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ABSTRACT

Essentially, a connection graph is merely a data structure for a set of clauses indicating possible
refutations. The graph itself is not an inference system. To use the graph, one has to introduce
operations on the graph. In this paper, we shall describe a method to obtain rewriting rules from the
graph, and then to show that these rewriting rules can be used to generate a refutation plan that may
correspond to a large number of linear resolution refutations. Using this method, many redundant
resolution steps can be avoided.

1. Introduction

The oldest technique used in mechanical theorem proving is Herbrand's method.
Since this method requires to generate a very large number of ground clauses, it
was abandoned in favor of two alternative approaches. One of these approaches
is Robinson's resolution principle [21]. The other is to use the idea proposed by
Prawitz [19, 20]. For the last decade, the resolution principle has got most of the
attention of researchers, and has been playing a dominant role in the field. Many
useful strategies [5] for resolution have been proposed. Recently, the attention
seems to be shifted to Prawitz's idea. Compared to resolution, Prawitz's idea is
relatively unexplored. There is some hope that his idea might be developed into an
efficient theorem proving system.

Given a set S of clauses, Prawitz's idea is that, instead of generating the ground
instances of clauses of S in some arbitrarily defined order, one should find by
calculations the values that, when substituted for variables in S, give an un-
satisfiable set of ground instances. Essentially, Prawitz's idea is based upon the

observation that a set of clauses is unsatisfiable if and only if there is a set Al of

copies (variants) of clauses in Sand a ground substitution 0 such that MO is truth-

functionally unsatisfiable. We call 0 a solution of M. This observation is actually

Herbrand's theorem in a different form. Many methods [1, 3, 4, 8-10, 19, 20, 25]

have been proposed to find such M and 0. In this paper, we shall propose another

method for finding such M and 0. The approach we take is as follows:

(a) First, find a connection graph for a set S of clauses;

(b) Change the connection graph to a directed graph;

(c) from the directed graph, obtain a set of rewriting rules;

(d) use the rewriting rules to generate a refutation plan;

(e) Finally, use a unification algorithm to check whether the plan is acceptable

or not. We note that the main difference between our method and the others is that
we want to generate a plan, and then perform unification at the last step of a
proof. In the sequel, we shall describe our method in detail.

2. Connection Graphs

The concept of a connection graph has been considered by many authors [1, 12,
13, 24, 25, 29]. Essentially, a connection graph is merely a data structure for a set
of clauses indicating possible refutations. The graph itself is not an inference
system. To use the graph, one has to introduce operations on the graph. For
example, Andrews [I] and Shostak [24] define a criterion in terms of a connection
graph for a truth-functionally unsatisfiable set of clauses; Kowalski [13] uses it
for performing resolution; Sickel [25] uses it for graph-walking and graph-
unrolling; and Yate et al. [29] use it for proving the completeness of linear
resolution. Different operations on connection graphs lead to different theorem
proving systems. In this paper, we shall use a connection graph to obtain rewriting
rules. Then, finding a solution of M can be directly solved by using the rewriting
rules.
In the sequel, we let S be a set of input clauses. By a copy of clause C in S. we

mean that it is C itself, or a clause obtained from C by renaming variables in C.
Let M be a set of zero or more copies of each clause in S. Without loss of generality,
we assume that no two clauses in Al have variables in common. A substitution 0
is called a solution of Al if MO is truth-functionally unsatisfiable. A pair of literals

, LI and L2 are called potentially complementary if LI and L2 can be made comple-
mentary by applying some substitution, after renaming variables so that Ll and L2
share no variables.
A connection graph for a set S of clauses is constructed as follows: (This is

called a clause interconnectivity graph by Sickel [25], p. 825).

(I) Exactly one copy of each clause of S is allowed to appear in the graph.

(2) For every clause, LI v v Lr, in S, where LI, . Lr are literals, it is
represented in the graph as
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(3) For every pair of potentially complementary literals, draw an edge con-
necting the literals. Label each such edge by a distinct name representing the most
general unifier which makes the literals complementary, after variables in the
literals are properly renamed. (In the subsequent section, a procedure will be given
to rename variables.)

Example I. Fig. 2 is a connection graph for the set,

{P(x) v Q(y), P(a), Q(b)}.

I P(x)

a

—P(a)

Q(Y) 

a

FIG. 2.

Example 2. Fig. 3 is a connection graph for the set,

P(x) v P(f(x)), P(a), P(f(f(a)))}.

FIG. 3.

3. Combinations of Substitutions

In finding a solution of a set of clauses, it is often necessary to test whether or not
we can combine substitutions. For example, {alx) and {b/y} can be combined,
while {a/x} and {b/x) can not be combined. For this purpose, we give the following
definition and examples which are taken from [4] and Chapter 9 of [5].

Definition. Let 0, = Itille,„..., ti„,1c2„,b. ., 0, = t,/v,} be
substitutions, r 2. From 01, ..., 0, we define two expressions,

El = (V lls • • •, vino • • •I rr 1, • • •, V/I1), and

E2 = (t11, • • •, tl,„, • •,•, tri • • •, trx)•

Then, 01, ..., 0, are said to be consistent if and only if El and E2 are unifiable.
A most general unifier for {El, E2}, denoted as 01 • • 0„ is called a combination
of 01, ..., 0,. The substitutions 0 „ . . 0, are said to be inconsistent if and only if
they are not consistent.

Example 3. Consider 01 = {al x} and 02 = {f(a)lx}. For this case, wt. fia

El = (x, x) and E2 = (a, f(a)). Since El and E2 are not unifiable, 01 and 0, are

inconsistent.

Example 4. Let 0, = {g(y)lx} and 02 = {f(x)/y). For this case, we have El = (x,y)

and E2 = (g(y), f(x)). Since El and E2 are not unifiable, 01 and 02 are inconsistent.

Example 5. Let 01 = {f(g(x1))/x3, f(x2)/x4) and 02 = {x4/x3, g(x1)/x2). For

this case, El = (x3, x4, x3, x2) and E2 = (f(g(x1)), f(x2), x4, g(x1)). Since El

and E2 are unifiable, 0, and 02 are consistent. The combination 0102 is

{f(g(x1))/x3, f(g(x1))/x4, g(x1)/x2 }.

We note that the combination operation is associative and commutative, while

the composition operation on substitutions is associative, but not commutative.

In the sequel, if 0 is a substitution and W is a set of substitutions, then OW is

defined as

OW= {01 I e W).

More generally, W1, W„, are sets of substitutions, we define W, • • • Wm as

' • W. = {21 • 2.1 21 6 Wi,. • 2. e

The above concepts will be useful for giving a meaning to rewriting rules to be

described in the next section. For simplicity, we shall write {0, • • 0}, a set

consisting of a combination, as 01 0„.

4. Obtaining rewriting Rules from a Connection Graph

In order to obtain rewriting rules, we first have to change an undirected connection

graph into a directed one. This is done as follows:

Step I. Choose a clause in the connection graph as a start clause.. Every literal

in the start clause will be labeled as a goal literal. (Note that a start clause is the

same as a top clause in linear resolution [5].)

Step 2. For every goal literal L and every clause C in the graph, if there is an

edge E connecting literal L and a literal L' of clause C, change edge E to a directed

edge by pointing from literal L' to literal L. Label all the remaining literals in C

as goal literals. Literal L' will be called a premise literal. (Note that edges within a

clause are allowed.)

Step 3. Repeat Step (2) until every goal literal has been considered.

Example 6. Consider the connection graph shown in Fig. 4, which is taken

from [25]. If we choose the clause consisting of literals 9 and 8 as a start clause, we

obtain a directed connection graph shown in Fig. 5. However, if we choose the

clause consisting of literals 1 and 2 as a start clause, we obtain a directed connection

graph shown in Fig. 6. We note that edges al, a2 and a3 are bi-directional edges.

This means that a literal can be a goal literal as well as a premise literal.

0

0



FIG. 4. FIG. 5. FIG. 6.

From a directed connection graph, we can obtain rewriting rules. In the follow-
ing, if L is a literal in the connection graph, we shall use W(L) to denote a set of
substitutions obtained from proving L. Now, we obtain rewriting rules as follows:

(1) For each goal literal n, if m,, . . m, are all premise literals of n shown in
Fig. 7, where a„ ..., a, are substitutions, then we obtain a rewriting rule as

(RI) W(n) = 1W(m1) • • t.) ;W(m,),

where aiW(mi) is a combination of ai and W(m;), I = I, . . r. The meaning of
this rule is: If we know that W(m,), . . W(m,) are sets of substitutions obtained
from proving literals rn„ in,, respectively, then a set of substitutions for
proving literal n can be recursively described by the rule.

FIG. 7.

(2) For each clause of the graph shown in Fig. 8, where nt i is a premise literal,
and ml, m1_1, in 1,.1, in,, r 2, are all the remaining literals in the clause,
we obtain a rewriting rule as

(R2) V(m 1) = W(mi) • • • 14/(m ,_,) W(m „,) • • W(m„).

The meaning of this rule is: If we want to use in as a premise literal, then all the
other literals m19 • • •9 rni+19 • • •1 nir have to be proved first. Suppose that
W(Ink),k = I,..., i —1, i +1, . r, are sets of substitutions obtained from proving
ink independently. To make sure that the substitutions are consistent, we take a
combination of them as shown in the rule.

m1 ••• rn,

FIG. 8.
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(3) For each unit clause, if literal in in the clause is used as a premise literal as
shown in Fig. 9, we obtain a rewriting rule

(R3) W(m) = {E},

where z is the empty substitution. The meaning of this rule is: Since a unit clause
by itself can be used as a premise literal, we do not need to check consistency.

(4) For a start clause as shown in Fig. 10, we obtain a rewriting rule as

(R4) T= W(mi) • • • W(m,).

The meaning of this rule is: T is considered as a set of substitutions obtained for
proving the start clause. Now, if W(mk), k = 1, . . r are sets of substitutions
obtained independently from proving mk, respectively, then a consistent combina-
tion of these substitutions is T, that is, a set of substitutions for proving the start
clause. We note that the rewriting rules cast in a tree representation are also
independently described in [25].

•••

I

FIG. 10.

Example 7. Consider the directed connection graph shown in Fig. 5. From the
edges, we obtain the rewriting rules

(I) W(9) = a6 W(10)

(2) W(8) = a5W(1)

(3) W(6) = a3W(1)

(4) W(4) = W(5)

(5) W(2) = a, W(3) t..) a4 W(7)

From the clauses, we obtain the rewriting rules

(6) W(1) = W(2)

(7) W(5) = W(6)

(8) W(3) = W(4)

(9) W(7) = {E)

(10) W(10) = (c)

(11) T= W(9)W(8)
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Rules (1) through (11) can be simplified as follows:

(12) W(9) = 76W(10) = 76(e) = .v-

(13) W(8) = W(l)
(14) T = W(9) W(8) = 7675 W(I)

(15) W(1) = W(2)
W(3)i t(4 W(7)

= c W(4) u 74{0
= 2172 W(5) k.)
= 7172 W(6) ki 74

= 712223W(I) u

from (1) and (10)

from (2)

from (11), (12) and (13)

from (6)
from (5)
from (8) and (9)
from (4)
from (7)
from (3)

Therefore, we have to keep only these two rules:

(16) T= a6a5W(1)

(17) W(1) = 02x3W(1) u 74

where a, a2, - a 39 - 7 75 and a6 are treated as terminal symbols, and T and W(1) as
nonterminal symbols in a context-free grammar. (The non-terminal symbol T is
the symbol for a sentence in the grammar.) Using these rules, we can generate the
following sentences: 7 7 7 7 7 / 7 76 5 4+ - 6- 5- 1- 2- 3- 4, . . Each of these sentences will be
called a plan. In the next section, we shall describe how to check whether a plan
is acceptable or not.

5. Renaming Variables and Performing Unifications

When we check the acceptability of a plan, we have to make sure that variables
are properly renamed. That is, variables should be renamed (standardized apart)
so that no two copies of clauses in the plan have variables in common. In the
following, we shall give a method for standardizing apart variables in a plan. To
do this, we shall label a clause by a distinct name and then refer to a literal in the
clause by its position in the clause. That is, if C is a clause, then Cn is the nth

FIG. 11.

literal (counting from the left) of clause C, where n is an integer. Once we have this
naming scheme for literals, we can build a table for substitutions. For example,
we redraw the connection graph of Fig. 4 into Fig. 11 by giving names to the clauses.
From Fig. 11, we can build Table 1 for the substitutions as, ..., a6 in the .graph.

TABLE I.

21 D2 E2
22 A2 El
23 Al Dl
24 D2 Fl

Dl B2
26 BI Cl

In Table I, the first row (71, D2, E2) indicates that a, is the most general unifier
that makes the 2nd literal of clause D (i.e., D2) and the 2nd literal of clause E
(i.e., E2) complementary (after variables are renamed). The second row (72, A2,
El) indicates that a2 is the most general unifier that makes the 2nd literal of clause
A(i.e., A2) and the 1st literal of clause E (i.e., El) complementary, and so on.
Using Table 1, we can replace a,, a6 in a plan by their corresponding pairs of
literals. That is, we can replace 7, by (D2, E2), 72 by (A2, El), and so on. For
example, we know that 767574 is a plan. This plan can be expressed as

(B1, C1) (D1, B2) (D2, F1)

by replacing 76, as and 74 by (B1, Cl), (D1, B2) and (D2, F1), respectively. We
see that there are four clauses participating in the plan. That is, Cl belongs to a
copy of clause C, B1 and B2 to a copy of B, DI and D2 to a copy of D, and Fl
to a copy of F. Once we identify which literal in the plan belongs to which copy
of which clause, we then rename variables in these copies of the clauses so that
they share no variables in common. After the variables are renamed, we then try
to find the most general unifier 0 such that (Cl, B1)0, (B2, D1)0 and (D2, F1)0
are all complementary pairs of literals. If such 0 can be found, then 0 is a solution,
and the plan is acceptable. We note that if ILI denotes the atomic formula in a
literal L, that is, if ILI is obtained from L by deleting the negation sign (if any)
from L, then 0 can be obtained by unifying the two expressions, (IBII, IDI I, ID21)
and (IC11, IB21, IFII).
In general, if (L1, M1)(L2, M2) • • • (Lr, Mr) is a plan, a solution may be

attempted by finding the most general unifier of two expressions,

(ILI I, IL21, ILrl) and (IMI I, IM2I, IMrl).

The plan, (B1, C1)(D1, B2)(D2, F1), considered above needs only one copy of
each of clauses C', B, D and F. In general, if the same literal of a clause appears
in a plan n times, then n copies of the clause may be required. For instance, in



Example 7, we know that 6 a ot 2I- 2-347 7 2 is also a plan. Expressing this plan by- 5 - 
replacing the substitutions by the pairs of literals, we obtain

(B1, CI) (D1, B2) (D2, E2) (A2, El) (Al, D1) (D2, F1).

In this plan, since literal D1 occurs twice, two copies of clause D may be needed.
Actually, we note that the first D1 and D2 encountered in the plan come from one
copy of clause D, and D1 and D2 encountered afterwards come from another
copy of clause D. Thus, the plan may look like

(B1, CO (D1, B2) (D2, E2) (A2, El) (Al, D1) (D2, F1).
N./

where literals belong to the same copy of a clause are linked together. Once we
know where literals of each copy of a clause are, we can then standardize variables
apart. In the following, we shall use the criterion given by Andrews [I] and
Shostak [24] to link literals into copies of clauses.

In [1], Andrews defines that a connection graph is acceptable if it satisfies each
of the following conditions:

(a) Every literal in the connection graph is linked to a complementary literal:
(b) Every cycle contains a merge.

He and Shostak [24] independently prove the following theorem:

Theorem I. A set S of clauses is unsatisfiable iff there is an acceptable connection
graph for a nonenzpty finite set of copies of clauses in S.

To use the above theorem, we have to state it in terms of a plan, instead of a
connection graph as follows: in a plan, for each pair of literals within a pair of
parentheses, draw an edge. For all literals that belong to a copy of a clause, we
draw edges from the literals to a common dot. For example, the above plan can be
represented as

(B1—C1) (D1—B2) (D2—E2) (A2—E1) (Al—D1) (D2—F1)
N./

Let us call this a linked plan.
If we consider a literal or a dot as a node, clearly a linked plan can be considered

as a graph. Therefore, we can conveniently talk about a cycle in a linked plan.
We said that a cycle in a linked plan has a merge if it contains a literal which
appears in two pairs of literals in the cycle. For example, the following is a cycle

/s
(A I —B 1) (A1—E2)

This cycle has a merge because literal Al appears in the two pairs of literals,

namely, (Al—B1) and (A1—B2).

Definition. A linked plan for a set S of clauses is acceptable if it satisfies each of

the following conditions:

(a) There is a substitution 0 which simultaneously makes every pair of literals

within a pair of parentheses complementary, after variables are standardized apart.

(b) Every cycle in the linked plan has a merge.

(c) Every bag of literals connected to a dot is a bag of all literals in one or more

copies of a clause in S. For example, if Al v A2 is a clause, the bag (Al, A2, Al, A2)

is such a bag, while the bag (Al, A2, Al) is not. (Note that a bag is an unordered

collection of elements, where the elements may be duplicated.)

Now, Theorem 1 can be stated as follows:

Theorem 2. A set of clauses is unsatisfiable if there is an acceptable linked plan

for S.

Example 8. Consider Fig. 12 and Table 2 for the substitutions in Fig. 12. Note

that the clause P(a) is the start clause. Now, from Fig. 12, we obtain the following

rules:

FIG. 12.

TABLE 2.

al A2 Al

a2 B1 Al

a3 A2 Cl

W(BI) = a2W(A1)

W(A2) = W(A1) u a3W(C1)

W(A1) = W(A2)

W(C1) = te)

T= W(B1)

Then, a plan P can be generated as follows:

P=T

= W(B1) from (5)

S3
11

11
:I
 O
N1

11
1:

1M
31

:1
 O
N
I
S
n
 



= a2 W(A1) from (1)

= a2 W(A 2) from (3)

= a2cc1 W(A1) from (2)

= a2a1 W(A2) from (3)

= a2a1a3 W(C1) from (2)

= ct221,tx3(e) from (4)

= a2trict3
= (B1, Al) (A2, Al) (A2, Cl) using Table 2.

From plan P. we can obtain the following linked plan

/\
(B1—A1) (A2—A1) (A2—C1)

However, this linked plan is not acceptable because it has the following cycle
which does not have a merge and violates Theorem 2:

/\
(A2—A1)

Therefore, we obtain another linked plan from plan P as follows:

/N
(B1—A1) (A2—A1) (A2—C1)

This linked plan does not have a cycle. Now, substituting actual literals for Al,
A2, B1 and Cl in the above linked plan, we obtain

7\
(P(a), P (x)). (P(f(x)), 11(x)) (P(f(x)), ̂ ' MAO)).

Renaming the variable so that the different copies of the clause have no variables
in common, we obtain

(P(a), P(x)) (P(f(x)), P(Y)) (P(fO)), Nfif(a)))).
From the above plan, a solution can be attempted by trying to unify the two
expressions, (P(a), P(f(x)), P(f(y))) and (P(x),P(y), P(f(f(a)))). Since {al x, f(a)ly}
is the most general unifier of these two expressions, (al x, f(a)ly) is a solution for
the set of the following clauses:

P(a)

P(x) v P(f(x))

P(Y) v P(f(Y))

P(f(i(a)))-

6. Cyclic Rewriting Rules

In Section 4, we describe how to obtain a set of rewriting rules from a connection
graph. We note that this set of rewriting rules represents a context-free grammar.
We have shown that the rewriting rules can be used to generate sentences, and
we call them (refutation) plans. However, in some cases, we may not be able to
generate sentences, because we may not have rules which rewrite a non-terminal
symbol (e.g., W(n)) into only terminal symbol (e.g., a2). This is especially true
when there is no unit clause in a set S of clauses. For example, consider the set of
clauses, S = {P(x) v P(y), P(u) v P(v)). Suppose we choose P(x) v P(3)
as the start clause. Then, we obtain a directed connection graph shown in Fig. 13.

TABLE 3.

A P(x) P(Y)

ccl Al 81
ct2 A2 B1
B3 Al 82

B J —P u) I —P(v) B4 A2 B2

FIG. 13.

Table 3 is a table for substitutions. From Fig. 13, we can obtain the following
rewriting rules:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

W(A1) = 1,W(B1) L.) a3W(B2),

W(B1) = a, W(A1) u cc2W(A2),

W(A2) = a2W(B1) u a4W(B2),

W(B2) = a3W(A1) u a4W(A2),

W(A1) = W(A2),

W(B1) = W(B2),

T = W(A1)W(A2).

Now, we can obtain

(8) W(A1) =

=

▪ 

21cx3W(A 1),

(9) W(A2) =

▪ 

72 W(B2),

= 2274 KA 2).

from (1)

from (6)

from (4)

from (3)

from (6)

from (4)

Clearly, W(A1) and W(A2) can not be rewritten into strings of terminal symbols.

—.‘

0

0

0
—4
0



In cases like this, we modify rules as follows: If we can generate

W(n) = a, • • • ct,W(n),

then we check whether or not al • • • 7,, corresponds to a cycle which has a merge.
If yes, the rule is changed to

W(n) = a, • • • ot,.W(i) u 7, • • • xr.

Now, consider Rule (8), that is,

W(A1) = a1a3W(A1).

Using Table 3, we can express 1,73 as

(A1—B1) (A1—B2).

Clearly, the above graph is a cycle which has a merge Al. Therefore, Rule (8) is
changed to

(8') W(A1) = cx173W(A1)

Similarly, using Table 3, we can express 7214 as

(A2—B1) (A2—B2).

Renaming the variables, we obtain

(P(x), Ns)) (P(x), P(1)) (NA, 13(14)) (NA P(v))

Unifying the two expressions,

(P(x), p(x), P(y), P(y)) and

(P(s), P(t), P(u), P(v)),

we obtain a substitution

0 = {x/s, xlt, ylv}.

This substitution is a solution of the set M of the following clauses,

because MO is

P(x) v P(y)
— P(3) v P(t)
P(u) v

P(x) v
P(x)

P(Y),

P(.0

and is truth-functionally unsatisfiable.

The above graph is a cycle which has a merge A2. Therefore, Rule (9) is changed to 7. Relationship with Existing AI work

(9') W(A 2) = /274 W(A 2) u cx2x4. This section was suggested by Nilsson [17], and the material in 7.1 and 7.2. are
Now, we can generate a plan P as follows: mostly contributed by him. Some people may be more familiar with other work

P = T such as AND/OR tree type problem solving systems in artificial intelligence than

= W(Al)W(A2) from (7) they are with the resolution systems. Therefore, it would be a good idea to adapt
or apply our method to the existing Al work.

= ocIa37274 from (8') and (9')

From P, we can obtain a linked plan

(Al—B1) (Al—B2) (A2—Bl) (A2—B2)

The above linked plan satisfies conditions (b) and (c) in the definition of an
acceptable linked plan. To check condition (a), we substitute real literals for Al,

A2, B1 and B2, and obtain

(x), P(u)) (13 PO) 0 V, P(u)) (NA  ' NO)

7.1. Use of plans in AND/OR tree type problem soiling systems

For illustration purposes, we shall consider only problem solving systems which
use rules of the form

Al & A2 & • • • & AN B,

where the Ai (the antecedents) and B (the consequent) are positive literals (with
variables). Such rules are called Horn clauses. (An extension to non-Horn clauses
is given in [16].) Given a goal G1 & G2 & • • • & GM, an AND/OR problem
solving tree can be generated by splitting the Gi into AND nodes, unifying each
with a rule consequent, and then splitting the (subgoal) antecedents, etc. A proof
is obtained when all of the AND subgoals unify with elements of a set of fact
literals say FI, FK.
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A simple example is shown below: Suppose we are given the following goal,
rules and facts,

1) D&E

2) F&G --9 D'

3) I&J-+E'

4) H D"

5) E'

6) F'

7) G'

8) G"

9) H'

10) I'

II))'

goal

rule

rule

rule

fact

fact

fact

fact

fact

fact

fact

G'

FIG. 14.

"Fact"

Assume only the following pairs of literals are unifiable: (D, D'), (D, D"). (E, E'),
(F, F'), (G, G'), (G, G"), (H, H'), (I, I') and (J,J'). Then, starting with the goal
D & E, we can grow an AND/OR problem solving tree as shown in Fig. 14,
where "boxed" nodes are facts, and dotted edges indicate unifiable pairs of literals.
Now, to check for consistency of substitutions, we could read the following plans
directly from Fig. 14:

I) (D, D')(F, F')(G, G')(E, E')
2) (D, D')(F, F')(G, G")(E, E')
3) (D, D")(H, II')(E, E')

etc.

Each plan corresponds to a possible solution tree for Fig. 14, and we must next
choose a plan, rename variables in literals of the plan, and find a simultaneous
unifier for all the pairs of literals in the plan.
Now, after seeing the above example, for rewriting rules RI, R2, R3 and R4

in Section 4, we can state the following analogy with AND/OR trees: RI cor-
responds to OR node generation; R2 corresponds to AND node generation; R3
corresponds to "terminal nodes"; and R4 corresponds to the top AND node split.

7.2. Connection with PROLOG

The plan idea given in this paper may be also useful for PROLOG [27]. The PROLOG
programming language involves an interpreter that essentially searches AND/OR
trees of the type described above. The idea is this: A PROLOG program would
first be converted into an AND/OR tree. Then plans would be computed. Then,
these plans would be checked for consistency of substitutions. When a consistent
one was found, it would be used on the "calling clauses" to produce the solution.

7.3. Applications in query transformation

A relational data base consists of a finite number of relations, each of which can
be viewed as a table with a finite number of columns and rows. These relations
which are explicitly stored are called base relations. Clearly, we can consider each
row of a table a "fact" literal. Besides the base relations, there are virtual relations
NAllich are defined in terms of base and virtual relations. In [6, 7], virtual relations
are defined by Horn clauses. For example, we may have a base relation,
FATHER(x, y). Then, a virtual relation CHILD(y, x) can be defined by

FATHER(x, j) —+ CH1LD(y, x).

Once virtual relations are defined, a user can ask a query against base and virtual
relations. In [6, 7], a query language called DEDUCE is proposed. Essentially, a
DEDUCE query is similar to a formula in first order logic. A DEDUCE query may
contain virtual relations. To evaluate the query, it has to be transformed into a
query containing only base relations and then the transformed query is evaluated
by a relational data base management system. In [7], it is shown that the rewriting
rule method given in this paper can be used to transform DEDUCE queries. For
detail, the reader is referred to [7].

7.4. Relationship with existing theorem proving techniques

Starting with Prawitz's idea [19, 20], we first use the concept of consistency of
substitutions [4] and connection graphs [1, 12, 13, 24, 25, 29]. Then, we introduce
rewriting rules, and finally come to the concept of plans. We think the plan idea
is interesting, because it shows that we actually can generate a total plan and then
perform unification at the last step for checking the consistency of substitutions.
In [12], K lahr also uses plans based upon only predicate symbols. We shall now
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try to relate our results to other theorem proving techniques in terms of the plan
concept. For example, binary resolution involves a partial plan which uses only
two literals, because only the two literals are unified. Hyper-resolution involves a
partial plan using one or more pairs of literals. Davis' linked conjunct [8, 9] also
involves partial plans. We think our total plan approach is better than partial
plan approaches, because it eliminates redundancies. For example, suppose a
solution involves the following total plan

(A, A') (B, B') (C, C').

Using our approach, we need only to check the consistency of substitutions for
this plan. However, if we use a partial plan approach, first, we may generate the

three partial plans. (A, A'), (B, B') and (C, C'). After checking the consistencies
of these three partial plans, each of them may be combined with other pairs of

literals to make other partial plans. For example, combining (A, A') with (B, B')
and (C, C') respectively, we obtain the two partial plans,

(A, A') (B, B'),

(A, A') (C, C').

We can continue this process by testing consistencies of these partial plans and

adding other pairs of literals to them. If we use the breadth-first method, eventually

we may generate the following total plans:

(A, A') (B, B') (C, C'),

(A, A') (C, C') (B, B'),

(B, B') (A, A') (C, C'),

(B, B') (C, C') (A, A'),

(C, C') (A, A') (B, B'),

(C, C') (B, B') (A, A').

All of these plans are different only in their orderings of pairs of literals. For

binary resolution, it is even worse, because even the ordering of literals within a

pair of parentheses may make a difference. For example, some resolution strategies

may consider these two partial plans (A, A') and (A', A) differently. In our total
plan approach, we regard all these orderings as immaterial. Therefore, we think our

approach is more efficient because it eliminates many redundant (total or partial)

plans.
Of course, one may organize the generation of plans as a tree searching problem

as shown in Section 7.1. As an AND/OR tree is growing, unification can be applied

to partial plans so far generated. As soon as inconsistencies are detected, the

partial plans could be eliminated. This tree growing method is similar to Sickel's

unrolling technique [25] that checks for consistency. However, using inconsistency

for pruning the tree can not eliminate the redundancies described above. That is,

for the above example, no partial plans will be eliminated, because we assume

that any combinations of (A, A'), (B, B') and (C, C') are consistent.

As we know, renaming of variables is a very important operation, because it is
closely related to the number of copies of each clause needed in a proof. In this
paper, based upon a variant of the theorem given by Andrews [1] and Shostak [24],
we painstakingly describe a method for renaming variables in a plan. However,
if we organize plan generation as tree growing, sometimes the variable-renaming

operation can not be easily incorporated into the tree-growing process. For cases
involving only Horn clauses as shown in Section 7.1, we may just use new variables

for a rule (Horn clause) as soon as it is introduced for node expansion. However,
for cases involving non-Horn clauses, it is not so easy, because we essentially
generate an AND/OR graph, instead of an AND/OR tree. The reader may try
to grow an AND/OR tree for the example in Section 6 just to convince himself

that it is not obvious how variables should be exactly renamed. For this reason,
we would prefer using rewriting rules. (A method based on formal grammars is
also independently proposed in [26]. However, the concept and notation of plans,
and explicit algorithms for performing the variable-renaming operation are not
discussed.)

Finally, we think that the rewriting rule approach is better than the connection
(AND/OR) graph approach [25], because it uses simplified rewriting rules (e.g.,
(16) and (17) in Example 7 of Section 4) and cyclic rewriting rules (see Section 6)
to segment out the necessary subgraphs from a connection graph for possible
uses in a proof.

8. Summary

We have given a method for proving theorems in first-order logic. Given a set S
of clauses, our method can be described as follows:

(a) First, find a connection graph for S;

(b) Change the connection graph to a directed graph;

(c) From the directed graph, obtain a set of rewriting rules;

(d) Use the rewriting rules to generate a refutation plan; t

(e) Check whether or not the plan is acceptable. If yes, we obtain a solution.
Otherwise, go to Step (d) again to generate another plan.

To check a plan P, we use Theorem 2. That is, we first try to obtain a linked
plan P* from P such that every cycle (if any) in P* has a merge; then we rename
variables if necessary so that no copies of clauses share variables in common;
finally, we perform unification as the last step. If a unifier can be obtained, then
plan P is acceptable, and the unifier is a solution. Otherwise, it is not acceptable.
In reviewing the steps of our method, we see that Steps (a), (b) and (c) are

straightforward. Step (e) is well-defined. Besides, many efficient unification
algorithms [2, 11, 14, 15, 18, 22, 23] have been recently proposed. Some are in
linear time and space. Therefore, Step (e) should be manageable. Step (d) is non-
deterministic. In general, many plans can be generated. Which one is to be pre-
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ferred, and how to organize the generation of plans must be studied in the future.
Also, there is a question whether to separate Steps (d) and (e), or combine then
One may argue that in Step (e) if a plan is found to be unacceptable, computational
results for some partial plans should be saved because they may be useful for
other plans. However, we would think that Step (e) may be so fast that it would be
more advantageous to recompute than to save them. In addition, if we separate
Steps (d) and (e), then parallel processing can be applied easily because plans are
independently treated, and each of them can be processed independently.
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