
9

Bi-Directional Search

Ira Pohl*
Thomas J. Watson Research Center
I B M Corporation, New York

Abstract

A technique that has proved useful in shortest path and other discrete
optimization computations has been bi-directional search. The method has
been well tested in the two-node shortest-path problem providing substantial
computational savings. A natural impulse is to extend its benefits to heuristic
search.
In the uni-directional algorithms, the search proceeds from an initial node

forward until the goal node is encountered. Problems for which the goal node
is explicitly known can be searched backward from the goal node. An
algorithm combining both search directions is bi-directional.

This method has not seen much use because book-keeping problems were
thought to outweigh the possible search reduction. The use of hashing
functions to partition the search space provides a solution to some of these
implementation problems. However, a more serious difficulty is involved.
To realize significant savings in bi-directional search, the forward and
backward search trees must meet in the 'middle' of the space. The potential
benefits from this technique motivates this paper's examination of the
theoretical and practical problems in using bi-directional search.

INTRODUCTION

Problem-solving programs have principally worked in one direction — from
the initial state to the goal state. In searching for a path to the goal state they
have relied on estimators demonstrating progress to the goal. This they achieve
by a computation that compares the current states with the goal state. GPS
(Newell, Shaw and Simon 1959) and its derivatives (Quinlan and Hunt 1968)
use 'means-ends' analysis; the Graph Traverser (Doran and Michie 1966) or
HPA (Pohl 1969a,b) use a 'heuristic' distance estimator; Multiple Slagle and
* present address: Board of Studies Information and Computer Science,
University of California, Santa Cruz.

127

HEURISTIC PARADIGMS AND CASE STUDIES

Bursky 1968) uses a 'merit' function. Each of these problem-solving systems

order the candidate states, expanding one with a 'best' value. The best state

is the one estimated to require the least additional search to reach the goal

state (see Nilsson 1969 for a general reference).
In many problems attacked by search procedures, the goal state is explicitly

known. It is possible to conduct a search backward from the goal state to the

initial state. The usual forward methods are 'turned around' with the goal

and initial node interchanged and the directions of the steps reversed. Indeed

both a forward and backward search can be independently attempted.

Rather than two independent searches, it can be advantageous to combine the

two searches into a bi-directional search with each contributing part of the

solution. The motivation is that search trees grow exponentially and two

shorter search diameters generate fewer states than a single longer diameter

tree. This provides a strong incentive for developing bi-directional heuristic
algorithms even in the face of more complex book-keeping and coordination.
Moreover, good results have been achieved with these methods in the

shortest-path problem and the network flow problem (Pohl 1969a).

BI-DIRECTIONALITY IN THE TWO-NODE SHORTEST-PATH

PROBLEM

The two-node shortest-path problem is of fundamental importance to
operations research. The history of computational methods for this problem
and closely related problems may be found elsewhere (Dreyfus 1969).
A directed graph G(X, E) is a set of nodes X= {x1, x2, . } and a set of

edges E={(xi, xj)Ixi,xj e X, xi e r (Xi)), where r is the successor mapping,
F: X-42x, the mapping of X into its power set. Analogously there is a pre-
decessor mapping r-i : X-2x where r--1(x.,)={x,ix,, X./ e X, xi ef(x1)}.
A path from a to b is a sequence of nodes (xo, xl, x2, x,.) where xo =a,

x,.=b and (xi, xi +1) e E. For the edges to have lengths is defined as a mapping

: E—+R+ (the positive reals). The special mapping : E-+ {1) is the
cardinality length. The length function is extended to paths using as the

r-1

definition, t'(j1)= E e(xj, xi+i). The two-node shortest-path problem is for
r=0

a given G, s and t, to find a path p.(s,..., t) which has minimum length
over all such paths in G.
The basic algorithm used for this problem is Dijkstra's (1959). It and its

predecessor, Moore's algorithm (Moore 1959), have been adapted for
heuristic search and we will exhibit a bi-directional extension.

Dijkstra's algorithm F

The F signifies forward.
s= start (initial) node, I.= terminal (goal) node.
S= set of nodes reached from s whose minimum distance from s is known.

128

POHL

,g= set of nodes reached from S by one edge but are not in S.
gs(x)= current shortest distance from s to x.
wf(x).the immediate predecessor node of x along the path from s to x.

These sets and values will change with each iteration of the algorithm.

Forward algorithm

1. (initialize) S= {s}, g= {r(s)}, g s(s)=0, g s(x)=1(s, x), wf(x)=s.
2. (find minimum) n={xlx e AV yEs[ga(x).....g3(y)1}
3. (expand) If n=t go to 4, else add n to Sand remove n from g. Look

at each x e r(n); (a) if x e S ignore it; (b) if x g then place it in g with
gs(x)=gs(n)+C(x, n) and wf(x)= n; (c) if x e g then compare g5(x) with
gs(n)+e(n, x) and if the latter is smaller change values of g and wf as in (b).
Go to 2.
4. (halt) Mt) is the length of the shortest path which is

(s, wfk(t), • • wf2(t), wf(t), 0.
where wf i(x)=- wf(wf (wf(x) .))

i times
The algorithm is very simple and the reader can easily prove its correctness

or convince himself by trying an example (see figure 1). The basic work is
the iteration of Steps 2 and 3. This is done each time a node is added to s;
thus the number of nodes in set S upon termination of the algorithm is a
reasonable measure of the work done.

Figure 1. The zig-zag line traces the shortest path from s to

The analogous algorithm working backwards from t would also solve the
shortest-path problem. The sets of interest would then be:
T= set of nodes which have a path to t whose minimum distance is already

found.
T= set of nodes one edge from T but which are not in T.
g(x)=current shortest distance from x to t.
wt(x)=the immediate successor node of x along the path from x to t.

129

HEURISTIC PARADIGMS AND CASE STUDIES

Step I would now initialize T. {t} and Step 3 would expand by looking at
x E I-1(n). The terminating condition would be 'encountering s'.

Call the forward algorithm F and the backward algorithm B; we now wish
to combine them into a bi-directional algorithm.

Bi-directional shortest-path algorithm: BS PA

(1) (initialize) perform F1 (the first step of the forward algorithm) and B1.
(2) (strategy) decide to go forward (go to Step 3) or backward (go to

Step 4).
(3) (forward expansion) perform F2 and F3. F3 must check not 'if n=1' ,

but if n e T go to 5 else it returns to Step 2.
(4) (backward expansion) perform B2 and B3 with the check for halting

being 'if n e S go to 5 else go to 2'.

Figure 2. The results from 10 shortest-path problems in 500 node graphs. The graphs
were generated randomly with a given average degree (the number of edges incident
to a node). Backward and forward are uni-directional Dijkstra algorithms and
Pohl is the bi-directional algorithm using cardinality comparison

130

POHL

(5) (halt) the shortest path is the path (s, w.f./ (x), . . wf(x), x, wt(x),
. . wtk(x), t) which minimizes

V [gs(x)+g,(x)].
xe sn(run

(Note V would also work.)
x rn(sus)

Two points are non-trivial in performing its extension from the Dijkstra
algorithm. The complexity of the terminating condition, which is not the
obvious x e SnT, and the fact that any rule for deciding Step 2 gives a
correct algorithm. These points are explained elsewhere (Pohl 1969a, Dreyfus
1969). Thus what is wanted is the most efficient decision rule for Step 2.
If the decision rule is computationally complicated a heavy penalty is paid,
for it is executed at each iteration. The simple rules of alternating between
forward and backward direction or trying to move equidistantly from the
end points have been suggested (Nicholson 1966). These rules implicitly
hypothesize symmetry. However, a better strategy involves the size of I SI and

TI which reflects the density of the forward and backward neighborhoods.
Going in the direction of the smaller number of candidates is making progress
in a sparser region. This rule inserted in Step 2 of n sPA, i.e.,
(2) if I SI < I TI then go to 3 else go to 4.

is called the cardinality comparison principle. It is analyzed in great detail in
Pohl (1969a) and is supported by both experimental data and theoretical
arguments. Some of these findings are summarized in figure 2. Bi-directionality
has a general usefulness in other combinatorial problems. An especially impor-
tant problem which immediately benefits from this improvement in path
finding is the network-flow problem (see Appendix). Consequently, one
would like to add this technique to the store of aids for heuristic search.

BI-DIRECTIONAL HEURISTIC SEARCH

Hart, Nilsson, and Raphael (1968) extended the Dijkstra algorithm into an
algorithm, A*, which used not g, but g,+hs; where the function h, is an
estimate of the remaining distance from x to t along the shortest path.
Doran and Michie (1966) in the Graph Traverser used h, instead of gs,
and Pohl (1969b) used (1 —co),g,-1-ath, where co is a constant 0 o)< 1.
The heuristic case is hopefully more efficient in the number of nodes looked
at in finding a solution path.

Formally, the heuristic is an estimator of the shortest-path distance
between two nodes.

hs: X-012+ (the non-negative reals)

an estimate of (2(x, . t)) where pis a minimum-length path from x to t.

hk : X-+R+

and is an estimate of l(p(s, x)), the minimum-length path from s to x.
These heuristic functions are to be computer algorithms which, given

the node and its associated state and the state description of the appropriate

131

HEURISTIC PARADIGMS AND CASE STUDIES

endpoint (i.e. gs(x) uses t as its endpoint and g(x) uses s), utilizes these
descriptions to provide the estimate. Hence the problem of capturing
appropriate features relates to a function on these features providing an
accurate estimate of distance. As an example, to model GPS, some of its
expositions (Ernst 1969, Sandewall 1969) indicate that a function it could
utilize is

hs(x)= 10'. di(x)

where associated with x is a state vector (x(1), x(2), x()) and with the
goal node t its state vector (t(1), 1(2), ., 00)

di(x)=
{ 0 x(1)= to)

1 x(00
the Boolean difference vector.

to)

This leads to attempts to reduce differences according to their 'difference
ordering'. This h, is not necessarily an accurate distance estimator, but
corresponds to a Hamming-like metric. Moreover, discussing the efficiency
of GPS style search functions is not the point, rather this is one example of a
heuristic function. Our principal concern is to utilize bi-directionality which

was beneficial in the shortest-path problem. (The graphs there did not have

associated states and will be called an uninterpreted domain.) Following
Hart, Nilsson, and Raphael (1968) we first wish to produce algorithms which
find the shortest path.

Bi-directional Heuristic Path Algorithm: B H PA

The extension of BSPA is accomplished by using f,=-- g, + h, and f,=g,+h, for
evaluation functions and changing the termination step.

BHP A: The notation has mostly been encountered in the previous algorithms.

arm,, is equal to the minimum distance for paths already found.

f,(x)=g,(x)+h,(x) where g3(x) is calculated as in the forward algorithm.

f(x)=g(x)+h(x) where

g(x)=g(n)+((x, n), XE

1. Place s in S and calculate f,(x) for x e r(s) placing them in S and make

the corresponding calculations for t. Set amin:=inf; where inf is a number
larger than the length of any path you will encounter.

2. Decide to go forward (Step 3) or go backward (Step 4).
3. Select n={xl x e AV y es[fs(xX fs(y)]) •
Place n in S and check x e 1"(n) for the following possibilities.
(a) x e 1-(n)ngAfs(x)>g,(n)+((n, x)+h,(x) then replace f, by this

new smaller value.
(b) x er(n)nS Afs(x)>g,(n)+I' (n, x)+h,(x) then place x into g with

the new value at the same time removing it from S.
(c) XE Rig Axer (n) then place x in S.
(d) Otherwise no change in S and S. Go to Step 5.

132

POHL

4. Select n={xlx e TA Vye [ft(x):5f,(y)]} and perform the same computa-
tions as in Step 3 with respect to x e 1-1(n) using T and T. Go to Step 5.
5. If n e SnT then

amin:=min (ainin, ga(n)+g,(n))
If arnin< max rmin (JTs(x)), min (Jt(x))1

xeS xe

then halt and the path that gave arnin is the shortest path. Otherwise go to
Step 2.
As in Hart, Nilsson, and Raphael (1968), we prove for the appropriate

choice of hs and h„ BHPA will find a shortest path.
Let hp(x, y). the minimum distance to get from x toy. Then the heuristic

functions are required to satisfy

hs(x)<hp(x, t), hi(x)...5hp(s, x) (A)

hp(x, y)+hs(y)>h,(x), hp(x, y)-Fht(x)>hi(y) (B)

Then by lemma 2 of Hart, Nilsson, and Raphael (1968) the nodes placed in
set S(T) have had their shortest path from s (to t) found. Consider BHPA
halting with path 1.1.--(s, xi, x2, ..., xk, t) when in fact the shortest path is

A=(s, • • Yj, t).
The algorithm halted with xi E SnT, xi the intersection node. If xi =s or

xi= t then we have essentially the undirectional case with theorem 1 of Hart,
Nilsson, and Raphael (1968) holding.

Otherwise, chnin=gs(x,)+gi(x1)=e(j2)>e(2)
By induction, there exists

yi e g, e Sand Yr-Fi e T, yr eT

with i-1 <r+ 1 or else the path A would have been found. But

fs(Yi)=gs(Yr)+Myi)‹e(a)<amin

and fi(y i) (2)<arnin.

.*. Contradiction, Step 5 of BHPA was not satisfied and halting would
not have occurred.
This argument demonstrates:
Theorem
BHPA with its heuristic functions satisfying (A) and (B) will find a shortest
path.
When not concerned with finding a shortest path BHPA can use (see Pohl

1969a,b)

f,=(1—cos)gs+coshs, and

ft= (1 —co,)gi+coih„ 0 <co „ coi< 1

without concern for It, and k satisfying (A) and (B). While no longer
insuring a shortest path, these functions often find a solution path looking
at fewer nodes and consequently performing less work. Additionally, the
termination step can be simplified to '(Step 5) halt when x e SnT.'

133

HEURISTIC PARADIGMS AND CASE STUDIES

REDUNDANCY AND INTERSECTION

In using BHPA, several book-keeping problems occur which were not of
concern (or not as serious) in uni-directional heuristic search. Two of the
implementation problems of BHPA are redundancy and intersection. The
problem spaces searched have many alternate paths to the same node
causing redundant encounters. In BHP A when the shortest path is required
it is necessary to check if an improved path has been found, and even when
this is unnecessary the addition of extra copies of nodes into S, , T, and T
add to storage requirements and work. The intersection problem is the need to
recognize that a node has appeared in both the forward and backward trees
(x e SAT). Both redundancy and intersection are the same problem, namely,
a record-searching problem.

It is well known from sorting theory that hashing functions are the best
techniques available for unordered record searches (see Morris 1968). The
evaluation function, when suitably normalized, immediately presents itself
as a candidate. Otherwise a suitable function can be concocted using the state
description.
Using the evaluation function of a node may not be possible because it is

dependent on how it was reached (its path history). Also it may be advan-
tageous as we shall see later for BHPA to modify the evaluation function. It is
often the case that h, and k are invariant and can be used when appropriately
normalized. However, h, (x) ht(x) except accidentally, thus the two trees
require separate hashing functions. Finally searches often are stuck in an
area whose nodes have approximately the same evaluation value. If this occurs
the heuristic functions would not adequately distribute the nodes to unique
addresses in memory — of prime importance in efficient hashing searches.
With these objections to the use of the evaluation function, we turn to a

concocted function on the state description. A particular node has its
associated state description which may be thought of as a vector

fi=(v11), 142), vr).

(see examples in Doran and Michie 1966, Nilsson 1969, Pohl 1969b). As an
idealized example, consider that we wish to hash into a size 2m address

space where the v(1) take on uniformly-distributed values from 0 to 2' — 1.
A simple hashing function is

I nr)

hash (f I). E i4.2' 1 mod 2'
1=1

which can be computed by adds and shifts. More generally,

hash 1). E civil-I) could be used,
1=1

where the cj are chosen to make the computation economical and to

uniformly distribute states' among address space.

134

POHL

Each hash address becomes a class of states chained together. A check for
redundancy or intersection consists of computing the hash value and doing
a chained search of all nodes with this value. Experimentally, a function
of the above form was used with the fifteen puzzle — dividing the 16! /2
positions into 680 equivalence classes. The search was limited to 1000 nodes
and hashing produced approximately two orders of magnitude decrease in
running time in comparison to simple linear searches for redundancy and
intersection. The hash chains were between 0-30 long for a tree of size 1000,
which is a considerable improvement over searching the whole tree. The

behavior of heuristic search procedures is to perform local searches where
much of the state is left alone. In these instances the notions of Hamming
distance and separability of nearly-identical states should be considered, if
savings warrant the more refined coding theory calculations (see Hanan and

Palermo 1963). .
The importance of this computational idea should not be underestimated.

The idea recurs throughout combinatoric and enumerative programming.
In some sense the hash provides a semi-canonical form. The uses of a hash
places the bi-directional search inner loop almost on a par with the uni-
directional search inner loop.

STRATEGIES IN BI-DIRECTIONAL SEARCH

In the ordinary shortest-path problem the best rule for deciding on the
direction of search is cardinality comparison. The same idea is plausible in
the heuristic search case. Often the path back from the goal node is more
easily derived than the path forward from the start node. Cardinality com-
parison attempts to take advantage of any asymmetry in difficulty as measured
by the number of current alternatives. However, unlike the uninterpreted
shortest-path problem, this is not enough to improve upon uni-directional
heuristic search.
In the shortest-path problem the forward and backward search trees

expand as spherical wave fronts about their respective endpoints (see
figure 3). The search trees when heuristics are not used must touch with the
combined search radii ;+;=t', the shortest-path distance. A heuristic
search proceeds in a more directed fashion, often searching some narrow
conical region. The size of the spaces searched are very large and the two
cones typically have a combined search radius exceeding t". Gains in effic-
iency occur if the two search cones have the sum of their search radii equal to
approximately the single heuristic search radius. The payoff is to be able to
solve problems of length 2k for only twice the cost of uni-directionally solving
problems of length k. The crucial problem is to attempt to coerce the search
trees into an intersection midway between the endpoints.
In working with the fifteen-puzzle (Doran and Michie 1966, Pohl 1969a),

a first attempt was to make no special changes, but to allow each heuristic
search tree to aim at its opposite endpoint. The typical result when this was

135

HEURISTIC PARADIGMS AND CASE STUDIES

tried with the fifteen-puzzle was to have both search trees growing almost
complete but separate solution paths, with intersection occurring near one or
the other of the endpoints.

(a) (b)

Figure 3. Characteristic bi-directional searches: (a) expansion in the uninterpreted
problem, h=0, fs=gs, ft=gt; (b) ideal bi-directional heuristic search; (c) typical bi-
directional heuristic search.

This is not surprising; many alternate solution paths exist in this space.
Once a tree is making progress along one of these routes, it will not investi-
gate adjacent paths. This is the key to efficiency in heuristic search and at
the same time the difficulty in making two searches collide. Two strategies
were employed to cope with this difficulty in the fifteen-puzzle: however,
neither gave improvement.

Intermediate state conjecture

Suppose the initial state is f.=(vP), I(j)) and the terminal state is f,=

(41), • • vi")), then a conjectured intermediate state would be some
fi=(v11), vr, such that h(f„ fi);:%h(fi, ft)A11/2h(f„ ft).

The two search trees are now directed toward the conjectured intermediate
state. In the fifteen-puzzle, a simple strategy is to first order the top half of
the puzzle and then, leaving the top half alone, order the remainder. A
component-additive estimator could produce this effect by having a heuristic

Lk/2]
function h(f)= E hi(v(i)) restricted to h(f)=

1=1 g=i

136

POHL

The conjectured intermediate position provides a modified estimator or
restriction on the original function over the full state vector. This does not
mean that intersection has to occur at the conjectured position, but the
modified estimator will direct both search trees to an appropriate middle
ground. The idea of planning or proving lemmas involves an actual sub-
division of the problem into two, going from s to i and from i to t. This is
an important idea in reducing the search. As Minsky (1961, page 442) states:
'Only schemes which actively pursue an analysis toward obtaining a set of
sequential goals can be expected to extend smoothly into increasing complex
problem domains.' The heuristic distance model often provides means for
constructing such sequential goals.

Shaping

Another possibility is to continually update the heuristic function in use.
Since collision between the wave fronts is wanted, use the heuristic function
to estimate the distance of a node to the opposite wave front. This can be
done by assuming the last node expanded represents the target node for the
opposite tree. The frequency of updating the heuristic function can be
parameterized and experimented with. The extreme case of never updating
from the original start and goal nodes produces our first algorithm. Highly
frequent updating when tried was the worst in behavior. The heuristics are
approximations in a very large space. To constantly readjust the 'targets' of
the two search trees produces highly circuitous and lengthy search trees.
Possibly if the heuristic is reliable within certain limits and the search has
definitely reduced the remaining distance to the goal, then updating the
target would be reasonable.
A plausible suggestion (Doran 1966) is to pairwise evaluate nodes expanded

and expand both trees from the pair of minimum separation. However, the
state space search is squared without any guarantee of commensurate search
reduction. The effect in the uninterpreted shortest-path problem would be
to mimic a policy of strict alternation. In this example, h =0 and the pair of
nodes {x, y} with x e .g and y e T, which have minimum evaluation using gs
and g, is just

x s.t. Vwes(gs(x)‹gs(w)) and
.y s.t. Vwer(gf(y)g,(w))

which are those nodes which would separately have been expanded when the
decision strategy was alternation.
While BSPA on the fifteen-puzzle had poor success, only limited experi-

mental attempts were made using shaping or intermediate positions. These
ideas and the suggestion of Doran need further testing, in particular in the
form proposed by Michie (personal communication) where the states of the
original problem are re-coded as state-pairs, thus implementing bi-directional
search in single-tree form with corresponding reduction of the number of
evaluations.

137

HEURISTIC PARADIGMS AND CASE STUDIES

FINAL REMARKS

The question of bi-directional search is not distinct from other problems in
heuristic search. Subgoal generation and pruning present similar problems in
how to appropriately use distance estimators.

Bi-directional search is useful in standard combinatorial problems. It is a
technique used by human problem-solvers. Potentially, its benefits derive
from adding only a linear cost with possible exponential savings. Therefore,
a large incentive exists for continuing work on the practical and theoretical
problems associated with this device.

REFERENCES

Dijkstra, E. (1959) A note on two problems in connection with graphs. Numerische
Mathematik, 1, 269-71.

Doran, J. (1966) Doubletree searching and the Graph Traverser. Research Memorandum

EP U-R-22, Edinburgh: Department of Machine Intelligence and Perception,

Edinburgh University, Scotland.
Doran, J. E. & Michie, D. (1966) Experiments with the Graph Traverser program.
Proc. R. Soc. A, 294, 235-59.

Dreyfus, D. (1969) An appraisal of some shortest path algorithms. Operations Research,

17, 395-412.
Ernst, G. (1969) Sufficient conditions for the success of GPS. J. Ass. comp. Mach., 16,

517-33.
Ford, L. & Fulkerson, D. (1962) Flows in Networks. Princeton, N.J.: Princeton Uni-

versity Press.
Hanan, M. & Palermo, F. (1963) An application of coding theory to a file address

problem. IBM J. Res. & Dev., 7, 127-9.
Hart, P., Nilsson, N., & Raphael, B. (1968) A formal basis for the heuristic determina-

tion of minimum cost paths. IEEE Trans. Sys. Set. & Cyber., 4, 100-7.

Minsky, M. (1961) Steps toward artificial intelligence. Proc. IRE, 49, Also in Computers

and Thought, pp. 406-50 (eds Feigenbaum, E. & Feldman, J.) New York: McGraw-

Hill, 1963.
Moore, E. (1959) The shortest path through a maze. Proc. of an Int. Symp. on Theory of

Switching, Part II, April 1957, pp. 285-92. Cambridge, Mass.: Harvard University Press.

Morris, R. (1968) Scatter storage techniques. Comm. Ass. comput. Mach., 11, 38-44.

Newell, A., Shaw, J. & Simon, H. (1959) Report on a general problem-solving

program. Proc. Int. Conf. Inf. Processing, pp. 256-64, Paris: UNESCO House.

Nicholson, T. (1966) Finding the shortest route between two points in a network.

Comput. J., 9, 275-80.
Nilsson, N. (1969) Problem-solving methods in artificial intelligence. SRI Report.

Stanford Research Institute, Menlo Park, California.

Pohl, I. (1969a) Bi-directional and heuristic search in path problems, SLAC Report

No. 104. Stanford, California.
Pohl, I. (1969b) First results on the effect of error in heuristic search. Machine

Intelligence 5, pp. 219-36, (eds Meltzer, B. & Michie, D.). Edinburgh: E.U.P.

Quinlan, J. & Hunt, E. (1968) A formal deductive problem solving system../. Ass.

comput. Mach., 15, 625-46.
Sandewall, E. (1969) A planning problem solver based on look-ahead in stochastic

game trees. J. Ass. comput. Mach., 16, 364-83.

Slagle, J. & Bursky, P. (1968) Experiments with a multipurpose theorem-proving

heuristic program. J. Ass. comput. Mach., 15, 85-99.

138

POHL

APPENDIX: BI-DIRECTIONAL SEARCH FOR

FLOW-AUGMENTING PATHS

An important class of optimization problems is the network flow problems.
The graph has nodes designated as source and sink and the edges labeled
with given capacities. The problem is to maximize the flow in the network
from the source to the sink. This formulation follows the treatment in Ford
and Fulkerson (1962).
We have a graph G(X, E)

s e Xis the source

t e X is the sink

c: E—,*12+ are the capacities, and the flow in any particular edge cannot
exceed its capacity. A flow of value v from s to t is a function f: E—q2+
satisfying the following constraints:

E f(x, Y)= E f(y, x)
yer(x) ye1'-1(x)

E f(s, y)=v
yer(s)

E f(Y, 0=v
yr 1(t)

and 0...cf(x, y)c(x, y) for V(x, y) e E.
Flows satisfying these conditions are feasible flows and the problem is to
find the maximum feasible flow.
The standard algorithm for this problem is the Ford-Fulkerson network

flow algorithm. This procedure finds a 'flow-augmenting path' using a path.
searching procedure and then updates the network's current feasible flow
by this augmented flow. This is iterated until no such change can be made.
This occurs when some cut-set of edges is saturated, i.e., when c(x, y).
f(x, y), edge (x, y) is saturated; and a cut-set of edges satisfying this satura-
tion condition is a set of edges which when removed from G leaves s dis-
connected from t.
Uni-directional procedure for finding flow augmenting paths [Routine

A from Ford and Fulkerson (1962) page 18].
1. s is labeled (—, excess (s)= co)
The source is now labeled but unexpanded. All other nodes are unexpanded
and unlabeled.
2. Select any labeled but unexpanded node and expand. If no such node
exists terminate with the maximal flow.
3. Vy e F(x), where x was the node selected in (2), with y unlabeled and
such that f(x, y)<c(x, y) assign the label (x+, excess (y)), where excess
(y)= min(excess (x), c(x,y)— f(x, y)).
Vy e r.-1(x) which are unlabeled and such that f(y, x)>0 assign the label
(x—, excess (y)), where excess (y)= min (excess (x),f(y, x)).

139

x s, t conservation equations

flow out of source

flow into sink

HEURISTIC PARADIGMS AND CASE STUDIES

4. If t is labeled in this step perform a flow augmentation with the path just
found, updating the edge flows appropriately and return to (1). Otherwise
go to (2).
The flow-augmenting path can be traced back from t and the additional

flow excess (t) may be added to each edge along this path. This process can
be accomplished bi-directionally (Pohl 1969a) with the termination condition
being that x is labeled in both the forward and backward search.

Bi-directional search for augmenting path

1. s is labeled (— , co), t is labeled (+, co).
2. Decide on which direction to expand.
If no node exists as a candidate for expansion in either the forward or
backward direction halt with the maximal flow.
3. Labeling proceeds as in the uni-directional case.
4. Halt if some node x labeled in (3) is labeled in both the forward and
backward direction. Otherwise go to Step 2. The flow augmentation is the
smaller of the two excess (x) numbers.
This method has two advantages over the uni-directional procedure.

First, the path search ordinarily involves fewer node labelings as in the
shortest-path problem. Secondly, the bi-directional search tends to 'random-
ize' the search more which leads to faster saturation. An augmentation
pursues the same path until it reaches the first previously unsaturated edge
which has just been saturated. Then it diverges with a likelihood of not
producing a large augmentation. The randomization provided by bi-direc-
tionality avoids, more easily than uni-directional search, covering large
portions of the previously saturated paths. Some experimental evidence with
a bi-directional network flow algorithm has demonstrated these gains.

140

