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ABSTRACT

An important research problem in artificial intelligence is the studyof methods for learning general concepts or rules from e set of traininginstances. An approach to this problem is presented which is .guaranteed tofind,. without backtracking,. all rule versions consistent with a set ofpositive and negative training instances. The algorithm put forth uses arepresentation of the mace of. those rules consistent with the observedtraining data. This "rule version space" is modified in response to newtraining instances by eliminating candidate rule versions found to conflictwith each new instance. The use of version spaces is discussed in thecontext of Meta-DENDRAL, a program which learns rules in the domain ofchemical spectroscopy.

Descriptive terms: Version space, rule learning, candidate elimination,concept formation, concept learning, machine learning, Meta-DENDRAL.

1 INTRODUCTICN 

Rule learning and concept learning have become increasingly important
goals for artificial intelligence (Al) researcheers with the recent emphasis
within the Al canmunity on constructing knowledge based systems [2], [6].
A program capable uf extracting general rules from training instances would
be a valuable tool for the difficult task of constructing knowledge bases
for use in such systems. Although there has been some success in this area
[1], [9) we are still far from an understanding of efficient, reliable
methods for controlling the combinatorics inherent to the task of learning.

The rule learning or concept learning problem addressed in this paper
is the following. It is given that some fixed action, A, is advisable in
some class of (positive) training instances, I+, but is inadvisable in some

This work was supported by the Advanced Research Projects Agencyunder contract CMC 15-73-C-0435 and by the National Institutes of Healthunder grant PR 00612-07. Computer resources were provided by the Sumex-AIMcomouter facility at Stanford University under NIH grant RR-00785. Bruce G.Buchanan has provided many useful suggestions throughout the course of thiswork. Lew G. Creary assisted in the clarification of several issuesdiscussed in this paper.

ft



disjoint class of (negative) training instances, I- 2. The task is to

determine a rule of the form P---÷ A, where P is a set of conditions or

constraints from some predefined language. These conditions must be

satisfied

instances

One

paradigm.

training

for action A to be invoked. The learned rule must apply to all

from I+, but to no instances from I-.

popular paradigm for this rule

In this approach, a rule Which

learning task is the search

is consistent with the first

instance is determined, then additional training instances are

considered one at a time. At each step,

a well defined set of legal alterations,

P is revised as needed according to

so that the resulting rule version

applies UD exactly the correct set of instances. This search through the

space of allowed patterns for the correct statement of P 3 may be viewed as

a concept formation problem in which the concept being learned is "the class

of instances in which action A is recommended".

Two difficulties arise in the search paradigm. First, in determining

the set of possible alterations to the rill(' in response to a given training

instance (i.e. in determining the set of legal branches at a given point in

the search tree), care must be taken to assure that each is consistent with

correct rule performance on past training instances. Second, backtracking

is sometimes required to try a different branch of the search tree when

subsequent training instances reveal that an inappropriate decision has been

made.

This paper proposes an approach to learning rules which falls outside

the search paradigm outlined above. This candidate elimination algorithm

relies upon a method for representing and updating the space of all rule

versions consistent with the observed data. Rules are eliminated from this

rule version space as they are found to conflict with observed training

instances. The algorithm is guaranteed to find, without backtracking or

reexamining past training instances, the set of all rules consistent with

the observed data.

2 In many rule induction tasks obtaining this assigment of training
instances to I+ and I- for a.given rxtion is a difficult problem in itself.
See Minsky [3] for a discussion of the credit assignment problem.

3 For a general discussion of rule induction as heuristic search see
Simon and Lea [7], and Puchanan Ill.
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2 VERSION SPACES 

This section proposes a candidate elimination approach to rule
learning which maintains and modifies a representation of the space of all
plausible rule versions (contrast this with the search paradigm discussed
above which maintains and modifies a single current best hypothesis of the
correct rule version). Methods lor representing this rule version space and
for modifying it in response to new training data are presented in this
section. The candidate elimination algorithm is guaranteed to find all rule
versions consistent with the observed training data. This is accomplished
without backtracking and independent of the order of presentation of the
training instances.

2.1 Definition and Reoresentation 

The term version space is used in this paper to refer to the set of
current hypotheses of the correct statement of a rule which predicts some
fixed action, A. In other words, it is the set of those statements of the
rule which cannot be ruled out on the basis of training instances ooserved
thus far. It is easy to see that this version space contains the set of all
plausible rule revisions which may be made by a search algorithm in response
to some new training instance.

More exactly, assume that there is some rule P which correctly
predicts action A for the class of training instances I+, but not for
instances in the class I-. The rule version space of I+ and I-is then
defined as the set of all such rules. The rule version space associated
with action A and the instances I+ and I- is an equivalence class of rules
with respect to their predictions on I+ and I-. The elements of the version
space are rules Which predict the same action, but which differ in the
patterns stated in their left hand sides.

Before writing programs which reason in terms of version spaces, we

must have a compact data representation for them. In general, the number of

plausible versions can be very large (possibly infinite) when the language

of patterns for rules is complex. The key to an efficient representation of

version spaces lies in observing that a general-to-cpecific ordering is

defined on the rule pattern space by the pattern matching procedure used for

applying rules. The version space my be represented in terms of its

maximal and minimal elements according to this ordering.

3



TO see exactly how the general-to-specific ordering comes about,

consider an example. Suppose that R1 and R2 are two rules which predict the

same action. Then R1 is said to be more soecific (or, eouivalently, less

general) than R2 if and only if it will apply to a proper subset of the

instances in which R2 will apply. This definition, which relies upon the

pattern matching mechanism, is simplya formalization of the intuitive ideas

of "more specific" and "less general". For the remainder of this paper, the

terms general and specific will be understood to have these well defined

meanings.

The general-to-specific ordering will in general be a partial

ordering; that is, given any two rules we cannot always say that one is more

general than the other. For instance, two rules can easily apply to some of

the same instances without the requirement that one of them apply eve ywhere

that the other applies. Therefore, when all elements of the version space

are ordered according to generality, there may be several maximally general

and maximally specific versions.

Version spaces can be represented by these sets of maximally general 

versions, MGV, and maximally specific versions, MSV. Given such a

representation it is quite easy to determine whether a given rule belongs to

a given version space. A rule statement belongs to the version space of I+

and I- if and only if it is (1) less general than or equal to one of the

maximally general versions, and (2) less specific than or equal to one of

the maximally specific versions. Condition (1) assures that the rule cannot

match any training instance in I-, while condition (2) assures that it will

match every training instance in I+. Since the sets MGV and MSV are by

definition complete, (1) and (2) will be necessary as well as sufficient

conditions for membership of a rule statement in the version space.

2.1.1 An Examole: Meta-DENDRAL 

An algorithm for representing version spaces as described above has

been implemented in the Meta-DENDRAL program. Meta-DENDRAL (11 is a

program which learns production rules to describe the behavior of classes of

molecules in two areas of chemical spectroscopy. The version of the program

which determines rules associating substructures of molecules with data

peaks in a carbon-13 nuclear magnetic resonance spectrum shall be considered

here (41.

Cr
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Figure 1 shows a version space represented by the program in terms of

the sets of maximally specific rule versions (rule MSV1) and maximally

general rule versions (rules MGV1 and MGV2). The rule pattern which

expresses the conditions for application of each rule is stated in a fairly

complex network language of chemical subgraphs. Each node in the subgraph

represents an atom in a molecular structure. Each subgraph node has the

four attributes shown, with values constrained as shown in Figure 1. Arcs

between nodes in the rule subgraph (shown schematically as lines between the

node letters) represent chemical bonds between atoms. The definition of a

match of the rule pattern (subgraph) to a training instance (molecule graph)

requires that the subgraph "fit into" the molecule graph, and that the

subgraph node attribute constraints be consistent with the attribute values

of the corresponding node in the molecule graph. If a molecule graph

Rule Subgraph 1 Constraints on Subgraph Node Attributes

subgraph node atom
name type

I

number of
non-hydrogen
neighbors

number of
hydrogen
neighbors

number of
unsaturated
electrons

MSV1:

v-w-x-y-z carbon 1 3 0
carbon 2 2 0
carbon 2 2 0
carbon 2 2 0
carbon >=1 any 0

MGV1:

II —VI —X carbon 1 any any
any 2 any any
any >=1 2 any

MGV2:

—id —X carbon 1 any any
any 2 any any
any 2 any any

Figure 1. A Version Space represented by it's Extremal Sets

MSV1 is the maximally specific rule version. MGV1 and MGV2 are
maximally general rule versions. Cnly the rule natterns (left hand
sides) are shown above. All rules shown predict the same action: the
appearance of a peak associated with atom v" in a given range of the
spectrum.

ft
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A

contains a set of nodes which fit the pattern, then the corresponding action

is predicted by the rule. In this program the classes I+ and I- are sets of

molecules for which the indicated spectral peak does and does not appear.

The version space represented in Figure 1 contains several hundred

rule versions: the three versions shown plus all versions between these in

the general-to-specific ordering. However, it can be represented simply by

the two maximally general versions, MGV1 and MGV2, and the single maximally

specific version, MSV1. The single most specific version contains every

node and node attribute constraint consistent with all training instances in

I+. Thus, any more specific version cannot match every element of I+. Two

general versions are required in this example since neither is "above" the

other in the general-to-specific partial ordering. Any rule more general

than either MGV1 or MGV2 will match some element of I-. Furthermore, any

rule Which is between these general and specific boundaries of the version

space will match all current instances in I+ (by virtue of being more

general than MSV1), and will match no current instances from I- (by virtue

of being more specific than MGV1 or MGV2). Notice that the constraints

stated by MSV1 are more strict than those stated by mGV1 and MCV2, and that

MSV1 contains a superset of the nodes contained in the maximally general

versions. This is consistent with the general-to-specific ordering

discussed above, in that MSV1 will apply to a proper subset of those

instances to which MGV1 and MGV2 apply.

2.2 Version Spaces and Rule Learning 

Recall the rule learning task discussed earlier. A program is given

examples of two classes of training instances, I+ and I-. The program must

determine some rule which will produce a given acticl, A, for each training

instance in I+, but for no instance in I-.

The candidate elimination algorithm presented here Operatos on the

version space of all plausible rules at each step, beginning with the space

of all rule versions consistent with the first positive training instance,

and modifying the version space to eliminate candidate versions found to

conflict with subsequent training instanr-s.

Tho chief difference between the candidate elimination approach and

the search approach discussed above is that search techniques select and

ft
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modify a current best hypothesis of the form of the rile. Rather than

select a single best rule version, the candidate elimination algorithm

represents the space of all plausible rule versions, eliminating from

consideration only those versions found to conflict with observed training

instances. Thus, the candidate elimination approach separates the deductive

step of determining which rule versions are plausible, from the induc'..live

step of selecting a current-best-hypothesis. At any step, the same

heuristics used by search methods to infer the current best hypothesis may

be applied to infer the best element contained in the version space.

However, by refraining from committing itself to this inductive step, the

candidate elimination algorithm eompletely avoids the need to backtrack to

undo past decisions or reexamine old training instances. At the same time

the algorithm is assured of finding all correct versions of the rule after

all training data has been presented. These are the strongest two

advantages of the candidate elimination approach to learning.

2.2.1 Veta-DENDRAL Example Revisited 

The candidate elimination algorithm using version spaces has been

implemented as part of the meta-DENDRAL program. Recall from the earlier

example that in this program the training instance classes I+ and I- are

molecule graphs for Which some action (i.e. the appearance of a peak in some

region of their spectra) should or should not be predicted. The first part

of Meta-DENDRAL determines several different predicted actions associated

with sets of positive and negative training instances. Rule version spaces

for each distinct predicted action are then generated from the training

instances associated with the action. Subsequent data may be analyzed to

modify the version space in a manner guaranteed to be consistent with the

original data.

The candidate elimination algorithm operates on the maximally general

and maximally specific sets representing the version space. The set of

maximally general rule versions (MCV) is initialized to a single pattern

consisting of the most general statement in the language of rule patterns (a

single atom graph with no constrained node attributes). The set of

maximally specific versions (MSV) is initialized to a rule which contains as

its pattern the first instance in I+. The initial version space represented

by these extrema' sets therefore contains all rules in the language which

match the first training instance.
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The training instances are then considered one at a time. Each

training instance is used to eliminate from the version space those rule

versions Which conflict with that instance. This is always accomplished by

shifting the maximally specific and maximally general boundaries of the

version space toward each other as shown in figure 2.

more. A Most Specific Versions
specific

positive
instances

more
general V

1

negative
instances

Most General Versions

Figure 2

. Effect of Positive and Negative
Training Instances on Version Space Boundaries

Positive training instances force elements of MSV to become more

general, whereas negative training instances force elements of MGV to become

more specific. The maximally specific set can, of course, never be replaced

by a more specific set (nor the maximally gen?ral set by a more general one)

since by definition, any version outside the current version space

boundaries is inconsistent with previous training data. The action taken by

the candidate elimination algorithm in updating the extremal sets is given

below.

If the new training instance belongs to I-, then each element of MGV

which matches the instance must be replaced by a set of minimally more

specific versions which do not match the instance. These new versions are

obtained by adding constraints taken from elements in MSV in order to ensure

that they remain more general than some 'SV, and thus remain consistent with

previous I+ instances. Furthermore, each element of MSV which matches the

negative training instance must be eliminated from the set (since it is

already maximally soecific, it cannot be replaced by a more specific

version).

If the new training instance belongs instead to T+ then any elements
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from MSV which do not match the new positive training instance are replaced
by a set of minimally more general elements which do match the instance. In
order to ensure that these more general versions do not match past training
instances from I-, any which are not more specific than at least one element
of MGV are eliminated. Elements from MGV which do not match the positive
instance are eliminated.

After processing each training instance, the new maximally general and
maximally specific sets (such as those shown in Figure 1) will bound the
space of all rules consistent with the observed data. Notice that by
modifying the version space in the above way, all rules (and only those
rules) which conflict with the new training instance are eliminated from
consideration.

3 REASONING WITH VERSION SPACES 

An explicit representation for the space of plausible rule versions
appears to have uses in addition to that described above. This section
discusses some limitations on the general applicability of version spaces,

as well as some promising additional uses.

3.1 Applicability and Limitations 

The version space approach to rule learning described above is limited
in certain respects. The algorithm is based upon the assumption that the
assignment of training instances to I+ and I- is consistent (i.e. the
supplied classification of training instances can be generated by at least
one rule in the rule space). In some domains this may be a valid
assumption, but in certain "noisy" domains the process of classifying
instances may be unreliable or the training instances themselves may be
inconsistent. If the set of training instances is not consistent, the
algorithm will eliminate all rule versions from consideration, and
backtracking will be required. This is, however, no worse than is expected
from other non-statistical algorithms, all of which also require
backtracking in this case. One positive point is that the collapse of the

version space to the null space provides an immediate indication that
something has gone wrong. Specifically, it indicates that there is no rule
within the supplied rule language which can discriminate between I+ and I-

9



(this can occur either for noisy data, or in the case where the rule

language is not sufficiently complex to represent the given dichotomy of I+

and I-).

One method for making the candidate elimination algorithm more

accomodating of noisy data might be to eliminate only candidate versions

which conflict with some fixed number of training instances greater than

one. The price paid in exchange for this extension would be a decrease in

the rate at Which the version space boundaries converge toward each other.

A second limitation on the general applicability of version spaces may

lie in the nature of the partial ordering of rule versions. For simple

languages of■rule patterns the sizes of the maximally general and maximally

specific sets of versions will be small. It appears in Meta-DENDRAL that

the size of these sets may be manageable for simple molecules in spite of

the complex language of rule patterns. However, it is possible that for

some domains the size of these extremal sets may become quite large. In

Meta-DENDRAL, information about the interdependences of the node properties

is used to eliminate syntactically distinct rule statements which are

semantically eauivalent. Thus, the size of the extremal sets is not

adversely affected by redundancy in the rule language. A second possible

method for limiting the size of the maximally general and maximally specific

version sets is the introduction of domain-specific constraints on allowed

elements of the version space. It is common in AT programs to use task

domain knowledge to constrain combinatorially explosive problems. It may be

possible to incorporate such constraints in the routines Which manipulate

version spaces in order to dismiss a priori unlikely rule statements present

in the rule language.

It appears that the practical applicability of the version space

approach to other domains is limited only by the above two constraints: the

requirement of reliable training data, and the danger of overly large

maximally general and maximally specific sets. The only assumption critical

to this approach is that a partial ordering exist over the space of rule

patterns. This assumption is always satisfied since the ordering is defined

in any domain by the pattern matcher employed. In general it seems that the

version space approach will be most efficient in domains in which the the

partial ordering over the pattern space is not extremely "branchy", but

ft
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where each branch may be quite deep. This is due to the fact that only the

most and least specific plausible version (if any exist) along each branch

need be saved. Thus, the efficiency of the version space algorithm (and the

size of the extremal sets) is unaffected by the depth of each branch, but is

adversely affected by the number of branches. In contrast, the efficiency

of search procedures and their need for backtracking appear to be adversely

affected by both the number of branches in the partial ordering and the

depth of the branches.

3.2 Other Uses for Version Spaces 

Version spaces provide an explicit representation of the range of

plausible rules. With this explicit representation, the program acquires

the ability to reason more abstractly about its actions. The program is

aware of more than the current best hypothesis - it has available the entire

range of plausible choices. This view of version spaces suggests their use

for tasks other than the particular rule learning task described above. Two

such tasks will be suggested in this section.

3.2.1 Selecting New Training Instances 

The importance of careful selection of training instances for

efficient and reliable learning has been stressed by several writers [8),

[10), yet few learning programs take an active role in determining their own

training instances. One notable exception is an induction program written

by Popplestone [5) which itself generates training instances whose (user

supplied) classification resolves among competing hypotheses. The version

space representation appears well suited for allowing the program to

generate its own set of critical training instances.

Since version spaces represent the range of rule versions Which cannot

be resolved by the current training data, they also summarize the range of

unencountered training instances that will be useful in selecting among

competing rule versions. By constructing a training instance which matches

some, but not all, of the maximally general versions, the program may be

able to determine which of several potentially important attributes should

be specified in a rule. Co the other hand, by constructing training

instances which match a given most general version, but not its most

specific counterpart, the program may determine how specific the constraint

Cf
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on a given attribute must be. Note (as pointed out by one of the referees

of this paper) that the generation of training instances might also provide

a useful tool for limiting the size of the maximally specific and maximally

general sets, in that examples designed to discriminate among competing

extremal versions could be generated.

3.2.2 Merging Separately Obtained Pesults 

The construction of reliable knowledge bases for use in knowledge

based programs will almost certainly require learning from a large variety

and number of training instances. Merging rules learned from different data

sets may therefore become a desirable capability (consider breaking a large

training data set into several smaller sets to be analysed in parallel).

Version spaces allow a convenient, consistent method for merging sets

of rules generated from distinct training data sets. The intersection of

the version spaces of two rules formed from two sets of training data yields

the version space of all rules consistent with the union of the data sets.

The result obtained by intersecting version spaces derived from different

data sets is therefore the same as would be obtained by runniitg the

candidate elimination algorithm once on the union of the training data.

4 SUMMARY 

The representation of version spaces in terms of their sets of

maximally general and maximally specific versions appears well suited for

learning rules from sequentially presented training instances. A candidate

elimination algorithm has been shown whicn will find all rule versions

consistent with all training instances. Backtracking is not required for

noise-free training instances, and the final result is independent of the

order of presentation of instances.

Version spaces provide at once a compact summary of past training

instances and a representation of all plausible rule versions. Pecause they

provide an explicit representation for the space of plausible rules, version

spaces allow a program to represent "how much it doesn't know" about the

correct form of the rule. This suggests the utility of the version space

approach to problems such as intelligent selection of training instances and

merging sets of independently generated rules.

fr
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