
7

The Generalized Resolution Principle

J.A.Robinson
College of Liberal Arts
Syracuse University, N.Y..

1. INTRODUCTION

The generalized resolution principle is a single inference principle which
provides, by itself, a complete formulation of the quantifier-free first-order
predicate calculus with equality. It is a natural generalization of the various
versions and extensions of the resolution principle, each of which it includes
as special cases; but in addition it supplies all of the inferential machinery
which is needed in order to be able to treat the intended interpretation of the
equality symbol as 'built in', and obviates the need to include special axioms of
equality in the formulation of every theorem-proving problem which makes
use of that notion.
The completeness theory of the generalized resolution principle exploits the

very intuitive and natural idea of attempting to construct counterexamples
to the theorems for which proofs are wanted, and makes this the central con-
cept. It is shown how a proof of a theorem is generated automatically by the
breakdown of a sustained attempt to construct a counterexample for it. The
kind of proof one gets depends entirely on the way in which the attempt to
construct a counterexample is organized, and the theory places virtually no
restrictions on how this shall be done. Consequently there is a very wide
freedom in the form which proofs may take: the individual inferences in a
proof may be very 'small' or very 'large' (in a scale of measurement which,
roughly speaking, weighs the amount of computing necessary to check that
the inference is correct). It is even correct to infer the truth of a true proposi-
tion in just one step, but, presumably, to offer such a proof to someone who
wishes to be convinced of the proposition's truth would not be helpful
epistemologically. His conviction would come, not from contemplating the
proof itself, but rather from examining the computation which shows the
correctness of its single inference step.

77

THEOREM PROVING

2. QUANTIFIER-FREE FIRST-ORDER PREDICATE CALCULUS
WITH EQUALITY

2.1. Syntax

The expressions of the calculus are either simple or composite, and if they are
composite they have a unique applicative structure consisting of two parts, an
operator and an operand. The intention is that, when it is interpreted as ex-
plained in 2.2 below, every expression shall denote something, and that the
entity denoted by a composite expression AB (where A is the operator, and B
the operand, of AB) shall always be the result of applying the entity denoted
by A to the entity denoted by B. The expressions are all built up from primi-
tive symbols in a systematic way explained below.
2.1.1. Vocabularies. A vocabulary is a set V of symbols, partitioned into dis-
joint subsets as follows: /(V) is the set of individUal symbols in V; and, for
each natural number n 0, the set F„(V) is the set of function symbols of
degree n in V, and R,,(V) is the set of relation symbols of degree n in V. It is
possible that some, and even all but finitely many, of the sets /(V), F0(V),
R0(V), F1(V), Ri(V), . . ., should be empty; but we assume that at least one
of them is not. We shall usually employ lower case letters for individual sym-
bols and upper case letters for function and relation symbols.
2.1.2. Expressions over a vocabulary. Let V be a vocabulary. Then the expres-
sions over V are the terms, sentences, sequences of terms, sets of terms and
sets of sentences defined below, together with the members of V themselves.
In these definitions, the references to individual, function and relation symbols
are to be taken as restricted to V.
2.1.2.1. Terms. A term is either an individual symbol or else has the form FT
where F is a function symbol of degree n and T is a sequence of n (not
necessarily distinct) terms.
2.1.2.1.1. Sequences of terms. A sequence of n terms is simply the empty
string when n =0. When n >0, a sequence of n terms is a parenthesized list
(T1,. T,,) each component in which is a term. It is not necessary that all of
the components be distinct.
2.1.2.2. Atoms. An atom either has the form RT where Ris a relation symbol
of degree n and T is a sequence of n terms, or else is an equation =S where =
is the equation symbol and S is a nonempty set of terms.
2.1.2.2.1. Sets of terms. A set of terms is a list of terms enclosed in a pair of
braces: {7'1, . TO. When no terms at all appear between the braces the set
is said to be empty. A term is said to be in a set if and only if it is one of the
components of the list, and two sets are regarded as being the same if every
term which is in one of them is also in the other. In other words, the order
and multiplicity of terms in a set is irrelevant.
2.1.2.3. Literals. A literal is either an atom or has the form —A where --I is
the negation symbol and A is an atom. The literals A, —IA are complementary,
and each is the complement of the other.
2.1.2.4. Sentences. A sentence is either an atom, or a conjunction IDC where

78

ROBINSON

is the conjunction symbol and C is a set of literals; or a disjunction DC
where 0 is the disjunction symbol and C is a set of literals; or a negation
where S is a sentence.
2.1.2.4.1. Sets of sentences. A set of sentences is a list of sentences enclosed in
a pair of braces, exactly as in 2.1.2.2.1 above.
2.1.3. We will usually write an equation = { T1, T2}, having only two com-

ponents, in the more conventional fashion as: Tv= T2. Also a conjunction

SO will usually be written: (SIA . . . ASS) or even simply as

S1A • • . ASS. Likewise a disjunction will usually be written with the familiar
V interposed between its components. However the empty conjunction and
the empty disjunction will always be written respectively as: El, ID, omitting
the pair of braces enclosing nothing.

2.2. Semantics

2.2.1. Terms and sentences become meaningful only when an interpretation
is provided for the symbols in the vocabulary over which they are written.
Thereupon, as explained in detail below, each term and each sentence acquires
a denotation, that is to say something which it denotes, under that interpreta-
tion. Sentences always denote one or other of the two truth values true, false.
Terms always denote some specific object in the so-called universe of the
interpretation.
2.2.2. Interpretations. Formally, an interpretation is a mapping g of a vocabu-
lary V (called the vocabulary of the interpretation) onto a collection of
entities all of which are constructed out of a certain set D (called the universe
of the interpretation). Specifically, g maps each individual symbol in V onto

a member of D, each function symbol of degree n in V onto a function from
D" to D, and each relation symbol of degree n in V onto a function from Dn to

(true, false). The entity g(E) onto which each symbol E in V is mapped by g
is said to be denoted by E under g or to be the denotation of E under g.
2.2.3. Denotations of logical symbols, sets and sequences. The logical symbols
0, 0, and = always denote the same entities, under every interpretation.

Indeed, the negation symbol denotes that function from truth values to truth
values which when applied to true gives false and conversely; the conjunction

symbol and the disjunction symbol each denote a function from sets of truth

values to truth values, with 13 denoting the function which gives false when

applied to a set containing false, and giving true when applied to other sets;

and 0 denoting the function which gives true when applied to a set containing

true, and giving false when applied to other sets. The equation symbol always
denotes that function from nonempty sets to truth values which gives true

when applied to sets containing exactly one object, and which gives false
when applied to other nonempty sets. A set or sequence of expressions is

always taken to denote the set or sequence of things which are denoted by the
constituent expressions.
2.2.4. In general, an expression with operator A and operand B denotes,

79

THEOREM PROVING

under an interpretation g of the vocabulary in which the expression is written,

the entity which the function g(A) gives when it is applied to the entity
g(B) which is denoted by B under g.

2.2.5. By virtue of the above explanations, we can regard any interpretation g
as automatically extended to the set of all expressions over the vocabulary of
g. In particular each sentence over the vocabulary of g denotes either true or
false under g, and we say that the sentence is true under g, or that g satisfies it,
in the first case, and that the sentence is false under g, or that g falsifies it, in
the second case.
From our explanations above it is easy to verify that the empty conjunction

is true under every interpretation and that the empty disjunction is false
under every interpretation.
An interpretation can neither satisfy nor falsify a sentence which is not

among the sentences over its vocabulary, for there must occur in such a sen-
tence at least one nonlogical symbol which is without any denotation.
Whenever, in the remainder of this paper, we speak of an interpretation and a
sentence in the context of inquiring whether the former satisfies or falsifies the
latter, we should be understood as taking it for granted that the vocabulary
of the interpretation is large enough to contain each nonlogical symbol which
occurs in the sentence.
2.2.7. It sometimes happens that an interpretation g not only satisfies a sen-
tence S, but that also it would satisfy S, no matter what other members of the
universe of g were to be denoted by the individual symbols in the vocabulary
of g. We can express this situation more precisely with the help of the concept
of structurally equivalent interpretations. Two interpretations are said to be
structurally equivalent if their universes and vocabularies are the same and if
each assigns the same denotation to the function symbols and relation symbols
in their common vocabulary. Thus, the only way in which structurally equiva-
lent interpretations can differ at all is in the denotations they assign to indivi-
dual symbols.
Then the situation might arise that not only does g satisfy S, but every

structural equivalent of g satisfies S.
We shall say that g strongly satisfies S if, and only if, every structural

equivalent of g satisfies S. Obviously, if g strongly satisfies S then g satisfies S,
because g is certainly a structural equivalent of itself. But the converse is not
in general true.

Intuitively, g strongly satisfies S only when g satisfies the result of universally
quantifying S with respect to all of the individual symbols that it contains.
What S says about the objects denoted under g by those individual symbols is
true of all of the objects in the universe of g. In the present quantifier-free
system, it is the notion of strong satisfaction which fills the gap left by doing
away with the device of quantifiers.
In a similar way we say that g strongly falsifies S if, and only if, every

structural equivalent of g falsifies S. A little reflection shows that g strongly

80

ROBINSON

falsifies S only when, intuitively, g satisfies the result of universally quantifying
--IS with respect to its individual symbols.
In the quantifier-free predicate calculus, individual symbols are not

variables. They always denote particular, fixed objects under an interpreta-
tion, as indeed do all nonlogical symbols.
2.2.8. If Xis a set of sentences and g is an interpretation, we shall say that
g (strongly) satisfies A' if, and only if, g (strongly) satisfies each sentence
in X.

2.3. Propositions

The point of the whole enterprise of logic is to be able to formulate, investi-
gate and settle, any proposition which asserts that a sentence Y follows from a
set A' of sentences. (To facilitate our discussion we shall say that Y is the
conclusion, and the members of A' the premisses, of the proposition P). Now
there are two senses in which follows from can be taken, in our present system.
The first sense, which we shall call the ground sense, is explained by saying
that:
2.3.1. Y follows from A' if, and only if, among the interpretations which
satisfy A', there is none which falsifies Y.
The second sense, which we shall call the general sense, is explained by saying
that:
2.3.2. Y follows from A' if, and only if, among the interpretations which
strongly satisfy A', there is none which falsifies Y.
In order to help keep the distinction between these two senses of follows

from clear, we adopt the following notation for propositions: we write X Y
to represent the proposition that Y follows from A' in the ground sense, and
we write X-■ Y to represent the proposition that Y follows from X in the
general sense. We say that X Y is a ground proposition and that X-*. Y is a
general proposition.
2.3.3. From the definitions 2.3.1 and 2.3.2 it can be readily checked that if
Xr Y then X-■ Y. This is so because the interpretations which strongly
satisfy X are all contained in the set of interpretations which merely satisfy A'.
The converse is untrue, however. For example, {P(x)}-.P(y), but it is not
the case that {P(x)}P(y).
2.3.4. It is not hard to show that if X-. Y then any interpretation which
strongly satisfies A' will also strongly satisfy Y (although, in the definition
2.3.2, it is only formally necessary that it merely satisfy Y). For if g strongly
satisfies A', then so does h, where h is any structural equivalent of g, and hence
h also satisfies Y; therefore any structural equivalent of g satisfies Y, and
therefore g strongly satisfies Y.
2.3.5. A counterexample to a ground proposition P is an interpretation which
satisfies the premisses of P but falsifies its conclusion. Similarly, a counter-
example to a general proposition is an interpretation which strongly satisfies
its premisses but falsifies its conclusion. Intuitively, a proposition says of

81

THEOREM PROVING

itself that it has no counterexample, and it is true if this is in fact the case, and

false otherwise.
A proposition which is true is also called a theorem.

2.4. Ground propositions are decidable

As we have seen, a proposition is an intuitively meaningful assertion, which

says something quite concrete and specific about all of the ways in which inter-

pretations can affect the premisses and the conclusion of the proposition. As

such it is either true or false according as what it asserts to be the case is the

case or not. Strictly speaking, a proposition is an assertion of the semantical
metalanguage of our system, and is not to be counted among the sentences of

the object language as characterized in 2.1. However, even though a proposi-

tion is always either true or false it is not always by any means obvious which.
Fortunately, in the case of ground propositions, there is an algorithmic way of
correctly deciding the truth or falsehood of them, which we now go on to
explain.
2.4.1. The method of denotation tables. From the definition 2.3.1 it looks as if,

in order to decide whether or not a ground proposition P is true, we would
have to examine all interpretations whatsoever of its premisses and conclusion.
This would of course be quite out of the question, as there are at least
as many interpretations of a vocabulary as there are sets to act as their
universes.
However, it is not in fact necessary to do this. For the only way in which an

interpretation can affect the premisses and conclusion of P is by providing a

truth value as denotation for each of the atoms which appear in any of them.
Since there can be only finitely many (say, n) such atoms there can be only

finitely many (at most 2^) different ways in which the set of them can be

mapped by an interpretation onto truth values. We can list all of these ways

in a denotation table, in just the same way as is done in constructing a truth

table in the propositional calculus. Indeed, if we first construct a truth table

for the set of atoms involved, and then remove from it any mapping which

'violates the semantics of the equation symbol' in the way explained precisely

below, then we in fact get the denotation table for the set of atoms. Once we

have the denotation table, we can easily check mechanically to see whether

any of the mappings in it corresponds to a counterexample for P, and thereby

settle whether P is true or false. Herein consists the decision procedure for

ground propositions.
2.4.2. Constructing a denotation table for a set of atoms.

2.4.2.1. Conflation. Let T be a set of terms, and K be a partition of T. Then

we say that two expressions Q and R are conflated by K if, for some (relation

or function) symbol S, Q is S(Ai, . • •• As), R is S(.131, • . BO, and for each

j, j= 1, . . n, Al and 131 lie in the same block of K. Two blocks of K are said

to overlap if there are two terms, one in each of the blocks, which are con-

flated by K. By the closure of K we mean the partition which is obtained from

82

ROBINSON

K by repeatedly merging (i.e., forming the union of) pairs of blocks which
overlap, until there are none left which do.
2.4.2.2. Admissible mappings. A mapping g of a set A of atoms onto truth
values is admissible if, and only if, for the partition K defined below, g maps
atoms, which are conflated by K, onto the same truth value; and g maps an
equation = S onto true only if S is included in some block of K.
In the above definition, K is the partition of the set T of all terms which

appear in any of the atoms in A, determined as follows: first we let M be the
partition of Tin which two terms lie in the same block if, and only if, g satisfies
some equation = S in A whose S contains both of the terms: then we let K
be the closure of M.
2.4.2.3. The denotation table for a set A of atoms is then the set of all map-
pings g of A onto truth values, such that g is admissible.

2.5

Because of the method of denotation tables one can always, at least in principle,
directly determine whether a ground proposition P is true or not. Of course
the amount of computing involved in carrying out the method on P will (no
matter how efficiently the work of constructing the denotation table and
checking each map in it might be organized) increase as P becomes 'larger'.
There will indeed be a 'size' of P which is as large as can feasibly be managed,
using this method, for every computing agency, man or machine, with a fixed
amount of computing power. Furthermore there is a point beyond which a
human is not well served epistemologically by merely being informed that a
Proposition is true, or that it is false, even if his informant is entirely reliable
and is somehow known to be so. Ondwants to be told not only that a proposi-
tion is true or false, but also, so to speak, why. It would surely be most un-
satisfying intellectually to be told by an omniscient demon that, for example,
Fermat's Last Theorem is indeed true, if he did not also provide us with a
proof of it which we could understand. We go on, therefore, to discuss infe-
rence and proof in the present system and in general.

3. INFERRING CONSEQUENCES AND PROVING THEOREMS

3.1

To prove a proposition is to show that it is true. Presumably, for someone
Who can see directly that a proposition is true, a proof of that proposition is
unnecessary. If he cannot see directly that the proposition is true, however,
then he must be given a way of doing so which requires that he see directly the
truth only of propositions which he can directly settle, without mediation.
The following fundamental consequence principle provides the framework
Within which this might be done: if Y follows from Z, and if each sentence in Z
follows from X, then Y follows from X.

It is straightforward to check that the consequence principle holds if
follows from is construed in either the ground sense or the general sense of 2.3.

83

THEOREM PROVING

But it is important to realize that the consequence principle holds when

follows from is simply taken in the unformalized sense of ordinary mathe-
matical usage.
The proposition that Y follows from X can be seen to be true, therefore,

by one who can see that Y follows from Z and that each member of Z follows

from X. If there are k sentences in Z then the original problem (to see that Y

follows from X) can be replaced by k +1 problems of exactly the same sort

as the original one. Obviously, if the reduction is to have any point, each of

the k +1 problems must be, in some sense, easier to solve than the original

one. However, it is not at all necessary to treat the reduction itself as a problem,

for the consequence principle requires no justification either in general or in

any particular application.
These general remarks supply the motivation and background for the formal

concept of proof which is introduced below.
3.1.1. A tree of sentences is a tree to each node of which is attached a sen-
tence, which is said to be the sentence at that node. It is possible that the
same sentence should be attached to more than one node in a tree of sentences.
A ground proof is a tree of sentences such that, if Q is the sentence at any
interior node N of the tree, and P1, . . Pk are the sentences at the nodes
which are immediately outward from N in the tree, then the proposition at N,
{P1,. . Pk} = Q, is true. A general proof is defined in exactly the same way
except that -+ replaces z in the definition.
Every ground proof is also a general proof, by 2.3.3, but not necessarily

conversely.
If all of the sentences at the tips of the proof P are in X, and if the sentence

Y is at the root of P, then P is a proof of the proposition that Y follows from

X, in the ground or the general sense according as P is a ground proof or a

general proof.

3.2

In order to see, then, that a tree of sentences is in fact a proof, one must be

able to see that the proposition at each of its interior nodes is in fact a

theorem. We now describe a method which automatically produces proofs for

ground theorems, in which the interior theorems are necessarily 'obvious' to

the agent (man or machine) with the computing power that must have been

available in order that the proof could have been produced at all. An agent

having only very little computing power can produce only proofs which have

interior theorems of an extremely simple kind. An agent with greater comput-

ing power can produce proofs with fewer, but 'larger' interior theorems. An

agent with sufficiently great computing power will be able to prove the theo-

rem itself in a single ̀ obvious' step.

3.3. Semantic trees

Let K be the set of atoms in the premisses or the conclusion of a ground pro-

position P. Let T be a tree of sentences, each one of which is a conjunction

84

ROBINSON

whose literals are all atoms, or complements of atoms, in K. Then T is a
semantic tree for P if the following four conditions are satisfied at each node
N of T, where C is the conjunction of all the literals in all of the conjunctions
at the nodes on the branch of T down to and including N, and C1, . . Ck

are the conjunctions at the nodes of T immediately outward from N:
3.3.1. there is no atom L in K such that both C -L, and
3.3.2. C(CIV . VC7c);
3.3.3. there is no literal M in C5 such that CM (for 1 -<_j<k);
3.3.4. if N is a tip of T, then either CL or C —IL for each L in K.

3.4. Discussion of this definition

The intuitive idea behind the definition of 3.3 is that as we move down a
branch of a semantic tree for P we encounter, at each node, a further quantum
of information in an increasingly more complete description of an interpreta-
tion of the vocabulary in which the premisses and conclusion of P are written.
The conjunction C of all the literals in all of the sentences on a branch of T is
a complete description of an interpretation in the sense that it portrays one
possible way in which an interpretation g can make each sentence S over that
vocabulary denote a truth value: if S is true under g then CS, and if S is
false under g then --IS. Conditions 3.3.1 and 3.3.4 are imposed in order to
ensure just this. Condition 3.3.3 is theoretically dispensable. It merely en-
sures that each component of each new quantum is in fact new information,
not deducible from the part of the description which is already given. Condi-
tion 3.3.2 is imposed in order to guarantee that every possible interpretation
is described by some branch of T. For no matter what interpretation g of the
premisses and conclusion of P we consider, the conjunction 1:1 at the root of T
is satisfied by g; and in general, if g satisfies C then g satisfies (C A C5), for
some j, by condition 3.3.2. Therefore there is some branch of T which g
satisfies. But to say that g satisfies C, and to say that C completely describes g,
is to say the same thing, when N is a tip of T.

3.5. Failure points: counterexample trees

A counterexample tree for P, where P is a ground proposition, is a semantic
tree for Pin which certain nodes are classified as failure points as follows (re-
taining the notation of 3.3 and 3.4): the node Nmn a semantic tree T for P is a
failure point of T if C —2 for some premiss Z of P or if C= Y where Y is the
conclusion of P.

Obviously any branch of T which contains a failure point cannot describe a
counterexample for P. Therefore, if P is true, every branch of every counter-
example tree for P must contain a failure point.

3.6. Inference points of counterexample trees

A node N in a counterexample tree T for P is called an inference point of T
if the following two conditions are satisfied:
3.6.1. N is not a failure point of T;
3.6.2. each of the nodes immediately outward from N is a failure point of T.

85

THEOREM PROVING

3.7. Standard form for propositions

We obtain considerable simplification in the subsequent discussion if we are
able to assume that the propositions P we deal with are all in a certain stan-
dard form, namely, the form in which P satisfies the two conditions:
3.7.1. the conclusion of P is E];

3.7.2. each premiss of P is a disjunction.
There is no loss of generality involved in this assumption since every proposi-

tion is equivalent to a proposition in this standard form in the strict sense that
every counterexample of the one is also a counterexample of the other. To see
this, it is enough to note that {Xi, X„). Y is equivalent to { X1,
Y} 0; that replacing --,P{S„ . . S„} by u{—,s1, —1S„} or replacing

S„ . S.} by 0 {-1S1, ..., —S} anywhere in a proposition produces
an equivalent proposition; that deletion of anywhere in a proposition

produces an equivalent proposition; and finally that replacing, on the left
hand side of a proposition, the conjunction 0{4 . S.} by then disjunc-
tions 051, • • 0S,, produces an equivalent proposition.

3.8. Making inferences at inference points

Let us now examine more closely the situation at an inference point N in a
counterexample tree T for a proposition P in standard form. Let C, C1,
. • Ck be defined at N as in 3.3, and let F1,. . Pk be premisses of P such
that:

3.8.1. {C, C,}=.—,P, for each], 1 < j<k.
Since Pj is a disjunction, and since Nis not a failure point of T, we can write
Pi as (AiV Bi), where Ai and B, are disjunctions, and where
3.8.2. for each j, 1 jk
but
3.8.3. for no], I
It is possible that Al is empty, but not that A is. Because of 3.8.1 and
3.8.2. we have

3.8.4. {C, Ci} -113, for each], 1 < j <k
and by definition of a counterexample tree we have:

3.8.5. C..(Ci V ... V Ck).
From 3.8.4 and 3.8.5 it immediately follows that:

3.8.6. {B1,. .

and that therefore there is at least one choice of a disjunction B (namely the
disjunction of all the complements of literals of C) such that:
3.8.7. {B1, Bk}B and
Now let Q, for any B which satisfies, 3.8.7, be the disjunction:
3.8.8. (A1 V .. • V Ak V B);
then it readily follows that

3.8.9. {PI, • •
and also that
3.8.10.

86

ROBINSON

For from the second part of 3.8.7 we know that and this, with
3.8.2, immediately gives 3.8.10; while the first part of 3.8.7 immediately
gives 3.8.9. Suppose that the proposition P is: XED.
If we add the sentence Q to the set X, to obtain the set X', and define the

tree T' to be the result of classifying as extra failure points the nodes of Tat
which Q is false, then T', as it stands, is a counterexample tree T' for the pro-
position X' =- 0. Now, since Xg_ X', every failure point of T is a failure point
of T'. However, the node N is certainly a failure point of T', because of 3.8.10,
but not of T, by 3.6.1. If we define the size of a counterexample tree to be the
number of nodes in it which are not failure points of it, then we can express
the above situation by saying that the size of T' is strictly less than the size of T.
Now if XE::) is true, every branch of T contains a failure point, and therefore
T contains an inference point, unless the root of T is itself a failure point.
Hence the same will be true of T'. Therefore the above construction can be
iterated to produce a sequence of counterexample trees T, T', . . n) for a
sequence X=-0, X'=-, X()=D of theorems each of which is equiva-
lent to X.0 and therefore true; with the sizes of the successive trees forming
a strictly decreasing sequence of numbers 2:- 0. Hence, for some n, the size of
T() will be zero. This means that the root of T(") is a failure point for
X('') 0, which can happen only if D was inferred at some inference point
in T(n-1), and added to X(n-1) to form X('). If we attach to each of the failure
points of T, a sentence in X which is falsified at that point; and then thereafter
attach, to each of the new failure points in T', the sentence Q which is added
to X to get X', and so on, through the sequence to T("); then T(") will
actually be a proof of J. Each of the inferences in this proof will have
been made automatically, from the materials available in the immediate
neighbourhood of the corresponding inference point. Notice that a special
case of a counterexample tree for any theorem { X1, . . 0 is the tree
having just k +1 nodes, namely a root N and k tips N1, . . Nk immediately
outward from N, with the conjunction Ci attached to N, and the conjunction
Ci attached to N, i=1,...,k, where Ci is just the conjunction of all the comple-
ments of literals in Xi. Then each of NI, . . Nk is a failure point, and the
construction of the present paragraph shows that 0 would be inferred directly
from { X1, . . Xk). Of course, to know that this simple tree is a counter-
example tree for { X1, Xk} *- 0 is already to know that { Xk} 0,
because this is the content of 3.3.2 in this case. The upshot of this paragraph is
therefore this; that from any counterexample tree T for a theorem X=.0, we
automatically get a proof of X=- 0, in which each inference is an application
of the following principle:
3.8.11. from (A1 v B1), . . (Ak v Bk) one may infer the 'resolvent' (A1
V . . . V Ak V B), whenever {B1, . . . , B, where B is a
disjunction.

It is this principle which we call the generalized ground resolution
principle.

87

THEOREM PROVING

3.9. Discussion of the generalized ground resolution principle

The principle 3.8.11 specializes, in various ways, to all of the various versions
of the ground resolution principle (Robinson, 1965), when B is D. When B is
not 0, 3.8.11 condones inferences of a rather more general character, includ-
ing all those which involve the notion of equality in an essential way. It is to
be noted that in applying 3.8.11 one has to discover a B satisfying the side
condition {B1, . . In the construction of proofs described in 3.8,
this discovery is done automatically, and emerges from the information avail-
able at an inference point of a counterexample tree. There is, however, a more
subtle way of selecting B in that construction than the one there mentioned,
which we now explain.
3.9.1. Selecting a B. It is possible to make a better choice of B than simply
(as was indicated in 3.8) to set it equal to the disjunction of all the comple-
ments of the components of C. The conditions which B has to satisfy, in order
that the argument of 3.8 go through, are (in the notation of that argument):
3.9.1.1. {B1, ..., and
Now it is possible to consider the set M of all disjunctions whatever, in which
there occur only the equality symbol, relation symbols and terms that occur
in B1, . . Bk, and C. There are only finitely many of these. A denotation
table for the set of atoms in M can be constructed, and with its help, one can
compute all of the disjunctions B in M satisfying 3.9.1.1, and then choose the
simplest of these with which to construct the resolvent Q 3.8.8. In order that
this be done mechanically one must of course specify a computable measure
of the simplicity of B, such as: the number of symbols in B, or the number
of components in B.

4. GENERAL PROOFS

Now that we have the facility, given a ground proposition D which is
true, to construct automatically a proof of Xr El by using the method ex-
plained in 3.8 of converting a counterexample tree for X=- D, we go on to
consider next the question of constructing, given a general proposition X-. D
which is true, a proof of X-0.0.

4.1. Variants, instances, and substitutions

4.1.1. A substitution is an operation 0 which can be performed on an expres-
sion E to obtain another expression EU; the operation consists of replacing
each occurrence in E of each of a list x1,. . x, of distinct individual symbols
by an occurrence of the corresponding term in a list t1, t. of (not neces-
sarily distinct) terms. It is always assumed that ti is different from xi. We
write 0=(t1lx1, t./x„). The empty substitution, conventionally denoted by
E, is the (null) operation on E of replacing nothing in E. Thus, EE=E for all
E. The composition OA of two substitutions is the substitution p, such that
Eiz=(E0)A for all E. The components of OA are easily obtained from those
of 0 and A: indeed, if 0= (tdx,i) and A=

88

(ui/Yi, • • um/y,„), then

ROBINSON

. . tnAlx„, . . umly.)* where * indicates the operation

of deleting any component tjA/xi in which t5A=x5, and any component udyi
such that yi is among x1, . . xn. Composition of substitutions is associative,

and e is both a left and a right identity:
4.1.1.1. (OA) it= 0 (4.) for all 0, A,
4.1.1.2. ee= ee= 0 for all 0.
4.1.2. Instances. An expression Y is an instance of an expression X if Y= X0

for some substitution O.
4.1.3. A substitution 0= (. t,,/x,) is invertible, and has the inverse

0-1 =(xilti, ..,xnitn),if x,/t,,) is a substitution, that is, if t1, . t.
are distinct individual symbols.
4.1.4. Variants. An expression Y is a variant of an expression X if Y is an
instance XO of X for some invertible 0 such that X= Y0-'.,

Obviously, if Y is a variant of X then Xis a variant of Y; if Xis a variant
of Y and Y is a variant of Z then Xis a variant of Z; and Xis a variant of X.

4.2. Lemma

For any expressions X1, . . ., X,, and substitutions 01, . . On, we can find

variants X1', X„' of X1, . X„, and a substitution 0, such that:

(X101, X„0„).(X1'0,.., X„'0)

(i.e., X101 = Ifi'0 for all 1=1, . . .,n).
The proof is very easy.

4.3

If Xis a set of expressions and 0 a substitution, then by XO we mean the set of
all expressions E0, where E is in X.

4.4

Let X be a set of expressions and 0 a substitution. Let P be the partition of X
determined by the rule that E and F are in the same block of? if and only if
E0=FO. We say that P is induced in X by 0.

4.5

Let X be a set of expressions and P a partition of X. We say that P is a

unifiable partition of X if and only if there is some substitution 0 which induces

Pin X.

4.6

Two substitutions are said to be equivalent over a set X of expressions if they

induce the same partition in X.
4.6.1. Comment. There is obviously an equivalence class of substitutions

over X for each unifiable partition of X. If X is finite, there are then clearly

only finitely many such partitions and hence only finitely many such equiva-

lence classes of substitutions.

89

THEOREM PROVING

4.7

Let X be a finite set of expressions. A set {01, On} of substitutions is said
to be a basis of X if for each unifiable partition P of X there is exactly one Bi

in the set which induces P in X.

4.8

Prime bases of sets of expressions. Let X be a finite set of expressions. A basis
an) of Xis said to be a prime basis of X if, for any basis {01, ..., 0,,)

of X, we have
4.8.1. { Or,. ., 0 = {crik, ., an AO for some set (AD ..., An) of substitutions.
Comment. Every finite set X of expressions has a prime basis. Moreover,
given X, we can compute a prime basis of X; and given a prime basis of X we
can compute, for any other basis of X, the substitutions Ai of 4.8.1. These
computations are made by means of the prime basis algorithm, explained in
the next paragraph.

4.9. The prime basis algorithm

Given the finite set X of expressions as input, we can, for each partition P of
X, calculate the substitution a(P) by applying to P the unification procedure
described in 4.9.1 below.
Then let {0.1, . . a,,) be the set of all a(P) such that a(P) induces P in X.
This set is a prime basis for X.
4.9.1. Unification procedure. Given a partition P of a set X of expressions, we
compute a substitution a(P) as follows:

Step 1. Put /30= e, k=0, and go to step 2.
Step 2. If BA is a singleton for each block B of P, put a(P)= 13k and

halt. Otherwise:
Step 3. let B be any block of P such that Bigk is not a singleton, let E, F

be two distinct expressions in Bigk, and let W, Y be the two
distinct expressions obtained by analyzing E, F as:
E=AWR, F=AYS

for some (possibly empty) string A of symbols and some
strings (possibly empty) R and S of symbols.

Step 4. If one of Y, W is an individual symbol x and the other is a
term t in which x does not occur, put plc= (t/x), 13k1=p k Pk,
add 1 to k, and return to step 2. Otherwise, put a. (P)=13k, and
halt.

4.9.2. Comment. The freedom of choice (of B, E, F, and x) in steps 3 and 4 of
the unification procedure will of course be removed in some fixed way in any
mechanization of the procedure. For our present purposes we assume the
method of choice fixed but we do not insist on any one way of fixing it. On
this assumption, the sequences fl,. f3k and po, tik...1 of substitutions,
generated as the procedure returns repeatedly to step 2, are fixed functions of
P which we call the unification sequences for P. It is straightforward to show

90

ROBINSON

that if 0 is any substitution which induces P in X, then a(P) induces P in X
and that moreover 0 = a(P) A, where A = A/C, the final member of the sequence

Ao, • . Ak of substitutions determined as follows: put A0= 0, and then for
0, solve the equation Ai for 4E1. For then the equation e=p, Aj is

easily seen by induction to be satisfied for j= 0,. . k. For j= 0, the equation

holds because 0=EP and A0=0. And if the equation holds for j<k it must

hold for j+ 1, because /3/1-1A/1-1= (P1 tza)Ai+i =Pi(Pi ARO = PI AP
4.10

Now let 11, X„ be sentences and 01, 0„ be substitutions, and consider

the instances 1101, . • ., xne,„ of xi, x„ by these substitutions. By Lemma
4.2 we can find variants 11',. • ., In' of Xi, • . X,,, and a substitution 0,

such that 1101, . X„0„= 11'0, X„'0. If Y is any sentence such that

{,(3.01, • • ., Arnen} Y, then { X1'0, X„10}=. Y. Let T be the set of all of the
terms which occur in any of the sentences Xi', . In', Y. Suppose that the
sentence Y has the form YitiO . . . Ynt„OZ, where each of the terms t1, . • ., tn
is in T and none of the strings 1'1, . . Y„, Z contains a term to, with t in
T. Then put Y'= Ynt„Z, so that if we apply the substitution 0 to Y'
we obtain the sentence Y back again. Thus, {X'0, Y'0. However,
the denotation table for { . . X„'0} -Y'0, and that for { . .

Y'01, where 0' is any substitution equivalent to 0 over T, are com-
pletely isomorphic; and in particular we have that { . . Y'a,
where a=a(P), P being the partition induced in T by 0. Recalling that we
can find A such that 0 = aA, and remarking that for each i, we con-
clude that the following is the case (putting Y'a= X):
4.10.1. If {XO, . . Y then we can find a sentence X such that
{ 11,. . X„}....Y and a substitution A such that Y= IA.

4.11

The ̀lifting lemma' 4.10.1 can be used to obtain, from any ground proof of a
theorem { X101, . . Y, a general proof of a theorem { 1k,. X„},-0,X
with the property that Y is an instance of X. One simply takes the given ground

proof and applies 4.10.1 repeatedly, from the tips inward.

4.12

But a more general conclusion can be drawn from the discussion in 4.10.

Let Xi, X„ be (not necessarily distinct) sentences, and let X11, X„'

be variants of Xi, . . X„ no two of which have an individual symbol in

common. Let T be the set of all terms which occur in any of Xi',. . X„',

and let S be a prime basis of T. If a is any substitution in S and Y' is any

sentence, we can determine whether { Y'a, and, if so, obtain

by means of 4.10.1 a general theorem of the form {XI, . X0}-0,X, where
X= Y'a. The general theorems which are obtainable in this way are all of the

general theorems which can be obtained by applying 4.10.1 to ground theo-

rems of the form { . X„0„}- Y. We can make special use of this in

order to arrive at the generalized resolution principle, in the next paragraph.

91

THEOREM PROVING

4.13. The generalized resolution principle

A special case of the discussion in 4.12 arises when 1" a comes from Xiscr,
. . X n'a by the generalized ground resolution principle 3.8.11. In this case
we have a general theorem {X1, . . X„}-.X in which Xi is (Aev Be), i=1,
. . n and Xis the sentence (Ai' v v An' v B')a, where (Ai' v Bi'), .
(A v Ba') are the variants Xi', . . ., X,' and B' is any disjunction which
satisfies the condition that {131'0., . . Bn' a}=-B' a.

4.13.1. If, therefore, we apply 4.11 to a proof of {X101, ..., X„0,2)=.0, each
inference in which is an application of the generalized ground resolution
principle, we get a proof of { Xi, . . Xn}-.0, each inference in which is an
application of the generalized resolution principle stated as follows:
4.13.2. Generalized resolution principle
From (A1 v Bi), • • (Any Bn) one may infer the 'resolvent' (A1' v
. . . v An' V 131)a, provided that {Bi'a, . . Bn'a}=-B'a, where
(A1' v B1'), . (An' v B„') are variants of the sentences (A1 v B1),
. . (An V Bn), a is a member of a prime basis of the set T of all
terms which appear in (Ai' v BI!), • • (An' v Bn'), and B', where B'
is a disjunction.

Comment. It is not necessary that (A1 v B1), • • (Any Bn) all be different
from each other. The intention behind our formulating the principle in this
way is to emphasize that the several premisses of an application of the genera-
lized ground resolution principle may well include distinct instances of one
and the same sentence. Such inferences, when 'lifted' to the general level,
correspond to applications of 4.13.2 in which the same sentence appears more
than once in the listing of the premisses. The ground principle 3.8.11 is simply
the special case of 4.13.2 for a= e and (As' v Be')=(Ae v Be), 1=1, . .,n.

4.14. The completeness theorem for the generalized resolution principle

The fundamental theorem of logic, in our present notation, states that:
4.14.1. For any finite set X of sentences: if I—p, then, for some k >1
(X01, ..., XkOk) 0, where Xi, . . Ai-k are in X and 01, Ok are substitu-
tions.
From this proposition, the construction of 3.8, and 4.13.1, we obtain the
completeness theorem for the generalized resolution principle:
4.14.2. For any finite set X of sentences: if X.4.0 then there is a proof of
X-. El in which each inference is an application of the generalized resolution
principle.
4.14.3. Comment. Indeed, if X-■ 0 then the immediate inference of 0,
directly from X, is an application of the generalized resolution principle.

4.15

If, in the construction of 3.8, we impose further restrictions on the form of the
counterexample trees which may be used, we obtain corresponding restric-
tions on the forms of the inferences which will be made when the counter-
example trees are converted by the construction into proofs. To each such set

92

ROBINSON

of restrictions on the form of counterexample trees will correspond a system
of logic with a single inference principle that is a correspondingly restricted
form of the generalized resolution principle, and the entire argument will
provide the completeness theorem for that particular system of logic.
4.15.1. Pairwise resolution. The original resolution principle of Robinson
(1965) corresponds to the restriction that (in the notation of 3.8) we always
have k=2 and that C1, C2 are always L, for some atom L in K. Actually
this restriction gives rather more, in that the resulting system (as have all
systems obtained in this way) 'has equality built in'.
4.15.2. Resolution with set of support. Example 2: If we restrict the counter-
example tree for X=. Lj in such a way that, for some satisfiable subset Y of X,
the negation of the conjunction C at an inference node N never follows from
Y (as may always be done) then the inferred sentence Q at N in the resulting
proof will never follow from Y alone (for Q; and if we would
have —,C) and will thus be a proof with set of support X— Y. In this way
we obtain the systems (Wos, Carson and Robinson, 1965) in which the set of
support principle is always observed, and we therefore have the completeness
theorem for any such system.
4.15.3. Clash resolution. If all but one of C1,. . Ck always contain a single
literal, and the remaining one contains the complements of all of these literals,
then we obtain the clash resolution system (Robinson, 1967), of which the
system of 4.15.1 is a special case.

REFERENCES

Robinson, J. A. (1965), A machine-oriented logic based on the resolution principle.
J. Ass. comput. Mach., 12, 23-41.

Robinson, J. A. (1967), A review of automatic theorem-proving. Annual symposia in
applied mathematics XIX. Providence, Rhode Island: American Mathematical Society.

Wos, L.T., Carson, D.F. & Robinson, G.A. (1965), Efficiency and completeness of the
set of support strategy in theorem-proving. J. Ass. comput. Mach., 12, 536-41.

93

