extendable to a solution is by continuing to
explore it. Therefore, Backtrack, which tries to find all solutions, will
have to search this sequence for all orders of assigning values.

Similarly, Backtrack when looking for one solution, in a CSP that has
no solution, will expose the same search tree under any order of value
assignment, given a fixed vertical order.
The above theorem explains why value-selection strategies were not

devised to improve Backtrack's performance for the case of all solutions.
In this paper we address the objective of finding a single solution to CSPS.
Although this problem is easier it can still be very difficult (e.g.
three-colourability) and it appears frequently. Theorem proving, plan-
ning and even vision problems are examples of domains where finding
one solution will normally suffice. For such problems, the order by which
values are selected may have a profound effect on the algorithm's
performance. In the following sections we outline an approach to devise
value selection strategies.

1.4. General approach for automatic advice generation

In this section we show how the approach of solving difficult problems by
consulting easier versions assists the solution of CSPs by Backtrack. The
approach will consist of the three steps, mentioned in the Introduction,
i.e. simplification, solution, and advice generation. Following the model
of the A* algorithm that uses heuristics to guide the selection of the next
node of expansion, we now wish to guide Backtrack in selecting the next
node on its path. We assume that the order of variables is fixed and
therefore the selection of the next node amounts to choosing a promising
value from a set of pending options. Clearly, if the next value can be
guessed correctly, and if a solution exists, the problem will be solved in
linear time with no backtracking. Backtrack builds partial solutions and
extends them as long as it believes that they are part of a whole solution.
When a deadend is recognized it backtracks to a previous variable. The
advice we wish to generate should order the candidates according to the
confidence we have that they can be extended further to a solution.
Such confidence can be obtained by making simplifying assumptions

about the continuing portion of the search graph and estimating the
likelihood that it will contain a solution even when the simplifying
assumptions are removed. It is reasonable to assume that if the
simplifying assumptions are not too severe then the number of solutions
found in the simplified version of the problem would correlate positively
with the number of solutions present in the original version. We
therefore, propose to count the number of solutions in the simplified

132



DECHTER AND PEARL

model and use it as a measure of confidence that options considered will
lead to an overall solution.
To incorporate the advice generation into the Backtrack algorithm,

line 5 should be exchanged with the following:
5a. eliminate all values of Xk+1 which are not consistent with

xi, Xk

5b. /*let xk-1-1,1, • • • Xk+1,t all the remaining candidates for
assignment*
/advise ((xk+1,1, . xk+1,,), (4+1,1, • •,

5c. assign x 1+1,1 to Xk+1

The advise procedure takes the set of consistent values of Xk+i and order
them according to the estimates of the number of possible solutions
stemming from them.
The essence of the remaining sections is to describe the advice-giving

algorithm and provide theoretical grounds for it. In Section 2 we
establish criteria for recognizing classes of easy CSPS and introduce an
efficient method of counting the number of solutions. In Section 3 the
process of simplification of any CSP to an easy relaxed one that is also
`close' to it is addressed and in Section 4 the algorithm is implemented
and the utility of using the advice is evaluated in a synthetic domain of
CSPs.

2. THE ANATOMY OF EASY CSPs

2.1. Introduction and background

In general, a problem is considered easy when its representation permits
a solution in polynomial time. However, since we are dealing mainly with
backtrack algorithms, we will consider a CSP easy if it can be solved by a
backtrack-free procedure. A backtrack-free search is one in which
Backtrack completes without backtracking, thus producing a solution in
time linear with the number of variables.
The discussion of backtrack-free CSPs relies heavily on the concept of

constraint graphs. Freuder (1982) has identified sufficient conditions for a
constraint graph to yield a backtrack-free solution, and has shown, for
example, that tree-like constraint graphs can be made to satisfy these
conditions, with a small amount of pre-processing. Our main purpose
here is to study further classes of constraint graphs lending themselves to
backtrack-free solutions and to devise efficient algorithms for solving
them. Once these classes are identified they can be chosen as targets for a
problem simplification scheme: constraints can be selectively deleted
from the original specification so as to transform the original problem
into a backtrack-free one. As already mentioned, we propose to use the
'number of consistent solutions in the simplified problem' as a figure-of-

133



A PROBLEM SIMPLIFICATION APPROACH

merit to establish priority of value assignments in the backtracking search
of the original problem. We show that this figure of merit can be
computed in a time comparable to that of finding a single solution to an
easy problem.
Definition. An ordered constraint graph is a constraint graph in which the
nodes are linearly ordered to reflect the sequence of variable assignments
executed by the backtrack search algorithm. The width of a node is the
number of arcs that lead from that node to previous nodes, the width of
an ordering is the maximum width of all nodes, and the width of a graph
is the minimum width of all the orderings of that graph (Freuder, 1982).

Figure 4 presents six possible orderings of a constraint graph. The
width of node C in the first ordering (from the left) is 2, while in the
second ordering it is 1. The width of the first ordering is 2, while that of
the second is 1. The width of the constraint graph is, therefore, 1.
Freuder provided an efficient algorithm for finding both the width of a
graph and the ordering corresponding to this width. He further showed
that a constraint graph is a tree if it is of width 1.
Montanan i (1974) and Mackworth and Freuder (1977) have introduced

two kinds of local consistencies among constraints: arc consistency and
path consistency. Their definitions assume that the graph is directed, i.e.
each symmetric constraint is represented by two directed arcs.
Let Rii(x, y) stand for the assertion that (x, y) is permitted by the

explicit constraint Rip
Definition. Directed arc (Xi, XJ) is arc consistent if for any value X E
there is a value y E D1 such that Rii(x, y) (Mackworth, 1977).
Definition. A path of length m through nodes (i0, i,„) is path
consistent if for any value x E Dio and y E Di,,, such that Rid.(x, y), there is
a sequence of values z1 E Di,, z„,_i E Di,„_, such that

z1) and R11i2(z1, z2) and • • y). (7)

Rioim may also be the universal relation, e.g. permitting all possible pairs
(Montanari, 1974).
A constraint graph is arc (path) consistent if each of its directed arcs

(pal) is arc (path) consistent. Achieving 'arc consistency' means deleting
certain values from the domains of certain variables such that the
resultant graph will be arc consistent, while still representing the same
overall set of solutions. To achieve path consistency, certain pairs of
values that were initially allowed by the local constraints should be

cD A c 8 o\ o\ •

As!) C 8 C ?

a Ac/ v Bco
DIRECTION OF
INSTANTIATION

Figure 4.

134 z



DECHTER AND PEARL

disallowed. Montanan i and Mackworth have proposed polynomial-time
algorithms for achieving arc consistency and path consistency. In Mack-
worth and Freuder (1984) it is shown that arc consistency can be
achieved in o(ek3) while path consistency can be achieved in o(n3k5),
where n is the number of variables, k is the number of possible values,
and e is the number of edges.
The following theorem is due to Freuder.

Theorem 2.
(a) If the constraint graph has width 1 (i.e. the constraint graph is a

tree) and if it is arc consistent then it admits backtrack-free solutions.
(b) If the width of the constraint graph is 2 and it is also path

consistent then it admits backtrack-free solutions.
The above theorem suggests that tree-like CSPS (cm's whose constraint

graph are trees) can be solved by first achieving arc consistency and then
instantiating the variables in an order which makes the graph have width
1. Since this backtrack-free instantiation takes 0(ek) steps, and on trees
0(nk), the whole problem can be solved in 0(nk3) and therefore
tree-like CSPS are easy. The test for this property is also easily verified: to
check whether or not a given graph is a tree can be done by a regular
0(112) spanning tree algorithm.
The second part of the theorem tempts us to conclude that a width-2

constraint graph should admit a backtrack-free solution after passing
through a path-consistency algorithm. In this case, however, the path-
consistency algorithm may add arcs to the graph and increase its width
beyond 2. This often happens when the algorithm deletes value-pairs
from a pair of variables that were initially related by the universal
constraint (having no connecting arc between them), and it is often the
case that passage through a path-consistency algorithm renders the
constraint graph complete. It may happen, therefore, that no advantage
could be taken of the fact that a CSP possesses a width-2 constraint graph
if it is not already path consistent. We are not even sure whether width-2
suffices to preclude NP-completeness.
In the following section we give weaker definitions of arc and path

consistency which are also sufficient for guaranteeing backtrack-free
solutions but have two advantages over those defined by Montanani
(1974) and Mackworth (1977):
(a) they can be achieved more efficiently; and
(b) they add fewer arcs to the constraint graph, thus preserving the

graph width in a larger class of problems.

2.2. Algorithms for achieving directional consistency

The case of Width-1. In constraint graphs which are trees, full arc
consistency is more than what is actually required for enabling backtrack-
free solutions. For example, if the constraint graph in Figure 5 is ordered

135



A PROBLEM SIMPLIFICATION APPROACH

X2

Xi

Figure 5.

by (X1, X2, X3, X4), nothing is gained by making the directed arc (X3,
X1) consistent.
To ensure backtrack-free assignment, we need only make sure that any

value assigned to variable X1 will have at least one consistent value in D3.
This can be achieved by making only the directed arc (X1, X3) consistent,
regardless of whether (X3, X1) is consistent or not. We, therefore, see
that arc consistency is required only with respect to a single direction, the
one specified by the order in which Backtrack will later choose variables
for instantiations. This motivates the following definitions.
Definition. Given an order d on the constraint graph R, we say that R is
d-arc-consistent if all the directed edges which follow the order d are arc
consistent.
Theorem 2. Let d be a width-1 order of a constraint tree T. If T is
d-arc-consistent then the backtrack search along the order d is backtrack-
free.
Proof. Suppose that X1, X2,. Xk were already instantiated. The
variable X k+1 is connected to at most one previous variable (follows from
the width-1 property), say Xi, which was assigned the value xi. Since the
directed arc (Xi, Xk+1) is along the order d, its arc consistency implies
the existence of a value xk+1 such that the pair (xi, xk+i) is permitted by
the constraint Ri(k+i). Thus, the assignment of xk+i is consistent with all
previous assignments.
An algorithm for achieving directional arc consistency for any ordered

constraint graph is given next (The order d = (X1, X2,. X„) is
assumed.)
DAc(D-ARC-CONSISTENCY)

1. begin
2. For i = n to 1 by —1 do
3. For each arc (Xi, Xi); j <i do
4. REvisE(Xi, Xi)
5. end
6. end
7. end.

The algorithm REVISE(X1 Xi), given in Mackworth (1977), deletes values
from the domain Di until the directed arc (Xi, Xi) is arc consistent.

136



DECHTER AND PEARL

REVISE(Xi, Xi)

1. begin
2. For each x E Di do

3. if there is no value y E Di such that 121,(x, y) then

4. delete x from Di

5. end
6. end.
To prove that the algorithm achieves d-arc-consistency we have to

show that upon termination, any arc (Xi, Xi) along d(j <i), is arc

consistent. The algorithm revises each d-directed arc once. It remains to

be shown that the consistency of an already processed arc is not violated

by the processing of coming arcs. Let arc (XJ, Xi) (j <i) be an arc just

processed by REvisE(XJ, Xi). To destroy the consistency of (XJ, Xi) some

values should be deleted from the domain of Xi during the continuation

of the algorithm. However, according to the order by which REVISE is

performed from this point on, only lower indexed variables may have

their set of values updated. Therefore, once a directed arc is made

arc-consistent its consistency will not be violated.

The algorithm AC-3 (Mackworth, 1977) that achieves full arc-

consistency is given for reference:

AC-3

1. begin
2. Q < — {Xi, JO I (Xi, E arcs, i 0j)

3. while Q is not empty do
select and delete arc (Xk, X„,) from Q

5. REvisE(Xk, X.„)

6. if REvisE(Xk, X„,) caused any change then

7. Q < —Q U {(Xi, Xk) I (Xi, Xk) E arcs, i * k, m}

7. end
8. end.

The complexity of AC-3, achieving full arc consistency, is 0(ek3). By

comparison, the directional arc-consistency algorithm takes ek2 steps

since the REVISE algorithm, taking Ic2 tests, is applied to every arc exactly

once. It is also optimal, because even to verify directional arc-consistency

each arc should be inspected once, and that takes lc' tests. Note that

when the constraint graph is a tree, the complexity of the directional

arc-consistency algorithm is 0(nk2).

Theorem 4. A tree-like CSP can be solved in 0(nk2) steps and this is

optimal.
Proof. Given that we know that the constraint graph is a tree, finding an

order that will render it of width-1 takes 0(n) steps. A width-1 tree-csp

can be made d-arc-consistent in 0(ne) steps, using the DAC algorithm.

The backtrack-free solution on the resultant tree is found in 0(nk).

Finding a solution to tree-like CSPs takes, therefore, 0(nk)+ 0(nk2)+

137



A PROBLEM SIMPLIFICATION APPROACH

0(n) = 0(n0). This complexity is also optimal since any algorithm for
solving a tree-like problem must examine each constraint at least once,
and each such examination may take k2 steps in the worst case (especially
when no solution exists and the constraints permit very few pairs of
values).

Interestingly, if we apply DAC with respect to order d and then DAC with
respect to the reverse order we get a full arc consistency for trees. We
can, therefore, achieve full arc consistency on trees in 0(nk2). Algorithm
AC-3, on the other hand, can be shown to have a worst case performance
on trees of 0(nk3). Given, however, that the basic operation on
constraints is REVISE, we shall next show that (full) arc consistency on
general graphs cannot be achieved in less than ek3 steps.
Theorem 5. A lower bound for achieving (full) arc consistency on graphs,
using REVISE as the basic operation, is 52(ek3).
Proof. We present a problem instance that cannot be made arc consis-
tent in less than ele. The problem, given in Figure 6, has n variables (in
the figure just three) connected in a cycle. We will describe only the
three-element network. The example can be easily extended to any
number of variables. Variable X has k values, variables Y, and Z, have
k +1 values each. The constraint from X to Y maps values in X to values
in Y which are incremented by 1. The constraints between Y and Z and
between Z and X are both the equality mapping, except that k +1 of Z is
mapped to k of X. The inconsistent arc is (Y, X) since the value 0 of Y
has no pair in X. Removing 0 from Dy makes the arc (Z, Y) inconsistent.
This arc is examined and 0 is deleted, which make the arc (X, Z)
inconsistent, and so on. Since we assume that any examination of an arc
is an 0(0) operation, and since only one value is deleted from an arc
while it is examined, each arc will be examined k times (there is no
solution), and the complexity in this case is S2(nk3).

Returning to our primary aim of studying easy problems, we now show
how advice can be generated for solving a difficult cu using a relaxed
tree-like approximation. Suppose that we want to solve an n-variables CSP
using Backtrack with X1, X2, Xn as the order of instantiation. Let Xi
be the variable to instantiate next, with xil, x12,. xik the possible
candidate values. To minimize backtracking we should first try values

(a)

Figure 6.

1 0, 1, 2 ..... k,1 -x
RXY ' , \ \ \ N. 
RYZ = 

,
{0,1,2 ..... k,k+1I =Y

to.
I I 

f 0, 1, 2 ..... k, k + 1 I = Z

RZX " I I I
10 1  2  1{. X

138



DECHTER AND PEARL

which are likely to lead to a consistent solution but, since this likelihood
is not known in advance, we may estimate it by counting the number of
consistent solutions that each candidate admits in some relaxed problem.
We generate a relaxed tree-like problem by deleting some of the explicit
constraints given, then count the number of consistent solutions contain-
ing each of the possible k assignments, and finally use these counts as a
figure of merit for scheduling the various assignments. In the following
we show how the counting of consistent solutions can be imbedded within
the d-arc-consistency algorithm, DAC, on trees.
Any width-1 order, d, on a constraint tree determines a directed tree in

which a parent always precedes its children in d (arcs are directed from
the parent to its children). Let N(x1) stand for the number of solutions in
the subtree rooted at Xi, consistent with the assignment of _zit to Xi. It can
be shown that N( • ) satisfy the following recurrence:

N(xj, ) = n E N(ra). (8)
{c ix, is a child of IC,) fxd€1,,I xd))

From this recurrence it is clear that the computation of N(x1) may follow
the exact same steps as in DAC; simultaneously with testing that a given
value x1„ is consistent with each of its children nodes, we simply transfer
from each child of Xi to xi, the sum total of the counts computed for the
child's values that are consistent with xft. The overall value of N(xi) will
be computed later on by multiplying together the summations obtained
from each of the children. Thus, counting the number of solutions in a
tree with n variables takes 0(nk2), the same as establishing directional
arc consistency. Recently Mohr and Henderson (1986) have reported an
(01k2) algorithm using a more elaborate book-keeping data structure.
The case of width-2. Order information can also facilitate backtrack-free
search on width-2 problems by making path-consistency algorithms
directional.
Montanan i had shown that if a network of constraints is consistent with

respect to all paths of length 2 (in the complete network) then it is path
consistent. Similarly we will show that directional path consistency with
respect to length-2 paths is sufficient to obtain a backtrack-free search on
a width-2 problems.
Definition. A constraint graph, R, ordered with respect to d =
(X1, X2, . Xn), is d-path consistent if for every pair of values (x, y),
x E Xi and y E Xi such that R4(x, y) and i<j, there exists a value z E X k,
k> j such that Rik(x, z) and Rk(z, y) for every k >1, j.
Theorem 6. Let d be a width-2 order of a constraint graph. If R is
directional arc consistent and path consistent with respect to d then it is
backtrack-free.
Proof. To ensure that a width-2 ordered constraint graph will be
backtrack-free it is required that the next variable to be instantiated will

139



A PROBLEM SIMPLIFICATION APPROACH

have values that are consistent with previous chosen values. Suppose that
X1, X2, . Xi, were already instantiated. The variable Xk+i is con-
nected to at most two previous variables (follows from the width-2
property). If it is connected to Xi and Xi,, 1,1 <k then directional path
consistency implies that for any assignment of values to Xi, Xj there exists
a consistent assignment for Xk+i. If Xk+1 is connected to one previous
variable, then directional arc consistency ensures the existence of a
consistent assignment.
An algorithm for achieving directional path consistency on any

ordered graph will have to manage not only the changes made to the
constraints but also the changes made to the graph, i.e. the arcs which
are added to it. To describe the algorithm we use the matrix repre-
sentation for constraints. The matrix Ril whose off-diagonal values are 0,
represents the set of values permitted for variable Xi. The algorithm is
described using the operations of intersection and composition. The
intersection Rij of 14 and R7j is written: Rif =14 & kip
Given a network of constraints R=(V,E) and an order d=

(X1, X2,. X,,,), we next describe an algorithm which achieves path
consistency with respect to this order.
Dcp-d-path-consistency

1. begin
2. Y°=R
3. for k = n to 1 by —1 do

(a) Vi k connected to k do
n= r, & Yik • Ykk • Ykil* this is REVISE(i, k)

(b)Vi, j -.5k such that (Xi, Xk), (Xi,, Xk) E E do
= & Yik • Ykk • Ykj

4. E < U(X,Xi)
5. end
6. end.

Step 3(a) is the equivalent of the REVISE(i, k) procedure, and it performs
the directional arc consistency. Step 3(b) updates the constraints between
pairs of variables transmitted by a third variable which is higher in the
order d. If Xi, Xj, i, j <k are not connected to Xk then the relation
between the first two variables is not affected by Xk at all. If only one
variable, Xi, is connected to Xk, the effect of Xk on the constraint
(Xi, Xj) will be computed by step 3(a) of the algorithm. The only time a
variable Xk affects the constraints between pairs of earlier variables is
when it is connected to both. It is in this case only that a new arc may be
added to the graph.
The complexity of the DCP algorithm is 0(n3k3). For variable Xi the

number of times the inner loop, 3(b), is executed is at most 0((i — 1)2)
(the number of different pairs less than i), and each step is of order k3.
The computation of loop 3(a) is completely dominated by the computa-

140



X

X4

X3

X2

Xi

Figure 7.

DPC

DECHTER AND PEARL

tion of 3(b), and can be ignored. Therefore, the overall complexity is

E(i - i)2k3 = 0(n3k3) (9)
1=2

Applying directional path consistency to a width-2 graph may increase
its width and therefore, does not guarantee backtrack-free solutions.
Consequently it is useful to define the following subclass of width-2 CSP
problems.
Definition. A constraint graph is regular width-2 if there exists a width-2
ordering of the graph which remains width-2 after applying d-path-
consistency, DPC.
A ring constitutes an example of a regular-width-2. Figure 7 shows an

ordering of a ring's nodes and the graph resulting from applying the DPC
algorithm to the ring. Both graphs are of width-2.
Theorem 7. A regular width-2 CSP can be solved in 0(n3k3).
Proof. Regular width-2 problem can be solved by first applying the DPC
algorithm and then performing a backtrack-free search on the resulting
graph. The first takes 0(n3k3) steps and the second 0(ek) steps.
A nice feature of regular width-2 CSPs is that they can be easily

recognized and therefore can also be used as targets for simplification.
Arnborg (1985) describes a linear time algorithm for recognizing width-2
graphs and generating the corresponding ordering (see also Bertele,
1972). For example, a tree of simple rings is easily recognizable as regular
width-2 (see Figure 8).

la)

Figure 8.

AD t

THE ORDERED GRAPH

(c)



A PROBLEM SIMPLIFICATION APPROACH

2.3. Summary and conclusions

Of the three main steps involved in the process of generating advice—
simplification, solution, and advice generation—we concentrated in this
section on the following:

1. The simplification part: we have devised criteria for recognizing
easy problems based on their underlying constraint graphs. The introduc-
tion of directionality into the notions of arc and path consistency enabled
us to extend the class of recognizable easy problems beyond trees, to
include regular width-2 problems.

2. The solution part: using directionality we were able to devise
improved algorithms for solving simplified problems and to demonstrate
their optimality. In particular, it is shown that tree-structured problems
can be solved in 0(nk2) steps, and regular width-2 problems in 0(n3k3)
steps.

3. The advice generation part: we have demonstrated a simple method
of extracting advice from easy problems to help Backtrack decide
between pending options of value assignments. The method involves
approximating the remaining part of a constraint-satisfaction task by a
tree-structure problem, and counting the number of solutions consistent
with each pending assignment. These counts can be obtained efficiently
and can be used as figures-of-merit to rate the promise offered by each
option.

3. THE SIMPLIFICATION PROCESS

The previous section suggests that a tree constraint-graph, being as-
sociated with an easy CSP, can be made a target to the simplification
process from which advice will be extracted. We therefore discuss here
the issues involved in approximating a network of binary constraints by a
tree of constraints. We seek a good approximation since the closeness of
the approximation tree to the original network will determine the
reliability of the advice generated.

If the network R has an equivalent tree representation we would
obviously like to recognize it and find such a representation. This,
however may not be explicit in the constraint network; a network may
contain many redundant constraints which, if eliminated, still represent
the same overall relation. For example, any one of the arcs in the
network of Figure 9 can be eliminated producing a tree-structured

Figure 9.

142



X (0,1)

(0,1) (0,1)
Y Z

R1

Figure 10.

DECHTER AND PEARL

/1 (0,1)
z

R2

constraint graph representing the same relation. Note that in this figure,
and throughout this section, there are multiple arcs between variables
which connect values. Two values are connected if they are permitted by
the constraint. Another example is given in Figure 10 in which two
three-node networks, R1 and R2, are displayed. These two networks are
equivalent, because they both represent the equality relation p =
{(0, 0, 0), (1, 1, 1)) and, unlike that of Figure 9, both are maximal, i.e.
the addition of any pair of values to any one of the constraints (relaxing
any specific constraint) will result in a network representing a larger
relation. Nevertheless, R1 can be transformed into R2 by simultaneously
allowing the pair of values (1, 0) between (Z, X) and disallowing the pair
(0, 1) between (X, Y). The question raised by this example is: what
networks have a tree representation and how is the transformation into a
tree to be performed.
The two examples given display two levels of operation to be

considered in the process of transforming a network into a tree. The first
is a macro operation involving the deletion of whole arcs (i.e. total
elimination of constraints between a pair of variables) while the second
micro operation, merely modifies the arcs by addition and deleting pairs
of values. In our approach we will consider only macro operations of arc
deletions; the use of micro transformations introduces a higher level of
difficulty to which we will not relate at this point. Considering only arc
deletions, a network R can be transformed into an equivalent tree only if
some of the arcs are redundant, i.e. they represent constraints that can be
inferred from others. This immediately raises the question of testing
whether a given constraint is implied by others.
The question is the inverse of that posed by Montanan (1974) who

claimed that the central problem in CSPs is the transformation of the
original network R into its minimal representation, M, which is the most
redundant network that represents the same relation as R. Our interest
here is the opposite, transforming R into one of its least explicit
equivalent networks.
Definition

1. A network R is maximal if there is no network R' on the same
domains, such that R c R' and R R'.

143



A PROBLEM SIMPLIFICATION APPROACH

2. A network R is arc maximal if any arc deletion results in a network
representing a larger relation.
A maximal network is arc maximal but not necessarily vice versa.

Lemma 3. An arc consistent constraint tree is maximal.
Proof. In an arc consistent tree, for any permitted pair of values there is
an n-tuple in the relation which contains this pair. Disallowing this pair
will eliminate such a tuple from the relation, thus making the relation
smaller. In other words any arc consistent constraint tree is a minimal
network for that relation.
An immediate conclusion is that an arc-consistent tree network is arc

maximal. In general a deletion of an arc from a tree constraint may result
in a larger relation even when it is not arc consistent. Let Ti and T2 be the
two disconnected subtrees generated from deleting arc (A, B) and let p
and /32 be the projection of p on the variables in Ti and T2, respectively.
The relation obtained after deleting the arc (A, B) from T is the product
of pi and p2 (i.e. any n-tuple that is the concatenation of a tuple in pi
and a tuple in 192. Therefore if there is a tuple in pi with A = a and a
tuple in p2 with B = b then the relation resulting from deleting arc (A, B)
permits the pair (a, b).
In most cases a CSP will not be arc redundant, because if it is posed by

humans its specification has already passed through some process of
redundancy filtering, and therefore arc deletion will almost always
generate larger relations. The third question on which we will focus,
therefore, is: given a network of constraints, R, what is the spanning
tree, T, that will best approximate R?
To discuss the quality of approximations, the notion of closeness of

relations must be first agreed on. Let p be the relation represented by R
and pa the relation represented by a relaxed network Ra. p pa. An
intuitively appealing measure for the closeness of R to Ra may be:

M(R, Ra)= !Pi (10)
IPal

where Ip J is the number of n-tuples in p. This measure satisfies:
(a) M(P, P) = 1;
(b) if p cPa C— Pb then 1 a- M(R, Ra). M(R,Rb)-
M is a global property of two relations and the task of finding the

spanning tree which yields the lowest M is very complex. Instead we
propose a greedy approach: at each step the least 'valuable' arc, which
leaves the network connected, is deleted, namely, the arc deleted that
keeps the resulting network closest to the original one. To pursue this
approach we need to define a measure of constraint strength, called
weight, for each arc, that will estimate the contribution of that arc to the
overall relation. Let R be a network of constraints and R' be the network

144



DECHTER AND PEARL

after the arc (X, Y) was eliminated, i.e. the constraint between X and Y
becomes the universal constraint. Let 1 and 1' be the size of the relation
represented by R and R', respectively. n' (xi, yi) is the number of tuples
in the relation represented by R' having X = xi Y = yi, R'(X, Y) is the
constraint induced by R' on the pair (X, Y), r(X, Y) is the local
constraint given between X and Y in R.
The following is satisfied

1=1'— n' (xi, yi)
(x„y,)eR(X, Y)—r(X,

therefore

4=1— n' (xi, OP . (12)
1 (x„ yi)ER(X, Y)—r(X,

Since we have no way of knowing the quantities n'(x, y) and the
structure of the induced constraint R'(X, Y), we will estimate them both
by a constant, c, and R', respectively. We get:

77=1--ic7irv— r(X, . (13)

The only quantity we can actually examine is R(X, Y); therefore to
maximize ///' the above formula suggests choosing the constraint r(X, Y)
with the most number of allowed value pairs. Our first measure of
constraint weight is, therefore, defined by:

mi(X, Y) = Ir(X, Y)1. (14)

For instance, the weight of the universal constraint is mi(X, Y) = k2, and
if r(X, Y)= (11 then the weight becomes mi(X, Y) = 0.
In what follows we develop another measure of constraint strength by

adopting notions from probability and information theory and by showing
that constraint problems can be partially mapped into problems of finding
tree-structure joint probability distributions (Chow and Liu, 1968).

3.1. n-ary relations and probability distributions

Let P(X) be a joint probability distribution of n discrete variables X1,
X2,. . A product approximation of P(2C) is defined to be a product
of several lower-order distributions (also called marginal distributions) in
such a way that the product is a probability extension of these
lower-order distributions. A particular class of product approximation
considers only second-order components where each variable is condi-
tioned upon at most one variable. The relationships between the
variables can be therefore represented by a tree. Given a directed
spanning tree of the variables (the direction is from sons to parents) as in

145



A PROBLEM SIMPLIFICATION APPROACH

P(X) P(X1)•INX2 I Xi) • 14 X3 I X2) • P(X4 I X2) • P(X5 I X2) • P(X6 I X5)

Figure 11.

Figure 11, the distribution function associated with it is given by the
product:

P(X)= P(xi lxp(o) (15)
x=(x1,x2 x.)

P(i) is the parent index of variable i. When P(xo I x (0)) = P(x0), 0 denotes
the root of the tree. Chow and Liu (1968) had shown that if the measure
of distance between two probability distributions P and Pa is given by:

l(P, PO= E P(X) log P(X) (16)
x Pa(X)

then the closest tree-dependence distribution to P is the one that
corresponds to the maximum spanning tree when the weight of each arc
is /(X, X1). I(X„ Xi) is Shanon's mutual information between X, and Xi,
defined by:

p(x„x
I(X„ )0= E P(x„ zi)log(

P P 

(j) 

(xi)xi)/ 
(17)

\ 

l(P, Pa) can be interpreted as the difference of the information contained
in P(X) and that contained in Pa(X) about P(X).
Chow's results are remarkable in that a global measure of closeness can

be maximized by attending to local measures on individual arcs. We
therefore, attempt to adopt Chow's results to our need. Mapping
probability distributions to constraints relations, we say that a relation p
is associated with a distribution function Pp if:

, 0 if (xi, x2, • • • x.) P
Pp(xi, X2, • • •1 .rn)

11 1p1 otherwise.
(18)

Let p, be the relation represented by a constraint tree, t, and let Pp and
Pp, be the distributions associated with relations p and relation p„ having
sizes of 1 and 1„ respectively. The 'distance' between the two
distributions:

-, log 7= log -,-
Xep 6

146

(19)



DECHTER AND PEARL

is a monotone function of /I/ whose inverse was already proposed as a
measure of closeness between two relations (where one contains the
other). Accordingly, finding the closest tree dependence distribution Pp,
to Pp will result in the closest approximation of a tree relation p, to p.
Equivalently, in order to minimize 411 we need to find the maximum
spanning tree with respect to the measure /(X, X1). From the given
mapping between relations and distributions (equation (18)) we get that:

n xi)
P(xi, 

(xi, 

1 
(20)

P(xi)=
n(xi)

(21)

where n (xi, xi) is the number of tuples in p having X= xi and Xi=
and n(xi) is the number of tuples in p with Xi = xi. Substituting (20) and
(21) in (18) we get

1(X,, )=
n(xi, x1) 

log I 
n(xi, xi) 

X; 2," (22)
1 n(x (x1)x,,x,

1 n(xi, xi)
= log / + E n(x , xj)log 

n(x1)n(x1) 
(23)

consequently the appropriate measure of arc weight is:

n()
m(Xi, XJ)= E n(xi, x)log xi, xj

n(xi)n(xj). 
(24)

The question now is how to obtain the quantities n(xj), n(xi, xi)
needed for computing m. To find them accurately, we need to inspect the
list of tuples permitted by the global relation which, of course is
unavailable. In the case of probability distributions the marginal prob-
abilities P(xi), and P(xi, xi) are estimated by sampling vectors from the
distributions and calculating the appropriate sample frequencies. This
cannot be done in our case since finding even one tuple that satisfies the
network solves the entire problem. All that we have available is the
network of constraints and, therefore, we must approximate the weight
m(X, Y) by examining only properties of the arc (X, Y). This leads to
approximations:

(xi, x1) = 
1 (xi, Xj) E r(X, Xi)f

{0 otherwise
(25)

(x = N x(x i). (26)

Where N i(xi) is the number of pairs in the constraint r(Xi, 2(1) with

147



A PROBLEM SIMPLIFICATION APPROACH

= xi. Substituting (25) and (26) in (24) we get:

1 
m2(Xi, Xi) = E log

(r,,x,)er(x,x,) (xi)fi (xi)

= — E (log it(xi)+ log 11(x1))

= - E ti(xi)log — E ft (x ;)lo g 11(x1).
xi Xi

(27)

(28)

(29)

The behavior of this measure can be illustrated in some special cases:
(a) if the constraint r(X, Y) is the universal constraint (and assuming

k values for each variable) then m2(u(X, Y)) = —2E (k — 1)log k =
—2k(k — 1)log k;
(b) if r(X, Y) is the empty constraint 413(X, Y) then we define
m2(413(X, Y)) = 0;
(c) if any value of Xi is allowed to go with exactly r values of X; then

m2= —2k • r log r. If r =1 we get m2= 0;
(d) when only one value in one variable is permitted with all the values

of the other m2 = —k log k. .
We see that this measure considers not only the number of the pairs

allowed but also their distribution over the k2 slots available. For a
uniform constraint—like case (c)—it can be seen that

m2 = —2N • log r (30)

when N is the size of the constraint.
We next give an example showing the behaviour of the accurate

measure of weight, m, compared with their estimates, m2.
Consider the relation between three binary variables, X, Y, Z, given

by:

p = 1(1,1,1), (1, 0, 0), (1, 1, 0), (0, 0, 0)} (31)

where the order of the variables is (X, Y, Z). A network representing
this relation is given in Figure 12 where the nodes are the variables and
the lines correspond to permitted pair of values between pairs of
variables. The accurate measures of n(xi, x;) and n(xi) for the pair (X, Y)
are given by: n(0, 0) = 1, n(0, 1) = 0, n(1, 0) = 1, n(1, 1) = 2, n(X = 0) =

(01)

Figure 12.

148



DECHTER AND PEARL

1, n(X = 1) = 3. Therefore, substituting in (24) we get:

1 1 2 1
m(X, Y) = log + log + 2 log =

log 108

Similarly, for the two other pairs, we obtain:

4
m (X, Z)= log

m(Y, Z)= log 1018 .

This suggests that the relation may be best approximated by a tree
consisting of the arcs (X, Y) and (Y, Z). Indeed, the elimination of the
arc (X, Z) will not change the relations at all whereas it is not possible to
express p by removing either (Y, Z) or (X, Z) only.
By comparison, the network R and (26) give the weight estimates:

m2(X, Y) = —4, m2(Y, Z)= —4, m2(X, Z)= —4.

Which, in this case, fail to distinguish between the various constraints.
In conclusion, we suggest generating tree-approximations for networks

using the maximum spanning tree algorithm. Two measures for constraint
strength, to be used by the algorithm, are proposed and justified.

4. THE UTILITY OF THE ADVICE-GENERATION SCHEME

We compare here the performance of Advised Backtrack (abbreviated
ABT) with that of Regular Backtrack (RBT) analytically, via worst-case
analysis, and experimentally, on a random constraint problem.

4.1. Worst-case analysis

An upper bound is derived for the number of consistency checks
performed by the algorithms as a function of the problem's parameters
and the number of backtracks performed. A consistency check occurs
each time the algorithm checks to verify whether or not a pair of values is
consistent with respect to the corresponding constraint.
Let #BA and #BR be the number of backtracks, and N(ABT) and

N(RBT) the number of consistency checks performed by ABT and RBT,
respectively. The problem's parameters are n, the number of variables,
and k, the number of values for each variable. Parameters associated
with the constraint graph are lEj , the number of arcs, and deg, the
maximum degree of variables in the graph.
The number of backtracks performed by an algorithm is equal to the

number of leaves in the search tree which it explicates. We assume that

number of nodes expanded = c • #B

149



A PROBLEM SIMPLIFICATION APPROACH

approximately holds for some constant c. (This truly holds for uniform
trees where c is the branching factor.) Therefore we use the number of
backtracks as a surrogate for the number of nodes expanded. Let #CA
and # CR be the maximum number of consistency checks performed at
each node for the ABT and RBT, respectively. We have:

s #B • #C. (32)

Considering RBT first, the number of consistency checks performed at
the ith node in the order of instantiation is less then k • deg(i). That is,
each of this variable's values should be checked against the previous
assigned values for variables which are connected to it. We get:

N(RBT) k • deg • #BR. (33)

The ABT algorithm performs all of its consistency checks within the advice
generation. For the ith variable, a tree of size n — i is generated. The
consistency checks performed on this tree occur in two phases. In the first
phases, for each variable in the tree, the values which are consistent with
the already assigned values are determined. The consistency checks for a
variable v in the tree take k • w(v), where w(v) is the number of
variables connected to v which were already instantiated. Therefore, for
all variables in the tree

k • E w(v)tc k • 1E1. (34)
vetree

The second phase counts the number of solutions. We already showed
that the counting takes no more than (n — 1)k2 which is bounded by nk2.
We get

N(ABT) (k • 1E1+ ne) • #BA (35)

We want now to determine the ratio between #BA and #BR for which

it will be worthwhile to use Advised Backtrack instead of Regular
Backtrack. To do the comparison we will treat the upper bounds as tight

estimates while being aware of the possible error. Even though

N(ABT) N(RBT) (36)

is not implied by

(k • 1E1+ nk2) • #BA k • deg • #BR, (37)

we take (37) as an indicator for the utility of ABT. From (37) we get

#BR, 1E1 nk

#BA — deg deg'

150

(38)



DECHTER AND PEARL

and, using

d
1E1

(39)
eg

(38) will hold if

#BR nk
(40)

# BA deg

Therefore, ABT is expected to result in a reduction in the number of
consistency checks only if it reduces the number of backtracks by a factor
of [n+(nkldeg)]. Thus, the potential of the proposed method is greater
in problems where the number of backtracks is exponential in the
problem size.

4.2. Experimental results

The random CSP instances were generated using a constraint-satisfaction
problem generator. The CSP generator accepts four parameters: the
number of variables n; the number of values for each variable k; the
probability pi of having a constraint (an arc) between any pair of
variables; and the probability p2 that a constraint allows a given pair of
values. As indicated above, it is necessary to keep track of two
performance measures; the number of backtrackings (#B) and the
number of consistency checks performed. The number of consistency
checks gives an indication whether or not the saving in the number of
backtracking does not cost too much. What we expect to see is that the
more difficult the problems are, the larger are the benefits resulting from
using Advised Backtrack.
In our experiments we use m1, the size of the constraint, as the weight

for finding the minimal spanning tree in advice. Using the alternative
weight, m2, is not expected to improve the results for two reasons. First,
the problems generated were quite homogeneous and we have shown
that for such problems both weights are the same. Second, the results we
get are so good in terms of number of backtrackings that we cannot
improve them much by changing the weights.
Two classes of problems were selected. The first with 10 variables and

five values, generated with p1 =P2 = 0.5, and the second with 15 variables
and five values, generated with Pi = 0.5 and p2 = 0.6. Ten problems from
each class were generated and solved by both ABT and RBT. The order in
which the variables were instantiated was determined, for both algor-
ithms, by the structure of the constraint graph. Namely, variables were
selected in decreasing order of their degrees (heuristically corresponding
to the notion of width developed by Freuder, 1982). The order of value
selection is determined by the advice mechanism in ABT. In RBT, the order

151



A PROBLEM SIMPLIFICATION APPROACH

8

7

5

#BR = #BA

•

3 •• • • •

2 •• • 00 • CO 0 0 0 CD

GOO 0

Ni •
25

Figure 13.

0 0

Ise
50 75 100

"R

• • ••
co 

125 150 175

of value selection was chosen at random. Therefore, while ABT solved
each problem instance just once, RBT was used to solve each problem
several (five) times to account for the effect of value selection order.
When a problem has no solution, the number of backtrackings and
consistency checks in IT is not dependent on the order of value
selection, and in these cases the problem was solved only once by RBT.

Figures 13 and 14 display the results of the comparison for both classes

#
 C
O
N
S
I
S
T
E
N
C
Y
 C
H
E
C
K
S
 F
O
R
 A
B
T
 

2500

2000

1500

1000

500

Figure 14.

250 500 1000 1500 2000 2500 3000 3500 4000

# CONSISTENCY CHECKS FOR RBT

152

4500



DECHTER AND PEARL

of problems. In Figure 13, the 'horizontal axis gives the number of
backtrackings that were performed by RBT for each problem instance and

the vertical axis gives the number of backtrackings performed by ABT.

The points that are indicated by filled circles correspond to problem

instances from the first class while empty circles correspond to the second

class of problems. We observe an impressive saving in #B when advice is

used for all instances, especially for the second class in which the

problems are larger. Figure 14 uses the same method to compare the

number of consistency checks. Here, we observe that in many instances

the number of consistency checks in ABT is larger than in RBT, indicating

that the extra effort in 'advising' backtrack was not worthwhile in those
cases.
These results are consistent with the theoretical development of the

preceding subsection. If we substitute the parameters of the first class of
problems in (40) we get that #BA should be smaller than #BR by at least

a factor of 20 (25 for the second class of problems) for us to expect an
improvement in the performance. Many of the problems however, were
not hard enough (in terms of the number of backtrackings required by
RBT) to achieve these levels.
In Figure 15 we give the comparison between the two algorithms only

for problems that turned out to be difficult. We display the number of

consistency checks of problems from both classes in the cases where the

number of backtrackings in RBT were at least 70. We see that the majority

of these problems were solved more efficiently with ABT than with RBT.

#
 C
O
N
S
I
S
T
E
N
C
Y
 C
H
E
C
K
S
 F
O
R
 A
B
T
 

3600
3500

3000

2500

2000

1500

1000

500
500 1000 1500 2000 2500 3000 3500 4000

Figure 15.

# CONSISTENCY CHECKS FOR RBI

153

4500 5000



A PROBLEM SIMPLIFICATION APPROACH

Experiments were also performed on the n-queen problem for n

between 6 and 15 and on the three-colourability problem on a set of

random graphs. In all cases the number of backtrackings of ABT was

smaller than RBT, but the problems were not difficult enough to obtain a

net reduction in the number of consistency checks.
Experiments related to the ones reported here were performed by

Haralick and Elliot (1980). The forward-checking lookahead mechanism,

reported to exhibit the best performance considering the number of

consistency checks, can be viewed as an automatically generated advice

in the sense discussed here. However, since Haralick and Elliot are
interested in finding all solutions to CSP, and we deal with finding just one
solution, the results cannot be directly related.
As a conclusion, advice should be invoked on problems which are hard

for RBT. Therefore one needs a way of recognizing that a problem
instance is difficult. For example, Knuth (1975) has suggested a simple
sampling technique that requires very little computation to estimate the
size of the search tree. These estimates can be used in conjunction with
parametrized advice that adapts itself according to the expected size of
the tree. Namely, smaller problems may benefit from a weaker advice (or

no advice at all) which may not be as good but is more efficient.

REFERENCES

Amborg, S. (1985) Efficient algorithms for combinatorial problems on graphs with bounded

decomposability—a survey. BIT 25, 2-23.

Bertele, U. and Brioschi, F. (1972). Nonserial dynamic programming. Academic Press,

New York.
Carbonell, J. G. (1983) Learning by analogy: formulation and generating plan from past

experience. In Machine learning (eds Carbonell, J., Michalski, R. S., and Mitchell, T.)

Tioga, Palo Alto.
Chow, C. K. and Liu, C. N. (1968) Approximating discrete probability distributions with

dependence trees. IEEE Transactions on Information Theory 14(3), 462-467.

Even, S. (1979) Graph algorithms. Computer Science Press, Maryland.

Freuder, E. C. (1982) A sufficient condition of backtrack-free search. J. Association for

Computer Machinery 29, 24-32.
Gaschnig, J. (1979) A problem similarity approach to devising heuristics: first results. Proc.

6th International Joint Conf on Artificial Intelligence, Tokyo, pp. 301-307.

Guida, G. and Somalvico, M. (1979) A method for computing heuristics in problem

solving. Information Sciences 19, 251-259.
Haralick, R. M. and Elliot, G. L. (1980) Increasing tree search efficiency for constraint

satisfaction problems. Al Jouma114, 263-313.
Knuth, D. E. (1975) Estimating the efficiency of backtrack programs. Mathematics of

Computation 29, 121-136.
Mackworth, A. K. (1977) Consistency in networks of relations. Artificial Intelligence 8,

99-118.
Mackworth, A. K. and Freuder, E. C. (1985) The complexity of some polynomial
consistency algorithms for constraint satisfaction problems. Artificial Intelligence 25(1),

65-74.

154



DECHTER AND PEARL

Mohr, R. and Henderson, T. C. (1986) Arc and path consistency revisited. Artificial
Intelligence 28(2), 225-233.

Montanan, U. (1974) Networks of constraints: fundamental properties and applications to
picture processing. Information Science 7, 95-132.

Nudel, B. (1983) Consistent labelling problems and their algorithms: expected complexities
and theory based heuristics. Artificial Intelligence 21, 135-178.

Pearl, J. (1983) On the discovery and generation of certain heuristics. Al Magazine, 22-23.
Purdom, P. W. and Brown, C. A. (1985) The analyst's of algorithms. CBS College
Publishing, Holt, Rinehart & Winston.

Sacerdonti, E. D. (1974) Planning in a hierarchy of abstraction spaces. Artificial Intelligence
5, 115-135.

Simon, H. A. and Kadane, J. B. (1975) Optimal problem solving search: all or none
solutions. Artificial Intelligence 6, 235-247.

155





7

The Relation Between

Programming and Specification

Languages with Particular

Reference to Anna

A. D. McGettrick and J. G. Stell
Department of Computer Science,
Strathclyde University, Glasgow, UK

Abstract

The development by the US Department of Defense of the programming
language Ada has provided a language which is certain to become widely
used. One of the design criteria for Ada was that it should encourage the
production of reliable software. Many remedies have been suggested for
the problem of software reliability; however, it seems vital to have a
specification of the function a program is to perform before it is actually
constructed. If a specification is written in a formal language, a language
for expressing more abstract concepts than the programming language, it
can be both semantically precise and amenable to manipulation by a
computer.
The Anna language is an extension of Ada that was designed to permit

the annotation and specification of Ada programs. The design is based on
the Ada notation and it is intended that the language should support all
aspects of the program development process.
Anna has been developed over a number of years. Preliminary

notification of the existence of the language was given at an Ada
Symposium in December 1980 [see ref. 2] superseded in March 1984 by
the latest document, the Preliminary Reference Manual [3].
In this paper we shall look at a number of issues associated with the

design of a language such as Anna.

1. BACKGROUND—THE STANFORD PASCAL VERIFIER

The activity associated with the Stanford Pascal Verifier (spy) has had a
profound influence • on such topics as program verification, program
specification and even programming methodologies. As originally con-
ceived, this was an academic exercise designed to unearth and then study
problems associated with the implementation of tools to support the

157



RELATION BETWEEN LANGUAGES

verification process. It was never intended that the SPV system would be
of production quality or a commercial product.
We shall highlight the lessons learned from the SPV exercise, indicate

the developments that led to the language Anna, and then make a brief
assessment of Anna.

1.1. The Stanford Pascal Verifier

A typical input to the SPV system would be
PASCAL

VAR N, R;
PROCEDURE MULTIPLY (VAR X: INTEGER; Y; INTEGER
GLOBAL (N);
Exu X = Y*N;
VAR Z: INTEGER;
BEGIN

X <-0; Z < -0;

INVARIANT X =Y *Z;
WHILE Z = N DO BEGIN X < -X + Y;

Z < —Z +1
END

END;

Exrr R = N*N;
BEGIN

MULTIPLY (R, N)
END.

(See ref. [1], p 14).
Here Exrr statements indicate the results, outcome or postcondition
resulting from the execution of the block they precede. GLoBAL(N)
indicates that N is a constant and will be accessed within the procedure
MULTIPLY. INVARIANT identifies the loop invariant of the loop that it
precedes.
This piece of text can be submitted to the SPV system and successfully

processed by it, thereby granting a kind of approval.
The reader will immediately make a number of observations, some of

which indicate drawbacks to the system.
(1) The program may never terminate so that the SPV addresses

questions of partial correctness and not total correctness (indeed N has
not even been initialized in this program).
(2) The program is written not in Standard Pascal but in a variant of

Pascal, not processable by any popular compiler; consequently wide-
ranging modifications need to be made.
(3) The presence of GLOBAL, EXIT, INVARIANT, etc indicate the need for

a language which is quite separate from PASCAL and which constitutes an
annotation or documentation language.

158



McGETTRICK AND STELL

These observations are superficial but they indicate the presence of
some serious points. It is generally no simple matter or cosmetic exercise
to translate from a working program to input that might be submitted for
very careful scrutiny by the SPV system. Conversely text that has been

successfully processed by the SPV may not run satisfactorily.

1.2. Implementation and use

The SPV system can be thought of as being implemented in a number of
phases.
A verification condition generator accepts input of the kind described

above, i.e. a program and its accompanying documentation. From this, a
set of verification conditions are generated and these are then supplied as
input to a theorem prover. The theorem prover attempts to take the
verification conditions and establish their truth, thereby indicating that
the program conforms to its specification.
The theorem prover can be viewed as two separate entities: a simplifier

carries out algebra associated with simple data types; the rule handler
deals with more complex data structures and can accept axioms of the
form

GCD1: REPLACE GCD (X, 0) BY X:

GCD2: REPLACE GCD (X, X) BY X:
GCD3: REPLACE GCD (X, Y) BY GCD (Y, X)
GCD4: REPLACE GDC (X, Y) WHERE Y> 0 BY GCD (MOD(X, Y), Y);

from a file.
In the event of the theorem prover successfully processing its input,

then there is little left to concern the user other than the limitations
already identified. However, if the theorem prover fails to complete the
task the user of the SPV system has then to resolve the conflict. This can
occur because:
(a) of an incompatibility between the program and its accompanying

documentation;
(b) the system has not been supplied with enough information about

the items being processed.
In both cases, changes must be made either to the program, to its
documentation or to accompanying information (e.g. as provided for
GCD).
The process outlined above is then repeated. Thus a complete set of

verification conditions are generated and these are again reprocessed by
the prover.
Some criticisms can be made of the approach described above:
(a) the repeated regeneration of all verification conditions will usually

be unnecessary;

159



RELATION BETWEEN LANGUAGES

(b) when errors occur a user is confronted with a verification condition
which usually bears little resemblance to the original program;
(c) there is no check on the accuracy of axioms such as those provided

for GCD.

2. THE ANNA LANGUAGE

2.1. Introduction

Anna [3] is a language for annotating Ada programs (hence its name).
These annotations take the form of formal comments. Syntatically these
are distinguished from informal Ada comments by being introduced by
the characters — —: or — — rather than only — —. There are two
classes of formal comments: annotations and virtual Ada. The annota-
tions are generally logic formulas concerning program variables and
include the usual assertions used in the Floyd—Hoare style of program
verification. Virtual Ada, on the other hand, is syntactically Ada text
which may be used to define functions, for example, which themselves
may be used in the annotations. The virtual Ada may itself be annotated
in exactly the same way as the underlying actual Ada.

Before looking at some of the details of the form annotations may
take, we consider how the semantics of Anna are defined and how this
relates to machine aids for checking consistency of Anna. A formal
definition of Anna may be given in terms of axioms and proof rules.
However the preliminary Anna manual gives an alternative definition in
terms of transformation rules and the Anna kernel. The Anna kernel
consists of a subset of Anna taking a particularly simple form; principally
it contains assertions. Assertions are defined to be those annotations
which constrain only one program state, that is those logical formulas
whose truth or falsity depend on the values of program variables at only
one point of a computation, e.g. x = 1 in

— — ix=

Many annotations which constrain several states can be replaced by
equivalent assertions. For example an annotation constraining the value
of a variable to lie within certain limits may be replaced by suitable
assertions at every place where the variable values might be altered.
When Anna programs consist only of annotations which may be

reduced to assertions there is the possibility of checking consistency at
run time without the need for formal proof. Since each assertion
constrains only one state it is possible to replace each assertion by actual
Ada code which tests whether the variables have permissible values at

160



McGETTRICK AND STELL

that point in the program. If an inconsistency is detected the exception
ANNA_ERROR is raised. While such run time checking is not as powerful as
a formal proof or as useful, since it gives no information about the
program's reliability in general, it is relatively straightforward to imple-
ment as an extension to an Ada compiler.

2.2. Annotations on objects and types

We now examine some of the annotations defined in Anna, starting with
object annotations. Object annotations constrain the values of program
verification. Virtual Ada, on the other hand, is syntactically Ada text
which may be used to define functions, for example, which themselves
may be used in the annotations. The virtual Ada may itself be annotated
in exactly the same way as the underlying actual Ada.

M, N: INTEGER := 0;

I N Al;

constrains N to be less than or equal to M. Next,

X: INTEGER := 0;

— I O<X<100;

is an example of an object constraint which could be expressed in Ada by
using a subtype declaration. This could also be done by using an Anna
annotation on a type

subtype first_hundred is INTEGER;
— — I where Z: first_hundred 0 5_ Z 5_ 100;
X: first_hundred;

Not all Anna constraints on types are expressible as Ada constraints, for
example:

subtype EVEN iS INTEGER;
— — I where Z: EVEN Z mod 2 = 0;

2.3. Statement annotations

These are the most familiar types of annotation to those experienced in
verification.
Simple statement annotations constrain only one statement and appear

immediately after it as in:

X:=X+ 1;
— —IX= inX+1;

The meaning of such an annotation is determined by elaborating it before
the statement to which it refers. For the checking of consistency the value

161



RELATION BETWEEN LANGUAGES

of X can be compared with the value at the end of the execution of the
statement. In a similar way more complex statement annotations can be
replaced by run-time checking code.
Compound statement annotations constrain all states in the execution

of a compound statement. They can be expressed as follows:

-- I with x >y;
begin
x:=x+1; — —(i)
y := y + 1; — — (ii)

end; — — (iii)

which asserts x> y at each of the points marked (i), (ii), (iii).

2.4. Annotations of subprograms

The behaviour of a function subprogram can be specified by a result
annotation such as:

function SQUARE (N: INTEGER) return INTEGER

- - I where return N *N;

In general procedures can be dealt with using annotations on formal
parameters. This allows us to state both input and output specifications
relating the actual parameters when any procedure is called. Thus in
particular partially developed code using such procedures can be verified
subject to correct implementation of the procedures. The ability to
discuss these issues is central to a rigorous stepwise development of Ada
programs.

2.5. Package annotations

In Ada, packages are the means by which related program entities are
grouped together, for instance a collection of operators related to some
type. Ada packages have two parts, a specification and a body. The
specification provides only syntactic information about the objects
introduced in the body. Anna provides the means semantically to
characterize these objects, that is to specify their behaviour to a user of
the package without such a user needing to examine the package body to
determine these properties. The specification of packages is by means of
package axioms in the style of much work on algebraic specification.

3. SOME OBSERVATIONS

It should be clear that many of the earlier criticisms of the SPV system no
longer apply to the Ada/Anna combination. Formal comments help in
this respect. Yet much will depend on implementation issues: in this
connection interactive systems can be used to overcome much of the
unnecessary repetition inherent in the SPV approach. But let us look at
other issues.

162



McGETTRICK AND STELL

With the combination of Ada and Anna it is possible to seemingly
describe the same concept in a variety of ways.
Consider

M : INTEGER range 1 . . . 99;
and
M INTEGER; — I 0< M < 100;

Of these the first is pure Ada, whereas the second involves the presence
of an annotation. This indicates a degree of overlap between the Ada and
Anna and raises questions about where the boundary between a
programming language and a specification language should lie. In this
particular case, Anna provides a more powerful and useful mechanism
and this suggests that the Ada mechanism should not be present.
In the same way, the following two specifications appear to be

equivalent.

generic
type element is private;
function compose (a, b: element) return element;

package semi-grouped is
— — I axiom for all a, b, c: element =
— — I compose (a, compose (b, c))= compose (compose (a, b), c)

end semi-group;

generic
type element is private;
function compose (a, b: element) return element;
— — I axiom for all a, b, c: element =
— — I compose (a, compose (b, c))= compose (compose (a, b), c)

package semi-group is
end semi-group;

The choice between these alternatives requires considerable insight into
the nature of the items and packages. The insight is mathematical in
nature.
The example of a semi-group provides a convenient source of further

attention. Suppose we try to utilize this in the following way:

package group is
use semi-group;
identity: element;
function inverse (a: element) return element;
— — I axiom for all a: element
— — I compose (a, identity) = a,

end group:

163



RELATION BETWEEN LANGUAGES

Several points follow from this:
(a) the concept of a semi-group can be extended or enriched to

produce the concept of a group; more constraints are imposed;
(b) because of the nature of Ada, and the fact that package bodies

must accompany package specifications, the structure of an implementa-
tion must follow rather closely the structure of the specification;
(c) sharing a specification, e.g. of semi-group, but permitting different

implementation is not possible.
Of these (a) and (b) should be noted, and may be seen as disadvantages
of the Anna approach.
In summary, Anna can be seen in a variety of lights—as a specification

language or as an annotation language. But further it contributes with
Ada to a wide spectrum language which supports specification at one
end, programs at the other and permits the possibility of transformations
between specifications, between specifications and programs, and even
between programs.
At the present time the definition of Anna is incomplete and further

developments are expected. These will address complex issues such as
concurrency.

REFERENCES

1. Luckham, D. C., German, S. M., Henke, F. W. V., Karp, R. A., and Milne, P. W.
(1979). The Stanford Pascal Verifier User Manual. Stanford Verification Group. Report
no. 11. Stanford University, Stanford, Calif.

2. Krieg-Brueckner, B. and Luckham, D. C. (1980). Anna: Towards a language for
annotating Ada programs. ACM SIGPLAN Symposium on the Ada programming
language. SIGPLAN Notes 15, 11, 128-135.

3. Luckham, D. C., Henke, F. W., Krieg-Brueckner, B., and Oue, 0. (1984). Anna, A
language for annotating Ada programs. Technical Report no. 84-248. Program Analysis
and Verification Group, Computer Systems Laboratory, Stanford University, Stanford,
Calif.

164



LOGIC PROGRAMMING TOOLS
AND APPLICATIONS

165





8

YAPES: Yet Another PROLOG Expert
System

T. B. Niblett
The Turing Institute and University of Strathclyde,
Glasgow, UK

1. INTRODUCTION

YAPES is an expert system shell developed at the Turing Institute. It
provides inference and explanation facilities, and incorporates a novel
form of plausible inference.

YAPES is a specialized interpreter for logic programs. Figure 1 illustrates
its top level structure. A PROLOG interpreter (or compiler) executes such
programs consisting of sets of Horn clauses, a form of first-order logic.
The YAPES system also executes such programs, as well as programs in an
extended version of Horn clause logic which uses certainties as truth
values, rather than just true and false.
The construction of the YAPES interpreter allows it to provide

explanations of its reasoning, as well as asking questions from users and
other knowledge sources. The explanations provided include why ex-
planations in the sense of 'why are you asking this question', how
explanations in the sense of 'how did you reach this conclusion' and why
not explanations in the sense of 'why did this goal fail'.
The YAPES interpreter is flexible and can call the PROLOG interpreter to

execute goals directly. Similarly the PROLOG interpreter can call the
YAPES interpreter. This allows a mixture of object and meta-level
inference, and provides a smooth integration with the PROLOG
environment.
In Section 2 the rationale behind YAPES is described in more detail and

the advantage of using logic as a representation language discussed.
Section 3 describes the facilities provided by YAPES, and contains some
discussion of the theoretical issues involved. Section 4 presents an
annotated transcript of a YAPES session using a simple knowledge base
for travel expense claims. Finally in Section 5 we discuss the advantages
of the approach taken.
Many of the ideas incorporated in the program are not new and derive

much from the work of Kowalski (1979), Shapiro (1983b), Sergot (1983)
and others. In particular many of the utilities incorporated in the

167



YAPES: YET ANOTHER PROLOG EXPERT SYSTEM

Prolog
Interpreter

Horn Clause
Program(HCP) Extended HCP

YAPES interpreter

Figure 1. YAPES as an interpreter for logic programs.

program were written by Richard O'Keefe and Lawrence Byrd and I am
greatly indebted to them.

2. THE RATIONALE BEHIND YAPES

Our intention has been to provide an expert system 'shell' containing all
the normal trace and explanation facilities, and with the provision of a
sophisticated plausible reasoning facility.
The best way of looking at YAPES is as a new interpreter for rather

special PROLOG programs which provides the kind of user interaction
needed in expert systems work.
The program is implemented in PROLOG and a major concern has been

to keep the form of the knowledge-base as close to the underlying
language (Horn clause logic) as possible. In fact the only extension to
pure Horn clause logic is the use of a plausible reasoning mechanism,
which preserves the clear semantics of the logic and is upwards
compatible in the sense of being a conservative extension. There are
several compelling reasons for taking this approach:

1. The semantics of logic programs are well understood. This permits
the development of elegant and general algorithms for debugging and
modifying programs which can be directly applied to expert system
knoweldge-bases (e.g. Shapiro, 1983b).
2. Most commercial expert systems shells available at present lack

flexibility. It is often difficult to modify the search strategy used by the
shell, or to perform computations not explicitly catered for by the
designers. Logic programming is far more general and by keeping our
shell as close as possible to logic programs this generality can be
incorporated while still allowing the system debugging and tracing
facilities to be used.

3. By using the same language for the knowledge-base and the
underlying program we can take advantage of the reflection principle
espoused by Weyhrauch (1980) and merge the object and meta-level
languages where appropriate.

168



NIBLETT

2.1. Logic programs as a basis for expert systems

The basis of our approach is that a logic program, and the results of its
execution in the form of a proof tree (see below) can be used as a
knowledge-base and can provide humanly understandable explanations of
how the knowledge is used by the system. Furthermore the simplicity and
generality of the 'data-structures' involved allow an inexperienced user to
learn the use of the system fairly quickly.
We are not arguing that the PROLOG language is easy to learn in its full

generality. From our experience this is not the case. For the majority of
expert system applications however, where the manipulation and creation
of complex data structures is not required, the language is very
straightforward.

2.2. The form of a logic program

We shall discuss fairly briefly the form of logic programs; this material is
useful for a technical appreciation of the plausible reasoning mechanism
discussed later, but not essential for the reader who wishes merely to
discover what YAPES does.
A logic program consists of a (non-empty) set of Horn clauses,

together with a goal statement. A Horn clause has the form A <—
BD . B„ where A and Bi are literals. A literal is of the form
p(Ti, . T„,) 0)where p is a predicate name and the Ti  are terms. A
term is a variable, an atom, a number or an expression of the form
f(T1,..., T„,) (m> 0) where f is a function symbol and the Ti are terms.
We shall follow the PROLOG convention throughout that variables are
indicated by an initial capital letter, and predicate names, function
symbols and atoms by an initial lower-case letter. The goal statement of a
program is written 4—G where G is a literal.*
A Horn clause A 4—B1, B„ is interpreted in first-order logic as the

assertion

x„{Bi & • • & A}

where —> is material implication and xl, x„ are variables occurring in
the literals of the clause.

2.3. Unification

The central operation in logic programming is unification. Unification
occurs between two literals, and involves finding a (possibly empty)
substitution for the variables in the literals which makes them identical.
For example the literal f(g(X), h(h(Y))) unifies with the literal
f(U, h(V)) with the substitution set {g(X)/U, h(Y)IV}. It has the useful

• A conjunction of literals *--G„ . . G„ is often used in PROLOG. This is equivalent to
having a single goal (—G and adding the pseudo-goal G G.

169



YAPES: YET ANOTHER PROLOG EXPERT SYSTEM

property in practice of allowing us to abstract the control of a logic
program from the flow of data as we shall see later.

2.4. Execution of a program

A logic program executes successfully if the initial goal statement 4—G
can be reduced to the empty goal (4—). This reduction is accomplished in
stages as follows; at each stage we have a goal statement 4.--G1, . . G„,
one such goal statement Gi is chosen* and unified with the head of one of
the clauses in the program. If for the chosen goal Gi there is more than
one clause that can be unified, we have a choice point. If no Gi can be
unified with any clause then the execution must backtrack to a previous
choice point, where an alternative clause can be found to match. This
unification produces a substitution for the variables in the goal statement
and in the body of the clause concerned. The goals in the body of the
clause are then substituted in the goal statement in place of the goal G1.
Execution terminates successfully when there are no goals left.

Figure 2a demonstrates the execution of a simple program without
variables. Figure 2b illustrates how this execution can be displayed as a

Program

p.-q,r.

q s.
q t.
u. v. t.

Execution trace Proof tree

call p
call q

calls
fails

retry q
call t
exit t

exit q
call r

call u
exit u
call v
exit v

exit r
exit p

( a )

Figure 2

(b)

tree. We shall call such trees proof trees. We can see that information
about the order in which unifications took place is omitted from such
trees. Also any information about unifications which were tried and later
had to be undone and another choice of clause tried has been omitted.

" In PROLOG the goal chosen is always the leftmost goal G1.

170



NIBLETT

This is one very useful property of logic programs. The output of a
successful execution has only the relevant information about a proof: all
information about how the proof tree was constructed is omitted. This
ability to extract only relevant information is of great utility when it
comes to providing explanations in an expert system context.
In the next section we shall see how the particular properties of the

PROLOG interpreter also allow us to provide information to the user
during execution.

2.5. Reasoning about program behaviour

As we have seen, the result of a program's execution is a proof tree. The
PROLOG language allows us to create and manipulate such trees by virtue
of its meta-logical features.
These features allow us to regard clauses and literals as terms, and to

determine the current status of PROLOG objects to see whether variables
are instantiated or not. In addition we can modify a program during its
execution by creating new clauses (and terms, etc.).

This ability of PROLOG to create an internal representation of itself is
critical in creating an expert system. Of course it is possible to do this in
any language. One can for example create a PASCAL interpreter in PASCAL
and simulate the execution of PASCAL programs with it. There are three
important differences however.

1. The representation in PROLOG is much shorter, and therefore much
easier to work with. It is possible to write a useful PROLOG interpreter in
PROLOG in less than one page of code. To do this in PASCAL would be a
major achievement.
2. The computation in PROLOG is easily representable as we have seen.

It would not be possible to do the same in a procedural language which
relies largely on side-effects.
3. The use of unification allows us to write interpreters for logic

programs in PROLOG that reveal the important information, about control
flow and how data-structures are to be created, without having to
describe in detail the way data will be manipulated.
The program in Figure 3 illustrates an interpreter in PROLOG for

PROLOG which maintains a stack of goals indicating the branch of the
proof tree that the interpreter is currently investigating. This allows a
user to question the system as to why it is pursuing a particular goal. This
program is a complete interpreter for pure PROLOG (without the cut).
Built-in system predicates are directly executed via the call predicate.
The PROLOG system knows which goals are system goals via the system
predicate. The meta-level predicate clause returns a clause in the
program. Its two arguments are the head and body of the clause
respectively. The clauses found are pushed onto the trace list (acting as a
stack) as terms.

171



YAPES: YET ANOTHER PROLOG EXPERT SYSTEM

solve(X) :—
solve(X, [1).

solve((A, B), Trace) : —
•,
solve"(A, Trace),
solve (B, Trace).

solve(not X, Trace) :—
not solve(X, [not X I Trace]).

solve(Goal, Trace) :—
system(Goal),
• ,
call(Goal).

solve(Goal, Trace) :—
clause(Goal, Body),
solve(Body, [(Goal:— Body) I Trace]).

Figure 3. Interpreter with trace for PROLOG.

It is possible to write a shorter interpreter for PROLOG, e.g. the single
clause solve(X)<—call(X). The program of Figure 3 captures just
sufficient of the control flow to be useful.

2.6. The problem of flexibility

It is frequently observed that expert system shells are inflexible. This
problem arises from the tension between requiring a program to
represent knowledge and to explain itself and also change the repre-
sentations used by the program and its control structures fairly fre-
quently. It is difficult to design a programming language which can meet
both these requirements.
Our view is that this problem is largely one of the distance between the

underlying implementation language of the shell, and the representation
language interpreted by the shell. In YAPES a radical solution is provided
by using a uniform representation language. The shell is written in the
language used to represent knowledge, namely Horn clause logic. Our
problem then becomes one of modifying the core interpreter (as shown in
Figure 1) and extending, if necessary, the meta-logical control language
used by the interpreter.
Our experience with YAPES shows that this is not an intractable

problem due to the power and flexibility of unification. It does not take
long to modify the interpreter simply because the code is compact. The
main interpreter for YAPES contains only eight clauses.

It could be argued that the reason for this is that the control structure
of YAPES is very similar to that of PROLOG. This does not seem to be the

172



NIBLETT

case. Shapiro (1983a) has published a co-routining interpreter for
Concurrent PROLOG, written in PROLOG which consists of only 50 lines of
code (32 clauses). Equally as important, the very different control
structure used by an interpreter such as this does not affect the
explanation capabilities in terms of proof trees discussed above, or the
extensions to the language used for plausible inference. All this is carried
over unchanged: the system is modular.

2.7. Implementation

A final practical point should be made at this point about the prac-
ticalities of the use of PROLOG. There is little point producing a system,
however elegant and simple. if it is impractical to run it in the computing
environment of typical users.

Historically PROLOG has suffered from the problem of only being
available, in efficient implementations, on a small number of machines—
notably the DEC 10/20 range for Edinburgh PROLOG. YAPES has been run
successfully with relatively small knowledge-bases (<100 rules) under
C-PROLOG on a VAX-750. Recently new versions of PROLOG (e.g.
Quintus PROLOG) have become available which have over an order of
magnitude gain in speed and space over C-PROLOG. These PROLOGS are
available on a wide range of (relatively) cheap hardware and are capable
of supporting very large knowledge-bases for YAPES, as well as providing
the efficient interface to the underlying operating system which would be
necessary in any commercial use of such expert systems.

3. THE FACILITIES OF YAPES

The facilities available in YAPES can be split conveniently into three parts.
1. Extensions to the language of Horn clause logic.
2. Interaction with the user.
3. Checking the knowledge-base.

3.1. Extensions to the language of Horn clause logic

It is generally recognized that the ability to reason about uncertainty is
very useful in an expert system. Unfortunately it is not clear how this
should be done.
The first expert system to use plausible reasoning was MYCIN

(Shortliffe, 1976) which used a combination of probability theory and the
theory of confirmation.
Many attempts have been made in the past decade to improve on the

MYCIN formalism, which was recognized to have many defects. Most of
these attempts have centred on the problem of assigning probabilities to
hypotheses/events. The main issue is one of complexity. Given N events
a fully specified probability distribution requires in the order of 2N
constraints.

173



YAPES: YET ANOTHER PROLOG EXPERT SYSTEM

Attempts to apply constraints by making a priori assumptions about
distributions (e.g. Prospector, Duda et al., 1979) have found that such
assumptions are often incorrect and/or unduly restrictive. Attempts such
as in Cheeseman (1983) to estimate distributions using entropy measures
run into problems of computational complexity.
A further, perhaps more fundamental, problem is that in many

circumstances probabilities seen as numbers (or ranges of numbers) are
not appropriate in a knowledge-based system—they are too opaque.
In YAPES an attempt is made to solve these problems by shifting our

theoretical base and providing a richer domain for certainties than the
real number line. We also provide a well-founded semantics that avoids
problems of computational complexity.
We proceed by extending the domain of values that literals can take

from {true, false) to lattices of values.
The detailed theory describing how lattices of truth values can be

integrated into our logic is described in Appendix A. Here we shall
concentrate on the specific system currently used in YAPES. We should
emphasize that the system described below is only one of many that could
be chosen, and that YAPES is modular. A wide variety of inference
systems could be quickly implemented.
We have departed from the use of numerical certainties and use what

are termed justifications. An example of a justification is shown in Figure
4. The literal entitledToAllowance (tim, 52) is justified by the structure
below it, which is a justification. This justification is a forest of
justifications. The first three are units, the fourth is itself a tree.
Every literal now contains a justification, rather than the (implicit)

value true as before. The empty justification [] corresponds to true.
The use of justifications allows us to control the reasoning of the

system more fully. We can specify that two justifications are incompatible
for example, and give a low overall certainty to their combination. The

Tim is entitled to an allowance of fl.52
is justified if

The trip was in Holland
and
tim didnt go on a boat
and

The plane cost is more than the car cost in Holland
is justified if
The trip was in Holland

A justification expressed in English. The literal at the top level is

entitled to Allowance (tim, 52)

Figure 4. A justification.

174



NIBLETT

main use at present in YAPES is to reduce the number of questions asked
of the user, by making assumptions about the truth of certain literals. If
the user dislikes any of the assumptions made these can be overridden by
use of the threshold mechanism described below.
We shall now discuss in more detail the calculus of justification

currently used by YAPES.

3.1.1. A calculus of justification

Figure 5 illustrates a (simplified) version of the top-level YAPES interpre-
ter, which calculates certainties. The omissions are intended to make the
structure of the mechanism clear while omitting details such as the user
interface. A full listing of this interpreter is provided in Appendix B.
The interpreter uses the goal solve 13 with three arguments. The first

argument is the goal to be solved, the second is the threshold setting the
minimum value for a justification. Solve will fail if the goal cannot be
solved with at least this certainty. The third argument is the certainty of
the goal.
A clause is now a pair (just, G 4—B) where G *—B is a Horn clause

and just is the name of its associated certainty function. The certainty of
G is determined from the certainty of B using just. The empty

solve((A, B), Thresh, Value)
• •

solve(A, Thresh, Aval),
solve(B, Thresh, Bval),
combined_and(Aval, Bval, Value),
less (Thresh, Value).

solve(not Goal, Thresh, [])
!,
not solve(Goal, Thresh, _).

solve(Goal, Thresh, [])
system(Goal),
•,
call(Goal).

solve(Goal, Thresh, Value)
dataclause(Just, Goal, Body),
solve(Body, Thresh, BodyVal),
Combine_if(BodyVal, Just, Value),
less(Thresh, Value).

Figure 5. An interpreter using certainties.

175



YAPES: YET ANOTHER PROLOG EXPERT SYSTEM

justification (corresponding to truth) is H. Two procedures are used to
determine the certainty of G. One to determine the certainty of B as a
conjunction of goals Bi (combine_and), and one to determine the value
of G given a value for B and just (combine_if).
The implementation of thresholding imposes a restriction on deriva-

tions. Given a threshold T for the top-level goal G, every subgoal of G in
the proof tree must have a certainty of at least T. This reflects the
intuitive idea that the certainty of a conclusion cannot be greater than the
certainty of any of its premises. In practice this greatly reduces the
amount of search necessary to derive the certainty of a goal.
The default for certainty functions in the present implementation is to

combine the justifications for each of the Bi into a tree with just as the
root and the certainties of the Bi as subtrees. If the user wishes to
override these defaults he/she must write explicit code for the combining
functions in any particular case. Similarly a default ordering is imposed
on justifications. Given two justifications A and B we say that A B if
the set of nodes of B is a subset of the nodes of A. The minimal element
any is also defined such that any :5- A for all A.
The use; must ensure that the relevant monotonicity properties are

satisfied when creating defaults. The requirement that the default be
monotonic says that if any goals in the body of a clause become more
certain then the certainty of the conclusion should not become less likely.
This is, on the whole, an intuitively natural condition, the technical
reasons for it are described in Appendix A.

Expressive power

There are some circumstances where the user's knowledge about a
domain suggests that the above monotonicity requirements are not met.
An example, using propositional variables, shows such a situation. Let us
assume that we have a goal h and two contributing factors el and e2. We
may know that either el or e2 alone support h, but that their joint
presence does not. If we have a Horn clause rule: h e1, e2 in our
knowledge-base the monotonicity criterion fails to hold, as either el or e2
becomes more likely as the likelihood of h decreases.
This type of constraint cannot be directly expressed within our

certainty calculus. To see why we can consider the problem of expressing
the exclusive or of two goals el and e2 in PROLOG. We wish to say that h is
true if el is true and e2 is false, or if el is false and e2 is true. This
corresponds to the problem described above, except that we are
considering truth-values rather than likelihoods. Horn clause logic, and
therefore a PROLOG interpreter cannot express negation directly and must
use the idea of 'negation as failure'; a goal is false if it cannot be proved
true. The PROLOG solution to the problem of exclusive or would be (using

176



NIBLETT

the unary predicate not to express negation as failure):

h +- el, not(e2), h e2, not(ei).

A solution of this form can be used within our certainty calculus. To see
how this works we shall first describe its workings from a slightly different
viewpoint.
The standard PROLOG interpreter can be understood as producing a

proof tree that provides a proof of the top-level query to PROLOG. The
value returned by this proof tree is true. If no proof tree can be produced
the value returned is false. We can view the answer true returned as a
function of the proof tree, all proof trees for the query will return the
same answer. Using the calculus of certainties implemented in YAPES,
proof trees can return a wider range of values. Using lattices as the
domain of certainties allows us to return the whole proof tree as a
certainty if so desired. The problem facing the expert system builder
using this formulation is to establish the correct degree of abstraction
desired from a proof tree. The implementation described above returns
the assumptions needed to produce that particular proof tree. It is an
important consequence of this approach that the certainty of a query now
depends on the manner in which it was proved. This is not the case for
standard Horn clause logic.

Let us reconsider the example presented above. We could write rules
related to h as follows:

h +- e1, not(e2). f2: h +- e2, not(ei).

The goal not(e1) in the second rule can now be interpreted in terms of

failure to find a proof for el. In the thresholding interpreter used by

YAPES the goal not(G) will be true if G does not have a proof with
certainty exceeding the threshold. The use of negation in this manner
permits the expression of knowledge about conflicting goals, whilst
preserving the semantics of the language.

3.2. User interaction in VAPES

The user interaction in YAPES is modelled after the 'query the user'
principles described in Sergot (1983). The fundamental idea is to consider
the user as a data base from which atomic facts necessary to a proof can
be obtained. In effect the PROLOG engine has a choice of data bases from
which to obtain facts, the 'system' data base, the 'problem domain' data
base and the 'user' data base. This idea can also be applied to any data
source other than the user, for example on-line data bases.

3.2.1. Categories of question

There are several different categories of question that can be put to the

user. There is some overlap between these categories, but in cases where

the overlap occurs there is no conflict in the treatment of the questions.

177



YAPES: YET ANOTHER PROLOG EXPERT SYSTEM

These are:
(a) Questions which have answer false (e.g. 5 is 2 + 2?);
(b) Ground questions (which have a true/false answer);
(c) Questions which have at most one answer (e.g. sex(tim, X));
(d) Questions which may have multiple answers (e.g. is a_son_

of(X, 11?).
To avoid annoying the user each must be handled in a sensible way.

YAPES handles this problem in a way that is intuitively obvious to the
user. We shall consider the above categories of question one at a time.

1. Questions which have answer false. These questions are answered
by a simple 'no'. It makes no difference whether the question is ground
(i.e. contains no free variables) or non-ground. The answer to the
question is stored in the user data base and will not be asked again, even
it the underlying PROLOG inference mechanism backtracks to the
question.
2. Questions which have answer true or false because they are ground

and about which the system has no meta-level information. The user does
not need to supply values for variables in the question. These questions
are just asked once and the answer stored.
3. Questions which have a unique answer like ̀ sex(tim, S);' are slightly

more complicated in that to handle them properly we need to know
something about the relation ̀ sex(A, BY . As far as the logic is concerned
any given 'A' could have any number of sexes (just as any sex in fact has
many people!). In the case of the 'sex' relation we need to know that sex
is a function from persons to sexes, this is achieved by the following
meta-level declaration to YAPES:

unique(sex(A, B),[44]).

This asserts that if variable 'A' is instantiated then there is a unique 'B'
that makes ̀ sex(A, BY true. When YAPES needs to find out whether
`sex(tim, male)' is true it deduces from the 'unique' assertion above that
the most general question to ask is `sex(tim, A)' (which has a unique
answer) and asks this question, suitably formatted. Whenever it sub-
sequently has to solve a goal of the form `sex(tim, X)' it has all the
necessary information stored in its data base and need not bother the
user.
4. Questions which have multiple answers are also dealt with correctly.

Let us consider the relation ̀ isa_son_of(X, Y)' intended to mean that X
has son Y, which can have several solutions. A PROLOG program using
this relation may have to backtrack over several sons before it finds the
correct one. Let us consider a specific and rather silly example:

chosen_son(Y, X):— %Y has chosen son X
isa_son_of(Y, X),
age(X, Age > 21),

178



NIBLETT

A PROLOG program will typically find an 'X' satisfying 'chosen_
son(Y, X)' (with 'Y' instantiated) by generating possible solutions with
Isa_son_of(Y, X)' and then the other two goals.

If YAPES has been told that Isa_son_of(Y, X)' was in the user data
base via the meta-level declaration

askable(isa_son_of(Y, X)).

if would query the user for instantiations of X. When queried the user
has three choices:

1. He/she can type in the name of a son. YAPES will then query for
another son (since it has not been told anything about the Isa_son_of
relation).

2. He/she can type 'no', which should be interpreted as meaning that
there are no solutions other than those already provided.
3. He/she can type 'enough', which means: enough questions for now,

come back if you need any more solutions later. YAPES will come back
when and only when it has backtracked over all the previous user answers
and none of them can be used to prove the top-level goal.

3.2.2. Tracing and debugging in YAPES

The user can ask questions of YAPES while a goal is being evaluated by
asking 'why' a question has been put. YAPES then displays a trace of the
current path on the proof tree to the user, in a suitably formatted
manner.
Two other trace/debugging features are currently implemented in

YAPES, the 'how' facility and the 'why-not' facility. The 'how' facility
enables the user to see how a conclusion was reached. Section 4 contains
an example of the use of 'how'. Several implementations of how are
possible. The one currently used in YAPES allows the user to walk through
the proof tree of a successful query.
The problem of diagnosing why a query failed is in general more

difficult. The reason for this is that for a query to fail every possible
proof tree must fail. Not only must we ask why a particular goal failed
but must take into account the possibility that earlier goals in the tree
produced an incorrect answer, rather than failing.
Without information as to the possible failure modes of a program the

only practical possibility seems to be interactive debugging with the user
as an oracle, providing information as to which goals should not have
failed and which goals have produced an incorrect answer.

In an expert system, however, we do have information as to possible
failure modes of a program. We can assume that the knowledge-base has
been fully debugged by an expert and that the failure of a goal arises
from an answer supplied by the user. The 'why-not' facility of YAPES uses
this idea.

179



YAPES: YET ANOTHER PROLOG EXPERT SYSTEM

Figure 6. SLD search tree. • Node that fails at a user-askable goal. 0 Node that fails at a
non-user-askable goal. • Node where a user-askable goal is reduced.

The situation that arises when a goal fails is shown in Figure 6. The
sup-search tree is an or tree. Each branch on the tree represents a
(partial) proof tree. The tree branches when there is more than one
matching clause for a goal. A failing SLD search tree is one where each
path through the tree ends in a set of goals that is not satisfiable. In
particular if the tree has been produced by PROLOG we know that the
leftmost goal is unsatisfiable.
The information that YAPES provides to the user is a failing branch of

one of the partial proof trees occurring in the failing sw-tree. The partial
proof tree is selected from a set of candidates in the manner described
below, and the branch displayed is that containing the failing goal of the
corresponding failed sw-node.

Candidates are branches of the failed sup-search tree which:
(a) have as failing goal a user answer; or
(b) have as failing goal a goal which fails to unify because of a

substitution occurring at the unification of a user answer with the
corresponding atomic goal.
The second condition remainds one of truth-maintenance systems

which maintain dependency information about goals (e.g. Doyle, 1979).
The difference here is that we are working top-down rather than
bottom-up.
There may be many candidates in any given failed sw-tree. At present

YAPES selects a branch that involves the most recent user answer possible.
This is a heuristic approach which has worked well so far in practice.

3.2.3. Changing user answers

Intimately linked with the generation of why-not traces is the ability to
change answers to questions. This enables the user to try 'what if'
possibilities, and also to correct wrong answers. This facility is currently
provided in YAPES.

180



NIBLETT

3.3. Type checking user answers

YAPES checks the types of user answers to queries. This facility is based
on the PROLOG type checker developed by Mycroft and O'Keefe (1984).
The type checker allows the definition of user-defined types, and the

assignment of generic types to procedure arguments.
In practice the user's answer is type checked dynamically and an error

message produced if a type violation is detected.

4. ANNOTATED TRANSCRIPT OF A YAPES SESSION

The transcript below was taken directly from a terminal session with
YAPES. A version of the system with a more sophisticated, window-
oriented user interface is also available. All comments are in italics.

Call YAPES from within PROLOG to start session a knowledge-base has
already been loaded.
I?-yapes.

Travel allowance evaluation program

This data base works out whether or not your employee is entitled to
an allowance after a trip of duty travelling by car.

Welcome to YAPES

Type help for help

Command: h

HELP INFO
help—This message
go—Go call the knowledge-base
break—Break to PROLOG
change—Change previously recorded facts
clear—Clear the database of all recorded facts
why—Why did a query succeed or fail?
quit—Regretfully leave YAPES

Command: go

What is the name of the employee? tim

Who is the owner of the car? tim

181



YAPES: YET ANOTHER PROLOG EXPERT SYSTEM

Who gave permission for this trip (mse, da, none)? mse

How many kilometres were driven in total? why

We are asking why this question has been asked. The answer reveals the
goals that are currently being investigated.

I'm investigating 'The distance travelled was A km.' to establish:
(1) The trip was within holland if

The distance travelled was A km. and
A<300.

(2) tim had permission to make this trip if
Permission for the trip was given by mse and
Authorization by mse is sufficient for trips to holland and
The trip was within holland.

(3) tim is entitled to an allowance of fl.A if
The car is owned by tim and
tim had permission to make this trip and
tim was properly insured and
The distance travelled was B km. and
The uncorrected allowance for a distance of B kilometres is fl.0
and
The boat allowance is fl.D and
The multiplication factor for joint travel is E and
F is E* (C + D) and
A plane trip would cost fl.G and
The maximum of G and F is A.

Now back to the question

How many kilometres were driven in total? 100

Does tim have a third-party risk insurance for his car? n

This is the answer to the query
tim isnt entitled to a travel allowance

Now we investigate the failure of the goal
Command: why

182



NIBLETT

(e.g. why did the goal fail)
Since
You (the user) stated/implied that:

tim doesnt have third party risk insurance.

Therefore
tim wasnt properly insured

Therefore
tim isnt entitled to a travel allowance

We decide to change a previous answer
Command: ch

You have told me that:

(1) The car is owned by tim
(2) The employee's name is tim
(3) The distance travelled was 100 km.
(4) Permission for the trip was given by mse
(5) tim doesnt have third-party risk insurance

We change two facts (by deleting them from the data base)
Which facts to be deleted (1.5)? 3 5

Erased

Command: go
Here is the type checker in operation
How many kilometres were driven in total? rty

Sorry incorrect type(s) in your answer
The type(s) of The distance travelled was A km. should be:

integer

How many kilometres were driven in total? 100

Does tim have a third-party risk insurance for his car? y

Who has been driving during the trip? tim

What is the list price of the car? 10000

183



YAPES: YET ANOTHER PROLOG EXPERT SYSTEM

Did tim travel with colleagues? n

Now we succeed with the following assumptions made
Assuming:
(1) The trip was in Holland
(2) tim didnt go on a boat
(3) The plane cost is more than the car cost in Holland
(4) The trip was in Holland

then

tim is entitled to an allowance of fl.53
Are any of these assumptions incorrect? y

We don't like the assumption that the trip was not abroad
Give me the list of incorrect assumptions: 1

Where did the trip take place (Holland or abroad)? abroad

tim isnt entitled to a travel allowance

Command: why

(e.g. why did the goal fail)

Since
You (the user) stated/implied that:

not The trip was within holland.

Therefore
tim didnt have permission to make this trip

Therefore
tim isnt entitled to a travel allowance

We change another fact, this time about who gave permission for the trip
Command: ch

You have told me that:

(1) The list price of the car is 10000
(2) The car is owned by tim
(3) tim was driving
(4) The employee's name is tim

184



NIBLETT

(5)
(6)

(7)
(8)

(9)

The trip was within abroad
The distance travelled was 100 km.
Permission for the trip was given by mse
tim has third party risk insurance
tim didnt travel with colleagues

Which facts to be deleted (1 • • • 9)?7

Erased

Command: go

Who gave permission for this trip (mse, da, none)? da

How much would an airplane ticket have cost for this trip? 200

Assuming:
(1) tim didnt go on a boat

then

tim is entitled to an allowance of fl.200

Are any of these assumptions incorrect? n

Now we are satisfied with the answer we can investigate the solution.
Command: why
(e.g. why did the goal succeed)
tim is entitled to an allowance of fl.200 since
(1) The car is owned by tim
(2) tim had permission to make this trip
(3) tim was properly insured
(4) The distance travelled was 100 km.
(5) The uncorrected allowance for a distance of 100 kilometres if fl.52
(6) The boat allowance is fl.0
(7) The multiplication factor for joint travel is 1
(8) 52 is 1*(52 + 0)
(9) A plane trip would cost fl.200
(10) The maximum of 200 and 52 is 200

We can now investigate one of the subgoals
Which goal (1 to 10)? 2

185



YAPES: YET ANOTHER PROLOG EXPERT SYSTEM

tim had permission to make this trip since
(1) Permission for the trip was given by da
(2) Authorization by da is sufficient for trips to abroad
(3) The trip was within abroad

Which goal (1 to 3)? 2

There is a unit clause in the knowledge-base asserting that da can authorise
trips abroad
Authorization by da is sufficient for trips to abroad is a fact

Repeat (r) or stop (s) (tim had permission to make this trip)? s

Repeat (r) or stop (s) (tim is entitled to an allowance of fl.200)? r
tim is entitled to an allowance of fl.200 since
(1) The car is owned by tim
(2) tim had permission to make this trip
(3) tim was properly insured
(4) The distance travelled was 100 km.
(5) The uncorrected allowance for a distance of 100 kilometres is fl.52
(6) The boat allowance is fl.O.
(7) The multiplication factor for joint travel is 1
(8) 52 is 1*(52 + 0)
(9) A plane trip would cost fl.200
(10) The maximum of 200 and 52 is 200

Which goal (1 to 10)? 1

This is a user-declared fact
I was told that The car is owned by tim is true

Repeat (r) or stop (s) (tim is entitled to an allowance of fl.200)? s

Now we quit YAPES
Command: q

Goodbye—see you again I hope

XXXXXXXXXX

5. CONCLUSIONS

YAPES runs under C-PROLOG and Quintus PROLOG on VAX and sur
machines. It is currently used as a teaching tool to demonstrate the use of

186



NIBLETT

logic programming for expert system design. It has demonstrated that:
1. It is feasible to implement the inference engine of an expert system

shell in PROLOG. Using Horn clause logic as the knowledge repre-
sentation language provides a smooth interface with the underlying
PROLOG.

2. Explanation facilities can be based on the proof generated by
PROLOG as it solves a goal. This proof does not depend on the execution
strategy of the interpreter, so that explanation facilities are unaffected by
the use of different control regimes. Considering the user as a separate
data base of facts allows us to diagnose failure of goals (why not
questions) effectively without further interaction with the user.
3. It is useful to interpret plausible inference as an extension to the

language of Horn clause logic. In particular we can view plausible
inference as concerning the manner in which a goal is prOved rather than
its truth value per se. Further work is necessary to investigate ways in
which different proofs of a goal can be manipulated and presented to the
user in an informative manner.

Acknowledgements

This research was conducted in cooperation with the Shell Research Centre at Sittingbourne
Kent, to whom thanks are due for support of the work described and for permission to
publish this note.

APPENDIX A: LOGIC PROGRAMMING WITH UNCERTAINTIES

1. Introduction

A recent paper by Shapiro (1983c) introduces the idea of adding
uncertainties to logic programs. This idea has been suggested previously:
for example Scott and Krauss (1966) develop the semantics of probabil-
istic logic for countable and infinitary logics. Shapiro's approach is of
interest because it provides a simple semantics for Horn clause programs
with uncertainties, and is more general than previous approaches—
providing a richer set of combining functions for certainties.
This note describes Shapiro's approach and generalizes his results in a

number of ways. In particular a fixpoint semantics is given, more general
classes of uncertainty functions are allowed and the domain of certainties
is extended.
This approach is of particular interest to those involved in the

development of expert systems. A large class of such systems use one
form or other of uncertain reasoning. Few of these systems are well
founded from a theoretical point of view. Logic programs with uncer-
tainties may provide a more suitable framework in which to pursue
uncertain reasoning.

187



YAPES: YET ANOTHER PROLOG EXPERT SYSTEM

2. Basic definitions

Definition. A certainty space C is a complete lattice. This is a partially
ordered (under -.5) set C, with operations U and n (least upper bound
and greatest lower bound respectively) defined for every subset of C.
Definition. We extend to sequences over C by defining: (c1,. • •,
(6, c„' iff ci ci and . . and c„ c
Definition. A function f from sequences of certainties to certainties in
some certainty space C is monotone if for all sequences si and s2 of
length n over C, s1 s2 implies f(s1) "- f(s2) •
Definition. A logic program with uncertainties is a finite (non-empty) set
P of pairs of the form (A 4- B, f) where A 4-- B is a definite (or Horn)
clause, and f is a montone function from sequences of certainties to
certainties.

3. Semantics

We are now in a position to define a semantics for logic programs with
uncertainties. This semantics is an extension to that given by Van Emden
and Kowalski (1976) for definite clause programs without uncertainties.
The reader can check that the semantics given here reduces to the
semantics of logic programs without uncertainties in the case that our
domain of certainties is {false, true} together with appropriate definitions
of the functions f.
Definition. The Herbrand Universe U(P) is defined recursively as,

1. The set of constant symbols in P (or the constant symbol a if there
are none).
2. All atoms of the form P(tI, t„) where the ti are in U(P).

Definition. The Herbrand base H(P) of a logic program P is the set of all
ground atoms formed by using predicate symbols from P with ground
terms from the Herbrand Universe U(P).
Definition. An interpretation of a logic program with uncertainties P is a
function from II(P) to a certainty space C.
Definition. An interpretation II is an interpretation 12 if I1(a) I2(a)
for all a in I1(P).
Definition. A model M of P is an interpretation of P satisfying the
following condition: for any clasue (A 4- B, f ) in P and any ground
instance A' 4—Bi & • • & 13„ of the clause, then M(A')
f (M(13i), .,M(B,c)).

3.1. Model theoretic semantics

Definition. Given two models M1 and M2 for P we define the intersection
( n ) of the two models pointwise as M1 11 M2(a) = Mi(a) n M2(a)
Proposition. Given two models M and M' for P, the intersection of the
two models M (1M' is a model.

188



NIBLETT

Proof. For any a E II(P) if there is a ground instance a 4—b1 & • •• & bn
of a clause in P, then the following conditions hold:

In M: M(a) f ((M(b 1), . M(b,)))
n mi(bi), Af n Av(bn)))

In M':Mi(a)f(011i(bi),•••,11E(bn)))

n mi(b1), • • m n Ar(bn))).
As C is a lattice MnMi (a) = M (a) fl M' (a)

-f((m n Ar(bo, n m'(bn)))
which was to be proved.

Theorem. M(P)= fl M exists and is the least model of P.
M a model

Proof. The proof is straightforward.
The meaning of the logic program P is defined to be the least model
M(P) of P

3.2. Fixpoint semantics

We now provide a constructive definition of M(P) by showing it to be the
least fixpoint of a function Tp from interpretations to interpretations.
Definition. Let T(I) be defined pointwise on an interpretation I as
follows:

Tp(I)(a) = U (A(I)) where A. = {a 4-1) I a 4-1) is a ground instance
AeA,,

of a clause in P} and fA(/) =f(1(61), ., 1(b)) where A = a 4—b1
& .• • • &

Proposition. Tp is monotone over the lattice of interpretations, and
moreover the lattice of interpretations (with po5.) is complete.
Proposition. Tp has a least fixpoint.
Proof. Since Tp is a monotone function on a complete lattice, Tp has a
complete lattice of fixpoints and therefore a least fixpoint.
We can elaborate on this result by proving that Tp is continuous as well

as monotone if the underlying certainty functions we use are continuous.

Definition. A certain function f from sequences of certainties to cer-
tainties is continuous if U x)= U f(x) for all chains X.

xeX xeX

Proposition. If the underlying cerainty functions f are continuous then
the corresponding functions fA are continuous.
Proposition. If the underlying certainty functions f are continuous then
Tp is a continuous function, that is: U T(I) = T( U 4) for all chains

nen nen
tin I n E H) of interpretations.

189



YAPES: YET ANOTHER PROLOG EXPERT SYSTEM

Proof.

Tp(U I,$)(a)= fA(U /„) (by definition of Tp)
n AeA„ n

= U UL(4) (by continuity of the .0
An

UU Min) (by interchangeability of lubs)
„ A

= U Tp(In)(a) (by definition of Tp)

This completes our discussion of the semantics of logic programs with
uncertainties, and shows that the meaning of a logic program with
uncertainties can be approximated computationally.

4. Discussion

4.1. Relation to Shapiro's work

We have extended the results presented by Shapiro in three ways.
1. The semantics has been extended to provide a fixpoint semantics for

uncertainties. It has been shown that if the underlying certainty functions
are continuous the certainties of formulas can be approximated
computationally.
2. The class of functions used for evaluating certainties is broader, as

they use sequences of certainties as the domain rather than multisets of
certainties as used by Shapiro. This allows one to distinguish a given
literal in a clause as being more important (less important) than others,
which is often the case in practical reasoning.
3. The certainty space used is a complete lattice, rather than the

interval (0, 1] used by Shapiro. This is important because it permits us to
use uncertainties which are not necessarily 'comparable', by insisting only
that certainties are partially ordered rather than totally ordered. This is
important in practical reasoning, where a total ordering of certainties
often requires an expert to make problematic judgements, unwarranted
by experience.

APPENDIX B: THE TOP LEVEL INTERPRETER FOR YAPES

% solve/4 has arguments:
% *Goal*—Goal to be solved
% *Trace*—Current goal stack
% *Thresh*—Threshold value
% *Value*—the assumptions under which the goal holds solve

190



NIBLETT

solve ((A, B), Trace, Thresh, Value)

• 
!,
solve(A, Trace, Thresh, Aval),
solve(B, Trace, Thresh, Bval),
combine_and(Aval, Bval, Value), % Combine assumptions for
d combo

less(Thresh, Value). % Value is 'not less' than *Thresh*
%the threshold value

% A—*B; C is Prolog's form of if • • • then • • • then • • • else

solve ((A —+ B; C), Trace, Thresh, Value)
•-
• •9

(solve(A, Trace, Thresh, Aval), !,
solve(B, Trace, Thresh, Bval),
combine_and(Aval,Bval, Value)

solve(C, Trace, Thresh, Value)
).

solve((A; B), Trace, Thresh, Value)
!,

solve(A, Trace, Thresh, Value)

solve(B, Trace, Thresh, Value)
).

solve(not Goal, Trace, Thresh, 0)
— !, % This cut is essential.

not solve(Goal, Trace, Thresh,_).

% System goals are always solved without assumptions (they're correct!)
solve(Goal, Trace, Thresh, 0)

system(Goal)
•,
call(Goal).

% Reduce the goal *Goal* and incorporate its assumptions
% The reduction is by access to non-system clauses,
% either unit clauses provided interactively by the user or clauses in the
% rulebase provided by the user.
solve(Goal, Trace, Thresh, Value)

dataclause(Just, Goal, Body, Trace),
solve(Body, [(Just :Goal :— body) I Trace], Thresh, Body Val),
combine_if(BodyVal, Just, Value),
less(Thresh, Value).

191



YAPES: YET ANOTHER PROLOG EXPERT SYSTEM

REFERENCES

Cheeseman, P. (1983) A method of computing generalised Bayesian probability values for
expert systems. HCAI-83, 198-202.

Doyle, J. (1979). A truth maintenance system. Artificial Intelligence 12(3), 231-272.
Duda, R. etal. (1979) Model design in the PROSPECTOR consultant system for mineral
exploration. In Expert systems in the micro-electronic age (ed. D. Michie) pp. 153-167.
Edinburgh University Press, Edinburgh.

Hammond, P. (1983) APES: A Prolog expert system shell, Department of Computing,
Imperial College, London.

Kowalski, R. (1979) Logic for problem solving. North Holland, Amsterdam.
Mycroft, A and O'Keefe R. (1984) A polymorphic type system for Prolog. Artificial
Intelligence 23(3) 153-167.

Scott, D. and Krauss, P. (1966) Assigning probabilities to logical formulae. In Aspects of
inductive logic (eds E. Hintikka and P. Suppes) pp. 219-264. North Holland, Amsterdam.

Sergot, M. (1983) A query-the-user facility for logic programming, Proc. European Conf.
on Integrated Interactive Computing Systems, (eds P. Degano and E. Sandewall), North
Holland, Amsterdam.

Shapiro, E. H. (1983a) A subset of concurrent Prolog and its interpreter. TR-003. ICOT,
Tokyo.

Shapiro, E. H. (1983b) Algorithmic program debugging. MIT Press, Cambridge, Mass.
Shapiro, E. Y. (1983c) Logic programs with uncertainties. HCAI-83, 529-532.
Shortliffe, E. H. (1976) Computer based medical consultations: MYCIN. Elsevier,
Amsterdam.

Van Emden, M. H. and Kowalski, R. A. (1976) The semantics of predicate logic as a
programming language. J. Association for Computing Machinery 23, 733-742.

Weyhrauch, R. (1980) Prologomena to a theory of mechanized formal reasoning. Artificial
Intelligence 13, 133-70.

192



9
LogiCalc: a PROLOG Spreadsheet

F. Kriwaczek
Department of Computing,
Imperial College of Science and Technology
London, UK

Abstract

LogiCale is the outcome of an attempt to reconstruct logically, in
micro-PRoLoG, a typical spreadsheet program. The main features of a
spreadsheet can be expressed in a straightforward fashion in logic, and, in
the process, the underlying concepts involved can become more clearly
exposed. As a consequence, ways of generalizing aspects of conventional
spreadsheets emerge naturally. For example, in LogiCale the functional
relationship between cells need not be numeric. Indeed, one can
constrain the values of sets of cells so that they jointly satisfy non-
functional relationships. As well as taking string or numeric values, cells
of LogiCalc can be lists, diagrams, pieces of text, or even spreadsheets,
which bear a relation to other cells. Items such as these can be viewed
through windows onto the cells. LogiCale could be incorporated within
front ends for expert systems, or form the basis for more intelligent
decision support tools.

1. INTRODUCTION

The spreadsheet or worksheet is a device employed by accountants to lay
out a set of figures in an organized fashion. It consists simply of a large
sheet of paper divided into a rectangular array of cells by a grid of
horizontal and vertical lines. Each cell can hold a string constant, such as
the name of a salesman or a product, or, alternatively, a numeric
constant, such as the total revenue achieved by a particular division over
the last financial year or the forecast rate of increase of sales over the
next five years.
Normally a variety of functional relationships hold between the items

in different cells. For example, the figure for profits would usually be

193



LOGICALC: A PROLOG SPREADSHEET

equal to the difference between the figure for revenue and the figure for
costs. When the figure in a cell changes, either because of an earlier error
or because it was based on an assumption that has since been modified,
all the figures that depend on this cell have to be erased and new values
calculated by hand.
The first electronic spreadsheet, VisiCalc, was developed by Bricklin,

Frankston and Fylstra in 1978. It was designed to avoid the labour
involved in recalculation. The display resembles a paper spreadsheet, but
unlike the latter, a cell of VisiCalc can also hold a mathematical formula.
What is displayed in such a cell is not the explicit formula, but the
numeric value that results from applying the formula. In VisiCalc, if any
item in a cell is changed, all the items that depend on this value are
recalculated automatically and the new values displayed.
Using an electronic spreadsheet it is possible to build small to medium

mathematical models. Cells with numeric constants hold the values of the
exogenous variables, whilst mathematical formulas represent the model's
structure. By experimenting with different values for exogenous variables
it is easy to simulate the consequences of different decisions or of
different assumptions about the state of the world—the "What if?"
approach.
The immense commercial success of VisiCalc and other spreadsheet

programs which have been inspired by it, such as Lotus 1-2-3, attests to
the power and flexibility of the electronic spreadsheet. Furthermore, it
seems to indicate that in many real-life situations naïve computer users
find it perfectly natural and indeed often preferable to express their
problems in a descriptive rather than an algorithmic form. The spread-
sheet can be regarded as the most popular of all declarative languages,
perhaps as popular as the procedural language BASIC.
This paper describes LogiCalc, an implementation of a spreadsheet

program in the logic programming language micro-PRoLoo. It was
initially developed as part of the author's M.Sc. project [1], and bears no
relation to a commercially distributed spreadsheet program of the same
name. The first part of this paper describes the main aspects of
LogiCalc's behaviour, explaining how the items in each cell are held
internally, and how the spreadsheet is displayed. Next comes a descrip-
tion of those features of LogiCalc that are not normally found in
spreadsheet programs. Many of these follow naturally from generalizing
concepts found in conventional spreadsheets. Finally, there is a brief
discussion about potential areas for development.
The syntax used in the examples of PROLOG code is that of the SIMPLE

front-end to micro-PRowo [2]. Logical variables are denoted by upper-
or lower-case X, Y or Z, possibly followed by an integer. In this paper,
string constant argument values are written between quotation marks, to
distinguish them from predicate names.

194



KRIWACZEK

2. LOGICALC'S GENERAL BEHAVIOUR

As is common practice, the columns of LogiCale are labelled by letters
and the rows by numbers. Each cell is normally referred to by its
coordinate position, with Al being the top left-hand cell, although it also
possible to declare meaningful synonyms for individual cells and ranges
of cells. There are no formal restrictions on the spreadsheet's dimensions,
but in practice the number of non-empty cells is limited by the core size
of the computer. At any one time only a small part of the spreadsheet is
visible. The screen includes a window showing a rectangular portion of
the spreadsheet, normally containing 20 rows and between one and nine
columns (depending on the chosen column width). The PROLOG work-
space holds a "window-specification" assertion giving details of the
position in the spreadsheet of the current window together with the
latter's dimensions.
One cell in the window, the cursor cell, is displayed in reverse video.

By using the arrow keys, or a special move command, the cursor can be
shifted to other cells. A "cursor-cell" assertion in the workspace holds
the coordinates of the current cursor cell. Before defining (or redefining)
the contents of a cell, the cursor must be moved to that cell. As well as
being able to enter a definition for the cursor cell, the user can also input
a variety of commands. There are commands for moving the cursor
within the window, moving the whole window, changing the format for
output of values, changing the column width, saving the clauses for a
complete model onto disc, loading a model from disc, and so on. When
the contents of a cell are being defined, the system is normally able to
detect automatically whether the item is a string constant, a numeric
constant or a formula, and to handle the item appropriately. The system
can recognize a command by its special initial character. In most cases
this character is "I", and is followed by one or more letters signifying the
particular kind of command. User input, whether it be a definition for the
cursor cell or a command, usually leads to an update of the PROLOG
workspace, followed by a redisplay of the spreadsheet window in
accordance with the clauses in this new workspace. For many of the
commands, including those for changing the output format of cell values,
movement of the window to a different part of the spreadsheet or loading
the clauses for a new spreadsheet model from disc, redisplay involves
clearing the spreadsheet window and drawing it afresh. On the other
hand, redisplay following the input of a cell definition need not be so
drastic. At the very least, however, new values must overwrite the old
ones for all cells whose values have changed as a consequence. Such
considerations were crucial when it came to choosing the way to
represent the contents of cells in LogiCalc.
In LogiCalc, when a constant value is entered in a cell, a "has-

195



LOGICALC: A PROLOG SPREADSHEET

definition" assertion such as

or

"A2" has-definition "SALES"

"B2" has-definition 1000

is created.
If a mathematical formula is to be held in a cell then the formula, as

entered by the user, is processed by an expression parser akin to that of
the SIMPLE front-end of micro-PRoLoo [2], and a "has-definition" rule
created.
In the first implementation of LogiCalc, if a user had entered the

formula B2 * B7 for cell C2, say, then the system would create the rule

"C2" has-definition X
if "B2" has-definition Y
and "B7" has-definition Z
and X=Y*Z

When producing a revised spreadsheet, the system would, for each cell
in the window in turn, calculate its latest value from first principles and
then display the values on the screen. This was done in top-down fashion,
according to its "has-definition" clause. If no "has-definition" rule was
found for a cell, then a blank string would be displayed, by default.
Although this arrangement was perfectly straightforward, it tended to be
inefficient.
An immediate improvement in efficiency was gained by observing that

spreadsheet windows often have many blank cells. In order to avoid
explicitly writing blank strings at all these places, an "active-row"
assertion is now held in the workspace, storing a list of those rows of the
spreadsheet having cells with definitions. For each row occurring in this
list an "active-column" assertion stores a list of those positions in the row
at which there are cells with definitions. Using the "active-row",
active-column and "window-specification" assertions it is easy to find
which cells in the window have definitions. Only the current values of
these cells need be put on the screen.
However, the above arrangement still involves a great deal of

unnecessary calculation. Consider even the very simple example in which
cells Al, B1 and Cl are defined by

Al =100*100
B1 = 2*A1
Cl =A1 +B1

If, in displaying a spreadsheet window, the values for Al, B1 and Cl

196



KRIWACZEK

have to be calculated from basic principles, then the value for Al must
be computed three times and the value for B1 twice.
By keeping in the workspace an explicit record of the current value of

each active spreadsheet cell, together with information about the
dependency between cells, much superfluous effort can be avoided.
When a cell receives a definition (or redefinition), the values of precisely
those cells affected will be recalculated. In these circumstances, it is no
longer necessary to redisplay the values of all cells in the window, but
only those in the window whose values have been recalculated. On the
other hand, if a window has to be drawn afresh following a command,
then the values of all active cells can be accessed directly, rather than
having to be calculated from scratch.
In the present implementation of LogiCalc, if a user enters a string or

numeric constant in a cell, then, in addition to a "has-definition"
assertion, as described above, a corresponding "has-value" assertion such
as

"A2" has-value "SALES"

or

"B2" has-value 1000

would also be created.
The form of the "has-definition" rule for cells holding a formula differs

from that of the original implementation. Keeping to the example of cell
C2, defined by the formula B2 *B7, the "has-definition' clause for this
cell would, in the latest implementation of LogiCalc, be

"C2" has-definition X
if "B2" has-value Y
and "B7" has-value Z
and X = Y *Z

As soon as a "has-definition" rule such as this is created, a "has-
definition" query is run for that cell, and the resulting explicit value
stored in a "has-value" assertion. This means that, in the above case,
provided B2 and B7 have already been defined and their current values
stored in "has-value" clauses, the job of evaluating C2 and creating a
"has-value" assertion for this cell is quite direct. Were one or both of B2
and B7 not yet defined, C2 would temporarily be given an ERROR value.

It is the "has-value" assertion that the system accesses when displaying
the spreadsheet window. When any item changes, the "has-value"
clauses for all cells dependent upon this item have to be updated
immediately. So that this may be done efficiently the dependency graph
between the cells of the spreadsheet is held in the workspace in the form
of "dependent-upon" assertions. In the present example, it can be seen

197



LOGICALC: A PROLOG SPREADSHEET

that cell C2 is directly dependent upon cells B2 and B7, and the
following clauses would be created automatically:

"C2" dependent-upon "B2"
"C2" dependent-upon "B7"

Were the "has-definition" clause for C2 to be replaced by a new one,
then first of all those "dependent-upon" assertions which give the cells
upon which C2 itself was directly dependent, under its former definition,
would be deleted. Next a new set of "dependent-upon" clauses would be
created, which give the cells upon which C2 iteslf is now directly
dependent. Finally, all those cells that are descendants of C2 (in the
sense that they are either directly dependent upon C2, or are directly
dependent upon descendants of C2) would have their new values
calculated using the "has-definition" rules, and their "has-value" asser-
tions updated.

It is important to ensure that this updating of descendant cell values is
done in a sensible order. Suppose, for example, that the following
definitions hold

J1 = 100
J2 =J1 +J3
J3 = 230/1

and that the contents of J1, J2, and J3 are currently correctly evaluated
as 100, 300, and 200, respectively. If J1 is redefined as 1000 and the values
of dependent cells J2 and J3 are recalculated in that order, then J2 will
be given the wrong value 1200. The "has-value" clause of J3 should have
been updated before that of J2, and if that had been done then J2 would
have been given the correct value 3000.
The user can choose between two alternative modes of recalculation.

Either the system topologically sorts the set of descendant cells, which
are partially ordered by the "dependent-upon" relation, into a consistent
total ordering [3]. Or the system sorts the set of descendant cells
according to spreadsheet order, (with cell X coming before cell Y if X is
in a earlier row or in the same row but to the left). The latter method is
faster, but assumes that the user has laid out his model in such a way that
all cells dependent on a given cell are either on the same row and to the
right or on a lower row than the given cell.
In either case, the updating of values and their display for cells within

the window is co-routined with the sorting, so that the user does not
experience a long wait before the screen is updated. Just before
displaying the values of cells the system also accesses assertions that give
the output format, i.e. number of decimal places for numbers and
whether values should be left or right justified.
One of the most powerful features of an electronic spreadsheet is

198



KRIWACZEK

replication. This enables a definition entered for a particular cell to be
repeated over a range of cells, across or down the spreadsheet. A
formula can either remain unchanged or can be generalized to maintain
the patterns between the position of the cell whose contents are being
defined and the positions of the cells referenced in the formula.
In LogiCale replication involves analysing the "has-definition" clause

of the original cell and producing a "has-definition" general rule which
applies to the complete range of cells across which the definition is to be
replicated.
Suppose that the user has entered the command that the definition for

cell C2 is to be replicated from D2 to G2. Recall that the "has-
definition" rule for C2 is

"C2" has-definition X
if "B2" has-value Y
and "B7" has-value Z
and X= '*Z

For each cell named in a "has-value" condition in the clause (in this case
B2 and 87) the user is asked whether the cell coordinate should be taken
as being relative to the original cell or absolute. Assume that the user
wishes B2 to be relative, but B7 to be absolute, so that D2 would be
defined as C2 * B7, E2 would be defined as D2 * B7, and so on.
The system finds the row and column displacement of each relative cell

reference from the original cell and uses these to create a new
generalized "has-definition" rule. In the present example, the "has-
definition" rule created for cells D2—G2 would be

X has-definition X
if x belongs-to ("D2" "E2" "F2" "G2")
and displaced (x — 1 0 y)
and y has-value Y
and B7 has-value Z
and X=Y*Z

where condition "displaced (x — 1 0y)" finds the cell y that has column
displacement —1 and row displacement 0 with respect to cell x (i.e. it lies
in the previous column and the same row).
Whenever a cell receives a definition, either directly or through

replication, the system looks to see whether there already is a "has-
definition" clause for that cell. It if finds a "has-definition" clause
specifically for that cell, then it replaces this clause by the new one. If it
finds a general "has-definition" rule that applies to the cell in question,
then it will ensure that this rule no longer applies by removing the
coordinates of that cell from the list in the "belongs-to" condition of the
rule, before adding the new "has-definition" clause. If the resulting list in

199



LOGICALC: A PROLOG SPREADSHEET

the "belongs-to" condition is empty, then the general "has-definition"
rule no longer applies to any cell and is removed from the workspace.

Generalized "dependent-upon" clauses are also created in the course
of replication. However, for each cell covered by a generalized
"has-definition" clause there will be an individual "has-value" assertion.

3. SPECIAL FEATURES OF LOGICALC

3.1. Accessing a knowledge base

In addition to holding the current state of the LogiCale spreadsheet, the
PROLOG workspace can also hold another data base in the form of sets of
assertions, or, more generally, sets of clauses representing a particular
domain of knowledge.
Perhaps the simplest way of accessing a knowledge base from within

LogiCale is by requesting that the extension of a particular relation of
interest be inserted, in tabular form, at a given part of the spreadsheet.
This not only allows the tuples of the relation to be inspected, but also
makes the values available as an integral part of the spreadsheet's model.
Conversely, if a set of tuples has been entered by hand into a rectangle

of the spreadsheet, the corresponding relation can be saved as a set of
PROLOG assertions. In addition to providing a convenient form of data
entry, this arrangement allows the relation so created to be referenced
subsequently from within the definitions of the other cells. For example,
a 12 x 2 rectangle of values giving the number of days in each month
could be entered by the user and then saved as the "days-in-month"
relation. As we shall see below, such a relation could then be used when
defining other cells.
A second way in which a knowledge base can be accessed is through

extending the permissible kinds of formulas by which a cell can be
defined. As with many conventional spreadsheets, LogiCale has certain
built in mathematical functions, including "@Sum" for the total numeric
value of a range of cells. This notation has been extended to cover
relations in the knowledge base for which the value of the first argument
is uniquely determined by the values of the remaining arguments.
For example, suppose that the knowledge base contains a set of

assertions of the form

"Peter" father-of "Sue"
"John" father-of "Michael"
"John" father-of "Jenny"

and so on. Then formulas for defining cells can include the function
"@father-of". Just as with mathematical expressions, complex non-
numeric formulae can be built up, so that cell B2 might, with the

200



KRIWACZEK

appropriate knowledge base, be defined by

@address-of (@employer-of (A2)).

Just as with other definitions, this one could be replicated from B3 to
B50, say, so that if column A contained people's names, column B would
automatically give the addresses of their employers.
When using the SIMPLE front-end to micro-PRowo the normal method

of querying a data base is through a "which" query, which finds all the
solutions to a conjunctive condition. For example, the query

which(x : "Henry" father-of x and x male)

would, given an appropriate set of clauses in the workspace, find all the
sons of Henry. In LogiCale a cell can be defined by a "which" query. The
cell takes for its value a solution to the query. Once a solution is found it
is entered in that cell. The user can then choose between sticking with
that value and not seeking further solutions, requesting the system to
search for another solution, or temporarily keeping the latest solution,
whilst moving to other parts of the spreadsheet to carry out other
operations, perhaps related to the value last found, but reserving the
right to return to the cell and seek further solutions.
In addition to displaying the latest solution, in the cell with the

"which" definition, the user can arrange for all the solutions found to be
inserted, one at a time, either down a given column or along a given row
of cells. Each of these cells is defined as holding its solution as a constant
value.
The syntax of "which" queries within LogiCale has been extended to

allow other cells to be referenced within the condition of the query. For
example

which(x : C4 father-of x and x male)

finds all the sons of the man currently named in C4. A change in the
value of cell C4 will result in different solutions. Cell references can even
stand for relation names within the condition of the query. Thus

which(x: C4 father-of x and x D3)

relies on D3 containing the name of some appropriate unary predicate
such as "male", "female", or "logician".
The solution to a "which" query could quite conceivably be a tuple.

For example, if a cell were defined by

which((xyz):x father-of y and y father-of z)

then each solution would be a triple of names bearing the "grandfather—
father—child" relation. Thus cell values will not always be individual
items.

201



LOGICALC: A PROLOG SPREADSHEET

Even though a cell defined by a "which" query may no longer have a
single value, the dependency between that cell and any cell referenced
within the query's condition is strictly one way. However, in some
circumstances it is useful to be able to declare that a particular
relationship holds between the values of a given set of cells, without
imposing any kind of functionality or direction of dependency. The
system will attempt to solve a declared relationship, consistently with any
current values of active cells named in the declaration, and will display
the components of the solution in the appropriate cells.
Suppose, for example, that the relationship

Kll father-of L11

has been declared. If neither cell Kll nor cell L11 has a definition, then
the system will attempt to find a pair of values to satisfy this relation and
will display them in the corresponding two cells. If K1 1 has a definition,
and a current value "pop", say, but L11 has none, then the system will
attempt to find a value x for which

pop father-of x

holds. If it finds such a value it will display it in cell L11. The system
behaves in an analogous fashion if L11 has a definition, but not K11.
Finally, if both Kll and L11 have definitions, the system will check that
their current values satisfy the "father-of' relation. If they do not, the
user will be requested either to retract the declaration or to modify the
definition of one or both of the cells.
LogiCalc handles a series of such declarations by attempting to solve

the conjunction of the relationships. Thus, if the user had declared

Al father-of A2
A2 father-of A3
A3 father-of A4
• • •

A8 father-of A9

and any one of Ai—A9 was defined as someone's name, then, provided
the relevant facts were in the workspace, LogiCalc would fill in the
remainder of cells Al—A9 with that person's father, grandfather, great-
grandfather, etc., and son, grandson, great-grandson, etc.
When the system finds a solution to any declared relationship(s), it

displays the solution component values in the corresponding cells, creates
"has-value" assertions for these cells, and then recalculates any descend-
ant cell values. The user has the option of either sticking with the current
solution or seeking another solution. When the user decides to stick, or
the system cannot find another solution, the user can choose between
erasing the solution component values from their cells, in which case

202



KRIWACZEK

their "has-value" assertions are deleted, or of defining these cells as
holding their components as constant values.
The pre-existence of defined values in cells referred to in a declared

relationship can be thought of as adding additional (positive) constraints
to the goal of solving the relationship. Negative constraints can be
imposed by the user through "forbid" commands. A "forbid" command
ensures that a chosen cell will not take a particular value or values.
With the ability to add extra positive or negative constraints and to

relax them at will, LogiCalc can be employed to solve scheduling
problems, such as timetabling, in an interactive fashion. A relatively
simple version of the problem is first posed, leaving out the fine detail.
The problem is expressed as a declaration that a particular array of cells
are related in such a way that they form the components of the solution.
After the system has found a feasible solution to the initial problem, the
user can comment on aspects of the solution. These comments can either
be positive—insisting that a particular component retains its current value
in future, (by defining the cell in question to take that constant value), or
negative—forbidding a cell to take the current value in future. Insisting
and forbidding can subsequently be relaxed. The system then searches for
a new solution, with the extra constraints in force, and, having found a
solution, the user can again comment. The process is repeated until the
user is satisfied with a solution found. The surface syntax of LogiCale
makes it relatively straightforward to navigate interactively around a
search space of solutions.

If the knowledge base to be accessed is large, space considerations may
dictate that much or all of the knowledge base be kept on disc rather than
in core. LogiCale makes use of the EXREL utility of micro-PRoLoo [2],
which allows the system to access clauses from disc files in a transparent
way.
Since LogiCale is essentially interactive in use, it seems unreasonable

to expect that all facts required to find the current value for a cell be held
in advance in core or on disc. In accordance with Sergot's "Query the
User" declarative model of interactive logic programming [4], the user is
regarded as an extension of the computer's own knowledge base, and
any information not present in core or on a disc file is assumed to be
available from the user and is requested from him.
In particular, it is possible to define a cell as taking a value that is

`askable' from the user. When making such a definition the user will be
requested to enter an appropriate natural language template. For
example, in a spreadsheet model dealing with income tax, cell F5 might
be defined as holding the number of children of F3, askable from the
user. The question template might be "How many children does F3
have?". Whenever this question was actually posed by the computer, the
cell reference, F3, would be replaced by that cell's current value.

203



LOGICALC: A PROLOG SPREADSHEET

With its variety of facilities for accessing knowledge bases, LogiCalc
could be employed in suitably tailored form as a front end for expert

systems, particularly those dealing with financial or commercial domains.

3.2. Target reaching

Although spreadsheet models are normally employed in "What if?"

investigations, it is often useful to reverse the process and ask what

changes in the basic assumptions of the model would have to be made in

order to bring about a specified target result.
We have explained that by declaring general relationships amongst sets

of cells the directionality of dependency between cells, implicit in
functional definitions, is avoided. As a consequence, models that involve
such declarations are potentially more flexible in use e.g. target reaching
could be achieved by using declared relations rather than functions.
In simple cases this is certainly possible. Consider, for example, the

relation "TIMES (X Y Z)" of micro-PRoLoo, meaning that X * Y = Z. The
built-in predicate "TIMES" can be used to multiply, divide, or check a
product. It calls on machine-code floating-point multiplication and

division routines, rather than a vast multiplication table, and in conse-
quence at least two of its arguments must be given. If a user stores the

current £—$ conversion rate in cell Al and declares the relationship

TIMES (Al B1 Cl)

then, provided he enters a number of pounds sterling in cell Bl, the

system will display the corresponding number of dollars in cell Cl.
Conversely, if Cl holds a number of dollars, then the corresponding
number of pounds will be displayed in cell Bl.
However, mathematical relationships do not always work multidirec-

tionally in PROLOG, due to the way that arithmetical primitives are
implemented. The micro-PaoLoo query

? 'rams (X Y 12)

where X and Y are uninstantiated variables, would result in a control

error. Thus, one could not hope to find a square root directly with a
query such as

? TIMES (X X 2)

let alone expect to solve quintic equations expressed in terms of such
arithmetical primitive relations.

Accordingly, target reaching with complicated models involving arith-

metic is implemented in LogiCalc procedurally, using the unsophisticated

but normally effective numerical "Method of False Position". The user
specifies a target value for the current cursor cell, together with the
coordinates of an "assumption" cell whose value is to be found. He also

204



KRIWACZEK

provides two initial estimated values for the "assumption" cell, on the
low and high side. The system identifies the subgraph of the dependency
graph lying between the "assumption" cell and the "target" cell, and
sorts its nodes into a consistent total ordering. This results in a chain of
cells between the "assumption" and "target" cells. Any tentative value
given to the "assumption" cell will cause a ripple of updated values along
this chain, with the "target" cell finally receiving its new value.
The system checks that when applying the user's two estimates, A and

B, to the "assumption" cell, the two resulting values, C and D, say, for
the "target" cell lie on either side of the target value, T. The system
then applies inverse linear interpolation to obtain a third estimate, E, for
the "assumption" cell's value, lying somewhere between A and B. Next,
the system determines the value, F, of the "target" cell resulting from
this new estimate. By considering values T, C, D, and F for the "target"
cell, the system establishes whether the required value for the "assump-
tion" cell lies between A and E or between E and B. The process is then
repeated with this new pair of estimates, and continues until the
difference between the current two estimates is sufficiently small,
compared to the estimates themselves. At this point the "assumption"
cell is defined as holding this last estimate as a constant value, and the
spreadsheet window is updated.

3.3. Cells containing structured objects

It was mentioned in connection with "which" queries that the value of a
cell may be a tuple rather than a number or string constant. In fact, the
value could also be a list. In micro-PRoLoo the primitive relation

X ISALL (Y: Z)

instantiates X to the list of all terms Y satisfying conditions Z. In
accordance with the notation for non-numeric functions, a cell defined
using the @ISALL function would contain the list of all solutions to a
query.
Items like this might be much more extensive than could be fitted

inside a cell, no matter what the width, and would often have to be
truncated when displayed. To view the full contents, windows can be
opened onto such cells by explicit command. Unless stipulated by the
user, cell windows have a default position and size, and if more than one
is open they may overlap.
Having introduced cell windows, a variety of other ways of defining

cells emerge as feasible. Firstly, a cell can be defined by the "text about"
function. If, for example, cell G6 is defined by

text about F4

then, provided a window has been opened for G6, the system will load a

205



LOGICALC: A PROLOG SPREADSHEET

text file about the current value of F4 and will display it in the cell
window. If there is much text, the user will be able to scroll through it in
the window.

Secondly, if a cell has been defined by the "graph of" function, then a
variety of different types of graph can be displayed in the corresponding
cell window. One argument of this function is the type of chart required,
and a second argument is the range of cells whose values are to be
graphed. For example,

graph of (B4(A1.A10))

defines a graph of the range of values of A1–A10, whose type is given by
the value of B4. Of course, if only one type of graph were required then
the first argument could specify it explicitly, instead of by cell reference.
In some applications it may be desirable to represent the solution to a

query in pictorial form. If a set of cells are declared to hold the
components of a solution to a query, then a further cell can be defined as
the "picture of" the solution comprising these components. At present,
the system relies on being able to access a PROLOG "draw" program,
specially written for each particular problem, which produces such
pictures from the component values of solutions.
In a simple example of the design of two-roomed flats [5], a declaration

was made that a particular set of cells were related in such a way that
they held the components of a solution to the design problem—one cell
holding the position of the front door, another holding the position of the
back-room window, and so on. A further cell was defined as the "picture
of" the solution, and a "draw" program was written for producing plans
of flats from the component values. As each solution was found by the
system its picture was displayed in a cell window.
For a graph or picture, different parts of the cell window display will

correspond to the values of the different cells that had been referenced in
the "graph of' or "picture of" definition. In many cases it is possible to
move the cursor inside the cell window and to manipulate parts of the
diagram, these changes being reflected back as modifications to the
values of the corresponding referenced cells. Since the different re-
ferenced cells are themselves interrelated, such direct manipulations will
often result in changes to related parts of the picture.

It is intended that LogiCalc will eventually incorporate the tools for
producing "draw" programs interactively, and that the system will finally
have the functionality, as a pictorial simulation tool, of Borning's
"ThingLab" [6]. This will require the incorporation of powerful problem-
solving methods, including constraint-satisfaction techniques.

Lastly, a cell can be defined to be a spreadsheet itself, viewable and
manipulable only when the cell window is open. It is possible to specify

206



KRIWACZEK

that such a new spreadsheet will have certain properties, including
sharing the same definitions for a particular set of cells as some other
spreadsheet, or with the value of its cells being the sum of the values of
the corresponding cells of two or more other spreadsheets. (An applica-
tion of this feature is the consolidation of accounts.) It would be
straightforward to ensure that particular spreadsheets were secure from
view or access. In other respects, new spreadsheets defined in cells can be
treated in the same way as the main spreadsheet. In particular, cells of a
new spreadsheet can again be spreadsheets, giving LogiCale a recursive
structure.

4. POTENTIAL AREAS FOR DEVELOPMENT

The author is currently investigating two approaches for extending
LogiCale into more powerful decision support systems.
The first approach [7] recognizes that a limitation common to most

financial planning systems, whether simple electronic spreadsheets or
more sophisticated programs, is their reliance on the user of a two-
dimensional tabular representation of models. A language is to be
developed which would allow the financial planner to express his business
situation in a more natural and unconstrained way. The user's input
would be translated into a set of PROLOG clauses corresponding to his
intended model, and the system would represent aspects of the model
using a variety of modes including spreadsheet and graphics. The user
could carry out the full range of modelling operations and instigate
structural changes to the model, either through the medium of the
modelling language or by direct manipulation of the spreadsheet or
graphs.
The second approach, perhaps based upon more speculative ideas, is

inspired by the concept of "User Assistant" or "Dialogue Manager"
described by Bullinger and Faehnrich [8]. Amongst the various different
modes of man—computer communication there is no best overall dialogue
technique. Each mode has its own pros and cons with respect to
particular types of user, task, and application. Furthermore, in some
applications the ability to employ a mixture of modes can lead to a
significant increase in expressive power. This point has already been
recognized in the design of spreadsheets, where direct manipulation is
combined with formal techniques to specify formulas. The task of a
"User Assistant" is to manage different communication modes
effectively, so as to produce such "symbiotic" dialogues We are inves-
tigating whether LogiCale could be made more intelligent by being
provided with a "User Assistant". This would take decisions to display
graphs or natural language messages related to operations of the user,
prompt the user in appropriate modes, and so on.

207



LOGICALC: A PROLOG SPREADSHEET

5. CONCLUDING REMARKS

Important benefits appear to have been gained by implementing this
spreadsheet as a logic program. Firstly, the fundamental structure of the
system has been laid bare, permitting clear and simple solutions to
various design problems, and pointing to ways in which the functionality
of the system can be extended through the generalization of existing
concepts. Secondly, since LogiCale is a rule-based system written in an
AI language, the more difficult task of developing it into a truly
"intelligent" decision support tool is made less onerous.

Acknowledgements

The author is grateful for several useful discussions with Marek Sergot and Phil Vasey of
the Logic Programming Group at Imperial College, and is particularly indebted to the head
of the group, Professor Robert Kowalski, for much encouragement and support. Thanks
are also due to Brian Steel of Logic Programming Associates, who was responsible for the
IBM-PC version of micro-PaoLoG in which later prototypes of LogiCale were implemented.

REFERENCES

1. ICriwaczek, F. (1982) Some applications of PROLOG to Decision Support Systems. M.Sc.
report. Imperial College of Science and Technology, London.

2. McCabe, F. G., Clark, K. L., and Steel, B. D. Micro-PROLOG Programmer's Reference
Manual. Logic Programming Associates, London.

3. Horowitz, E. and Sahni, S. (1977) Fundamentals of data structures. Pitman, London.
4. Sergot, M. (1982) A query-the-user facility for logic programming. Proc. European

Conf on Integrated Interactive Computing System, (Stresa), Italy
5. Markusz, Z. (1977) How to design variants of flats using programming language PROLOG

based on mathematical logic Proc. Information Processing 77. North Holland,
Amsterdam.

6. Boming, A. (1979) ThingLab--a constraint-oriented simulation laboratory. Xerox
PARC Research Report SSL-79-3, Xerox, Palo Alto.

7. Kriwaczek, F., Phillips, J. A., and Russel, M. J. (1985) An intelligent financial planning
system. Proposal for research. Imperial College of Science and Technology, London.

8. Bullinger, H. -J. and Faehnrich, K.-P. (1984) Symbiotic man—computer interfaces and
the user assistant concept. Proc. 1st U.S.A.—Japan Conf. on Human Computer
Interaction. Honolulu.

208



10

Representing Legislation as Logic

Programs

M. Sergot
Department of Computing
Imperial College of Science and Technology
London, UK

Abstract

The law is a rich and natural source of expert system applications of
different and complementary types. In particular, legislation which is
definitional in character can often be formalized as rules in logic
programs so that, when executed by an augmented PROLOG system such
as APES, it can be queried as though it were a data base. The system in
turn queries the user for additional information which it needs, and it can
explain and justify its conclusions in terms of the original legislation. The
resulting system has many of the features associated with expert systems,
but it can be regarded more usefully as a precise and executable
specification of what the legislation tries to express. This suggests that

executable formalizations can aid the drafting process itself, and that the
techniques have application outside the law for formulating and applying

regulations in all kinds of organizations.

1. INTRODUCTION

The law provides an ideal experimental domain for research in many

areas of artificial intelligence (Al). It is a rich source of difficult and

challenging problems which involve issues of knowledge representation,
the analysis of natural language, and the automation of practical and

common-sense reasoning. In contrast with many other experimental

domains, however, the successful application of AI techniques in law will

give rise to practical applications of immense social significance. Even

now it is possible to build practical and useful systems requiring relatively

unambitious techniques which are already well understood. This paper is

concerned primarily with systems which represent the law as computer

programs, as legal 'expert systems' which can apply the law to the

solution of specific legal problems.
The rules and regulations which govern the running of all institutions

and organizations have exactly the same character as legal provisions.

The terms 'law' and 'legislation' are used here in this wider sense, to

209



REPRESENTING LEGISLATION AS LOGIC PROGRAMS

include the laws of organizations as well as the laws of a state. The
domain of potential applications is consequently very wide. It suggests, in
particular, a non-conventional approach to the construction of software
for conventional data-processing applications. A payroll system could be
based directly on tax and sick pay legislation, and could include, for
example, a representation of the company pension scheme, the rules
which govern holiday allocation, and promotion regulations. In the Logic
Programming Group at Imperial College we have constructed a number
of experimental systems treating fragments of these components, some of
which are described in later sections of this paper.
The drafters of legislation, and of regulations more generally, are

normally expected to formulate the law as clearly and precisely as
possible. This makes legislation an ideal application for logic program-
ming. Many regulations are 'definitional' in character and can often be
formulated as rules in logic programs. This formalization can then be
queried as though it were a data base and it in turn will query the user for
information which it needs to solve a given problem. Before discussing
this approach in more detail, however, it is instructive to consider first a
different and complementary type of legal expert system.

2. LEGAL EXPERT SYSTEM 1

There is one sense in which the law as an application area is no different
from any other domain which requires the application of specialized
professional skill and expertise. One could imagine constructing an
expert system which incorporates in rule-based form the expertise of an
experienced lawyer, for the sake of example, that of an advocate who
gives good advice to clients accused of criminal offences. Such a system
might well include rules like:

x should plead guilty of y
if x accused of y
and x did y
and penalty for y is light
and not x has reasonable defence for y

x should plead not guilty of y
if x accused of y
and not x did y
and penalty for y is heavy
and x has reasonable defence for y

and many more. Auxiliary rules would be needed to define amongst
other things what constitutes a reasonable defence and when and which
penalties are associated with the various offences.

210



SERGOT

The rules above are expressed as logical implications of the form

A if B and C and . . .

These implications are Horn clauses, extended as in PROLOG to allow
negated conditions in rules. This fragment of first-order predicate logic is
termed here 'extended Horn clause logic'.
In the two rules above, the symbols 'guilty', 'not guilty', 'light' and

'heavy' are constant symbols, 'x' and 'y' are variables, and predicate
symbols like

. . should plead.. . of...'
'...accused of...'
. . did .
. penalty for. .. is ..

'...has reasonable defence for . .

have been written in distributed infix form to aid readability.
Legal Expert System 1 is intended to represent an expert system in the

'classic' style of MYCIN [1] or PROSPECTOR [2]. It would be constructed by
a process in which the expert's implicit, or even subconscious, problem-
solving methods are made explicit and expressed in rule-based form.
These rules then combine to give a system which simulates the problem-
solving behaviour of the original expert.

It is important to note that the rules of Legal Expert System 1 express
an expert's opinion of the law, and as such have no legal authority. The
law itself, for example, may well not prescribe what constitutes a
'reasonable defence'. This is a concept which the lawyer finds useful
when advising clients, and one which he has built up by experience over
the years. Legal Expert System 1 incorporates little knowledge of what
the law actually says: it is more concerned with simulating the legal
problem-solving process than with reasoning explicitly about the law
itself.

Legal Expert System 1 is imaginary, and it is worth digressing to
remark on the practicality of the approach it represents. There is nothing
to suggest that building expert systems for legal practice would be any
harder (or easier for that matter) than the construction of similar systems
which already exist in the more traditional domains like medicine or
geology. Waterman and Peterson have described a system, LDS [3,4],
which they constructed in the programming language ROSIE for the
problem of settling claims in product liability cases. LDS attempts to
model how such claims are actually settled in practice. Although it is
primarily a research tool for analysing the effects of alternative liability
rules, Waterman and Peterson have indicated on occasion [3] that LDS
could be adapted straightforwardly for use as a consultative expert system
in its specialist domain.

211



REPRESENTING LEGISLATION AS LOGIC PROGRAMS

This paper is not concerned with systems which simulate a lawyer's
practical problem-solving skills, however, but with systems which aim to
represent the law itself, for whatever purpose. Legal Expert System 1 has
been presented at this stage to introduce a recurring theme: the idea of
legal expert system, not as decision taker, but as decision-taking aid.

Legal Expert System 1, potentially at least, can give conflicting advice.
In general, there will be rules which suggest that the client should plead
guilty, and others which advise him to do the opposite. One could, as in
many expert systems, associate some kind of certainty factor with each
rule, and then provide in the system's inference engine some method of
combining the various certainties to eliminate the apparent inconsistency,
ranking the system's advice according to these certainty measures. In
many applications this is precisely what is required: a system which will
weigh up the conflicting rules and facts, arriving at a small number of
specific recommendations with some indication of how good they are
likely to be in practice.

This approach is not recommended for the imaginary Legal Expert
System 1. Real experts, particularly lawyers and accountants do give
conflicting advice, and for good reason. It is the client himself and not the
expert who must make the final decision: in this example, whether to
plead guilty or not guilty. The expert's role is to present the various
alternatives, and to point out the consequences of deciding one way or
the other. Ultimately, the client must decide.
Legal Expert System 1, it is argued, is useful precisely because it has

the ability to generate conflicting advice. Of course, an expert lawyer
whose advice is 'either plead guilty or plead not guilty' is of little use. But
expert systems have an important and characteristic feature. They can
explain their recommendations by showing the assumptions on which
these recommendations are based. When the recommendations are in
conflict, these explanations take on the character of arguments. As an
aside, we should not be worried that a single set of logical sentences can
produce conflicting conclusions. There is nothing logically inconsistent
about advising someone that he should plead guilty for one reason, and
not guilty for another.
Thus the output from Legal Expert System 1 is not simply 'guilty' or

'not guilty', but rather the whole set of arguments which can be
constructed from the facts of a specific case, some arguing for and others
against a particular decision. The user of the system, the client as it were,
is free to examine these arguments, compare them one against the other,
and choose to accept one, or reject them all in favour of a more
persuasive argument from some other source.

It would be tempting, of course, to extend the system so that it could
also assist in the evaluation of arguments. A real expert may want to
indicate the likelihood that his assumptions, and his recommendations,

212



SERGOT

are correct. It may be possible, for example, to estimate the probability
that a particular defence will be accepted as 'reasonable' in court. One
could envisage systems which apply (meta-level) criteria to distinguish
weak arguments from strong, by considering, for example, the chain of
reasoning involved, and the source of the various rules which are used.
The evaluation of arguments is a separate exercise which needs further
investigation, however, and it is not pursued further in this paper.
The importance of constructing arguments which are in conflict will be

considered later when we look at the effects of vagueness and case law.
For now, an example which contrasts directly with Legal Expert System 1
is given below. It is concerned with representing, not the legal problem-
solving process, but the content of a piece of legislation.

3. LEGAL EXPERT SYSTEM 2

Legal Expert System 2 deals with entitlement of claimants to Sup-
plementary Benefit, one of the Social Security benefits in the United
Kingdom. The system was implemented by Peter Hammond [5] as a
feasibility study for the United Kingdom's Department of Health and
Social Security (miss), to demonstrate the usefulness of expert systems
within the DHSS, and to estimate the effort involved in constructing such
systems. The aim was not to build a system which would be used by Dliss
officials in practice. Hammond was assisted by Ian Pickup, an expert on
Supplementary Benefit from the miss, who supplied detailed knowledge
of the relevant legislation and how it is interpreted and applied within the
DHSS.

In Hammond's system, entitlement to Supplementary Benefit is
described in extended Horn clauses, which are executed on a micro-
computer by APES (Augmented PROLOG for Expert Systems) [6, 7]. APES
is described below. The top-level rule for entitlement to Supplementary
Benefit is expressed in the pseudo-natural language syntax accepted by
APES, as

x is entitled to supplementary benefit
if not x is disqualified by sex
and not x is a juvenile
and educational status of x is OK
and x is a GB resident
and x is excused or registered for work
and x needs financial help
and not x is disqualified by trade-dispute.

Here negative conditions like

'not x is disqualified by sex'

213



REPRESENTING LEGISLATION AS LOGIC PROGRAMS

are treated by negation as failure [8]:

not P holds if and only if all the ways of showing P fail.

Most of the conditions in the entitlement rule are themselves defined by
lower-level rules. For example

x is disqualified by sex
if sex of x is female
and x has partner
and x is living with partner

x needs financial help
if capital of x is less than max-capital for supplementary benefit
and requirements of x exceed resources of x

although some 'rules' have no conditions

max-capital for supplementary benefit is 2500
pensionable age for male is 65
pensionable age for female is 60.

Other conditions in the entitlement rule, such as

`x is a GB resident',

and in the lower level rules,

'sex of x is y',

for example, require information about the individual claimant, and are
not defined by lower-level rules.

Specific information about individual claimants can always be supplied
as rules in a supplementary PROLOG data base. Usually, however, it is
more convenient and more realistic if the system requests this specific
information when it is required. This eliminates the need to supply all
information in advance, and it frees the user from having to know
precisely what information is relevant before the consultation begins.
APES [6,7] is an extended PROLOG interpreter which incorporates

Query-the-User [9], a model of input—output for logic programs in which
the user is regarded as an additional source of information which can
contribute to the problem-solving process. When APES cannot solve a
problem itself for lack of information, it assumes the information is
available from the user and it asks the user to supply it. In Query-the-
User (and APES), the user is regarded as a kind of external data base.
APES also maintains a trace of its execution, providing explanations on

request which can be examined interactively by the user. In logic-based
systems like APES, these explanations correspond to logical proofs that
the answers computed follow logically from the combined knowledge of

214



SERGOT

the system and the information supplied by the user. APES itself is
implemented in micro-PRoLoo [10].
As with any logic program, an interaction with APES is initiated by a

query from the user. In the following sample dialogue, user input is in
boldface:

confirm (Peter is entitled to supplementary benefit)
What is Peter's sex? male
How old is Peter (in years)? 23
Is Peter in full-time education? why

if Peter is not in full-time education
then educational status of Peter is OK

not Peter is disqualified by sex
not Peter is a juvenile, so

if educational status of Peter is OK
and Peter is a GB resident
and Peter is excused or registered for work
and Peter needs financial help
and not Peter is disqualified by trade-dispute
then Peter is entitled to supplementary benefit

Is Peter in full-time education? no

•

Is Peter currently involved in a trade-dispute? no

Yes, I can confirm that
Peter is entitled to supplementary benefit how

To deduce
Peter is entitled to supplementary benefit

I used the rule

x is entitled to supplementary benefit
if not x is disqualified by sex
and not x is a juvenile
and educational status of x is OK
and x is a GB resident
and x is excused or registered for work
and x needs financial help
and not x is disqualified by trade-dispute

I can show
1. not Peter is disqualified by sex
2. not Peter is a juvenile

215



REPRESENTING LEGISLATION AS LOGIC PROGRAMS

3. educational status of Peter is OK
4. Peter is a GB resident
5. Peter is excused or registered for work
6. Peter needs financial help
7. not Peter is disqualified by trade-dispute

Explain? 6

etc.

The clauses describing entitlement to Supplementary Benefit can
function as a program to check an individual's claim. As Hammond
points out, however, the same rules can be used for many other
purposes: to determine who is entitled to Supplementary Benefit

find (x :x is entitled to supplementary benefit),

or to discover all the benefits to which Peter is entitled,

find (x :Peter is entitled to x),

or to find juveniles who may be in need of financial help,

find (x :x is a juvenile and x needs financial help).

Approximately 70 of Hammond's rules cover entitlement to Sup-
plementary Benefit of about 90 per cent of all claimants. Deciding the
claims of the other 10 per cent involves a great deal of detail, however, so
that extending the system to cater for all claimants would increase the
number of rules several times over. In fact, Hammond's 70 rules handle
almost exactly those claims which are processed routinely, and ignore the
problematic cases in which DHSS officials require assistance. A practical
implementation for the DHSS (but not necessarily for anyone else) would
have to be more concerned with the less routine cases. From the DHSS'S
point of view, however, the system did demonstrate what is possible in a
limited amount of time.
The first version of the system, comprising about 50 rules (for 60 per

cent of claimants), was produced in two days, including a half-day
introduction to PROLOG for Ian Pickup. These rules ran in APES on a 64K
micro-computer, although they were later moved to a 128K system. The
number of rules was increased to 70 in two more days. In a subsequent
exercise, the system was extended to calculate the amount of benefit
payable and to determine the date on which the payments are made. The
final system contained more than 200 rules and was produced in about
one man-month overall.
Two points need to be stressed. Firstly, the hardware requirements for

216



SERGOT

the system are extremely modest. The feasibility of building legal expert
systems on small computers has since been demonstrated by a number of
other pilot projects at Imperial College, some of which are referred to in
later sections of this paper. Secondly, Hammond and Pickup were able to
avoid many of the time-consuming problems associated with knowledge
elicitation for expert systems, and this is reflected in the large number of
rules they were able to formulate in the short time available to them.
Their experience seems to confirm a commonly expressed opinion. The
law, and regulation based organizations more generally, are a natural
source of expert system applications. The attraction of the application
domain is clear. By its very nature, the law is well documented, and the
existence of regulations and reported examples makes the process of
knowledge elicitation very much easier. Even if the documentation is not
already in a form which can readily be expressed in computer-intelligible
terms, it provides at the very least a convenient framework around which
the knowledge acquisition process can proceed. This is not to say that
there are no knowledge acquisition or knowledge representation
problems.
Hammond's Supplementary Benefit system is an expert system in every

sense. Knowledge is expressed explicitly in rule-based form; the system
can request missing information which it needs, and it can explain and
justify its conclusions. The knowledge which the rules express moreover
is that of a human expert, i.e. Ian Pickup's opinion of what entitlement to
Supplementary Benefit requires. This opinion is based on extracts from
enabling legislation and various supplementary regulations, on a conden-
sation of the relevant case law, and on familiarity with the DHSS'S
interpretation of the law and with its application in practice.

Consequently, the rules in Hammond's system are without legal
authority. They express what Ian Pickup thinks entitlement to Sup-
plementary Benefit requires, and not necessarily what the law actually
says. So the question now arises: to what extent is it possible to eliminate
the human expert from this process altogether and base a system directly
on the actual legislation itself?

4. REPRESENTING LEGISLATION IN LOGIC

A part of the law is expressed as written provisions or explicit
regulations, but the law in force at any one time is also determined by the
decisions which were taken in previous cases. In many systems of law,
case law has a legally binding nature through the doctrine of precedent.
In other legal systems, and in organizations of all kinds outside the law,
precedent may not be legally binding, but there is a role for case law
nevertheless. The decisions taken in previous cases always have to be
considered, if only for the sake of consistency and fairness. This paper

217



REPRESENTING LEGISLATION AS LOGIC PROGRAMS

concentrates on explicitly written legal provisions, although case law is
mentioned also.

It is sometimes suggested that the law is also influenced by general
legal principles ('no man may profit by his own wrong doing', for
example). The legal status of such principles, and to what extent they
must be considered in practice, remains a matter of debate for scholars of
jurisprudence. In most cases, and certainly for the purposes of this paper,
the practical effect of these vague principles can be ignored.

If a fragment of written legislation and its associated case law can be
formalized in some mechanizable form of logic, then that formalization
can function as a program which interprets and applies the law. A logical
formulation of Social Security regulations, for example, can be regarded
as a set of axioms. The entitlement of a claimant to a particular benefit is
an example of a theorem we might try to prove from these axioms. As we
shall see later, the proof of such a theorem (trivial by the standards of
mathematics but useful nevertheless) is within the capabilities of even
relatively unsophisticated theorem provers like PROLOG.
The advantages of this logic-based approach over the use of conven-

tional programming languages are many. Legislation is not typically
expressed as detailed algorithms: representing a complex and very
high-level specification of some legal concept in a low-level algorithmic
programming language is rarely a practical possibility. Symbolic logic,
and at this stage we do not need to consider exactly which form of
symbolic logic is appropriate, provides a precise language which re-
sembles the draftsman's natural language closely. Symbolic logic, in the
form of logical implications, can be regarded as the purest form of
rule-based programming language, and the formalization inherits many of
the advantages normally ascribed to expert systems. In particular, the use
of a rule-based language makes the program comparatively easy to read,
for lawyers and users alike. It is also easy to maintain and gives a natural
way of generating explanations by constructing a trace of the rules which
were used during execution.

Clearly these advantages are enhanced if the particular form of logic
allows formalizations which resemble as closely as possible the style and
structure of the original legislation. A close correspondence between
legislation and its formalization increases confidence that the formaliza-
tion is, in some sense, correct, and it makes the resulting program easier
to maintain as the legislation changes.

It is possible in theory to build automated theorem provers for any
system of symbolic logic; in practice, efficient proof procedures exist only
for a small number of logical systems. Typically, theorem provers which
are tolerably efficient are restricted to various fragments of first-order
predicate logic. Extended Horn clause logic is one such fragment. It is
the basis for the computational paradigm, logic programming, and for the

218



SERGOT

programming language PROLOG. Indeed, PROLOG can be regarded as a
simple theorem prover which incorporates various restrictions to make it
an efficient executor of logic programs. PROLOG has a fixed method of
executing programs and this imposes severe limitations on its use as a
general-purpose theorem prover (it sometimes goes into loops, for
example). Nevertheless, PROLOG can be used to derive many useful and
non-trivial logical consequences from axioms expressed as extended Horn
clauses.
Whether or not PROLOG will be adequate for the needs of a particular

application will depend on the kind of problem-solving tasks we wish to
support and on the style of the interaction we wish to provide. But there
are reasons, independent of these considerations, to suggest that ex-
tended Horn clauses are an appropriate logic for representing many kinds
of legislation. Extended Horn clause logic is a fragment of first-order
logic which does not allow disjunctive conclusions in rules. But we can
dispense with disjunctive conclusions for many practical purposes. In
particular, rules with disjunctive conclusions

A or B if C

are seldom encountered in law. Legislation is normally concerned with
specifying the conditions under which some definite conclusion can be
made.
Dispensing with disjunctive conclusions in rules is an important

simplification (it allows us to apply relatively efficient theorem provers),
but we could not realistically expect to formalize any sizeable fragment of
legislation in pure Horn clauses. At the very least we shall have to allow
negated conditions in rules if our formalizations are to bear any
resemblance to the original texts on which they are based. Allowing
negated conditions in rules takes us beyond Horn clause logic, and would
seem to re-introduce the need to reason with all of first-order logic. But
there is a method of treating negation without going outside the
capabilities of Horn clause theorem provers. Keith Clark [8] has shown
that classical negation

not Q is true if and only if Q is false

can be replaced by negation as failure

conclude not Q when all ways of proving Q fail

whenever we can make a 'Closed World' assumption

anything which is unknown to be true is assumed to be false.

Negation as failure is the easiest type of negation to deal with
computationally. It is also a type of negation which is often appropriate
when reasoning with law. Given the regulations which describe entitle-

219



REPRESENTING LEGISLATION AS LOGIC PROGRAMS

ment to some benefit, it is natural to assume that the regulations cover all
the possible ways of being entitled, that there is not some other way of
becoming entitled which the legislators have not bothered to mention.
This is precisely the assumption which justifies the use of negation as
failure: if we cannot determine that a particular individual is entitled to
the benefit by any of the routes explicitly mentioned, it is normal to
conclude that the individual is not entitled to that benefit. There will be
occasions, of course, when it is difficult or impossible to say that all the
relevant legal provisions have been considered. In those circumstances
the treatment of negation by failure is not justified, and we shall have to
look to some other, necessarily less efficient, method for dealing with
negation. The suggestion that we can often treat negation as failure is
purely a practical one. Under very specific conditions, Clark's result
allows us to read negation classically but compute with it by failure.
Nothing in what follows turns on this, however.
I have suggested that disjunctive conclusions are seldom encountered

in law, but I have to be more precise about what I mean in making such a
claim. Suppose we have rules

A if B

A if C

(1)

(2)

which formalize some piece of legislation. Suppose we want to say further
that these are the only ways of establishing conclusion 'A' which the
legislation allows. We can express this 'only if' information either in the
object language by replacing the two rules (1) and (2) with the
biconditional

A if B or C (3)

or alternatively by stating in the meta-language that rules (1) and (2) are
the only ways of establishing 'A'. In both cases it is legitimate to conclude
'Li or C' given 'A'. In the first case, ̀ B or C' is logically implied by rule
(3) and the assertion 'A'. In the second case, or C' follows by
meta-level reasoning: if 'A' holds and rules (1) and (2) are the only ways
that 'A' could hold, then either ̀ B' holds or 'C' holds.

Clark [8] showed that for every proof of negation by failure (using
'only if' assumptions expressed in the meta-language) there exists a
structurally similar proof of the same conclusion using ordinary negation
(with 'only if assumptions expressed in the object language together with
appropriate axioms of equality and inequality). This is the 'Closed World
Assumption' which justifies negation as failure.
In suggesting that negation as failure is often appropriate when

reasoning with law, I am in effect claiming that the law often expresses
'only if information, either explicitly or implicitly. If we choose to write

220



SERGOT

'only if' halves for rules (1) and (2) in the object language, we are adding
a rule

B or C if A

to the formalization. This is a rule with a disjunctive conclusion. I am not
claiming that such rules are not encountered in law nor that we shall
never want to include them in our representations.
When we apply some piece of law, we have some facts about a

particular case and we use the legislation to determine what legal
consequences follow from these facts. A claim that disjunctive conclu-
sions are seldom encountered in law means that the rules which are used
for this purpose (whether we write them down or not) seldom have
disjunctive conclusions. These are 'if rules', and there is little difficulty in
identifying them in practice. When we construct a formalization of the
law, we write down these 'if rules' (and it is suggested that extended
Horn clause logic is a natural choice for the formal language in which to
do so). In addition to 'if rules', we shall want to include 'only if'
information, in general. If we are constructing a program which will only
be used to apply the law, we can, if we choose, interpret negation as
failure and thus in effect include the 'only if' rules implicitly. A
suggestion that the law tends to be naturally expressed as 'if and only if'
rules is an argument for the use of negation as failure, as long as we limit
ourselves to programs which apply the law. If we want our representation
of the law to be used for some other purpose (to assert, for example, that
a particular individual is entitled to Supplementary Benefit and investig-
ate what follows from this assertion), or if we choose not to treat
negation as failure for whatever reason, then we shall want to express the
'only if' part of the law explicitly, normally in the object language. These
'only if' rules will almost always have disjunctive conclusions. If the
formalization includes explicit 'only if' rules, then Horn clause theorem
provers will not be adequate for our purposes. In what follows, I shall be
less careful: I might claim that legal rules do not have disjunctive
conclusions, or that extended Horn clauses can express many legal
provisions; I shall be referring only to the 'if' part of the law.
That understood, I have suggested that many legal provisions will

translate naturally into Horn clauses extended to allow negated condi-
tions. There is a certain amount of evidence to support this claim in
Ronald Stamper's work on the LEGOL project (see for example [11,121).
One aim of Stamper's project was to design a computer language for
representing legislation. Stamper developed a method of analysis based
on various semantic considerations, and this semantic model in turn
formed the basis for a computer language in which rules could be written
to simulate the effects of legal provisions. The LEGOL language (in its
executable versions) was based on relational algebra. It is therefore fairly

221



REPRESENTING LEGISLATION AS LOGIC PROGRAMS

straightforward to reinterpret LEGOL rules as Horn clauses (and it is
argued elsewhere [13] that there are significant advantages in doing so).
Although such a translation overlooks the emphasis placed by Stamper
on LEGOL'S semantic model, it does suggest an improved way of
computing with LEGOL rules which is independent of what these rules
might 'mean'. It can be no coincidence that LEGOL, a computer language
specifically designed for representing legislation, can be reinterpreted as
extended Horn clauses, and in particular that LEGOL made no provision
for expressing disjunctive conclusions in its rules.

While there are many legal provisions which can be expressed in
extended Horn clause logic, there are also many types of legislation
which cannot. Even legislation which could be expressed in extended
Horn clause logic is often written in a way that makes such a translation
inconvenient or stilted. For example, many legal draftsman adopt a style
in which a general rule is expressed in one place, and a number of
additional conditions, particularly exceptions to it, are listed separately
elsewhere. It is also common to encounter descriptions of rules in terms
of other rules. An extract from section 16 of the United Kingdom's
Income and Corporation Taxes Act 1970 states:
(2) Where the claimant under subsection (1) is a woman

(a) the references in that subsection to the claimant's wife shall be
construed as references to the claimant's husband, and

(b) unless she is a married woman living with her husband, for the
reference in that subsection to £320 there shall be substituted a
reference to £355, and for references to £75 references to £110.

The subsection (1) referred to gives the conditions under which a person
could claim a particular allowance against personal Income Tax. Clearly,
subsection (2) describes a similar rule which holds only for women, not
by stating its conditions explicitly, but by specifying a modification to an
earlier rule instead.
These and other devices used by draftsmen indicate that we shall have

to incorporate a richer variety of features into our representation
language if we are to produce formalizations which keep recognizably
close to the wording of the provisions they are supposed to represent. We
can go a long way towards providing such a set of language features,
however, by introducing a number of straightforward syntactic extensions
to the basic extended Horn clause form. To take a simple example,
extended Horn clauses do not allow disjunction in the conditions of rules.
But a clause with a disjunctive condition

A if B and (C or D)

is logically equivalent to the two clauses

A if B and C
A if B and D

222



SERGOT

This equivalence can be exploited by regarding the more concise clause
with the disjunctive condition as syntactic 'sugar' for the two clauses
without disjunction. This particular extension is straightforward to
implement, and is a feature of most existing PROLOG systems.
There is, of course more to the development of a language for

representing legislation than merely providing syntactic extensions to
extended Horn clause logic. These syntactic extensions can only help in
formalizing legislation which could be translated into extended Horn
clause logic anyway, however inconveniently. But there are many kinds
of legislation which could not be expressed directly in extended Horn
clause logic. We should consider, amongst other things, how we might
represent what is sometimes assumed to be the characteristic feature of
law, the need to reason about concepts such as obligation (`Thou shalt
honour thy father and thy mother') and prohibition (`Thou shalt not
kill').
The law is sometimes regarded as a set of norms which state what must

or must not be done under particular circumstances. This model of the
law leads naturally to consideration of the ̀ deontic' concepts: obligation,
prohibition, permission, and their various elaborations. Such considera-
tions in turn have lead to occasional suggestions that some form of
specialized ̀ deontic' logic is necessary to represent the law and to analyse
the processes of legal reasoning.

It should be fairly clear that there are many areas of law where we
could not hope to proceed without some way of representing the deontic
concepts and computing with them. Specialized deontic logics attempt to
provide a general theoretical framework for reasoning about these
concepts, and a whole range of deontic logics of various kinds and levels
of sophistication have been proposed and investigated. Most of these
investigations, however, have not been concerned with computational
issues. Efficient and mechanizable proof procedures for non-classical
logics in general, and for deontic logics in particular, have still to be
discovered. We are unable to choose a suitable deontic logic and expect
to construct a computer-based reasoning system around it. An alternative
(and arguably more realistic) approach is to attempt a formalization of
the deontic concepts within a classical logic. This approach would
sacrifice the conciseness of a specialized logic for the greater flexibility
offered by describing the concepts explicitly, and it would allow us to
exploit immediately the efficient proof procedures which are known for
various fragments of classical logic. The treatment of deontic concepts
within a computational framework remains an important topic for current
investigations, and further discussion is outside the scope of this paper.
We have to recognize that some areas of law, for example those which

demand a sophisticated treatment of the deontic concepts, would seem to
be beyond the reach of current automated reasoning techniques for the

223



REPRESENTING LEGISLATION AS LOGIC PROGRAMS

present. But there are also many areas of law where existing techniques
can be applied immediately, and which give rise to an enormous number
of potential applications already. There are many legal provisions,
particularly those of an 'administrative' nature, which can be regarded as
little more than a precise definition of some legal relationship or
property. To take a typical example, legislation which describes the
circumstances under which an individual becomes a citizen of a country
can be viewed as the legal definition of 'citizen'. If this legislation is
complex enough, a system which formalizes the definition will have
significant practical value. In the next section, a system which formalizes
a definition of British citizenship derived from the provisions of the
British Nationality Act 1981 is described.
We might argue that citizenship should be viewed as an obligation, on

the Government and on those who fall under its authority, to recognize
as a citizen any individual who satisfies the citizenship requirements, and
to accord him all the rights and privileges associated with that status. This
view of citizenship reintroduces obligations, and introduces concepts such
as 'authority', 'right' and 'privilege'. If we want to reason at this level of
detail there are fundamental philosophical issues to consider and, from a
computational point of view, we have the attendant representational
problems to contend with again. Nevertheless, the definition of citizen-
ship, in itself, is unlikely to involve such sophisticated concepts. If the
definition is complex enough, a system which restricts itself to repre-
senting the definition alone would still be of practical value, even though
it does not begin to represent what the possession of citizenship actually
means.
Deontic logics (whether special-purpose or not) attempt to provide a

general theoretical basis for reasoning about the deontic concepts. For
many practical purposes, however, it will be unnecessary to import the
whole of this general mechanism into every given application. We might
argue that entitlement to a Social Security benefit imposes in reality an
obligation on the Government to make the appropriate payment when-
ever a valid claim is made. In practice, we can treat the conditions for
entitlement as a definition. For we shall often want to discover whether
an individual is entitled to benefit; we shall rarely want to proceed
beyond that, to consider what this entitlement means, whether it really
does impose an obligation on the Government, or what else we might be
able to infer from such an obligation if it does exist.

It can be argued, therefore, that substantial amounts of legislation are,
or can be taken to be, essentially definitional in nature. Much legislation
can be viewed as a high-level specification of some legal relationship or
property. This simplification does not eliminate all the difficulties,
however.
An example of what can be encountered in legislation, suggested by

224



SERGOT

Trevor Bench-Capon, is provided by the regulations under which a
woman could receive a 'Housewives Non-Contributory Invalidity Pen-
sion' (xNap), another of the United Kingdom's Social Security benefits
(now defunct). A key provision in the regulations stated that a person
would be entitled to HNCIP 'if she is incapable of performing her normal
household duties to a substantial extent'. Like many legal provisions, the
HNCIP regulations are at the same time definite, ambiguous and vague.
The regulations are definite because they state clearly what their

conclusion should be: a woman who satisfies all their various conditions is
entitled to the HNCIP benefit.
The regulations are ambiguous because there are two different ways of

reading the condition 'incapable of performing. . . to a substantial
extent'. The ambiguity is a syntactic one, caused by imprecision in the
scope of the adverbial phrase 'to a substantial extent'. The easiest way of
seeing the ambiguity is by bracketing the condition to make the scope of
the phrase explicit. The condition could mean

'(incapable of performing. . .) to a substantial extent'

or it could mean

'incapable of (performing. . . to a substantial extent).

Problems arise because a person can be capable and incapable of
performing a substantial amount of her normal household duties at the
same time. A woman who is capable of performing only 40 per cent of
her normal household duties is incapable of a substantial amount (60 per
cent), and capable of a substantial amount (40 per cent). Under the first
interpretation, she is entitled to the benefit. Under the second interpreta-
tion, she is excluded from the benefit because she can perform her
normal household duties to a substantial extent, and she is therefore not
incapable of doing so.
The ambiguity is a genuine one which came to light in the course of

appeals against decisions. (Two different interpretations were adopted in
two different parts of the United Kingdom. In Northern Ireland it was
held that a woman who is capable of performing a substantial amount of
her normal household duties is thereby excluded from the benefit. In the
rest of the United Kingdom, it was enough to be incapable of a
substantial amount for a woman to receive the benefit.)
The syntactic ambiguity in the HNCIP regulations is presumably an

unintended one which was overlooked at the drafting stage. The example
serves to illustrate an important mechanism of the law. One role of the
courts, or whatever other arbitration procedures are established, is to
remove accidental ambiguity when the circumstances of a particular case
make it necessary (and only then). Eventually a problematic case whose
outcome rests on the reading of the ambiguity comes before the

225



REPRESENTING LEGISLATION AS LOGIC PROGRAMS

appointed adjudicator, and a decision is taken one way or the other. This

decision sets a precedent for the future and establishes one particular
interpretation as the 'correct' one to take. This 'debugging' mechanism

also operates in organizations outside the law, although it is often very
much easier to amend the regulations themselves rather than to rely on

case law to specify the accepted interpretation.
The HNCIP regulations are also typical of legislation in that they are

vague. Nowhere in the regulations is it specified what the phrases
'substantial extent' or 'normal household duties' are supposed to mean.

Unlike the unintended syntactic ambiguity, however, this vagueness is
not accidental. The drafter of the regulations communicated precisely

what he wanted to say by leaving some of the conditions vague. The
general intention of the regulations is clear, although the specific meaning

of the conditions will be dependent on individual circumstances. Normal
household duties would be different for women who have children and

for women who do not, for example: no legislator could hope to foresee
every eventuality and make explicit provision for it. A legal draftsman is

often reluctant to specify a piece of legislation in the finest detail,
preferring that every individual case be judged on its own merits.

Moreover, social attitudes shift, and superfluous detail in regulations can
make the law unnecessarily inflexible and resistant to change.
In spite of the vagueness in the regulations, most cases of entitlement

to HNCIP would be decided straightforwardly in practice. Assuming that

the regulations had been suitably disambiguated, it would normally be

clear whether a person should be regarded as incapable of performing her

normal household duties to a substantial extent or not (at least, this is

what the draftsman has assumed). There may be occasions, however,

when some doubt remains. There may also be cases in which an appeal is

made against a particular decision. In those circumstances, an adjudicat-

ing body at the appropriate level of authority will have to intervene.

When such a case is brought before it, the adjudicating body will be

forced to make a decision: whether, for example, a particular individual

is or is not incapable of performing her normal household duties to a

substantial extent. This decision sets a precedent. Similar cases in the

future will have to be decided in a similar way, either because the

precedent is a legally binding one, or because there is a social or moral

obligation that persons in the same circumstances be treated in the same

way. Through this mechanism, case law emerges which supplements the

written regulations, and which gradually closes the definition of the legal

concept which the draftsman had chosen to leave unspecified.

In practice, of course, no two cases brought before a court will be

identical in every respect. The court may decide that a new case

resembles some previous one so closely that the previous decision should

apply in the new case also. Alternatively, the court may be persuaded

226



SERGOT

that the new case, although similar in many respects to previous ones, is
nevertheless different enough to require a different decision.
The decisions of a court hold only for those specific individual cases

which have been tried. There is (usually) no provision to decide
hypothetical cases. It follows that in any new case we cannot say with
certainty what its outcome will be, although legislation and case law may
provide good guidelines. Until the case has been tried, there is no fact of
the matter. Legal concepts are thus often said to exhibit open texture: a
legal concept is only precisely defined for those individual cases which
have been decided; there is no precise definition for cases which have still
to be tried.

Ambiguity, imprecision, and vagueness are always present in legislation
and it is the resolution of problems which arise as a consequence that
gives legal reasoning much of its own special character. In view of this it
is sometimes supposed that symbolic logic has no place in legal reasoning
because, it is suggested, logic is a language of such precision that it can
only be applied to concepts which are sharply defined. Yet it is exactly
the precision of logic which makes it an indispensable tool for analysing
and reasoning with law. We cannot avoid ambiguity and vagueness in
law, and we must not pretend that these problems do not exist when it
comes to constructing computer representations of law. But we cannot
even describe ambiguity and vagueness unless we have a language of
sufficient precision. Similar arguments for the use of logic are often made
by legal scholars. Layman Allen, for example, has advocated the use of
symbolic logic for many years, as a practical tool for analysing and
potentially simplifying the content of legal documents (see for example
[14]).
The stylized form of natural language used by legal draftsmen is a

notorious source of imprecision and unintended ambiguity. Recently
there have been several attempts to prescribe language standards which
will improve the precision of legal documents. Most notably, Layman
Allen has proposed the use of a 'normalized' form in which to draft
legislation [15]. Not surprisingly, this 'normalized' form is based on a
disciplined use of logical connectives, with some suggestions for syntactic
conventions to avoid the inadvertent ambiguities to which legal draftsmen
are prone. None of this is to argue that draftsmen should be forced, or
even encouraged, to eliminate all imprecision from legislation. Many
regulations are effective precisely because they are vague and under-
specified, and we have seen an example of this in the HNCIP regulations.
Rather, it is unintended ambiguities which need to be eliminated from
legal documents.
In effect, Allen's normalized form is an attempt to provide the

draftsman with a semi-formal language with some degree of precision.
Such recommendations are beginning to be adopted in the drafting of

227



REPRESENTING LEGISLATION AS LOGIC PROGRAMS

new legislation. As we begin to construct computer representations of the

law, we must be aware of these recommendations also. We must
eliminate unintended imprecision from our representations of the law,

and we cannot possibly do so if the representation language which we use
is already imprecise.
The key contention is that legislation can be represented in a

mechanizable form of logic, and that extended Horn clauses are a natural
form of logic to take for many kinds of simple legislation. In order to test
this hypothesis, and to identify candidate features for any syntactically
richer representation language, we formalized a sizeable fragment of real
legislation, the British Nationality Act 1981. The formalization of the
British Nationality Act also tests to what extent the simple execution
strategy of PROLOG would be adequate to apply the law (a specific but
typical use), and it serves to illustrate why the use of a formal logic is not
incompatible with the open texture of legal concepts.

5. LEGAL EXPERT SYSTEM 3

Much of the British Nationality Act 1981 was formalized in extended
Horn clauses by a student, Fariba Sadri, in the months of July and
August 1983 with no expert legal assistance. A self-contained part of the
Act runs in APES on a 128K micro-computer as a program which can
apply the law in individual cases. The formalization of the Act is
described in more detail in ref. [16].
The British Nationality Act was introduced to provide a new definition

of British citizenship in terms of four new categories. The Act itself
consists of five Parts and some supplementary Schedules. The first four
Parts define the four categories of citizenship. The fifth Part and the
Schedules include various definitions which are needed to understand the
other four Parts. The first Part of the Act deals with British Citizenship
proper: rules for its automatic acquisition (at birth, for example),
conditions for entitlement to register or naturalize, and provisions for the
renunciation and resumption of citizenship. Each of the next three Parts
treats one of the other categories of citizenship (British Dependent
Territories Citizenship, British Overseas Citizenship, British Subjects) in
a similar way.
At the time it was introduced, the Act was a very controversial piece of

legislation and we hoped that its formalization might clarify some of the
issues which caused the controversy. More importantly for the experi-
ment, we chose the British Nationality Act because it exhibits all of the
characteristics of legislation, while at the same time allowing a number of
considerable simplifications. I shall consider these various simplifications
in the course of the next few sections. It is enough to remark here that
the Act contains so much detail, and its various provisions interact to

228



SERGOT

such an extent, that even experienced lawyers find it difficult to assess the
implications of the Act for particular individuals. Nevertheless, most
individual clauses in the Act are easy enough to understand in isolation:
useful and non-trivial conclusions can be reached by a straightforward,
mechanical application of the rules, so that a formalization of the Act
does have some practical value.
The first clause of the Act deals with the acquisition of British

Citizenship at birth:

1-(1) A person born in the United Kingdom after commencement
shall be a British Citizen if at the time of birth his father or mother is
(a) a British citizen; or
(b) settled in the United Kingdom.

According to the Act, 'after commencement' means after or on the date
on which the Act comes into force. This clause of the Act can obviously
be formalized as Horn clauses, although it is less obvious what specific
predicates should be chosen. Since elsewhere in the Act it is important to
know the date on which an individual acquires citizenship, and the
section of the Act by which he does so, we eventually decided on:

x acquires British citizenship on date y by section 1.1
if x was born in the ux
and x was born on date y
and y is after or on commencement
and z is a parent of x
and (z is a British citizen on date y by section yl

or
z is settled in the uic on date y).

Here I have used the syntactic extension referred to earlier, which allows
disjunctions in the conditions of rules. Notice that the formalization
makes the assumption, not stated explicitly in the Act, that a person who
acquires citizenship by section 1-(1) does so at birth.
The possession of British Citizenship can be related to its acquisition

by the rule:

x is a British citizen on date y by section z
if x is alive on date y
and x acquires British citizenship on date yl by section z
and y is after or on yl
and not (x ceased to be a British citizen on date y2

and y2 is between yl and y).

A person can cease to be a British citizen by renouncing it or by being
deprived of it. The condition

x is alive on date y

ensures that a person ceases to be a British citizen when he dies.

229



REPRESENTING LEGISLATION AS LOGIC PROGRAMS

Notice, too, that the definition of British citizenship is recursive:
whether one person becomes a British citizen by section 1-(1) can depend
on the citizenship of another. Elsewhere in the Act, acquisition of
citizenship by one section can be blocked by the acquisition of citizenship
by some other section (although in general an individual can be a British
citizen by more than one section of the Act). It has sometimes been
suggested that a propositional logic is adequate for representing legisla-
tion. The recursive definition of British citizenship suggests that, in the
case of the British Nationality Act at least, a propositional language is
not adequate.

Section 2-(1) of the Act states that:

2-(1) A person born outside the United Kingdom after commence-
ment shall be a British citizen if at the time of the birth his father or
mother
(a) is a British citizen otherwise than by descent; or . . .

Since section 2-(1) is labelled 'Acquisition by descent' in the original text,
it was natural to assume that the section could be formalized thus:

x acquires British citizenship on date y by section 2.1
if x was born outside the cm
and x was born on date y
and y is after or on commencement
and z is a parent of x
and (z is a British citizen on date y by section yl

and yl is different from 2.1)
or

(• • •))

In fact, it turns out that 'British citizen by descent' does not mean British
citizen by section 2-(1) ('Acquisition by descent'). 'British citizenship by
descent' is defined explicitly, and differently, in section 14 of the Act.
The rule for section 2-(1) is corrected by replacing the condition

(x is a British citizen on date y by section yl
and yl is different from 2.1)

by the condition

(z is a British citizen on date y by section yl
and not z is a British citizen by descent on date y)

and formalizing

z is a British citizen by descent on date y

to reflect the definition in section 14.
We assumed at the beginning of the experiment, rather naively with

hindsight, that it would be possible to formalize the Act by considering

230



SERGOT

every individual clause in isolation. This would have meant that different
persons could work on the various parts of the Act independently,
requiring only that they agree a common vocabulary of predicate names.
It turned out that this was impossible in practice. The formalization was

forced to proceed by a process of trial and error. Sections encountered
later in the Act would often indicate that our formalization of some
earlier section was inaccurate or over-simplified. The modification of the
rule for section 2-(1) in the light of section 14 is a simple example. Other
examples are given in ref. [16]. The need for these revisions raises
questions about what is the intelligible unit of law: is it a clause, a
section, an Act, or 'the law' in its entirety? This is important if we are
ever to say that a formalization represents a fragment of law, since there
will be some minimum size of fragment which must be considered. I shall
return to this question in later sections of the paper.
In spite of these various complications, sections 1-(1) and 2-(1) of the

British Nationality Act translate fairly naturally into extended Horn
clause form. Although not all of the Act is quite so straightforward
(occasional logical complexities did have to be clarified, some of which
are described in ref. [16]), the British Nationality Act is an unusually well
written piece of legal prose with relatively few of the linguistic contor-
tions which make so much legislation obscure. Most representation
problems arose simply from the scale of the exercise. The Act comprises
approximately 70 pages of densely written legal prose. This is big enough
to cause severe difficulties in the formalization; it is fairly small in
comparison with other areas of law, the Social Security laws of the
United Kingdom for example.
The most obvious application of the formalization is to use it as a

program which can apply the law in specific cases, to determine whether
or not a given individual is a British citizen of some particular category,
or to determine whether he is entitled to register or nationalize if it turns
out he is not. The easiest way of implementing this is to execute the
program in an augmented PROLOG system like APES, so that missing
person-specific information is requested from the user, and so that
explanatory proofs of conclusions are available if required.

Questions from the system appear in the stylized form which APES uses
if no natural language alternative has been specified. I have omitted
various complications to make the dialogue easier to follow, and I have
included in the program the information that the Act came into force on
1 January 1983. In order to begin a consultation with the system we ask,
for example, whether a particular individual is a British citizen by any
section of the Act on a given date:

confirm (Peter is a British citizen on date (16 Jan 1984) by section z)
Which X: Peter was born on date X? (3 May 1983)

231

011111■__



REPRESENTING LEGISLATION AS LOGIC PROGRAMS

Is it true that Peter died before (16 Jan 1984)? no

Is it true that Peter was born in the UK? yes

Which X: X is the father of Peter? William

Which X: William was born on date X? (1 March 1952)

Is it true that William died before (16 Jan 1984)? no

Is it true that William was born in the UK? yes

Is it true that William was found as a new-born infant abandoned

in the me? no
Is it true that William was adopted? no

Is it true that William was a citizen of the UK and Colonies on date

(31 Dec 1982)? yes
Is it true that on date (31 Dec 1982), William had the right of

abode in the tnc under the Immigration Act 1971 as then in

force? yes

Is it true that Peter has ever renounced British citizenship? no

Is it true that Peter has ever been deprived of British

citizenship? no

Yes, I can confirm that
Peter is a British citizen on date (16 Jan 1984) by section 1.1 how

I deduced
Peter is a British citizen on date (16 Jan 1984) by section 1.1

from the rule

x is a British citizen on date y by section z

if x is alive on date y
and x acquires British citizenship on date yl by section z

and y is after or on yl
and not (x ceased to be a British citizen on date y2

and y2 is between yl and y)

I can show
1. Peter is alive on date (16 Jan 1984)
2. Peter acquires British citizenship on date (3 May 1983) by

section 1.1
3. (16 Jan 1984) is after or on (3 May 1983)

4. not (Peter ceased to be a British citizen on date y2 and y2 is

between (3 May 1983) and (16 Jan 1984))

Explain? 2

I deduced
Peter acquires British citizenship on date (3 May 1983) by section

1.1

232



SERGOT

from the rule

x acquires British citizenship on date y by section 1.1
if x was born in the UK
and x was born on date y
and y is after or on commencement
and z is a parent of x
and (z is a British citizen on date y by section yl

or
z is a settled in the tm on date y)

I can show
1. Peter was born in the ux
2. Peter was born on date (3 May 1983)
3. (3 May 1983) is after or on commencement
4. William is a parent of Peter
5. William is a British citizen on date (3 May 1983) by section 11.1

Explain?

In examining a proof such as this, the user has a number of options at
every stage. He can choose to examine the proof of any individual
subcondition to any required depth. In the more recent implementations
of APES, he can in addition request a justification for the particular rule
used. This justification would normally take the form of supplementary
documentation which explains where the rule comes from, how it relates
to the original legislation, and what hidden assumptions have been made
in its construction. A justification for the rule representing section 1-(1)
of the Act, for example, would include the original text, and should point
out the assumption, not explicitly stated in the Act, that a person who
acquires British citizenship by section 1-(1) does so at birth. In this way,
the user can examine the proof in as much or as little detail as he
requires.
The user may also, if he wishes, ask whether an alternative proof exists

for the same conclusion. It may be, for example, that Peter is also a
British citizen by section 1-(1) because his father was settled in the
United Kingdom at the time of his birth. He may be a British citizen by
virtue of his mother's citizenship, or for any number of other reasons.
Each of the alternative proofs can be examined systematically in turn.

If the citizenship of an individual can not be confirmed, the proof of
the negative answer can be examined in similar fashion. Because APES
treats negation as failure, proving a negative conclusion involves explain-
ing why every possible way in which citizenship could have been
established does not in fact succeed.

233



REPRESENTING LEGISLATION AS LOGIC PROGRAMS

The output computed by the British Nationality Act program is not
simply the answer 'yes' or 'no', therefore. More important is the set of
proofs which can be constructed from the axioms in the formalization and
the information supplied by the user. Normally in expert systems,
explanations are included to increase the user's confidence in the system's
conclusions. In legal expert systems, the ability to generate proofs is
more fundamental: the construction of proofs is usually the principal aim
of consulting the system. I shall return to the importance of proofs in the
next section.

I should remark on the state of the implementation of the British
Nationality Act program. At the time the formalization was completed
only a small fragment of the Act could be loaded, together with APES,
onto the small micro-computers on which micro-PRowo was then
available. In order to demonstrate the system we were forced to identify
a self-contained portion of the Act. We chose those sections in Part 1 of
the Act which deal with the acquisition of British citizenship proper, and
the relevant definitions from Part 5 and the Schedules. We also had to
add some general rules (for example, to define parents in terms of fathers
and mothers), and some rules for handling calculations on dates. As of
December 1983, this system (containing approximately 150 rules) ran in
APES on a micro-computer with 128K bytes of memory. We have
estimated that a micro-PRoLoG system which could address 512K bytes
would be sufficient to run the complete Act (containing about 500 rules).
Such micro-PRowo systems have since become available, although at the
time of writing we have not transferred the whole formalization to these
larger systems.
The secondary objective of the experiment was to test whether

PROLOG'S simple execution strategy would be adequate for applying the
formalization as a program. Since we attempted to keep the formalization
as close as possible to the original text, and we were not concerned at all
with its efficiency, it is a little surprising that the formalization actually
runs remarkably well as a PROLOG program. There are occasional
inefficiencies, when PROLOG recomputes something which has already
been established earlier in the computation. These inefficiencies could be
eliminated straightforwardly by storing selected portions of the computa-
tion as 'lemmas'. There are also isolated parts of the Act which cause the
program to loop when executed by PROLOG. Such loops, of which there
are two in the fragment of the Act which we run, are not problematic and
both can be eliminated by program transformation methods.
In the meantime, we have consolidated our experience with the British

Nationality Act by applying the same techniques to a number of other
examples in the legal domain. Some of these are mentioned in a later
section. For now, it is more important to make a number of general
remarks about the whole approach.

234



SERGOT

6. AXIOMATIC MODELS OF LAW

It might be tempting to assume that our formalization of the British
Nationality Act is a precise representation of what the legislation tries to
express. Arguably, it does represent exactly what the draftsman in-
tended. Nevertheless, the law concerning British citizenship is not what
the draftsman tried to express, but what the relevant authorities decide

that he did express, and these two things might not coincide. To take a

simple example, recall that our formalization assumes that a person who
becomes a British citizen by section 1-(1) does so at birth. This is a very
reasonable assumption, and it may well be what the draftsman intended.
Nevertheless, it is not what he wrote, and it is always possible that a case
will arise in the future to cast doubt on this interpretation. If such a case
does arise, and if the court decides that an individual became a British
citizen by section 1-(1) at some time other than at birth, then our
formalization will be an incorrect representation of the law, whether it
represents what the draftsman intended or not. It is a key rule in the
interpretation of legal documents that the exact wording is critical. It
follows that paraphrasing is forbidden. Yet this is precisely what we have
done in formalizing the British Nationality Act: we have paraphrased the
original text, albeit in a formal language.
The British Nationality Act program is not so very different from Legal

Expert System 2 after all. Hammond's system describes Ian Pickup's
opinion of what the law requires for entitlement to Supplementary
Benefit. The British Nationalty Act program formalizes a particular
interpretation, mostly Fariba Sadri's, of the definition of British citizen-
ship as given in the British Nationality Act.
There is a difference between the two systems, however, and it is an

important one. We might, for some given application, need to claim that
our formalization of the British Nationality Act represents accurately the
current state of the law. To substantiate this claim we would have to
show the rules in the formalization to an expert lawyer, and even to the
draftsman himself. Each individual rule would have to be examined and
compared against the original text on which it is based, together with any
additional assumptions which were made in its construction. It is because
the rules in the formalization are explicit that such an assessment is
possible at all; the assessment becomes a practical possibility because the
rules are expressed in a form which resembles the structure of the
original legislation.

It would be very much harder to assess the accuracy of the model in

Legal Expert System 2. We can take it that the model is an accurate one
because Ian Pickup is an expert on Supplementary Benefit. Nevertheless,
although the rules in Legal Expert System 2 are also stored explicitly,
they are far removed from the original sources on which they are based.

235



REPRESENTING LEGISLATION AS LOGIC PROGRAMS

It would be difficult or impossible to estimate how well Ian Pickup's
interpretation of the law corresponds to the actual legislation. The
difference between the two representations is one of granularity. Pickup
viewed the law as a whole; Sadri viewed it section by section. The
difference is similar to that between a precis and a paraphrase: accuracy
is always easier to determine in the latter case.

Given that some assessment of the rules is possible, an assessment of
the system's conclusions follows immediately. Both the British Nation-
ality Act program and Legal Expert System 2 are axiomatic systems
which attempt to model some fragment of the law. In both cases, answers
computed by the program are theorems, logical consequences of the rules
in the formalization and the information supplied by the user. It does not
follow of course that the conclusions produced by such a system are
accurate. It does mean, however, that a conclusion of the system is
guaranteed to be accurate, if the axioms in the system are accurate.
This is a fundamental point. It explains why such emphasis has been

placed on the examination of proofs and on the importance of document-
ing the source of the rules in the formalization. Since proofs are
guaranteed to be valid, the only remaining doubt concerns the accuracy
of the rules and the accuracy of the information which the user has
supplied. The proof serves to identify the assumptions on which the
conclusion is based; the accuracy of these assumptions can then be
examined in detail.
This is in contrast to a model of the law which is expressed in a

conventional programming language or in a rule-based programming
language with no formal properties. A conventional program does not
represent explicitly the assumptions on which it is based. It cannot
produce proofs of its conclusions for critical examination, and it is
practically impossible to state how the answers it computes relate to the
assumptions in its model. A rule-based program does make its assump-
tions explicit, but unless the computation proceeds by the application of
sound rules of inference, there is no sense in which the accuracy of the
conclusions can be said to follow from the accuracy of its rules.
We are attempting to construct computer programs which purport to

represent legislation in computer intelligible form. These programs are
executed mechanically, and it would be of little practical value if the
answers they produce could not be said to mean anything precise. A
claimant who is advised by computer that he is entitled to Supplementary
Benefit must know what this advice is worth: whether it would stand
scrutiny in a court of law, for example. There is a real danger that the
advice of computer-based legal systems will be overestimated. We can
guard against misunderstandings only by explaining to users what the
computer-generated advice means in reality, and this explanation cannot
be in terms of detailed computations which the program invokes.

236



SERGOT

It is sometimes assumed that the test of a legal expert system is how
well it can predict judicial decisions in its own particular domain. To
suggest this is to miss the point entirely. For it must be recognized that
legislation is often imprecise, and that it is essentially open textured. The
role of the judiciary is to resolve questions of law as they arise. And the
resolution of these questions is fundamentally a matter of choice. A
judge will decide one way or the other, not because there is a right
answer, but because he is forced to make a decision, and because he will
find the arguments presented for one decision more persuasive than the
arguments for another. This does not mean that we can never predict
judicial decisions. The majority of cases will be decided straightforwardly
(for otherwise that fragment of law would be so intolerably inefficient
that it could not survive long its present form). If a legal expert system
could not anticipate decisions in the routine cases, we would be right to
dismiss it. But decisions in cases which are not routine can not be
predicted, because it is impossible to anticipate all the arguments which
could be presented, and because we cannot be sure which arguments the
judge will prefer (that is what stops a case being decided routinely). If we
accept that the law is open textured, then there really is no right answer
until the judge has pronounced his verdict.
This is not to say that a legal expert system which is capable of

predicting judicial decisions would not be an extremely useful tool in
legal practice, or even that it would be impossible to build. But such a
system would have to manipulate statistics and likelihood estimates of
various kinds, and it is not the type of system which is being considered
in this paper. It would resemble rather the imaginary Legal Expert
System 1 which was described in this paper by way of introduction. This
paper is concentrating instead on how a set of rules (axioms) might be
constructed to model some fragment of the law (or more precisely, given
the essentially indeterminate nature of the law, some particular inter-
pretation of the law).
The ability to generate proofs takes on additional practical significance

if we consider the nature of the computer systems we are attempting to
build. In the first instance we might want to construct a system which is
intended to take legal decisions. Although we would be reluctant to have
the British Nationality Act program decide whether or not individuals
have British citizenship, and although we would not want Legal Expert
System 2 to process routinely the claims which are made for Supplement-
ary Benefit, it would be perfectly acceptable to have many para-legal
decisions taken mechanically by machine in applications outside the law.
A company might want to process by machine the expense claims of its
employees, or their requests to take leave, or any number of other
similar day-to-day decisions. Indeed, the vast majority of 'legal' decisions
taken every day are of precisely this trivial (though not necessarily

237



REPRESENTING LEGISLATION AS LOGIC PROGRAMS

straightforward) kind. We are most of us willing to accept the legal
decisions taken by the payroll system which calculates our salaries, and
the tax and other deductions which it makes, even though it is normally
impossible to question the system about the assumptions on which these
calculations are based.
When decision-taking systems are able to generate proofs they are able

to account for their decisions, and they become applicable in less trivial
decision-making tasks. At the very least a proof will demonstrate that any
decision reached was not an irrational one. A proof will also form the
basis for an appeal should any particular decision be unpopular or
considered unfair for some reason. Moreover, there are bound to be
decisions which will be unacceptable for any number of reasons, whether
we apply the law by computer or not. The examination of proofs for such
decisions would identify areas where the existing legislation could be
revised; it may even suggest ways of implementing these revisions so that
unwanted decisions are less likely to occur in the future.
For most applications within the law, however, it will never be

acceptable to have decisions taken routinely by machine, whether such a

machine can explain its reasoning or not. Legal expert systems are more

widely applicable if they can be used, not as legal decision takers, but as

legal decision-taking aids. In this kind of system the construction of

proofs is more than a convenient by-product: in many applications of

legal systems it will be the proofs and not the conclusions which will be of

primary interest. An individual claiming for some additional benefit will

want to know what reasons he can adduce to show that he is entitled; an

officer writing a submission to an appeal tribunal will want to know which

rules he can cite to support the decision that he made; and an advocate

who is preparing his client's case will want to anticipate the opposing
arguments he is likely to encounter.
The proofs which are generated as a result of consulting the system will

provide a framework for a legal argument, although this framework will

have to be developed further before we have a convincing legal
argument. A proof starts from some assumptions or premisses and moves

by rules of inference to a conclusion. If we accept the assumptions then

we cannot deny the conclusion. However, we can properly refuse to
accept a proof by casting doubt on the assumptions on which it is based.

The assumptions which appear in our system-generated proofs are either
rules from the formalization itself, or information which is supplied by

the user in response to questions from the system. Let us consider in turn

how doubt might arise over these two types of assumptions.
In the first instance we might have included rules in the formalization

which are inaccurate because we have misread or misunderstood com-
pletely the provisions of the legislation. More likely (and more difficult to

detect) is the possibility that we have not taken into account the effect of

238



SERGOT

(meta-level) rules of interpretation. Most legal systems prescribe rules

which govern the interpretation of legal documents, and which constrain
how legal documents are to be read. We could presumably guard against

this type of inaccuracy by involving an expert lawyer in the formalization

process, to advise on matters of interpretation and to identify the laws of

interpretation as they apply. Even more problematic, especially if we

adopt the computational expedient of treating negation as failure, is the

very real possibility of overlooking some legal provision which is not
mentioned explicitly in the fragment we are formalizing but which is

considered as part of the same law nevertheless. (The British Nationality
Act 1981, for example, amends various provisions in the Immigration Act

1971, although we would have no way of knowing this from reading the
text of the Immigration Act alone.) The law concerning some particular

matter is usually derived from a great variety of sources and we must be

aware of the dangers of treating an individual fragment in isolation. Such
considerations again raise the problem of identifying an intelligible unit
of law which I alluded to when discussing our formalization of the British

Nationality Act. Just as we could not treat an individual section of that

Act independently of the rest, we could not safely represent any one Act,

or any other fragment of the law, in isolation. Yet we cannot realistically

expect to formalize the whole of 'the law'. We could only hope to

eliminate these problems, or at least not to overlook them, by taking

expert legal advice as the formalization proceeds.
A more interesting source of inaccuracy perhaps is the case of

legislation which is ambiguous, particularly since this was identified

earlier as a characteristic of all legislation.

7. AMBIGUITY

When we began the formalization of the British Nationality Act, we
expected that the process of formalization itself would identify cases of
imprecision and ambiguity which had been overlooked at the drafting

stage. I have already mentioned an example of imprecision in the British

Nationality Act: the Act does not state clearly the time at which an

individual becomes a British citizen by section 1-(1) of the Act. If the

formalization is to run as a program then we have to make some

additional assumptions. We decided to assume that such an individual

would acquire citizenship at birth. It could be argued, however, that

citizenship imposes duties as well as granting rights; that duties cannot be

imposed on a minor; and therefore that an individual acquires citizenship

by section 1-(1), not at birth, but on the day he reaches full age. This

might be a tenable argument (in fact, it is easily defeated by considering

other sections of the Act), and, if it is, we have two distinct interpreta-

tions of the Act. If we cannot choose between them then we really have

239



REPRESENTING LEGISLATION AS LOGIC PROGRAMS

no choice: we must incorporate both interpretations of the Act together,
or risk giving a distorted view of the law. We have two different, similar,
but distinct, formalizations of the law. Now if we ask whether a given
individual is a British citizen on a given date we may receive two different
and conflicting answers: 'yes' by one interpretation (and an associated
proof); 'no' by the other interpretation (and its associated proof). All else
being equal, the proofs will differ where the rules for section 1-(1) of the
Act appear. We are left with choosing whether we prefer one interpreta-
tion of the law to the other. If we genuinely cannot decide, we must wait
for a suitable case to come before the appropriate adjudicating author-
ities, for they will be forced to make a decision which in turn will help us
decide which of the conflicting interpretations to adopt. Of course, if an
individual's citizenship is not determined by the application of section
1-(1), then the two formalizations will agree (although in general there
will be other formalizations which disagree about the reading of some
other section or some other ambiguous phrase in the Act).
Where there is genuine and obvious ambiguity in legislation, we have

to formalize both possible interpretations or risk misrepresenting the law.
Once a case has been tried and a suitable disambiguating precedent has
been set, it may be possible to discard one or more of the formalizations.
Until this happens we are left with several, potentially inconsistent,
versions of the law. There remains the technical problem of maintaining
large formalizations which are distinct but which contain an immense
amount of duplication. I do not propose to discuss such (implementa-
tional) details in this paper.

It may happen of course that a piece of legislation is ambiguous,
without this being at all obvious. The Housewive's Invalidity Pension
Nap) regulations which were mentioned earlier are an example. It is

not clear on first reading that the regulations are ambiguous. Indeed,
even though the ambiguity is known to exist (two different interpretations
were adopted in practice), it is not easy to demonstrate where the
ambiguity lies. The process of formalization does not in itself identify
ambiguity or imprecision. The person who is responsible for constructing
the formalization must detect the ambiguity before deciding how it
should be treated. A representation language which is precise enough
may allow him to describe as many different, unambiguous interpreta-
tions as he sees fit, but it does not in itself make the detection of the
ambiguity automatic. It follows that we can expect cases to arise which
will identify an ambiguity which was overlooked in the formalization.
When such cases come to court, and as they are decided, we will be
forced to amend our formalization of the law to reflect these decisions.

This raises a question concerning the formalization of regulations
which quite obviously do not express what the draftsman intended. Bill
Sharpe's account [17] of his attempt to formalize the United Kingdom's

240



SERGOT

Statutory Sick Pay legislation provides such an example. The Sick Pay
regulations refer repeatedly to 'periods of incapacity for work' which are
defined, in essence, as 'periods of four or more consecutive days, each of
which is a day of incapacity for work'. Quoting now directly from Sharpe,

we realize that. . . the rule does not say what it means. It is quite
clear from the use made of the definition that a period of incapacity
for work is not just a consecutive period of sickness but the longest
such period. It begins when someone falls sick and ends when they
are better; a subset of a period is not properly speaking a period in
the sense meant there.

It may sometimes be impossible to devise a formalization which is at the
same time an accurate model of what the draftsman intended and a
faithful representation of what he actually wrote. I shall have a little
more to say about Sharpe's example later in the paper.

8. VAGUENESS AND CASE LAW

Leaving aside inaccuracy in the formalization (although more could be
said) let us consider now the accuracy of information supplied by the
user. If the formalization is executed by a system such as APES, then,
roughly speaking, the user will be required to answer questions about
concepts which are mentioned in the legislation but which have not been
defined explicitly by the draftsman. We can distinguish immediately two
different types. There will be concepts which are undefined but which
have a precise legal meaning nevertheless: although they are not defined
in the fragment of legislation we have formalized, they are defined
explicitly elsewhere. And there will be concepts which are not defined
explicitly anywhere in the law, and which have no precise legal meaning.
Let us dismiss the less interesting type, the concepts which are defined

precisely elsewhere. In the case of the British Nationality Act, there are
many references to concepts from the Immigration Act 1971 and to
concepts from previous Nationality Acts superseded by the 1981 Act.
Presumably when the draftsman of the 1981 Act refers to 'a person who
immediately before commencement was a citizen of the United Kingdom
and Colonies', he means something very precise (although we would
need to read the earlier Nationality Acts to find out exactly what it is). In
formalizing the provisions of the 1981 Act there are several ways of
proceeding. In addition to formalizing the 1981 Act, we can formalize the
provisions of the earlier Acts too, to define precisely what it means to be
a 'citizen of the United Kingdom and Colonies'. If this turns out to be
impractical, we can adopt the technique of Legal Expert System 2 and
build a definition of 'citizen of the United Kingdom and Colonies' from
the opinion of some appropriate expert (although then we would get a

241



REPRESENTING LEGISLATION AS LOGIC PROGRAMS

system of less 'authority'). And if this is impractical too, we can always
choose to leave the concept undefined, and treat it as if it were a concept
of the second type, one with no precise meaning.
The more interesting concepts, perhaps, are those which are not

defined explicitly anywhere in law. Into this category fall concepts which
have a common-world meaning and which need no special legal definition
(in the British Nationality Act, what it means to be 'born' for example),
and vague concepts which have been left unspecified by the draftsman on
purpose (like 'normal household duties' in the IINCIP regulations I
mentioned earlier). The distinction is an artificial one of course, if we
accept that the law is incurably open textured. With a little imagination,
it is easy to see how a case could arise which would throw considerable
doubt onto the meaning of 'born' (or, more likely, onto the meaning of
phrases like 'the time of birth' or 'the place of birth'). Conversely, we
shall sometimes be able to say with great confidence what 'normal
household duties' are for a given individual. Nevertheless, we can take a
pragmatic point of view, and distinguish informally what we might call
'concrete' data (like a person's date of birth) from concepts which are
inherently vague (like 'normal household duties'). In treating these
concepts we shall have to take into account the existence of any relevant
case law, for this will constrain the meaning of the vague phrases. And
we must always remember that a case in the future might force us to
revise our classification of which concepts we consider 'concrete'.
So far we have been treating concepts which are not defined in the

legislation by omitting them from the formalization altogether and by
asking the user to supply information about them as it is required. But
there is an alternative. There is a property which holds for any logical
system (we might even take it to be the definition of a logical system) that

when conclusion '13'
follows logically from assumptions {A1, , An, B}

then conclusion '13 if B'
follows logically from assumptions {A1, , An).

If we are trying to derive conclusion '13' from assumptions {A1, . , An)
(which are rules representing some piece of legislation) and cannot
continue because some concept '13' appears in the conditions of a rule but
is not defined, then we can add 'B' to the assumptions {A1,.. ,An)
and continue. If the computation now succeeds (that is to say if we
manage to prove 73' from the augmented set of assumptions) then we will
have proved '1° if B' from the original assumptions {A1,. , An). In
other words, we are able to report an answer which is qualified with this
extra condition 'B'. To take an example, instead of reporting 'Yes, Peter
is a British Citizen', the system might respond with the qualified answer
'Yes, Peter is a British Citizen, if (it can be established that) he was a

242



SERGOT

citizen of the United Kingdom and Colonies on 1 October 1982.' Let us
call such a qualifying condition a 'tentative assumption'. It should be
clear that we can qualify answers with as many tentative assumptions as
we like.
Computation with tentative assumptions is not quite as straightforward

as I have made out, particularly in the presence of negation as failure.
There are some similarities to an extension to PROLOG proposed by
Gabbay and Reyle [18] which they called 'hypothetical implication'.
More detail is beyond the scope of this paper, but let us suppose that
computation with tentative assumptions is available, because it gives us
enormous flexibility.
In the first place we might try to implement a system by treating all

undefined concepts as tentative assumptions. This does not give a system
of much practical value unfortunately. For we would get from the system
little more than a paraphrase of the original formalization, although
without the original structure. (Consider what happens if we ask 'Is Peter
a British citizen' from the formalization of the British Nationality Act.
All we get in reply is the answer 'Yes', qualified with all the conditions
which must be satisfied before Peter's citizenship can be established.)
Computation with tentative assumptions works very much better in

conjunction with querying the user. In the case of the British Nationality
Act, for example, it would be reasonable to ask users about the
'concrete' undefined concepts (a person's date and place of birth, the
identity of his parents, and so on). The availability of this concrete
information means that fewer sections of the Act will apply in a particular
case. The system will produce answers which are more specific and
which, if qualified, are qualified by low-level, detailed tentative
assumptions.

Tentative assumptions can also be exploited to improve the treatment
of queries to the user. We can allow users the option of refusing to
answer a question which they do not understand or to which they do not
know the answer, since the treatment of these 'don't know' answers
clearly reduces to adding some appropriate tentative assumption. Once
we allow users the possibility of answering questions with 'don't know',
we can go further, and we can reasonably revert to the scheme in which
users are asked to supply information about all undefined concepts, the
vague as well as the concrete. For a user will sometimes be able to decide
whether a vague concept applies in the particular case under considera-
tion. If he cannot, there is always the option of answering 'don't know'.
I am not recommending any one of these possible treatments as the

right one to adopt in practice. Which concepts to treat as tentative
assumptions and which to treat by querying the user will depend on the
particular application, and will probably reflect personal taste. The
British Nationality Act program (or at least that fragment of it which we

243



REPRESENTING LEGISLATION AS LOGIC PROGRAMS

have been running on the small micro-computers) works reasonably
enough by querying the user about all undefined concepts.

Whichever method we choose for treating undefined concepts, we must
still help users to discover what these concepts mean. If the user is
expected to answer questions in the course of the consultation then this
help will have to be available when the question is asked. If we are using
the mechanism of tentative assumptions then help can be delayed until
after the consultation is complete. In either case, we have to give the user
some indication of what the concept is taken to mean in practice,
especially if there is existing case law which must be brought to his
attention.
The help we provide can take a variety of forms, and the appropriate

choice will depend on the nature of the application we are attempting to
build. In the simplest cases, it might be enough to accompany every
question to the user with a fragment of text which is intended to describe
the concept in fairly general terms, and to summarize any relevant case
law which might exist. Incidentally, this suggestion also allows me to
make the point that it is not necessary to formalize every detail of written
legislation. Section 50 of the British Nationality Act includes the
information that 'ship includes a hovercraft'. It would be more sensible to
include this as a footnote to questions about ships instead of going to the
extreme lengths of including such information in the formalization.
Similarly, one of the key conditions for acquiring British citizenship is
that a person be 'settled in the United Kingdom'. Section 50 of the Act
defines this concept as 'ordinarily resident in the United Kingdom
without being subject under the immigration laws to any restriction on
the period for which he may remain' (with some minor exceptions). Since
'ordinarily resident' is not defined further in the Act, there may be little
point in formalizing the definition of 'settled in the United Kingdom'.
Doing so would only replace questions about 'settled' with questions
about 'ordinarily resident'. (Although it may be that 'ordinarily resident'
is one of these concepts which are defined elsewhere in English law.)

Attaching explanatory text to questions will only provide adequate
help in the simplest of applications. In general we shall have to give more
detailed help. One possibility is to allow the user access to the extensive
legal document retrieval systems which are now becoming increasingly
important in everyday legal practice. We could also seek to advise on
matters of case law by allowing the user to consult a data base of
decisions which were taken in previous cases. We could construct a
supplementary expert system (constructed by any suitable method) which
would allow users to invoke a supplementary consultation whose sole aim
is to help with determining what some vague concept has been held to
mean in the past. Trevor Bench-Capon and I have proposed elsewhere
[19] that vagueness in law could be captured by constructing a system of

244



SERGOT

conflicting rules, arranged to generate arguments for and against a
particular conclusion. These various methods of providing help are not
mutually exclusive, of course.
In general, a system which represents some piece of written legislation

will have a component which is a formalization of the written legislation,

and a component which is designed to help with deciding the lowest level

concepts whose definitions have been omitted from the formalization. It

is critical that these components should be kept as distinct and separate

as possible. For otherwise, by coupling the two components together, we

get a system whose conclusions are based on one single set of assump-

tions. It becomes difficult then to disentangle those assumptions which

are fairly certain (because they are derived from written legislation) from
those whose accuracy is practically impossible to assess (since they
express implicitly stated rules of law derived from fragments of case law).
We must recognize that in questions about open-textured concepts there

is no fact of the matter. Often, the best way of seeing why a concept is
vague and discovering what kind of criteria are important for establishing

its truth is by executing parts of the system several times over and varying
the assumptions for each consultation. We can more readily encourage

users to experiment in this way if we keep separate the different
components in the system. There is a great deal of flexibility in all of this.

We can allow supplementary experiments in the course of the main
consultation. We can leave experimentation to the end of the main

consultation, until we have an answer with its various qualifications. Or
we can let the user decide which of these options he prefers.
A final remark is in order. If we are interested in building a system

which is to take legal decisions autonomously (and I argued above that
we might) then we must couple a formalization of written legislation with
rules which define precisely how vague concepts are to be treated in
practice. There are some applications where this could be done. But if we
can write rules to eliminate vague concepts, then so could a draftsman. It

is because we lose flexibility that autonomous and automatic decision
takers are necessarily limited in scope.

It should be clear why our formalization of the British Nationality Act
works reasonably well, both as a program for applying the law, and as a
system for helping lawyers to solve legal problems related to British
citizenship. The provisions of the Act are complex and interact to a great
extent; the Act contains relatively few references to other legislation; and
although vague phrases have been used by the draftsman, they are at the
lowest level of detail and they only have to be taken into account once
the 'concrete' items of data have been determined for a given individual.
Not all legislation is like this however. If we take instead some fragment
of legislation where the rules are very shallow, or where there are very
few concepts which can be readily decided, then formalizing the

245



REPRESENTING LEGISLATION AS LOGIC PROGRAMS

legislation will give us very little help. We will be more exposed to the
problems of vagueness and open texture, and we will have to rely to a
greater extent on the supplementary advice giving systems which I
sketched out above.

9. GOAL-DIRECTED FORMALIZATION

I have stressed several times that our formalization of the British
Nationality Act should be regarded as an axiomatic system, and I have
claimed that this is where all of its power is derived. However, the
process by which the formalization was developed contrasts directly with
the normal method of constructing an axiomatic system. Usually in
mathematics an axiomatic system is constructed from the bottom up, by
choosing first a set of primitive, undefined concepts, and then devising
axioms which define new concepts in terms of those which are primitive
or already defined.
This bottom-up approach is also found in attempts to represent

legislation as computer programs, most notably in Ronald Stamper's
work with the LEGOL project [11,12], mentioned earlier. In LEGOL,
representation of some piece of legislation proceeded in two distinct
steps: first an analysis based on LEGOL'S 'semantic model' attempted to
identify the various entities, concepts and relationships which appear in
the legislation; then LEGOL rules were written to simulate the effects of
the legislation on the concepts identified in the analysis phase. Although
a LEGOL program could not be described as an axiomatic system, the
method of construction did correspond closely to the bottom-up con-
struction of axiomatic theories in mathematics.
There are severe practical problems in attempting a bottom-up

formalization of any realistically sized piece of legislation, however. For
how are we to choose the bottom level primitives in the first place? In the
case of the British Nationality Act, for example, we would be forced to
decide at the outset whether a concept such as 'the Secretary of State's
discretion', which occurs several times in the Act, is a primitive concept
or one which should be defined in terms of something more primitive
instead. And there are many other such phrases which appear in the Act.
I should stress that this is precisely the problem which the LEGOL

project was attempting to address. Its primary objective was to develop a
methodology for identifying the relevant concepts in a piece of legisla-
tion; the implementation of practical systems was a secondary objective.
It might be argued that such an ambition is not a realistic one, but leaving
that aside, it is certainly the case that no such complete methodology
exists at present. We must consequently look to some other approach if
we are to construct a formalization of some fragment of the law in
practice.
The obvious alternative, and the way in which the formalization of the

246



SERGOT

British Nationality Act was developed, is to construct the formalization in
a goal-directed, top-down manner instead. Thus, if our aim is to
formalize how British citizenship is acquired, there is a natural place to
begin. The conditions for acquiring British citizenship are given explicitly
in the Act: formalizing them introduces lower level concepts which may
or may not be defined elsewhere in the Act. We proceed accordingly,
formalizing those concepts which are defined in the Act, and leaving out
of the formalization those that are not (although more about this later).
At every stage we have an executable version of the formalization, since
top-level concepts are defined and systems like APES can query the user
for information which is missing. More importantly, we only need to
address the problem of representing a concept like 'the Secretary of
State's discretion' when we know in what sense it is relevant to the
top-most goals we are considering.
To see why this is important, note that the British Nationality Act does

more than specify the circumstances under which an individual becomes a
British citizen. From the Secretary of State's point of view, for example,
the Act describes some circumstances under which he is permitted to
treat one individual differently from another. If we are interested in
representing this aspect of the Act also, the formalization will need to
treat the Secretary of State's discretion in some detail, for the Secretary
of State will be interested in establishing whether he is permitted to
exercise his discretion in a particular case, and he will be interested in the
conditions under which this permission is granted. For the purpose of
establishing some given individual's British citizenship, however, this
kind of detail is superfluous. If we want to establish an individual's
citizenship, the Secretary of State's discretion can be treated as if it were
a primitive concept (either he does exercise his discretion or he does
not). The representation of discretion in all its generality is difficult.
Top-down, goal-directed, formalization removes the need to address
difficult problems of representation unnecessarily, until it becomes
unavoidable to do so. This is a practical point. I am not suggesting that
the representation of discretion, or the representation of any other
general legal concept, is not a topic worth investigating in its own right.

Legislation is seldom written with a particular goal or method of
application in mind, and we might argue therefore that its computer
representation should not be tailored to a particular usage either. To
some extent, a formalization in logic reflects this requirement. The
British Nationality Act program is not limited to establishing the
citizenship of a given individual. Any number of different queries will
invoke a consultation of the system, and in this respect it resembles a
deductive data base more than it does a traditional expert system
(although if we are to use it as a deductive component to a data base we
shall have PROLOG'S limited execution strategy to contend with). And we

247



REPRESENTING LEGISLATION AS LOGIC PROGRAMS

could take the same formalization, make explicit the 'only if' rules we
chose to treat implicitly in our program, and employ more powerful
theorem provers to exploit the formalization for any number of different
purposes.

Nevertheless, it is quite unrealistic to imagine that we can devise a
formalization of some part of the law without taking any account of how
we shall use the formalization once it is constructed. A single piece of
legislation can be used for many different purposes: even to read its
provisions we need some idea of what we want to know and the kinds of
things we want to discover. In the same way, the formalization will be
influenced by what we expect to do with the rules and the kinds of
inferences we shall want to support, although we might have several goals
in mind, and there might be several aspects of the legislation that we
want to represent simultaneously. Written legislation is expressed in
natural language which assumes (reasonably enough) an enormous
amount of common-sense knowledge before any sense of it can be made
at all. At the very least we shall need to ground the formalization in some
minimal representation of the relevant common-sense knowledge. It
seems inevitable that we shall have to make some assumption about
intended usage in doing so. After all, we would not consider representing
in computer-intelligible form some arbitrary piece of natural language
text without having some idea of what this representation is for. Bill
Sharpe makes a similar point, although in a slightly different way, in his
account of the Statutory Sick Pay formalization [17] which I mentioned
earlier. Sharpe found he could not represent the Sick Pay regulations
without considering to some extent how his program would be used, and
the kind of common-sense knowledge (he called it 'problem solving
rules') which this would require.
In formalizing a piece of legislation, we shall sooner or later have to

choose predicates, and we shall have to represent the legislation in terms
of these predicates. In advocating top-down, goal-directed formalization,
all I am suggesting is that we should not choose the bottom-level
predicates at the outset, partly because we cannot know at that stage
which common-world concepts will turn out to be relevant, and partly
because we cannot realistically expect to represent the bottom-level
concepts (common-world or not) without some idea of purpose.
The penalty for this goal-directed approach is the phenomenon of what

Thorne McCarty has called 'the hyphenated predicate'. Thus in our
formalization of the British Nationality Act there appear such monolithic
'primitive' predicates as 'had the right of abode in the United Kingdom
under the Immigration Act 1971 as then in force', or 'was found
abandoned in the United Kingdom as a new-born infant'. In his own
work on the TAXMAN project (see for example ref. [20]), McCarty has
stressed the need for some 'deep' underlying conceptual model without

248



SERGOT

which, he argues, it is impossible to reason more than superficially about
the law. This opinion is surely right, but it does not conflict at all with the
goal-directed approach which I am advocating for the formalization of
written legislation.

McCarty's TAXMAN work has been primarily concerned with repre-
senting and reasoning with case law. The TAXMAN experiments are based
on cases covering various aspects of Corporate Tax Law in the United
States, in which the central concepts are Corporations and Shareholders,
stocks and shares, events and transactions, and, to some extent,
permission and obligation too. A major concern of the TAXMAN work has
therefore been the invention of an appropriate representation for these
concepts, for without one it would be impossible to reason about these
cases in any meaningful way. If we consider now the British Nationality
Act, we see that high-level concepts like the acquisition of British
citizenship are defined in terms of primitive concepts such as the time and
place of a person's birth and the identity of his parents. It is these
primitive concepts which form the underlying conceptual model for our
formalization of the British Nationality Act (although it is such a trivial
model that it hardly deserves the name). Between these two extremes,
the TAXMAN programs with their rich conceptual model and the British
Nationality Act program with its simple model, we might place Sharpe's
formalization of Statutory Sick Pay legislation. The primitive concepts
underlying the Sick Pay regulations are periods of sickness and incapacity
for work. Although Sharpe did not have to represent the concept of
'sickness', he did have to consider how to represent periods of sickness. It
seems almost superfluous to add that these three conceptual models, for
the TAXMAN programs, for our British Nationality Act program, and for
the Statutory Sick Pay program, have no primitive concepts in common.
How is it then that our formalization of the British Nationality Act

contains primitive bottom-level predicates like 'was found abandoned in
the United Kingdom as a new-born infant', for these are surely not part
of our underlying conceptual model? We can distinguish, however,
concepts which involve points of law from concepts which involve only
points of fact. In our formalization, primitive 'hyphenated' predicates are
used to represent facts which are certainly complex but which are devoid
of any points of law. 'Hyphenated' predicates whose application depends
on points of law are broken down further in terms of more primitive
concepts. In a sense, the draftsman of the British Nationality Act forced
us to introduce the predicate 'was found abandoned in the United
Kingdom as a new-born infant' (or something like it) by introducing the
notion in the wording of the Act. We are less likely to need such
predicates when reasoning with case law because we would have no
reason for introducing the corresponding concepts into our conceptual
model.

249



REPRESENTING LEGISLATION AS LOGIC PROGRAMS

Some 'hyphenated' predicates which involve only points of fact will
sometimes have to be broken down to make their application more
readily apparent. It must be recognized, however, that being found
abandoned as a new-born infant is hardly a major consideration for
establishing the British citizenship of a given individual. There are many
such concepts in the British Nationality Act: they are not central to
understanding the provisions of the Act, although they have to be
considered eventually when we attempt to apply the Act in some specific
instance. We do need a conceptual model if we are to represent some
piece of law, that much is clear. But we only need a model which treats in
detail the concepts which are central to understanding the particular
fragment of law we are considering. It is unnecessary to insist that the
model should be rich enough to treat all the peripheral concepts, too. We
must be realistic, moreover. A deep, conceptual representation of what it
means to be found abandoned as a new-born infant is staggeringly
difficult, perhaps even impossible, and there are numerous similar
concepts which appear in the British Nationality Act. It is impractical,
and unnecessary, to insist on a conceptual model which is sophisticated
enough to handle them all.
Of course there is more to constructing a conceptual model than simply

compiling a list of suitable predicate names. We must capture also the
various relationships and constraints which obtain between our primitive
concepts (that fathers are always male, for example). If we are reasoning
with representations of case law then it is these various constraints which
will be of primary importance. In systems which represent written
legislation, we shall be more concerned with rules which define the
high-level concepts, but we cannot neglect the primitive concepts
entirely. At the very least, the absence of a suitably rich conceptual
model will lead to stilted dialogues; and there is always the danger of
generating questions which will undermine the user's confidence in the
system (when, for example, the system asks whether John, who is known
to be male, is the mother of Mary). How to make use of constraints to
eliminate such questions is outside the scope of this paper.
The concept of being found abandoned in the United Kingdom as a

new-born infant can be treated superficially in our formalization of the
British Nationality Act, not only because it is not central to understand-
ing and reasoning about the conditions for acquiring British citizenship,
but also because the concept has no special meaning in law other than the
way we would naturally understand it as laymen (as far as I know). The
application of the corresponding 'hyphenated' predicate does not turn on
a point of law. Suppose however that a case should arise in the future
concerning a child who was found in the street somewhere in the United
Kingdom. Suppose moreover that there is considerable doubt whether
this child should be regarded as a new-born infant, and whether or not it.

250



SERGOT

was actually found 'abandoned'. To decide the case, a court at some
appropriate level of authority will eventually pronounce its verdict, and
as soon as it does the whole situation will change. For it will no longer be
the case that 'being found abandoned as a new-born infant' has only its
common-sense meaning. The concept will have acquired a specific legal
meaning too, constrained by the precedent which the court would have
set. In these circumstances, we would be right to attempt a repre-
sentation of what 'found abandoned as a new-born infant' means, and the
underlying conceptual model would reflect the considerations which the
court took into account when reaching its decision (the child's apparent
age amongst other things perhaps). A similar situation, although a much
less likely one, would arise if the Government ever decided to pass new
legislation for the care of abandoned infants. A concept such as 'being
found abandoned as a new-born infant', peripheral to understanding the
British Nationality Act, would become central for the purposes of
formalizing this piece of new legislation. But many of the problems with
representing this concept would also have disappeared. In drafting the
new provisions, the legislators would presumably have spelled out a
precise legal meaning for this concept. This definition we could reason-
ably hope to formalize with some degree of confidence.
We must beware of assuming that a conceptual model which has

allowed us to formalize one piece of legislation will allow us to formalize
some other fragment also. Nevertheless, there may be some concepts
which are fundamental to understanding the law and which are common
to many types of legislation. Permission, obligation and their various
elaborations are obvious candidates. Detailed investigation of such
concepts and their representation in a computational framework are
active areas of current research—for a recent (model-theoretic) treatment
see McCarty's proposal [21].
In these last sections I have dwelt on some of the problems involved in

representing legislation as computer programs. But we must not assume
that these problems will always arise. There are many applications of
legal systems where ambiguity, vagueness, and other types of indeter-
minacy in the law simply do not arise or where they can be discounted for
all practical purposes. This is particularly true for applications in
organizations outside the law. In the next section a brief account of a
simple example of this kind is given.

10. LEGAL EXPERT SYSTEM 4

Following our formalization of the British Nationality Act, the same
techniques have been applied at Imperial College to a number of other
examples from the legal domain, mostly as student projects. Those which
incorporate realistically sized fragments of legislation include a subset of

251



REPRESENTING LEGISLATION AS LOGIC PROGRAMS

the Immigration Act 1971 [22], regulations for Government grants to
industry [23], and a large company's pension scheme with associated ta)
legislation [24].
The last example, dealing with pension regulations, is interesting

because it incorporates an explicit representation of legislation within a
system for decision support. It also illustrates the kind of application
which can be implemented with relatively little effort.
The project was undertaken by David Chan as part of his M.Sc. course

in the Department of Computing at Imperial College. The problem was
supplied by a large chemical manufacturing company.
The company had recently introduced a scheme in which their

employees could make an additional voluntary contribution (Avc) to the
company's pension fund with a view to increasing their income after
retirement. A problem arises because the Government in the United
Kingdom imposes a limit on the total pension an individual can receive.
This limit is determined for an individual by the salary received in the last
few years before retirement, and by economic factors such as the rate of
inflation prevalent at the time of retirement. Any additional voluntary
contributions which raise an individual's pension above this limit are lost
and cannot be refunded retrospectively.
Word had spread within the company that the AVC scheme was an

attractive one, although in fact most of the company's employees were in
such a position that AVC payments could not benefit them. Nevertheless,
there were individuals who could benefit substantially from making some
appropriate contributions under the scheme. The company was naturally
concerned that those employees nearing retirement should receive the
best possible advice concerning AVC. Local personnel officers seldom felt
competent to give this kind of advice, however, so that the majority of
queries were being referred to the AVC specialist in the company's
Pensions Department. The classic need for an expert system arose as a
consequence. AVC advice requires very specialized knowledge, yet the
company AVC expert was so overwhelmed by requests that he was finding
it increasingly difficult to cope.
At first Chan did consider implementing a classical expert system as a

solution to the problem. He interviewed the specialist several times, and
managed to formulate a number of suitable rules as a result. However,
AVC advice is extremely difficult to give. It involves predicting, amongst
other things, the likely date of retirement, the expected salary at
retirement, the prospects for promotion or for exceptional bonuses in the
meantime, and an estimate of what the rate of inflation will be like at the
time of retirement, five or ten years in the future.
The expert was, naturally enough, very reluctant to propose possible

rules. This reluctance was due partly to the difficulty of making the
necessary predictions, but also because the expert was still himself in the

252



SERGOT

process of building up expertise. Moreover, both the company and the
expert were particularly anxious that no decision should ever be made on
behalf of an employee. The decision, they insisted, must remain with the
individual; the role of the expert was to explain the scheme as well as he
could, and to help the client assess for himself the possible benefits of
joining the scheme.
For these reasons, Chan rejected the classical expert system solution,

and decided instead to base a system directly on a representation of the
relevant regulations. This involved formalizing the company's internal
pension regulations, the additional AVC regulations, and the relevant
fragments of income tax legislation. Supplied with an individual
employee's data, and an estimate for the rate of inflation and whatever
other factors are relevant, the system calculates the total pension
received under these assumptions. The employee is now encouraged to
experiment with the various parameters. He can vary the date of
retirement, his salary at that time, his monthly AVC contributions, the rate
of inflation, and so on, until he acquires sufficient understanding of the
scheme and how it relates to his own circumstances to make an informed
decision. Explanations (proofs) generated by the system in support of its
calculations also help in conveying to the employee what are the critical
conditions for him.

Chan's system illustrates many of the points that have been made in
this paper. The regulations on which the system is based are certainly
complicated (the company has several separate pension schemes, for
example), yet they introduce no particular logical complexities. The
system incorporates one particular interpretation of the regulations: for
all practical purposes there is little question that this interpretation is a
reasonable one to take. The system itself is a combination of rules which
formalize the written regulations, and supplementary rules which are
derived from the opinion of an expert. There is no attempt to provide a
system which will supply a particular recommendation. Instead, the user
is expected to experiment with the system's various assumptions until he
arrives at a conclusion of his own. And it may be that several mutually
exclusive conclusions are equally likely. Deciding between them is then a
matter of choice.
In this particular example the assumptions which the user is expected

to vary are those relating to his own particular circumstances, and a value
for the rate of inflation. In another example the state of the relevant
legislation may be open to question instead. In principle, there is no
additional technical difficulty in allowing users to vary also the rules
which represent the legislation, to estimate the effects of taking different,
mutually inconsistent, interpretations of the law. The law is ambiguous,
imprecise and vague. But there is nothing logically inconsistent in
contradictory conclusions which are derived from different assumptions.

253



REPRESENTING LEGISLATION AS LOGIC PROGRAMS

And when these assumptions are equally plausible, deciding between
them is at bottom a matter of choice.

11. CONCLUSION

In this paper I have discussed how it is possible to build, an axiomatic
model of some fragment of written legislation, and some of the ways we
might use such a model. In particular, there are many areas of the law
which we can reasonably regard as a set of definitions. .Such legal
definitions can be formalized fairly naturally as extended Horn clauses,
although we will need to include a number of syntactic extensions to this
language if the formalizations we produce are to resemble the style of the
original legislation on which they are based.
How we proceed to apply such formalizations will depend on the

nature of the application and on the way we plan to employ the system.
In the first instance, we may be interested in constructing a system which
is to take legal decisions autonomously in areas of the law which are not
particularly sensitive. In most applications of legal systems, however, we
shall be more concerned in providing legal decision support, either to
help an adjudicator whose job it is to take decisions, or to aid an
advocate in preparing and presenting his client's case in court. In all
applications, I have argued, it is not so much the conclusions of the
system which shall be of interest, but the proofs which such a system can
construct.
Two contrasting and complementary methods for producing such a

model of the law have been discussed. Hammond's description of
entitlement to Supplementary Benefit was built by formalizing the
opinion of an expert. Our formalization of the conditions under which an
individual acquires British citizenship was based directly on the legisla-
tion itself. Recognizing that the law is often imprecise and ambiguous,
and that it is necessarily vague, the difference between the two
approaches is a methodological one rather than something more fun-
damental. There are practical differences between the two methods,
however. We shall always have to justify our conclusions in terms of the
assumptions on which these conclusions are based, and it is very much
easier to assess the accuracy of assumptions when they can be traced to
some authoritative legal source.
For the formalization of any reasonably large piece of legislation, for

the purpose of building a practical application, I have advocated the use
of a top-down, goal-directed approach. Any alternative would force us to
identify the relevant bottom-level primitive concepts at the outset, before
the formulation of rules can begin. Given the number of concepts which
appear in any piece of legislation, common-sense as well as legal, I
cannot believe that this would be a practical possibility in any but the

254



SERGOT

simplest of applications. This is not to suggest that we should not look
out for concepts which are common to many types of legislation, or to
begin with concepts which we have formalized before and which we are
confident of representing already. But there will always be concepts we
have not encountered before, and which we shall not know how to treat.
Goal-directed formalization allows us to delay addressing the most
difficult representational problems until it becomes unavoidable to do so.
And we always have the option of refining the formalization later by
defining what was once a primitive concept in terms of something more
primitive instead. We shall also have to ground our formalization by
representing the common-sense knowledge required to understand and
apply the legislation. It is very much easier to construct such repre-
sentations when we know what kind of common-sense knowledge is
required, and the ways in which this knowledge will be used.
Like all formalization, representing legislation in computer programs is

necessarily a process of trial and error. This holds true whether the
formalization proceeds from the bottom-up or whether we attempt to
write rules from the outset. If we isolate an individual paragraph, or
section, or page of legislation, trial and error creates no real difficulties.
Difficulties arise as the scale of the representation increases, especially
when we try to formalize a piece of legislation in its entirety. As the
number of rules in the formalization increases, even the most trivial of
adjustments becomes a major exercise, sometimes requiring large-scale
revision and restructuring of the rules. If we are ever to make the
formalization of legislation relatively routine we need techniques to
manage these problems of scale. Modules and other methods of
structuring provide only a partial solution. For it is often the case that the
presence of a later section in some Act indicates that we have
misunderstood or misrepresented an earlier section completely. I gave an
example of this kind. Although section 2-(1) of the British Nationality
Act is labelled 'Acquisition by descent', it is only when we encounter
section 14 that we realize that 'citizen by descent' in earlier sections did
not mean 'citizen by section 2-(1)' (as we might have assumed), but
rather 'citizen by descent' as described in section 14 of the Act.

Since there is no alternative to trial and error formalization and since
there seems to be no way of avoiding revisions as later sections are
encountered, we need to provide a programming environment to make
the incorporation of these revisions as painless as possible. I would
suggest that in practice it is the absence of a suitable environment, rather
than any shortcomings in representational languages or techniques, that
imposes a limit on the kind of applications we can approach with
reasonable confidence of success.

It is important to distinguish the use of extended Horn clause logic for
representing legislation from the use of PROLOG to execute these

255



REPRESENTING LEGISLATION AS LOGIC PROGRAMS

representations. The example programs I have described in this paper are
all executed by PROLOG (more precisely, by the augmented PROLOG
system APES). In particular, these programs are executed top-down,
reasoning backwards from conclusion to conditions. There will be many
applications, however, where we shall want to execute programs with a
mixture of backward and forward reasoning, or where we shall want to
place the computation more in control of the user. One thing we shall
never want to do is to execute these programs entirely bottom-up,
supplying all relevant data in advance. This is a consequence of the very
large number of detailed data items which are required for the solution of
any given legal problem. To confirm my own British citizenship bottom-
up, for example, I would have to anticipate the need for all kinds of data
just in case they are required, ranging from the information that I was
not found abandoned as a new-born infant, to the information that I have
a reasonable command of English, that my father was never employed
overseas in the service of the Crown, that I was never resident in the
United Kingdom while in breach of the immigration laws as then in force,
and many, many more such items of data. I might be willing to supply the
date and place of my birth, the identity of my parents, and their date and
place of birth, but I will not want supply much more than that in
advance.
Vagueness and ambiguity are characteristic features of all legislation,

but neither of them is an argument against the use of symbolic logic.
Indeed I cannot see how we could begin to approach these problems
without the precision of a formal language. It is no solution to invent a
representational language which avoids these problems by ignoring them
altogether. If a particular legal provision is genuinely ambiguous, and we
manage to detect this ambiguity, we cannot ignore it. The law will have
two distinct interpretations (or more) and, unless there are very
exceptional circumstances, we shall have to make users aware of this fact
and give them the opportunity of assessing the consequences of both
interpretations. There may be reasons to prefer one interpretation over
another, of course. We might prefer one particular interpretation because
it is the more likely to be accepted in court; if we are given the job of
preparing a client's case we might prefer one interpretation, not because
it is the more likely to be accepted, but because it is in the interests of
our client that our interpretation be accepted as the right one to take.
How hard we shall have to work in persuading a court to accept our
interpretation will depend the nature of the court itself, the ability of
opponents in arguing the opposite, and on how many strong arguments
we can adduce in support of our claim. In particular an interpretation
which is far-fetched and which requires an elaborate and extremely
involved argument to support it is unlikely to be accepted (although this
does not mean it will not be accepted).

256



SERGOT

The resolution of vagueness too is fundamentally a matter of choice,
constrained by the various rules of argumentation which a particular
court will allow. In the long term, we shall need systems whose function
is to advise on matters of interpretation, on the likelihood of getting
some particular interpretation accepted, and on possible lines of ar-
gumentation to achieve this end. In the short term, I have mentioned a
range of methods we could provide to help users arrive at some sort of
decision. This help ranges from the simplest devices, like attaching some
explanatory footnotes to questions about open-textured concepts, to
sophisticated methods for accessing large data bases of decisions which
were taken in previous similar cases. Trevor Bench-Capon and I are
pursuing an approach which simulates the legal decision-taking process
itself, by arranging for sets of inconsistent rules to generate arguments
both for and against a particular conclusion. If all the generated
arguments point in the same way then the decision will be relatively
clear-cut. If not, it will be up to the individual user to assess the various
arguments, and decide for himself which is the more likely to succeed in
court, or which is in the best interests of his client. I have also suggested
that we can go a long way towards conveying why a particular concept is
vague by encouraging users to experiment with the various assumptions
in the system. How much of this process we could mechanize, and what
kind of advice we could provide about the best kind of experiments to
perform, are the subjects of current investigation.
The use of a formal representation language gives the resulting

program a meaning which is independent of its behaviour inside a
machine. This property increases the usefulness of the formalization.
Theorem provers no more sophisticated than PROLOG are adequate for
executing the formalization as a program which applies the law. More
sophisticated theorem provers can exploit the formalization for other
purposes, particularly at the drafting stage and in the formulation of
policy. The ability to prove logical consequences of a proposed piece of
legislation can speed the drafting process and can improve the clarity of
expression. The derivation of logical consequences helps to make clear
whether proposed legislation is necessary or desirable. It can also suggest
ways of simplifying or otherwise restructuring the legislation.
Let us imagine that at some point in the drafting of the British

Nationality Act, concern was voiced that the proposed provisions were
unfair because a person who was entitled to register as a citizen, but who
died before he did register, could thereby deprive his children of British
citizenship: but for his death, his children would be citizens. Suppose it is
generally agreed that this state of affairs, if indeed it exists, is unde-
sirable. Such concerns might be countered by suggesting that the current
draft already has the property that the conditions under which a person is
entitled to register as a citizen guarantee that his children are automati-

257



REPRESENTING LEGISLATION AS LOGIC PROGRAMS

cally citizens in their own right. If this is true, problems with persons who
die before registering as citizens do not arise and no amendment of the
current draft is necessary. Now this hypothesis might or might not be
true. It could be tested straightforwardly however. Either it is a
consequence of the current draft that entitlement of a parent to register
as a British citizen implies the citizenship of his children, or it is not. Such
a theorem, if it is a theorem, could be proved mechanically. If it is not a
theorem, then the device which I called tentative assumptions would give
the conditions under which it would be a theorem, and these qualifica-
tions in turn would suggest how the legislation could be amended to
eliminate the anomaly of children being deprived of citizenship by the
death of their parents. In principle there is nothing difficult about proving
such theorems. In practice, the tools will only be used by a draftsman if
they are convenient to use. This would be another motivation (if one
were needed) for pursuing the development of logic programming
environments.
As long ago as 1957, Layman Allen [14] advocated the use of symbolic

logic as a tool for analysing, and potentially simplifying, the structure of
complex legal documents. He suggested, in particular, the use of
automated tools for this task, and automated theorem-proving techniques
have advanced dramatically since that time. Mathematics is concerned
with axiomatic systems in which a small number of very general axioms
give rise to a large number of powerful and very general theorems. The
kind of theorem proving which will be required for help in drafting the
law will be in complete contrast: we shall want to supply a large number
of very detailed axioms (representing some fragment of law), and derive
very specific theorems from these axioms.
I have labelled the examples in this paper 'legal expert systems'.

Whether such programs should properly be called expert systems is a
matter of terminology. They certainly have many of the features
associated with expert systems. They derive their conclusions by in-
ference from knowledge expressed explicitly; they can justify their
conclusions, and they can generate requests for missing information as it
is required. But these programs also resemble the executable specifica-
tions common in software engineering, particularly if they are to be used
at the drafting stage. This resemblance is more than superficial. I have
mentioned that in formalizing the British Nationality Act we were not
concerned with efficiency, but with keeping the formalization as close as
possible to the structure of the original legislation. And I have also
remarked that it may be impossible to achieve this, while at the same
time producing a program which behaves well computationally. In the
case of the British Nationality Act formalization, it is possible to employ
program transformation methods to yield a program which is computa-
tionally better behaved, but which is less readable and further removed

258



SERGOT

from the legislation as a consequence. What we shall want in such
circumstances is a system which will execute the efficient but obscure
program, but explain its conclusions in terms of the original, inefficient,
formalization.
There are many areas in the law, and in regulation-based organizations

more generally, for which it is possible to build applications in the short
term. In this paper I have stressed the practical aspects, and I have
mentioned only briefly the very many technical problems which remain to
be solved. We need to discover natural and computationally tractable
representations of the deontic concepts, for example, because they occur
in many areas of law, although not nearly as frequently as might be
supposed. Much more important, whether we treat the deontic concepts
or whether we restrict attention to 'definitional' law, are the problems of
legal reasoning which stem from conflicting beliefs and the need to reason
with incomplete information. Experiments with varying assumptions are
a crude attempt to deal with conflicting beliefs. Reasoning with incom-
plete information introduces default reasoning and reasoning with logical
systems which are non-monotonic. The simplest way of providing a
default, non-monotonic reasoning system is to adopt the treatment of
negation as failure. This treatment of negation is only justified under very
specific conditions however. In many practical applications these condi-
tions will be satisfied. In general they will not, and we shall be unable to
proceed without some more sophisticated treatment for making default
inferences on the basis of incomplete information.
There is hardly an area of research in Artificial Intelligence which

could not find in the law an immensely rich source of challenging
problems. Unlike most other experimental domains, however, any
advance finds immediate practical application, in a domain moreover
where applications will have the profoundest social implications.

Acknowledgements

I am indebted to Robert Kowalski for his enthusiasm, encouragement and support, and for
his many valuable suggestions. I am particularly grateful to Trevor Bench-Capon for his
comments on this paper and for many stimulating and informative discussions, to Peter
Hammond to whom much of the credit for APES belongs, and to Fariba Sadri for
undertaking the tedious job of formalizing the British Nationality Act. I am also grateful to
Thorne McCarty and Ronald Stamper for discussions which have helped me enormously.
This work was supported by the Science and Engineering Research Council.

REFERENCES

1. ShortHe, E. H. (1978) Computer-based medical consultations: MYC1N. North-
Holland/Elsevier.

2. Duda, R., Gashing, J., and Hart, P. (1979) Model design in the PROSPECTOR consultant

system for mineral exploitation. In Expert systems in the micro-electronic age (ed. D.
Michie). Edinburgh University Press, Edinburgh.

259



REPRESENTING LEGISLATION AS LOGIC PROGRAMS

3. Waterman, D. A. and Peterson, M. A. (1980) Rule-based models of legal expertise.
Proc. First National Conf. on Artificial Intelligence, pp 272-275. Stanford University.

4. Waterman, D. A. and Peterson, M. A. (1981) Models of legal decision making.
Technical Report R-2717-1C1. The Rand Corporation, Santa Monica.

5. Hammond, P. (1983) Representation of DHSS regulations as a logic program. Proc. BCS
Expert Systems '83, Cambridge. British Computer Society.

6. Hammond, P. and Sergot, M. J. (1983) A PROLOG shell for logic based expert systems.
Proc. BCS Expert Systems '83, Cambridge. British Computer Society.

7. Hammond, P. and Sergot, M. J. (1984) APES 1.1 reference manual. Logic Based
Systems Ltd, Richmond, UK.

8. Clark, K. L. (1978) Negation as failure. Logic and data bases (eds H. Gallaire and J.
Minker). Plenum Press, London.

9. Sergot, M. J. (1983) A Query-the-user facility for logic programming. In Integrated
interactive computer systems (eds P. Degano and E. Sandwell). North-Holland,
Amsterdam.

10. Clark, K. L. and McCabe, F. G. (1984) micro-PROLOG programming in logic.
Prentice-Hall, London.

11. Stamper, R. K. (1979) LEGOL: Modelling legal rules by computer. Computer science
and law (ed. B. Niblett). Cambridge University Press, Cambridge.

12. Jones, S., Mason, P. J., and Stamper, R. K. (1979) Lego1-2.0: a relational specification
language for complex rules. Information Systems 4(4), 293-305.

13. Sergot, M. J. (1980) Programming law: LEGOL as a logic programming language.
Department of Computing, Imperial College of Science and Technblogy, London.

14. Allen, L. E. (1957) Symbolic logic: a razor-edged tool for drafting and interpreting
legal documents. Yale Law Journal, 66, 833-79.

15. Allen, L. E. (1979) Language, law and logic, plain legal drafting for the electronic age.
In Computer science and law (ed. B. Niblett). Cambridge University Press, Cambridge.

16. Sergot, M. J., Sadri, F., Kowalski, R. A., Kriwaczek, F., Hammond, P., and Cory, H.
T. (1985) The British Nationality Act as a logic program. Research report, Department
of Computing, Imperial College of Science and Technology, London (December 1983,
revised May 1985). To appear in Commun. ACM 29(5), 370-86.

17. Sharpe, W. P. (1984) Logic programming for the law. Proc. BCS Expert Systems '84.
British Computer Society.

18. Gabbay, D. M. and Reyle, U. (1984) N-PRowc: An extension of PROLOG with
hypothetical implications. I. J. Logic Programming 4, 319-55.

19. Bench-Capon, T. J. M. and Sergot, M. J. (1985) Towards a rule-based representation
of open texture in law. Research report, Department of Computing, Imperial College
of Science and Technology, London.

20. McCarty, L. T. (1979) The TAXMAN project: towards a cognitive theory of legal
argument. In Computer science and law (ed. B. Niblett). Cambridge University Press,
Cambridge.

21. McCarty, L. T. (1983) Permissions and obligations. Proc. IJCAI-8, Karlsruhe.
22. Suphamongkhon, K. (1984) Towards an expert system on immigration legislation.

M.Sc. thesis, Department of Computing, Imperial College of Science and Technology,
London.

23. Lowes, D. (1984) Assistance to industry: a logical approach. M.Sc. thesis, Department
of Computing, Imperial College of Science and Technology, London.

24. Chan, D. (1984) A logic based legal expert system. M.Sc. thesis, Department of
Computing, Imperial College of Science and Technology, London.

25. Sergot, M. J. (1982) Prospects for representing the law as logic programs. In Logic
programming (eds R. Clark and S. Tarnlund). Academic Press, London.

260



MACHINE LEARNING:
METHODS AND INSTRUMENTS



l



11

Incremental Learning of Concept

Descriptions: A Method and

Experimental Results

R. E. Reinke
GTE Laboratories.
Waltham, Massachusetts, USA

R. S. Michalski*
Massachusetts Institute of Technology,
Cambridge, Massachusetts, USA

Abstract

A system for learning concept descriptions incrementally is described and
illustrated by a series of experiments in the domains of insect classi-
fication, chess endgames and plant disease diagnosis. The system employs
a full-memory learning method that incrementally improves hypotheses,
but does not forget facts. The method is used to form both characteristic
descriptions, which describe a concept in detail, and discriminant
descriptions, which specify only properties needed to distinguish a given
concept from a given set of other concepts. Experimental results show
the advantages of inducing and maintaining only characteristic descrip-
tions during learning and creating discriminant descriptions from them
when a classification decision is necessary.

1. INTRODUCTION

Research in the area of concept learning from examples has been
concerned mainly with methods for single step, or non-incremental,
learning. Such methods can effectively and efficiently induce good
descriptions from a given set of examples and, optionally, induce
counter-examples (for example Michalski, 1975, 1980a; Quinlan, 1979;
Langley et al., 1983). These methods cannot modify concept descriptions
which are contradicted by new examples, but must re-learn the descrip-
tions from scratch. In contrast, incremental learning methods modify
concept descriptions to accommodate new learning events (Winston,
1975; Michalski and Larson, 1978).
When we observe human learning we clearly see that it is incremental.

People learn concept descriptions from facts and incrementally refine

• Current address: c/o George Mason University, 4400 University Drive, Fairfax, VA
22030.

263



INCREMENTAL LEARNING OF CONCEPT DESCRIPTIONS

those descriptions when new facts or observations become available.
Newly gained information is used to refine knowledge structures and
models, and rarely causes a reformulation of all the knowledge a person
has about the subject at hand.
There are two major reasons why humans must learn incrementally:
1. Sequential flow of information. A human typically receives infor-

mation in steps and must learn to deal with a situation long before all the
information about it is available. When new information does become
available, there is rarely time to reformulate everything known about all
the concepts involved.

2. Limited memory and processing power. People cannot store and
have easy access to all the information they have been exposed to. They
seem to store only the most prominent facts and generalizations, then
modify the generalizations when new facts are available.
This paper describes a method for automated learning of concept

descriptions from examples which is novel in its use of facts and of
concept descriptions. We assume that in practical machine learning
systems, only the first of the above constraints is important and that the
second may be ignored. The fact that information arrives sequentially
cannot be changed, as it reflects the nature of the world. On the other
hand, storing and retrieving large amounts of information is not difficult
for modern computers. We therefore investigate a full-memory
incremental learning system which modifies concept descriptions to
accommodate new information, but does not forget facts.
A concept description can be assigned a type based on two factors:

purpose and form. A description's purpose is either to characterize or to
discriminate (Michalski, 1983). A characteristic description of a concept is
very specific and tries to capture all the known properties of the concept.
Such a description is useful for building a detailed model of the concept
and for teaching someone about the concept. On the other hand,
discriminant descriptions are used to distinguish one concept from a given
set of other concepts and contain only those properties of the concept
which are necessary to make such distinctions. Characteristic descriptions
attempt to distinguish a given concept not just from a known set of other
concepts but from any other concepts. Thus, discriminant descriptions
are dependent on the class of concepts under consideration while
characteristic descriptions are not. In short, characteristic descriptions are
used to describe and discriminant descriptions are used to discriminate.
Section 2 gives more details and presents a classification of different types
of descriptions.
The form of a concept description is directly dependent on the

description language used. In the variable-valued logic used in this paper
(see next section), a description may be either conjunctive or disjunctive.
We therefore distinguish between four types of description: characteristic

264



REINKE AND MICHALSKI

conjunctive (CC), characteristic disjunctive (CD), discriminant con-
junctive (DC), and discriminant disjunctive (DD).
People are able to learn and use many different types of concept

descriptions. Further, the type of description a human uses may depend
on the situation. The learning method described here can also be used to
form several description types; these may be used in different ways when
learning incrementally. We describe experiments designed to test the
effectiveness of the new learning method over different description types
in different domains.

Section 2 describes the problem area and introduces the relevant
terminology. Section 3 describes the new learning methods as they are
currently implemented, and presents some possible extensions. Section 4
describes experiments designed to test the learning methods and Section
5 presents the results of these experiments. Finally, Section 6 discusses
the implications of the results and some directions for future research.

2. TERMINOLOGY AND DEFINITIONS

This paper deals with that subset of learning from examples known
as symbolic concept acquisition. Givens are observational statements
which describe objects (situations, events, etc.) that have been pre-
classified by a teacher. From these, the learning system is to induce a
concept recognition rule. If an object satisfies this rule then it is
considered an instance of the corresponding concept (class).

Attribute

Throughout this paper, we assume that all objects and concepts are
described in terms of a finite number of discrete attributes (variables).
Each attribute is assigned a finite domain from which it draws values and
a type that characterizes the structure of the domain. In this study, we
distinguish only between two types of attributes: nominal and linear.
Nominal attributes have domains where there is no ordering on the
values (e.g. 'colour') while linear attributes have domains in which the
values are linearly ordered (e.g. length').

Event

An event is a symbolic description of an object. In this work, an event is
represented as a vector of attribute values and is associated with a single
concept (class). We assume that each event specifies exactly one legal
value for every attribute. If an event is used in the learning phase, the
event is called a training (learning) event. If it is used for testing, then it is
called a testing event.

265



INCREMENTAL LEARNING OF CONCEPT DESCRIPTIONS

Selector

A selector is a relational statement of the form [x#/t] where x is an
attribute, # is a relation (one of >, =, <, and R is a subset of the
domain of x. The selector [x#R) is said to be satisfied by the event e if
the value of the attribute x in e has relation # with at least one of the
values in R.

Complex

A complex is the logical product (conjunction) of selectors. A complex is
satisfied by an event if every selector in the complex is satisfied by the
event.

Concept description

A concept description is assumed to be a disjunction of complexes. A
description is satisfied by (covers) an event if at least one complex of the
disjunction is satisfied.

Decision rule

A decision rule is an assertion of the form D ::> C. Here D is a concept
description and C is a class (concept) and ::> denotes the class
assignment operator. D can therefore be viewed as an hypothesis
describing C. The rule above can be interpreted as 'If an event satisfied
description D, then the event is an instance of concept C.'

Star

The star of an event e against the set of events F, denoted G(e IF), is the
set of all maximal under inclusion complexes satisfied by the event e and
not satisfied by any event in the set F. Informally, a star is the set of all
maximally general concepts which consistently characterize a given
example.

Completeness, consistency, and description types

A concept description learned from examples is complete if it is satisfied
by all learning events which are known instances of that concept. A
description is consistent if it is not satisfied by any learning event which is
an instance of any other concept. Michalski (1983) defined a characteris-
tic description as an expression that satisfied the completeness condition
or the logical product of such expressions while a discriminant description

266



REINKE AND MICHALSKI

is an expression that satisfies the completeness and consistency conditions
or the logical disjunction of such expressions. Ideally, a learning system
would learn the maximal characteristic description and the minimal
discriminant description. In this section we will make a further distinction
between conjunctive and disjunctive characteristic descriptions. A char-
acteristic concept description is either a single conjunct listing the
common properties of all learning instances of that concept or a
disjunction of conjuncts which splits the learning instances of the
concepts into subclasses. A characteristic disjunctive (CD) description
should contain the minimum number of disjuncts and each disjunct
should be as specialized (i.e. long) as possible. Note that the disjuncts in
a CD description may not be disjoint and that the completeness condition
still must hold.

3. METHODS AND IMPLEMENTATION

This section describes in detail the methods developed to learn descrip-
tions incrementally from examples. Section 3.1 presents a very brief
sketch of the AQ algorithm (see Michalski, 1975), as it is the base on
which the method is built. Section 3.2 describes the modifications
necessary to make AQ work incrementally with full memory and
introduces an implementation of this method in the GEM program.
Finally, Section 3.3 discusses a way to make GEM produce characteristic
type descriptions.

3.1. The an algorithm

The AQ algorithm was conceived as a quasi-minimal solution to the
general covering problem (Michalski, 1969). It has subsequently been
recognized as applicable to the problem of inductive inference. This
problem can be characterized as follows:
Given: a set of positive events E+ belonging to the class for which a

description is to be formed, and a set of negative events E- belonging to
other classes.
Produce: a description H that is satisfied by (covers) all the events in

E+ and none of the events in E..
A simplified version of the AQ algorithm applied to this problem

randomly selects a seed event from a given class and generates the star
for this seed. During star generation, the seed is generalized against
different negative events. The results of these generalizations are
intersected together to form a partial star. For efficiency reasons (Hong
and Michalski, 1985), the partial star is reduced by selecting from it the
preferred complexes as determined by a user-generated preference
criterion. Once the reduced star is completed, the best complex in it is

267



INCREMENTAL LEARNING OF CONCEPT DESCRIPTIONS

selected using the same criterion. The positive events covered by this
complex are removed from the list of events to be covered, a new seed is
selected from the remaining positive events and the process repeated.
Stars are generated until there are no positive events left to cover; the
disjunction of the generated complexes is a solution to the problem.
The preference criterion mentioned above is called the LEF

(lexicographical evaluation functional). A LEF consists of an ordered set
of criterion-tolerance pairs. A criterion specifies a metric to be used in
judging complexes and a tolerance specifies the estimated relative error
in that metric. When selecting the best complex from a list of complexes,
AQ orders the complexes based on the first criterion. Complexes that are
within the first tolerance of the best complex are ordered by the second
criterion, and so on. The LEF provides a means of manipulating the types
of descriptions produced by AQ (see Section 3.3).

3.2. Incremental learning with AQ

This section discusses extensions to the AQ algorithm which permit it to
form descriptions incrementally (Becker, 1985). As shown in Figure 1,
the modified algorithm must be able to apply inference rules either to
training examples alone or to training examples and rules. Figure 2 shows
a schematic version of the rule-modification process. The incremental
method must be able to both specialize a rule so that it no longer covers a
negative event and generalize a rule so that it covers a new positive
event.
The incremental version of AQ begins by checking each old rule against

the new events. It first determines whether any complex in these rules
must be specialized. If some complex covers events which it should not, a
modified version of AQ is invoked. The modified AQ procedure is

Figure 1. The initial steps in an incremental learning process.

268



REINKE AND MICHALSKI

•••■••■•■•••1114fro

GENERALIZE

RULE

NEW
POSITIVEPOSITIVE
EVENT

RULE
DOES NOT.

COVER
EVENT

RULE
COVERS
EVENT

Figure Figure 2. A schematic view of rule modification.

NEW
NEGATIVE
EVENT

characterized below:

Given: a set of positive events E+ , a set of negative events E- and a
subset of the event space, SES.
Produce: A description H, logically contained in SES, such that H

covers all the events in E+ and none of the events in E.
This is accomplished using the normal star generation technique, except
that the first partial star is intersected with SES.
So, to specialize a complex, incremental AQ calls the modified

algorithm with the following arguments:
E+ all positive events (both old and new) covered by the old complex
E- the new negative events covered by the old complex.
SES the old complex.

The result is one or more new complexes, all contained in the original
complex, which cover all the positive events that the original did and
none of the new negative events. This is the desired specialization.
Once all rules have been specialized, they are re-generalized to cover

new positive events. This is done using the standard AQ method, except
that the original rules are used as seeds. The result of this second step is a
rule which correctly covers both old and new events.

269



INCREMENTAL LEARNING OF CONCEPT DESCRIPTIONS

The potential danger here is that the time spent finding every positive
event covered by a complex during the specialization step will negate any
time gain caused by the retention of old rules. Further, it is possible that
the specialization process will produce unduly complex rules by splitting
conjuncts into disjuncts. The experiments described in Section 4 were
designed to address these issues.
The incremental version of AQ has been implemented in Pascal for

efficiency reasons. The program, called GEM (Generalization of Examples
by Machine) consists of approximately 3500 lines of code. All input to
GEM is in the form of relational tables, allowing the program to interact
with the QUIN relational data base system (Spackman, 1983).

3.3. Producing characteristic descriptions with GEM

The LEF (Section 3.1) used by GEM to choose the best complex in a star
can be used to manipulate the type of description learned. Typically, the
first criterion in the LEF is based on the number of positive events covered
by the complex. The second criterion (used to break ties in the first) may
be based on the length of the complexes. If the criterion requires that the
best complex is the shortest, then GEM will produce discriminant
descriptions. If the criterion requires that the best complex is the longest,
the result is a more detailed, characteristic type of description. Since the
program must sometimes create disjunctions in order to cover all positive
events, the result of learning is a CD or DD description (although
conjunctive descriptions can result). Two issues must be addressed: how
good are these descriptions and what is the best way to use each type in
learning?
The quality of a concept description depends on its performance and its

comprehensibility. Both characteristic and discriminant descriptions
should perform well when tested on previously unobserved events. A
good discriminant description will also be easy to use (i.e. brief) while a
good characteristic description will be detailed yet easy to understand.
The comprehensibility of a description is obviously a subjective matter,
but it is very important. If, for example, the descriptions are to be used
in an expert system, the domain expert must be able to understand the
results of learning.
There are many ways to use different concept description types in

learning. The most obvious way is to simply form the type of description
desired at whatever time it is needed. Another possibility is to learn
incrementally only characteristic descriptions. This method is attractive
for two reasons. First, characteristic descriptions are more specific than
discriminant descriptions; a specific description contains more informa-
tion about what is being learned and is less likely to be over-generalized.
Second, since GEM can induce over descriptions as well as over events, it
may be possible to induce good discriminant descriptions from charac-

270



REINKE AND MICHALSKI

teristic descriptions. This second induction step should be very fast, and
will allow us to use whichever description type is most appropriate. The
question remains as to the quality of discriminant descriptions produced
in this way.

4. EXPERIMENTS

In order to test the new incremental learning methodology, three
application domains with differing properties were chosen. These doma-
ins (described in Section 4.1) varied in size, in type of attributes, and in
the degree to which events represented real world objects or situations.
This range of problems provides a basis for our tentative conclusions
about the effectiveness of the learning methodology. An experiment, to
be repeated in all three problem areas, was designed with the following
goals in mind:

1. To compare the usefulness of different description types produced
by the new incremental learning method.

2. To discover whether the method of inducing discriminant descrip-
tions from characteristic ones produces simple discriminant de-
scriptions that will perform well.

3. To see whether the incremental learning algorithm described in
section 3.2 avoids the potential problems in learning with full
memory.

4.1. Problems

The first problem was the classification of different species of Stenonema
mayfly nymphs (Lewis, 1974) based on the use of attributes for describing
an individual insect's appearance. Seven species of Interpunctatum
group nymphs were described in terms of seven attributes, giving a total
event space size on the order of 106 possible descriptions. Ten different
examples of each species were available.
The second application area was the King—Pawn—King black-to-move

chess endgame, where the pawn's side is white. Here, examples were
described in terms of 31 boolean attributes (Niblett, 1982); each example
actually covered several legal KPK positions. That is, the input examples
are generalized representations of the actual board positions. The
examples were correctly classified (by a search program) into Won for the
pawn's side or Drawn. A total of 1901 attribute vectors sufficed to
represent the entire event space (which has on the order of 105 positions)
since one attribute vector represents many positions and a large portion
of the attribute space consists of illegal, impossible, or symmetrical
positions.
The largest application area was the soybean disease diagnosis domain.

Diseased soybean crops were described in terms of 50 attributes.

271



INCREMENTAL LEARNING OF CONCEPT DESCRIPTIONS

Attribute domains ranged in size from two to 11 values, meaning that
approximately 1030 attribute vectors were possible. The event set
consisted of examples of 17 different soybean diseases common in
Illinois; there were 17 different examples of each disease. The data used
for these experiments differed from that described by Michalski and
Chilausky (1980). For the current experiments, 15 more attributes were
used and two new diseases were added to the data. The entire example
set was also revised and updated.

4.2. Experimental method

To determine the quality and the usefulness of the full memory
incremental learning method, an experiment was devised to simulate rule
base development. In each problem area, all the available events were
split randomly into two groups, training events and testing events. The
basic learning method was to provide GEM with successive sets of new
training events, so as to simulate rule base refinement. At each step of
the process, the induced rules were tested on available testing events.
In each domain, the incremental learning process started with about

20% of the available learning events. Using this learning set, decisions
rules were formed. An enhanced set of learning events was created by
adding a random number of learning events of each class to the original
learning set. The enhanced event and the rules induced during the first
step were input to GEM, which then produced refined rules. The learning
set was again enhanced, and new rules produced. This process was
repeated until no learning events remained.
In the mayfly nymph domain, for example, there are seven classes and

a total of five available learning events per class. The initial learning set
was seven events, one per class. From these seven events, rules were
induced. Then, seven random numbers were generated, one for each
class. The results of this process are shown in Figure 3. For class
Stenonema carolina the random number was 0.32. There were four events
remaining in this class, so one example (4 x 0.32 = 1.28, rounded to 1.0)
of a Stenonema carolina mayfly nymph was added to the learning set. For
this second learning step, a total of seven events were added. So, 14
events were available to GEM for this step, seven old events and seven
new ones. These events and the seven rules induced during the first step
were used to form new rules.
At each step in the incremental learning process four rule types were

formed:
1. A control set of discriminant rules formed using the single-step

version of AQ.
2. A set of discriminant rules formed incrementally.
3. A set of characteristic rules formed incrementally.

272



REINKE AND MICHALSKI

Class
Generated
Number

Available
Events

Events to be
Added

Total Events for this
learning step

Stenonema
carol/no 0.32 4 1 2

Stenonema
candidum 0.53 4 2 3

Stenonema
I/or/dense

0.21 4 0 1

Stenonema
gildersleevei 0.06 4 0 1

Stenonema
interpuc 0.89 4 3 4

Stenonema
minnentonka 0.43 4 1 2

Stenonema
pallidum 0.11 4 0 1

Total — 28 7 14

Figure 3. Event selection for the second learning step in the Stenonema mayfly nymph
domain.

4. A set of discriminant rules induced from the characteristic rules,
above.
All three discriminant rule sets were tested against all available testing
events. In each domain, the entire experiment was repeated with
different combinations of learning and testing events. The results of these
experiments are summarized in the next section.

5. EXPERIMENTAL RESULTS

Three facets of rule induction were measured. First, the rule induction
time was estimated based on the c.p.u. time used by GEM in forming the
rules. All results are for a Pascal version of the GEM program running
under the 4.2 bsd version of the UNIX operating system on a VAX 11/780.
Second, rule comprehensibility was measured. A rule's complexity,
assumed to be the inverse of its comprehensibility, was defined as the
sum of the number of selectors, number of different attributes and
number of complexes in the rule. The complexity of a set of rules is the
average of the complexities of the members. Third, the performance of
the rules was estimated. Rules were tested using the ATEST program and
testing examples set aside for the purpose [see Reinke (1984) for a
description of ATEST and a discussion of the issues involved in rule
evaluation].

273



INCREMENTAL LEARNING OF CONCEPT DESCRIPTIONS

5.1. Mayfly nymph extension

Figure 4 shows the c.p.u. time used by GEM to induce three different
types of discriminant rules for identifying Stenonema mayfly nymphs. As
expected, inducing DD descriptions from CD descriptions took very little
time (less than 1 s of c.p.u. time in every case). The incremental method
created descriptions in considerably less time than the single-step
method.
Figure 5 shows the complexity of all four rule types at each stage of the

learning process. The complexity of the discriminant rules induced
incrementally rose at every step, undoubtedly due to the specialization of
complexes. There was little difference between the characteristic rules
and the discriminant rules induced from them. The second repetition of
the experiment, using different learning events, produced more complex
characteristic rules and simpler discriminant ones.
The performance of the three discriminant rule types is compared in

Figure 6. In this domain, almost all misclassifications took place because
several descriptions were satisfied by a testing event. Therefore, the DD

20

15

"4/.7,
•••••

10

.J

0  I I I I 111111 t I i i i t 1 

0 10 20 30 40

No. Learning Events

)1,

---- discriminant descriptions induced in one step from examples
— -- discriminant descriptions induced incrementally from examples
----- discriminant descriptions induced from characteristic descriptions
--- characteristic descriptions induced incrementally from examples

Figure 4. c.p.u. time to induce four description types for identification of mayfly nymphs.

274



20

15

5

•

__

----A ---- •

REINKE AND MICHALSKI

0  I I I ill I I II flit 'Rill 
0 10 20 30 40

No. Learning Events

— discriminant descriptions induced in one step from examples
— — — discriminant descriptions induced incrementally from examples
  discriminant descriptions induced from characteristic descriptions
— characteristic descriptions induced incrementally from examples

Figure 5. Complexity of four description types for identification of mayfly nymphs.

descriptions induced from CD descriptions were too general in the tests
shown in Figure 6. A repetition of the experiment produced CD
descriptions from which better DD descriptions were induced. Typical
descriptions in this domain are shown in Figure 7.

5.2. Chess endgame position classification

In the chess endgame problem area, it was not possible to generalize the
characteristic descriptions produced by GEM. For this reason, Figures
8-10 compare the two types of discriminant rules and the characteristic
rules. Figure 8 shows that the incremental method saved a considerable
amount of induction time in this domain.

Figure 9 compares the complexity of the three rule types over the
course of the learning process. Characteristic and discriminant descrip-
tions differed very little overall. This, and GEM'S inability to generalize
the long descriptions, is probably due to the nature of the attributes used
to describe events. Since each input vector is really a generalization of
several actual chess positions, one event may not generalize easily to

275



INCREMENTAL LEARNING OF CONCEPT DESCRIPTIONS

Rule 100 
Performance

(in percentage) go.

80.

70.

10 1.5 20 25 20 3.5 40

No. Learning Events

IM discriminant descriptions induced in one step from examples

(zzg discriminant descriptions induced incrementally from examples

= discriminant descriptions Induced from characteristic descriptions

Figure 6. Performance of three description types for identification of mayfly nymphs.

cover another. This hypothesis is partially borne out by the fact that the
descriptions produced were very disjunctive, containing an average of 20
complexes each. Each of these complexes would be highly specialized
(i.e. characteristic) by nature, and therefore impossible to generalize.

Figure 10 shows the performance of all three description types.
Unsurprisingly, the choice of learning events was very important in this
domain. Two rules sets were produced by induction over two learning
sets of exactly the same size, yet the rules were more than 90 per cent
correct during the run shown and about 50 per cent correct during the
other. This suggests that events of a given class appear in many distinct
regions of the event space, and explains the highly disjunctive nature of
descriptions in this domain. If learning events are taken from only a few
of the regions, then rule performance will be poor. If, however, the
learning events contain elements from almost all the regions, the rules
should have relatively good performance. This hypothesis suggests that
the better rules should have a larger number of complexes than the

276



Ch
ar

ac
te

ri
st

ic
 d
es
cr
ip
ti
on
:

[m
ax
il
la
_c
ro
wn
_s
pi
ne
s =
 1
0]

[m
ax

i1
la

_1
at

er
a1

_s
et

ae
 =
 21

,2
6,
28
,3
0]
[i
nn
er
_c
an
in
e_
te
et
h 
=
2
]

[o
ut
er
_c
an
in
e_
te
et
h 
=
 7.

8]
[t

er
ga

_d
ar

k_
po

st
er

io
r_

ma
rg

in
s =
 a
bs
en
t]

Di
sc

ri
mi

na
nt

 d
es
cr
ip
ti
on
 i
nd

uc
ed

 f
r
o
m
 c
ha

ra
ct

er
is

ti
c 
de
sc
ri
pt
io
n:

ts
a

--.
1

....
.) 

[m
ax

il
la

_c
ro

wn
_s

pi
ne

s =
 1
0]
[i
nn
er
_c
an
in
e_
te
et
h 
=
 2]

[t
er
ga
_d
ar
k_
po
st
er
io
r_
ma
rg
in
s =
 a
bs
en
t]

Di
sc

ri
mi

na
nt

 d
es
cr
ip
ti
on
 i
nd
uc
ed
 f
ro
m 
ex
am
pl
es
:

[t
er
ga
_m
id
_d
or
sa
l_
pa
le
_s
tr
ea
ks
 =
 a
bs

en
t]

Fi
gu
re
 7
. 
Ex
am
pl
es
 o
f 
di
ff
er
en
t 
de
sc
ri
pt
io
n 
ty

pe
s 
fo

r 
th
e 
cl

as
s 
St

en
on

em
a 
ca
ro
li
na
 i
n 
th
e 
ma

yf
ly

 n
y
m
p
h
 d
om

ai
n.

DISIVHDIN CINV aNNIgli 



INCREMENTAL LEARNING OF CONCEPT DESCRIPTIONS

3000

2500
1.7)

7; 2000

1500

1000

500

0 I
450 500 550

4%:\ •

Si 11 
600 800 850 900 950 1000

>
650 700 750

No. Learning Events

— discriminant descriptions induced in one step from examples
— — — discriminant descriptions induced incrementally from examples
----- discriminant descriptions induced from characteristic descriptions

Figure 8. c.p.u. time to induce three description types for classification of KPK endgame
positions.

poorer. This was indeed the case—the good rules had, on the average,
almost twice as many complexes as the poorer rules. It should be noted
that this effect would probably not have been observed if a chess expert
had chosen the examples. Typical descriptions for this domain are shown
in Figures 11 and 12.

5.3. Soybean disease diagnosis

The results for the soybean disease problem are summarized in Figures
13-15. The event space for this problem was by far the largest of the
three, so rule induction took considerably longer. The time saved by
using the incremental method was considerable. Again, inducing DD
descriptions from CD descriptions took very little time.
Figure 14 shows the complexity of the four description types over the

learning process. As expected, the characteristic descriptions were the
most complex. The DD descriptions induced from CD descriptions were
more complex than DD descriptions induced directly from examples.
All of the discriminant rules performed well, as shown in Figure 13. In

comparison, the most recent rules written by plant pathologists were

278



300

250

100

50

_
- '

v",• .
- .._ ,. .
_
_ 7/

- .

REINKE AND MICHALSKI

,•-- • — - fp •

•_•_..•

0 

111111111111_1111

 111111 

450 500 550 600 650 700 750 800 850 900 950 1000
No. Learning Events

— discriminant descriptions induced in one step from examples
— — — discriminant descriptions induced incrementally from examples
--- characteristic descriptions induced incrementally from examples

Figure 9. Complexity of three description types for classification of KPK endgame positions.

about 80% correct for these testing events. These results are similar to

earlier results in the same domain (Michalski, 1980b; Niblett, 1982).

Typical descriptions for this domain are shown in Figure 16.

6. SUMMARY

The experimental results are summarized below in terms of the goals sets

forth in Section 4:
1. The relative quality of the various description types varied widely

with the domain. In the mayfly nymph recognition domain, the in-

crementally learned descriptions performed poorly compared to the

single step descriptions (83% correct compared to 60%). In the chess

endgame domain they performed at about the same level (98-96 per

cent) and in the soybean disease diagnosis domain the incrementally

learned rules performed slightly better (88-82 per cent). Overall,

incrementally learned discriminant disjunctive descriptions were slightly

more complex than descriptions formed in a single step. Characteristic

disjunctive descriptions were even more complex, as expected, but were

unfortunately also more disjunctive (averaging six complexes per descrip-

279



INCREMENTAL LEARNING OF CONCEPT DESCRIPTIONS

Ru
le
 P
er
fo
rm
an
ce
 (
in
 pe
rc
en
ta
ge
) 

100 —
_

90 —

80

70

60 —

50 —

40 —

30 —
_

20 —

10 —

ill ill tt it iii Iii I ),
750 800 850 900 950 1000450 500 550 600 650 700

No. Learning Events

— discriminant descriptions induced in one step from examples
— — — discriminant descriptions induced incrementally from examples
--- characteristic descriptions induced incrementally from examples

Figure 10. Performance of three description types for classification of kPK endgame
positions.

tion over the three domains compared to four complexes per description
for discriminant disjunctive).

2. The discriminant disjunctive descriptions formed from characteristic
disjunctive descriptions performed better than the discriminant disjunc-
tive descriptions learned from examples in two of the three domains.
Overall, the performance of these descriptions was about four per cent
better than that of the discriminant disjunctive descriptions induced from
examples. Unfortunately, inducing discriminant disjunctive descriptions
from characteristic disjunctive makes the discriminant disjunctive de-
scription more complex (the average complexity of indirectly induced
descriptions was 58, compared to 41 for descriptions induced directly
from examples).

3. Both incremental methods were significantly faster than single step
learning (between two and five times as fast overall). Summing over all
experiments in all domains, the single step method took approximately
4.2 x 103 c.p.u. minutes, the incremental method took 0.7 x 103 c.p.u.
min and the characteristic disjunctive to discriminant disjunctive in-
cremental method took 2.6 x 103 c.p.u. min.

280



[c
im
mt
 =
 f]

[c
pl

u2
 =
 f]

[c
pl
ul
 =
 f]

[c
ah
ea
 =
 f]

[c
wk
sa
 =
 f]

[r
rp
2 =
 f]

[r
st
al
 =
 f]

V
[c
im
mt
 =
 f
][
mm
p2
 =
 t]

[b
to
p5
 =
 f]

[s
pr
a7
 =
 f]

[s
rf
il
 =
 f]

V
[c
im
mt
 =
 f]

[c
pl

u2
 =
 f]

[c
pl
ul
 =
 l
li

ca
he

a =
 f]

[r
ne
ac
 =
 f]

[r
rp
2 =
 f]

[r
st

a]
 =
 f]

V
[c

im
mt

 =
 f]

[r
rp
2 =
 f]

[m
p5
 =
 t]

[s
pr
a7
 =
 f]

[s
pr

an
 =
 t]

[s
rf
il
 =
 IJ

V
[c
im
mt
 =
 f]

[c
pl

ul
 =
 f]

[r
ne
ac
 =
 f]

[r
rp

2 =
 f]

[r
ne
ar
 =
 f]

[r
st
al
 =
 f]

[m
pm

ov
 =
 t]

[s
pr
a7
 =
 f]

[s
rf
il
 =
 t
1V

[c
im
mt
 =
 f]

[c
pl

ul
 =
 f]

[c
ah

ea
 =
 f]

[r
ne
ac
 =
 f]

[r
rp

2 =
 f]

[r
st

al
 =
 f]

[
m
m
p
2
 =
 t]

[s
rf
il
 =
 t]

[n
xt
o7
 =
 t
]V

[c
im
mt
 =
 f]

[c
ah

ea
 =
 f]

[m
ea
r 
=
 f]

[b
to
p5
 =
 f]

[s
pr
a7
 =
 t]

[s
rf
il
 =
 f]

[n
xt

o7
 =
 t]

V
[c
im
mt
 =
 f]

[c
cr
it
 =
 f]

[m
mp

l 
=
 t]

[m
p5
 =
 t]

[s
pr
a7
 =
 f]

[s
ma

in
 =
 tl

is
rf
il
 =
 f]

V
[c
im
mt
 =
 f]

[r
rp
2 =
 f]

[m
pm
ov
 =
 t]

[m
p5
 =
 f]

[s
pr
a7
 =
 f]

[s
ma

in
 =
 t]

[s
rf
il
 =
 fJ

V
[c
im
mt
 =
 f]

[c
cr
it
 =
 f]

[b
to
p5
 =
 f]

[s
pr
a7
 =
 t]

[s
rf
il
 =
 f]

[n
xt
o7
 =
 t
]V

[c
im
mt
 =
 f]

[b
to
p5
 =
 fl

is
pr
a7
 =
 f]

[s
pr

an
 =
 7]

[s
rf
il
 =
 f]

V
[c
im
mt
 =
 f]

[c
cr
it
 =
 f]

[m
di

ro
 =
 t]

[b
to
p5
 =
 f]

[s
pr

a7
 =
 f]

[s
rf
il
 =
 f
]V

ts.
)

00
 

[c
im
mt
 =
 f]

[c
cr
it
 =
 f]

[s
pr
a7
 =
 f]

[s
ma

in
 =
 t]

[s
rf
il
 =
 f]

[s
in

t =
 t
]V

[c
im
mt
 =
 f]

[c
cr
it
 =
 f]

[d
ir

o5
 =
 t]

[s
pr
a7
 =
 t]

[s
pr
a7
 =
 f]

[s
pr

an
 =
 t]

[s
rf
il
 =
 f]

V
[c
im
mt
 =
 f]

[c
pl
ul
 =
 f]

[c
ah
ea
 =
 f]

[c
wk

sa
 =
 f]

[c
cr
it
 =
 t]

[r
rp

2 =
 f]

[r
st

al
 =
 f]

[m
p5
 =
 f]

[s
rf

il
 =
 t]

[n
xt
o7
 =
 t
]V

[c
im
mt
 =
 f]

[c
pl
ul
 =
 f]

[c
cr
it
 =
 f]

[m
ea

c =
 f]

[r
st

al
 =
 f]

[m
mp
l 
=
 t
][

mp
5 =
 t]

[s
pr
a7
 =
 f]

V
[c
im
mt
 =
 f]

[c
pl
ul
 =
 f]

[r
ne
ac
 =
 f]

[r
rp

2 =
 f]

[r
st
al
 =
 f
][

mm
p2

 =
 t]

[m
p5
 =
 t]

[s
pr
a7
 =
 fI

V
[c
im
mt
 =
 f]

[c
pl
ul
 =
 f]

[c
cr
it
 =
 fl

im
ea
c =
 f]

[r
rp

l =
 t]

[r
st
al
 =
 f]

[s
pr
a7
 =
 f]

[s
rf

il
 =
 t]

V
[c
im
mt
 =
 f]

[c
pl
ul
 =
 f]

[c
wk

sa
 =
 f]

[r
rp

2 =
 f]

[r
st
al
 =
 f
][

mp
mo

v 
=
 t
][

mp
5 =
 f]

[s
pr
a7
 =
 f]

[s
rf
il
 =
 t
]V

[c
im
mt
 =
 f]

[r
rp
2 =
 f]

[r
5p

6 =
 t]

[s
pr
an
 =
 t]

[s
rf
il
 =
 f]

[n
xt
o7
 =
 t]

V
[c
im
mt
 =
 f]

[c
cr
it
 =
 f]

[m
pm
ov
 =
 t]

[s
pr
a7
 =
 f]

[s
ma

in
 =
 t]

[s
rf
il
 =
 f]

V
[c
im
mt
 =
 f]

[c
cr
it
 =
 t]

[m
ea

c =
 f]

[r
rp
2 =
 f]

[r
st

al
 =
 f
][
mm
p2
 =
 t
][
mp
mo
v 
=
 t]

[s
pr
a7
 =
 f]

[s
rf
il
 =
 t
]V

[c
im
mt
 =
 f]

[c
ah

ea
 =
 f]

[c
cr
it
 =
 t]

[r
rp
2 =
 f]

[r
ne
ar
 =
 f]

[m
p5
 =
 t]

[s
rf
il
 =
 f]

[n
xt

o7
 =
 t
]V

[c
im
mt
 =
 f]

[r
ne
ac
 =
 f]

[r
st

al
 =
 f
][

mm
p2

 =
 t]

[b
to

p5
 =
 f]

[s
pr
a7
 =
1
]

Fi
gu
re
 1
1.

 T
yp

ic
al

 c
ha
ra
ct
er
 d
es
cr
ip
ti
on
 f
or

 t
he
 c
la

ss
 W
o
n
 f
or
 w
hi
te
 i
n 
th
e 
K
P
K
 c
he

ss
 e
n
d
g
a
m
e
 d
om

ai
n.

INSIVHDINI CINV Hm.ilau 



[c
im

mt
 =
 f]

[c
pl
u2
 =
 f]

[c
pl

ul
 =
 f]

[c
ah

ea
 =
 f]

[c
wk
sa
 =
 f]

[r
ps
q =
 f]

[r
rp
2 =
 f]

V
[c
im
mt
 =
 f]

[c
pl
ul
 =
 f]

[c
ah

ea
 =
 f]

[m
ea
c =
 f]

[r
rp
2 =
 f
il

mm
p2

 =
 t]

[n
xt
o7
 =
 t
]V

[c
im
mt
 =
 f]

[c
pl
ul
 =
 f]

[c
cr
it
 =
 f]

[m
ea
c =
 f
][

mp
mo

v 
=
 t]

V
[c
im
mt
 =
 f]

[c
pl
u2
 =
 f]

[c
pl

ul
 =
 f]

[c
ah
ea
 =
 f]

[c
wk
sa
 =
 f]

[r
rp

2 =
 f]

[m
p5
 =-

- t
][

nx
to

7 =
 t
1V

[c
im
mt
 =
 f]

[c
pl
u2
 =
 f]

[c
pl

ul
 =
 f]

[c
ah
ea
 =
 f]
[m
ea
c =
 f]

[r
rp

2 =
 f]

[s
rf
il
 =
 t]

V
[c
im
mt
 =
 fl

ic
pl

ul
 =
 f]

[m
ea
c =
 f]

[r
rp

2 =
 fl

im
ea

r =
 f]

[m
mp
l 
=
 t]

[m
p5
 =
 t]

V
[c
im
mt
 =
 f]

[c
pl

ul
 =
 f]

[c
wk
sa
 =
 f]

[m
ea
c =
 f]

[r
rp

l =
 t]

[r
rp

2 =
 f]

V
[c

im
mt

 =
 f]

[m
ea
8 =
 f]

[r
rp

2 =
 f]

[m
ea

r 
=
 f
][

mp
mo

v 
=
 t]

[s
ma

in
 =
 t]

V
[c
im
mt
 =
 f]

[c
pl
u2
 =
 f]

[c
pl

ul
 =
 f]

[r
rp

2 =
 f
][
mp
mo
v 
=
 t]

[s
ma

in
 =
 t
]V

[c
im
mt
 =
 f]

[m
ea
c =
 f
][

mm
p2

 =
 t]

[b
to
p5
 =
 f]

[n
xt
o7
 =
 tI

V
[c
im
mt
 =
 f]

[c
wk

sa
 =
 t]

[m
ea
c =
 f]

[m
mp
l 
=
 t]

[b
to
p5
 =
 f]

V
[c
im
mt
 =
 f]

[c
wk

sa
 =
 f]

[r
rp

2 =
 f]

[m
p5
 =
 t]

[s
pr
an
 =
 t]

V
[c
im
mt
 =
 f]

[c
pl
ul
 =
 f]

[c
ah

ea
 =
 f]

[c
wk
sa
 =
 f]

[r
rp
2 =
 f]

[m
ea

r =
 f]

[m
p5
 =
 t]

[s
pr

a7
 =
 t]

[n
xt

o7
 =
 t
]V

[c
im
mt
 =
 f]

[c
pl
ul
 =
 f]

[c
ah

ea
 =
 f]

[c
wk
sa
 =
 f]

[c
cr

it
 =
 f]
[m
p5
 =
 t]

[s
pr
a7
 =
 t]

V
[c

im
mt

 =
 f]

[c
wk

sa
 =
 f[

bt
op
5 =
 f]

[s
pr
an
 =
 t
1V

t.
) 

[c
im

mt
 =
 f]

[r
rp

2 =
 f
][

mm
p2

 =
 t]

[m
p5
 =
 t]

[s
ma

in
 =
 t]

V
oo

[c
im
mt
 =
 f]

[c
pl
ul
 =
 f]

[r
rp

2 =
 f]

[m
ea

r 
=
 f]

[m
di
ro
 =
 t]

[m
p5

 =
 t]

[s
ma

in
 =
 t]

V
[c

im
mt

 =
 f]

[c
pl
ul
 =
 fl

ic
cr

it
 =
 f]

[s
ma
in
 =
 t]

[s
in
t =
 t
]V

[c
im

mt
 =
 f]

[c
wk

sa
 =
 f]

[r
rp

2 =
 f]

[d
ir
o5
 =
 t]

[s
pr
an
 =
 t]

V
[c

im
mt

 =
 f]

[c
wk

sa
 =
 f]

[c
cr
it
 =
 t]

[m
ea

8 
=
 f]

[r
rp
2 =
 f]

[m
ea

r 
=
 f]

[m
pm

ov
 =
 t]

[m
p5

 =
 f]

[s
rf
il
 =
 t
]V

[c
im

mt
 =
 f]

[c
pl
ul
 =
 f]

[c
ah

ea
 =
 f]

[c
wk
sa
 =
 f]

[c
cr

it
 =
 t]

[r
rp

2 =
 f]

[m
ea

r =
 f]

[m
p5
 =
 f]

[s
rf
il
 =
 t]

V
[c

im
mt

 =
 f]

[c
pl
ul
 =
 f]

[c
wk
sa
 =
 t]

[r
rp

2 =
 f]

[m
pm

ov
 =
 t]

[s
ma

in
 =
 t]

V
[c

im
mt

 =
 f]

[c
pl
ul
 =
 f]

[c
ah

ea
 =
 t]

[m
ea

c =
 f]

[r
rp

2 =
 f]

[m
mp

2 =
 t]

[m
p5
 =
 t
]V

[c
im

mt
 =
 f]

[c
cr
it
 =
 f
][
mm
pl
 =
 t]

[m
p5
 =
 t]

[s
ma

in
 =
 t]

V
[c

im
mt

 =
 fl

ic
pl
ul
 =
 t]

[r
rp

2 =
 f]

[r
5p
6 =
 t]

[s
pr
an
 =
 t]

V
[c

im
mt

 =
 f]

[c
cr

it
 =
 f]

[m
ea
c =
 f]

[m
pm

ov
 =
 t]

[s
ma
in
 =
 t
]V

[c
im

mt
 =
 f]

[c
ah
ea
 =
 fl

ic
wk
sa
 =
 f]

[c
cr

it
 =
 t]

[r
rp

2 =
 f]

[m
ea

r 
=
 f]

[m
p5

 =
 t]

[s
pr
a7
 =
 t]

[n
xt

o7
 =
 t
]V

[c
im

mt
 =
 f]

[c
pl
ul
 =
 t]

[r
rp
2 =
 f]

[m
p5
 =
 t]

[s
pr
an
 =
 t]

V
[c

im
mt

 =
 f]

[c
pl

ul
 =
 t]

[c
cr

it
 =
 t]

[m
ea

c =
 f]

[r
rp
2 =
 f]

[m
ea

r =
 f
][
mp
mo
v 
=
 t]

[s
rf
il
 =

[c
im

mt
 =
 f]

[c
ah
ea
 =
 t]

[c
cr

it
 =
 f]

[m
di

ro
 =
 t]

[b
to
p5
 =
 f]

[s
ma

in
 =
 t]

Fi
gu
re
 1
2.
 T
yp
ic
al
 d
is
cr
im
in
an
t 
de

sc
ri

pt
io

n 
fo

r 
th
e 
cl

as
s 
W
o
n
 f
or

 w
hi

te
 i
n 
th
e 
K
P
K
 c
he
ss
 e
n
d
g
a
m
e
 d
om
ai
n.

INCREMENTAL LEARNING OF CONCEPT DESCRIPTIONS 



REINKE AND MICHALSKI

450

400

— 350
.E— 

,..,./ °Asc

g 
X .7— 300  •

•— 250 X
F-

i 
V.

a. •S

1 200 X NN
..

8 X
23 150 X •,\

X
100 X .*4,

N N

.N..... 
N\50 . ......... ........

0
70 80 90 100 110 120 130 140 150 160 170

No. Learning Events

— discriminant descriptions induced in one step from examples
— — — discriminant descriptions induced incrementally from examples
  discriminant descriptions induced from characteristic descriptions
— — — characteristic descriptions induced incrementally from examples

Figure 13. c.p.u. time to induce three description types for soybean disease diagnosis.

The success of the full memory incremental learning method was
obvious. In all the application areas, GEM took considerably less time to
form rules when it had old rules to modify. The rules produced using the
incremental method were slightly more complex and performed slightly
less well than those produced in a single step, but the time saved was
large and the differences in performance and complexity were small. The
method of inducing discriminant disjunctive descriptions from charac-
teristic disjunctive descriptions proved workable, but produced more
complex rules. This may have been due to the nature of the characteristic
descriptions produced by GEM.
The incremental method could be further enhanced by simplifying both

the specialization and generalization steps using the reunion operator.
That is, a complex could be simplified by taking the union of the events it
covers. New positive events could be covered by taking the union of the
events and some• complex. The method currently used could serve as a
back-up, invoked only when reunion produces a complex which does not
satisfy specified constraints.
The characteristic descriptions produced by GEM were sometimes

unattractive because they were long and disjunctive. A combination of

283



INCREMENTAL LEARNING OF CONCEPT DESCRIPTIONS

A

50—

- .

_
•

.11111......---.—•----- _

......"''
>. .00". .1
x ......". ...0 \
.t.- •

a ,•••••• .......
E 30 .."..- ‘
0 .... • ogre...
C.) 

_ .......•..

20-

10

-.-

--•--•••••••
• • %wee

0 1 ■ 1 > 
70 80 90 100 110 120 130 140 150 160 170

No. Learning Events

— discriminant descriptions induced in one step from examples
— — — discriminant descriptions induced incrementally from examples
----- discriminant descriptions induced from characteristic descriptions
— - — characteristic descriptions induced incrementally from examples

Figure 14. Complexity of four description types for soybean disease diagnosis.

two factors was responsible: the individual concepts in each domain
tended to be divided into subparts and GEM always produces consistent
and complete descriptions. Formally (see Section 2), characteristic
descriptions are not necessarily consistent. Nevertheless, discriminant
descriptions induced from these characteristic descriptions were often
quite good.
A simple method could be used to produce conjunctive descriptions. If

the disjuncts in a characteristic disjunctive concept description produced
by GEM correspond to subclasses, a tree-structured concept description
could be formed in the following way:

1. Induce a characteristic disjunctive description incrementally from
examples.
2. Treat each disjunct as a separate class within the concept and induce

a description to characterize each subclass.
Another possibility is to use a conceptual clustering method such as that
described by Michalski and Stepp (1983) to divide each class into
subclasses.

284



REINKE AND MICHALSKI

100

90

g' 80
•
—*
•

-or
•

fi•
.40

0.43
70

60

o 50

413
a

40—

30 —
cc'

20 —

10 —

0 I Ii I I I I t I Ii I iii I

70 80 90 100 110 120 130 140 150 160170

No. Learning Events

— discriminant descriptions induced in one step from examples
— discriminant descriptions induced incrementally from examples
--- characteristic descriptions induced incrementally from examples

Figure 15. Performance of three description types for soybean disease diagnosis.

A more difficult extension to the method would use partial memory and
exceptions (Michalski and Winston, in press). A partial memory in-
cremental learning system would have to be able to recognize and
remember 'important' events. Something like this is done by 1D3
(Quinlan, 1979), which remembers one event in each parcel of events
that contributed to rule formation. A true partial memory incremental
learning system will need some criteria recognizing importance. Excep-
tion events which violate the consistency of conjunctive characteristic
descriptions are interesting candidates. The method would have to form a
characteristic conjunctive description while creating as few exception
events as possible.

Unless a data base of examples is excessively large, the full memory
incremental learning method provides the best way to induce reliable
concept descriptions. For three real world problems, the full memory
method took considerably less time and no more memory than the single
step method (which must have all the events in memory anyway).
Further, it appears that the best way to learn incrementally is to maintain

285



Ch
ar
ac
te
ri
st
ic
 d
es
cr
ip
ti
on
:

[p
re

ci
pi

ta
ti

on
 =
 a
bo
ve
_n
or
ma
l]
[t
em
pe
ra
tu
re
 =
 n
or

ma
l .
 .
 .
 ab
ov

e_
no

rm
][

se
ve

ri
ty

 =
 m
in
or
 .
 .
 .
 po
te

nt
ia

ll
y_

se
ve

re
]

[c
on

di
ti

on
_o

f_
le

av
es

 =
 a
bn
or
ma
l]
[l
ea
f_
sp
ot
_c
ol
or
 =
 b
r
o
w
n
]

[l
ea
f_
sp
ot
_g
ro
wt
h 
=
 sc

at
te
re
d_
wi
th
_c
on
ce
nt
ri
c_
ri
ng
s,
ne
cr
os
is
_a
cr
os
s_
ve
in
sl
il
ea
f_
sp
ot
_s
iz
e =
 g
re

at
er

_t
ha

n_
ei

gh
th

_i
nc

h]
[s
ho
t_
ho
li
ng
 =
 pr

es
en

t]
[p

os
it

io
n_

of
_a

ff
ec

te
d_

le
av

es
 =
 sc

at
te

re
d_

on
_p

la
nt

]
[c
on
di
ti
on
_o
f_
le
av
es
_b
el
ow
_a
ff
ec
te
d_
le
av
es
 =
 un

af
fe

ct
ed

][
st

em
_c

an
ke

rs
 =
 do

es
_n

ot
_a

pp
ly

][
fr

ui
t_

sp
ot

s =
 c
ol

or
ed

_s
po

ts
]

Di
sc

ri
mi

na
nt

 d
es
cr
ip
ti
on
 i
nd

uc
ed

 f
r
o
m
 c
ha

ra
ct

er
is

ti
c 
de
sc
ri
pt
io
n:

[l
ea
f_
sp
ot
_c
ol
or
 =
 b
ro
wn
li
le
af
_s
po
t_
gr
ow
th
 =
 sc

at
te
re
d_
wi
th
_c
on
ce
nt
ri
c_
ri
ng
s,
ne
cr
os
is
_a
cr
os
s_
ve
in
s]

[p
os

it
io

n_
of

_a
ff

ec
te

d_
le

av
es

 =
 sc

at
te

re
d_

on
_p

la
nt

][
fr

ui
t_

sp
ot

s =
 co

lo
re
d_
sp
ot
s]

Di
sc

ri
mi

na
nt

 d
es
cr
ip
ti
on
 i
nd

uc
ed

 f
r
o
m
 e
xa
mp
le
s:

[l
ea

Ls
po

t_
gr

ow
th

 =
 sc

at
te
re
d_
wi
th
_c
on
ce
nt
ri
c_
ri
ng
s,
ne
cr
os
is
_a
cr
os
s_
ve
in
s]

0 0
 

De
sc

ri
pt

io
n 
wr
it
te
n 
b
y
 d
om

ai
n 
ex

pe
rt

;

[l
ea

f_
sp

ot
_g

ro
wt

h 
=
 sc

at
te
re
d_
wi
th
_c
on
ce
nt
ri
c_
ri
ng
s]
:0

.9
0

[t
im
e_
oL
oc
cu
rr
en
ce
 =
 a
ug

us
t.

 .
 .
 oc
to
be
r]
[s
ho
t_
ho
li
ng
 =
 p
re
se
nt
]:
0.
50

De
af
_s
po
t_
si
ze
 =
 g
re
at
er
_t
ha
n_
ei
gh
th
_i
nc
h]
:0
.4
5

[t
im
e_
oL
oc
cu
re
nc
e 
=
 a
ug
us

t.
 .
 .
 oc
to
be
rl
if
ru
it
_p
od
s =
 di

se
as

ed
][

fr
ui

t_
sp

ot
s =
 co

lo
re

d_
sp

ot
s]

:0
.1

0

[s
ee
d_
di
sc
ol
or
at
io
n_
co
lo
r =
 b
la

ck
]:
0.

05

[l
ea

f_
sp

ot
_m

ar
gi

ns
 =
 w
at

er
_s

oa
ke

d]
:0

.0
5

[y
el
lo
w_
le
af
_s
po
t_
ha
lo
s =
 a
bs

en
t]
:0
.0
5

Fi
gu

re
 1
6.

 E
xa

mp
le

s 
of

 di
ff

er
en

t 
de
sc
ri
pt
io
n 
ty
pe
s 
fo

r 
th

e 
cl

as
s 
Al

te
rn

ar
ia

 L
e
a
f
 Sp

ot
 in

 t
he
 s
oy
be
an
 d
is
ea
se
 d
ia
gn
os
is
 d
om

ai
n.



REINKE AND MICHALSKI

characteristic descriptions of classes. Such descriptions are more appeal-
ing to humans than terse, disjunctive descriptions. The results here show
that characteristic type descriptions also contain enough information that
good discriminant descriptions may be induced from them in a very short
amount of time.

Acknowledgements

The first phase of this research was done at the University of Illinois, where it was
supported in part by the National Science Foundation under grant DCR 84-06801, and in
part by the Office of Naval Research under grant N00014-82-K-0186. Subsequent research
was done while the first author was at GTE Laboratories and the second author was at the
Artificial Intelligence Laboratory at the Massachusetts Institute of Technology. Support for
the Artificial Intelligence Laboratory's research is provided in part by the Defense
Advanced Research Projects Agency under Office of Naval Research contract N00014-80-
C-0505. The authors would like to thank A. Paterson for providing the chess endgame data,
and Dr D. Prerau and D. Laukaitis for reading drafts of this paper.

REFERENCES

Becker, J. (1985) Topics in incremental learning of discriminant descriptions, UIUCDCS-F-
85-935. Department of Computer Science, University of Illinois at Urbana-Champaign.

Hong, J. R. and Michalski, R. S. (1985) The general covering problem: an extension matrix
method for generating disjoint stars. Report of the Intelligent Systems Group. Depart-
ment of Computer Science, University of Illinois at Urbana-Champaign.

Langley, P., Bradshaw, G., and Simon, H. A. (1983) Rediscovering chemistry with the
BACON System. In Machine learning, an artificial intelligence approach (eds R. S.
Michalski, J. B. Carbonell and T. Mitchell) pp. 307-330. Tioga, Palo Alto.

Lewis, P. (1974) Taxonomy and ecology of Stenonema mayflies (Heptageniidae: Epheme-
roptera), EPA-670A-74-006. Environmental Protection Agency, Washington DC.

Michalski, R. S. (1969) On the quasi-minimal solution of the general covering problem.
Proc. 5th Int. Symp. on Information Processing (FCIP 69), Vol. 13, pp. 125-127, Bled,
Yugoslavia.

Michalski, R. S. (1975) Variable-valued logic and its applications to pattern recognition and
machine learning. In Computer science and multiple-valued logic theory and applications
(ed. D. C. Rine) pp. 506-534. North-Holland, Amsterdam.

Michalski, R. S. (1980a) Pattern recognition as rule-guided inductive inference. IEEE
Transactions on Pattern Analysis and Machine Intelligence 2, 349-361.

Michalski, R. S. (1980b) Knowledge acquisition through conceptual clustering: a theoretical
framework and an algorithm for partitioning data into conjunctive concepts. Int. J. Policy
Analysis and Information Systems 4(3), 219-44.

Michalski, R. S. (1983) A theory and methodology of inductive learning. In Machine
learning, an artificial intelligence approach (eds R. S. Michalski, J. B. Carbonell and T.
Mitchell, pp. 83-124. Tioga, Palo Alto.

Michalski, R. S. and Larson, J. B. (1978) Selection of most representative training
examples and incremental generation of v14 hypotheses: the underlying methodology and
descriptions of programs ESEL and AQ11, Report 867. Department of Computer Science,
University of Illinois at Urbana-Champaign.

Michalski, R. S. and Chilausky, R. L. (1980) Learning by being told and learning from
examples: an experimental comparison of two methods of knowledge acquisition in the
context of developing an expert system for soybean disease diagnosis. Int. J. Policy
Analysis and Information Systems 4(2), 125-160.

Michalski, R. S. and Stepp, R. E. (1982) Revealing conceptual structure in data by

287



INCREMENTAL LEARNING OF CONCEPT DESCRIPTIONS

inductive inference. Machine intelligence 10 (eds J. E. Hayes, D. Michie & Y.-H. Pao) pp.
173-195. Ellis Horwood, Chichester; Halsted, New York.

Michalski, R. S. and Dietterich, T. G. (1983) A comparative review of selected methods for
learning from examples. Machine learning, an artificial intelligence approach (eds R. S.
Michalski, J. B. Carbonell and T. Mitchell) pp. 41-75. Tioga, Palo Alto.

Michalski, R. S. and Stepp, R. E. (1983) Learning from observation: conceptual clustering.
Machine learning, an artificial intelligence approach, (eds R. S. Michalski, J. B. Carbonell
and T. Mitchell) pp. 331-363. Tioga, Palo Alto.

Michalski, R. S. and Winston, P. H. (1985) Variable precision logic, Al Memo 857,
Cambridge: Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, Mass.

Michalski, R. S., Davis, J. H., Bisht, V. S., and Sinclair, J. B. (1983) A computer-based
advisory system for diagnosing soybean diseases in Illinois. Plant Disease 67(4), 459-63.

Niblett, T. B. (1982) A provably correct advice strategy for the endgame of king and pawn
versus king. Machine intelligence 10 (eds J. E. Hayes, D. Michie and Y.-H. Pao) pp.
101-122. Ellis Horwood, Chichester/ Wiley, New York.

Quinlan, J. R. (1979) Discovering rules by induction from large collections of examples.
Expert systems in the micro electronic age (ed. D. Michie) pp. 168-201. Edinburgh
University Press, Edinburgh.

Quinlan, J. R. (1982) Semi-autonomous acquisition of pattern based knowledge. Machine
Intelligence 10 (eds J. E. Hayes, D. Michie and Y.-H. Pao) pp. 159-172. Ellis Horwood,

Chichester/ Wiley, New York.
Reinke, R. E. (1984) Knowledge acquisition and refinement tools for the ADVISE
meta-expert system, UIUCDCS-F-84-921. Department of Computer Science, University
of Illinois at Urbana-Champaign.

Spackman, K. A. (1983) Qum: integration of inferential operators within a relational data
base, UIUCDCS-F-83-917. Department of Computer Science, University of Illinois at
Urbana-Champaign.

Winston, P. H. (1975) Learning structural descriptions from examples. In The psychology
of computer vision (ed. P. H. Winston). McGraw-Hill, New York.

288



12

Generating Expert Rules from

Examples in PROLOG

B. Arbab*
Department of Computer Science,
University of California at Los Angeles, USA

D. Michie
The Turing Institute,
Glasgow, UK

Abstract

Automatic decision-tree generators have been used in the production of
expert systems. A number of experiments indicate the need for more
linear (and hence more understandable) yet efficient decision trees. An
algorithm is implemented for constructing decision trees optimized with
respect to linearity. It also improves on a previous linearizing algorithm
(AocDL) with respect to execution efficiency.

1. PROBLEM DESCRIPTION AND ASSUMPTIONS

This work describes tools for generating decision-trees that are optimized
with respect to linearity and are more efficient than those generated by
Bratko's AOCDL [I]. The rule generator is specialized so as to obey stated
constraints corresponding to the above two properties. Rule induction
takes advantage of one of the expert's most reliable and highly developed
skills [2], teaching by example, and this avoids the need to resort to
dialogue-acquisition of rules, traditionally recognized as the bottle-neck
problem of knowledge engineering. However, decision-trees derived
from situation-action pairs are inherently less descriptive for expressing
concepts than first-order or multi-valued logic used in other projects
[3-5]. The lack of descriptive power is primarily associated with the
absence of quantified variables.
Quinlan [6] and Shapiro [7] have demonstrated that generation of

decision-trees from a set of examples provided by a domain expert is a
practical method for knowledge acquisition (see also Martelli and
Montanan [8] for generation of optimal trees). This paper stems from
two previous approaches to the rule-induction problem: (i) Quinlan's ID3
uses an information theoretic approach to control a test-first no

* Present address: IBM Los Angeles Scientific Center, 11601 Wilshire Boulevard, Los
Angeles CA 90025-1738.

289



GENERATING EXPERT RULES FROM EXAMPLES IN PROLOG

backtrack' search, producing decision-trees of high, but not optimal,
execution efficiency; (ii) Bratko's AOCDL uses backtrack heuristic search.
ID3 ignores the human understandability criterion for induced rules while
AOCDL ignores the efficiency criterion. IDYS attribute selection criterion,
based on entropy, promotes efficient decision-tree execution on the
machine. However, the decision-trees are not easily understood by
humans. AOCDL is heuristically guided to minimize a non-linearity
(branching) measure. Arbitrarily branching structures are hard for a
human to keep mental track of. So one idea is to only allow for linear or
almost linear decision-trees [9]. A decision-tree is said to be linear if
every node has at most one non-terminal son. Note that even trees with
high branching ratios (multiple-value attributes) and multiple decision
classes can be linear. The relation between linear trees and understand-
ability has been experimentally investigated by Shapiro and Niblett [7,
10]. In two separate classification tasks in chess end-games, structured
representations with tree-linearity constraint were uniformly understand-
able, whereas representations in the form of arbitrarily branching
decision trees were uniformly opaque. Our Rule Generator (Ito), which
was implemented in PROLOG produces decision-trees that are linear where
such trees exist. In cases where such a tree does not exist, the most linear
tree is constructed. The derived trees are efficient at execution time.
These two requirements, linearity and efficiency, are inversely related. A
balanced tree is shallower and more efficient for machine execution than
a linear tree. In synthesizing decision-trees, however, we always trade
efficiency for linearity, in much the same way that structured program-
ming trades efficiency for program clarity and readability.
The presence of a domain expert makes 'structured induction' possible,

which breaks the problem into subproblems. A detailed description of
structured induction is given by Shapiro and Niblett [7,10]. With
structured induction the size of the example sets is never large, e.g. at
most in the order of tens. It has been found by Quinlan [6] that small
example sets are sufficient to generate rules capable of classifying even
large domains with high reliability.
We have developed RG under the assumptions that:
1. Structured induction is feasible.
2. Linearity of decision-trees is to be optimized even at the expense of

efficiency.
3. Efficiency of decision-trees is to be increased only subject to the

constraint that linearity is not affected.
The decision-trees in Figure 1 correspond to an example set taken from

a planning domain for building an arch, see [4]. Each node of the tree
corresponds to an attribute, leaf nodes represent decision classes, and the
labels on the arcs are the attribute's values. These trees were induced by:
(1) Expert-Ease [12], a commercial version of the m3-derived ACLS

290



%T
..,:Y;S
11 reb.,

ARBAB AND MICHIE

(1) (2)

alor. A

(3)

Figure 1. Trees with different linearity and efficiency.

algorithm which produces efficient but non-linear trees; (2) AOCDL, which
maximizes linearity but not efficiency; and (3) RG, which maximizes
linearity and promotes efficiency. The exact non-linearity and efficiency
(execution cost) measures of these trees can be seen for comparison in
Figure 10 under EX4.
Tree (1) has eight non-terminals (attributes) and 12 terminal (class)

nodes, while tree (3) has five attributes and eight classes. Tree (1) has an
irregular branching structure, while tree (3) has a small non-linearity that
occurs at the root. Decision trees can be used to classify new examples.
An interpreter for executing such trees will compute a value for an
attribute (non-terminal). This value specifies which branch of the tree
should be traversed next. A classification has been made when a class
(terminal) node is reached.
RG incorporates linearity and efficiency measures within an AO* [13]

algorithm as heuristics to guarantee optimal linearity. The efficiency of
the decision-trees is increased according to each candidate attribute's
expected information contribution if appended at the given point in the
tree, i.e. attributes with high information content will be placed as high in
the decision tree as possible thus increasing the probability of class-
ification to occur as early as possible.
The following points should be read against the background of

examples such as those worked in the Appendix. They concern theoreti-
cal limitations of the rule synthesis process and how this process may be
used for solving problems. These three properties of induction define,
more precisely, what can be expected from the rule synthesis process.

1. Any rule synthesized from only a subset of all possible examples,
cannot in general be proved correct in all cases (i.e. all possible
examples). However, this does not imply that correct rules for all
possible cases cannot be constructed from a minimal set of examples.

291



GENERATING EXPERT RULES FROM EXAMPLES IN PROLOG

2. In applications where correct classification is required of finite sets
of examples taken from a finite domain, one can consider a table look-up
process. It may still be desirable to use rule synthesis in such cases since
large tabulations can be condensed, without loss of information or
accuracy, into simple rules.
3. The synthesis process cannot by itself find any hidden hierarchical

structures in example sets. In structured induction, these structures are
thought out by the expert and documented before the rule induction
process is started. A structure set by the expert can later be modified as
the project progresses.
The generated rules are semantically equivalent to the example sets they
originated from when these are complete, i.e. no information has been
added or lost by the rule-generating program. It is this characteristic of
rule-generating programs that sets them apart from generalization
techniques used in other projects such as Marvin [14] or MI5 [15].

2. DECIDER STATUS OF ATTRIBUTES

Experts are generally adept at communicating their expertise by means
of examples. The examples thus form a language through which
knowledge is communicated. There are three parts to this language:
attributes, classes, and examples, the latter being defined in terms of
attribute values and classes. Attributes are defined by the domain
specialist as critical features or relevant facts, e.g. colour of eyes with
values brown, black, and blue; or kidney size with values large, small,
and normal. Class values correspond to the identification made on the
basis of attribute values, e.g. normal, or kidney stone. Examples are
represented as attribute-value vectors paired with classes as shown in
Figure 2. One additional criterion imposed on examples is that they must
be clash free. A clash is defined as two identical vectors leading to
different class values. Clashes usually signify the inadequacy of attributes

Al A2 A3 A4 A5 class
t t f

4-0 
4
-
 
4-. 

4
-, 

4
-
.
 
4-. 

4
-
 
4_, 

4.1 
9
-
 
4
-
 

t Cl
t f t f cl
t f f f cl
f t f t c2
t t f f c2
t f t f c2
f f t t cl
t f f t cl
t t t f c2
f f f f cl
f t f t c2

Figure 2. An example set.

292



ARBAB AND MICHIE

for classification of the problem and can be removed by introducing
additional attributes.
With respect to a specified example set, an attribute has a decider

status: total, partial, or non-decider. 'Decisiveness' of an attribute may
be computed from a matrix whose rows correspond to class values and
columns to values the attribute of interest may range over. Each entry in
this matrix corresponds to a frequency count of the class per attribute's
value. An attribute's decider status is defined as follows:

1. Total Decider, if the attribute partitions the example set such that
each partition belongs to a single class. In matrix form this corresponds to
the condition that there is at most one non-zero value in each column.
2. Partial Decider, if the attribute partitions the example set such that

all but one partition belong to a single class. In matrix form this
corresponds to at least one column where all entries except one are zero.
3. Non-Decider, if neither of the above is true.

In Figure 3 we show an example set and the matrices corresponding to
each attribute's decisiveness status. Attribute Al is a total decider, A2 a
partial decider and A3 a non-decider.
Decider status of an attribute plays an important role in our search for

linear decision-trees. If an attribute must be selected from a set of total
or partial deciders, then the linearity of the final tree is not affected by
the choice of a particular attribute, but efficiency can depend on this
choice. However, selection of a non-decider attribute can affect efficiency
and invariably destroys linearity. Consider the example set in Figure 2
where for simplicity we have assumed binary attributes and only two
classes.

It so happens that in the above example set all candidate attributes for
the top of the tree are non-deciders. However, different attributes lead to
various non-linear trees. Using attribute A2 at the top leads to a tree of
the form shown on the left side of Figure 4 while using any of attributes
Al, A3, A4, or A5 leads to a tree of the form shown on the right.

Clearly the tree on the right is a more linear tree (we recall that linear
decision-trees are easier to understand). Thus, when selecting an
attribute from a set of non-deciders one must consider their effect on the

Al A2 A3 Class
t
t
f
f

t
t
f
t

t
f
f
t

cl
cl
c2
c2

Al f t A2 A3 t f
cl 0 2 cl 2 0 cl 1 1
c2 2 0 c2 1 1 c2 1 1

Figure 3. computation of decider status.

293



GENERATING EXPERT RULES FROM EXAMPLES IN PROLOG

/\ / \

• • •

/\
•

/\
.

/\
. . .

/\ /\ /'
• • • • • •

/ \

Figure 4. Trees with different linearity measures.

overall linearity and efficiency of the decision-tree. In general, selecting
the right attribute requires a search procedure which is described in later
sections.

3. LINEARITY MEASURE

Degree of linearity has been used as a measure of desirability for trees.
This concept must be formalized to allow comparison of trees on the
basis of their non-linearity. Some desirable characteristics of a function to
compute non-linearity of trees are:

1. An intuitive, yet formal, basis.
2. Sensitivity to the size of trees.
3. Sensitivity to location of non-linearity in a tree.

Bratko [1] has proposed such a function. The non-linearity measure
which he proposes is based on the fact that traversal of a linear tree
requires scanning through contiguous memory locations and minimizes
jumps across the memory. This may be one reason why linear decision-
trees are easier for humans to understand than are non-linear trees. Let T
be a decision tree whose root is A and subtrees are Si, S2, . . Sm, as in
Figure 5.
The proposed measure for non-linearity is:

NL(T)= (11m) x [NL(Si) + (m — i) X s(S0]

where NL(T) denotes the non-linearity of T, NL(T)= 0 when T is a class
value (leaf node) and the number of internal nodes of the tree, s(T) is

Figure 5. An abstract tree.

A
/ \

T = / \
I. . \

SI Sm

294



\
• •

/ \ /\
. .

ARBAB AND MICHIE

/\
• •

/ \ /\ /\ / \ / \
• • . .. .
/\ /\ / \ / \ /\ /\
• • • • • • • •

/\ /\ /\ /\
• . • • • • • •

TI 12 13 14

NL(T1)= 0
NL(T2)= (1 / 2) x [(2— 1) x s(S1)+ (2— 2) x s(S2)+ NL(S2)] = 1
NL(13)= 1 / 8
M(T4)= 1 / 4

Figure 6. Non-linearity measure for four trees.

defined as follows:

s(T)=1+ s(Si)
i=1

where s(T)= 0 if T is a class value. It is assumed that Si are sorted in
increasing order of s(Si). Non-linearities of four trees are shown in
Figure 6.
Ti is absolutely linear; thus its non-linearity measure is zero. T2 is

very close to being a balanced tree: non-linearity one. T3 is preferred to
T4, i.e. this function is sensitive to the location of non-linearity within a
tree (the lower a non-linearity occurs in a tree the lower (better) its
measure).

4. EFFICIENCY MEASURE

Consider the example set of Figure 2. Two equally linear decision-trees
for classifying this example set are shown in Figure 7. Labels on the arcs
correspond to the number of examples per value of each attribute, Figure

Al A4
4/ \7 4/ \7
A2 A4 A2 A3
/\ 1/ \ 6 /\ 2/ \ 5

Cl C2 Cl A3 Cl C2 C2 A2
3/ \ 3 2/ \ 3
C2 A2 Cl Al

1/ \ 2 1/ \ 2
Cl A5 Cl A5

C2 Cl C2 Cl

11 12

Figure 7. Trees with different execution cost.

295



GENERATING EXPERT RULES FROM EXAMPLES IN PROLOG

Al
/ \
t f

t,t,f,t,t-cl f,t,f,t,t-c2
t,f,t,f,f-cl f,f,t,f,t-cl
t,f,f,t,f-cl f,f,f,f,f-cl
t,t,f,t,f-c2 f,t,f,f,t-c2
t,f,t,t,f-c2
t,f,f,t,t-cl
t,t,t,t,f-c2

Figure 8. Attribute Al divides the example set.

8 shows that attribute Al divides the original example set into two
example sets of size 7 and 4 each. Let c(ai) represent the execution cost
of an attribute. There are 11 examples in the original example set and the
execution cost for each tree can be computed on the basis of how early in
the decision tree a classification takes place. One way of computing this
cost is as follows:

Average cost for Ti =

[11 x c(ai) + 4 x c(a2) +7 x c(a4)+ 6 x c(a3) + 3 x c(a2) + 2 x c(a5)]/11

Average cost for T2 =

[11 x c(a4)+ 4 x c(a2) +7 x c(a3)+ 5 x c(a2)+ 3 x c(al) + 2 x c(a5)1111.

Note that the difference between Ti and T2 occurs at the second from

the top. Using Ti the chance of an example being classified is only 1 out
of 7 while using T2 it is 2 out of 7. Assuming the execution cost of each
attribute has unit cost, c(ai)= 1, the execution cost for trees Ti and T2
are 3.0 and 2.9 respectively. That is, T2 is about 3% more efficient than
Ti. The difference can be larger, see Figure 10 for more examples. Thus,
attribute selection can have an effect on the average execution cost of a
decision-tree. Clearly, it is desirable for attributes with high information
content (entropy) to appear as early as possible in a decision-tree. This
increases the probability that a classification will occur as soon as

possible. Thus RG employs entropy as the selection criterion for increas-
ing efficiency. The selection criterion must then consider the entropy.
The entropy or information content of an attribute can be computed from
the following formula [6]. An attribute's entropy is given by M(C) minus

B(C, A) where C is the example set and

M(C) = — x log2Pi

B(C, A) = (probability that value for A is Ai) x M(Ci)

where n is the number of classes, Pi is the occurrence probability of the

296



ARBAB AND MICIIIE

ith class, A is an attribute, Ai is a value for the attribute A and Ci is the
example set after it has been split by A.
Note that the probabilities can be estimated from the relative fre-

quencies in Ci given that C is a representative of the universe. For
example, in order to compute the entropy of attribute Al in Figure 2 we
first must compute B(C, Al). This computation requires the example set
to be divided according to the values of Al as in Figure 8.
The information content of the true and false branches of Al can be

computed as follows:

M(Ci) = — 4 + logrl — 4 x 1og24 = 0.98522
M(C2) = — x log2i — x log2i = 1.0.

The expected information content, B(C, Al) of Al is:

B(C, A1)= x 0.98522 + j x 1.0 = 0.99059.

The information content of Al is M(C), where C is the original example
set, minus B(C, Al) or 0.99395 — 0.99059 = 0.0036. The entropy for
other attributes can be computed in this fashion. A selection based on
this criterion will minimize the expected execution cost of decision-trees.
Entropy has been used without the linearity measure in ID3. It should

not be surprising that decision trees constructed in such a fashion tend to
be balanced rather than linear. For example, the ID3 solution for the
example set in Figure 2 is shown in Figure 9, which also shows the tree
generated by our algorithm.

Clearly, ID3 produces more efficient decision trees than RG. However,
since we choose to sacrifice efficiency for linearity, decision-trees
produced by RG are more desirable. If the added tree-synthesis cost can
be accepted, then optimal efficiency (among equally linear candidate
trees) can be guaranteed by substituting 'best-first with backtrack' for the
test-first no backtrack' strategy borrowed from ID3.

A4 A2
f/ \t t/ \f
A2 A3 Al A3

f/ \t t/ \f t/ \f f/ \t
Cl C2 C2 A2 A5 C2 Cl A4

f/ \t t/ \f f/ \t
Cl Al Cl C2 Cl C2
f/ \t
Cl A5
f/ \t
C2 Cl

• RG As solved by ID3

y measures.

297



GENERATING EXPERT RULES FROM EXAMPLES IN PROLOG

5. OUTLINE OF RG

We adapted Bratko's measure of non-linearity and used an attribute
selection criterion that promotes execution efficiency of the resulting
decision-tree. RG incorporates the notions of linearity and efficiency into
an AO* [13] search technique.
The state space for finding a decision tree is finite and decreasing with

the number of variables since the number of attributes and examples are
finite. An 'And/Or' tree is used to represent the state space. 'Or' nodes
correspond to candidate attributes and 'And' nodes are subproblems that
must be solved. The root can be considered as an 'And' node. Each node
may be labelled as solved, closed or open. Solved nodes mean that a
solution has been reached from this node. A closed node means that a
solution under current consideration incorporates this node internally. A
node is open if it is neither closed nor solved.
During the expansion of the search tree, an optimistic estimate for

non-linearity is used in conformity with the AO* algorithm for searching
'And/Or' graphs. This estimate differentiates between total, partial and
non-decider attributes. Thus, if there are total deciders among the
candidate attributes, the search tree is expanded using them and the
nodes are labelled as solved. All partial decider attributes are considered
if no total deciders exist, and non-decider attributes are considered only
if there are no total or partial deciders.
The optimal solution path is marked in the search tree according to: (i)

non-linearity of the partially constructed decision tree; (ii) number of
expected internal modes; (iii) the attribute's entropy measure. The
entropy measure is used simply as a tie breaker between attributes which
produce equally linear decision-trees. Thus, optimality with respect to
linearity is guaranteed while efficiency is only enhanced. When RG
terminates, the optimal decision-tree can be constructed by tracing
markers from the root node to the bottom and recording the attributes
and their values.

6. RESULTS WITH RG

RG was used to induce rules for some examples selected from the
planning domain (construction of an arch and sorting a stack of blocks)
and chess end-games (some examples from Shapiro's Ph.D. thesis [7]) in
addition to some artificially constructed example sets. For the most part
the rules synthesized by RG were more linear than those induced by ID3.
The exceptions occurred when ID3 happened to construct a fully linear
decision-tree. ID3 produces more efficient decision-trees than AOCDL or
RG. This is to be expected because RG (and AOCDL) emphasizes the
linearity criterion before efficiency. However, the decision-trees gen-
erated by RG were more efficient than those produced by AOCDL since this

298



ARBAB AND MICHIE

RG

NL Cost

AOCOL

NL Cost

1D3

NL Cost

EX1 0 2.7 0 2.7 0 2.7

EX2 0.5 2.91 0.5 3.0 1.0 2.54

EX3 0 2.25 0 2.25 0.5 2.0

EX4 1.0 2.76 1.0 3.5 2.11 1.12

EX5 0 3.0 0 3.42 0 3.0

Figure 10. Performance analysis of programs.

problem(ex1).

/* Attributes */
att(al, (t.f.ni1)).
att(a2, (f.t.ni1)).
att(a3, (f.t.ni1)).
att(a4, (f.t.ni1)).
att(a5, (f.t.ni1)).

/* Classes */
class (c1).
class(c2).

/* Examples */
ex(1, (t.t.f.t.t.nil),
ex(2, (t.f.t.f.f.nil),
ex(3, (t.f.f.t.f.ni1),
ex(4, (f.t.f.t.t.nil),
ex(5, (t.t.f.t.f.nil),
ex(6, (t.f.t.t.f.nil),
ex(7, (f.f.t.f.t.nil),
ex(8, (t.f.f.t.t.nil),
ex(9, (t.t.t.t.f.nil),
ex(10,

cl).
cl).
cl).
c2).
c2).
c2).
cl).
cl).
c2).
cl).

Figure 11. Input file for EX1; this can be explained by a linear decision-tree.

At
ci
C2 f

C2

Cl

Cl C2
AOCDL,
RG,
1D3

Figure 12. Synthesized decision-trees for EX1.

299



problem(ex2).

/* Attributes */
att(al, (t.f.ni1)).
att(a2, (f.t.ni1)).
att(a3, (f.t.ni1)).
att(a4, (f.t.ni1)).
att(a5, (f.t.ni1)).

/* Classes */
class (c1).
class(c2).

•/* Examples */
ex(1, (t.t.f.t.t.nil), cl).
ex(2, cl).
ex(3, (t.f.f.t.f.nil), cl).
ex(4, (f.t.f.t.t.nil), c2).
ex(5, (t.t.f.t.f.nil), c2).
ex(6, (t.f.t.t.f.nil), c2).
ex(7, (f.f.t.f.t.nil), cl).
ex(8, (t.f.f.t.t.nil), cl).
ex(9, (t.t.t.t.f.nil), c2).
ex(10, (f.f.f.f.f.nil), cl).
ex(11, (f.t.f.f.t.nil), c2).

Figure 13. Input file form; this cannot be explained by a linear decision-tree.

..frAz4
C2 Cl Cl iNst

C2A24

AOCGL Cl C2

C2 Cl C2

Cl At
C2

RG CI C2

AS C2 Cl A4

J/Nt rNt
Cl C2 Cl C2

1D3

Figure 14. Synthesized decision-tree for EX2.

problem(ex3).

/* Attributes */

att(al, (t.f.ni1)).
att(a2, (f.t.ni1)).
att(a3, (f.t.ni1)).

/* Classes */

class(c1).
class(c2).
class(c3).
class(c4).

/* Examples */

ex(1 1 (t.t.f.nil), cl).
ex(2, (f.t.t.nil), c2).
ex(3, (f.f.t.nil), c3).
ex(4, (f.f.f.nil), c4).

Figure 15. Input file for Ex3; a linear decision-tree but 1D3 cannot find it.

300



ARBAB AND MIME

A3

Cl A2 A2

02 A3 A3 Al
VN( YX /Nk
03 04 04 03 Cl 02

RG, 1D3
AOC DL

Figure 16. Synthesized decision-trees for EX3.

program, AOCDL, only optimizes the linearity criterion. The decision-trees
generated by RG are more understandable than those generated by 1D3,
since RG promotes efficiency without destroying linearity. For an example
see Figure 1. Five examples that demonstrate the differences between
these programs are given in Figure 10. Complete listings of the examples
may be obtained from the authors. Outline listings of the examples,

problem(building_tower).

/* Attributes */
att(aon, (f.b.c.ni1)).
att(bon, (f.a.c.ni1)).
att(con, (f.a.b.ni1)).
att(cleara, (y.n.ni1)).
att(clearb, (y.n.ni1)).
att(clearc, (y.n.ni1)).

/* Classes */

class (stop)
class(btoc).
class(ctof).
class(atob).
class(btof).
class(atof).

/* Examples */

ex(1 , (f.f.f.y.y.y.nil), btoc).
ex(2 , (f.f.a.n.y.y.nil), ctof).
ex(3 , (f.f.b.y.n.y.nil), ctof).
ex(4 , (f.a.f.n.y.y.nil), btoc).
ex(5 , (f.a.b.n.n.y.nil), ctof).
ex(6 , (f.c.f.y.y.n.nil), atob).
ex(7 (b.f.f.y.n.y.nil), atof).
ex(8 , (b.f.a.n.n.y.nil), ctof).

• ex(9, (b.c.f.y.n.n.nil), stop).
ex(10, (f.c.a.n.y.n.nil), btof).
ex(11, (c.f.f.y.y.n.nil), atof).
ex(12, (c.f.b.y.n.n.nil), atof).
ex(13, (c.a.f.n.y.n.nil), btof).

Figure 17. Input file forEx4; building atowerinthe blocks world.

301



GENERATING EXPERT RULES FROM EXAMPLES IN PROLOG

BON

CLEARB CLEARA AON

CLEARC CTOF CLEARS BTOF CON ATOF CLEARS

Y/\1 ;A(4 14\3 AN
BTOC BTOF ATOB STOP BTOC CTOF CTOF ATOF CTOF

ID3

CLE RC

CJN
AZIVIN

CT4- C'TIOF BT ATIN7 -ssAssON
y./^\

ATOF BTOC STOP CON

AOCDL

RG

Figure 18. Synthesized decision-trees for EX4.

CL

BTOF A N

AT F STOP ATOB

BTOF ATOB

together with the trees generated by the different algorithms, are shown

in Figures 11-20.
The table of Figure 10 and the more detailed listings of Figures 11-20

indicate that RG produces decision-trees that are as linear as those
produced by AOCDL but more efficient. Also, decision-trees produced are
more linear than those produced by ID3. Thus, RG has been successful in

problem(btoqs).

class(true).
class(false).

att(skrxp, f.t.ni1). /*Can the BR achieve a skewer or BK attack the WP/
att(bkona, f.t.ni1). /*Is the BK on rank A in a position to aid the BR*/
att(bkon8, f.t.ni1). /*Is the BK on file 8 in a position to aid the BR*/
att(bknwy, f.t.ni1). /* Is the BK in the BR's way */
att(wkovl, f.t.ni1). /* Is the WK overloaded */

ex(1, t.f.f.f.f.nil, true).
ex(2, f.t.f.f.f.nil, true).
ex(3, f.f.t.f.f.nil, true).
ex(4, f.f.f.t.f.nil, false).
ex(5, f.f.f.f.t.nil, true).
ex(6, f.f.f.f.f.nil, false).
ex(7, f.f.f.t.t.nil, false).

Figure 19. Input file for EX5; an example from ref. [7].

302



FALSE SKRXP

SrNk
TRUE BKONA

VN

SK

TRUE BKONA

)7Nc
TRUE BKONES

TRUE BKON8

)7Nk
TRUE WKOVL

V.Nst
TRUE FALSE

RG,
103

Figure 20. Synthesized decision-trees for EX5.

ARBAB AND MICIIIE

tyrNsf

TRUE BKNWY

AOCDL

srNk
FALSE WKOVL

VN'

TRUE FALSE

its goal, i.e. producing the most linear decision-tree while enhancing
execution efficiency.

7. SUMMARY

An algorithm, RG, for producing human-understandable yet efficient
decision-trees has been described and implemented. RG was implemented
in PROLOG and tested using sample problems from Bratko [1] and Shapiro
[7]. In all cases of difference, the decision-trees produced were more
linear than decision-trees synthesized by ID3 and more efficient that
decision-trees generated by AOCDL.
This algorithm is heuristically guided by linearity and efficiency

measures resulting in the generation of more understandable decision
trees. RG, combined with structured induction promises rapid construc-
tion of expert systems by permitting the expert to communicate his
knowledge and experience through a simple yet flexible language.

Acknowledgements
We would like to thank Rina Dechter, Jim Moore, and Gary Silverman for providing many
helpful suggestions throughout the project. Thanks are also due to the IBM Los Angeles
Scientific Center for providing resources and support.

REFERENCES

1. Bratko, I. (1983) Generating human-understandable decision rules, Working paper, E.
Kardelj University, Liubljana, Yugoslavia.

2. Michie, D. (1982) The state of the art in machine learning. In Introductory readings in
expert systems (ed. D. Michie) pp. 208-228. Gordon & Breach, London.

3. Vere, S. A. (1978) Inductive learning of relational productions. In Pattern-directed
inference systems (eds D. A. Waterman and F. Hayes-Roth) pp. 281-95. Academic
Press, New York.

4. Michalski, R. S. (1980) Pattern recognition as rule-guided inductive inference, IEEE
Transactions on Pattern Analysis and Machine Intelligence PAMI-2, 349-361.

5. Hayes-Roth, F. and McDermott, J. (1977) Knowledge acquisition from structural
description. Proc. IJCAI-5, pp. 356-362.

303



GENERATING EXPERT RULES FROM EXAMPLES IN PROLOG

6. Quinlan, J. R. (1983) Learning efficient classification procedures and their applications
to chess end-games In Machine learning: an artificial intelligence approach (eds R. S.
Michalski, J. Carbonell, and T. Mitchell) pp. 463-82. Tioga, Palo Alto, Calif.

7. Shapiro, A. (1987) Structured induction in expert systems. Addison Wesley, Woking-
ham, England, and New York.

8. Martelli, A. and Montanan, U. (1973) Optimizing decision trees through heuristically
guided search, Commun. ACM 21, 1025.

9. Michie, D. (1981) ̀Mind-like' capabilities in computers: a note on computer induction.
Cognition 12,97-108.

10. Shapiro, A. and Niblett, T. (1982) Automatic induction of classification rules for a
chess endgame. In Advances in computer chess 3 (ed M. R. B. Clarke) pp. 73-92.
Pergamon Press, Oxford.

11. Dechter, R. and Michie, D. (1984) Structured induction of plans and programs, IBM
Los Angeles Scientific Center report.

12. McLaren, R. (1983) Expert-Ease user manual. Intelligent Terminals Ltd., Glasgow.
13. Nilsson, N. J. (1980) Principles of artificial intelligence. Tioga, Palo Alto, Calif.
14. Sammut, C. and Banerji, R. B. (1981) Learning concepts by asking questions, Working

paper, Department of Computer Science, University of Illinois at Urbana-Champaign.
15. Shapiro, E. Y. (1981) Inductive inference of theories from facts. Department of

Computer Science, Yale University.

FURTHER READING

Arbab, B. and Michie, D. (1985) Generating rules from examples. Proc. LICAI-9.
Attneave, F. (1959) Applications of information theory to psychology: A summary of basic
concepts, methods and results. University of Oregon.

Paterson, A. and Niblett, T. (1982) ACLS user manual. Intelligent Terminals Ltd.,
Edinburgh.

Quinlan, J. R. (1982) Semi-autonomous acquisition of pattern-based knowledge. In
Machine Intelligence 10 (eds J. E. Hayes, D. Michie, and Y.-H. Pao). Ellis Horwood,
Chichester.

Roberts, G. M. (1977) M.S. thesis, An implementation of PROLOG. University of Waterloo,
Department of Computer Science.

Roberts, G. M. (1983) PROLOG user's manual, version 1.4. University of Waterloo,
Department of Computer Science.

304



13

Decision Trees and Multi-Valued
Attributes
J. R. Quinlan
School of Computing Sciences,
New South Wales Institute of Technology, Australia

Abstract

Common induction systems that construct decision-trees have been
reported to operate unsatisfactorily when there are attributes with
varying numbers of discrete possible values. This paper highlights the
deficiency in the evaluation of the relevance of attributes and examines a
proposed solution. An alternative method of selecting an attribute is
introduced which permits the use of redundant attributes. Results of
experiments on two tasks using the various selection criteria are
reported.

1. INTRODUCTION

As knowledge-based expert systems play an increasingly important role
in artificial intelligence, more attention is being paid to the problem of
acquiring the knowledge needed to build them. The traditional approach
involving protracted interaction between a knowledge engineer and a
domain expert is viable only to the extent that both these resources are
available; this approach will not meet the apparently exponential growth
in demand for expert systems. A solution to this dilemma requires
rethinking the way knowledge-based products are built. An example of
this reappraisal of methodology appears in Michie (1983), and is based on
the principle of formalizing and refining the knowledge implicit in
collections of examples or data bases.

Dietterich and Michalski (1983) give an overview of methods for
learning from examples. There are many such, all based on the idea of
inductive generalization. One of the simplest of these methods dates back
to work by Hunt in the late fifties (Hunt et al., 1966). Each given
example, described by measuring certain fixed properties, belongs to a
known class and the 'learning' takes the form of developing a classi-
fication rule that can then be applied to new objects. Simple though it
may be, derivatives of this method have achieved useful results;
Kononenko et al. (1984), for example, have managed to generate five
medical diagnosis systems with minimal reference to diagnosticians.

305



DECISION TREES AND MULTI-VALUED ATTRIBUTES

In the course of their work, Kononenko et al. uncovered a deficiency in
the basic machinery being used, and this paper focuses on that
shortcoming. We first formalize the inductive task and present analytical
support for the existence of a deficiency. The solution proposed by
Kononenko et al. is discussed and an alternative method introduced. A
series of trials of the various methods on two classification tasks is then
reported, revealing their relative merits.

2. CONSTRUCTING DECISION-TREES

We imagine a universe of objects, each described in terms of a fixed
number of attributes or properties. Each attribute has its own (small) set
of discrete attribute values. Each object belongs to one of several
mutually exclusive classes. For example, we could have the following
scenario:

objects: people
attributes: colour of hair (with attribute values red, brown, fair,

grey, black)
colour of eyes (brown, black, blue)
height (tall, medium, short)

classes: unremarkable appearance, unusual appearance.

The concept learning task of interest here can now be stated briefly as:

given: a collection of objects (and their descriptions) whose class
membership is known

find: a classification rule, couched in terms of the attributes, that
will assign any object to its class.

The given set of objects is usually referred to as the training set. The
method used to find a rule is induction in which observations about the
training set are generalized so as to apply to other, as yet unseen objects.
While it is possible to ensure that the developed rule works for all
members of the training set, the correct performance of the rule on other
objects cannot usually be guaranteed. Instead, we rely on heuristic guides
such as Occam's Razor: among all rules that accurately account for the
training set, the simplest is likely to have the highest success rate when
used to classify objects that were not in the training set.
In this discussion we will assume that there are only two classes, Y and

N, although all the results can be extended to an arbitrary number of
classes in a straightforward way. We will also limit ourselves to
classification rules expressed as decision trees. Each interior node of such
a tree is a test, based on a single attribute, with a branch for each
possible outcome of the test. Each leaf of a decision-tree is labelled with
a class. An object is classified by starting at the root of the tree,

306



QUINLAN

performing the test, taking the branch appropriate to its outcome, and
continuing the subtree at that branch. When a leaf is eventually
encountered, the object is taken to be a member of the class associated
with the leaf.
Forming a decision-tree by induction from a training set comes down to

deciding, from the descriptions and known classes of objects in the
training set, which attribute-based test to use for the root of the decision
tree. For this test (with v outcomes, say) will partition the training set
into v blocks, one for each branch emanating from this root node. Each
block can be treated as a training set in its own right and the same
procedure applied recursively until all (sub) training sets contain objects
of a single class. A method of choosing a test to form the root of the tree
will be referred to as a selection criterion.
One obvious choice for an attribute-based test is to branch on the value

of an attribute, creating a separate path for each possible value it can
have. Choosing a test for the root could be carried out by the trivial
algorithm: choose the first attribute first, then the second attribute and so
on. However, the decision-tree built by this procedure would not be
expected to reflect any structure in the training set and so would have
poor predictive performance. A better strategy, employed for example by
ACLS (Michie, 1983; Shapiro, 1983; Shepherd, 1983) and ID3 (Quinlan
1982, 1983 a, b), is to use an information-theoretic criterion as follows. If
the training set contains y objects from class Y and n from class N, the
information that needs to be supplied by a classification rule for the set
can be related to the relative frequencies of class Membership by the
function

I(y, n)= — log2(—
n

).
y+n y+n y+n y+n

Now, let A be an attribute with possible values A1, A2,. . A„, and let yi
and ni denote the numbers of objects of class Y and N respectively that
have the ith value Ai of A. If attribute A was chosen as the root of the
decision-tree, with a branch for each of its v possible values, the
information that would need to be supplied by the (sub) tree cor-
responding the the branch for Ai is similarly

1(y1,

Weighting each branch of the decision-tree by the proportion of objects
in the training set that belong to that branch, we can write the expected
information requirement after testing attribute A as

yi+ ni „
E(21)= 24 —.tub

Naturally, the expected information needed after testing attribute A is

307



DECISION TREES AND MULTI-VALUED ATTRIBUTES

generally less than the information needed before any attribute is tested.
The information gained by branching on attribute A is just

gain(A) = 1(y, n)— E(A).

The information-based criterion referred to earlier can be expressed
simply as: choose the attribute whose information gain is maximal. In
the following, this will be called the original criterion.

3. MULTI-VALUED ATTRIBUTES

Kononenko et al. (1984) have developed an inductive inference system
ASSISTANT and used it to built classification rules in several medical
domains. At one stage of its evolution, their system used the original
criterion of information gain to select attributes as above. In the course
of their experiments they encountered a problem when the attributes
being compared had different numbers of values. In one study, medical
specialists were of the opinion that the attribute 'age of patient', with
nine discrete ranges, was being chosen over more relevant attributes with
fewer values. The choice of an inappropriate attribute results in excessive
fragmentation of the training set; structure in the set becomes harder to
detect and the performance of the classification rule on unseen objects
may be degraded. In this case, the opinion of the specialists was borne
out by the fact that, when the attribute was omitted altogether, the
induced classification rule gave better results.
Let us analyse the problem in more abstract terms. Suppose we form

an attribute A' which is identical to A except that two of the attribute
values, A1 and A2 say, are collapsed into a single value A1+2. A' then has
v — 1 values A42, A,. A„' , where there are now yi + y2 and n1 + n2
objects from classes Y and N respectively that have value A 2 of the new
attribute A'. Let us examine the difference in information gain between
A and A'. Since 1(y, n) is unchanged, this difference is

E(A')— E(A).

For values of i> 2, corresponding terms in this difference cancel so the
difference reduces to terms related to A1 and A2 on one hand and A 2
on the other. The difference can then be written as

yi + n 1 
1"n1) 

Y2 + n2Yi + y2 + ni+ n2 
/(Yi +Y2, n 1 + n2) i(Y2, n2).y + n y y + n + n

The minimum value of this difference can be found by equating its partial
derivative with respect to yi to zero. The minimum value occurs when

Y1
= 

Y2 Y1 ± Y2 
-

Yr f ni Y2+n2 Yi+ni+Y2+n2

308



QUINLAN

which gives the minimum value of the difference as zero. The upshot of
this analysis is that the information gain attributable to A will generally
exceed that attributable to A', the two gains only being equal if the
proportions of class Y and class N objects in the two merged attribute
values are identical.
Now let us look at the situation from the other side of the coin.

Suppose that the values of attribute A are sufficiently 'fine' for the
classification task at hand. If we were arbitrarily to increase the number
of values of A by subdividing existing values, we would not expect to
increase the usefulness of A for a classification rule; on the contrary, we
would intuitively expect the excessive fineness of A to obscure structure
that may exist in the training set. But the above analysis shows that the
information gain of the new, finer A will generally be increased, thereby
boosting its chances of being chosen as the most relevant attribute. By
analogy, there would seem to be a bias in the information gain criterion
towards attributes with larger numbers of values. This analysis supports
the empirical finding of Konenenko et al.

4. BINARY TESTS

The remedy implemented in ASSISTANT is the requirement that all tests
have only two outcomes. If we have an attribute A as before with v
values A1, A2, . A„, the decision-tree no longer has a branch for each
possible value. Instead, a subset S of the values is chosen and the tree has
two branches, one for all values in the set and one for the remainder. The
information gained is then computed as if all values in S were
amalgamated into one single attribute value and all remaining values into
another. In this selection criterion, referred to as the subset criterion, the
test chosen for the root uses the attribute and subset of its values that
maximizes the information gain. Kononenko et al. report this modifica-
tion led to smaller (but less structured) decision-trees with an improved
classification performance. In one medical domain, for example, the
decision-tree formed from a training set of 1300 objects was reduced from
525 to 157 nodes, and its classification accuracy on 545 unseen objects
improved from 62 per cent to 66 per cent.

Limiting decision trees to a binary format is reminiscent of the original
concept learning system cis (Hunt et a/., 1966). In that system, each test
was of the form 'attribute A has value Ai', with two branches cor-
responding to true and false. This is clearly a special case of the test
implemented in ASSISTANT, which permits a set of values, rather than a
single value, to be distinguished from the others. us, however, did not
use an information-theoretic measure to evaluate tests, but rather
employed a lookahead scheme based on a system of measurement and
misclassification costs. Nevertheless, designating a single value and

309



DECISION TREES AND MULTI-VALUED ATTRIBUTES

evaluating tests using information gain as before seems worthwhile
exploring as a comparator for ASSISTANT'S selection criterion, and will be
referred to as the single-value criterion.

If all tests must be binary, there can be no bias in favour of attributes
with large numbers of values and so the objective has certainly been
achieved. It could be argued, however, that ASSISTANT'S remedy has
undesirable side-effects that have to be taken into account. First, it could
lead to decision-trees that are even more unintelligible to human experts
than is ordinarily the case, with unrelated attribute values being grouped
together and multiple tests on the same attribute. More importantly, the
modified procedure can require a large increase in computation. An
attribute A with v values has 2' value subsets and, when trivial and
symmetric subsets are removed, there are still 2"1 — 1 different ways of
specifying the distinguished subset of attribute values. The information
gain realized with each of these must be investigated, so a single attribute
vith v values has a computational requirement similar to 2'1 — 1 binary
attributes. This is not of particular consequence if v is small, but the
approach would appear infeasible for an attribute with 20 values. There
are applications for which such a large number of attribute values is not
unreasonable; for example, the attribute 'family' for Australian spiders
would have 39 values (Clyne, 1969).

5. NORMALIZING THE GAIN

Another method of overcoming the problem posed by attributes with
different numbers of values would be to normalize the information gain
in some way. This was attempted by Kononenko et al. (1984): if an
attribute had v values, the normalized gain was computed as the 'raw'
gain divided by log2(v). The results achieved with this procedure were
unsatisfactory, as very important attributes with large numbers of values
were now discriminated against, at least near the root of the tree. For
example, an attribute with eight values would have to achieve three times
the information gain of a binary-valued attribute if it were to be the
chosen attribute.

6. GAIN RATIO

This paper suggests an alternative information-based criterion that
resembles a normalized gain, although the rationale for the criterion is
quite different.

Consider again our training set containing y and n objects of class Y
and N respectively. Let attribute A have values A1, A2,. ., AL, and let
the numbers of objects with value Ai of attribute A be yi and ni,
respectively. Enquiring about the value of attribute A itself gives rise to

310



QUINLAN

information, which can be expressed as

IV (A) =
+ ni 

log2
(yi  + ni)E 

y+n y+n

Notice that this information measure is unrelated to the utility of A for
classification purposes. For example, if

= y2 = • • • = ; and

ni = n2 = • •.=nv

attribute A would be useless as the root of the decision-tree, and yet the
information from determining the value of attribute A would be maximal.
I V (A) thus measures the information content of the answer to the

question, 'What is the value of attribute A?' As discussed earlier, gain(A)
measures the reduction in the information requirement for a classification
rule if the decision tree uses attribute A as root. Ideally, as much as
possible of the information provided by determining the value of an
attribute should be useful for classification purposes or, equivalently, as
little as possible should be 'wasted'. A good choice of attribute would
then be one for which the ratio

gain(A)/IV(A)

is as large as possible. This ratio, however, may not always be
defined—/V(A) may be zero—or it may tend to favour attributes for
which IV (A) is very small. We therefore propose the following criterion:
from among those attributes with an average-or-better gain, select the
attribute that maximizes the above ratio. This will be called the ratio
criterion.

7. EMPIRICAL INVESTIGATION

The various criteria for selecting attributes as discussed in earlier sections
were embodied in the straightforward tree-constructing procedure and
evaluated on a family of tasks. This family was derived from an existing
classification task, with a universe of 551 objects described in terms of 39
two-valued attributes for which the smallest known decision-tree con-
tained 175 nodes (although smaller trees were discovered in the course of
these experiments). In order to observe the effects of multi-valued
attributes in stark relief, related tasks were synthesized by collapsing four
of the attributes into a single attribute; these tasks thus had 36 attributes,
one of them having 16 values and the remainder two values.
Three different choices of the four attributes to be combined into a

single attribute were as follows:

D1: the two most important attributes were combined with two
attributes of limited use

311



DECISION TREES AND MULTI-VALUED ATTRIBUTES

D2: the attributes were chosen to produce the most even distribu-
tion over the 16 values of the combined attribute

D3: the attributes were chosen to produce the most uneven
distribution, subject to the requirement that all 16 values were
represented.

Each selection criterion was evaluated on the original problem (DO) and
on all the derived tasks. The same procedure was followed in each case.
First, the entire 551 objects were presented as the training set to observe
the size of the resulting decision-trees. Next, 20 randomly selected
subsets containing 50 per cent of the 551 objects were set up and used as
training sets. Since these training sets were incomplete, the decision-trees
formed from them were not exact: each was tested on the remaining 50
per cent of the objects to measure the number of classification errors that
resulted. Finally, to simulate forming more inaccurate classification rules,
a similar procedure was followed using 20 per cent of the objects for the
training set and evaluating the decision trees on the remaining 80 per
cent.
The results of these experiments are summarized in Table 1 and

Figures 1 and 2. Table 1 shows the sizes of the decision trees obtained
from all 551 objects. For the original task (DO) in which all attributes are
two-valued, the subset and single-value selection criteria are identical to
the original, but noticeable differences emerge on the derived tasks. The
ratio criterion does very well on the original task, giving a decision-tree
of 143 nodes that is considerably smaller than any other known correct
tree for this task. The same selection criterion, however, produces a
much larger decision tree for task Dl.
The most important characteristic of a good selection criterion, though,

is that it should lead to decision-trees that accurately classify unseen
objects. Figure 1 refers to the experiments in which decision-trees
formed from half of the 551 objects were tested on the remaining half.
For each task and selection criterion, the figure shows the 95 per cent
confidence interval for the mean number of classification errors over the

Table 1. Number of nodes in correct
decision tree.

Selection
criterion DO D1 D2 D3

Original 175 205 187 187
Subset 175 205 169 163
Single-value 175 179 167 185
Ratio 143 265 179 179

312



50

45

40

35

30

25

QUINLAN

11:0:

DO DI D2 D3

Original   Subset [Single-value IlRatio

Figure 1. Mean number of errors with training-set of 275 objects.

100 

90 

80

70

:

6131

DO D1 D2 D3

Original Di Subset r--1 Single-value El Ratio

Figure 2. Mean number of errors with training set of 110 objects.

313



DECISION TREES AND MULTI-VALUED ATTRIBUTES

20 trials. These indicate that the subset criterion is significantly better on

D1 while the original criterion is clearly worse on D2. Figure 2 refers to
the similar experiments in which the training set contained 20 per cent of
the objects and the resulting decision-trees were then tested on the 80 per
cent of unseen objects. Once again a similar pattern emerges.
These results support the finding of Kononenko et al. that the original

selection criterion can be somewhat deficient in a task with multi-valued
attributes. For task D2 in Figure 2, changing from the original to the
subset selection criterion improved the mean classification accuracy on

unseen objects from 79 per cent to 82 per cent, and this difference would
probably increase if more multi-valued attributes were involved.

8. REDUNDANT ATTRIBUTES

All selection criteria appear to have more difficulty with the task D1, as
seen in both the size of decision-tree for the complete training set and the
errors made by decision-trees constructed from partial training sets.

Recall that this task aggregates both important and unimportant attrib-
utes, and thereby models a common real-world situation in which coarse
values of an attribute are all that is required for classifying most objects,
but much more precise values are needed for rarer cases. Two examples
should illustrate the idea. In a thyroid diagnosis system (Horn et al.,
1985) many cases can be classified by knowing simply whether the level of
each measured hormone is normal or not, but some cases require the
level to be divided into as many as seven subranges. The study on
Australian spiders mentioned earlier divides the 39 families into six
groups, where the group alone often provides sufficient information for
classification purposes.
The obvious remedy is to incorporate redundant attributes, each

measuring the same property at different levels of precision appropriate

to different classification needs. In the examples above, we might have
both hormone level (seven values) and whether normal (two values), and
both spider family (39 values) and group (six values). It would seem that
the human experts, who provide the attributes in the first place, would
have little difficulty in specifying these different precision levels useful for
particular subsets of objects.
Let us now see what effect the introduction of a redundant attribute

might be expected to have on the decision trees produced by the various
selection criteria. Suppose A is some attribute with a full complement of
values and A' is a redundant attribute with a lower level of precision, i.e.
at least one value of A' corresponds to a subset of values of A. We have

shown earlier that the information gain using A' can never exceed that

using A, so the original selection criterion will never prefer A' to A. That

is, adding the redundant attribute A' will have no effect on the

314



QUINLAN

decision-tree formed. When the subset selection criterion is used, it is
apparent that any subset of the values of A' can also be expressed as a
subset of the more finely divided values of A, so including redundant
attribute A' will not increase the range of tests available. However, some
value of A may not be represented in a small training set while the
corresponding coarser value of A' is represented, so tests derived from
small sets of objects may be more accurate using A' rather than A. In the
case of the single-value criterion, however, adding A' may have a
beneficial effect by broadening the range of possible tests, as one
attribute value of A' may correspond to a subset of the values of A.
Finally, the attribute information IV(A'), will generally be less than
IV(A), so the introduction of A' would be expected to have an effect on
the ratio criterion, although whether this effect is beneficial or otherwise
is not clear. To summarize: the addition of a redundant attribute will not
change the decision-trees produced by the original criterion, should not
have a dramatic effect on those produced by the subset criterion, but may
alter the trees produced using the single-value and ratio criteria.
These observations were tested by rerunning the previous trials, this

time including both the original binary attributes as well as the composite
16-valued attributes. Each original attribute is then redundant in the

100

90

80

70

SW:v.
w.ots:V

D1 D2 D3

Original EMSubset Single-value =Ratio

Figure 3. Mean number of errors, original attributes included, with training-set of 110
objects.

315



DECISION TREES AND MULTI-VALUED ATTRIBUTES

sense above, because each of its values corresponds to eight values of the
composite attribute. Each of the tasks D1, D2 and D3 now has 40
attributes, one with 16 values and the rest with two. As before, the trials
included 20 'runs' on each task, selecting a fixed proportion of the set of
551 objects as a training set and testing the tree produced on the
remainder.

Figure 3 summarizes the results when 110 objects (20 per cent) were
used as a training set, and shows the mean number of errors when the
trees were used to classify each of the other 80 per cent of the objects. If
this figure is compared to the corresponding sections of Figure 2, the
following points emerge. As expected, the inclusion of the additional
redundant attributes has no effect on the trees produced using the
original selection criterion. There are small changes in the mean error
with the subset criterion, and significant improvements with the single-
value and ratio criteria. There is a particularly noticeable decrease in
mean errors with the ratio criterion on D1 and D3. Notice also that the
ratio criterion now gives marginally lower errors on all tasks than the
other criteria.

9. CONFIRMING EXPERIMENT

The results above were put to the test on a completely unrelated
classification task. In this task there were 1987 objects described in terms
of 14 attributes, five with three values and the remaining nine with two.
Despite the larger number of objects, this is a much simpler classification
task as a correct decision tree with only 48 nodes was previously known.
Twenty training sets were prepared by randomly selecting half of the

1987 objects. For each of the four selection criteria, decision-trees were
formed from each of these training sets and tested on the remaining
objects. As would be expected from the simpler concept being formed
and from the larger training sets, there were relatively few errors when
the trees were used to classify the unseen objects. It was observed that,
for three of the multi-valued attributes, one attribute value was more
important than the others. Following that philosophy of redundant
attributes discussed above, a redundant binary attribute was added for
each of these three. In this redundant attribute, the two less important
values were merged into a single value. The runs were repeated, this time
using the augmented set of 17 attributes.
The results are summarized in Figure 4. Notice that, since no attribute

has more than three values, selecting a non-trivial subset of values is
equivalent to selecting a single value, so the subset and single-value
criteria give identical results. In the first runs, the original and ratio
criteria emerge as less useful than the others, because the decision-trees
formed using them give a higher error rate. When the three redundant

316



7

6

5

4

3

2

QUINLAN

s's'4

14 Attributes 3 Additional
redundant
attributes

Original Subset EN Single-value El Ratio
Figure 4. Mean number of errors with training-set of 993 objects.

attributes are added, however, only the ratio criterion is affected: it now
gives significantly better results than any of the other three criteria.

10. CONCLUSION

Several observations can be made regarding these results. Analysis and
experiments both support the findings of Kononenko et al. (1984)
regarding the deficiency of the original selection criterion when
attributes with differing numbers of values are present. This deficiency
will tend to favour attributes with larger numbers of values, producing a
decision-tree that has a higher error rate when classifying unseen objects.
The solution proposed by Kononenko et al. is to restrict tests in

decision trees to binary outcomes, i.e. whether or not the value of an
attribute is in a designated set. This has been found to reduce the size
and improve the accuracy of decision-trees. However, the computational
requirements of the subset selection criterion may make it infeasible for
tasks containing attributes with many values. This technique has been
compared to a similar binary restriction explored by Hunt et al. (1966),

317



DECISION TREES AND MULTI-VALUED ,ATTRIBUTES

the single-value criterion, which makes no such exponential computa-
tional demands. The single-value criterion has also been found to
generate slightly more accurate decision-trees than the original criterion.
We have also proposed and investigated a selection criterion based on

the ratio of information gain to attribute information. This has been
found generally to perform about as well as the single-valued criterion.
However, it has two noteworthy advantages. It does not restrict the
decision-tree to a binary format which may be awkward and unnatural for
some applications. More importantly, it is able to benefit from the
provision of redundant attributes whose levels of detail, as expressed by
their number of possible values, can be chosen to suit different
classification needs. When suitable redundant attributes are provided, the
ratio criterion has been observed to outperform the other three criteria,
even though its computational requirements are roughly equivalent to
those of the original selection criterion.

REFERENCES

Clyne, D. (1969) A guide to Australian spiders. Nelson, Sydney.
Dietterich, T. G. and Michalski, R. S. (1983) A comparative review of selected methods for
learning from examples. In Machine learning (eds R. S. Michalski, J. Carbonell and T.
Mitchell). Tioga, Palo Alto, Calif.

Horn, K., Compton, P., Lazarus, L., and Quinlan, J. R. (1985) The implementation of an
expert system for the interpretation of thyroid assays in a clinical laboratory. Australian
Computer Journal 17, 1.

Hunt, E. B., Marin, J., and Stone, P. (1966) Experiments in induction. Academic Press,
New York.

Kononenko, I., Bratko, I., and Roskar, E. (1984) Experiments in automatic learning of
medical diagnostic rules, Technical report, Josef Stefan Institute, Ljubljana, Yugoslavia.

Michie, D. (1983) Inductive rule generation in the context of the Fifth Generation, Proc.
Int. Machine Learning Workshop, University of Illinois at Urbana-Champaign.

Quinlan, J. R. (1982) Semi-autonomous acquisition of pattern-based knowledge. In
Machine intelligence 10 (eds J. E. Hayes, D. Michie, and Y.-H. Pao). Ellis Norwood,
Chichester.

Quinlan, J. R. (1983a) Learning efficient classification procedures. In Machine learning: an
artificial intelligence approach (eds R. S. Michalski, J. Carbonell, and T. Mitchell). Tioga,
Palo Alto, Calif.

Quinlan, J. R. (1983b) Learning from noisy data. Proc. Int. Machine Learning Workshop,
University of Illinois at Urbana-Champaign.

Shapiro, A. (1983) The role of inductive learning in expert systems. Ph.D Thesis,
University of Edinburgh.

Shepherd, B. A. (1983) An appraisal of a decision tree approach to image classification.
Proc. LICAI-8 (Karlsruhe).

318



14

RuleFactory: A New Inductive
Learning Shell

S. Renner
Department of Computer Science,
University of Illinois at Urbana-Champaign, USA

1. INTRODUCTION

RuleFactory, an inductive learning program under development at the
University of Illinois, is used to construct classification rules from
expert-supplied examples. In this regard it is similar to the existing
program ACLS and Expert-Ease based on 1D3 [1,2]. RuleFactory uses the
induction algorithm contained in these two programs and consequently
produces rules in the same 'decision-tree' format. However, several new
features have been added to RuleFactory, resulting in a more powerful
and useful tool.

RuleFactory can be thought of as a computerized apprentice, learning
one or more classification rules for a problem domain. The user's role is
that of a teacher, instructing RuleFactory by supplying pre-classified
relevant examples from the domain. The user is also responsible for
identifying the important features of the domain, called attributes. Each
example supplied by the user is expressed as a list of attribute values
together with the correct class value; e.g. one such example might say:
'When it is raining, and you are outside, and you are not already wet,
you should use an umbrella.' From these examples, RuleFactory pro-
duces a rule which determines the class value of every instance in the
domain. This rule can be inspected and tested by the user, and corrected
by adding new examples or new attributes to the problem.
One new feature in RuleFactory is a facility which supports structured

induction, a technique originated by Niblett and Shapiro [3] and further
developed by Shapiro [4] to produce comprehensible rules for complex
domains. In structured induction, the user repeatedly divides a problem
into subproblems, treating each attribute as a separate problem for which
he supplies new attributes and new examples. This process continues
until a group of simple, primitive attributes emerges. RuleFactory allows
the user to turn any attribute into a problem in this fashion, keeping
track of the relations between attributes that result. Also, if the value of
a non-primitive attribute is required during rule testing, RuleFactory

319



RULEFACTORY: A NEW INDUCTIVE LEARNING SHELL

obtains it by calling the rule for this attribute as a subprocedure, instead
of asking the user for it.
RuleFactory provides a facility for explaining the decisions made by its

classification rules. This facility is based on a technique developed by
Shapiro and Michie [5] called self-commenting, subsequently refined on
the basis of proposals from I. Bratko (personal communication). Self-
commenting involves attaching a piece of text to each attribute and
attribute value. By printing the attribute text when a rule is entered and
the value text when the rule is finished, RuleFactory can produce a
complete explanation of how the final result was obtained.

It is frequently possible to write external routines which compute the
values of primitive attributes. RuleFactory provides a mechanism for
communicating with these external functions, allowing RuleFactory to
obtain attribute values from them instead of from the user. RuleFactory
also generates C-coded versions of its decision rules. This code can be
compiled together with the user's code to form a system which can
execute the classification rules independently of RuleFactory, on any
system which supports the standard C input/output library.

RuleFactory is a highly screen-oriented program. The terminal screen
is divided into several different windows, each displaying some aspect of
the current problem domain. Most of the user's input is entered as
single-keystroke commands, which either modify the data displayed in
the windows on the screen, or change the type and contents of these
windows. A menu for the single-key commands is continually displayed,
and a complete list of the longer commands can be obtained at any time.
A prototype version of RuleFactory has been implemented on a Vax

11/780 running 4.2 bsd UNIX.

2. DEFINITIONS

A RuleFactory attribute can be thought of as a function which classifies
the members of the domain according to some important feature. For
example, the number of high-card points in a hand is one attribute in the
game of contract bridge; the domain of the corresponding function is the
set of all bridge hands, and the range is an integer from 0 to 40. The
range of a RuleFactory attribute must be a scalar or a single number; the
domain can be whatever the user likes.
The purpose of RuleFactory is to create a rule which defines the

classification function for an attribute in terms of other, simpler attri-
butes. RuleFactory expresses such a rule in the form of a decision-tree.
The internal nodes in a decision-tree represent a lower-level attribute to
be tested. Each external node contains one of the possible outcomes of
the rule. The rule is evaluated by starting at the root node, and at each
test node using the test result to select one branch until an external node
is reached; the result of the rule is the value of this final node.

320



RENNER

Problem domain: KP(a7)KR
Each instance in the domain is a chess endgame position.
White has king and pawn, Black has king and rook.
The pawn is on square a7.

Class attribute: pa7
With White to move, is the position won for White?
The range of this attribute is:
Won—the position is won for White.
Not—the position is drawn, or won for Black.

Attribute list:
rimmx— Can the Black rook be captured safely?
bxqsq— Does one or more Black piece control the queening square?
dq— Is there a simple delay to White's queening the pawn?
chkmt— Is the White king in checkmate?
stlmt— Is the White king in stalemate?
ds— Is there a good delayed skewer threat?

Example list:
rimmx bxqsq dq chlunt stlmt ds pa7

no yes no no no no Not
no no yes no no no Not
no no no no no no Won
no no no no no yes Not
yes yes no no no no Won
no no no no yes no Not

Classification rule:
The RuleFactory representation of the decision tree is on the left. A
pseudo-code fragment describing how the rule is evaluated is on the
right.

rimmx if (rimmx = no) then
no: bxqsq if (bxqsq = no) then

no: stlmt if (stlmt = no) then
no: ds if (ds = no) then

no: dq if (dq = no) then
no: Won pa7 = Won
yes: Not else pa7 = Not

yes: Not else pa7 = Not
yes: Not else pa7 = Not

yes: Not else pa7 = Not
yes: Won else pa7 = Won

Figure 1. A sample RuleFactory subproblem.

321



RULEFACTORY: A NEW INDUCTIVE LEARNING SHELL

Before RuleFactory can induce a rule for an attribute A, the user must
supply a list of examples and a list of the attributes which can be used in
the rule for A. These three things—the classification rule, the example
list, and the attribute list—make up a RuleFactory subproblem for the
attribute. The attribute A is called the class attribute for the subproblem.
Figure 1 is an example of the contents of a RuleFactory subproblem.
(The subproblem was extracted from a chess endgame knowledge base
developed by Shapiro [4].)

RuleFactory assumes that all of the ?attributes it handles at any given
time are intended to classify the same sort of thing; i.e. that they all have
the same input domain. Such a group of attributes is called a problem
domain. For example, the attributes which computed some feature of a
bridge hand would constitute a problem domain; so would a group of
attributes which evaluated a position from a particular chess ending.

3. A RULEFACTORY OVERVIEW

In this section we examine the new features which are presently available
in RuleFactory or planned for the near future.

3.1. The induction module

The induction module is the part of RuleFactory which actually produces
the classification rules. RuleFactory will eventually have several induction
modules, each using a different algorithm to produce a decision tree from
an example set. At present RuleFactory has only one induction module,
which is based on an algorithm developed by Quinlan [1,2] for his ID3
inductive learning program.
The part of ID3 concerned with building a decision-tree is related to

Hunt's Concept Learning System [6]. Its purpose is to take a training set
E of examples and construct a rule mapping every example in E to its
known class value. This is done according to the following three steps:

1. If the set E is empty, then nothing is known about the appropriate
class value. The rule produced asserts that the class is the special value
null.

2. If all of the examples in E have the same class value C, then the
rule produced asserts class = C.

3. Otherwise, the example set contains at least two examples with
different class values. We select an attribute A with values A1, A2, .
An, and use this attribute to split the examples into corresponding subsets
El, E2, . . E. The corresponding rule at this point is:

if A =A1 then [use rule for E1],

else if A = A2 then [use rule for E2].

• • •

else if A = A„ then [use rule for Ed.

322



RENNER

Steps 1-3 are repeated recursively on each example subset until each
subset is either empty or contains examples with the same class value.
An attribute can only be used once in any path in the tree. If this

restriction means that there is no attribute available at step 3, then the
attributes in the subproblem are not sufficient to classify the examples. In
this case, we say that the example set contains a clash, and we form a
rule which asserts that the class value is unknown.
We now consider the selection of an attribute in step 3 of the main

algorithm. Any choice will eventually result in a correct tree, but a series
of bad choices will produce a very large tree which treats each example as
a special case. A series of optimal choices will produce a minimum-size
tree which generalizes over the examples as much as possible.

ID3 uses the entropy measure from information theory in a heuristic for
attribute selection. ID3 computes an entropy score for each eligible
attribute by dividing the examples into the appropriate subsets, comput-
ing the entropy of each subset, and totalling the entropy values thus
obtained. ID3 then selects the attribute with the lowest entropy score. The
effect is that at each step ID3 selects the attribute which minimizes the
information remaining in the example subsets. This method does not
guarantee optimality, but it is relatively fast and in general produces trees
which are nearly optimal.
RuleFactory allows the user to control and influence the induction

process in several ways. There are five mechanisms in RuleFactory which
provide this control:
• manual induction
• partial reinduction
• linear rule constraint
• attribute weights
• reserve examples.
In manual induction mode, the user is responsible for choosing an

attribute during the induction process. The program simply displays a list
of the available attributes and their entropy scores. The user can
duplicate the effect of the induction algorithm by always choosing the
attribute with the lowest score. The user may return to automatic mode
at any point; the rest of the rule is then formed by the induction
algorithm in the normal way. The user may also switch to automatic
mode for the remainder of the current subtree, and resume manual mode
when the next branch of the rule is entered.
With partial reinduction it is not necessary to create a completely new

tree each time the induction routines are used. The user can select any
test node in the rule and reinduce the subtree rooted at that node,
leaving the rest of the rule intact. The user can also 'mark' a rule node to
make it immune to subsequent inductions. The marked node, together
with its parent nodes, will not be changed, but children of these nodes

323



RULEFACTORY: A NEW INDUCTIVE LEARNING SHELL

will be changed as usual. A special ̀ reinduce' command ignores marked
nodes and creates an entirely new tree.
A linear rule constraint forces the induction algorithm to select from

the attributes which are partial deciders for the examples in the current
subtree (see Arbab and Michie, in this volume, for definitions). If using
an attribute would result in decision class nodes for all but one of the
branches of the test node, then that attribute is a partial decider for the
current subtree. This constraint results in a decision rule that has no
branching. RuleFactory will occasionally encounter a situation where the
linear rule constraint is in force and yet there are no partial deciders for
an example set. The user can relax the constraint and allow this portion
of the tree to branch. If the constraint is retained, then RuleFactory gives
up and produces a rule which says that the class value for the example set
is undecided. -
When several attributes have the same entropy value, the attribute

normally chosen is the one which appears first in the attribute display
order for the subproblem. Attribute weights allow the user to override
this default tie-breaking scheme. The attribute with the highest weight is
chosen out of the group with the same entropy value. Attribute weights
are real, non-negative numbers. A weight of zero means that
RuleFactory will never choose the attribute, regardless of its entropy
score.
The user may place any of the examples in a subproblem into the

reserve store. These examples will not be used in the induction process,
and will not affect the rule for the subproblem at all.

3.2. Structured induction support

When a subproblem for an attribute A contains another attribute B in its
attribute list, then we say that A is a parent of B. RuleFactory supports
structured induction by allowing the user to create subproblems for
attributes which, like B, are used in higher-level subproblems. The
calling structure of a problem domain is the set of all of the parent/child
relations between attributes.
RuleFactory places only one restriction on the attributes which can be

used in a subproblem: no attribute can be both an ancestor and a
descendant of another. This restriction is designed to prevent recursion
during rule evaluation, thus ensuring termination.

3.3. Rule-testing and explanation facilities

RuleFactory allows the user to test the rule in any subproblem. When
executing the rule, the test module must obtain the value of the attribute
in each test node it encounters. If this attribute is a primitive, then the
user is asked to supply a value. Otherwise, the rule from the associated
subproblem is executed as a subprocedure, returning a value for the

324



RENNER

attribute. When the execution of the original, top-level rule is complete,
RuleFactory presents the computed class value.
RuleFactory can explain the result of a rule evaluation in two ways.

One form of explanation is a trace of the exact sequence of attributes
tested and values obtained. This describes how the rule evaluation
worked its way backwards from the goal (the value of the top-level
attribute) to the facts (the attribute values supplied by the user). This
explanation form is particularly useful for rule debugging, since it reveals
the point of failure in the offending rule. The other type of explanation
begins with the input attribute values and shows the intermediate
conclusions leading to the goal. Users may find such a 'forward
reasoning' explanation to be more understandable, and therefore more
convincing.
An example of both forms of explanation is presented in the

Appendix.

3.4. External attribute classification

In some cases the user may not want to personally supply values for
primitive attributes during rule testing; the user might instead prefer to
write a function which computes these values. RuleFactory provides a
domain-independent interface between itself and the code which the user
supplies.
The user begins by designating some or all of the primitive attributes in

the domain as external. RuleFactory will then expect to obtain their
values from an external source and not from the user. The user must then
devise a scheme in which every instance in the problem domain is
represented by a unique character string, called the text specification of
the instance. Next, the user writes a C function for each external
attribute which accepts a text specification as its input and produces an
attribute value as its result. RuleFactory provides a file containing
definitions of appropriately named constants; by using these constants in
the code the user can ensure a match between the values expected by
RuleFactory and the values returned by the functions.
RuleFactory also produces source code for a driver program which

takes a request for an attribute value, calls the appropriate function, and
passes back the result. The driver program and the user's code are
compiled separately and linked together, forming the external attribute
classifier which is invoked by RuleFactory and used whenever external
attribute values are required.

3.5. Expert system generation

RuleFactory can produce an expert system for the problem domain in
two ways. One of these—the rule-testing facility—is completely auto-
matic and internal. The rule-testing facility in RuleFactory is an expert

325

tea.—



RULEFACTORY: A NEW INDUCTIVE LEARNING SHELL

system answering questions of the form 'what is the value of attribute A?'
and explaining its reasoning on demand.
RuleFactory can also produce a completely independent expert system

for the problem domain. RuleFactory generates a C-coded function for
each non-primitive attribute which embodies the associated decision-tree.
These functions are then compiled and linked with user interface routines
to form the expert system.
The user has several options regarding the independent expert system.

The explanation facility is optional, and can be removed to reduce the
program size. The functions from the external attribute classifier may be
used to provide primitive attribute values if this is desired. The default
user interface routines may be replaced with specialized code. In fact, the
C code generated by RuleFactory need not be used in an expert system at
all; the attribute functions can be included in any program which needs to
compute values for the attributes.

3.6. Display windows

RuleFactory is designed to work with a standard 80-column terminal. It
divides the terminal screen into several sections, with each section
displaying some aspect of the current problem domain. Most of these
sections, or windows, are controlled by the program and are fixed in
position. These windows occupy a small portion of the screen. The
largest part of the screen is divided into two independent window frames,

and the content of these frames is controlled by the user. Figure 2

contains a representation of the windows and frames on the RuleFactory

terminal screen.
There are three different window types which can be placed in the top

and bottom window frames: attribute windows, showing the list of
attributes used in a subproblem; example windows, showing the list of
examples used to form the rule for a subproblem; and rule display
windows, showing the rule formed from the examples. There will always
be at least one of these on the screen, called the active or current
window. The subproblem displayed in this window is known as the
cur, ent subproblem. The user may allow the current window to fill both
frames, or may choose to place a second, alternate window in one frame.

Certain commands will cause special-purpose windows to be stacked on

top of the windows in the user-controlled frames. These windows are

created when the command is entered, remain as long as the command is
in effect, and vanish (restoring the window in the frame underneath)

when the command is completed. The text-editing command creates one

of these windows, as does the rule-testing command and the rule-

induction command.
The four fixed, program-controlled windows mentioned earlier are

shown in Figure 1. The top line of the screen is the status display window;

326



RENNER

01 status display window

03
04
05
06
07
08
09 (top window frame(

10

12
13
14
15
16
17
18 bottom window frame]
19

21 report window line #1
22 report window line #2
23 menu window
24 command entry window

Figure 2. The format of the RuleFactory terminal screen.

it contains the name of the current domain and subproblem, the location
of the screen cursor, etc. The bottom line of the screen is the command
entry window, where the user's input is echoed. Above that is the menu
window, which contains a list of available commands or otherwise
describes the input currently required of the user. Above that is the
report window, which is used to display error messages and other results
of command entry.

4. DEFICIENCIES OF THE PRESENT VERSION

The special unknown value is returned by a rule when the actual class
value cannot be determined from the input attribute values. This result
ignores the information which is available in the corresponding example
subset, namely, the relative frequency of each class. Out of the examples
which match the input attribute values, n1 have class C1, n2 have class
C2 etc. If the frequency of the examples in the training set can be made
representative of the entire domain, then these class value counts could
be used to generate probability estimates for the possible class values.
RuleFactory would then return a result stating 'the class value is
unknown, but the probability of value C1 is pi, the probability of C2 is
P2, etc.'

327



RULEFACTORY: A NEW INDUCTIVE LEARNING SHELL

Sometimes the actual value of a particular attribute is irrelevant to an
example. RuleFactory has a special don't-care value which can be used in
such an example. RuleFactory would profit from the addition of a similar
don't-know value to be used when an example is true for some (but not
necessarily all) of the values of an attribute. This would let the user enter
one example expressing a general case and several more examples
expressing exceptions to the general case without creating a clash in the
example set.
We could relax the requirement that all attributes must have the same

domain by adding a parameter variable mechanism to RuleFactory. At
present, all attribute functions have one implicit parameter. Adding
explicit parameters to the attributes would allow the user to define the
domain of each attribute as desired. It would allow the user to define
compound attributes in a subproblem; for example, in a subproblem with
domain x, one of the lower-level attributes could be B(C(x)). Parameter
variables might enable RuleFactory to cope with recursion during rule
evaluation, which is currently prohibited.

Finally, RuleFactory needs some form of probabilistic induction to deal
with cases where there is noise and uncertainty in the input data. This
will probably require an extension to the current decision-tree repre-
sentation of the classification rules.

Acknowledgment

This work was in part supported by a research contract awarded to the University of Illinois

by Intelligent Terminals Ltd and was supervised by Professors Roy Campbell and Donald
Michie.

REFERENCES

1. Quinlan, J. R. (1979) Discovering rules from large collections of examples: a case study.

In Expert systems in the micro electronic age (ed. D. Michie). Edinburgh University

Press, Edinburgh.
2. Quinlan, J. R. (1982) Learning efficient classification procedures and their application to

chess end-games, In Machine learning: an artificial intelligence approach (eds R. S.
Michalski, J. G. Carbonell and T. M. Mitchell), Tioga, Palo Alto, Calif.

3. Shapiro, A. and Niblett, T. (1982) Automatic induction of classification rules for a chess

endgame. In Advances in computer chess 3 (ed. M. R. B. Clark). Pergamon Press,
Oxford.

4. Shapiro, A. (1983) The role of structured induction in expert systems. Ph.D.
dissertation, University of Edinburgh.

5. Shapiro, A. and Michie, D. (1983) A self-commenting facility for inductively synthesised

endgame expertise. In Advances in computer chess 4 (ed. D. Beal). Pergamon Press,

Oxford.
6. Hunt, E. B., Marin, J., and Stone, P. T. (1986) Experiments in induction. Academic

Press, New York.

APPENDIX: EXAMPLES OF RULE EXPLANATIONS

The following examples show how RuleFactory can explain the result of a

rule evaluation following the regime of ref. [5]. The problem domain is a

328



RENNER

Black

'White

particular rook-and-pawn chess endgame; the rule being tested is
supposed to determine if a particular position is won for White when
White has the next move. This rule was applied to the above position,
deciding that the position was not won for White.

A 'BACKWARD REASONING' EXPLANATION

The first type of explanation is a trace of the exact sequence of attributes
tested and values obtained. This form is particularly useful for debugging.

Is this position won for White?
Can the Black rook be captured safely?
NO
Does any Black piece control the queening square?
NO
Is the White king in stalemate?
NO
Is there a good delayed skewer threat?

Is a special opposition pattern present?
NO
Is the White king one square away from the relevant edge?
NO

NO
Is there a simple delay to White's queening the pawn?

Is there a good delay because there is a mate threat?
Does the Black rook attack a mating square safely?
NO

NO
Is there a good delay because the White king is on square a8?

329



RULEFACTORY: A NEW INDUCTIVE LEARNING SHELL

Is the White king on square a8?
NO

NO
Is there a good delay because the White king is in check?

Is the White king in check?
NO
Is there a good delay because of a double attack threat?

Is the White king on an edge and not on a8?
YES
Is the Black king in the way?
NO
Is the Black king attacked in some way by the promoted White
pawn?
NO
Which king controls the intersect point?
the Black king

YES
YES

NO

A 'FORWARD REASONING' EXPLANATION

The next type of explanation begins with the input attribute values and
shows the intermediate conclusions which lead to the final result.

Because the Black king controls the intersect point,
and the Black king is not attacked by the promoted pawn,
and the Black king is not in the way,
and the White king is on an edge and not on a8,

there is a good delay because of a double attack threat.

Because the White king is not in check,
there is not a good delay because the White king is in check.

Because the White king is not on square a8,
there is not a good delay because the White king is on square a8.

Because the Black rook does not attack a mating square safely,
there is not a good delay because of a mate threat.

Because there is a good delay because of a double attack threat,
and there is not a good delay because the White king is in check,
and there is not a good delay because the White king is on square a8,
and there is not a good delay because of a mate threat,

there is a simple delay to White's queening the pawn.

Because the White king is not one square away from the relevant edge,
and there is not a special opposition pattern present,

there is not a good delayed skewer threat.

330



RENNER

Because there is a simple delay to White's queening the pawn,
and there is not a good delayed skewer threat,
and the White king is not in stalemate,
and no Black piece controls the queening square,
and the Black rook cannot be captured safely,

the position is not won for White.

A CONDENSED, 'FORWARD REASONING' EXPLANATION

Finally, the previous explanation can be condensed by discarding the
intermediate conclusions and input attribute values which are not directly
relevant to the final conclusion.

Because the Black king controls the intersect point,
and the Black king is not attacked by the promoted pawn,
and the Black king is not in the way,
and the White king is on an edge and not on a8,

there is a good delay because of a double attack threat.

Because there is a good delay because of a double attack threat,
there is a simple delay to White's queening the pawn.

Because there is a simple delay to White's queening the pawn,
and the Black rook cannot be captured safely,

the position is not won for White.

331





15
Intelligence Architecture and

Inference: VLSI Generalized

Associative Memory Devices

D. R. McGregor and J. R. Malone
Department of Computer Science,
University of Strathclyde, UK

Abstract

In biological systems intelligence appears as an ability to take advantage
of changed conditions in the environment which are of short or very short
duration. This speed of response is more important from a survival
viewpoint than the ability to form inferences of a • novel type, and
characterizes lower levels of biological systems (e.g. insects).

In the study of Artificial Intelligence so far, much more attention has
been given to the slower learning and inference processes than to the
rapid associative recognition processes.

The architecture of biological systems is entirely different from that of
current computer or microelectronic devices, and manifestly exhibits
vastly superior performance, yet currently there seems to be a taboo
against looking to biological systems for inspiration for new Nast designs.
The paper will describe the design of an ultra-concurrent vt.st general-

ized associative memory, and progress towards its realization in vist.

1. INTRODUCTION

Seemingly complex biological behaviour may often be much simpler than
it might appear. The first example, originally suggested by Herbert Simon
is of a hypothetical ant traversing a pebble beach. The ant's goal is simply
to travel straight to its nest—inherently a simple strategy. Because of the
pebbles, however, the ant is forced to follow a complex route, and
apparently exhibits highly complex behaviour. Simon pointed out that the
source of this complexity is in the beach, not in the ant. In fact, the ant is
programmed by the beach.
A second example concerns a species of wasp (Sphex). When laying

eggs the wasp follows the following routine. First it digs a burrow. Next it
captures and paralyses a cricket by stinging it, and drags it to the burrow
so that it can act as a store of fresh food for its larvae when they hatch.
Before dragging the cricket into the burrow, however, the wasp crawls
inside to inspect it, then on emerging, drags the cricket's body inside.

333



INTELLIGENCE ARCHITECTURE AND INFERENCE

What purposeful intelligence behaviour! If, however, an experimenter
moves the cricket's body by only a few centimetres while the wasp is
reinspecting the burrow, on emerging she again drags over the
body—but then repeats the inspection. However many times the burrow
has been inspected, a reinspection is carried out.

It is curious how we as humans regard this repeated behaviour. Our
respect for the creature's intelligence turns to contempt—clearly this is
not general intelligence, only the reapplication of a simple biological
program associated with the immediate context.

Instinctive behaviour of a species is not realized as instinctive
behaviour by a member of the species exhibiting it. The routine toilet
cleanliness of cats we recognize as Instinctive'—part of the built-in
biological program—but an individual cat will certainly be unaware of
this. We suspect that the human species also exhibits types of instinctive
behaviour: but individuals if queried invent 'rational' explanations for
their actions.

2. FAST ASSOCIATIVE RECALL: SLOW INFERENCE PROCESSES

We must not denigrate those parts of the biological intelligence which
operate at levels of the intellect beyond the reach of conscious introspec-
tion. They may contain the greatest challenge to Artificial Intelligence.

Consider the following two hypothetical school reports:

Has a good understanding and working knowledge of differential
calculus.
Does well to find his own way home.

Only about a hundred rules are needed to enable a computer system to
handle queries concerning differential calculus, but the representation of
the knowledge and formation of the plans necessary to do the second are
far in advance of the present state of the art. Many of the toughest
challenges lie in getting a machine to duplicate the abilities of, say, a
squirrel in its abilities to distinguish a branch in a scene with shadows,
highlights and leaves obscuring the view, the ability to judge the leap to a
branch, and grasp it on landing.
We are clearly influenced in our perception of intelligence by the speed

with which a system can respond to stimuli. Time-lapse photography of
plants shows that they do respond considerably to light but their real-time
response is generally so slow that one would never consider a plant
intelligent. Similarly, a computer vision system which takes tens of
seconds to analyse a scene seems remarkably unintelligent to the human
bystander. An intelligent system requires to function at different time-
scales:
—fast associative recall of previously encountered information

334



McGREGOR AND MALONE

more complete, but slower search for hypothesis, checks for consis-
tency and so on. We must not expect automatic systems to do these in
seconds.
Even to check for logical consistency within a system requires in

general an indeterminate amount of computation. Not only is this
necessarily slow, it has been shown that it is fundamentally impossible to
tell if this process will terminate. (The invention of practical, but limited,
checking methods is an important research goal.)

3. REPRESENTING KNOWLEDGE: THE FACT SYSTEM [1, 21

The Fact system developed by our group at Strathclyde is based on a
simple representation of knowledge, the elements of which are repre-
sented as individual 'molecules' of information. Each 'molecule' is a
four-tuple, three fields of which represent a link in a semantic network
[3-5] and the fourth is a 'name' or 'label' which can represent the unit of
information itself in other 'molecules'. The system is thus capable of
representing higher-order logics.
For example, suppose we want to represent the fact that a pen is on the

table in front of me. In the Fact system this information is represented by
a record with four fields. The first contains a symbol which represents the
individual pen in question. The second contains the symbol representing
the particular table, while the third field contains a symbol standing for
the relationship present. The fourth field represents the unit of informa-
tion as a whole, and using it we can insert other 'facts' which qualify the
first one. For example we can represent the facts that:

'the pen was on the table' at 7.30 p.m.'

and so on.
The system may be accessed from both procedural and non-procedural

languages, for inserting, deleting, retrieving, and updating information. In
addition to the flexibility and representational power which this gives, it
allows the development of programs capable of dealing generally with
collections of information, irrespective of the subject domain, and data
structure.
One such example has been developed which forms hypotheses of a

number of general types, which it presents to the user for confirmation.
This seems a useful development since human beings are not well
adapted to scanning tables of information to try to locate unusual or
interesting items of information.

Several types of hypothesis can be formed. This work has general
similarities to the work of Lenat at Stanford [6], and Winston at MIT [7],
and the work on inductive programming such as that represented in this
volume (See also [8, 9]).

335



INTELLIGENCE ARCHITECTURE AND INFERENCE

4. A GENERALIZED ASSOCIATIVE MEMORY DEVICE IMPLEMENTED
IN vi.si TECHNOLOGY

Given the superior speed of switching of electronic devices compared
with the relatively slow chemical processes in biological systems, why are
biological systems so much faster at processing sensory data? The answer
lies primarily in their different architectures. Up till now computers have
had a serial mode of operation (the so-called Von Neumann architecture)
in which only a single operation is obeyed during each machine cycle,
whereas biological systems have architectures in which a very large
number of processes occur simultaneously. Our own work was motivated
by concern at the incompleteness of retrieval of information from
conventional systems, and the lack of performance of those which
attempted to use inference to overcome this.
The Generic Associative Memory (GAM) device we have developed [10]

can be applied to any information handling system. In the context of our
own 'Fact' system, however, it can:

1. Evaluate the complete closure of 'semi-explicit' (finite) sets, by
stages, or in a single operation, taking approximately 1 ms. This can be
used to expand ̀ is.a' and is.subsee hierarchies, and to evaluate closures
of other transitive relations. This operation can be applied to find a set of
related terms in a stored thesaurus. For example, the expansion of the
Class 'Person' would recursively include the expansion of its subsets
'Employee', 'Pensioner', 'Child', and their subsets 'Plumber', 'Program-
mer', 'Manager', etc. down to individual members of these such as 'John
Smith', etc. The device can also evaluate the set of all sets to which an
entity belongs.
2. Store any desired network, which can be set up dynamically as a

transitive, directed graph. A single stored network can be accessed to
evaluate the closure of the directed network in a particular direction from
each node yielding in general a corresponding number of sets of
elements.
3. Rapidly locate the physical storage blocks in which particular

elements of data have been stored. This can be used to locate the
'working sets' of information required for a retrieval operation. It may
also be used very effectively in 'clustering' data on insertion. Both these
are important factors in reducing the tacking-store bottleneck' of large
systems.
4. Be used for high-speed systems such as real-time vision under-

standing [11].
We are currently pursuing an initial feasibility study in this area in
conjunction with Dr Fryer's ESPRIT project concerning the real-time
extraction of a 2.5-dimensional sketch.
The device is different from present conventional approaches because:
—it is highly parallel, and extremely fast. Its operation depends on the

336



McGREGOR AND MALONE

simultaneous propagation of signals from node to node of a directly
switched network. No conventional computation is required, even when
evaluating closures. The device takes only a single associative cycle to
evaluate a closure of N required nodes where a conventional CAM device
would require N separate cycles.
—as far as we know, this is the first practical implementation of a

'connection machine' architecture in real hardware, using directly
switched connections.

Early studies of networks of cells by McCulloch and Pitt, Minsky and
others demonstrated the theoretical possibilities of such systems. Later
work by Scott Fahlman [5] also demonstrated the attractiveness of the
concepts. Recently the approach has received considerable support in the
USA with groups at Rochester [12] and at MIT [13].
—The device is tolerant of fabrication faults. An initial self-check

selects only fully operational elements for data storage. This combined
with the simplicity of the design itself gives good prospects for large
devices using Wafer Level Integration, over the next five years.
To see how our device can be used, consider the indexing of

conceptually similar information. For example, someone concerned with
the 'physiological effect of ethyl alcohol' would certainly be interested in
the 'medical after effects of whisky'. The words used can thus be totally
different, and may be at different conceptual levels, either more
particular or more general. In tackling this problem one must first look

1 Object
'Handle or'

'Upwards closure

2 Animate object

Person  

Employee 4 School boy "Brush`or
"Downwards closure"

(Powerset

6 John R Smith

10 Salesman 8 School 7 • Lecturer
teacher

12 Anderson 11 David Green

Figure 1.

337

9 Chemistry
lecturer

13 Fred Jones



INTELLIGENCE ARCHITECTURE AND INFERENCE

up the original term in an index, to reveal a number of new terms. In
turn each of these new terms must be looked up revealing yet more new
terms, and so on. Eventually no further new terms are discovered—we
have evaluated the 'complete closure' of the original term, which may
well include thousands of terms in total. The VN computer is inherently
slow at this operation because it can only look up one term at a time.
This was particularly frustrating as we could readily visualize a crude
device which could to the job almost instantaneously. This device consists
of a permanently wired network (Figure 1) in which each link contains a
diode. Simply by applying a voltage to the query node the electric current
flows through the network picking out the nodes in the required closure.
Unfortunately we would have required a new device for each new set of
data.
Our problem was to turn this into a practical, dynamically loadable

memory device capable of storing any desired network of transitively
linked information. The stages by which this was achieved were: first, to
utilize a cross-bar matrix of switches (Figures 2, 3), potentially given N

3

4

5

6

7

8

9

10

11

12

13

read Vas

Figure 2.

1 2 3 4 5 6 7 8 9 10 11 12 13

• 
V • 

V • 
V

V
• 

V

V
• 

V

• 

• 

V
• 

V
• 

V

• 

V
•

Key:

V (diode) switch connection

+( wired) permanent connection

64, 
338

 •



Indexing

McGREGOR AND MALONE

Input/
output
means

Figure 3.

22H
Memory
location

possible terminals and the possibility of interconnections between any of
them, it would appear that N x N switches are required—a daunting
prospect given that we expected N to be in the range 10,000 upwards.
Second, provided items are allocated to the memory in such a way that
similar items with similar interconnections were stored in neighbouring
nodes, it is possible to manage with only a small set of switches on the
block-diagonal of the matrix (Figure 5). Figure 4 is a circuit diagram for
an 8 x 8 matrix.

339



INTELLIGENCE ARCHITECTURE AND INFERENCE

I')
col co co co
oi o o c)

I 21-83
9-80\
9-L3-
21-L3;
9-La
LI-La
9-8
Et-ea
9-80;
Zi-LO
G-LO-
9-La

0)
N)

21-93 \
tf2

Cr8 291== (\ifs.  

El-
9-93 ____

zt-rz
9- 3-= Tr —4,
Z1-
g-ca

ci-v8
Li-vat7
a:13:1"
9-O-=
Li-La

Z1-£13;—
9-20  

cr)
N)21-33

9-ZO\
<

9-13-=
21-13;.=
21-la

•4*

N
T It In

N) a

340

0
vr



McGREGOR AND MALONE

Finally, long-distance connections are handled by a series of wired
interconnections between the sub matrices (Figures 5 and 6). The
optimum pattern of interconnection of the matrices turns out to be a
random wiring: anything else is specialized to some type of data.
These design assumptions were checked by constructing a software

simulation of the memory and the complete data base system, and trying
it out on a range of problems. Fortunately our design assumptions proved
to be correct in practice, and we then proceeded to actual fabrication.
The individual matrix components were then designed for fabrication in
VLSI.

At the present time, the device has been patented [14j, and we are
currently awaiting the fabrication of our third version of the chip.
Extensive software has been developed, and a company (Deductive
Systems Ltd.) has been set up to develop the device for commercial use.

Future developments in Nast technology are certainly likely to increase
the functionality of the device and its storage capacity. By 1990 it may
well be possible to store all the associations between say 128,000

2 —:=7-:,""

10

1
2
3

Figure 5.

2
3

= 50

51

52

  53
<75554

10

50

51

52

341

51

52



INTELLIGENCE ARCHITECTURE AND INFERENCE

PC-I8
Addressor ri 
Item A 

Free lines 0 

10

 —71

- 70
00 -

60 10\ 
Q-2

Xq-2
Yq-2

10
\

Addressor ( q -11

60

10\

Freelines Xq-1

Addressor q

Item 8 

Freelines 

V

Figure 6.

Ycl-1 10

Xq

60

individual items on a single wafer-integrated component. The time
required to associatively recall a set of these will remain short—typically
less than 1 ms.

5. CONCLUSION

We hope that this paper gives some flavour of the excitement, rapid
progress, and enormous potential of the combination of \Tut and Al,
though an enormous amount has still be be done before that potential
can be realized. It has taken over 80 years to bring automobile design to
its present still-evolving form though there have been almost no new
technological innovations since 1914. We have barely begun to exploit
the microtechnology of the 1970s, while new developments have mush-
roomed since then and seem likely to continue for the foreseeable future.

342



McGREGOR AND MALONE

REFERENCES

1. McGregor, D. R. and Malone, J. R. (1982) The Fact database system—a system using
generic associative networks. Research and Development in Information Technology 1,
55-72.

2. McGregor, D. R. and Malone, J. R. (1983) The Fact system—a hardware-oriented
approach. DBMS A Technical Comparison—State of the Art Report, pp. 99-112.
Pergamon Infotech, Maidenhead.

3. Barr, A. and Feigenbaum, E. A. (eds) (1981) The handbook of artificial intelligence,
pp. 180-189. Pitman, London.

4. Deliyani, A. and Kowalski, R. A. (1979) Logic and semantic networks. Commun.
ACM 22, 184-193.

5. Falhman, S. E. (1979) A system for representing and using real-world knowledge. MIT
Press, Cambridge, Mass.

6. Lenat, D. B. (1982) The nature of heuristics. Artificial Intelligence 19, 189-249.
7. Winston, P. H. (1984) Artificial Intelligence, 2nd edn. Addison-Wesley, New York.
8. Michalski, R. S. (1983) A theory and methodology of inductive learning. Artificial

Intelligence 20, 111-161.
9. Quinlan, J. R. (1979) Induction over large databases, HPP 79-14. Heuristic

Programming Project, Stanford University, Stanford.
10. McGregor, D. R. and Malone, J. R. (1982) Generic Associative Hardware. Its impact

on database systems. Proc. IEE Colloquium on Associative Methods and Database
Engines.

11. Ballard, D. and Brown, C. (1982) Computer vision. Prentice-Hall, London.
12. Feldman, S. A. and Ballard, D. (1981) Computing with connections TR72, Department

of Computer Science, University of Rochester, N.Y. (1981).
13. Hillis, W. D. (1981) The connection machine, Al Memo 646, Al Laboratory, MIT,

Cambridge, Mass.
14. McGregor, D. R. and Malone, J. R. (1982) Generic associative memory, G.B. Patent

No. 8236084.

343



.



AUTOMATING THE ACQUISITION
OF KNOWLEDGE FOR COMPLEX
DOMAINS





16

Expert Against Oracle
A. J. Roycroft*
The Turing Institute,
Glasgow, UK

Abstract

A computer-generated combinatorial data base that plays optimally an
almost undocumented and very difficult five-man chess endgame (i.e. the
data base can be considered as an oracle) was matched against a domain
specialist who had prepared for the contest with minimal prior access to
the data base. His preparation and strategy are described and the results
of the contest itself briefly summarized. The paper closes with an
illustrated discussion of the selected endgame in Master practice.

1. PURPOSE OF PROJECT

The chess endgame specialist, in contrast to the tournament player,
assesses his skill against the criteria of perfection, whether in adjudicating
a position or in selecting a move. Automatic construction of complete
look-up tables (data bases) by computer makes it possible to apply these
exacting criteria in practice. By use of such an 'oracle' Kopec and Niblett
(1980) were able empirically to verify the present author's claim to have
acquired high-level mastery (in the actual test the play was move-perfect)
of the play of won-for-White positions of king and rook against king and
knight, an endgame of which full knowledge was lacking prior to the
creation of a data base. The purpose of the new project is to investigate
the problems and nature of skill-acquisition in an endgame selected .as
being so complex as to lie beyond the power of the unaided human
endgame specialist to master thoroughly. For this purpose the author
selected the ending king—bishop—bishop—king—knight (BBN). BBN was
historically assumed to be a draw from a general position until at my
suggestion Mr Ken Thompson computed an exhaustive BBN data base.
The existence of the data base, and samples of its output, were published
in the international quarterly magazine EG (Thompson and Roycroft,
1983).

* Present address: 17 New Way Road, London NW9 6PL, UK.

347



EXPERT AGAINST ORACLE

The Thompson data base contains complete information on how the
two-bishops side can win from all but a few elementary or bizarre
positions in a total space of some 250,000,000 positions. It thus exhibits
'skill' at a demonstrably unsurpassable level in a domain that is of
formidable difficulty and complexity for human experts.

This characteristic makes possible in principle the absolute measure-
ment of human performance in a difficult domain, and offers the
opportunity to explore how 'inert but absolute' knowledge can be
accessed and adapted for teaching, for learning, and for the development
and validation of expert systems that aim to perform as well as the data
base—but without it.
We also for the first time have the possibility to explore thoroughly a

significant endgame data base at 'super-expert' level. Future com-
binatorial data bases in chess and in other domains may be more massive
still. Early experience of handling them will be of value.
The present paper reports measurement of the performance of a

domain specialist before (Part 1) and after (Part 2) he had been allowed
unlimited access to the oracle data base, from which, for any legal
position the user can retrieve the following:
(i) all optimal single-ply (that is, at a depth of one white or black

move) continuations; and
(ii) the length of the remaining optimal path.
The author is a lifetime student of the chess endgame. He is the

author of The Chess Endgame Study (1972 and 1981) and edits and
publishes the international magazine EG. He is a strong, but not master,
chessplayer. He is acknowledged worldwide as an endgame specialist.

2. THE TASK OF THE DOMAIN SPECIALIST (IN PART 1)

In October 1984 the author undertook:
1. To study the five-man pawnless chess endgame of (white) king and

two bishops (one on light squares, one on dark squares) against (black)
king and knight, using any available aid except the data base itself, with
the exception of a set of 12 variations already excavated and provided in
1983 by Mr Thompson from the data base illustrating optimal play from
one of the 32 worst-case-for-White (two bishops) starting positions. Time
limit imposed on this period: none.
2. To record as fully and faithfully as possible all thought processes

(the dated record to include time taken, chess positions and moves,
sources of information used, discoveries, errors, corrections, trains of
thought, going over previously trodden ground, etc.).

3. To announce when ready to face the data base, i.e. when no greater
mastery of the material seemed achievable by private study.
4. To take the white (two bishops) side against the data base without

348



ROYCROFT

prior preparation of the particular positions to played and to play under
strict tournament conditions (moves to be timed, and no moves taken
back), with two exceptions: analysis on a separate board to be allowed
(the domain specialist is not a practising chess master used to tournament
conditions but an endgame scholar accustomed to analysing with board
and men, similar to the situation that obtains in correspondence chess);
and the so-called '50-move rule' to be disregarded.
The confrontation of domain specialist and oracle data base concludes

Part 1. If, as is expected, the human performance is sub-optimal, Part 2
follows, in which the specialist is now allowed access to the data base. A
second confrontation or test, with different positions but the same
number of them, concludes Part 2.

3. BACKGROUND

The earliest known reference in chess literature to the pawnless endgame
king and two bishops against king and knight is in the middle of the
nineteenth century (Kling and Horwitz, 1851, pp. 62-5); R1, the first of
two positions given by the authors, is the more important as it is largely
independent of the positioning of the white force. It is given by them
without supporting analysis but with the statement that the bishops
'cannot win if the weaker side can obtain a position similar to the above,
but they win in most cases'. The second position, a win, is then given
with a solution and a number of supporting variations extending to 14
moves. One or other of both positions is repeated in the subsequent
literature up to 1983 (e.g. Pachman, 1983, pp. 19-20), with no
modification to the verdict.
The author (Roycroft, 1972, p. 207) raised a doubt about the

correctness of the claim that R1 (and positions like it) cannot be won.
This doubt was confirmed in 1983 by output from the Ken Thompson
data base.

8

7

6

5

4

3

2

1

a bcde f gh

Rl. Kling and Horwitz (1851). Either side to move.

349



EXPERT AGAINST ORACLE

The data base was generated by a method already known in principle
(Strohlein, 1970). First, all possible positions of checkmate (with the
given force), and all positions where the knight is safely captured
(without subsequent stalemate), are automatically generated. These
comprise the finally won positions that the side with the bishops aims for,
and at the same time they are the positions that the side with the knight
wishes to postpone as long as possible. From this starting 'position set'
the first 'derived set' of positions can be generated, the set of White to
Move (wrm) positions that are 'Won in 1'. By an essentially similar, but
logically more complex, process the antecedent Black to Move (aim)
position sets are generated and marked where and when appropriate
'Lost in 1'. The basis of an iterative ̀ maximin' or tacking-up' procedure
has now been established, whereby the solved depth increases in
principle by one ply (one white move or one black) per pass. This
iteration is initiated and relentlessly pursued until no more positions can
be classified. At this stage all won positions will be marked with the
solution depth. For a more detailed description of the process see, for
example, Roycroft and Niblett (1979) and Thompson (1986). Residual
positions still unmarked will be drawn, illegal, or, in a microscopic
number of a-rm instances, won for the knight's side. In Ken Thompson's
solution only wrm positions are stored, the BTM positions being generated
when required by program: for convenience we refer simply to the 'data
base' whether wrm positions only or both wrm and BTM positions are
physically stored.
The results have been widely reprinted in the world's other chess

magazines. However, guidance in the domain literature as to how this
endgame should be played remains (August, 1985) restricted to para-
phrases of the sentence of Kling and Horwitz quoted above, that is that
the defending side should always aim for a position like R1, because it is
the only safe draw. (At the end of this paper we give an example of the
influence of this advice on practical master play.) As a result of the
present research it is likely that future advice to the superior side will be
to steer towards the Kling and Horwitz position, since the winning
method from that position is (or rather will be) well charted. (For a list of
the principal authorities on the chess endgame see the entries within
parentheses in the section References. However, Averbakh, the major
modern authority, does not include the two bishops against knight
endgame because endings with two pieces on one side are in principle
excluded from its scope.)

4. THE FIVE PHASES OF THE PAWNLESS ENDGAME TWO BISHOPS
AGAINST KNIGHT

The division of a maximum length solution to this endgame into five
phases has been described by the author (Thompson and Roycroft,

350



ROYCROFT

1983). The following is an updated version. The quoted passages are
taken from the article in EG. Where a number of moves is mentioned
this refers to consecutive optimal moves by White, the side with the
bishops.

4.1. Phase number

1. In a maximum depth solution position the white force will initially
be under some constraint from the black force: either the white king or a
bishop will be immobilized. It may take from six to 12 moves to lift this
blockade, depending on its nature.
2. In the next phase Black retreats slowly and in good order and 'seeks

refuge in the Kling and Horwitz position. This may be in any corner'.
This phase takes us up to move 20, approximately.
3. White's task in phase 3 is to manoeuvre in order to set up any of a

small number (probably only four) of 'exit' positions, that is, exits from a
Kling and Horwitz position. Black is then forced out into the open.
Typically this phase lasts six or seven moves.
4. 'The next stage is complex, fluid, lengthy and difficult. Black strives

for maximum freedom, and frequently seems on the verge of achieving it.
It takes White some 23 moves, not to be found in any book and
characterized at times by excruciating slowness and mystery, before'
Black, 'having failed time and again to repeat the Kling and Horwitz
position, ends up' with his king 'on the board's edge, near a corner and
accompanied by the black knight.'
5. 'The remaining dozen or so moves show the knight being lost,

whether he stays close to the black king or runs away.'
The longest solutions have 66 white moves. There are 32 distinct

positions that have this depth, though they group into 'families' of
positions.

5. THE STORY OF PART 1

5.1. The 'private study' phase

The private study phase began in October 1984. The material available
for study comprised:

(i) published books (in English, German, and Russian) on the chess
endgame in general. In contrast to the thriving literature on individual
chess openings there is very little published on specific endgames. The
books do not cover the endgame two bishops against knight in any useful
depth. (See References);

(ii) ten full-length (66 moves) solutions and associated list of one-ply-
deep equi-optimal moves provided in August 1983 by Ken Thompson to
the author in the latter's capacity as editor of EG magazine;

351



EXPERT AGAINST ORACLE

(iii) two further full-length solutions, also from Ken Thompson in
1983, with no alternative moves;
(iv) three 66-move and 67-move full-length solutions from an inde-

pendent researcher. The 67-move solutions were later shown to be faulty
(Comay and Roycroft, 1984), and the correctness of the 66-move
maximum optimal depth thereby corroborated;
(v) the 32 distinct positions at the maximum optimal solution length,

also provided by Ken Thompson to the author in 1983, but without chess
moves;
(vi) the frequency table of the numbers of WI'M positions at every

solution length from 66 to 1, also provided by Ken Thompson to the
author.
On 18th January, 1985 the domain specialist intimated in writing his
readiness to confront the data base in the test to end Part 1.

5.2. The protocol

Separate publication of the protocol record of the domain specialist's
thought processes is intended. It runs to over 200 pages and will be
supplemented with appendices.

5.3. The Part 1 test and summarized results

The test began on Friday, 29 March 1985. Two test sessions were aborted
due to program failure, and there was a two weeks' interruption for
holiday. The 10th and final test position was played on Tuesday, 30 April
1985.
Two sessions were abandoned by the domain specialist, after 70 and 69

moves respectively. The remaining eight positions of the test were won
by the domain specialist, giving a 'tournament' performance of 80%. The
only other measurement of his performance that is available at present
to the author is the ratio of the total of the optimal solution depths of the
original positions to the number of moves actually taken by the author:
38%.
Both measurements are crude. If the sessions abandoned by the

specialist after 70 and 69 moves had been abandoned at the outset
without any winning attempt at all, the 38% figure would increase,
thereby putting a premium on early abandonment. This is, however, not
the case with the refinement (Doran—Michie 'path efficiency') used by
Michie (1986) in his review of these same experiments, which rates
abandonment at any stage as equivalent to taking infinitely many moves.
It is not clear what measurement would be least unsatisfactory. Two
other measurements will almost certainly give different figures and
should at least be calculated:

1. The ratio of optimal moves to sub-optimal moves in all the moves
played by the domain specialist.

352



ROYCROFT

2. A measurement that takes into account the domain specialist's
division of the endgame into five phases. This would log a minimal
penalty against a move that is sub-optimal but which kept the solution
within the same phase; it would log a heavier penalty against a move that
set the solution back a phase; an even heavier penalty would be imposed
on an error that set back the solution two phases, and so on; the heaviest
penalty would be for a blunder that gave away the win. If a penalty were
measured in numbers of question marks (i.e. "?'), with the lowest penalty
rated at a single question mark, then a session could be aborted by prior
agreement if the total of accumulated penalties (i.e. the total of question
marks deserved) in a session passed a certain threshold. This content-
related measurement of performance was proposed by the author but not
adopted, one argument against being that the division of solution into
phases is at present subjective.
The reason not all measurements are available to the author is that

work is proceeding and it is considered that even such ancillary
information relating to an earlier test could be of indirect assistance to
the domain specialist, who, at the time of writing has not had the test to
conclude Part 2. Since a major object of the combined Parts 1 and 2 is to
determine how and to what extent a human specialist can be aided in his
comprehension of a complex domain, such additional information might,
however slightly, distort the performance and measurement. Full statis-
tics will be reported in the planned monograph on the total experiment
covering Parts 1 and 2 (Further experiments with the present oracle, and
experiments with other, even more massive data bases are envisaged.)

6. THE DOMAIN SPECIALIST'S STRATEGIES

Implemented strategies are necessarily domain specific: they have to be
described in chess terms. But some general remarks for non-chess players
may be helpful.

6.1. For non-chessplayers

Here is no place to debate what, if anything, chessplayers have and
non-chessplayers lack. But being an amateur problem-solver as well as a
chessplayer the author recognizes that all problem-solvers have some
common skills and motivations, whatever their specialist knowledge or
favoured domain. The awe in which non-chessplayers commonly hold
chessplayers of even less than master strength is based partly, if not
mainly, on myth. In the interests of better understanding the present
section of this paper aims to demolish two specific myths.

The first myth: enormous numbers

A frequent argument to boost the myth of the arcane genius chessplayer
invokes 'enormous numbers'. The number of possible chess positions

353



EXPERT AGAINST ORACLE

exceeds the highest astronomical numbers; the number of possible chess
games exceeds the number of possible chess positions, also astronomi-
cally. These are incontrovertible facts.
But a chessplayer does not have to remember or recognize all these

positions and games, any more than any of us need remember or
recognize all possible breakfasts in order to eat breakfast, or need
remember or recognize all possible books in order to read a book.
Humans tame large numbers by ignoring them. Instead they seek and

manipulate patterns, even if the patterns are initially tentative, ap-
proximate or unsound. It is a common-sense conjecture of everyday
experience that a good pattern will have inferior patterns in its ancestry.
If we persevere and are willing to learn, later patterns should be superior
to earlier.
In the universal child's game of noughts and crosses (in American it is

'tic-tac-toe', in Russian ̀ Krestiki-noliki') how many different positions are
there? Interestingly, the question is posed, and answers provided, in the
literature of artificial intelligence (examples: Nilsson, 1971, pp. 137-8;
Shirai and Tsuji, 1982, p. 10; Rich, 1983, p. 7; Alty and Coombs, 1984,
p. 80). The usual answer given relies on the implied logic that there are
nine initially empty cells to be filled, so we start with nine possibilities for
the first play, leaving eight for the reply, seven for the third play, and so
on. Factorial 9, or 9! is the (for a game like noughts and crosses, large)
number: 362,880—which reduces through laws of legality and symmetry
to 'three hundred or so distinct positions with which Nought (by
convention the opening player) can be confronted' (Michie, 1961).
A contrasting answer results from arguing that there are three possible

states for each cell: a nought, a cross, or emptiness. This gives us a ceiling
of three to the ninth power (Rich, 1983), or: 19,683—and this is before
eliminating symmetries.

Neither of these calculations impresses the player of noughts and
crosses.
When tackling the identical question he will rather reason like this:
1. There are three rules or conventions that govern the game, and we

can look on them as constraints:
—nought starts (constraint no. 1);
—play alternates between the placing of nought and cross (constraint no.

2);
—a completed row (in any direction, including diagonally) ends the game
(constraint no. 3).
2. There is then a constraint of a different kind:

—elimination of all symmetries (constraint no. 4).
3. Finally, there is a constraint of a different kind again, one of

experience or demonstration, namely:
—a well played game is inevitably drawn (constraint no. 5)

354



ROYCROFT

Constraints 1, 2, and 3 are part of the definition of the game. Constraint
no. 5 amounts to the constraint of playing the game well. Constraint no.
4 is not essential but it is convenient to all parties.
The player then puts four questions based on the five constraints.

Qi: Can noughts occupy ALL FOUR corner cells?

The answer is 'no', because by constraint no. 5 there is no vacant cell for
the fifth nought, needed by constraint no. 2.

02: Can noughts occupy just THREE corner cells?

The answer is 'yes', but in only one way.

03: Can noughts occupy just TWO corner cells?

The answer here has two parts: if the corner cells are diagonally opposite
one another, then the remaining pair of (corner) cells must hold crosses,
and any play thereafter into the centre cell will infringe constraint no. 5
again; on the other hand with a pair of cells in adjacent corners it is easy
to show (by applying one or more of the five constraints) that there are
just two possible distinct configurations.

Q4: Can there be a nought in one corner only or in no corner?

With a nought in just one corner cell, or in none, there is no way to
satisfy all five constraints.
The player's answer to the question 'How many positions?' is therefore

1 + 2, i.e. 'three', (See R2.)

We have seen the following answers:

362,880
19,683

3

0 X 0 0 X 0 0 X 0

X X 0 0 X 0 0 0 X

0 0 X X 0 X X 0 X

Noughts in three corners. Noughts in two corners.

R2. Noughts-and-crosses/tic-tac-toe/krestik i nulik. The only 'all constraints satisfied'
configurations.

Which of them corresponds most closely to the reader's experience of the
game?
Chess is more complex (i.e. it holds inordinately more patterns) than

noughts and crosses, but humans cannot play chess well without forming,
holding and manipulating patterns any more than they can play good
noughts and crosses patternlessly. We shall return to this point after
demolition of the second myth.

355



EXPERT AGAINST ORACLE

The second myth: how with all those mobile and differently moving pieces,
can chessplayers possibly plan?

This argument, often in paraphrased form invoking large search trees and
high branching factors, requires a different counter-demonstration.

Consider the puzzle of the 'solid pentominoes'. R3 shows the 12 'flat'
pentomino shapes, namely all variations on five edge-contiguous identical
squares. The solid pentominoes are made out of small cubes instead of
squares, but the shapes are otherwise as shown. The puzzle we shall
consider is the packing of all 12 shapes into a 3 x 4 x 5 unit dimensioned
box. (If preferred, the target shape can be thought of as a 3 x 4 x 5
'brick' to be assembled.) As there are 60 cubelets and 60 spaces to be
filled there must be no empty space and no protruding cubelet.
Let us now describe from scratch how this quite tough puzzle might be

tackled.
To begin with there is no strategy. We 'play' with the pieces, trying to

solve randomly, but as we play we observe ourselves, looking for a
pattern. Any discerned pattern is likely to be a pattern of failure, not a
pattern of success, but this does not mean that it is not a pattern, nor

E=T
R3. the 12 different plane pentominoes that can be formed from juxtaposing five unit
squares.

356



ROYCROFT

that it will not serve. The pattern which we observe, perhaps, is that after
a failed attempt one or more of the shapes in the right-hand column of
our figure tend to be unused, and that these are unused more frequently
than the shapes in the left-hand column. (In passing, we can ask what the
left-over 'awkward' pentominoes have in common with one another?
Well, a 3 x 3 space (like noughts and crosses—a pattern!) is necessary
and sufficient to hold any one of them.) Now from a pattern to a strategy
is, for a human, no long journey, albeit not always a conscious or speedy
one. In the case of our observed pattern, the derived plan or strategy
might be:

First fit 'several' of the 'awkward' pentominoes together into an ad
hoc sub-assembly that will 'mutually absorb and minimize' the
`awkwardnesses' of individual pentominoes, and then arrange the
remaining 'less awkward' pentominoes around the sub-assembly.

There are two important points about this strategy: it is not precise; and
it is readily grasped by a human and implemented by a human, but a
strategy it unquestionably is. It lends itself to objective evaluation in an
experiment to compare the performance (time taken to solve, success
ratios) of two groups of students, one group given the presumed benefit
of the 'strategy' and the other group told nothing, but both groups
tackling the identical constructional task. A complete set of the 3940
solutions to this puzzle has been computed and published (Bouwkamp,
1967).
That is typical of how the puzzle-solving mind works, whether in chess

or pentominoes. Patterns are observed which lead to a strategy. A
strategy will not find a solution by itself, but it serves the purpose of
enabling the solver to be aware of what he is doing, to have a general aim
which he can work with and refine. Such a general aim seems all the
more manageable for being imprecise: 'several', 'awkward', 'mutually
absorb and minimize', 'less awkward' are fuzzy terms and may be
implemented differently (i.e. they may relate to different subsets of the
pentominoes or to different subfeatures) by different people, though
validly so: there is a distinction to be made between 'relevant fuzziness',
which may even be essential in the initial communication of ideas or
strategies, and ambiguity, which is to be avoided.

It is the same in chess. If you already have a strategy you can carry it
out in your own way, adapting it as you go or discarding it for a better. If
you don't, you can't.

If the foregoing account is accepted as valid it follows that for research
purposes articulacy in the domain specialist is more important than
expertise. A valuable corollary will be that a test of articulacy (to select
good human subjects) can be general and standard, though designing
such a test is not a priori the province of Al researchers.

357



EXPERT AGAINST ORACLE

6.2. For chessplayers

The problem is strange, even to an experienced chessplayer. Classic
concepts, such as the importance of the centre of the board, mobility,
sacrificial combinations and positional considerations, turn out to have
either no, or limited, application. A long period was spent attempting to
apply long-built-in concepts of the classic type, especially those that
ought to be applicable to other endgames, but eventually they were
largely replaced, or modified, as a result of hard experience.
The detailed story will be told in the 200-page protocol. Here only the

principal new chess concepts that were found useful will be described.
However, one extant concept that proved fundamental and fruitful was
the Kling and Horwitz position, though even this tried and tested
133-year-old idea was inadequate in its basic formulation: elaboration
was necessary.

6.3. New chess concepts

1. 'Knight's distance' from Kling and Horwitz position. If we consider
the square b7, then ONE knight's move's distance means the four specific
squares a5, c5, d6, d8. (See 44.) TWO knight's moves' distance means the
squares a4, a6, c4, c6, c8, e6, e8, plus the 'less frequent' squares b3, d3,
e4, f5, f7 (R5 and R6). The latter five squares are less frequent in the
sense that bN is less likely to occupy squares that are in the centre of
the board (or in sub-regions controlled by the bishops) because it is the
centre of the board that White must and can control in Phase 2 of the
contest, the part that consists in driving Black out of the centre. The
concept of knight's distance from a Kling and Horwitz position is
particularly valuable in the most difficult part of the solution, namely
Phase 4. It enables us with confidence (not with certainty) to estimate
how far the solution has progressed and to consider particular special
strategies and tactics appropriate to that stage, rejecting (i.e. not
considering) irrelevant strategies and tactics. Now the four base squares

8

7

6

5

4

3

2

1

a bcde f gh

R4. Knight's distance ONE from b7.

358



ROYCROFT

8

7

6

5

4

3

2

1

a be de f g

R5. Knight's distance TWO from b7 ('frequent' squares).

for Kling and Horwitz position mean different sets of squares in each
case. But common squares begin to appear with greater frequency the
greater the 'distance number'. Thus the square f4 is ONE from g2, TWO
from b2 and g7, and THREE from b7—it is a 'good' square for Black's
knight. (See R7.) In practice, since the black king moves slowly, and
since the white force will in Phase 4 dominate the centre and some other
sub-regions of the board, certain paths will be taboo to the knight: only
those Kling and Horwitz positions which are accessible to the black king
need be considered in applying the concept of knight's distance from a
Kling and Horwitz position.
2 Black king's distance' from a Kling and Horwitz position. This

concept is more static, that is, it is less liable to change from move to
move, than the previous concept. The Kling and Horwitz position by
definition requires Black's king; Black's king can move only to adjacent
squares; it leaps to the eye when Black's king is occupying a Kling and
Horwitz square; and distance simply means counting the king moves
needed to reach such a square. On f4, for example, the black king is ONE
from g3 (for a g2 position) and Two from g6 (for a g7 position): he is

8

7

6

5

4

3

2

1

a bcde fg h

R6. Knight's distance TWO from b7 (less frequent' squares).

359



EXPERT AGAINST ORACLE

8

7

6

5

4

3

2

1

ra

a bcde fg h

R7. Distance ONE from g2, distance Two from g7 or b2, distance THREE from b7.

THREE from c2, but this can nearly always be ignored (in Phase 4). (See
R8.)

3. Sum of 'distances'. This is simply the sum of the black knight's
distance from a Kling and Horwitz position and the black king's distance
from the same position. (The squares are, of course, different squares: a
`g7' Kling and Horwitz position implies the squares g7 for the black
knight and g6 or 17 for the black king.) The summed distances are a
rough-and-ready guide to progress in Phase 4. (See R9.)

4. A pseudo-fortress'. In chess endgame parlance the concept of a
'fortress' is familiar. The implication is that the materially inferior side
sets up a position which, due to the geometry of the chessboard is
impregnable to the particular attacking potential of the superior side. The
edge of the board and especially the corners are suited to fortress
positions. A 'pseudo-fortress' arises when Black is evicted from a Kling
and Horwitz position (which has been called a fortress, but, we now
know, in error) and adopts a posture in which king and knight are
alongside each other between two Kling and Horwitz positions (such as

8

7

6

5

4

3

2

1

a bcde fg h
R8. King's distance ONE from g3 (a ̀g2' square), King's distance TWO from g6 (a ̀g7'
square).

360



7

6

5

4

3

2

1

ROYCROFT

a bcde f gh

R9. Knight's distance TWO from g7, King's distance ONE from f7. Summed distance: THREE.

between b7 and g7) and at 'summed distances' of THREE or FOUR from
each of them. Thus with bKd2 and bNe2 the 'summed distance' is FOUR
from b2 and FOUR from g2. (See R10.) We may note, simply for the
contrast, that the summed distance is EIGHT to b7 and EIGHT to g7. Such a
position is strong for Black because he can adopt the strategy of
oscillating to and fro with knight and king without heading for b2 or g2,
which White presumably can prevent. Moreover, in his choice of an
oscillating move Black, if he cannot check or usefully gain a tempo by
attacking a bishop, will tend to choose a move that does not increase the
summed distances. There are many manifestations of the pseudo-fortress.

5. The 'box'. This is the White 'counter-concept' useful in overcoming
the 'pseudo-fortress'. It is a simple idea but its power is best explained by
a comparison of chess diagrams and simultaneous consideration of the
pseudo-fortress concept. A 'box' is a 2 x 2 array of squares controlled by
the pair of bishops. A frequent tactic (in side-variations) to win the
knight is a 'pin-crucifix' or a 'checking crucifix', which are simply special
cases of the box. (See R11 and R12). Now if Black has a pseudo-fortress,

8

7

6

5

4

3

2

a bade f g h

RN. A typical 'pseudo-fortress' with summed distances FOUR from ̀ b2' or ̀g2' positions of
the Kling and Horwitz type.

361



EXPERT AGAINST ORACLE

8

7

6

5

4

3

2

1

a bcde f gh

R11. A 'pin-crucifix' using a 'box' e646,e747. The black knight is lost without
compensation.

and is happily moving king and/or knight to and fro, making sure to keep
the white king at bay by checking when appropriate and then returning to
the pseudo-fortress home square, how is he to be evicted? Apart from
the king White has only his pair of bishops. They can be used in two
obvious ways: on adjacent parallel diagonals from a distance, a classic
technique, or by cross-fire to create a box. If we choose a 'box-building'
strategy it is not difficult to decide what box is necessary and where the
bishops must stand in order to set it up. With the black king on d2 and
black knight on e2, the required box will be specified as d2–e2,d3–e3, if
we assume that the white king prevents escape to c3. The result of such a
box will be to drive the black king towards the cramping edge or a corner
without the chance to set up a Kling and Horwitz position. (A box is not
a universal panacea. It is a concept to be used with care and cunning.)

6. 'Advancing' the box. Place the black king on d6, with the knight
alongside on e6—a pseudo-fortress with summed distance THREE to b7
and THREE to g7. Place the white king on c4, and the white bishops on b2

8

7

6

5

4

3

2

1

a bcde f gh

R12. A 'checking crucifix' using a 'box' b4—c4,b5—c5. The black knight is lost without
compensation.

362



8

7

6

5

4

3

2

1

ROYCROFT

a bed e f g h

R13. Black has a pseudo-fortress. The box d4—e4,d5—e5 is ineffective. The whole box must
be shifted one rank up the board.

and g2. (See R13.) The existing box (d4—e4,d5—e5) is a no-man's-land
(Black cannot advance further towards the board's centre) but White's
task is to drive Black out of his pseudo-fortress. If the chosen method is
the box method, then the d4—e4,d5—e5 box must somehow be trans-
formed into a d5—e5,d6—e6 box. To achieve this new box with the
bishops that are able to travel only on either white squares or black
squares it soon becomes evident that both bishops must switch sides of
the board: the dark bishop on b2 must reach g3 (a square on the h2—b8
diagonal) and the light bishop on g2 must reach b3 (a square on the
a2—g8 diagonal). (See R14.) This explains otherwise mysterious bishop
moves away from the scene of action: they are unavoidable stepping-
stones to where the bishops are needed to (threaten to) set up a new box.

7. 'Squinting' bishops. Place the light bishop on b3 and the dark
bishop on g3. Imagine (or place) the black king and knight on d7 and e7
respectively. (See R15.) The white king is centralized, but on no
particular square, so it is omitted from the diagram. The bishops are well

8

7

6

5

4

3

2

1

a bcde f gh

R14. A box d5—e5,d6—e6, showing the bishops on opposite sides of the board compared
with the d4—e4,d5—e5 box.

363



EXPERT AGAINST ORACLE

8

7

6

5

4

3

2

1

a bcde f gh

RI5. The power of 'squinting' bishops (see text).

placed in at least five important respects: firstly, by controlling c7 and f7
they deter the black king from approaching both a b7 Kling and Horwitz
and a g7 Kling and Horwitz; secondly, they are immune from tempo-
gaining attack by the black king; thirdly, although not immune from
attack by the knight they are relatively so, especially as the centralized
white king will in Phase 4 control several squares that the knight would
need to pass through to execute a bishop-harassing manoeuvre that is
frequently a serious threat in Phase 2; fourthly, they create a d5—e5,d6—
e6 box; and fifthly they are poised for a quick switch of sides of the board
(with the probable, though not necessarily unique, purpose of advancing
the box) in at most two moves (each) while still remaining relatively
immune from attack (for instance the dark bishop can play to el and
thence to b4). On the squares b3 and g3 the bishops are not 'glaring
straight down' the long diagonals al—h8 and hl—a8 but are just off-centre
in this sense: hence 'squinting'. The term 'cross-eyed' graphically
describes the pair of squinting bishops. The set-up is powerful and
economical and it occurs frequently, with only occasionally a better
square existing: for instance, the dark bishop on g3 might be vulnerable
to attack or to a checking fork by the knight playing to f5, with g7 or b7
as possible defensive havens in consequence, and in this case the very
remote square h2 might be superior to g3 for the bishop, but only in the
short term.

7. THE STORY OF PART 2

This is the only section of the current paper to be written after the
conclusion of the Part 2 test. Part 2 has no protocol corresponding to Part
1. Instead, dated files were created recording interactive sessions with the
data base. Most of the time communing with the data base was spent
trying out ideas, alternatives, 'what happens if' hypotheses, derived

364



ROYCROFT

either from the specialist's own manual record of the Part 1 test, or from
attempts at a methodical approach to a problem of a particular phase of
play. Considerable time was spent in examination of the output from the
interactive sessions. At best such examination would answer a question;
at worst it would raise further questions. Close study was made of
positions around a solution-depth of 20 moves, with the hope that an
increased ability to recognize such long conclusions would ease the
understanding of Phase 4, where the really deep play takes place.
The following are some of the major new patterns to emerge.
1. The black knight is on f3 (or its symmetrical equivalent) with the

black king alongside. The knight has two paths to choose from in
heading for a g2 Kling and Horwitz. It is extremely unusual for both
paths to be blocked. (See R16.)

2. The pattern of white king making an outflanking move that avoids
checks and covers a presumably important square to free a bishop for
more important work. (See R17.)
3. Here there is a box that is prevented by the current placing of the

black knight, but it is possible to attack the knight by one of the bishops.
The box from Black's standpoint includes a potential outlet for his king, a
'valve', but the same square is where the knight may be lost by a
pin-crucifix. This pattern might be dubbed the 'box-valve'. (See R18,
R19.)
4. In the course of improving the position of the white king it 'follows'

his opposite number across the board, keeping to the same or, at worst,
adjacent orthogonal, especially during phase 4. In choosing the moment
for such a move White must pay special regard to his king's vulnerability
to checks from the knight. (See R20.)

8

7

6

5

4

3

2

1

a bcd e f gh

R16. White to move—depth 49. Black has two retreat paths from the square f3 to the Kling
and Horwitz square g2: via h4 and via el. If White prevents this by Bg3, then this bishop
has lost its mobility and Black can threaten to set up a b2 Kling and I Iorwitz position.
When Black can obtain a position like this it is a strong indication that the solution depth is
near 50.

365



EXPERT AGAINST ORACLE

8

7

6

5

4

3

2

1

a bcde f gh

R17. White to move—depth 56. With the sequence Kc5,Nd3+;Kd6, White is safe from
immediate checks and prepares to drive the black king towards the edge (any edge) starting
with a bishop check on g6.

8

7

6

5

4

3

2

1

a bcde f gh

R18. White to move—depth 13. There is a latent box f3–g3,f2–g2. However, the black
knight prevents the box move Bh4+. White plays Be4 and after the knight moves Bh4+ can
be played.

8

7

6

5

4

3

2

1

a bcde f gh

R19. Black to move—depth 19. Black's optimal move is Kc7: which allows White's reply
Ke6. The explanation for not choosing Nc3; is that after Bb3,Kc6;Bd4, a box-valve position
is created, with the cramping Ba4+ to come.

366



8

7

6

5

4

3

2

1

ROYCROFT

a bcd e f gh

R20. White to move—depth 26. With the move Kd5, the white king is 'following' his
opposite number across the board, but occupying central squares in contrast to the black
king's more peripheral situation. The move also relieves a bishop of control of an important
square, c4 in this case, illustrating the economy of square control by a less mobile piece
when the more mobile piece is required for more active work.

5. Black has the occasional strong defence of forcing White to repeat
moves as the only alternative to allowing a Kling and Horwitz. Thus a
position that has the major feature of phase 4 (Black can be prevented
from setting up a Kling and Horwitz) is nevertheless not a win unless
progress can be made, and progress, it turns out, is only via phase 3 (a
Kling and Horwitz). (See R21.)
6. The black king is forced to block a potential check by his own

knight, thus allowing the white king to attack the knight with advantage.
(See R22.)

8

7 r A,
6

5

4

3 AtfA /A
2 r %

.5//1

a b c d e f

R21. White to move—depth 43. In terms of the Kling and Horwitz prevention heuristic
White should control the square h4 by playing Bg5. But Black then renews the threat with

Kg3. Then the only way to prevent Nh4; is to play Bd2, as Nh4;Bel+ is good for White.
However, in reply to Bd2, Black plays Kf2;, repeating the diagram. White will not make

progress by repetition.

367



EXPERT AGAINST ORACLE

8

7

6

5

4

3

2

a bc d e f gh

R22. Black to move—depth 49. Black is in check and plays his king to c5. This is optimal,
despite the fact that it blocks this square for his own knight. It gives White the opportunity
to advance his king with a useful gain of tempo by playing Ke4. However, and this
illustrates the profundities of this endgame, the move Ke4 is not quite optimal. The sole
optimal move is the mysterious Bh2.

7.1. Depthcharts

A novel technique for expressing in a concentrated visual form the
content of the data base was invented. A diagram was produced showing
only four of the five chessmen explicitly. The fifth man was added in the
form of a number on each of the squares which the 'missing' man could
legally occupy, having regard to which side was presumed to have the
move. Such diagrams have been provisionally dubbed ̀ depthcharts'. A
depthchart may identify localities where the depth is (for a white
depthchart) significantly low, in which case one may confidently conjec-
ture that if the missing white man is not in that area he ought to head
towards it. The technique seems promising, but exploiting it methodically
was not possible during the preparation period.

7.2. The part 2 test

The second test comprised, like the first, 10 positions.
Number of positions won: seven
Number of positions abandoned: two
One position is unaccounted for: in this, after 105 moves, when the

depth of solution was low (nine) a data base move was erroneously
executed on the board following the verbal notification over the internal
telephone. The consequence was the data base (black) move 'king takes
bishop' when the expert's board showed the knight on the square
occupied, according to the system, by the black king. This was the only
confusion of this kind in all the play of both tests. Performance measured
by number of moves played divided by total of optimal lengths: 51.4%.

368



ROYCROFT

8. THE ENDGAME IN MASTER PRACTICE

This endgame has occurred several times in the tournament and match
practice of the last 25 years but to the best of the author's knowledge the
only serious and prolonged attempt to win a deep-solution position took
place in the game between International Master Jozsef Pinter (Hungary)
and International Grandmaster David Bronstein (ussR) at the interna-
tional tournament at Budapest in 1978. (See R23; Benko, 1984.)
A comparison of the moves with the optimal moves (obtained by

consulting the data base at every step of the game score) is of interest to
chessplayers and to non-chessplayers.
Many observations and conjectures are possible arising from the

comparison. However, firm conclusions are another matter. We draw
none.

All moves played by the two masters from the moment this endgame
appeared on the board are given below. The data base assumes that
White has the bishops, in accordance with the normal convention of chess
endgame theory. Out of respect for the valiant players we keep to the
original game colours.

1. The numbering 68-117 corresponds to the serial move numbers of
the actual game.
2. Where there is no move in parentheses the played move is optimal.
3. A move in parentheses is optimal, with the implication that the

immediately preceding move played in the game is sub-optimal. Note
that where there is more than one optimal move, only one is given. In
many cases there is only one optimal move, and the occurrence of 12
equi-optimal moves for Black's 95th is unusual.
4. The two-digit number in parentheses after each black move is the

optimal depth after that move has been played.

8

7

6

5

4

3 ,
2

1 riz

7'

r/

•
,

,

A
g/

a bcd e f gh

R23. Pinter (Hungary) vs. Bronstein (ussR) Budapest, 1978. White to play—position after
Black's 67th move.

369



EXPERT AGAINST ORACLE

It follows that optimal play by both sides is identified by consecutive
moves without any move in parentheses, when the depth will decrease by
one at every move by Black.
The initial wrm position is lost for White in 54 optimal moves.

White (optimal) Black depth (optimal)

68.Kd4 (Nf3+) Bf7 (52)
69.Nd3 (Ke4) Kf5 (50)
70.Kc3 (Nd) Ke4 (43)
71.Nb2 Be5 + (42)
72.Kc2 Bg6 (42) (Kd4)
73.Kb3 Kd5 (44) (Kd4)
74.Na4 (Nc4) Kc6 (49) (Ke4)
75.Nb2 (Kc4) Kb5 (38)
76. Ndl Bf7+ (37)
77.Kc2 Kb4 (36)
78.Kd3 Bg6+ (35)
79.Ke3 Kc5 (45) (Kc4)
80.Nf2 (Kf3) Kd5 (41)
81.Nh3 Bd4 + (40)
82.Kf4 Be8 (48) (Bg7)
83.Ng5 Bb6 (50) (Bg7)
84.Nf3 Bc7+ (50) (Bc6)
85.Ke3 Bg3 (50) (Bc6)
86.Ng5 Bh5 (49)
87.Nf3 Bc7 (50) (Bd6)
88. Kf2 (Nel) Ke4 (41)
89.Nh4 Kf4 (40)
90.Ng2+ Ke4 (41) (Kg5)
91.Nh4 Be8 (42) (Kf4)
92.Ng2 Bc6 (43) (B h5)
93.Nel Bb5 (44) (Bb7)
94.Ng2 Bd6 (45) (Bc6)
95.Nh4 Kf4 (46) (Bc7, and 11 other

equally optimal moves)
96.Ng2+ Kf5 (45)
97.Ne3+ Kg5 (48) (Ke4)
98.Ng2 (Nd5) Bc6 (43)
99 .Nel Kg4 (52) (Kf5)
100.Ke3 Bc5+ (51)
101.Kd3 Bf2 (50)
102.Nc2 K14 (49)
103.Na3 (Nd4) Bh4 (49) (Be4 +)

370



ROYCROFT

White (optimal) Black depth (optimal)

104.Kd4 Be8 (48)
105.Nc4 Bf7 (51) (Bf2+)
106.Kc5 (Nd6) Bf2+ (33)
107.Kb4 Bd4 (32)
108.Kb5 Bh5 (47) (Be8+)
109.Kc6 Bf3+ (50) (Ke4)
110.Kc7 (Kd6) Kf5 (46)
111.Na5 (Kd6) Ke6 (44)
112.Nb7 (Nc6) Ke7 (45) (Be5+)
113.Na5 Bf2 (44)
114.Nc6+ Ke6 (43)
115.Na5 (Nd8+) Bg3+ (41) (Ke4)
116.Kb6 Bf2+ (40)
117.Kc7

At this point the game was declared drawn by the '50-move rule', as no
pawn had been moved and no capture had taken place for 50 consecutive
moves.
We permit outselves five factual observations and one psychological

comment.
Firstly, it may be seen that Pinter set up the Kling and Horwitz

position no fewer than three times, each time in a different corner,
namely after his moves 71 (in the b2 area), 90 (in the g2 area) and 112 (in
the b7 area).

Secondly, Pinter's knowledge of the Kling and Horwitz position leads
him consistently to head for it with unnecessary haste, this accounting for
a number of his sub-optimal choices.

Thirdly, the quality of an individual sub-optimal move by either side
can be crudely measured (if the opponent's previous and subsequent
moves are optimal) by comparing the successive depth numbers. Thus it
can be seen that Bronstein's 79...Kc5; increased the optimal depth from
35 to 45, a cruel penalty for not playing the optimal and so similar Kc4;
while Pinter's 88.Kf2, reduced the optimal depth from 50 to 41. The great
difficulty of this endgame is evident when one tries to give well-grounded
reasons for the played moves being inferior to the optimal moves. (See
R24.)
Fourthly, an optimal win within the confines of the traditional 50-move

rule became possible after White's 70th move, but was lost, never to
recur, with Black's 79th.

Fifthly, 36 of White's 50 moves were optimal, while only 26 of Black's

371



EXPERT AGAINST ORACLE

8

7

6

5

4

3

2

1

a bcde f gh

R24. Pinter vs. Bronstein. Position after White's 79th move. Is 79...Kc4; or 79...Kc5; the
better move, and why?

49 were optimal. A conjecture is that this is evidence for the endgame
being more difficult to play for the side with the bishops.
The psychological comment is that a mistake (as distinct from a crude

blunder or oversight) of the kind of Bronstein's 79...Kc5; or Pinter's
88.Kf2, although it leaps to the eye when scanning the depth parentheses
to the above game score, is recognized by the player, if at all, only
several moves later. The player's general strategy will in all probability
have been correct at the highest level, but his ability to calculate in order
to reject moves that appear to meet the strategic objectives equally well
(which nevertheless fail when countered by an optimal continuation) will
be insufficient: one or more vital concepts are missing. Before the
creation of the oracle data base no one could have described the feeling
for position and depth of calculation needed to play this endgame really
well. Now it begins to be possible. The missing concepts are waiting to be
formed from data in the data base, and to be verified by reference to the
same data base. The idea of automatic derivation of concepts or patterns
meaningful to human domain specialists is a challenging, a tantalizing,
possibility—is its realisation just round the corner or is it remote?

Acknowledgements

The %SW data base was generated and generously made available by Mr Ken Thompson of
Bell Laboratories, New York, USA. Dr Alen Shapiro of Intelligent Terminals Limited set
up the data base in the Turing Institute, added an interactive interface, and was responsible
for the admirably smooth conduct of the computing side of the contest. Professor Donald
Michie directed the project. I am grateful to The Royal Society and to the Science and
Engineering Research Council of Great Britain for the award of an Industrial Fellowship,
and to my employer, Ism United Kingdom Limited, for their contribution and associated
secondment.

REFERENCES

Entries entirely within brackets are recognized authorities on chess endgame theory not
explicitly referred to in this paper.

Alty, J. I. and Coombs, M. J. (1984) Expert systems—concepts and examples. NCC,
Manchester.

372



ROYCROFT

[Averbakh, Yu. I. (ed.) (1980-1984) Shakhmatnye okonchaniya. In five volumes.

Fizkul'tura i Sport, Moscow.]
Benko, P. (July 1984) Electronic arts. In Chess life, pp. 44-5, 58. United States Chess

Federation, New Windsor, NY.
Bouwkamp, C. J. (1967) Catalogue of solutions of the rectangular 3 x 4 x 5 solid

pentominoes problem. Technological University Eindhoven and Philips Research Labora-

tories, Eindhoven.
[Ch6ron, A. (1960-1970) Lehr- und Handbuch der Endspiele. In four volumes. Siegfried

Engelhardt, Berlin.]
Comay, 0. and Roycroft, A. J. (April 1984) Two bishops against knight (continued from

EG74). EG, no. 75. 249-52.
[Fine, R. (1941) Basic chess endings. David McKay, Philadelphia.]
[Hooper, D. V. (1970) A pocket guide to chess endgames. Bell, London.]
Kling, J. and Horwitz, D. (1851) Chess studies, or endings of games. Skeet, London.
Kopec, D. and Niblett, T. B. (1980) How hard is the play of the king—rook—king—knight
ending? In Advances in Computer Chess 2 (ed. M. R. B. Clarke), pp. 57-81. Edinburgh
University Press, Edinburgh.

Michie, D. (1961) Trial and error. Science Survey, 2, 129-45. Reprinted in On Machine

Intelligence (2nd edn). Ellis Horwood, Chichester (1986).
Michie, D. (1986) The superarticulacy phenomenon in the context of software manufacture.

Proc. R. Soc. Lond. A 405, 185-212.

Nilsson, Nils, J. (1971). Problem-solving methods in artificial intelligence. McGraw-Hill,

New York.
Pachman, L. (1983) Chess endings for the practical player. Routledge & Kegan Paul,

London.
Rich, E. (1983) Artificial intelligence. McGraw-Hill, New York.

Roycroft, A. J. (1972) Test tube chess. Faber & Faber, London.

Roycroft, A. J. (1981) The chess endgame study. Dover, New York.

Roycroft, A. J. and Niblett, T. (June 1979) How the GBR class 0103 data base was created.

EG no. 56, 145-6.
Shirai, Y. and Tsuji, J. (1982) Artificial intelligence. John Wiley, Chichester.

Strohlein, T. (1970) Untersuchungen uber Kombinatorische Spiele. Technische Hochschule,

Munich.
Thompson, K. and Roycroft, A. J. (November 1983) A prophecy fulfilled. EG no. 74,

217-20.
Thompson, K. (May 1986) *C" the programs that generate endgame data bases. EG no.

83, 2.

373





17
Inductive Acquisition of Chess
Strategies
S. H. Muggleton*
Edinburgh University, UK

Abstract

A variation of an algorithm for inducing 'k-contextual' regular language
grammars from sample sentences is applied to the construction of expert
chess strategies. In a pilot study a small expert system for playing part of
the king and two bishops against king and knight endgame (KBBKN) has
been automatically constructed using this technique. The generated
knowledge-base is directly executable in a MucoL environment. Although
this work is indicative of a new methodology for automatically generating
chess-playing strategies from example sequences of play, further work is
necessary to show that the technique would be generally applicable to
this task.

1. INTRODUCTION

1.1. Computer chess research

In the study of expert system development, Michie has noted that use of
chess expertise as a testbed domain is ideal in many respects. The domain
is non-trivial though finitely bounded. It has a wealth of recorded
expertise going back many centuries which has certainly not yet been
fully exercised. Whereas chess specialists have developed a depth of
understanding which is at least comparable with the expertise of more
lucrative disciplines, expert-level chess players are generally more readily
available for consultation.

Early work in programming computers to play chess was concentrated
around efficiently implementing Shannon's chess playing strategy [I].
This employs extensive lookahead in order to compute approximations to
the best next move. As this failed to produce results comparable with
human expert play, recent research has focused on more knowledge-rich
approaches. Bratko and Michie [2] described such a knowledge-based
system, AL1, based partly on earlier work by Huberman [3]. ALl'S advice

* Present address: The Turing Institute, George House, Glasgow, UK.

375



INDUCTIVE ACQUISITION OF CHESS STRATEGIES

module generated a list of preference-ordered pieces of advice. A
separate search module used the board-state and advice list to produce a
'forcing tree' which was applied as a strategy for play. As with all
solutions in which knowledge must be hand-coded, the knowledge
acquisition process becomes a developmental bottleneck.

Quinlan [4] suggested a method of bypassing this bottleneck by using
inductive inference. Quinlan's algorithm, ID3, based on Hunt's as
algorithm [5], was used to build decision trees which classified endgame
positions as won, drawn, or lost. A vector of attribute values is used to
describe any particular position. This vector together with a class value
comprises an example classification. Although the solutions were exhaus-
tively proved correct and ran up to two orders of magnitude faster than
commonly used algorithms, they were also completely incomprehensible
to chess experts.
In order to circumvent this understandability barrier Shapiro and

Niblett [6] introduced the notion of structured induction, in which a chess
expert is required to decompose hierarchically the endgame classification
rules; each subproblem can then be solved inductively. While this
approach avoids the problem of incomprehensibility, it unfortunately
introduces a new bottleneck of problem structuring.

Paterson [7] has described an attempt to structure automatically the
KPK chess endgame domain from example material, using the statistical
clustering algorithm CLUSTER. The results, however, have not been very
promising, with the machines suggested hierarchy not having any
significance to experts. The primary reasons for failure seem to lie in the
fact that although the example set is a rich enough source of knowledge
to be used for rule construction, additional information is necessary to
indicate any higher-level structure.

1.2. Sequence induction

In this paper we describe a new approach to the automatic construction
of chess strategies from example material. Note that this differs con-
siderably from the approaches of Quinlan [4], and Shapiro and Niblett
[6]. In their case, a diagnostic or classificatory expert system was
inductively built using static 'snapshot' descriptions. In ours, we build a
procedural or strategic expert system from dynamic 'sequence' examples.
Each element of the sequence is a snapshot like example of the ID3
variety. The output of the inductive process is a finite state structure in
which each state contains a small number of the snapshot examples.
These can in turn be used by 1D3-like induction schemes to produce rules
or decision-trees for each state. Thus although we do not produce a
hierarchical structure, we achieve the aims of structured induction (i.e. a
set of small understandable rules) by using example material which
contains additional structural information within each example.

376



MUG GLETON

The basis for these techniques lies in the study of grammatical
induction, that is the inference of grammatical structures from example
sentences of a language [8]. The grammar produced can be viewed as the
control structure of a program which generated the example sentences.
Some of the earliest work in this area was done by Biermann and
Feldman [9] who devised an algorithm to induce finite state automata
from strings of a language. Although their algorithm was capable of
finding any regular language given a sufficient example set, the algorithm
requires an arbitrary complexity parameter and also has rather low
example efficiency (i.e. a large number of examples are needed to infer
anything). Angluin [10] has described an algorithm which infers only a
limited subset of the regular languages. This subset she calls the
k-reversible languages. By limiting the target result set, Angluin's
algorithm achieves example efficiency higher than that of Biermann and
Feldman's algorithm.
The author [11] has taken Angluin's algorithm and redesigned it to run

with 0(n2) time complexity rather than Angluin's original 0(n3) time.
Furthermore, we have discovered an even smaller, but useful subset of
the k-reversible languages, which we call the k-contextual languages. The
algorithm for inferring members of the k-contextual languages is again
more example efficient than even Angluin's, to the extent that sensible
inference is possible from samples containing only a single example (all
other methods in the literature [9, 10, 12, 13] presuppose more than a
single example). The k-contextual algorithm has 0(n) time complexity.

2. THE k-CONTEXTUAL ALGORITHM

Grammatical induction techniques use exemplary sentences to form
generalized grammatical descriptions which are at least compatible with
the original example material. Examples can come in two different forms,
positive examples and negative examples. Positive examples are members
of the target grammar, while negative examples are not. If only positive
examples are used then the inductive process must use well-defined
constraints on permissible solutions in order to avoid over-generalization.
Alternatively, these constraints can be provided by the use of negative
examples, in which case, any generated descriptions must hold for all
examples that are positive and for none that are negative.
The k-contextual algorithm used for the experiments described here

requires only positive examples. The necessary constraint on solutions is
that the finite state acceptor produced be equivalent to the minimum-size
k-contextual language containing the positive examples [11]. A regular
language L is k-contextual if and only if whenever two not necessarily
distinct strings ui vwi and u2vw2 are elements of L and v has length k,
then u1vw2 and u2vm are also elements of L. For normal grammatical

377



INDUCTIVE ACQUISITION OF CHESS STRATEGIES

a

Figure 1. An hypothesized finite state acceptor for the grammatical sample {aabb}.

structures, k is a parameter which must be supplied to the algorithm and
can be thought of as a complexity measure for the solution. Generally the
smaller the value of k the larger the accepted language. However, when
dealing with sequences of 133-like examples, we can use the semantic
content provided by the situational vector as an additional constraint
mechanism, and thus circumvent the need for supplying the algorithm
with the arbitrary measure required by all similar algorithms in the
literature [9, 10, 12, 13]. This is achieved by first looking for k =0
solutions, and then if a 'clash' (non-determinism) is produced in any of
the states of the solution, the value of k is incremented. This process is
repeated until either a deterministic solution is produced and the
algorithm returns successfully, or it reaches a maximum possible value
equal to the maximum length of example string, and returns with failure.

Figure 1 portrays an example of the application of grammatical
induction to a set of example sentences (clearly the set contains only one
member, i.e. aabb). The k-contextual algorithm hypothesis represents
the language a+ b+

Situations in which sequence induction can be employed are many and
varied [4]. If we understand well what the properties of the algorithm
being used are, often we can take advantage of various presentation and
solution constraints for different scenarios. Elsewhere [11] several such
properties are theorematically described and proved. The most important
such property is what Gold [15] calls identification in the limit. Let a
grammatical induction algorithm I make a hypothesis of a language Li
after each example sentence ui presented by a complete, arbitrarily
ordered enumeration of such examples. I is said to identify the target
language L in the limit if and only if there exists some finite natural
number n such that I hypothesises the correct language L„ = L following
the example u„ and does not subsequently change its guess. The
k-contextual algorithm used here has been used [11] to identify k-
contextual languages in the limit.

3. THE PROBLEM—KBBKN

Programming strategies for chess endgames is a notoriously difficult task.
Zuidema [16] commenting on two Algol 60 programs written for the KRK

378



MUGGLETON

endgame illustrates the difficulties by noting that 'A small improvement
entails a great deal of expense in programming effort and program
length. The new rules will have their exceptions too.'

In a project being carried out at the Turing Institute, the extremely
complex chess endgame KBBKN is being studied with the aid of the
world-class chess endgame specialist John Roycroft. Even this chess
authority claims to be out of his depth. In the only definitive study of
KBBKN, written in 1851, Horwitz and Kling [17] declared that with
White-to-move (yawl), the game is drawn in all but trivial cases. For over
a century this claim remained uncontested, until in 1983 Thomson [18]
revealed by exhaustive computation that almost all positions are forced
wins for White, with a maximum length win of 66 moves being obtainable
from 32 different positions [18, 19].
The Turing Institute study involves two phases. In the first, Roycroft

has studied the domain intensely with the aim of developing a full
descriptive matrix. It is in this first phase that the author has carried out
the evaluation of sequence induction as a knowledge acquisition tool. In
the second phase it is intended that Roycroft's descriptions be matched
against Thomson's exhaustive database for KBBKN.

Roycroft's first task was to select a sub-strategy within the KBBKN
domain of an appropriate size and complexity for the application of
sequence induction. The choice fell on the first section of the exceptional
66-move forced win for White.

3.1. Initial position

Play commences from the position shown in Figure 2.
Taking symmetry and slightly altered starting positions into account,

this position is equivalent, in terms of the number of moves to a forced
win, to several other similar positions. As this equivalence can be taken
into account by the choice of terms in the devised expert system, we will
ignore this extra dimension to the problem.

3.2. Goal position

The aim of White in this sub-strategy is to liberate wB(light) from the
corner in no more than 12 moves. In order to achieve this it is necessary

Figure 2. The initial position, WTM.

379



INDUCTIVE ACQUISITION OF CHESS STRATEGIES

that
(A) wB(dark) prevents bK from attacking and capturing wBhl. This is

illustrated in Figures 3-5.
(B) wK moves to support the attack of wBh1 on bNg2 (Figure 6).
Play achieving (A) is trivially described and encoded. However,

attaining (B) is complicated considerably by White's choice of delaying
tactics, employed to impede wK approaching h3. It was for this second
goal that we use sequence induction to capture Roycroft's description.

Figure 3. wB(light) prepares to prevent wK from moving to h2, WTM.

Figure 4. bK retreats after being checked by wB(light), WTM.

Figure 5. wB(light) takes up fortified position, WTM.

Figure 6. The goal of liberating wB(dark) is achieved, bN is forced to retreat, BTM.

380



MUGGLETON

3.3. Attributes and actions

Roycroft was asked to give an exposition of play which included a set of
sequences of moves together with a running commentary displaying
points of interest. From this the author extracted four positional
attributes (based on Roycroft's use of adjectival phrases), four actions
taken by White (corresponding to verb phrases), and six sequences of
play. The attributes were as follows
(B1) Is White free to take bN? {y/n}
(B2) Is wK on the same diagonal as the release position (h3)? {y/n}
(B3) Can wBh1 (dark) move? {y/n}
(B4) Is the direct diagonal position closest to the release position

covered? {y/n}
The actions were
(Ba) wK approaches release position (h3) by moving along rank or

file.
(Bb) wK moves to non-check position closest to release position on

direct diagonal.
(Bc) wB(light) moves out of corner along its diagonal..
(Bd) White takes bN.
Note that each action at this level represents a single move. However,

the entire automaton to be derived represents a unit action involving
several moves. Thus we might, if necessary, have a hierarchy of such
actions and attributes, similar to that described by Shapiro and Niblett [6]
for classification (see discussion).

3.4. The solution

The sequences used are reproduced in Appendix A. These were
presented to a PRowo-coded version of the k-contextual algorithm, the
output being translated into a suitable form for further 1D3-like induction
and run-time testing in the MucoL environment. Sequences were added
by stepwise-refinement, the result being tested after the addition of each
sequence. Very early in this process, the k-value for the solution rose
from 0 to 1, at which level it remained during the rest of development.
Also, the number of states in the solution grew rapidly at first to reach a
steady value of 5, at which it too stayed fixed. Altogether this process
displayed a good incremental nature.
The first six sequences represent White's response to various well-

executed tactics played by Black. These were derived directly from
Roycroft's description. Having by this stage generated a playing strategy
that dealt adequately with more than Roycroft's described positions (the
k-contextual algorithm successfully generalized solutions to a larger
number of positions than those originally described) the automaton was
presented and explained to Roycroft. Roycroft noted that the set of
positions at which the white king can be delayed by Black was the most

381



INDUCTIVE ACQUISITION OF CHESS STRATEGIES

complex to describe. Significantly, the state which described just these

positions contained the most 1D3-vectors. Thus the structure automatically

imposed on the solution had a clear significance to the expert.
As yet, with only six sequences, the solution was not able to cope with

bad play by Black. An additional seven sequences were added to deal

with such play. The resulting k-contextual automaton is given in

Appendix B in a form which can be directly translated into a MUGOL [20]

induction file. Appendix C demonstrates the transformation carried out

by m3-like induction to produce a runnable MUGOL expert system. Note

that all decision-trees in the solution have the form of Hsi, [21]

decision-trees.

4. DISCUSSION

In this paper we have indicated the feasibility of using sequence induction

to construct expert-level chess strategies for endgame play. A great deal

of further work is necessary to show that:
(i) optimal playing strategies can be produced using the technique

outlined here;
(ii) solutions generally can be found from any chosen section in the

KBBICN domain; and
(iii) generated solutions generally are, or can be made to be,

conceptually transparent to the expert who provided the example

material.
For the chosen subgame described here, the methodology used was

found by the expert to be natural in terms of the example presentation

requirements, as chess players are quite at home with describing play in

terms of example move sequences. Furthermore, the bottleneck of

structuring was eased, though not completely removed by the use of

sequence induction. Whereas other attempts at automatic structuring

have led to solutions which are not acceptable to experts, results

produced by sequence induction were found to be intuitively correct by

the endgame specialist John Roycroft.
In Section 3.3 we noted that as the induced strategy represents a unit

action, it might be found necessary to form a hierarchy of such actions in

order to create an extensive strategy. Therefore, it might be argued that

our automatic structuring aid has gained us no ground, as it may still be

necessary to do further manual structuring. We do not claim to have a

complete answer to the structuring problem. However, Shapiro [22] in his

structured solution of KPa7KR used an average of six examples at each

inductive stage in order to produce readable decision-trees. We have

used 13 example sequences each containing an average of four 1o3-like

sequences to produce a semi-structured solution in which each state's rule

is derived from an average of only three examples. The example material

382



MUGGLETON

used here thus consists of approximately 13 x 4 = 52 situation/action
pairs. Despite the fact that the quantity of example material used to
structure this level of problem is an order to magnitude larger than that
used by Shapiro, the generated solution contains a small number of easily
understandable decision trees.
The k-contextual induction algorithm used was found to display good

incremental behaviour. This is true in general for this algorithm, which
has been proved to identify k-contextual solutions in the limit.
On the negative side, we have not developed a form of explanation

which deals satisfactorily with sequence execution. It is hoped that by
continued research, John Roycroft may be able to suggest a more natural
form of explanation in line with that used by chess players to describe
sequences of play. Furthermore, since it was necessary to hand-translate
1D3-like example material from the PROLOG output form of the k-
contextual algorithm, it was clear that a better interface to the MucoL
environment is needed.

Acknowledgements
This research was carried out while the author was studying for a Ph.D. at Edinburgh
University sponsored by the SERC. Thanks are due to the Turing Institute and Edinburgh
University Al department for resource and facilities.
We would also like to thank Professor Michie and John Roycroft for their help and

guidance, and Thirza A. Castello-Cortes for helping to get it written on time.

REFERENCES

1. Shannon, C. E. (1950) Programming a computer for playing chess. Phil. Mag. 41,
256-275.

2. Bratko, I. and Michie, D. (1980) A representation of pattern-knowledge in chess
endgames. Advances in computer chess 2 (ed. M. R. B. Clarke) pp. 31-56. Edinburgh
University Press, Edinburgh.

3. Huberman, B. J. (1968) A program to play chess end-games. Technical report no. CS
106, Computer Science Department, Stanford University.

4. Quinlan, J. R. (1982) Semi-autonomous acquisition of pattern-based knowledge,
Introductory readings in expert systems, pp. 192-207. Gordon & Breach, New York.

5. Hunt, E. B., Marin, J., and Stone, P. (1966) Experiments in induction. Academic
Press, New York.

6. Shapiro, A. and Niblett, T. (1982) Automatic induction of classification rules for a
chess endgame. Advances in computer chess 3 (ed. M. R. B. Clarke) pp. 73-92.
Pergamon Press, Oxford.

7. Paterson, A. (1983) An attempt to use CLUSTER to synthesise humanly intelligible
subproblems for the KPK chess endgame. University of Illinois series (UIUCDCS-R-83-
1156).

8. Muggleton, S. H. (1984) Induction of regular languages from positive examples.
MINews 5, 41-59, Turing Institute, Glasgow.

9. Biermann, A. W. and Feldman, J. A. (1972) On the synthesis of finite-state machines
from samples of their behaviour. IEEE Transactions on Computers C21, 592-597.

10. Angluin, D. (1982) Inference of reversible languages. I. Association for Computing
Machines 29, 741-756.

383



INDUCTIVE ACQUISITION OF CHESS STRATEGIES

11. Muggleton, S. (1986) Inductive acquisition of expert knowledge. Ph.D. thesis,
University of Edinburgh.

12. Levine, B. (1982) The use of tree derivatives and a sample support parameter for
inferring tree systems. IEEE Transactions of Pattern Analysis and Machine Intelligence
PAMI4, 25-34.

13. Miclet, L. (1980) Regular inference with a tail clustering method. IEEE Transactions
on Systems, Man, Cybernetics SMC10, 737-743.

14. Muggleton, S. (1985) Some experiments with grammatical induction. MINews 7,
60-74.

15. Gold, E. M. (1967) Language identification in the limit. In! Control10, 427-474.
16. Zuidema, C. (1974) Chess, how to program the exceptions? Afdeling informatica

IW21/74 Mathematisch Centrum, Amsterdam.
17. Horwitz and Kling (1851) Chess studies. C. J. Skeet, London.
18. Thompson, K. (1985) Letter to J. Roycroft. EG (April 1985).
19. Roycroft J. (1983) A prophesy fulfilled. EG (Nov. 1983).
20. Michie, D., Muggleton, S., Riese, C., and Zubrick, S. (1984) RuleMaster: a

second-generation knowledge-engineering facility. Proc. First Conf. on Artificial
Intelligence Applications (1984).

21. Michie, D. (1984) Quality control of induced rule-based programs. The fifth generation,
CGS Institute notes.

22. Shapiro, A. D. The role of structured induction in expert systems. Ph.D. thesis,
University of Edinburgh.

APPENDIX A—EXAMPLE MOVE SEQUENCES

Actions

(Ba) wK approaches release position (e.g. h3) by moving along rank
or file.
(Bb) wK moves to non-check position on direct diagonal which is

closest to release position.
(Bc) wB(light) moves out to corner along its diagonal.
(Bd) white takes bN.

Attributes

(B1) White free to take bN.
(B2) wK on the same diagonal as release position.
(B3) wBh1 can move.
(B4) (wK on direct diagonal) and (direct diagonal position closest to

release position is covered).

384



MUGGLETON

Sequence 1. Starts from wKa8 and bN does delaying check.

B1 B2 B3 B4 Action

nnnn Ba
nnnnBa
n y nnBb
n y nnBb
Ii y n n

n
Bb
Ba

nnnnBb
n y nnBb

Bc

Position Move

wKa8 wBh1 wBh2 bKf3 bNg2 wKb8
wKb8 wBh1 wBh2 bKf2 bNg2 wKc8
wKc8 wBh1 wBh2 bKf3 bNg2 wKd7
wKd7 wBh1 wBh2 bKf2 bNg2 wKe6
wKe6 wBh1 wBh2 bKfl bNg2 wKf5
wKf5 wBh1 wBh2 bKfl bNe3 wKg5
wKg5 wBh1 wBh2 bKfl bNg2 wKg4
wKg4 wBh1 wBh2 bKf2 bNg2 wKh3
wKh3 wBh1 wBh2 bKfl bNf3 wBa8

The ̀—' in the last line allows the algorithm to generalize to the case in which bN releases
wB(light).

Sequence 2. Starts from wKb7 and bN does delaying check.

B1 B2 B3 B4 Action

nnnnBa
nnnnBa
n Y n n Bb
n Y n n Bb
n y nnBa
nnnnBb
n Y n n Bb
n — Y n Bc

Position Move

wKb7 wBh1 wBh2 bKf2 bNg2 wKc7
wKc7 wBh1 wBh2 bKf3 bNg2 wKd7
wKd7 wBh1 wBh2 bKf2 bNg2 wKe6
wKe6 wBh1 wBh2 bKfl bNg2 wKf5
wKf5 wBh1 wBh2 bKfl bNe3 wKg5
wKg5 wBh1 wBh2 bKfl bNg2 wKg4
wKg4 wBh1 wBh2 bKf2 bNg2 wKg3
wKh3 wBh1 wBh2 bKfl bNf3 wBa8

Sequence 3. Starts from wKb8 and bN does delaying check.

B1 B2 B3 B4 Action

nnnnBa
n y n n Bb
n Y n n Bb
n y nnBb
n Y n n Ba
nnnnBb
n y nnBb
n — y n Bc

Position Move

wKb8 wBh1 wBh2 bKf2 bNg2 Wkc8
wKc8 wBh1 wBh2 bKf3 bNg2 wKd7
wKd7 wBh1 wBh2 bKf2 bNg2 wKe6
wKe6 wBh1 wBh2 bKfl bNg2 wKf5
wKf5 wBh1 wBh2 bKfl bNe3 wKg5
wKg5 wBh1 wBh2 bKfl bNg2 wKg4
wKg4 wBh1 wBh2 bKf2 bNg2 wKg3
wKh3 wBh1 wBh2 bKfl bNf3 wBa8

385



INDUCTIVE ACQUISITION OF CHESS STRATEGIES

Sequence 4. Starts with wKa8 and bN does not do delaying check.

B1 B2 B3 B4 Action

nnnnBa
nnnnBa
n Y n n Bb
n y nn Bb
n Y n n Bb
n Y n n Bb
ny nn Bb
n Y n Bc

Position Move

Wka8 wBh1 wBh2 bKf3 bNg2 wKb8
wKb8 wBh1 wBh2 bKf2 bNg2 wKc8
wKc8 wBh1 wBh2 bKf3 bNg2 wKd7
wKd7 wBh1 wBh2 bKf2 bNg2 wKe6
wKe6 wBh1 wBh2 bKfl bNg2 wKf5
wKf5 wBh1 wBh2 bKf2 bNg2 wKg4
wKg4 wBh1 wBh2 bKfl bNg2 wKh3
wKh3 wBh1 wBh2 bKf2 bNf3 wBa8

Sequence 5. Starts with wKg4.

B1 B2 B3 B4 Action Position Move

n y
n —

n Bb wKg4 wBh1 wBh2 bKfl bNg2 wKh3
n Bc wKh3 wBh1 wBh2 bKf2 bNf3 wBa8

Sequence 6. Starts with wKh3.

B1 B2 B3 B4 Action Position Move

• 

— Y n Bc wKh3 wBh1 wBh2 bKf2 bNf3 wBa8

Black plays badly

Sequence 7. Starts with wKa8 after bK has left bN undefended (en prise).

B1 B2 B3 B4 Action Position Move

n Bd wKa8 wBh1 wBh2 bKe2 bNg2 wB x N!

Sequence 8. Starts with wKa8 and bK leaves bN as first move.

B1 B2 B3 B4 Action Position Move

n n n Ba wKa8 wBh1 wBh2 bKf3 bNg2 Wkb8
n n Bd wKb8 wBh1 wBh2 bKe3 bNg2 wB x N!

386



MUGGLETON

Sequence 9. Starts with wKg4 and bK leaves bN as first move.

B1 B2 B3 B4 Action Position Move

n y n n Bb wKg4 wBh1 wBh2 bKfl bNg2 wKh3

Y — n n Bd wKh3 wBh1 wBh2 bKel bNg2 wB x N!

Sequence 10. Starts with wKb8, bN does not do delaying check but
allows the release of wB.

B1 B2 B3 B4 Action Position Move

n n Ba wKb8 wBh1 wBh2 bKf2 bNg2 wKc8

- 

y n Bc wKc8 wBh1 wBh2 bKf2 bNdl wBc6

Sequence 11. Starts with wKe6, bN does delaying check and then allows
the release of wB.

B1 B2 B3 B4 Action Position Move

n y n n Bb wKe6 wBh1 wBh2 bKfl bNg2 wKf5
n y n n Ba wKf5 wBh1 wBh2 bKfl bNe3 wKg5
n — y n Bc wKg5 wBh1 wBh2 bKfl bNdl wBc6

Sequence 12. Starts with wKe6, bN does delaying check and then allows
itself to be taken (by moving to g4).

B1 B2 B3 B4 Action Position Move

I1 y n n Bb wKe6 wBh1 wBh2 bKfl bNg2 wKf5
n y n n Ba wKf5 wBh1 wBh2 bKfl bNe3 wKg5
Y — n n Bd wKg5 wBh1 wBh2 bKfl bNg4 wKg4!

Sequence 13. Starts with wKd7, bN checks allowing itself to be taken by
wB(dark).

B1 B2 B3 B4 Action Position Move

• 

y n

Y Y

• 

Bb wKd7 wBh1 wBh2 bKf2 bNg2 wKe6

• 

Bd wKe6 wBh1 wBh2 bKf2 bNf4 B x N

387



INDUCTIVE ACQUISITION OF CHESS STRATEGIES

APPENDIX B—RESULT OF SEQUENCE INDUCTION

Actions

(Ba) wK approaches release position (e.g. h3) by moving along rank
or file.
(Bb) wK moves to non-check position on direct diagonal which is

cloest to release position.
(Bc) wB(light) moves out of corner along its diagonal.
(Bd) White takes bN.

Attributes

(B1) White free to take bN.
(B2) wK on the same diagonal as release position.
(B3) wBh1 can move.
(B4) (wK on direct diagonal) and (direct diagonal position closest to

release position is covered)

B1 B2 B3 B4 (Action, Next State)
State 0
n — y n 

• 

(Bc, GOAL)
n n n n 

• 

(Ba, 1)
n y n n (Bb, 2)
y — n n (Bd, GOAL)
State 1
n — y n 

• 

(Bc, GOAL)
n n 

• 

(Ba, 1)
n y n n (Bb, 2)
y — n n 

• 

(Bd, GOAL)
State 2
n — y n 

• 

(Bc, GOAL)
n y n n 

• 

(Bb, 2)
n y n y 

• 

(Ba, 3)
y — n n 

• 

(Bd, GOAL)
y y y n 

• 

(Bd, GOAL)
State 3
n — y n 

• 

(Bc, GOAL)
n nnn 

• 

(Bb, 4)
y — n n 

• 

(Bd, GOAL)
State 4
n y 

• 

(Bb, 2)

APPENDIX C—AUTOMATA AFTER me-LIKE INDUCTION

Actions

(Ba) wK approaches release position (e.g. h3) by moving along rank
or file.

388



MUGGLETON

(Bb) wK moves to non-check position on direct diagonal which is
cloest to release position.
(Bc) wB(light) moves out of corner along its diagonal.
(Bd) White takes bN.

Attributes

(B1) White free to take bN.
(B2) wK on the same diagonal as release position.
(B3) wBh1 can move
(B4) (wK on direct diagonal) and (direct diagonal position closest to

release position is covered).

State 0
[B1]

y: (Bd, GOAL)
n:[B3]

y: (Bc, GOAL)
n:[B2]

y: (Bb, 2)
n: (Ba, 1)

State 1
[B1]

y: (Bd, GOAL)
n:[B3]

y: (Bc, GOAL)
n: [B2]

y: (Bb, 2)
n: (Ba, 1)

State 2
[B11

y: (Bd, GOAL)
n: [B3]

y: (Bc, GOAL)
n:[B4]

y: (Ba, 3)
n: (Bb, 2)

State 3
[B1]

y: (Bd, GOAL)
n: [B4]

y: (Bc, GOAL)
n: (Bb, 4)

State 4
(Bb, 2)
GOAL

389





18

Validation of a Weather Forecasting
Expert System
S. Zubrick*
Radian Corporation.
Austin, Texas, USA

Abstract

This paper compares two sources of advice for forecasting of severe
thunderstorms: an expert system (WILLARD) and government-issued
severe weather outlooks. WILLARD was constructed by a meteorologist
using the RuleMaster expert system building facility, which features rule
induction from examples of expert decision-making. The validation
period spans two months during the peak central United States thun-
derstorm season for 1984. The forecast comparisons are presented in
terms of statistical properties: the Probability of Detection, the False
Alarm Rate, and the Critical Skill Index. Even though WILLARD was
developed as a demonstration system, its forecasting accuracy on major
severe weather days is comparable to government-issued forecasts for the
validation period. By examining the results of the comparison, de-
ficiencies in WILLARD were identified that can be rectified in future
versions, thereby increasing WILLARD'S store of weather knowledge.

1. INTRODUCTION

This paper describes the results obtained in comparing two sources of
advice for severe thunderstorm forecasting for the central United States
(US): one, the standard convective outlook issued by forecasters of the
Severe Local Storm Unit (sELs) of the National Weather Service's (Nws's)
National Severe Storms Forecast Center (NssFc); the other, a similar
outlook made by a prototype expert system called WILLARD.
A thunderstorm is considered severe if any one of the following

phenomena accompanies the thunderstorm (and is reported):
• tornadoes (intense, small-scale cyclones);
• hailstones cm ( in.) in diameter;
• surface wind gusts in excess of 93 km h-1 (50 knots) and/or

significant wind damage.

* Current address: National Oceanic and Atmospheric Administration, National Weather
Service, Silver Spring, Maryland, USA.

391



VALIDATION OF A WEATHER FORECASTING EXPERT SYSTEM

To understand better the nature of severe thunderstorm forecasting.
Section 2 discusses some fundamental reasoning processes used by a
meteorologist in forecasting severe thunderstorms. An overview of the
method used by SELS forecasters at NSSFC will be provided, followed by a
description of the WILLARD expert system.

Testing WILLARD using actual weather data is the subject of Section 3,
which includes a discussion of the verification methods used. Also
included are definitions for and the significance of three statistical
parameters important in assessing a severe thunderstorm forecast: the
Probability of Detection (PoD), the Critical Skill Index (CS/), and the
False Alarm Ratio (FAR). These will be given for WILLARD'S and SELS'
outlooks. Other statistical parameters useful in verifying forecasts are
also presented, together with comparison and discussion of forecasts
made by SELS and WILLARD for selected days during the springtime 1984
central us severe thunderstorm season. The statistical parameters intro-
duced in Section 3 for WILLARD'S outlooks are shown to be comparable to
NSSFC forecast outlooks in many respects. WILLARD'S forecast reasoning is
compared with that of SELS for a cross-section of severe, marginally
severe, and non-severe weather days. An appendix for each test case
study day highlights relevant meteorological factors recognized by each
forecaster (sEts and WILLARD).

2. PROBLEM DEFINITION

'Successful tornado and severe-thunderstorm forecasting is largely depend-
ent upon the forecaster's ability to carefully analyze, coordinate, and
assess the relative values of a multitude of meteorological variables, and
mentally integrate and project these variables three-dimensionally in space
and time.' (Miller, 1972, p. 1.)

2.1. Weather data and forecasting

An important forecasting task is evaluating the basic accuracy and
reliability of meteorological data. The forecaster must have physical
access to weather data with enough time to analyse them and make his
forecast. Much weather data are contained in graphical format, such as
maps, charts, and satellite images. Most time spent by the forecaster in
preparing his forecast is used in carefully examining and analysing these
graphical data. Pattern recognition is an important technique the
forecaster uses in extracting features important in severe thunderstorm
forecasting. In fact, recent advances in severe thunderstorm forecasting
accuracy have been attributed to use of sophisticated graphic display
workstations that allow forecasters to examine quickly a large amount of
meteorological data (Suomi et al., 1983; Reynolds, 1983; Kerr, 1984;
Mandics and Brown, 1985).

392



ZUBRICK

A fundamental factor affecting severe thunderstorm forecast accuracy)
involves the temporal and spatial resolving power of the current
data-gathering network in the central US. This network was originally
designed to observe large-scale weather systems: the major cyclones and
anticyclones that govern regional weather and the fronts between air
masses of different properties. In the central US, stations taking surface
observations are spaced roughly 100-250 km apart and measure surface
conditions hourly. Stations which measure winds, temperatures, and
moisture through the depth of the atmosphere are spaced even further
apart; averaging 300-500 km apart and taking observations only twice per
day.
As such, this network does a good job providing information concern-

ing these large-scale systems. However, it provides only sporadic
information about individual thunderstorms and tornados which occur on
the 'storm-scale' (i.e. between 2-200 km; 0.5-6 hours) between observ-
ing stations, and very little information about the specific location and
time of occurrence of these severe events. This affects severe thun-
derstorm forecasting because there is insufficient resolution of weather
features that play major roles in delineating severe areas.

Since the data network is not equipped to observe storm-scale weather
phenomena, the forecaster must squeeze out small details from data sets
to make his forecast of severe weather, often basing his forecast on
somewhat shaky evidence obtained from the data. Solutions have been
offered by respected institutions which would effectively increase the
amount of data available from the network 10-fold (ucAR, 1982). One
wonders if the forecasters will be able to assimilate this increase
effectively. However, it is hoped that expert systems for weather data
assimilation and forecast guidance support might go some way towards
solving this problem in the future.

2.2. Human forecaster skills

Severe thunderstorm forecasting requires the ability to integrate and
process an enormous amount of weather information contained in the
data to produce a forecast within a short time period. In many instances a
parameter overlooked by a forecaster because he is too busy could
significantly affect the placement of a severe weather threat area.
Another factor affecting forecast accuracy is the forecaster's ability to •

recall his knowledge accurately and consistently. Forecasts have often
been wrong simply because the forecaster forgot a general heuristic rule
governing a particular severe weather situation. This occurs more
frequently at the beginning of the peak severe thunderstorm season,
when forecasters tend to be a little rusty in applying their rules. In the
central US, the peak severe thunderstorm season runs from March
through July.

393



VALIDATION OF A WEATHER FORECASTING EXPERT SYSTEM

WILLARD was designed as an expert system to aid severe thunderstorm
forecasters to improve their ability to forecast severe weather in a more
accurate and timely manner, by: (i) providing a consistent expert-forecast
knowledge base to the forecaster; and (ii) routinely applying this
knowledge base to incoming data to yield initial guidance available in real
time.
Before discussing how WILLARD operates, this paper will discuss the

basic ingredients for producing severe thunderstorms, and introduce
some basic terminology. This is necessary for understanding the discus-
sion of comparisons between WILLARD'S forecast advice and advice given
in government-issued forecasts.

2.3. Severe thunderstorm forecasting methods

It is beyond the scope of this paper to explain all details involved with
severe thunderstorm forecasting. There are a few 'cookbook-style' texts
that offer fairly explicit methods (see Miller, 1972; Crisp, 1979). The
meteorological literature contains a wealth of information (see, e.g.,
Foster and Bates, 1956; Maddox and Doswell, 1982; Porter et al., 1955).
This paper provides a cursory introduction to severe thunderstorm
forecasting to familiarize the reader with common parameter names. It
will briefly discuss three ingredients necessary for severe thunderstorms:
moisture (convective instability), lifting (triggering) mechanisms, and
venting mechanisms (which also act as trigger mechanisms).

2.3.1. Moisture (convective instability)

It is not surprising that moisture is a key parameter analysed by severe
thunderstorm forecasters. When moist air ascends it cools and allows
condensation of its water vapour to form clouds. But without a
mechanism that allows moist air to be rapidly carried upwards, causing an
explosive release of an air parcel's latent heat of vaporization to the
surrounding environment, there would be no severe thunderstorms.
Most severe thunderstorms are associated with areas where the

convergence, or focusing, of moisture in the lowest few kilometers of the
atmosphere is concentrated over a relatively small area (several thousand
square kilometers) (Hudson, 1971). Moisture convergence zones tend to
be found along thermal boundaries, like warm and cold fronts. These
zones of concentrated low-level moisture are the favoured breeding
grounds for severe thunderstorms.
In the central US, this moisture usually originates from the Gulf of

Mexico and is normally fairly warm. This warmth also aids in thun-
derstorm formation. In severe situations, moisture is often found in a
distinct tongue of high moisture that is rapidly carried northward into the
interior of the central US. An unstable air mass is one that is both warm

394



ZUBRICK

and moist. If lifted, air parcels within an unstable air mass easily become
buoyant and aid the growth of thunderstorms. This latter concept is
referred to as convective instability. There are various measures of air
mass instability. Some common ones are the Lifted Index (Galway,
1956), K-Index, and Total-Totals Index.

2.3.2. Lifting mechanisms

Once an area of low-level moisture convergence is found, one looks for a
suitable mechanism that allows the moist air mass to be lifted aloft.
These mechanisms are generally characteristic of atmospheric features
called upper-level, low-pressure centres or troughs. In fact, a low-
pressure trough is akin to a trough in a water wave. Forecasters look for
severe weather in front of an approaching low-pressure trough because
this region provides an environment of rising air motions.
Movement of upper-level, low-pressure troughs are monitored by

examining a parameter that measures the spin of the atmosphere known
as vorticity. Regions where upper-level vorticity is a maximum are highly
correlated with maximum rising air currents.
Other mechanisms that allow for rapidly rising air currents include

strong surface daytime heating (causing moist air parcels to be intensely
buoyant), orographic flow (as in flow rising over a mountain), frontal
boundaries (which provide mechanical lift from cold (dense) air wedging
underneath warm, moist (less dense) air, and small scale surface
circulation features known as meso-lows.

2.3.3. Venting mechanisms

After the moisture field and lifting mechanisms are identified, the
forecaster then determines if there is present an upper-level feature that
essentially acts as a 'venting mechanism'. This mechanism allows rising
air currents to be carried up and out of the lower atmosphere. If strong
enough, this sets up a vertical circulation that intensifies the thun-
derstorm (McNulty, 1978).

Upper-level venting mechanisms are found when the forecaster spots
an extremely fast and narrow upper level wind current (or jet streak)
flowing at about 10 km in altitude. This high-speed wind current tends to
draw air upwards through the storm's centre—akin to a high wind
drawing air up a chimney. This results in increased amounts of warm
moist air being drawn into the storm by the low-level winds converging
into the storm system. The higher this jet streak's speed, the more
destructive are the severe storms. Speeds observed in violent severe
storm systems range anywhere from 250 to over 400 km 11-1.
In the central us, it is common in the springtime for this high-speed

395



VALIDATION OF A WEATHER FORECASTING EXPERT SYSTEM

wind current to be associated with the subtropical jet stream, which is
frequently associated with severe thunderstorm outbreaks (Whitney,
1977). Certain regions surrounding the upper-level jet max core are
conducive to enhancing severe weather, especially when the exit region
of the jet streak interacts with lower-level wind features to create
differential temperature and moisture transports (Uccellini and Johnson,
1979). The presence of a strong upper-level jet streak is highly correlated
with the formation of strong tornadoes.

Generally, for severe thunderstorms to occur there needs to be a
'phasing in' of maximum low-level moisture convergence, lifting mechan-
isms, and venting mechanisms over a small region. The major forecast
objective is to identify these small regions and define the times of severe
weather onset and cessation.

2.4. Severe thunderstorm outlooks

2.4.1. Government-issued severe thunderstorm outlooks

The SELS of the NSSFC issues medium-range, severe local storm outlooks
three times daily during the us severe thunderstorm season. An early
outlook is issued at 08.00 Universal Coordinated Time (ucr or Z), a
morning outlook is issued at 15.00Z and an afternoon update is issued at
19.30Z. These outlooks are disseminated to various government and
private agencies to provide preliminary guidance on expected severe local
thunderstorm development in an 18-24 time period covering the entire
contiguous US. For example, the outlooks are used by NWS Regional

Forecast Offices in preparing state, zone, local, and aviation forecasts
(Otsby, 1979).
A severe thunderstorm outlook contains a phrase specifying the

expected areal density of severe weather coverage occurring within the
valid period of the forecast area. A typical SELS outlook covers an area
approximately 337,000 square kilometres [130,000 square statute miles
(sq sm)]. The areal density/risk categories as specified in the NWS
Operations Manual Chapter C-40 (1979) that are followed by SELS
forecasters are:
• Slight risk: 2-5 per cent areal coverage or 4-10 MDR (Manually

Digitized Radar, see below) blocks with severe thunderstorms per
100,000 sq sm of outlook;
• Moderate risk: 6-10 per cent areal coverage or 11-21 MDR blocks

with severe thunderstorms per 100,000 sq sm of outlook;
• High risk: greater than 10 per cent areal coverage or more than

21 MDR blocks with severe thunderstorms per 100,000 sq sm of outlook.
An MDR (Manually Digitized Radar) block measures approximately

41 km (22 sm) on a side, occupying an area of 1681 sq km (484 sq sm).

396



ZUBRICK

Note that only a small fraction of the outlook area is expected to
experience severe weather. Other thunderstorm categories are given in a
SELS outlook. They include an approaching density/risk and a general
non-severe thunderstorm category. However, both of these categories are
classified as non-severe and are not verified at SELS so they will not be
considered in this paper.
Each SELS outlook contains forecast reasoning in the form of a

narrative text. This reasoning points out the major factors that influenced
the forecaster's selection of a threat area. It basically relates how present
weather conditions will evolve to allow the formation of severe thun-
derstorms. This reasoning is used by forecasters in the field either to
accept or to modify the outlook area. Graphic maps are also dissemin-
ated over facsimile circuits for SELS outlook areas.
In producing the outlook, SELS forecasters have considerable prognostic

and diagnostic guidance available (Pearson and Weiss, 1979). Prognostic
guidance is derived in part from an operational numerical primitive
equation model of the atmosphere called the Limited Fine Mesh (um) II
Model.
From LFM data, contour maps are generated and disseminated to SELS

forecasters who examine these maps for clues of impending severe
weather. The same um data used to generate these maps is used in its
gridded form by a host of FORTRAN analysis routines callable by
WILLARD. These routines are used to extract information on features
necessary in producing the severe weather outlook.

Diagnostic aids used at SELS include computer-plotted surface weather
maps, upper-air soundings, and numerous derived objective analyses,
such as 500 millibar absolute vorticity, upper tropospheric mean diver-
gence, air mass stability, and low-level moisture convergence. In addi-
tion, the latest visible and infrared satellite imagery is available to
forecasters for evaluating and updating the numerical guidance. Other
members of the NSSFC staff assist SELS forecasters in analysis of local radar
data for identifying severe thunderstorms. (Satellite data was not used in
WILLARD.)
This paper will examine (for comparison purposes) the forecast

outlooks issued by SELS at 08.00Z. This outlook relies heavily upon
numerical guidance from the LFM model, especially the 24-h model
forecasts made from the 00.00Z LFM model run cycle. The forecaster
usually has at least 3-5 h available to examine model results before
issuing the 08.00Z outlook.

2.4.2. WILLARD: an expert system to produce severe outlooks

The expert system WILLARD produces an outlook of severe thun-
derstorms that is similar to the SELS 08.00Z convective outlook. However,

397



VALIDATION OF A WEATHER FORECASTING EXPERT SYSTEM

it differs from the SELS outlooks in that its areal extent only covers the
central one-third of the us (Figure 1), and is valid for a 12-h time period
rather than a 24-h period.

Figure 2 outlines the general information flow path while running
WILLARD. The main source of input data used by WILLARD (viz., the LFM
model output forecast data) is a major subset of input data used by SELS
forecasters in generating their 08.00Z severe outlook.
To produce an outlook with WILLARD, gridded data from the LFM

model is obtained and stored on the computer (WILLARD runs on a Sun
100). A host of FORTRAN analysis routines that compute various diagnos-
tic parameters from the um data files are available to WILLARD. When
WILLARD'S knowledge-base is run, it obtains most of the necessary
answers to its questions by requesting information from the FORTRAN
analysis routines. Answers not available from the data base are requested
from the meteorologist running the expert system.
A point forecast is made for a grid point, which coincides with the grid

mesh of the LFM model output data. This grid mesh is roughly 200 km on
a side. WILLARD is run repeatedly over a 14 x 10 grid mesh covering the
central us. The result of this run is an array of 140 point forecasts stored
in a disk file. Subjective contour analysis is used to delineate areas with
the same density/risk categories (some smoothing of the categories is
done for verification purposes). These areas are plotted on a base relief
map of the central US.
WILLARD'S knowledge base was developed over the course of several

months by a meteorologist familiar with severe thunderstorm forecasting
procedures. Discussions with former SELS forecasters and others identified
main parameters to be examined. The meteorological literature was used
to understand better the effects of various relationships between para-
meters pertaining to severe thunderstorms. Actual weather data during
severe, marginally severe, and non-severe weather days were also
examined.

It became apparent from reading the meteorological literature and
discussing forecasting methods that no coherent system of rules covering
all possible severe storm cases had yet been synthesized. The availability
of an expert system building facility called RuleMaster (see Michie et al.,
1984), which could build classification rules by rule induction, was
thought to provide a potential solution. Using this system, classification
rules are induced by generalization over examples of expert decision-
making. An example is expressed as a vector of values pertaining to
attributes of the decision, together with the expert's classification (Michie
et al., 1984; see also Quinlan, 1979).
For purposes of rapid development, subjectively selected examples

were used to build the prototype expert system. Cases of real weather
data were subsequently applied in the ongoing refinement of WILLARD.

398



Boundary of Thunderstorm Area
(Storms expected to right of line)

Severe Weather Outlook Area

ZUBRICK

FCSTR:

SEVERE WEATHER OUTLOOK

VALID:

Figure 1. Map of central United States representing WILLARD'S 
forecast domain area

(hatched area).

Gridded
LFM Model

Data

f
Fea ure

Extraction
(User /Auto)

[User Forecast

Figure 2. Information flow diagram for WILLARD.

399



C
h
a
n
c
e
 o
f

S
e
v
e
r
e
 W
e
a
t
h
e
r

Lo
w-
le
ve
l

m
o
i
s
t
u
r
e

S
u
r
f
a
c
e

d
e
w
 p
oi
nt

8
5
0
 m
il

ll
ba

t
d
e
w
 p
oi
nt

Lo
w-

le
ve

l
de
st
ab
il
iz
at
io
n

po
te

nt
ia

l

C
h
a
n
g
e
 o
f

t
o
w
-l

ev
el

mo
is

tu
re

5
0
0
 m
il
li
ba
r

sh
or

t 
w
a
v
e

Ve
rt

ic
al

ve
lo
ci
ty
 h
el
d

Fr
on

ta
l

b
o
u
n
d
a
r
y

U
p
s
l
o
p
e

fl
ow

Up
pe
r-
le
ve
l

de
st
ab
il
iz
at
io
n

po
te

nt
ia

l

Pr
ev
en
ta
ti
ve

fa
ct

or
s

M
e
s
o
l
o
w

o
c
c
u
r
r
e
n
c
e

S
u
b
s
i
d
e
n
c
e

C
h
a
n
g
e
 o
f

l
o
w
 
e
v
e
!

mo
is

tu
re

M
i
d
 l
ev
el

w
i
n
d
 s
h
e
a
r

—
I
—
 

-
-
I
-
-

L
o
w
 l
ev

el
w
a
r
m
 a
ir

ad
ve

ct
io

n

So
la

r
In
so
la
ti
on

L
o
w
 l
ev

el
w
i
n
d
 f
ie

ld
St

ab
il

it
y

in
di
ci
es

IC
-I

nd
ex

To
ta
l.

to
ta
ls

In
de

x

Fi
gu
re
 3
. 
Hi
er
ar
ch
ic
al
 s
tr
uc
tu
re
 o
f 
Wt
u.
An
n'
s 
kn
ow
le
dg
e -
ba
se
.

U
p
p
e
r
 l
ev
el

di
ff
lu
en
ce

Li
ft
ed
 

U
p
p
e
r
 l
ev
el

In
de

x 
di

ve
rg

en
ce

La
ps
e

ra
te

U
p
p
e
r
 le

v-
 e-

 l
co

ld
 a
ir

ad
ve

ct
io

n

M
O
 m
il
li
ba
r

ve
rt
ic
al

m
o
t
i
o
n
s

70
0-
25
0 
mi
ll
ib
ar

th
ic
kn
es
s

c
h
a
n
g
e



ZUBRICK

The WILLARD expert system is composed of a hierarchy of 30 modules
(Figure 3), each containing a single decision rule. This hierarchy is on
average four levels deep. All decision rules within each module were
developed using inductive generalization (except for some looping
control for executing over the grid of data). About 140 examples out of a
possible nine million situations were used in building WILLARD.
For the top-level module (Chance of Severe Weather in Figure 3),

inductive generalization was able to order the critical meteorological
factors in a manner consistent with the way forecasters perform their
analysis. For example, if the key factors were all totally unfavourable, a
rapid decision could be made: otherwise, more parameters were investig-
ated until a decision could be reached.
WILLARD was designed to operate in either manual or automatic

forecast mode. In manual mode, the system asks the meteorologist about
pertinent weather conditions for the forecast area and produces a
complete, reasoned forecast. In automatic mode, WILLARD obtains
necessary information from National Meteorological Center data files
(viz., the LFM gridded data), with some information obtained from a
meteorologist interactively.
The form of a typical decision rule along with the attribute value set is

shown in Figure 4. This rule is used in determining whether the low-level

EXAMPLE SET

solar low—level
insolation jet indices

strong present marginal > (favor. GOAL)
strong absent weak -> (unfav, GOAL)
weak present strong -> (margin, GOAL)
strong absent strong -> (favor, GOAL)
strong absent marginal => (margin, GOAL)
weak absent marginal •> (unfav, GOAL)
weak present marginal (margin, GOAL)

INDUCED RULE FROM 'LL_DSTAILIND*

(indices)
weak : ( unfav, GOAL )

marginal : Isolar_insol1
strong : Ilow_level_jet1

present: -> (favor. GOAL)
absent : ( margin, GOAL)

weak : Ilow_level_jet1
present: -> ( margin, GOAL)
absent : ( unfav, GOAL)

strong : Isolar_Insol
strong: (favor. GOAL )
weak: => (margin, GOAL )

Figure 4. Example of induction set and corresponding decision rule.

401



VALIDATION OF A WEATHER FORECASTING EXPERT SYSTEM

destabilization is unfavourable, marginal, or favourable for severe
thunderstorm formation.
The decision rules for all of the modules shown in Figure 3 were

examined by a meteorologist for correctness and consistency by applying
the rules individually and collectively using actual severe weather data.
The meteorologist could then change attribute values and induce a new
set of decision rules until finally he was satisfied with the rules produced.
Another utility of the RuleMaster system, Radial, was used to execute

the complete WILLARD expert system. Initial testing uncovered numerous

errors in both the knowledge-base and also in the FORTRAN analysis

routines. In mid-1984, after these errors were rectified, it was
decided that the WILLARD knowledge-base must remain static while a
series of validation runs were completed and analysed. The results of this
validation and analysis are presented in the next section. These results
should be viewed as the first verification data of a prototype weather
forcasting expert system. They have already provided direction for future
improvements and refinements in both the WILLARD knowledge-base and
analysis package.

3. VERIFICATION

The methodology used in verifying WILLARD'S and SELS' forecasts was the
same as that used by NSSFC researchers (Weiss et al., 1980). Each severe
thunderstorm outlook area is examined to produce statistical data useful
in evaluating the forecasts. Since WILLARD produces a severe thun-
derstorm outlook similar to those produced by NSSFC forecasters, this was
a reasonable verification method.
Three test case study days are discussed in detail and included as an

Appendix. The study days were 29 April 1984, 25 May 1984, and 7 June
1984. Two of these days (29 April and 7 June) were chosen to highlight
forecasting abilities during major severe weather outbreaks. The other
day (25 May 1984) was chosen as a day representing a minor outbreak
day.

Actual SELS outlooks contain forecast reasoning on why an area could
experience severe thunderstorms. This reasoning was compared with
WILLARD'S reasoning for each of the test case study days. Actual weather
data for these test days were consulted to aid in interpreting the
reasoning behind each forecast. The following discussion of verification
statistics follows closely the discussion found in Weiss et al. (1980).

3.1. Methodology for verification statistics

3.1.1. Definitions of major verification statistics

Verification of severe thunderstorm outlooks is based upon the critical
skill index (CSI) (Donaldson et al., 1975) applied over a large area. It is

402



ZUBRICK

the ratio of successful predictions of severe weather to the number of
severe events that occurred or were forecast to occur. CS/ scores over 0.5
are considered good by SELS forecasters.
For purposes of severe weather verification, the CS/ is first computed

by dividing all weather events for a given outlook into four groups:
x—severe storm reports correctly predicted (i.e. those reports found

within a severe risk outlook area);
y—severe storm reports not predicted (i.e. those lying outside the

severe risk outlook area);
z—non-severe weather predicted as severe; and
w—non-severe weather correctly predicted.

The probability of detection (PoD) is the proportion of severe weather
events correctly forecast:

PoD =x/(x +y) (1)

An outlook area that contains all of the severe weather reports will
have a PoD of unity. The PoD is normally expressed in per cent, so that
its range is 0-100 per cent. A PoD of 100 per cent is the best value for an
outlook.
The false alarm ratio (FAR) is the proportion of predictions that fail

to verify:

FAR =z/(z +x). (2)

The FAR ranges between 0 and 1. A FAR of 0 indicates a perfect
forecast. The FAR is modified by the use of an areal distribution term
(Weiss et al., 1980), which quantitatively determines the amount of
over-forecasting from either the outlook area being too large or
insufficient density of severe reports. Thus while a high PoD is obtained
when a large percentage of severe weather events occurs within a
forecaster's outlook area, he is discouraged from forecasting excessively
large areas which would increase the FAR and decrease the CSI.
The CSI can now be expressed in terms of PoD and FAR.

CSI =x/(x +y + z)= {(11PoD)+ [1/(1 - FAR)] - 1)-1. (3)

The CSI ranges from zero to unity, with higher numbers indicating
better forecasts. The CSI is also known as the Threat score. Some
outlooks may forecast severe weather in several unconnected regions.
Here, separate FARs are calculated for each area, and an area-weighted
average is computed for the entire outlook. This average FAR is then
used with the total percentage of all severe events within the forecast
area (PoD) to calculate a single CSI via equation (3) for the entire
outlook for that day (Weiss et al., 1980).

403



VALIDATION OF A WEATHER FORECASTING EXPERT SYSTEM

3.1.2. Other statistical parameters

The extent of areal coverage (CA) is that portion of the outlook area in
which severe weather events occur. It is defined as:

CA = [(no. of MDR blocks with severe events) x K]/(outlook area)
(4)

where a MDR block can only be counted once no matter how many severe
events might be clustered within a single MDR block (by definition at
NssFc). The constant K is equal to 1681 sq km (484 sq sm), the area
covered by a single MDR block.
The coverage bias (CBIAS) is defined as the ratio of the actual areal

coverage to the forecast areal coverage. The forecast areal coverage is
determined from the outlook risk category of the outlook. If the actual
areal coverage lies within the range of the forecast risk category, then no
coverage bias exists (i.e. CBIAS = 1.0). If the actual areal coverage is
outside the range of the forecast risk category, the forecast coverage is
taken as the category extreme closest to the actual coverage.
The good area is that portion of the outlook area affected by severe

weather. This statistic incorporates both the forecast areal coverage and
the areal distribution of severe reports within the outlook area. In
particular, for a Slight risk each event is assumed to affect a 6 x 6 MDR
grid array surrounding the event (2.77 per cent areal coverage); for a
Moderate risk each event affects a 4 x 4 array (6.25 per cent, areal
coverage); and for a High risk each event affects a 3 x 3 array (11.11 per
cent areal coverage). The total number of MDR blocks determined in this
manner is summed to compute the good area. Each MDR block can be
counted only once using this method. If the good area is the same as the
original outlook area, then this is considered a representative forecast
(although, this outlook could still miss severe events outside its area).
A FAR can also be defined as one minus the good area percentage (the

proportion of the outlook area affected by severe weather), or

FAR =1-- (affected area/area of ourlook). (5)
The bad area is that portion of the outlook area not affected by severe

weather, and is defined as:

bad area = (area of outlook) — (good area). (6)

A bad area equal to zero would mean that the good area is equal to the
original area of the outlook (which is what one desires). The sum of the
good and bad areas equals the original outlook area.

3.2. Overall verification statistics

This section discusses the verification results for both WILLARD and SELS
on the selected days during the spring 1984 central US peak thunderstorm

404



ZUBRICK

season. There were a total of 30 WILLARD severe thunderstorm outlooks
generated spanning a period from 22 April through 11 June 1984. Since
the NSSFC verification scheme is only applicable on days when severe
weather was outlooked (i.e. a category of Slight, Moderate, or High
risk), the actual number of WILLARD outlooks verified by NSSFC was 24,
because WILLARD generated six no severe outlooks. Statistics on the 24
WILLARD outlooks verified by NSSFC are given in Table 1.
The overall PoD for WILLARD'S 24 outlooks was 37 per cent. The FAR

was 0.628 for these outlooks. These two parameters combined yielded an
average CS/ of about 0.20. Each of these experienced a wide range of
daily values. For WILLARD'S PoD, the range was 0-100 per cent; for the
FAR, the range was 0.116-1.000; and for the CS/, the range was
0.000-0.691.
The average size area for WILLARD outlooks was about 260,000 sq km

(100,000 sq sm). This was almost one half the average size for SELS
outlooks during this period and a similar springtime period (Weiss and
Reap, 1984). The average good area for WILLARD was over 93,000 sq km
(36,000 sq sm). The average bad area for these outlooks was about
166,500 sq km (64,300 sq sm). June 7 had the largest good area of all
days, with an area of over 114,500 sq sm. June 4 had the largest bad area
of 430,399 sq sm. There were two days on which the good area equalled
the original outlook area (26 and 29 April) while there were six days on
which the bad area equalled the original outlook area (28 April; 2, 22, 23
May; and 1, 2 June).
For the 24 WILLARD outlook forecasts, there were 1001 severe weather

reports, 190 of these being tornadoes. WILLARD captured 369 of 1001
reports, including 82 of the tornadoes within its outlook areas. The areal
coverage for the test period was 5.5 per cent, tor which a forecast Slight
risk category would give a coverage bias of unity. WILLARD'S category
tended to over-forecast slightly as indicated by an average CBIAS of
0.830. There were five days when the coverage bias was near unity.

Since WILLARD used fairly large-scale data, its outlooks forecast areas
of widespread severe weather rather than isolated severe thunderstorms.
When days were chosen that had more than 10 tornadoes, the WILLARD
CSI became 0.33, with the PoD being 40 per cent and the FAR being
0.442. In addition, on these days the average WILLARD outlook area
became 206,200 sq km (79,610 sq sm). The average good area became
169,600 sq km (65,480 sq sm) with the average bad area being
36,600 sq km (14,130 sq sm). The areal coverage of severe weather on
these days was 14.4 per cent, which implies a High risk category being
the proper outlook category. The coverage bias on these days was 1.92,
implying that WILLARD outlooks tended to under-forecast on these days.
Table 2 contains verification data for SELS 08.00Z convective outlooks

for the same 24 days of WILLARD outlooks (P. W. Leftwich, NSSFC,

405



Ta
bl

e 
1.
 V
er

if
ic

at
io

n 
st
at
is
ti
cs
 f
or

 W
IL

LA
RD

 o
ut
lo
ok
s 
o
n
 s
el

ec
te

d 
da

ys
 i
n 
19
84
.

Ye
ar
 
M
o
n
t
h
 
D
a
y
 
A
r
e
a

Hi
ts

Se
ve
re
 

P
o
D
 
To
rn
ad
o

re
po
rt
s 
%
 

hi
ts
 

To
rn

ad
os

 
%

Ar
ea
l

co
ve
ra
ge

C
B
I
A
S
 
Fa
r

G
o
o
d

ar
ea

B
a
d

ar
ea

C
S
I

84
 

4
25

44
35

6
11

19
 

57
 

3
6
 

60
0.
06
5

1.
09

1
0.

22
5

34
36

4
99

32
0.
48
9

84
 

4
26

13
27
75

44
22
0 

20
 
6

29
 

20
0.

10
2

1.
58
0

0.
40
9

89
47

7
43
29
8

0.
17

6
84

 
4

27
21
35
9

10
55

 
18
 

2
13

 
15

0.
20
4

3.
39
9

0.
48
4

21
35

9
0

0.
15

4
84

 
4

28
42

00
1

0
1 

0
 
0

0
 

0
0.

00
0

0.
00
0

1.
00
0

0
42

00
1

0.
00
0

84
 

4
29

93
89
9

78
14

2 
54
 

12
26
 

46
0.
25
8

3.
12

7
0.

33
5

93
89
9

0
0.

42
4

84
 

5
2

85
07

0
12

1 
0
 
0

19
 

0
0.

00
0

0.
00
0

1.
00
0

0
85
07

0.
00
0

84
 

5
3

32
90

0
4

13
 

30
 
0

1 
0

0.
05
9

0.
98

1
0.

65
5

15
72

5
17

17
5

0.
19
1

84
 

5
22

61
39
1

0
0
 

0
 
0

0
 

0
0.

00
0

0.
00
0

1.
00
0

0
61

39
1

0.
00
0

84
 

5
23

13
50
7

0
2
 

0
 
0

1 
0

0.
00
0

0.
00
0

1.
00
0

0
13

50
7

0.
00
0

84
 

5
24

91
14
8

8
25

 
32
 

1
4
 

25
0.
03
7

1.
00
0

0.
12

4
79

86
0

11
28
8

0.
30

6
-1=

■
84

 
5

25
77

74
2

15
22

 
68

 
1

2
 

50
0.
06
8

1.
00
0

0.
47
7

40
65
6

37
08

6
0.
42
0

o c:.
.n

84
 

5
26

18
20
77

10
11
 

90
 
0

0
 

0
0.
01
9

0.
31

0
0.

90
2

17
90
8

16
41

69
0.
09
7

84
 

5
27

80
49
6

16
60
 

26
 
0

2
 

0
0.

06
0

1.
00
2

0.
21

2
63

40
4

17
09

2
0.
24
3

84
 

5
, 2
8

16
75
12

1
1 

10
0 

0
0
 

0
0.
00
3

0.
02
9

0.
97
4

43
56

16
32
56

0.
02
6

84
 

5
31

20
34

7
1

8
 

12
 

1
6
 

16
0.
02
4

1.
00

0
0.

14
4

17
42

4
29
23

0.
11
9

84
 

6
1

25
78
3

0
12
 

0
 
0

0
 

0
0.
00
0

0.
00
0

1.
00
0

0
25

78
3

0.
00
0

84
 

6
2

50
82
8

0
3
 

0
 
0

0
 

0
0.

00
0

0.
00
0

1.
00
0

0
50
82
8

0.
00
0

84
 

6
4

48
02

51
11

22
 

50
 

4
7
 

57
0.
00
9

0.
15

1
0.

89
6

49
85

2
43

03
99

0.
09
4

84
 

6
5

11
26

26
7

38
 

18
 

2
8
 

25
0.

02
1

0.
51
9

0.
55
3

50
33

6
62

29
0

0.
14
7

84
 

6
6

16
64

68
3

23
 

13
 
0

1 
0

0.
00
6

0.
29
1

0.
87

8
20

32
8

14
61

40
0.
06
7

84
 

6
7

13
79

34
86

12
0 

71
 

30
39
 

76
0.
18
6

1.
43

0
0.
30
9

11
45

74
23
36
0

0.
53
9

84
 

6
9

17
53
78

13
14
 

92
 
2

2
 

10
0

0.
02
8

0.
27
5

0.
83
8

28
55

6
14

73
22

0.
16
0

84
 

6
10

10
46
30

16
23

 
69
 

4
6
 

66
0.
05
1

0.
75
3

0.
54
7

47
43

2
57
19
8

0.
37
7

84
 

6
11

83
18
5

35
46
 

76
 

14
19

 
73

0.
11

6
1.
93
9

0.
11

6
73
56
8

96
17

0.
69

1
FC
SI
R

N
u
m
b
e
r

Av
er
ag
e

To
rn
ad
o

Ar
ea
l

G
o
o
d

B
a
d

W
I
I
L
A
R
D

ou
tl

oo
ks

ar
ea

Hi
ts

 
Re
po
rt
s 

P
o
D

hi
ts
 

To
rn

ad
os

 
%

co
ve

ra
ge

C
B
I
A
S

F
A
R

ar
ea

ar
ea

C
S
I

49
 

24
 

10
03

21
 

36
9 

10
01

 
37
 

32
 

19
0 

43
 

0.
03
5 

0.
83
0 

0.
62
8 

35
96
2 

64
33
9 

0.
19
7

VALIDATION OF A WEATHER FORECASTING EXPERT SYSTEM 



ZUBRICK

Table 2. Verification of SELS convective outlooks issued at 0800Z on

selected days in 1984 (Leftwich, NSSFC, personal communication, 1987)

Date Area PoD CBIAS FAR
Good
area

Bad
area CSI

4/25 126180 0.80 1.00 0.44 70664 55516 0.49
4/26 307095 0.89 1.85 0.44 218621 88474 0.52
4/27 476273 0.77 1.04 0.53 225060 251213 0.41
4/28 65578 0.00 0.00 1.00 0 66578 0.00
4/29 366116 0.83 1.00 0.49 185856 180260 0.46
5/2 366354 0.66 1.34 0.50 182468 183886 0.40
5/3 399755 0.97 1.00 0.36 257972 141783 0.63
5/22 261119 0.66 0.19 0.91 23232 237887 0.09
5/23 135950 0.55 1.00 0.46 73568 62382 0.38
5/24 303966 0.82 1.00 0.50 152944 151022 0.45
5/25 214510 0.93 1.00 0.52 103092 111418 0.46
5/26 181739 0.16 0.40 0.76 43076 138663 0.11
5/27 214855 0.90 1.28 0.30 150524 64331 0.65
5/28 94522 0.00 0.00 1.00 0 94522 0.00
5/31 No severe forecast
6/1 69430 0.41 1.00 0.33 46464 22966 0.34
6/2 67122 0.16 0.36 0.74 17424 49698 0.11
6/4 245426 0.63 1.00 0.55 110352 135074 0.36
6/5 387216 0.81 1.00 0.56 169884 217332 0.40
6/6 493657 0.73 0.59 0.79 105028 388629 0.20
6/7 413460 0.94 1.45 0.47 241457 172003 0.51
6/9 323633 0.68 0.67 0.71 92928 230705 0.25
6/10 413827 0.87 0.67 0.64 147136 266691 0.34
6/11 284051 0.84 1.00 0.57 123420 160631 0.40

Number Average Average Average
outlooks area PoD FAR good area bad area CSI

24 270080 0.81 - 0.56 119181 150942 0.40

personal communication, 1987). During this period, the PoD for SELS was
81 per cent. The FAR was 0.56. These two parameters combined yielded
a CS/ of 0.40-which is double WILLARD'S CSI. SELS' outlooks overall
were better than WILLARD'S for this period. Figure 5 gives a daily
breakdown comparing SELS' and WILLARD'S outlooks. Of note is that
WILLARD'S CSI scores tended to be relatively in phase with the trend of
SELS' CS/ scores.

407



VALIDATION OF A WEATHER FORECASTING EXPERT SYSTEM

P a
0  

e.v.sy",44644$4444 1/4"°"'"""44
Date

V.VM%bNI"04rV.N;,),.;'PMP
4444"46444444440;'°"""44

Date
Percent

100

o b6 
*rnernrn*, 10 0̀;`P.
, of ,:4",,4444444,44"""'"44

Date

SELS CSI

—e--
WILLARD CSI

SELS FAR

—e—
WILLARD FAR

SELS POD

—B—

WILLARD POD

Figure 5. Comparative verification statistics for SELS and WILLARD 08Z Convective
Outlooks for Selected Days in Spring 1984: a) CSI, b) FAR, c) PoD.

408



ZUBRICK

Examining the six days (viz., 22, 23, 24 April; 1, 29, 30 May 1984)
when no severe thunderstorms were forecast by WILLARD, it was found
that SELS forecast no severe thunderstorms on those same days with one
exception. On 1 May 1984 SELS issued a Slight risk area that covered
northeastern Texas, southeastern Oklahoma and western Louisiana.
There were two dozen severe weather reports within SELS' outlook area
1 May. The reason why WILLARD did not forecast severe weather on this
day was because of insufficient moisture in the lower levels of the LF/A
model data. Examining the forecast reasoning for SELS and WILLARD on
the other non-severe outlook days showed that both agreed that lack of
moisture was the primary cause for the non-severe outlook forecast. A
detailed analysis of the reasoning given by WILLARD and SELS for the test
case study days is given in the Appendix.

4. SUMMARY AND CONCLUSIONS

This paper examined two sources of advice for severe thunderstorm
forecasting: an outlook produced by a government agency (sus/NssFc)
and an outlook given by an expert system (WILLARD). Overall the two
sets of advice were comparable in critical skill index, and forecast
reasoning but different in several other statistical parameters. The
WILLARD forecast is comparable to the actual SELS forecast in overall skill
on major and most minor outbreak days.
The valid time period for the 08.00 SELS outlook covers a 24-h period

whereas the 08.00Z WILLARD outlook spans a 12-h period. This could
affect the results presented in this paper. The forecasting strategy behind
WILLARD'S production of a 08.00Z outlook is to use only the 24-h LFM
Model forecast from the 00.00Z Lnt model run to prepare the outlook.
This was mainly done because the 36-h gridded LEst model forecast data
were unavailable. However, it was felt that ±6 h from the time of the
24-h forecast was valid (viz., 00.00Z the next day) and consistent with the
fact that severe thunderstorms generally reach their peak in number and
intensity within a few hours of 00.00Z. Examination of the NSSFC severe
storm log showed this to be true in most cases used in this study.

Therefore, it is estimated that, although some verification values might
change for WILLARD'S outlook if a full 24 hours' worth of severe weather
reports were used, the change should be insignificant. Conversely, the
statisitics for the SELS group should also not differ greatly.
On 2 May 1984, WILLARD'S 08.00Z outlook forecast relatively little

severe weather to occur anywhere within the forecast domain. However,
this day turned out to be a major severe weather outbreak day (NOAA,
1984). There were over 120 severe weather reports in northern Texas,
Oklahoma, Arkansas, Louisiana, and western Mississippi including 19
confirmed tornadoes. A script of the original WILLARD run was carefully

409



VALIDATION OF A WEATHER FORECASTING EXPERT SYSTEM

examined, as were many weather maps and data. The SELS 08.00Z
outlook had a Moderate risk area centred over the affected area
mentioned above.

After examining relevant data and forecasts for 2 May, it appeared that
WILLARD had difficulty in properly classifying the low-level moisture field.
The LFM model data near the affected area indicated somewhat drier
conditions at lower levels than those actual data showed. WILLARD
concluded that low-level moisture was insufficient to support severe
thunderstorms in this area. This contradicts data taken from vertical
measurements of moisture near the threat area. Since WILLARD'S
moisture decision rule only examined a few vertical points from the LFM
forecast data and did not examine actual sounding data, the effects of a
slightly drier air mass as forecast by the LFM model were significant. This
could be corrected by inserting more knowledge into the moisture
module.

Additionally, on 2 May the LFM model was unable to handle the large
number of short-wave, low-pressure troughs—as noted by meteorologists
responsible for interpreting satellite imagery at the Nws Satellite Field
Services Station located at NSSFC. A satellite interpretation message
received near 00.00Z on 3 May 1984 indicated model guidance from
earlier in the day was not resolving smaller scale features which were
causing most of the severe activity. Examination of the LFM data
confirmed this, showing that the model had lumped everything together
into an a ill-defined low-pressure trough. Therefore identification of
trigger mechanisms was clouded by the unrealistic model output. In the
future, it might be possible to develop rules for predicting this condition
and add them to the vertical velocity field module of WILLARD.
When there are errors in the LFM forecast data, it is likely that SEIS

forecasters are able to adjust the data to compensate. WILLARD did not
apply any data adjustment of the LFM data nor did it attempt to recognize
model errors (it did check for gross data range errors). Installation of
rules for adjusting erroneous model forecast data was beyond the scope
of this project. It is something which needs to be implemented in future
weather forecasting expert systems which automatically provide guidance
from numerical models. The rules governing these adjustments are
complex and based on pattern recognition. However, an easily expan-
dable system like WILLARD could accommodate addition of these rules.

Overall, the results of this paper are encouraging for pursuing the
application of expert system technology to weather forecasting. Further
research is underway to improve the knowledge-base to better handle
smaller scale severe thunderstorm outbreaks.

Acknowledgements
Support for this study was provided by Radian Corporation and is gratefully appreciated.
This study benefited from the assistance provided by Dr Preston Leftwich, of the National

410



ZUBRICK

Severe Storms Forecast Center, Techniques Development Unit, who graciously provided
the necessary verification data on WILLARD and SELS. Drs Charles Doswell and Robert
Maddox of the Environmental Research Laboratories, NOAA, supplied many stimulating
ideas for this project. Steven Muggleton of the University of Edinburgh supplied much
useful information in the structuring and explanation capability of WILLARD. Finally,
Charlie Riese of Radian motivated the author to explore the application of expert systems
technology to weather forecasting.

APPENDIX

29 April 1984—test case no. 1

This was a major and widespread severe thunderstorm outbreak day.
Within the area and time of WILLARD'S forecast domain there were 142
severe weather reports including 26 reports of tornadoes. One of these
tornadoes caused one death and extensive property damage to the town
of Mannford, in northeast Oklahoma (Ferguson et al., 1985). Most of the
severe weather reports came from a six state area covering all of
Missouri, Iowa, and Illinois, and portions of eastern Oklahoma, Kansas,
and Texas. Scattered reports were received from northern portions of
Arkansas, Louisiana, and Mississippi, and southern Wisconsin.
The SELS 08.00Z convective outlook issued on 29 April 1984 recognized

that meteorological conditions were favourable for a widespread severe
weather outbreak in the southern Great Plains States (Oklahoma,
Arizona, Missouri, and Kansas). They issued a High risk outlook area
that covered most of Oklahoma, Missouri, Illinois, and Arkansas,
portions of northern Texas, extreme northwest Louisiana, southern Iowa,
western Tennesse, and western Indiana (Figure 6a).
High risk outlooks are rarely issued by SELS forecasters, and are only

issued when the threat is clearly recognized as being substantial in
severity and areal extent. Although there are usually less than 10 High
risk outlooks issued annually by SELS forecasters, their greatest forecast-
ing ability is exhibited when the threat of severe thunderstorms and
tornadoes is the highest (Weiss and Reap, 1984). SELS' outlook area on
this day covered over 360,000 sq sm.
WILLARD forecast a smaller outlook area evenly divided between Slight

and Moderate risk areas covering northeastern Oklahoma, eastern
Kansas, and southern two-thirds of Illinois, all of Missouri, and southeast
Iowa (Figure 6b). This outlook area covered almost 94,000 sq sm.

In comparing statistical results from the two forecasts, the CSI was 0.49
for WILLARD and 0.46 for SELS, which are similar. The PoD was 54 per
cent for WILLARD contrasted with 83 per cent for SELS. WILLARD had 78
severe reports within its outlook area out of 142, with 12 out of 26
tornadoes included. However, mostly due to the smaller size of
WILLARD'S outlook, the FAR was 0.34 for WILLARD VS. 0.49 for SELS. So
even though the CSI was similar for both outlooks, the SELS outlook
captured a majority of severe weather reported at the expense of an

411



VALIDATION OF A WEATHER FORECASTING EXPERT SY
STEM

Boundary of Thunderstorm Area

(Storms expected to right of line)

Severe Weather Outlook Area

FCSTR SELS /NSSFC

SEVERE WEATHER OUTLOOK (AC)

VALID: 12Z 29 APR 84 to ( a )
12Z 30 APR 84

Boundary of Thunderstorm Area
(Storms expected to right of line)

Severe Weather Outlook Area

FCSTR: WILLARD 

SEVERE WEATHER OUTLOOK (AC)

VALID: 18Z 29 APR 84 to
06Z 30 APR 84 ( b )

Figure 6. Map of sus and WILLARD outlooks-29 April 1984.

increased false alarm ratio. This is reflected in the similarity of the 
CSI

scores: a low PoD coupled with a low FAR can yield a CSI score nearl
y

equivalent to a high PoD coupled with a high FAR. It is a matter o
f

individual preference as to whether PoD or FAR is of greater impor-

tance, and is not an issue in this paper.

412



ZUBRICK

The good area for WILLARD'S outlook equalled the original outlook
area. The areal coverage of severe weather within WILLARD'S outlook was
almost 26 per cent, with a CBIAS of 3.13. This was the highest coverage
bias encountered in this study. It indicates that WILLARD under-forecast
the severe weather that occurred within its outlook. If WILLARD had
forecast a High risk category it would have had a coverage bias of unity.
The SELS coverage bias was unity, as they did forecast a High risk
category.
In examining the meteorological reasoning behind each forecast it was

apparent that both forecasts identified that the interaction of a strong
upper level low pressure system with a very warm and moist unstable air
mass near the surface, and a source of upper-level venting (or diffluence)
would all phase in over eastern Oklahoma and Kansas, moving into
Arkansas, Missouri, and later Illinois.
In determining the moisture field, WILLARD found high LFM forecast

values of low-level moisture convergence over eastern Oklahoma and
Kansas, and all of Missouri and the southern two-thirds of Illinois to
occur at 00.00Z, 30 April 1984—the middle of WILLARD'S valid time
period. Examination of model forecast dew points at an average altitude
of 1500 m (850 millibar pressure surface) and near the surface also
confirmed this to WILLARD. Further, various stability indices were
examined by WILLARD and found to be favourable for severe weather,
especially because a triggering mechanism was present.
The SELS forecast reasoning stated that due to the strengthening of

the low level wind field during the day (29th), there would be an
attendant strong influx of low-level moisture into the threat region. High
model forecast values of near-surface dew points were also mentioned as
being within the threat area. Both forecast reasonings examined the
low-level wind field for location of the maximum wind speeds and found
favourable conditions for the formation of severe thunderstorms.
The trigger mechanism was the result of the strong upper-level,

low-pressure system, as identified by the large values of vorticity
advection approaching both threat areas from the southwest. WILLARD
used maximum vorticity analysis from the LFM model data to locate
intense activity. This is basically what SELS did, in that the SELS forecaster
examined contour maps of LFM forecast vorticity and upper-level wind
speed and identified areas experiencing maximum vorticity advection and
strong upper-level winds.
While not explicitly mentioned by SELS on their 08.00Z forecast

discussion, the presence of a warm frontal boundary lying across
southern Missouri and Illinois was picked up by WILLARD as being an
important triggering mechanism. It has been found (Maddox et al., 1980)
that severe storms often reach maximum intensity within the environment
attending sharp thermal boundaries, as was the case on the 29 April 1984.

413



VALIDATION OF A WEATHER FORECASTING EXPERT SYSTEM

WILLARD checked for the presence of an upper-level venting mechan-
ism at several grid points and found that there was such a mechanism
present in the form of a core of high-speed winds in the upper levels of
the atmosphere. This was clearly stated by SELS in their reasoning as
being a major contributing factor.
A factor considered by SELS but not included in the WILLARD

knowledge-base is the presence of a mid-level dry slot (punch) moving
into the threat area. Investigations of the literature show this to be of the
prime importance in defining the extent and severity of thunderstorms
(Miller, 1972). This may account for part of WILLARD'S under-forecasting
on this day.

Overall, the two forecasts had similar CSIs, but were different in PoD,
CBIAS , and FAR. The SELS forecast discussion of their lines of reasoning
was generally similar to the explanation given by WILLARD, although the
SELS reasoning contained much finer scale details that WILLARD did not
have. But when it is considered that this was a widespread severe weather
day, most parameters were easily identified from the model forecast data.
Additionally, comparison of the um forecast maps with later maps that
show how conditions actually turned out indicate that the LFM model had
a reasonable handle on the major features contributing to severe weather
on this day.

25 May 1984—test case no. 2

On this day, a slow moving cold front touched off severe thunderstorms
along its leading boundary as it moyed southeastward across the southern
Great Plains region during the afternoon. Because severe thunderstorms
formed in a narrow line along the front, severe weather reports were
mainly restricted to this narrow frontal zone, and consequently were not
very widespread. There were only 22 severe weather reports within the
forecast domain consisting of mostly large hail and high winds, with only
a few minor tornadoes being observed (No, 1984). Missouri and Illinois
were the only states to report severe weather—all of it occurring in
thunderstorms along the cold front. This day would be considered a
minor severe thunderstorm day by meteorologists.
Even though there were a relatively small number of severe reports,

the meteorological conditions favourable for severe weather along the
front were present and easily recognized by both SELS and WILLARD
(Figure 7). The SELS outlook had a Slight risk threat area that covered
northeastern Oklahoma, eastern Kansas, most of Missouri, most of
Illinois, and portions of extreme southeast Iowa and northwest Arkansas.
WILLARD had a moderate risk outlook for virtually the same area that
SELS outlooked, with a narrower major axis than SELS' area. The forecast
area for SELS was about 214,000 sq sm, while for WILLARD the area was
about 78,000 sq sm.

414



Boundary of Thunderstorm Area
(Storms expected to right of line)

Severe Weather Outlook Area

ZUBRICK

FCSTR, SELS /NSSFC

SEVERE WEATHER OUTLOOK ( AC)

VALID, 12Z 25 MAY 84 to ( a )
12Z 26 MAY 84

Boundary of Thunderstorm Area
(Storms expected to right of line)

Severe Weather Outlook Area

FCSTR, WILLARD

SEVERE WEATHER OUTLOOK (AC)

VALID, 18Z 25 MAY 84 to
06Z 26 MAY 84 ( b)

Figure 7. Map of sets and WILLARD outlooks-25 May 1984.

In terms of the statistical measures of forecast ability, the CSI for each

forecast were similar. Again, the probability of detection for the SELS
outlook was high; 93 per cent in this case, but the FAR was also high;
being 0.52, resulting in a CSI for SELS of 0.46. In contrast, WILLARD had a
relatively low FAR of 0.48, coupled with a relatively low probability of

415



VALIDATION OF A WEATHER FORECASTING EXPERT SYSTEM

detection of 68 per cent, to yield a CS/ of 0.42. So because of the slightly
smaller area forecast by WILLARD the CS/ scores were very close.
WILLARD had 15 out of 22 severe reports within its outlook, with one out
of two tornadoes also included.
The coverage bias was unity for WILLARD, since the areal coverage was

6.8 per cent. The coverage bias for SELS' outlook slightly under-forecast
this day. The good area for WILLARD was one half of the forecast outlook
area; almost 41,000 sq sm, while the bad area was about 37,000 sq sm.
Comparing the two forecasts, there was little difference in forecast

reasoning behind the two outlook areas: a cold front, in concert with an
approaching short wave of low pressure, would provide the primary
lifting mechanism of a moist and unstable air mass over Missouri and
Illinois, with a strong flow of upper-level winds providing a suitable
venting mechanism.
Both forecasts pointed out the strong focusing of low-level moisture

convergence along the frontal boundary. In examining the LFM model
output, it appeared that the model was a little slow in moving the front
southeastward, which may have affected WILLARD'S PoD because it did
not extend the outlook area further into southern sections of Missouri
and Illinois (where there were some severe reports).
Both SEIS and WILLARD acknowledged the movement of the cold front

across the area accompanied by a strong low-level wind field. WILLARD
also indicated that if surface heating occurred, any thunderstorms
occurring could be severe. Examination of surface data indicated periods
of sunshine in the vicinity of the severe weather reports in Missouri and
Illinois. WILLARD found the absence of preventive factors was also
favourable for severe thunderstorms.

7 June 1984—test case no. 3

During an 11-h period from mid afternoon on 7 June to the early
morning of 8 June, a massive severe weather outbreak struck many states
in the central US unleashing a violent torrent of killer tornadoes covering
four states. There were over 120 severe weather reports within WILLARD'S
forecast domain (NOAA, 1984).
There were 39 confirmed tornadoes occurring primarily in Iowa and

Wisconsin, with some tornadoes reported in northern Missouri and
southern Minnesota (Figure 8). One of these tornadoes tracked on the
ground for a incredible distance of 204 km (127 miles) from northern
Missouri across east central Iowa. This was the longest tornado track
observed in 1984. It was rated as a devastating tornado for most of its
existence and was responsible for three deaths and extensive property
and agricultural damage (No, 1984). It completely levelled or exten-
sively damaged all buildings in the towns of Wright and Delta, Iowa
resulting in property damage exceeding 30 million dollars.

416



U
P
P
E
R
 M
I
D
W
E
S
T
 T
O
R
N
A
D
O
 O
U
T
B
R
E
A
K

of
 J
un

e 
7
-
8
.
1
9
8
4

A
l
l
 t
i
m
e
 a
r
e
 C
S
T
,
 U
n
d
e
r
l
i
n
e
d
  t
i
m
e
s
 i
n
d
i
c
a
t
e
 J
u
n
e
 8
,
 al
l 
o
t
h
e
r
s
 J
u
n
e
7

M
I
N
N
E
A
P
O
L
I
S
 0

S
T
.
 P
A
U
L

S.
D.

i."
2
1
0
0

S
i
o
u
x
 F
a
l
l
s
.

M
I
N
N
E
S
O
T
A

,?
.
1
9
3
5

4;
1
9
1
5

R
o
c
h
e
s
t
e
r

1
e
2
0
 

1
8
2
5

 
1
8
1
5
t
1
9
1
9 
1
9
36

1
7
2
9
-
1
8
0
7
0
.
.
.
.

"
0
7
1
5
-
1
7
3
0i

1
6
2
3
-
1
6
2
7
 

,
,

•
i
s 

1
6
5
0
-
1
6
3
2
 

4
4
,

1
6
0
4
-
1
6
1
5
 

1
6
1
7
-
 E
l•

1
6
5
7 
1
,
 

1
7
1
5
-
1
7
5
4

1
5
1
4
-
1
5
3
3
4
y
 

0.
5.

,
4
 
1
7
0
0
-
1
7
1
5

S
i
o
u
x
 C
i
t
y
 

6
 

4

4#
 

%.
 

1
6
1
2
-
1
6
2
0

-
 
V
1
5
4
2
-
1
6
1
0

1
4
5

1
5
0
3
 

4
"
1
0
-
1
6
3
3
 

I
O
W
A

N
E
B
.

L
i
n
c
o
l
n
.

O
M
A
H
A

2
1
0
0

•
E
a
u
 C
la

ir
e

2
2
3
0

G
r
e
e
n
 B
a
y

W
I
S
C
O
N
S
I
N

A

F

0

C
e
d
a
r
 r
a
p
i
d
s
.
 

C
H
I
C
A
I
G
O

W
a
t
e
r
l
o
o
.

•
 4
.17

2
2
2
8%
!
 

-
 
/
 0
0
4
9

.
0
0
1
0
 M
I
L
W
A
U
K
E
E

M
a
d
i
s
o
n

2
3
4
1
-
0
0
4
0

2
3
3
0

D
u
b
u
q
u
e

o
D
E
S
 M
O
I
N
E
S

D
a
v
e
n
p
o
r
t

2
0
3
3
-
2
1
1
3

1
5
4
3
-
1
7
2
7
 

0
 
c
c

1
9
4
5
-
2
0
1
1
 1
9
5
4

1
6
2
0
-
1
7
0
6
 

3

*
■1

80
0 1
5
3
3
-
1
6
0
7

K
A
N
S
A
S

1
7
4
5
-
2
0
5
8

M
I
S
S
O
U
R
I

1 1
0
0

2
1
3
0

S
t
 J
o
s
e
p
h

R
o
c
k
f
o
r
d
.

I
L
L
I
N
O
I
S

m
i
l
e
s

0
 

1
0
0

•
 P
e
o
r
i
a

2
0
0

Fi
gu
re
 8
. 
U
p
p
e
r
 m
id
we
st
 t
or
na
do
 o
ut
br
ea
k 
of
 7
-
8
 J
un
e 
19
84
 (
fr
om
 S
to
rm
 D
a
t
a
—
N
o
A
A
,
 19

84
).

MDIIIIIIIZ 



VALIDATION OF A WEATHER FORECASTING EXPERT SYSTEM

On this day the most violent tornado of the 1984 season demolished
the town of Barneveld in south central Wisconsin and killed nine people.
It was the most powerful tornado of its class since 1982 and only the
second since 1977 to reach such great intensity (Ferguson et al., 1985).
Total property damage from this storm that tracked over 58 km (36
miles) on the ground exceeded 40 million dollars. Winds were estimated
in excess of 420 km h-1 (261 miles h-1) near Barneveld.
The SELS 08.00Z outlook called for a Moderate risk of severe

thunderstorms over portions of northeastern Kansas, northwestern Mis-
souri, the western two-thirds of Iowa, extreme western Wisconsin,
southern Minnesota, southeastern South Dakota, and eastern Nebraska
(Figure 9a). This Moderate risk area was enclosed within a large Slight
risk area as shown in Figure 9a, which included large portions of
Wisconsin, Minnesota, and Kansas. The Moderate risk area covered
about 190,000 sq sm, while the entire outlook spanned roughly
413,000 sq sm. The SELS forecasters noted that the stage appeared set for
a more active day than the past few days. All of the killer tornadoes that
occurred in Iowa were contained in SELS' Moderate risk outlook, while
the tornado that struck Barneveld was under a Slight risk.
WILLARD had a complex outlook, with two Slight risk areas flanking a

fairly large High risk area (Figure 9b). The High risk area covered most
of the Iowa and southern Minnesota, and the northwest portion of
Missouri. All of the killer tornadoes that occurred in Iowa were
contained in WILLARD'S High risk outlook area. The western Slight risk
area covered central and northeast Kansas, south central and southeast
Nebraska, and portions of extreme northwest Missouri and southwest
Iowa. The eastern Slight risk area from WILLARD covered northeastern
Missouri, central Illinois, and southeastern Iowa. Notice that no severe
weather was outlooked by WILLARD for south central Wisconsin, where
the Barneveld killer tornado occurred. The total WILLARD outlook area
encompassed almost 138,000 sq sm, with the High risk area covering
about 80,000 sq sm.
The verification statistics show that, again, the CSI for each forecast

was similar; SELS had a CSI of 0.51 while WILLARD'S CSI was 0.54; a
forecast is considered a 'good' one by members of SELS if the CSI is above
0.5 (Leftwich, NSSFC, personal communication, 1985). The same trend
discussed in the previous test study day (no. 2) continued here. The
probability of detection for the SELS outlook was 94 per cent for all severe
reports and 87 per cent for all reports of tornadoes. WILLARD'S outlook
had a PoD of 71 per cent for all severe weather reports and 76 per cent
for all reports of tornadoes.
The FAR was again lower for WILLARD, with a value of 0.31 compared

to SELS' FAR value of 0.47. In this case, the primary threat areas
denoted by SELS as a Moderate risk area and by WILLARD as a High risk

,418



ZUBRICK

area were very similar in areal extent and region, as an examination of
Figure 9 shows. However, the Slight areas were different: SELS had more
areal coverage of Slight risk than did WILLARD, and this might have
accounted for the slightly higher FAR for SELS.
Examination of forecast reasoning given in the 08.00Z SELS outlook

and the explanation given by WILLARD show that most of the major

Boundary of Thunderstorm Area
( Storms expected to right of line)r.

Severe Weather Outlook Area

FCSTR: SELS / NSSFC 
SEVERE WEATHER OUTLOOK ( AC)

VALID, 12Z 07 JUN 84 to
(a)12Z 08 JUN 84

Boundary of Thunderstorm Area
(Storms expected to right of line)

Severe Weather Outlook Area

FCSTR WILLARD
SEVERE WEATHER OUTLOOK ( AC)

VALID 18Z 07 JUN 84 to
06Z 08 JUN 84 ( b )

Figure 9. Map of SELS and WILLARD outlooks-7 June 1984.

419



1 0920 TOR-1 1 KIL 0116-7 MANNFORO OK

2 1730 TOR-2 10/INJ 0116-7 OWENSVILLE MO
3 1810 TOR-1 0M6-6 VAN BUREN M
1 1820 TOR-3 WINFIELD MO

TORNADO SEVERE
REPORTS 13 113
IN WATCH 33 86

APRIL 29 1989 06-00 CST

1 1810 TOR-2 KRNSRS IL

TORNADO SEVERE

REPORTS 2 27
211 WRTEN 1 20

IA
NE  

KS tio
I WV

TX LA 
MS AL \ G

MAY 25 1981 11-21 CST

KU. INJ 01I6 • DENOTES NOT IN MATCH

1314 TOR-2 6 CHEROKEE IR
2 1133 TOR-2 3 6 NIAwATHA KS
3 1312 TOR-2 1 6 HOLSTEIN IR
S 1343 TOR-2 0 6 ANITA IR
3 1610 109-2 1 6 ARTHuR IR
6 1613 TOR-2 3 6 Stow. LAKE IR
7 1617 T0R-2 2 6 LAuRCNS IA
II 1620 TOR-3 3 6' CLARINDA IR
S 1630 109-2 3 SPENCER IA
10 1700 109-2 6 HAVELOCK IR
11 1713 109-2 6 KOSSuTH CO. IA
12 1713 109-3 3 7 KOsSUTH IA
13 1729 109 -2 1 6 1I1044KA IR
14 1741 109-2 6 GARNER IR
13 1733 109-4 2 63 7 EABLEYILLE MO 120 MI
16 1819 109-3 12 7 ALBERT LER MN
17 1836 109-2 7 6 AUSTIN mm NE
IS 2033 109-2 t 6 KINR0SS IA
IS 2100 109-2 3 HOwARO SO
20 2100 109-2 3 STANLEY WI
21 2130 TOR-2 3 ALTAKINT 440 •
22 2200 109 -2 1 6 JANCSPORT mo
23 2330 109-3 • 200 7 BARNCyCLO WI
21 0010 109-2 6 OCTOREST WE
23 0041 109-3 1 6 RIO NE
26 0117 109-2 1 6 EIMER DAN

NC

SC

• TORNADO SEVERE
REPORTS 68 es
IN WATCH 11 37

JUNE 7-8 1981 13-01 CST

Figure 10. Significant severe weather events for the three days discussed in Appendix
(dashed line encloses area of days' organized severe activity), modified from Hales and

Crowther (1985).



ZUBRICK

factors were identified in each. Both determined that a significant
upper-level trigger mechanism was present in the form of short-wave,
low-pressure trough moving out of Nebraska into southern Minnesota
during the period. Both found areas of strong low-level moisture
convergence across Iowa and southern Minnesota. Both identified a
suitable upper-level venting mechanism occurring over the region.
There was mention in the SELS forecast reasoning of a 'dry punch' (a

narrow tongue of dry air at mid levels) extending from northwest
Missouri into southern Minnesota and southwestern Wisconsin. Exami-
nation of Figure 9 shows that this feature was possibly a key parameter to
defining the general direction and movement of the tornadoes (Miller,
1972). WILLARD did not perform any checks for this type of feature.
The coverage bias for WILLARD'S outlook was 1.5 compared with SELS'

outlook bias of 1.5. Both of these values indicate that each outlook
under-forecast the actual areal extent of severe weather, which was
about 19 per cent of the MDR blocks. However, WILLARD did appear to
have the proper category in the major Iowa tornado outbreak area.

Overall, both forecasts were similar in the critical score index,
category, and areal coverage, but different in PoD and FAR. The
WILLARD forecast strategy appeared consistent with the relevant features
indicated in the 08.00Z SELS outlook discussion. An examination of the
LFM model output with model verification data showed the 24-h model
forecast used by both SELS and WILLARD to be fairly reasonable in
handling the major feature associated with this severe outbreak day.
Therefore, since the LFM model input data into WILLARD was reason-
able, it appears that the procedural rules used by WILLARD in producing
the outlook areas were comparable to SELS' line(s) of reasoning.

REFERENCES

Crisp, C. A. (1979) Training guide for severe weather forecasters. Air Weather Service,
Tech. Note 79/002. (Available from nrris, Springfield, Va., No. ADA083125).

Donaldson, R. J., Dyer, R. M., and Kraus, M. J. (1975) An objective evaluator of
techniques for predicting severe weather events. Preprints 9th Conf. on Severe Local
Storms, Norman, OK, American Meteorological Society, pp. 321-6,

Ferguson, E. W., Otsby, F. P., and Leftwich, P. W., Jr (1985) Tornadoes cause record
number of fatalities. Weatherwise 38, 20-25, 48-49.

Foster, D. S. and Bates, F. C. (1956) A hail size forecasting technique. Bull. Am. Meteor.
Soc. 37, 135-41.

Galway, J. G. (1956) The lifted index as a predictor of latent instability. Bull. Am. Meteor.
Soc. 37, 528-9.

Hales, J. E. and Crowther, H. G. (1985) Severe thunderstorm cases of 1984. NOAA Tech.
Memo NWS NSSFC-7 (available from NTIS, Springfield, Va., No. PB85-210748/AS).

Hudson, H. R. (1971) On the relationship between horizontal moisture convergence and
convective cloud formation. I. App!. Meteor. 10, 755-62.

Kerr, R. A. (1984) Forecasting of severe storms improved. Science 223 (4635), 477.
Leftwich, P. W. Jr. (1985) Verification of severe local storm forecasts issued by the

421



VALIDATION OF A WEATHER FORECASTING EXPERT SYSTEM

National Severe Storms Forecast Center, 1984). NOAA Tech. Memo NWS NSSFC-9
(available from wris, Springfield, Va., No. PB86-128105/AS).
Maddox, R. A. and Doswell, C. A., III (1982) Forecasting severe thunderstorms: a brief
consideration of some accepted techniques. National Weather Digest 7, 26-30.

Maddox, R. A., Hoxit, L. R., and Chappell, C. F. (1980) A study of tornadic thunderstorm
interaction with thermal boundaries. Mon. Weather Rev. 108, 322-36.

Mandics, P. A. and Brown, R. C. (1985) When will the storm get here. Research &
Development January, 72-7.

McNulty, R. P. (1978) On upper tropospheric kinematics and severe weather occurrence.
Mon. Weather Rev. 106, 662-72.

Michie, D., Muggleton, S., Riese, C. E., and Zubrick, S. M. (1984) RuleMaster: a
second-generation knowledge engineering facility. Preprints First Conf.  on Artificial
Intelligence Applications, Denver, Colo., IEEE Computer Society and American
Association for Artificial Intelligence, pp. 591-7.

Miller, R. C. (1972) Notes on analysis and severe-storm forecasting procedures of the Air
Force Global Weather Central. Air Weather Service, Tech. Report 200 (Rev.) (Available
from mt.'s, Sprintfield, Va., No. Ad-744-042.)

National Oceanic and Atmospheric Administration (1984) Storm Data 26, us Department
of Commerce. (Available from National Climatic Data Center, Ashville, N.C.).

Otsby, F. P., Jr (1979) The value of the convective outlook as a planning aid. Preprints 11th
Conf.  Severe Local Storms, Kansas City, Mo., Americal Meteorological Society, pp.
625-7.

Pearson, A. and Weiss, S. J. (1979) Some trends in forecast skill at the National Severe
Storms Forecast Center. Bull. Am. Meteor. Soc. 60, 319-26.

Porter, J. M., Means, L. L., Hovde, J. E., and Chappell, W. B. (1955) A synoptic study on
the formation of squall lines in the north central United States. Bull. Am. Meteor. Soc.
36, 390-6.

Quinlan, J. R. (1979) Discovering rules by induction from large collections of examples. In
Expert systems in the microelectronic age (ed. D. Michie). Edinburgh University Press,
Edinburgh.

Reynolds, D. W. (1983) Prototype workstation for mesoscale forecasting. Bull. Am.
Meteor. Soc. 64, 264-73.

Suomi, V. E., Fox, R., Limaye, S. S., and Smith, W. L. (1983) McIADAS III: A modern
interactive data access and analysis system. I. Climat. Appl. Meteor. 22, 766-778.

Uccellini, L. W. and Johnson, D. R. (1979). The coupling of upper and lower tropospheric
jet streaks and implications for the development of severe convective storms. Mon.
Weather Rev. 107, 682-703.

University Corporation for Atmospheric Research (1982) National STORM Program:
Scientific and Technological Bases and Major Objectives. Report Prepared for National
Oceanic and Atmospheric Administration, under contract NA81RAC00123.

Weiss, S. J., Kelly, D. L., and Schaefer, J. T. (1980) New objective verification techniques
at the National Severe Storms Forecast Center. Preprints 8th Conf.  Weather Forecasting
and Analysis, Denver, CO, American Meteorological Society, pp. 412-19.

Weiss, S. J. and Reap, R. M. (1984) Performance characteristics of the TDL automated
severe storm outlook: a statistical evaluation. Preprints 10th Conf. Weather Forecasting
and Analysis, Clearwater, FL, American Meteorological Society, pp. 181-8.

Whitney, L. F., Jr. (1977) Relationship of the subtropical jet stream to severe local storms.
Mon. Weather Rev. 105, 398-412.

422



19

Comparison of ACLS and Classical

Linear Methods in a Biological

Application

B. Shepherd
The Turing Institute,
Glasgow, UK
J. Piper and D. Rutovitz
The MRC Clinical and Population Cytogenetics Unit,
Edinburgh, UK

1. INTRODUCTION

Classification of hitherto unseen instances of an entity represented by a
feature-measurement vector, by extrapolation from findings in the case of
a number of classified examples (a 'training-see), is regarded as a
classification problem by statisticians, and as a problem in inductive
learning by the Artificial Intelligence community.

Quinlan's 1D3 (Iterative Dichotomiser 3'), a system for inductive
learning for discrete-valued features (Quinlan, 1979) was developed and
modified by Paterson, Blake and Shapiro and documented by Paterson
and Niblett (1983) to deal also with continuously distributed feature
measurements; their system is known as ACLS (`Analogue Concept
Learning System'). ACLS has been applied to a wide variety of different
problems, but has not been tested in many realistic problem domains
where the classical approach was well developed and thoroughly
evaluated.
Chromosome analysis is such a domain. A considerable amount of

work has been put into the problem of classifying the chromosomes in a
normal human cell into one of 24 possible classes on the basis of
measurements of various features (Piper et al., 1980). Results are
available from several different groups working in this domain with linear
classifiers. In particular, an extensive data base of chromosome measure-
ments (Figure 1), with the known correct classifications, was available at
the Medical Research Council's Cytogenetics Unit in Edinburgh (Piper,
1987).
The performance of the ACLS system and some statistical classifiers

were evaluated using this data set subdivided in various ways into
learning and test sets. The main conclusions emerging from this study are

423



CLASSICAL LINEAR METHODS IN A BIOLOGICAL APPLICATION

MRC Catogenetice Unit Etlinburph
Tue Mar 26 86147500 1985

1D1 b22821.1.2 sample dates 24/4/84

stains A86 operators 312/DR
karpetppet 48.8.1

Printer Test
noterangs uties °penis, 4
emphasise —r —b —5125

Ilse hIstsql
dither 6

Figure 1. A machine-classified metaphase cell, showing representatives of the 24 classes

the following:
1. A simple linear classifier gave a consistently lower misclassification

rate than ACLS.
2. An often claimed advantage for ACLS and similar systems is that the

solutions produced can be structured in such a way that makes it easy for
the user to understand why the system classifies particular objects as it
does (see for example Shapiro and Niblett, 1982). This does not seem to
be the case with the types of features and measurements used here, and it
is certainly not obvious how to structure the decision-trees to improve
intelligibility. If anything, the workings of the statistical classifier are
easier to grasp.
3. ACLS scores handsomely in time and memory requirements over

classical methods.
4. Because the output of ACLS is a decision-tree which in many cases

used only a few feature measurements, it would be possible to use ACLS to
guide a programme of analysis so as to calculate only those features

424



SHEPHERD, PIPER, AND RUTOVITZ

which are required in each particular case. The resultant saving in
analysis time might well outweigh the lesser accuracy of the classifier.
5. A modification to the ACLS algorithm designed to prune its

generated decision-trees was seen to have beneficial effects on both cost
and intelligibility without a major reduction in performance.

2. ACLS-AN 'ANALOGUE CONCEPT LEARNING SYSTEM'

2.1. Given a set of measurement vectors and a classification for each of
them, ACLS will recursively develop a decision-tree which will correctly
classify each of the vectors in the set, except where two or more equal
vectors have different class assignments (Figure 2).

2.2. The essential procedure of ACLS can be expressed as follows:
consider the feature vectors of which the data set is comprised as
representing points in an N-dimensional space. Acts generates a series of
decision-planes—hyperplanes perpendicular to individual axes—in an
attempt to find compartments which contain elements from only one of
the various classes present. The process terminates when all such
compartments consist of one class only, or alternatively of identical
vectors which belong to more than one class.

2.3. In slightly more detail, the feature vectors of the training set are
divided into two classes, namely, those which belong to final compart-
ments (those which have been classified), and those which do not. The
latter is termed the residual set. The local residual set is the subset of it
which lies in the compartment corresponding to the current position in
the decision-tree (the current 'leaf' of the tree). Initially, the decision-
tree is empty, and the residual and local residual sets are the training set.
At each step the local residual set is examined; if all its members belong
to the same class, or are ambiguous, it is not further subdivided.
Otherwise it is, by means of a new decision-plane which is defined as
follows in the case of the numerical features considered here (termed
integer attributes in the ACLS system). Each axis is considered in turn.
Elements of the leaf are ordered by the position of their projections on
the current axis. The effect of subdivision by a hyperplane perpendicular
to this axis, and equidistant between two successive elements of the local
residual set is considered. The hyperplane is chosen which gives the
'best' division of the data, where 'best' can be interpreted in various
ways. Our notion of 'best' is given below. The corresponding decision

xi> cr, xi 5- .rx

is added to the decision-tree at the current position in it. The two new
leaves of the tree which correspond to this division are now dealt with
(recursively), and then attention is returned to the preceding node in the
tree.

425



CLASSICAL LINEAR METHODS IN A BIOLOGICAL APPLICATION

Figure 2. ACLS compartments and Gaussian data: (a) probability contours of two Gaussian
distributions; (b) ACLS decision compartments; (c) superimposition of (a) and (b).

2.4. We take 'best' division to mean that which gives the maximum

information gain when Shannon's Information Measure is used in the

following way. We define the entropy of the residual set S to be

H= -E p (S)log p (S)
where

p (S) is the prior probability of 5,

426



SHEPHERD, PIPER, AND RUTOVITZ

Figure 2 (continued)

derived from the probability of an element of S having attribute a

p(S, a) = 
no. of examples which belong to S and which have a

total number in S

no. of examples having a which belong to S
p(S a) —

total number having a

The entropy gained by splitting on axis i at a is

H — H(S IA) = p(S, a)log[p(S I a)]}

where A is the two-attribute set defined by

A = {a I (xi > a), (xi 5 a)).

The best split is taken to be one with maximal entropy gain. This is
duscussed in more detail in the ACLS user manual (Paterson and Niblett,
1982).

Termination rules

If used as described above however, ACLS will continue subdividing the
space until every single item in the test set is in a one-class compartment
(unless impossible). It is intuitively obvious that beyond a certain
granularity of subdivision, additional compartments will subdivide the
noise and lengthen the tree without improving performance (see Results

427



CLASSICAL LINEAR METHODS IN A BIOLOGICAL APPLICATION

section). Many ad hoc termination rules have been devised for other
algorithms, which generate decision-trees from examples, which are
suitable for use with ACLS (see Quinlan, 1983; Seithi and Sarvarayuda,
1982). The one we have used (Shepherd, 1985) is the following: with
every learning set we associate a test set which itself is part of the
learning process (and ideally should not be the same as that ultimately
used to test the effectiveness of the classifier). The ACLS compartmen-
talization procedure is modified as follows: at every stage of its
generation each leaf of the decision-tree is labelled according to the
modal class in that leaf. When considering the introduction of a fresh
split point, the effect of classifying the elements of the test set according
to this rule is investigated. If the new subdivision would result in a
worsening of performance rather than an improvement, the split is
excluded and the next candidate considered instead.

3. DISTANCE AND LIKELIHOOD CLASSIFIERS

Given a family of disjoint sets of a vector space, a 'distance classifier' is
one which assigns a vector of unknown class to the set whose mean is
closest, distance being measured by a suitable metric. The Mahalanobis
Distance between an unknown x and a class of mean y is defined by

yli = YYM-1(x

where M is the feature covariance matrix of the class of y.
If we can assume that feature values are normally distributed within

chromosome classes, the likelihood of x belonging to the class of mean y
is 1  exd  Y II)L = 

(2.nr \ 2 /

where n is the number of features.
The maximum likelihood classification method has been widely used in

chromosome analysis, either on its own or as the first stage of a two-stage
classification process, in which the second stage modifies the classi-
fication to fit the model which states that there should be just two
chromosomes of each class in a normal cell.
Two simplifications are possible

1. If only the trace of the covariance matrix is used, then the resulting
classifier is based on variance-corrected distance rather than Mahalanobis
distance and is very much cheaper to compute. In Piper (1987) it was
shown that the resulting loss of classifier accuracy is rather small, in the
region of 1%, and that as a compensation, the classifier may be
adequately trained with smaller training sets.
2. If the pooled covariance matrix is used rather than the within-class

matrices, the Mahalanobis distance formula can be used as a definition of

428



SHEPHERD, PIPER, AND RUTOVITZ

distance between any two x and y. In this case, at the equiprobability
surfaces between two classes yi and y;

(x-yi)lt1-1(x- yi)=(x - yi)A1-1(x-yi)

the x-M-lx terms cancel, leaving a linear decision plane, the Fisher
Discriminant.

4. THE CHROMOSOME CLASSIFICATION DATA SET

This comprises 4200 human chromosomes from 100 cells prepared from
peripheral blood samples of 10 different males (prepared according to the
ASG technique for G-banding). These had been digitized and, for each
chromosome, 28 features measured with the MRC chromosome-measuring
system. The calculated class assignments, to one of the 24 classes 1-22,
X, Y were checked and corrected by an experienced cytogeneticist
(Figure 1).
The data was divided into two sets A and B, and these were used

alternately as training and test sets, and the results averaged.

5. RESULTS

The results are given in Tables 1-3.

6. DISCUSSION

Accuracy

The results show that in general, the linear classifier outperforms the
ACLS classifier by a generous 10%. Given that ACLS has the capability of
correctly classifying everything in the training set, aside from outright
clashes (which are very rare) why should there be such a difference? The
obvious answer is that ACLS does not treat the noise in the system in an
intelligent way: indeed it has to be forcibly restrained (so to speak) from
classifying right down into the noise by the tree-pruning process
described in para 2.3. If it is fairly obvious that this will result in
worthless tree-growing, it is less obvious that it will give worse perfor-
mance, since ultimately ACLS can draw compartments along any decision
surface. Figure 2(a) illustrates what happens when ACLS is given a simple
skew-plane problem. The circles and ellipses are schematic probability
contours for two normal distributions, A (circles) B (ellipses). ACLS was
presented with some random samples from these two distributions.
Figure 2(b) shows the first few compartments found and 2(c) shows 2(a)
and 2(b) superimposed. The smaller rectangular regions between the two
13'-labelled regions are a mix of 'A' and 'B', though predominantly 'A'
on the left and 'B' on the right. Because ACLS does not work with
(multidimensional) probability distributions of data it does not find the
intuitively apparent inclined decision-surface separating the classes. It is

429



Ta
bl

e 
1.

 A
C
L
S
 r
es

ul
ts

 (a
ve

ra
ge

 o
f 
A
 o
n
 B
 a
nd
 B
 o
n
 A

Un
mo

di
fi

ed
 A
C
L
S
 

Mo
di
fi
ed
 A
C
L
S

A
v
.
 n
u
m
b
e
r
 

A
v
.
 n
u
m
b
e
r

A
v
.
 n
u
m
b
e
r
 

of
 fe

at
ur
es
 

A
v
.
 n
u
m
b
e
r
 

of
 at

tr
ib
ut
es

(...
.) 

N
o
.
 o
f 

of
 fe

at
ur
es
 

oc
cu

rr
in

g 
in
 

of
 f
ea
tu
re
s 

oc
cu

rr
in

g 
in

©
fe

at
ur

es
 
%
 c
or
re
ct
 
Tr

ee
 s
iz
e 

us
ed
 

th
e 
tr

ee
 

%
 c
or

re
ct

 
Tr

ee
 s
iz
e 

us
ed

 
th
e 
tr

ee

11
6
7

7
6
3

9
11

64
.5

7
9

5.
5

1
0

17
6
9

6
8
3

9
66
.0

8
0

5.
5

2
8

7
2

5
7
7

8
25
.5

6
9

8
0

5.
6

18
.5



SHEPHERD, PIPER, AND RUTOVITZ

Table 2. Statistical classifier results.

Classification accuracy (%)

Maximum Variance
No. of likelihood corrected
features A on B B on A A on B B on A

11 80.4 80.3 77.4 79.2
17 83.2 83.6 80.3 83.0
28 82.6 81.4 83.0 85.0

Table 3. Summary and comparison: 24-class chromosome class
assignment: ACLS v. linear comparison.

Variance-corrected
distance (Unmodified) ACLS

No. of features % correct Time % Correct Av. path length Time

11

17
28

78 6s 67 9 Milli-
seconds

82
84

69 9
72 8

Av
er
ag
e 
Su

cc
es

s 
Ra

te
 

100 -

80 -

60 -

40 -

20 -

a—rx—ea—ra—tp.....VS=11=1/1=■ ,4

I •

20 40 60 80 100 120

-0- Pruned
Unpruned

Number of Training Examples per Class

Figure 3. Performance of modified v. unmodified ACLS for a simple 'skew plane problem'.

431



CLASSICAL LINEAR METHODS IN A BIOLOGICAL APPLICATION

only concerned with whether its decision-tree is correct so far (with
respect to the training set). In consequence it leaves the large B-regions
intact, and proceeds to subdivide the small-rectangle area rather finely,
thereby achieving a 'perfect' classification of the training set, but with a
clearly visible potential for wrongly classifying members of A falling
between the 95 and 99 per cent contour lines. The essence of the matter
is that ACLS does not know about distributions, and therefore trains itself
less efficiently (on regularly distributed data) than a system which does.
Thus more data samples may be required to train ACLS to the same level
of performance as a linear classifier on linearly separable data (though we
do not know if this can always be achieved).

Intelligibility

Claims made that ACLS produces classifiers which can be structured so as
to be easily intelligible do not seem to apply readily to this case. Consider
the following statement:

if feature0 <7845 then
if featurel <7256 then

if feature2 >= 6379 then
if featurel9 < 8205 then

if feature 10 < 7489 then
if featurel9 >= 7851 then

if feature4 <7022 then
its class18

This shows a decision-path leading to classification of chromosomes in
one of various classes. Contrast this with the overall linear summing up:
'objects are classified as belonging to a given class if their measurements lie
closer to the mean of that class than to the mean of any other'. This is a
subjective matter, but we would be surprised to hear that anybody found
a 575-rule decision-tree more enlightening. Caveat: there might be
particular problem examples in which an explanation of the decisions was
of great interest—for example if there were a significant pattern of
non-linear decisions. But it would take an extended study of the
decision-trees to reveal such a pattern.

Computing resources used

Memory requirements for the ACLS rules and the pooled covariance
matrices are of the same order of magnitude; much more storage is
required if individual covariance matrices are kept, though by present-
day standards nothing of this is significant. The computation time
however does matter in the case of the linear systems; by the time all
relevant matrix operations are complete, we have used up 0.64 s CPU
time to classify a chromosome if the maximum likelihood approach is

432



SHEPHERD, PIPER, AND RUTOVITZ

used, or 0.13 s if the covariance-matrix trace scheme is adopted. ACLS in
contrast, has an average rule length of only 9, and the classification time
can be under 100 its per object.

Classifier-guided parameter extraction

The most attractive feature of ACLS from the point of view of this
application, is the limited number of parameters involved in any one
decision. Very considerable time-savings could be made by using ACLS to
guide the parameters called for by the classifier. However, ways of
improving ACLS classification accuracy would have to be found, as a 10%
difference would waste too much operator time in correcting machine
decisions, which would outweigh any savings in machine time realized.

Pruned v. unpruned ACLS trees

The particular termination criterion described in para 2.4 has, in this
problem domain, led to dramatic reductions in the size of the generated
ACLS decision-tree (on average 577 nodes reduced to 80 nodes) with only
a small loss in classification accuracy. Although classification accuracy
may often be of prime importance, these pruned trees offer substantial
reductions in storage costs over their unpruned equivalents. A similar
pattern was also seen when the modified ACLS was applied to the 'skew
plane problem' described above. Figures 3 and 4 compare the perfor-
mances and tree sizes of the pruned and unpruned ACLS trees when fed
with this 'skew plane data'. It can be seen that the performance of the
pruned trees matched that of the unpruned ones, yet their sizes were
substantially smaller.

Av
er
ag
e 
Ru
le
 S
iz

e 

100

80

60

40

20

0 • 1

0 20 40 60 80 100

Number of Training Examples per Class

Figure 4. Tree sizes of modified v. unmodified ACLS for a simple 'skew plane problem'.

120

-e- Pruned
4t- Unpruned

433



CLASSICAL LINEAR METHODS IN A BIOLOGICAL APPLICATION

REFERENCES

Quinlan, J. R. (1979) Discovering rules by induction from large collections of examples. In
Expert systems in the micro-electronic age (ed. D. Michie), pp. 168-201. Edinburgh
University Press, Edinburgh.

Quinlan, J. R. (1983) Learning from noisy data. Machine Learning Workshop, pp. 58-64.
Department of Computer Science, University of Illinois, Urbana, Ill.

Paterson, A. and Niblett, T. (1982) ACLS user manual. Intelligent Terminals Ltd.,
Glasgow.

Piper, J. (1987) The effects of zero feature correlation assumption on maximum likelihood
classification of chromosomes. Signal Processing 12, 49-57.

Piper, J., Granum, E., Rutovitz, D. and Ruttledge, H. (1980) Automation of chromosome
analysis. Signal Processing 2, 203-21.

Seithi, I. K. and Sarvarayuda, G. P. R. (1982) Hierarchical classifier design using mutual
information. IEEE Trans. PAMI, 4, 441-5.

Shapiro, A. and Niblett, T. (1982) Automatic induction of classification of rules for a chess

endgame. In Advances in computer chess, 3 (ed. M. R. B. Clarke), pp. 73-91. Pergamon

Press, Oxford.
Shepherd, B. A. (1985) Computer induction versus statistical classifiers in the domain of

shape recognition. M.Phil thesis, Edinburgh University.

434



20
Automatic Synthesis and
Compression of
Cardiological Knowledge
I. Bratko
E. Kardelj University and J. Stefan Institute

I. Mozetie and N. Lavrae
J. Stefan Institute,
Ljubjana, Yugoslavia

Abstract

The paper reports on a study into the mechanical synthesis of the
operational knowledge needed for the expert task of electrocardiographic
(Eco) interpretation. This knowledge-base was synthesized by means of
qualitative simulation based on a causal model of the heart. The resulting
(Eco) knowledge-base was subsequently compressed by using inductive
learning tools.

1. INTRODUCTION

This paper reports on a study into mechanical synthesis of the operational
knowledge needed to perform an expert task. The particular task in
question is the interpretation of the electrical signals generated by the
heart muscle, known as the electrocardiographic (Eco) interpretation. The
main contribution of this research is a qualitative model of the electrical
activity of the heart which was the basis for mechanical derivation of the
ECG diagnostic knowledge.
The heart can be viewed as a mechanical device with an electrical

control system. This electrical system works completely autonomously
within the heart and is responsible for generating the rhythmical
stimulation impulses that cause the contraction of the heart muscle. For
proper functioning of the heart, the stimuli have to reach the atria (upper
part of the heart) somewhat earlier than the ventricles (lower part of the
heart). This is coordinated by the electrical control system which is
shown schematically in Figure 1. The contractions of the heart muscle
cause changes in the electrical potentials in the body. The changes of
these potentials in time can be recorded as an electrocardiograph.
Disturbances in the functioning of the heart are reflected in the ECG
curves. The interpretation of ECG signals is concerned with the question:
if a given ECG curve is not normal, what are the disorders in the heart
which could have caused this abnormality?

435



AUTOMATIC SYNTHESIS AND COMPRESSION

I,SA node

AV node

bundle of His

ATRIA

Purkinje
fibers

•

VENTRICLES .............

Figure 1. A scheme of the electrical control system of the heart. The nodes generate
electrical impulses. The dotted lines represent conduction pathways for impulses.

Various disorders can occur in the electrical control system of the
heart. For example, an impulse generator may become silent, or an extra
generator may appear, or some electrical conductance may become
blocked, etc. These disorders are called cardiac arrhythmias. There are
about 30 basic disorders and each of them causes some characteristic
changes in the ECG. There can be several disorders simultaneously
present in the heart. Combined disorders are called multiple arrhythmias
as opposed to simple arrhythmias which correspond to single, basic
disorders. The combinatorial nature of arrhythmias complicates the ECG
interpretation problem because of the large number of potentially
possible combinations. In the medical literature on the cardiac ar-
rhythmias (e.g. Goldman, 1976) there is no systematic description of ECG
features which correspond to pairs of simple arrhythmias, let alone triple
and even more complicated arrhythmias. On the other hand, these are
not very rare in medical practice. In addition to this, multiple ar-
rhythmias are hard to diagnose because there is no simple rule for
combining ECGS that correspond to constituent disorders. In other words,
if we know which ECGS correspond to any simple disorder, in general it is
not clear how to 'sum' these ECGS into 'combined' ECGS corresponding to
combinations of simple disorders.
We approached the problem of multiple arrhythmias by constructing a

model of the heart. Any combination of disorders can be inserted into
the model. The model is deep in the context of the distinction between

436



BRATKO, MOZETIe, AND LAVRAt

deep, causal knowledge, and shallow, operational knowledge. By
definition, the shallow-level knowledge is sufficient for performing the
task itself, but typically without any understanding of the underlying
causal mechanisms. The deep knowledge, on the other hand, captures
this causal underlying structure and allows the system to reason from
first principles.
Our model also is qualitative in the sense that it does not deal with

electrical signals represented numerically as voltages in time, but
represented by symbolic descriptions that specify qualitative features of
signals. Such a qualitative modelling approach has several advantages
over the conventional numerical modelling. Among the advantages are:

1. The qualitative view is closer to the actual physiological descriptions
of and reasoning about the processes and failures in the heart.
2. To execute the model we do not have to know exact numerical

values of the parameters in the model.
3. The qualitative simulation is computationally less complex than

numerical simulation.
4. The qualitative simulation can be used as a basis for constructing

explanations of the mechanism of arrhythmias.
In respect of the qualitative approach to modelling our work is related to
the work of Forbus (1984), de Kleer and Brown (1984), and Kuipers
(1984).

5100 KB 25 KB
Diag.+ pred. Diagnosis

ECG- Arr.
compressed

I.
Arr. - ECGShallow Learning

/eve/ base program

Arr- ECG
compressed

S.

Prediction

Qualitative
simulation

Deep Causal
level model

S. 

27 KB

Figure 2. Deep and shallow levels of cardiological knowledge and transformations between
these representations.

437



AUTOMATIC SYNTHESIS AND COMPRESSION

We used the model for the automatic synthesis (through simulation) o
f

the shallow, operational representation of the ECG interpretation knowl-

edge (see Figure 2). This representation facilitates fast ECG diagnosis, 
but

is rather complex in terms of memory space (about 5 Mbytes). Therefore,

as Figure 2 shows, we compressed this knowledge-base by means 
of

inductive learning programs. The representation thus obtained is compact

and diagnostically efficient.
In the remainder of the paper we describe the model of the heart, the

qualitative simulation algorithm and its efficient implementation, the

synthesized shallow knowledge-base and its subsequent compression.

2. THE QUALITATIVE MODEL OF THE HEART

Our qualitative model of the electrical activity of the heart specifies

causal relationships between objects and events in the heart. These

include electrical impulses, ECG signals, impulse generation, impulse

conduction and summation. The model can be thought of as an electrical

network, as shown in Figure 3. However, signals that propagate in this

bun. branc.

ECGgen.

ECG gen.

P wave

P-ORS relation

PR interval

Rhythm

QRS complex

Figure 3. The model of the heart as a network composed of impulse generators, conduction

pathways, impulse summators, and ECG generators.

438



BRATKO, MOZETIt, AND LAVRAt

network are represented qualitatively by symbolic descriptions rather
than by voltage v. time relations.
The ingredients of the model are: nodes of the network; a dictionary of

simple arrhythmias related to heart disorders; 'legality' constraints over
the states of the heart; 'local' rule sets; 35 'global' rules.
These ingredients are reviewed in more detail below.

Nodes of the network

There are four types of nodes: impulse generators, conduction pathways,
impulse summators, and ECG generators, illustrated in Figure 4. Recall
that the word 'impulse' in this figure refers to a symbolic description, so
these elements are in fact operators on descriptions. Impulse generators
and conduction pathways can be in normal or abnormal functional states.
For example, a generator can generate impulses or can be silent; a
conduction pathway can conduct normally or it can be blocked or
partially blocked in various ways: it may just cause a delay of an impulse,
or it can suppress every second or third impulse, etc. These abnormal
states of individual elements correspond to simple disorders of the heart.

1. Gienerato) impulse

2. impulse conduction path impulse

impulse
3.  ■ impulse

impulse

4. impulse

• • •

Figure 4. Building blocks for the heart model.

ECG—description

A dictionary of simple arrhythmias related to heart disorders

Each simple arrhythmia is defined in terms of the functional states of the
components of the heart. Roughly speaking, each simple arrhythmia
corresponds to a disorder in one of the heart's components.

Legality' constraints over the states of the heart

This is a predicate on the functional states of the heart which recognizes
certain categories of states that are rejected by the model as 'illegal'.
These categories include: logically impossible states, physiologically
impossible states, and 'medically uninteresting' states.
A state is logically impossible if one of the heart's components is in two

different states at the same time. An example of a physiologically

439



AUTOMATIC SYNTHESIS AND COMPRESSION

impossible state is a situation in which two generators in the atria
discharge permanent impulses. An example of a 'medically uninteresting'
state is one in which there is no atrial activity and the atrio—
ventricular(av) conduction is blocked. In such a case the block has no
effect on the function of the heart and also cannot be detected in the ECG.

'Local' rule sets

These specify the behaviour of the individual components of the heart
(generators, summators and conduction pathways) in the presence of
various abnormal states.

'Global' rules

These rules define causal relations between impulse generators and
conduction pathways in the heart, electrical impulses and ECG features;
these rules also reflect the structure of the network in Figure 3. There are
35 global rules in the model.

All the rules in the model have the syntax of the first-order predicate
calculus, in particular, the syntax that is accepted by PROLOG under
Edinburgh notational conventions (Pereira et al., 1978). According to
these conventions, the names of constant symbols and functors start with
lower-case letters, and the names of variables start with capital letters.

Rules are composed of subexpressions in specialized languages for
describing the state of the heart, impulses that are conducted through the
heart, and ECG patterns.
For example, the term

heart(atr_focus: permanent(regular, between_100_250))

is a partial specification of the state of the heart. It says that the atrial
focus is discharging permanent impulses (as opposed to periodical) with a
regular rhythm at the tachycardic rate (i.e. somewhere between 100 and
250). Each statement about the state of the heart tells in what functional
state a component of the heart is (the atrial focus in the example above).
The following is an example of an ECG description:
[rhythm = irreglar] &
[regular_P = abnormal] &
[rate_of_P = between_100_250] &
[relation_P_QRS = after_P_some_QRS_miss] &
[regular_PR = prolonged] &
[regular_QRS = normal] &
[rate_of_QRS = between_60_100 or between_100_250]

This specification consists of values assigned to qualitative ECG attributes
that are normally used in the cardiological literature, such as the rhythm
and the shape and the rate of P-waves (Figure 5). Notice that the

440



BRATKO, MOZETIt, AND LAVRAt

ORS complex

Normal sinus rhythm

ORS

Ventricular tachycardia

Figure 5. Upper part an ECG curve that corresponds to the normal heart. Marked are
features that are normally looked at by an ECG diagnostician. Lower part: ECG curve that
corresponds to the arrhythmia ventricular tachycardia. This abnormal ECG is characterized
by its higher rate ('tachycardia', between 100 and 250 beats per minute), and the 'wide'
shape of the QRS-complexes.

description above gives two values for the rate of QRS waves: it can be
either normal (between_60_100) or tachycardia (between_100_250).
Impulses are described by expressions of the form illustrated by the

following example:

impulse(atr_focus: form(unifocal, regular, between_100_250))

This says that there are unifocal regular impulses with the tachycardic
rate at the atrial focus.

Figure 6 shows two examples of global rules and some rules that
specify the behaviour of the individual components of the heart. The first
global rule in Figure 6 says:

IF

the atrial focus discharges permanent impulses at some rhythm
Rhythm and rate Rate

THEN

there will be impulses at the atrial focus characterized by Origin,
Rhythm and Rate

WHERE

Origin, Rhythm and Rate must satisfy the atr_focus relation.

The atr_focus relation describes the behaviour of the atrial focus. This

441



AUTOMATIC SYNTHESIS AND COMPRESSION

% Two global rules

[heart(atr_focus: permanent(Rhythm, Rate))]
[impulse(atr_focus: form(Origin, Rhythm, Rate))] &
atr_focus(Origin, Rhythm, Rate).

[impulse(atria: form(_, Rhythm0, Rate0)), heart(av_conduct: State)]
[impulse(av_conduct: form(State, Rhythml, Ratel))] &
av_conduct(State, Rhythm0, Rhythml, Rate0, Ratel).

% Some local relations

atr_focus(unifocal, quiet, zero).
atr_focus(unifocal, regular, between_60_100).
atr_focus(unifocal, regular, between_100_250).
atr_focus(wandering, irregular, between_60_100).
atr_focus(wandering, irregular, between_100_250).
atr_focus(circulating, regular, between_250_350).

• • •

av_conduct(normal, Rhythm, Rhythm, Rate, Rate) :—
below(Rate, over_350).

av_conduct(progress_delayed, regular, irregular, Rate0, Ratel):—
reduced(Rate0, Ratel).

av_conduct(progress_delayed, irregular, irregular, Rate0, Ratel) :—
reduced(Rate0, Ratel).
• • •

reduced (Rate, Rate).

reduced(Rate, Ratel) :—
succ(Ratel, Rate).

suc.c(zero, under_60).
succ(under_60, between_60_100).
succ(between_60_100, between_100_250).

• • •

Figure 6. Two global rules and some local rules of the heart model. Global rules are, from
the point of view of PROLOG, unit clauses of the form: A B & C, which can in the model
be read: if A then B where C. A special rule-interpreter in PROLOG uses rules of this type.
Local rules specify the behaviour of individual components of the heart and are directly
executed by the PROLOG system as rules of a PROLOG program.

relation is partially specified in Figure 6 by 'local rules'. It tells that the
atrial focus can be quiet, it can behave ̀ unifocally' discharging impulses
at a normal or tachycardic rate with regular rhythm, or it can be
'wandering' discharging impulses with irregular rhythm at normal or
tachycardic rate, etc.

442



BRATKO, MOZETIt, AND LAVRAt

The second global rule in Figure 6 can be read:

IF
in the atria there are permanent impulses of some rhythm Rhythm0
and rate Rate0, and the state of the av-conductance is State

THEN
there are impulses of type State, rhythm Rhythml and rate Rate 1 at
the exit from the av-conductance

WHERE
State, Rhythm0, Rhythml, Rate° and Ratel have to satisfy the
relation ̀ av_conduce.

The av_conduct relation is specified by a set of local rules, as a directly
executable PROLOG procedure. This procedure qualitatively defines the
physiology of the av_conductance pathway. As can be seen from the
definition of this relation in Figure 6, the components of the heart often
behave 'non-deterministically' in the sense that they can react to the same
input with different responses at the output.
Complete details of the model can be found in Mozetic et al. (1984).

3. THE QUALITATIVE SIMULATION ALGORITHM

Formally, the qualitative simulation consists of theorem proving and
theorem generation. Although the 35 global rules have the syntax of
PROLOG they are not directly executed by PROLOG'S own interpreting
mechanism, the main reason being the necessity for additional control in
order to improve the execution efficiency. Thus the qualitative simulation
is done by a special rule-interpreter implemented in PROLOG.
Each simulation run consists of the following steps:
1. Instantiate the model by a given arrhythmia, using the definitions of

arrhythmias in terms of the heart disorders.
2. Check the resulting functional state of the heart against the legality

constraints (logical, physiological, etc.)
3. Execute the model by triggering the rules until no more rules fire

(this process is combinatorial due to the non-deterministic nature of the
heart's components).
4. Collect the proved assertions about ECG signals and then construct

an ECG description that corresponds to the given arrhythmia. •
The complex part above is step 3. It is based on the forward chaining of
global rules in the model. The simulator starts with some initial data base
of facts (initially these just specify the state of the heart) and keeps firing
the global rules until no more can fire. The constraint here is that no rule
is repeatedly executed on the same piece of information. Execution of
rules generates new assertions that are added into the data base. These
new assertions are regarded as hypotheses that can later be proved false.

443



AUTOMATIC SYNTHESIS AND COMPRESSION

1. By the definition of [atrial_tachycardia, wenckebach] instantiate the
state of the heart to:

heart(sa_node: permanent(quiet, zero)) &
heart(atrial_focus: permanent(regular, between_100_250)) &
heart(av_conduct: progress_delayed) &

• • •

2. The assertion

heart(atrial_focus: permanent(regular, between_100_250))

triggers the first global rule in Figure 6. The goal

atr_focus(Origin, regular, between_100_250)

is evaluated, using the local relation atr_focus. This succeeds and the
new assertion is added to the database:

impulse(atr_focus: form(unifocal, regular, between_100_250))

3. After summing together the atrial impulses we get the asertion:

impulse(atria: form(unifocal, regular, between_100_250))

4. This assertion triggers the second global rule in Figure 6. The Prolog
goal to be evaluated is now:

av_conduct(progress_delayed, regular, Rhythml, between_100_250,
Ratel)

This can be satisfied in two ways, either by Ratel = between_100_
250 or by Ratel = between_60_100. So two hypotheses are indi-
cated:

impulse(av_conduct: form(progress_delayed, irregular, between_
100_250))

or

impulse(av_conduct: form(progress_delayed, irregular, between_
60_100))

Depending on the search strategy used, the system may now assert
one of the above hypotheses into the database, and consider the
second one on backtracking which corresponds to a depth-first style
search; or, it may assert both which corresponds to a breadth-first
style search.

Figure 7. Fragments of the qualitative simulation trace for the combination of arrhythmias
atrial_tachycardia and wenckebach. Some steps were omitted from the actual trace.

444



BRATKO, MOZETIt, AND LAVRAt

Backtracking to a previous point occurs when the current content of the
data base is found inconsistent, i.e. some assertion has been generated
which leads to contradiction. Roughly, the rule triggering process is as
follows.
Assume that there is a hypothesis A in the data base. Then apply a

global rule of the form

A&IB&C

In general, in such rules A and B are PROLOG terms and C is a PROLOG
goal which can directly be executed by PROLOG. The precondition
matching is simply the logic unification. Normally, C is a call to evaluate
a local relation. Thus, to apply a rule of the above form, do:

Evaluate C; if C is false then A must be false and discard it; otherwise if
C is true, assert a new hypothesis B and continue firing rules.

In the case that C is false a contradiction has been detected and
backtracking is indicated. This process terminates when there are no
more rules to fire. At that stage, all the remaining hypotheses in the data
base are accepted as true since there is now no way of showing a
contradiction. Among these facts there are also statements about the
ECG. The simulator collects those statements and forms an ECG descrip-
tion which corresponds to the arrhythmia with which the simulation
process was started.
As an example, Figure 7 shows part of a simulation run when the state

of the heart is a combination of two simple arrhythmias: atrial_
tachycardia and wenckebach.

4. IMPLEMENTATION OF THE SIMULATION ALGORITHM

The easiest way of implementing the simulation algorithm outlined above
is to use the depth-first search strategy. This is straightforward and
suitable for single simulation runs, that is for answering questions of the
prediction type: given an arrhythmia, what are its corresponding ECGS.
Different possible ECGS are simply generated through backtracking. Also,
an execution trace obtained in such a simulation run can be used as the
basis for generating a user-oriented explanation of what is going on in the
heart. This is suitable since the simulation steps follow the causal chains
of events in the heart, according to the global rules of the model. These
rules essentially describe the causal relations between events in the heart.
In a PROLOG implementation of depth-first simulation on the DEc-10

(Edinburgh implementation of PROLOG; Pereira 1978), each simulation
run takes a few c.p.u. seconds, producing all alternative ECGS.

Diagnostic-type questions as opposed to prediction-type questions, are
of the form: given an ECG, what arrhythmias could have caused it? To

445

kiPle■



AUTOMATIC SYNTHESIS AND COMPRESSION

answer such questions, we could run the model in the opposite direction.

Start with a given ECG and end with the possible functional states of the

heart that might cause this ECG.
We can in fact run the model in this direction by the backward chaining

of the rules in the model. In order to do that we reversed the global rules

and used the simple depth-first search. However, the practical problem of

efficiency now arises because the branching factor ('non-determinism') in

the backward direction is much higher than that in the forward direction.

This entails much more backtracking and rather complex search, thus

rendering this approach to diagnosis impractical. Efficiency can be

improved by re-writing the model so as to introduce more constraints into

the rules, which helps the system recognize contradictory branches at an

earlier stage. An attempt at re-formulating rules, however, revealed two

drawbacks. The size of the model increases considerably, and the

transparency is greatly affected. This, in turn, mars the explanation of the

heart's behaviour based on the execution trace.
An alternative way to achieve efficient diagnosis is to generate from the

deep model of the heart a complete shallow-level representation of the

arrhythmia—Eco relation as a set of pairs of the form:

(Arrhythmia, ECG -description)

In principle this can be done by executing the depth-first simulation

(forward chaining) for each possible combined arrhythmia, and storing all

its ECG manifestations. It would be necessary to repeat this for all possible

alternative execution paths in order to obtain all possible ECGS for each

arrhythmia. This is again rather inefficient for two reasons. First, for each

disjunctive solution the simulator has to backtrack to some previously

used rule in the model and restore its previous state. Second, the final

resulting ECG descriptions have the form of disjunctions of ECG patterns.

These disjunctive expressions can be more complex than necessary and

can be later simplified. This posterior simplification, however, is again a

complex operation. Each disjunct is the result of an alternative execution

path. The simplification can be carried out much more economically at

the very moment that a disjunct (or, typically part of it) is generated,

before it is further expanded and mixed in the expression with other not

closely related terms.
These two factors (saving the restoration of previous states, and

immediate simplification of disjunctive expressions) motivated the im-

plementation of another type of simulation algorithm which handles

alternative execution paths in a breadth-first fashion. This algorithm

develops alternatives essentially in parallel and currently simplifies

disjunctions. The simplification rules actually used are rather model

dependent in the sense that they do not preserve logical equivalence in

general but only in the special case of the properties of the heart model.

446



BRATKO, MOZETIt, AND LAVRAt

So the 'breadth-first' simulation is not general and we would possibly
have to modify the simplification rules in the case of a change in the
model.
This specialized simplification method proved to be rather powerful.

As a typical example of the reduction effect, consider the combined
arrhythmia atrial_fibrillation and ventricular_ectopic_beats. The depth.
first simulation generates 72 ECG descriptions which corresponds to an
ECG expression with 72 disjunctive terms. The breadth-first simulation
results in a description comprising four disjunctive terms. There was a
similar factor of improvement in general, which can be seen from the
results of generating the complete arrhythmia—Eco relation.

5. GENERATION OF A COMPLETE ARRHYTHMIA—ECG KNOWLEDGE-
BASE

The breadth-first simulation algorithm was executed on all mathemati-
cally possible combinations of simple arrhythmias. The majority of these
combined arrhythmias were eliminated by the legality constraints over
the states of the heart. The complete arrhythmia-Eco knowledge-base
was thus automatically generated. Results of the generation are depicted
in Figure 8.

Figure 8 reveals some interesting points. Of all possible arrhythmias,
the combinations of four simple arrhythmias are the largest subset. Note
the large number (140,966) of generated ECG patterns. This is indicative
of the difficulty in ECG diagnosis of cardiac arrhythmias. On average, each
arrhythmia has almost 60 different corresponding ECG manifestations.
There are altogether 2419 'legal' combined arrhythmia within the level of

Number of
disorders
in the heart

Mathematically
possible
combinations

Numbers of generated

Multiple
arrhythmias

Prolog
clauses

ECG
descriptions

1 30 18 27 63
2 435 118 286 2,872
3 4,060 407 1,207 17,551
4 27,405 759 2,679 45,939
5 142,506 717 2,867 52,707
6 593,775 340 1,164 20,322
7 2,035,800 60 84 1,512

2,804,011 2,419 8,314 140,966

Figure 8. Results of generating the arrhythmia knowledge-base. The number of generated
arrhythmias for 'combinations' of simple arrhythmias is 18 which is less than the number of
all simple arrhythmias (30). The reason is that some simple arrhythmias (conduction
disturbances and ectopic beats) cannot occur alone, but only in combination with other
arrhythmias (e.g. with sinus rhythm).

447



AUTOMATIC SYNTHESIS AND COMPRESSION

detail of the heart model. The relation to their ECG manifestations is
represented by 8314 PROLOG clauses. Each clause represents a pair:
arrhythmia—Eco expression. Each ECG expression specifies a number of
possible ECGS, about 20 on average. This is the reduction factor due to
the simplification technique used in the breadth-first simulation.
The set of 140,966 ECG patterns (the right-hand sides of the

arrhythmia—Eco rules) are not unique. The same ECG patterns can occur
at several places which means that several arrhythmias can have the
same ECG manifestation. Consequently, arrhythmias cannot be unam-
bigously diagnosed from a given ECG. Empirical probing showed that for
a given ECG there are typically between two and four possible combined
arrhythmias in the arrhythmia knowledge-base. From the medical point
of view, however, these alternative diagnoses are not significantly
different in the view of treatment. They would typically all require the
same treatment.
The arrhythmia—Eco base generated from the model is complete in two

ways. First, it comprises all physiologically possible arrhythmias at the
level of detail of the model. Second, each arrhythmia is associated with
all its possible ECG manifestations. In principle, the problem of diagnos-
ing is now simple. As the rules in the knowledge-base are logical
implications, we can apply modus tollens rule of inference on them.
Consider a rule of the form

Arrhythmia Eco_description

where Eco_description is the disjunction of all possible ECGS that
Arrhythmia can cause. Then, if a given ECG does not match ECG_
description it follows that Arrhythmia is eliminated as a diagnostic
possibility. All arrhythmias that are not thus eliminated form the set of
possible diagnoses with respect to the given ECG data. Any further
discrimination between the set of arrhythmias thus obtained can be done
only on the basis of some additional evidence (e.g. clinical data). Also, as
the knowledge-base is complete the empty set of possible arrhythmias
would imply that the given ECG is physiologically impossible.

6. COMPRESSION OF THE ARRHYTHMIA-ECG BASE USING
INDUCTIVE LEARNING TOOLS

The main motivation for having the arrhythmia—Eco base is that it can be
used for ECG diagnosis based on a simple pattern-matching rule.
However, it is rather bulky for some practical application requirement. If
stored as a text file, the 8314 PROLOG clauses that represent the
arrhythmia—EcG relation, occupy 5.1 Mbytes of store. Also its complexity
renders this knowledge-base difficult to compare with the conventional
medical codifications of electrocardiographic knowledge. Therefore an

448



BRATKO, MOZETIe, AND LAVRAt

attempt has been made to find a more compact representation of the
arrhythmia–Eco base that would still allow efficient ECG diagnosis.
The main idea was to use the knowledge-base as a source of examples

of particular features (heart disorders or ECG features) and to use an
inductive learning algorithm to obtain their compact descriptions. The
inductive learning programs used were GEM (Reinke, 1984) and EXCEL
(Becker, 1985). Taking the complete arrhythmia–Eco base as the set of
examples, the number of examples for these two learning programs
would be too high. Therefore we had first to generate a subset of the
knowledge-base that would retain its completeness to the greatest
possible extent. The following domain-specific factorization properties
facilitated the selection of a considerably reduced subset for learning,
whereby the information thus lost can be recovered by a small set of
additional rules.
Some disorders in the heart are of a permanent nature while some do

not occur regularly; the latter are called ectopic beats. A large number of
combined arrhythmias and in particular ECG descriptions are due to the
unconstrained combinatorial nature of ectopic beats. If we disregard
mutual combinations of different types of ectoptic beats we can
substantially reduce the number of generated multiple arrhythmias and
ECG descriptions. The information thus lost can easily be reconstructed
from the remaining rules in the knowledge-base. Namely, different types
of ectopic beats are both mutually independent and independent of
permanent disorders. The presence or absence of an ectopic beat does
not affect the part of the ECG description produced by other disorders.
The learning subset of the knowledge-base was further reduced by
disregarding three simple arrhythmias whose ECGS can easily be deduced
from the behaviour of other similar arrhythmias.
To summarize—the learning subset was constructed from the original

arrhythmia-ECG base by the following reductions:
1. The subset only deals with 27 simple arrhythmias instead of the

original repertoire of 30. We omitted sinus_arrhythmia, right_bundle_
branch _block, and multi_ventricular_ectopic_beats whose ECG descrip-
tion can be constructed from the descriptions of sinus_node_disorders,
left_bundle_branch_block, and ventricular_ectopic_beats respectively.

2. We discarded mutual combinations of different types of ectopic
beats (atriaLectopic_beats, junctional_ectopic–beats, and ventricular_
ectopic_beats).
The subset thus obtained was substantially smaller than the original
arrhythmia–ECG base. There are 586 combined arrhythmias and 2405
ECGS in the subset compared with 2419 arrhythmias and 140,966 ECGS in
the complete knowledge-base.
Roughly, the procedure for compressing the knowledge now proceeded

as follows. The learning subset of the arrhythmia–Eco base comprised

449



AUTOMATIC SYNTHESIS AND COMPRESSION

586 rules (corresponding to 586 combined arrhythmias) of the form:

Combined_arrhythmia EcG_description.

The goal of learning was to convert this information into rules of two
forms:

1. Compressed prediction rules which answer the question: what ECGS
may be caused by a given disorder in a heart's component?
2. Compressed diagnostic rules which answer the question: what heart

disorders are indicated by a given isolated ECG feature?
Compressed prediction rules were synthesized by the GEM inductive
learning program, and compressed diagnostic rules were synthesized by
the EXCEL program. Both programs are based on the AQ11 learning
algorithm (Michalski, 1983) and both generate class descriptions as APC
expressions (Annotated Predicate Calculus; Michalski, 1983). Before the
programs could be used, the learning subset had to be converted into
rules of yet two other forms in order to obtain the right input for the
learning programs required, i.e. examples of objects that belong to
classes being learned. The principle of how to do that in general is
described in Mozetic (1986). For synthesizing prediction rules, the proper
starting form was:

Isolated_disorder Eco_description

where an 'isolated disorder' is, for example, the atrial focus being in the
tachycardic state. The starting point for the synthesis of diagnostic rules
were rules of the form:

Isolated_Eco_feature Heart_state_description

where an 'isolated ECG feature' is, for example, P-wave having abnormal
shape. In general, rules of these forms are not completely logically
equivalent to the original rules, so they have to be used with care.
Mozetic (1986) states the conditions under which both the original rules

Total
number of

Original arrhythmia
knowledge-base

Subset of the
knowledge-base

Arrhythmias
combined

Diagnostic
rules

rules 2,419 586 45 49
conjunctions 8,314 957 75 144
attributes 58,197 6,699 248 371

Kbytes 5,100 400 10 13

Figure 9. Comparison between the original arrhythmia—Eco base, the selected subset for
learning, and the derived compressed rules of both types (prediction and diagnosis). A
'rule' above corresponds to a combined arrhythmia, a 'conjunction' corresponds to a
PROLOG clause. 'Attributes' mean all the references to attributes in a whole rule set. The
last row gives the sizes of these representations if stored as text files.

450



BRATKO, MOZETIt, AND LAVRAt

and the transformed ones are in fact logically equivalent. So this
additional request had to be verified in our case as well.
Figure 9 shows the compression effects achieved in terms of the

number and complexity of rules, and in terms of storage space needed
when storing different representations simply as text files.
Figure 10 shows some prediction and some diagnostic rules generated

combined(wenckebach) <=> [av_conduct = wen]
[relation_P_QRS = after_P_some_QRS_miss] &
[regular_PR = prolonged]

combined(atrial_tachycardia)q[atr_focus = at]
[regular_P = abnormal] &
[rate_of_P = between_100_250] &
[regular_PR = meaningless v normal v prolonged]

[regular_P = abnormal] &
[regular_PR = shortened v normal v prolonged] &
[regular_QRS = wide_LBBB_RBBB v delta_LBBB v delta_RBBB]

[regular_P = abnormal] &
[rate_of_P = between_100_250] &
[regular_PR = shortened] &
[regular_QRS = normal v wide_LBBB v wide_RBBB]

[regular_P = abnormal]
[sa_node = quiet] &
[atr_focus = quiet v at v afl v af v aeb] &
[reg_vent_focus = quiet v yr v avr v vt]

[regular_PR = shortened]
[atr_focus = quiet v wp v at v mat v aeb] &
[av_conduct = wpw v Igl]

[av_conduct = normal] &
[av_junction = jb v jr v jt]

[atr_focus = at] &
[av_conduct = normal v wpw v Igl]

[regular_QRS = normal]
[av_conduct = normal v avbl v wen v mob2 v avb3 v Igl] &
[bundle_branches = normal] &
[reg_vent_focus = quiet]

Figure 10. Examples of prediction and diagnostic rules generated by the inductive learning
programs.

451

7,411741,.4.1W~INN•m■--



AUTOMATIC SYNTHESIS AND COMPRESSION

by the induction algorithms. Some of these descriptions correspond very
well to the definitions in the medical literature. For example, the
descriptions of the wenckebach disorder corresponds precisely to the
conventional medical descriptions. On the other hand, some of the
synthesized descriptions were considerably more complex than those in
the medical literature. The computer-generated descriptions in such cases
give much more detailed specification than may be necessary for an
intelligent reader with a physiological background. Such a reader can
usually infer the missing detail from his background knowledge. The
additional details must still be made explicit in case of a computer
application in the form of a diagnostic expert system, otherwise a lot of
background knowledge and inference would have to be added which
would be extremely difficult and its correctness hard to verify. Mozeti6
(1986) describes in detail how the knowledge compression was done.

7. CONCLUSIONS

Various representations of the ECG knowledge and transformations
between these representations were described. The main three repre-
sentations are at different knowledge-levels in the sense of a distinction
between 'deep knowledge' (causal, first principles) and 'shallow knowl-
edge' (operational knowledge). These three representations are: deep
level (the qualitative causal model of the heart); shallow level (the
complete arrhythmia—Eco base); and shallow level compressed (compact
diagnostic and prediction rules).
Figure 11 compares these representations from the points of view of:

nature of knowledge, method of construction, representational formal-
ism, size as text file (in kilobytes), direction of inference the repre-
sentation supports, functional role.
The size of the compressed diagnostic knowledge of 25 kbytes ap-

parently contradicts the size of compressed diagnostic rules in Figure 9.
The difference stems from the fact that the compressed rules themselves
are not sufficient for the diagnosis because of the loss of information in
the selection of the learning subset of the arrhythmia—EcG base. To attain
the full diagnostic equivalence with the complete shallow knowledge-
base, we have to add descriptions of arrhythmias and ECG features that
were eliminated when reducing the complete knowledge-base into the
learning subset. Furthermore, 'legality' constraints and related testing
procedures must also be included. After adding all of these, the size of
the compressed diagnostic knowledge increases to 25 kbytes.
The ECG knowledge of this study is used in various forms in the KARDio

expert system for ECG interpretation (Lavrac et aL, 1985). The automati-
cally synthesized shallow-level electrocardiographical knowledge-base is
complete with respect to the level of detail of the model. In an

452



BRATKO, MOZETIt, AND LAVRAt

causal model
of the heart

arrhythmia
knowledge-base

HI
compressed
diagnostic knowledge

Nature of
knowledge

deep
causal

shallow
operational

shallow
operational

Method of
construction

manual automatic
synthesis from I

automatic
compression from II

Representational
formalism

first-order
logic

propositional
logic

propositional
logic

Size in
kbytes 27 5,100 25

Direction of
inference

ARR -4 ECG
forward

ARR 4-0 ECG
both

ARR 4—ECG
backward

Role
qualitative
simulation
generate II

diagnosis,
provide
examples for HI

diagnosis

Figure 11. Comparison of different representations of electrocardiological knowledge.

assessment study of ICARolo (Grad and Cercek, 1984), cardiologists made
the following estimates: the knowledge-base covers 90-95% of a 'non-
selected' patient population suffering from cardiac arrhythmias (non. 
selected in the sense that these patients would not be referred to a
specialist cardiologist on the account of previous examinations). In a
selected population ICARoto-E (the version of KARDIo used in this
assessment study) would correctly handle 75% of arrhythmia cases. In an
actual test on 36 randomly selected arrhythmia cases from internal
medical practice the arrhythmia knowledge-base was sufficient in 34 cases
(94%). The failed cases are due to some incompleteness of the deep
model, such as the present model's incapability to handle artificial
pacemakers.
The main vehicles for implementing various knowledge representations

and transformations were the following tools and techniques of Artificial
Intelligence: logic programming (PROLOG in particular), qualitative mod-
elling, and inductive learning tools. It should be noted, of course, that
the inductive programs were used in this work as tools for compression of
a representation and not for actual learning. Since the input information "
to the learning programs was complete no generalization could have
occurred.

Further work can be directed along various lines including: elaboration
of explanation capabilities based on the qualitative simulation; extending
the model of the heart with treatment of mechanical failures; and
stratifying the model by introducing several levels of abstraction. This

453



AUTOMATIC SYNTHESIS AND COMPRESSION

could be based on hierarchical relations between components of the heart
and attribute values. Such a hierarchy would have an important role in
generating a good and concise explanation of the heart to provide a
means of flexibly concentrating the explanation on points selected by the
user.

Acknowledgements

The authors would like to thank the cardiologists: Professor M. Horvat, B. Cercek, A.
Grad, and P. Rode of the University Medical Centre, Ljubljana, for their consultations as
domain specialists in this research.

REFERENCES

Becker, J. (1985) Inductive learning of decision rules with exceptions. M.Sc. thesis.
University of Illinois at Urbana-Champaign.

Forbus, K. D. (1984) Qualitative process theory. Artificial Intelligence 24, 85-168.
Grad, A. and Cercek, B. (1984) Evaluation of the applicability of the KARDIO-E expert
system. Issek Workshop 84, Bled, Yugoslavia.

Goldman, M. J. (1976) Principles of clinical electrocardiography. Lange Medical Publica-
tions, Los Altos.

Kleer, J. de and Brown, J. S. (1984) A qualitative physics based on confluences. Artificial
Intelligence 24, 7-84.

Kuipers, B. (1984) Commonsense reasoning about causality: deriving behaviour from
structure. Artificial Intelligence 24, 169-204.

Lavrac, N., Bratko, I. Mozetic, I., Cercek, B, Horvat, M. and Grad, A. (1985)
KARDIo-E—an expert system for electrocardiographic diagnosis of cardiac arrhythmias.
Expert Systems 2,46-50.

Michalski, R. S. (1983) A theory and methodology of inductive learning. In Machine
learning—an artificial intelligence approach (eds R. S. Michalski, J. G. Carbonell and T.
M.Mitchell) pp. 83-134. Tioga, Palo Alto.

Mozetic, I. (1986) Compression of the ECG knowledge-base using the AQ inductive learning
algorithm. Report no. UIUCDCS-F-85-943, Department of Computer Science, University
of Illinois at Urbana-Champaign.

Mozetic, I. (1986) Knowledge extraction through learning from examples. In Machine
learning; a guide to current research (eds T. M. Mitchell, J. G. Carbonell, and R. S.
Michalski) pp. 227-31. Kluwer, Boston.

Mozetic, I., Bratko, I. and Lavrac, N. (1984) The derivation of medical knowledge from a
qualitative model of the heart. ISSEK Workshop 84, Bled, Yugoslavia. Updated version to
appear as KARDIO: a study in deep and qualitative Knowledge for expert systems, MIT
Press, Cambridge, Mass.

Pereira, F., Pereira, L. M., and Warren, D. H. D. (1978) DecSystem-10 Prolog user guide.
Department of Artificial Intelligence, University of Edinburgh, Edinburgh.

Reinke, R. E. (1984) Knowledge-acquisition and refinement tools for the ADVISE
META-EXPERT system. M.Sc. thesis, University of Illinois at Urbana-Champaign. Also
appeared as UIUCDCS-F-84-921.

454



Index

ABT 149, 150, 151, 153, 154
ACLS 307, 319, 423-33

description of 425-8
intelligibility of solutions 424, 432
performance of 423-5, 429-32, 432-3
termination rules 428, 433

Ada 157, 160, 161, 162, 163, 164
advice generation 132-3, 142, 149-54
ALI 375-6
Anna 157, 158, 160-4
annotations (of programs) 160, 161, 162
AOCDL 289, 290, 291, 298, 301-2, 303
APES 209, 213-16, 231, 233, 234, 256
AQ algorithm 267-70, 272
arc consistency 134, 135-9, 140, 144
arrythmia-EcG knowledge bases 447-53
arrythmias, cardiac 436, 439, 447, 449
assertions 24, 160, 196-200, 202
assignment 33, 46
ASSISTANT 308, 309, 310
assumptions, non-negative 111
assumptions, tentative 243, 244, 258
ATEST 273
atoms 169, 188
attributes 265, 291, 292, 306, 319, 320

binary 309, 315
class 322
compound 328
decider-status of 292-4, 298
domains of 265, 272, 328
external 325, 326
integer 425
linear 265
multi-valued 290, 308-9, 311, 317
nominal 265
primitive 319, 320, 324, 325, 326
redundant 305, 314-16, 318
weights of 324

Backtrack, Advised, see ABT
Backtrack, Regular, see RBT

Backtrack algorithm 126, 129-32, 133
backtrack-free solutions 133, 135, 137
backtracking 33, 74, 78, 125, 178-9, 445
bindings 69, 70, 74, 78
biological systems 333-4, 336
British Nationality Act program 228-34,

235, 245, 246, 247, 249-51

C 320, 325, 326
case law 217, 218, 226; 244, 249, 250
CBIAS (coverage bias) 404
cells 193, 194, 195, 204, 205-7
certainties 167, 174, 175-6, 187, 188, 189,

190
calculus of 176, 177

chess endgames 290
lannusi (or BBN) 347-72, 378-89

automata after 1G3-like induction 388-9
'box' in 362-4, 365
example move sequences 381, 382,
384-7

five phases of 350-1
in master practice 369-72
patterns in 365-8
'pseudo-fortress' in 360-1, 362, 363
result of sequence induction 388
results of tests 352-3, 368-9
'squinting' bishops in 364
strategies of domain specialist 353,
358-64

sub-strategy selection 379-80
sub-strategy solution 381-2
task of domain specialist 348-9
see also Kling and Horwitz position

KPa7KR 321, 328-31, 382
KPK 271, 275-6, 278, 279, 281-2, 376

chess research, computer 375-6
choice points 170
chromosome classification 423-5, 429-33
circumscription 4, 8-9, 12, 13

455



INDEX

citizenship, British 224, 228-34, 235, 245,
247,250

clashes 292, 323, 328, 378
classes 265, 266, 291, 292, 305, 306
classification rules 305, 306, 307, 308, 309,

398
classifiers, distance 428-9
classifiers, likelihood 428, 432
classifiers, linear 423, 424, 429, 432
classifiers, statistical 424, 431
clauses 96, 118-20, 171
see also Horn clauses

cis 309, 376
CLUSTER 376
completeness 39-45, 48-9, 50, 51, 52, 266
completion procedures 28
complexes 266, 267-70, 276, 278, 283
concept acquisition, symbolic 265
concept descriptions 263, 264, 265, 266

characteristic 263, 264, 266-7, 270-1,
275, 283-4, 287

characteristic conjunctive (CC) 264, 267,
285

characteristic disjunctive (CD) 265, 267,
274-5, 278, 279-80, 283, 284

complete 266, 267, 284
conjunctive 264, 270, 284
consistent 266, 284, 285
discriminant 263, 264,266-7, 270-1, 275,

284,287
discriminant conjunctive (DC) 265
discriminant disjunctive (DD) 265, 274-

5, 278, 279-80, 283
disjunctive 264, 276, 279, 287

concept recognition rules 265
conclusions, disjunctive 219, 220, 221, 222
conditions, disjunctive 222-3
confluence 38-9, 44, 47, 49, 50, 51
ground 39, 40, 41, 42, 49, 50

congruence-closure algorithms 47
conjectures 3, 5-8, 17-18
`connection machine' architecture 337
consistency checks 149, 150, 151, 152, 153,

154
consistency conditions 4, 6
constraint graphs 127, 133, 134-5, 137, 141,

142
constraints, binary 126, 127, 128, 145

networks of 126-7, 128, 129-31, 142-5,
147, 148-9

weights of 144, 145, 147, 148, 149
constraint-satisfaction problems (cse.) 125,

126,151
east 133, 135, 142
solutions of 128, 130, 131, 142
tree-like 135, 137

contexts 86, 104, 106, 107
convective instability 394, 395

coverage, areal 404
coverage bias (CBIAS) 404
Critical Skill Index, see CSI
cross-multiply and add procedure 89, 93,

120
CS/ (Critical Skill Index) 391, 392, 402, 403
`cuts' 33, 34

data bases
augmenting 95, 108, 112-14, 115, 116,

118
combinatorial 347, 348, 350, 365, 369,

372, 379
deductive 247
deriving equalities from 117
incremental 93
polynomial 104, 105
pushing polynomials into 111-12, 121
pushing terms into 114-15, 121
setting-up 97, 105, 108, 118
in YAPES 117, 178, 187

data base theory 14, 15
deciders, partial 293, 322
decision procedures 83, 84, 88, 122-3
decision rules, see rules, decision
decision support systems 207, 208
decision-trees 289, 382

in ACLS 424, 428, 433
construction of 306-8, 311-12, 316, 322-

4, 376
efficiency of 289, 290, 291, 293, 295-7,

298
linearity of 289, 290, 291, 293, 294-5,

297, 298
deduction facility 59, 61, 62
definition facility 59, 60-1, 62
discretion (legal concept of) 247
domain closure 5, 14-15
domains, disjoint 15-16
domains, problem 322, 324

ECG interpretation 435, 436
see also arrythmia-Eco knowledge bases;

simulation algorithms, qualitative
EG (magazine) 347, 348, 351
entropy 296, 297, 298, 323, 324, 426-7
environments, extensions of 70, 74, 75
EqL 49, 51
Eqlog 49, 52
equality introduction, heuristics for 119,

120
equality of terms 9, 13
equations, conditional 21, 24, 39
equations, directed 21, 23, 24
equations, solution of 32-3
equivalence, propositional 104, 116

456



EVAL function 57, 59
events 265, 266, 267, 268, 269, 285

testing 265, 272, 273, 274
training (learning) 265, 272, 273

example efficiency 377
example sets 292, 293, 322
see also sets, training

EXCEL 449, 450
Expert-Ease 290, 319
expert systems 169, 187

for chess endgames 375-7, 379-83, 388-
9

front ends for 193, 204
legal

British Nationality Act 228-34, 235,
245

as decision takers 212, 245
as decision-taking aids 210-13, 238
pension regulations 252-3
Statutory Sick Pay 241, 249
Supplementary Benefit 213-17, 235
see also legislation

shells 168, 172
for weather forecasting, see WILLARD

Fact system 335, 336
False Alarm Ratio (FAR) 392, 403, 404
Fot, + IN 49,51
first-order theories (Fan) 4, 8
fixpoints 189
FRANZ LISP 45
functional dependencies 33-4
functions

built-in 45-6
definition of 59, 85

function symbols 85, 94, 169

GEM 270, 272, 273-5, 283-4, 449, 450
generalization, inductive 305
Generic Associative Memory (GAM)

devices 336
goal rules 29
goals, equationally satisfiable 41, 42
goals, failure of 179-80, 182-3
goals, logically satisfiable 42
goals, unsatisfiable 47
goal statements 169, 170
ground terms 39, 47

heart, qualitative model of 438-43, 453
Herbrand interpretations 10
Hintikka sets 9-12
Horn clause logic 168, 172
extended 173, 211, 218-19, 221-2, 223,

255

INDEX

Horn clauses 49, 52, 57, 58, 167, 169
positive 60
resolution of 66, 67

hyps stacks 105, 106, 113, 116

11)3 289, 297, 307, 322, 323, 376, 382
comparison with RG 297, 298, 301, 302,

303
identification in the limit 378
implementation languages 172
induction, grammatical 377, 378
induction, probabilistic 328
induction, rule 398
induction, sequence 376-7, 378, 379
induction, structured 290, 292, 303, 319,

324, 376
inequalities, linear 88, 89
inference, inductive 376
inference, meta-level 167
inference, non-monotonic 3, 259
on partial models 12-17
semantics for 5-9

inference, object 167
inference processes, slow 333, 334-5
inferences, defeasible 3, 7, 9
information 307, 308, 309, 310-11, 318
INTERLISP 103
interpretations 188, 189
interpreter 39, 48, 167, 171-2, 175, 177

justifications 174, 175-6

KAiumo 452, 453
k-contextural algorithm 377-8, 381, 383
Kling and Horwitz position 349, 350, 351,

361, 367, 371
'distances' from 358-60

knowledge acquisition 217, 289, 305, 379
knowledge bases 168, 173, 179, 200-4
knowledge representation 172, 187, 335

lambda calculus 59, 62
languages, regular 375, 377
k-contextual 375, 377, 378
k-reversible 377

lattices 174, 177, 180, 188, 190
LDS 211
learning, inductive 449, 450
learning methods, full memory

incremental 263, 264
with AQ 268-70
experimental results 273-9
summary of 279-87

experiments to test 271-3

457



INDEX

learning methods, partial memory
incremental 285

learning methods, single-step 263, 274, 279,
280, 283, 285

LEF (lexicographical evaluation
functional) 268, 270

legislation
ambiguities in 225, 227, 239-41, 251, 256
axiomatic models of 235-9, 246
conceptual models of 249, 250, 251
fragments of 234, 239, 246, 251
goal-directed formalization of 246-51,

256-7
'normalized' form for 227
open-textured concepts in 227, 228, 245,

257
representation of, in logic 217-28
vagueness in 226, 227, 241-6, 251, 256,

257
see also expert systems, legal

LEGOL 221-2, 246
lemma stacks 105, 106, 113, 116
LFM 397, 398, 399, 410, 414, 421
lifting mechanisms 395, 396, 416
Limited Fine Mesh II Model, see LFM
linear arithmetic 83, 84, 87-90

procedures 85
adequacy of 90-1, 122
efficiency of 120-2
integration into theorem provers 91-6
interface with rewriting 114-15
refinements to 96-100

linearization 107-9
positive 109, 112, 113

linearization hypotheses 90, 92, 99, 104,
105, 108

linear rules 97, 112, 113
LISP 21, 57, 58, 88, 106
viewed as a reduction system 59-60
see also LOGLISP

Lisp-transforms 57
literals 86, 169, 171, 174

rewriting 97, 98, 99
LOGIC 57, 58, 60-2
logic, deontic 223, 224
logic, symbolic 218, 227, 256, 258
LogiCalc 193-208

general behaviour of 195-200
potential areas for development 207
special features of 200-7

logic programs, see programming, logic
LOGUSP 48, 57, 58, 69, 70, 78

MACLISP 103
mates on a term 117, 120
max-term 112, 113

458

mayfly nymphs 271, 272, 274-5, 276, 277,
279

MDR (Manually Digitized Radar) blocks
396, 404

migo-PRoLoo 194, 196, 203, 205, 215, 234
234

modelling, qualitative 437
models, financial planning 207
models, partial 3, 5
conjectures on 3, 5-8, 17-18
extensions of 5, 6, 12, 13
Hintikka sets as 9-12
minimal 8, 9, 12
non-monotonic inference on 12-17

models, relaxed 125, 126
models of logic programs 188-9
moisture convergence 394-5, 413, 416, 421
MUGOL 375, 381, 382, 383
multiplicands, key 106, 111, 112
MYCIN 173,211

narrowing 24, 28, 31, 38, 41, 47, 49-52
conditional 28, 39, 41, 42

naturals 88, 89, 90, 92
negation 34-6, 52, 176, 220
as failure 214, 219-20, 221, 233, 239,

243, 259
negative extension (NE) 12-13
networks of cells 336-9
nodes 290, 298

closure of 337
marked 323
non-terminal/internal 291, 306, 320
terminal/external 291, 320

noughts and crosses 354-6

0BJ2 22, 47
obligation 223, 224, 249, 251
OCCAM 76, 78

parallel processing 47, 336
paramodulation 48, 49
PASCAL 158, 171, 270, 273
path consistency 134, 135, 139-40
pattern matching 31, 50
Peano arithmetic 83, 84, 88
pentominoes 356-8
PoD (Probability of Detection) 391, 392,

403
polynomials 89, 92, 93, 106-7, 109, 115
adding term to 109-10
available 111
converting terms to 107-11
inserting hypothesis into 110-11
mated 117, 118, 120



propagation of 93, 96, 97, 98, 120, 121 •
pushing 93, 95, 97, 111-12, 121
zero 107

'pop' algorithm 93, 94
precedents 217, 226, 240, 251
predicates 169, 171, 248, 249,250
probability distributions 145-9, 173-4, 429
Probability of Detection, see PoD
programming, functional 21, 22, 25-7, 47,

48,57
see also LISP; LOGLISP

programming, logic 21, 22-3, 27-31, 32,
48, 169-71, 453

interactive 203
with uncertainties 187-90
see also interpreters; PROLOG

programming, relational 57, 67
programs, rewrite 24, 26, 28-30

consistent 43
correctness of 37-45
features of 31-7
implementation of 45-7

program verification 90-1, 121, 122, 123,
157, 160

PROLOG 21, 27, 33, 57, 187, 443, 445
execution strategy of 234, 247
interpreters 167, 171-2, 177
meta-logical features of 171
as theorem prover 218, 219
type checker 181
versions of 173
see also APES; micro-PRoLoG; RG; YAPES

Prolog-with-Equality 48
proof theory 18
proof trees 170, 171, 177, 179, 180
propositional calculus 36, 39

QLOG 48
qualification problem 8-9
Query-the-User 214
queuing 46-7
QUIN 270
Qute 48, 49

rationals 88, 89, 90
RBT 149, 150, 151, 152, 153, 154
realization of an expression 70
reasoning, default 3, 7, 16-17, 259
reasoning, non-monotonic, see inference,

non-monotonic
reasoning, plausible 169, 173, 177
reasoning, uncertain 187
recall, fast associative 334
redexes 59, 62, 63, 64, 65
reduction 59, 62, 64, 67

INDEX

relations, decomposable 130
relations, definition of 60-1
relationships, declared 202, 203, 204
replication 199, 200, 201
rewriter procedures 86, 92, 93, 94, 96,

104-6, 115-16
rewrite systems 23, 25, 27
RG 290, 291, 296, 297, 298-303
RrrE 45
RuleFactory 319-31

display windows in 326-7
expert systems produced by 325-6
rule explanations in 324-5, 328-31
rule-testing in 324-5
subproblems in 322

RuleMaster 391, 398, 402
rule synthesis 291, 292
rules, conditional 24, 52
rules, decision 266
complexity of 273, 274, 283
induction of 268, 272, 273
see also concept descriptions

rules, default 4, 6
rules, goal 29
rules, linear 97, 112, 113
rules, logic 24
rules, rewrite 24, 25, 33, 50, 86, 92, 113
rules, solution 30

scheduling problems 203
search trees 131, 132, 149, 154, 180
selection criteria 307

investigations of 311-14, 315-17
original 308, 312, 314, 315, 316, 318
ratio 311, 312, 315, 316, 318
single-value 310, 312, 315, 316, 318
subset 309, 312, 315, 316, 317

selectors 266
self-commenting 320
semantics (for logic programs) 48, 49, 188-

90
SETOF function 58, 61
sets, Hintikka 9-12
sets, residual 425, 426
sets, test 428, 429
sets, training 306, 307, 310, 312, 327, 423,

425
see also example sets

SIMPLE 194, 196,201
simplification of equations 24, 29, 31, 41,

42, 47, 51
simplification of problems 132, 133, 142
simplifiers 86, 92, 98, 159
simulation algorithms, qualitative 443-7,

453
SLOG 52

459



INDEX

soybean disease diagnosis 271-2, 278, 279,
283, 284, 285

specification languages 163, 164
spreadsheets 193, 194, 195, 207
Stanford Pascal Verifier (sPv) 157, 158-60
stars 266, 267, 268, 269, 270
'streams' 36-7
string-searching algorithms 101, 121
Sum (Syracuse Unification Machine) 70-8
SUPER 62-8
Supplementary Benefit system 213-17

tableaux, analytic 9, 10, 18
TABLoo 49, 51, 52
tail biting 98, 99
target reaching 204-5
TAXMAN 248, 249
termination 37-8, 50, 51, 52
terms 86, 104, 169, 171
conglomerated 117
irreducible 39, 41,42, 50, 51
isolated 117
ordering on 93
possibly numeric 109
pushing 114-15

text specifications 325
theorem provers 48, 159, 219, 248, 257

heuristic 83, 84
before incorporation of linear

arithmetic 85-8
with linear arithmetic procedure 92-6,
120-2, 122-3

theories, decidable 122
theories, disjunctively complete 42-3
thresholds 175, 176, 177, 190, 191
thunderstorm forecasting, severe

government-issued (sns) outlooks 391,
396-7,402, 404-9

methods of 394-6
see also WU-LARD

tree algorithm, maximum spanning 149
triggering mechanisms 394, 413, 421

460

type afists (TA) 104, 105, 108, 109, 116,
118

type checkers 181, 183
type sets 104, 108, 109

uncertainties 187, 188, 190
unification 31, 48, 49, 58, 66, 169-70

algorithms 66, 67, 70
computer architecture for 69-78

union function 26, 32-3
unique names hypothesis 13-14
universes 10, 15, 180

venting mechanisms 394, 395-6, 414, 416,
421

verification conditions (v.c.$) 91, 92, 121,
159, 160

VisiCalc 194
vim 333, 341, 342
Von Neumann (vN) architecture 336, 338

Wafer Level Integration 337, 342
weather forecasting, see thunderstorm

forecasting, severe; WILLARD
WILLARD 391, 392

analysis of test cases 411-21
decision rules in 401, 402
description of 397-402
FORTRAN analysis routines callable

by 397, 398, 402
summary of results 409-10
verification of 402, 404-9

windows 195, 196, 197, 205, 206, 326-7

YAPES 167-87, 190-1
facilities of 173-81
rationale behind 168-73
top level interpreter for 190-1
transcript of session 181-6
user interaction in 167, 177-81






