

MACHINE
INTELLIGENCE 13

MACHINE INTELLIGENCE

Machine Inteliigence 1 (1967) (eds N. Collins and D. Michie) Oliver & Boyd, Edinburgh
Machine Intelligence 2 (1968) (eds E. Dale and D. Michie) Oliver & Boyd, Edinburgh

(1 and 2 published as one volume In 1971 by Edinburgh University Press) (eds N. Collins, E.
Dale and D. Michie)

Machine Inteliigence 3 (1968) (ed D. Michie) Edinburgh University Press, Edinburgh

Machine Intelligence 4 (1969) (eds B. Meltzer and D. Michie) Edinburgh University Press,
Edinburgh

Machine Intelligence 5 (1970) (eds B. Meltzer and D. Michie) Edinburgh University Press,
Edinburgh

Machine Intelligence 6 (1971) (eds B. Meltzer and D. Michie) Edinburgh University Press,
Edinburgh

Machine Intelligence 7 (1972) (eds B. Meltzer and D. Michie) Edinburgh University Press,
Edinburgh

Machine Intelligence 8 (1977) (eds E. W. Elcock and D. Michie) Ellis Horwood, Chich-
ester/Halsted, New York

Machine Intelligence 9 (1979) (eds J. E. Hayes, D. Michie and L. Mikulich) Ellis Horwood,
Chichester/Halsted, New York

Machine Intelligence 10 (1982) (eds J. E. Hayes, D. Michie and Y.-H. Pao) Ellis Horwood,
Chichester/Halsted, New York

Machine Intelligence 11 (1988) (eds J. E. Hayes, D. Michie and J. Richards) Oxford University
Press, Oxford

Machine Intelligence 12 (1991) (eds J. E. Hayes, D. Michie and E. Tyugu) Oxford University
Press, Oxford

Machine Intelligence 13 (1994) (eds K. Furukawa, D. Michie and S. Muggleton) Oxford
University Press, Oxford

MACHINE
INTELLIGENCE 13

Machine Intelligence and Inductive Learning

edited by

K. FURUKAWA
Keio University, Tokyo

D. MICHIE

Turing Institute, Glasgow
and

S. MUGGLETON

Oxford University Computing Laboratory

CLARENDON PRESS - OXFORD
1994

Oxford University Press, Walton Street, Oxford 0X2 6DP
Oxford New York

Athens Auckland Bangkok Bombay

Calcutta Cape Town Dar es Salaam Delhi

Florence Hong Kong Istanbul Karachi

Kuala Lumpur Madras Madrid Melbourne

Mexico City Nairobi Paris Singapore

Taipei Tokyo Toronto

and associated companies in

Berlin Ibadan

Published in the United States by
Oxford University Press Inc., New York

©E. K. Furukawa, D. Michie, and S. Muggleton, 1994

All rights reserved. No part of this publication may be

reproduced, stored in a retrieval system, or transmitted, in any
Jform or by any means, without the prior permission in writing of Oxford
University Press. Within the UK, exceptions are allowed in respect of any
Jair dealing for the purpose of research or private study, or criticism or
review, as permitted under the Copyright, Designs and Patents Act, 1988, or
in the case of reprographic reproduction in accordance with the terms of
licences issued by the Copyright Licensing Agency. Enquiries concerning
reproduction outside those terms and in other countries should be sent to
the Rights Department, Oxford University Press, at the address above.

This book is sold subject to the condition that it shall not,

by way of trade or otherwise, be lent, re-sold, hired out, or otherwise
circulated without the publisher's prior consent in any form of binding
or cover other than that in which it is published and without a similar
condition including this condition being imposed

on the subsequent purchaser.

A catalogue record for this book is available from the British Library
Library of Congress Cataloging in Publiction Data available

ISBN 0198538502

Typeset by the authors using LaTeX

Printed in Great Britain on acid-free paper by
Bookcraft (Bath), Midsomer Norton

PREFACE

The founder of modern computational logic, J.A. Robinson,
opens this volume with a chapter on the field’s great forefa-
thers John von Neumann and Alan Turing. Stephen Muggleton
follows with an analysis of Turing’s legacy in logic and machine
learning, conceiving these not in generality, but as specific means
of imparting knowledge to computers, a theme first articulated
by Turing in the late 1940’s.

The present volume records the Machine Intelligence Work-
shop of 1992, held at Strathclyde University’s Ross Priory re-
treat on Loch Lomond, Scotland. Here the series entered not
only its second quarter-century but a new phase. As can be
seen in these pages, machine learning emerged to declare itself
as a seed-bed of new theory, as a practical tool in engineering
disciplines, and as material for new mental models in the human
sciences. '

Connections with behavioural and cognitive psychology are
illuminated in Chapters 9 and 10. The pioneers always stressed
these connections. In 1953 Claude Shannon had this to say:

The problem of how the brain works and how machines may
be designed to simulate its activity is surely one of the most
important and difficult facing science ...Can we organise
machines into a hierarchy of levels, as the brain appears to
be organised, with the learning of the machine gradually
progressing up the hierarchy? ...How can computer mem-
ory be organised to learn and remember by association, in a
manner similar to the human brain?

Approaches to learning by association “in a manner similar to
the human brain” have recently engendered unprecedented in-
terest, one might almost say turbulence. Chapter 13 pre-views
a joint European endeavour of six academic and six industrial
laboratories to steer the topic towards clearer waters. The com-

\4

PREFACE

plete comparative study is now available as a book from Ellis
Horwood (Simon and Schuster).

January 1994 Stephen Muggleton
Executive Editor
Donald Michie
Koichi Furukawa
Associate Editors

ACKNOWLEDGEMENTS

New beginnings par ezcellence also spring from an agreement
concluded in 1991 between the Turing Institute, UK and the
Japan Society for Artificial Intelligence, Tokyo, under the gen-
erous auspices of the Daiwa Anglo-Japanese Foundation. The
Foundation provided funding, covering Workshops 13 and 14,
to defray travel and attendance costs for six Japanese and six
British scientists nominated by the respective parties. To this
we owe the circumstance that this volume has been able prop-
erly to reflect something of the vigour with which the subject is
being advanced in Japan.

We are also indebted to the Royal Society of London for facil-
itating Professor Enn Tyugu'’s participation from the Estonian
Academy of Sciences. Strathclyde University, the Turing Insti-
tute, and Scottish Enterprise also contributed help and resource
in the many small ways that go towards the making of a great
occasion. '

The Editors would also like to express their thanks to Ashwin
Srinivasan for the many hours of effort involved in persuading
LaTeX to produce the standard Machine Intelligence look-and-
feel within this volume. Thanks are also due to the Oxford Uni-
versity Computing Laboratory for kindly allowing use of print-
ing and document preparation facilities in the production of this
volume.

vi

CONTENTS

HISTORICAL PERSPECTIVES

1. Logic, Computers, Turing, and von Neumann 1
J. A. ROBINSON

2. Logic and learning: Turing’s legacy , 37

S. MUGGLETON

INDUCTIVE INFERENCE

3.

A generalization of the least general general-
ization 59

H. ARIMURA, T. SHINOHARA, S. OTSUKI AND H. ISHIZAKA

. The justification of logical theories based on

data compression 87
A. SRINIVASAN, S. MUGGLETON, AND M. BAIN
Utilizing structure information in concept for-
mation 123
K. HANDA, M. NISHIKIMI AND H. MATSUBARA

. The discovery of propositions in noisy data 143

HirosHI TSUKIMOTO AND CHIE MORITA

Learning non-deterministic finite automata from
queries and counterexamples 169
T. YokoMoORI

SCIENTIFIC DOMAINS

8.

9.

Machine Learning and biomolecular modelling 193

M. J. E. STERNBERG, R. A. LEwis, R. D. KING AND S.
MUGGLETON

More than meets the eye: animal learning and
knowledge induction 213
E. J. KEHOE

vii

CONTENTS

10.

11.

Regulation of human cognition and its growth 247
C. TREVARTHEN

Large heterogeneous knowledge bases 269 .
E. TyuGu

EXPERIMENTAL MACHINE LEARNING

12.

13.

Learning optimal chess strategies 291
M. BAIN AND S. MUGGLETON

A comparative study of classification algorithms:

Statistical, Machine Learning and Neural Net-

work 311
R. D. KiNnG, R. HENERY, C. FENG AND A. SUTHERLAND

LEARNING CONTROL

14.

15.

16.

17.

Recent progress with BOXES 363
C. SamMMuUT

Building symbolic representations of intuitive

real-time skills from performance data 385
D. MicHIE AND R. CAMACHO

Learning perceptually chunked macro opera-

tors 419
M. Suwa aND H. MoTopA

Inductively speeding up logic programs 441
M. NuMAo, T. MARUOKA, AND M. SHIMURA

INDEX 459

viii

HISTORICAL PERSPECTIVES

1

Logic, Computers, Turing, and von Neumann?

J. A. Robinson

Syracuse University
New York 13244-2010, U.S.A.

1 INTRODUCTION

The two outstanding figures in the history of computer science
are Alan Turing and John von Neumann, and they shared the
view that logic was the key to understanding and automating
computation. In particular, it was Turing who gave us in the
mid-1930s the fundamental analysis, and the logical definition,
of the concept of ‘computability by machine’ and who discovered
the surprising and beautiful basic fact that there exist univer-
sal machines which by suitable programming can be made to

tThis essay is an expanded and revised version of one entitled The Role of
Logic in Computer Science and Artificial Intelligence, which was completed
in January 1992 (and was later published in the Proceedings of the Fifth
Generation Computer Systems 1992 Conference). Since completing that
essay I have had the benefit of extremely helpful discussions on many of
the details with Professor Donald Michie and Professor I. J. Good, both of
whom knew Turing well during the war years at Bletchley Park. Professor
J. A. N. Lee, whose knowledge of the literature and archives of the history
of computing is encyclopedic, also provided additional information, some of
which is still unpublished. Further light has very recently been shed on the
von Neumann side of the story by Norman Macrae’s excellent biography
John von Neumann (Macrae 1992). Accordingly, it seemed appropriate to
undertake a more complete and thorough version of the FGCS’92 essay,
focussing somewhat more on the interesting historical and biographical
issues. I am grateful to Donald Michie and Stephen Muggleton for inviting
me to contribute such a ‘second edition’ to the present volume, and I would
also like to thank the Institute for New Computer Technology (ICOT) for
kind permission to make use of the FGCS’92 essay in this way.

LOGIC, COMPUTERS, TURING, AND VON NEUMANN

perform any computation whatsoever. This theoretical work
of Turing’s had direct practical influence on the designs of the
first modern general-purpose electronic digital computers in the
mid-1940s. Von Neumann also had a prominent role in the emer-
gence of these first machines, whose logical design has changed
remarkably little in its general features during the almost fifty
years since it was first formulated. The conventional wisdom is
that von Neumann is primarily responsible for this design, which
is accordingly known as the ‘von Neumann architecture’. With-
out detracting from von Neumann’s enormous importance, we
maintain that this attribution somewhat distorts reality. The
birth of the general-purpose computer, and with it computer
science, owes far more to Turing than is usually acknowledged.
Turing’s contribution was both direct (arising from his own ac-
tivities in the 1940s) and indirect (because of his little-known
but powerful intellectual influence on von Neumann, starting
from the mid-1930s).

In his recent sympathetic biography of von Neumann, Nor-
man Macrae characterizes his subject’s propensity to develop
new insights with incredible speed and brilliant virtuosity, even
though they were often not his own:

...Johnny grabbed other people’s ideas, then by his clarity
leapt five blocks ahead of them, and helped put them into
practical effect (Macrae 1992, p. ix).

...Johnny borrowed (we must not say plagiarized) anything
from anybody, with great courtesy and aplomb. His mind
was not as original as Leibniz’s or Newton’s or Einstein’s,
but he seized other people’s original (though fluffy) ideas
and quickly changed them in expanded detail into a form
where they could be useful ...(Macrae 1992, p. 23).

Macrae might have added that neither was von Neumann'’s
mind as original as Turing’s. Not only was Turing highly cre-
ative and imaginative, but he was also capable of intellectual
feats just as dazzling as those ascribed to von Neumann.

Nor was Turing’s universal machine idea at all ‘fluffy’. Yet
it was one of the great ideas von Neumann ‘grabbed’ enthusi-

2

J. A. ROBINSON

astically in this fruitful way. Von Neumann always freely ac-
knowledged this intellectual debt to Turing, not merely ‘with
great courtesy and aplomb’ but with quite open admiration and
generous praise?. There was, however, no question of von Neu-
mann’s leaping ‘five blocks ahead of’ Turing in seeing that the
general-purpose digital computer was implicit in Turing’s idea.
Turing had himself clearly seen virtually all the practical impli-
cations of his universal machine concept from the beginning®.
Among them were the crucial role that logic would play in both
the design and use of computers, and the alluring possibility
of creating ‘artificial intelligence’ by programming a fast uni-
versal machine in suitable ways. In the course of exploiting
Turing’s idea, von Neumann also (when writing the EDVAC

2In a letter to Professor Brian Randell, Stanley Frankel (a Los Alamos
physicist who, in collaboration with Nicholas Metropolis and at the insti-
gation of von Neumann, had written the first major program to run on the
ENIAC) writes: “I know that in 1943 or *44 von Neumann was well aware of
the fundamental importance of Turing’s paper of 1936 ...which describes
in principle the ‘Universal Computer” of which every modern computer
(perhaps not ENIAC as first completed, but all later ones) is a realisation.
Von Neumann introduced me to that paper and I studied it with care.
Many people have acclaimed von Neumann as the ‘father of the computer’
...but I am sure that he would never have made that mistake himself. He
might well be called the midwife, perhaps, but he firmly emphasized to
me, and to others I am sure, that the fundamental conception is owing
to Turing. ...In my view von Neumann’s essential role was in making the
world aware of these fundamental concepts introduced by Turing and of the
development work carried out in the Moore School and elsewhere. ...Both
Turing and von Neumann, of course, also made substantial contributions
to the ‘reduction to practice’ of these concepts but I would not regard these
as comparable in importance with the introduction and explication of the
concept of a computer able to store in its memory its program of activities
and of modifying the program in the course of these activities.” (Randell
1972, p.10)

3In (Carpenter and Doran 1986), p. 125, Mike Woodger writes: “During
his stay at Princeton University shortly before the war Turing had discussed
with John von Neumann the possibility of constructing a high-speed auto-
matic computer with radio valves used essentially as switches. Both men
were experts in the field of mathematical logic, and while the subject had
very little bearing on the design or use of such machines it enabled them
to see at once how the general problems of control and manipulation of
sequences of binary digits could be affected.”

3

LOGIC, COMPUTERS, TURING, AND VON NEUMANN

Report in the spring of 1945) ‘grabbed’ the artifical neuron con-
cept originated by McCullogh and Pitts in 1943, and the digi-
tal electronic techniques of Eckert and Mauchly, which he first
heard about from Hermann Goldstine on the platform of the
Aberdeen (Maryland) railway station in August 1944. Turing
knew of the practical feasibility of large-scale digital electronic
switching devices from his involvement in the early 1940s with
the cryptanalytic ‘Colossus’ machines at Bletchley Park.
Mathematical logic was the primary professional field of both
men. It gave them a view of computing which was more gen-
eral than the view held by almost all of their colleagues, most
of whom were either applied scientists interested in solving par-
ticular problems by numerical computation, or engineers inter-
ested in devising special tools to speed up traditional comput-
ing processes. The enormous practical significance of the idea
of universality, or general-purposeness, seems at first to have
been appreciated by hardly anyone other than Turing and von
Neumann?, Indeed the conceptual power and significance even
of the logical idea itself was at first understood only by the lo-
gicians and mathematicians who had followed the argument of
(Turing 1936) and who were familiar with its background.

2 LOGIC AND THE COMPUTER

I expect that digital computing machines will eventually stimulate a
considerable interest in symbolic logic ...[Turing 1947]. (Carpenter
and Doran 1986, p. 122)

Logic and technology came together and gave us the com-
puter. All modern general-purpose digital computers are phys-

40One of the few who noticed was, interestingly, J. R. Womersley, who
as Superintendant of the Mathematics Division of the National Physical
Laboratory was to recruit Turing there in 1945 in order to develop the
ACE. He had read (Turing 1936) before the war, in 1937 or 1938, when
he was employed at the Woolwich Arsenal on practical computation. He
immediately saw its practical significance and was accordingly inspired to
try to build a relay-based ‘Turing Machine’ (presumably a universal Turing
Machine) with C. I. Norfolk, a telephone engineer. After some preliminary
experiments the work was abandoned. See (Hodges 1983), p. 306 and note
5.30 on p. 556.

J. A. ROBINSON

ical embodiments of the same logical abstraction Turing’s uni-
versal machine. The practical exploitation of the universal ma-
chine concept, starting in the mid-1940s, owed much to Turing
himself as well as to von Neumann. Turing and von Neumann
not only played leading roles in the design and construction of
the first working computers, but were also largely responsible
for laying out the general logical foundations for understanding
the computation process, for developing computing formalisms,
and for initiating the methodology of programming: in short,
for founding computer science as we now know it.

Today, logic continues to be a fertile source of abstract ideas
for novel computer architectures for inference machines, dataflow
machines, database machines, and rewriting machines. It pro-
vides a unified view of computer programming (which is es-
sentially a logical task), and offers a systematic framework for
reasoning about programs. Logic has been important in the
theory and design of high-level programming languages. In-
deed logical formalisms are the immediate models for two major
logic programming language families: Church’s lambda calculus
(Church 1941) for functional programming languages such as
LISP, SCHEME, ML, LUCID and MIRANDA, and the Horn-
clause-resolution predicate calculus for relational programming
languages such as PROLOG, PARLOG, and GHC. Peter Lan-
din noted over twenty years ago (Landin 1966) that ALGOL-
like languages, too, were merely ‘syntactically sugared’ only-
slightly-augmented versions of Church’s lambda calculus, and
recently, another logical formalism, Martin-Lof’s Intuitionistic
Type Theory, has served (in, for example, Constable’s NUPRL)
as a very-high-level programming language, a notable feature of
which is that a proof of a program’s correctness is an automatic
accompaniment of the program-writing process.

To design, understand and explain computers and program-
ming languages; to compose and analyze programs and reason
correctly and cogently about their properties; these are to prac-
tice an abstract logical art built on (in H. A. Simon’s apt phrase)
a ‘science of the artificial’ which studies rational artifacts in ab-
straction from the practical engineering details of their physical
realization, yet maintains an analytical eye on their intrinsic ef-

5

LOGIC, COMPUTERS, TURING, AND VON NEUMANN

ficiency. The formal logician has had to become also an abstract
engineer. In earlier times, the logician could be, and often was,
cavalier about matters of efficiency when offering an algorithm
for carrying out some logical construction. The point was often
merely to establish that an algorithm existed, and not necessar-
ily to give one which might in fact be practically useful.

3 LOGIC AND ARTIFICIAL INTELLIGENCE

In artificial intelligence (Al) research, logic has been used (for
example, by McCarthy and Nilsson) as a rational model for
knowledge representation and (for example, by Plotkin and Mug-
gleton) as a guide for the organization of machine inductive in-
ference and learning. It has also been used (for example, by
Wos, Bledsoe, and Stickel) as the theoretical basis for power-
ful automated deduction systems which have proved theorems
of interest to professional mathematicians. Logic’s roles in Al,
however, have been more controversial than its roles in the the-
ory and practice of computing. Until the difference (if any)
between natural intelligence and artificial intelligence is better
understood, and until more experiments have tested the claims
both of logic’s advocates and of logic’s critics concerning its
place in Al research, the controversies will continue.

4 LOGIC AND THE ORIGIN OF THE COMPUTER

Logic’s dominant role in the invention of the modern computer is
not widely appreciated. The computer as we know it today was
invented by Turing in 1936, an event triggered by an important
logical discovery announced by Kurt Gédel in 1930. Godel’s
discovery (Godel 1931) decisively affected the outcome of the
so-called Hilbert Program. Hilbert’s goal was to formalize all
of mathematics and then give positive answers to three ques-
tions about the resulting formal system: is it consistent? is it
complete? is it decidable? Godel found that no sufficiently rich
formal system of mathematics can be both consistent and com-
plete. In proving this, Godel invented, and used, a high-level
symbolic programming language: the formalism of primitive re-
cursive functions. As part of his proof, he composed an elegant

6

J. A. ROBINSON

modular functional program (a set of connected definitions of
primitive recursive functions and predicates) which constituted
a detailed computational presentation of the syntax of a formal
system of number theory, with special emphasis on its infer-
ence rules and its notion of proof. This computational aspect
of his work was auxiliary to his main result, but is enough to
have established Godel as the first serious programmer in the
modern sense. Godel’s computational example inspired Turing
a few years later, in 1936, to find an explicit but abstract log-
ical model not only of the computing process, but also of the
computer itself. Using these as auxiliary theoretical concepts,
Turing disposed of the third of Hilbert’s questions by showing
(Turing 1936) that the formal system of mathematics is not de-
cidable. Although his original computer was only an abstract
logical concept, during the following decade (1937-1946) Turing
became a leader in the design, construction, and operation of
the first real computers.

The problem of answering Hilbert’s third question was known
as the Decision Problem. Turing interpreted it as the challenge
either to give an algorithm which correctly decides, for all formal
mathematical propositions A and B, whether B is formally prov-
able from A, or to show that is there no such algorithm. Having
first clearly characterized what an algorithm is, he found the
answer: there is no such algorithm.

For our present purposes the vital part of Turing’s result is
his characterization of what counts as an algorithm. He based
it on an analysis of what a ‘computing agent’ does when making
a calculation according to a systematic procedure. He showed
that, when boiled down to bare essentials, the activity of such
an agent is nothing more than that of (as we would now say) a
finite-state automaton which interacts, one at a time, with the
finite-state cells comprising an infinite memory.

Turing’s machines are plausible abstractions from real com-
puters, which, for Turing as for everyone else in the mid-1930s,
meant a person who computes. The abstract Turing machine is
an idealized model of any possible computational scheme such
a human worker could carry out. His great achievement was
to show that some Turing machines are ‘universal’ in that they

7

LOGIC, COMPUTERS, TURING, AND VON NEUMANN

can exactly mimic the behavior of any Turing machine what-
ever. All that is needed is to place a coded description of the
given machine in the universal machine’s memory together with
a coded description of the given machine’s initial memory con-
tents. How Turing made use of this universal machine in an-
swering Hilbert’s third question is not relevant to our purpose
here. The point is that his universal machines are the abstract
prototypes of today’s stored-program, general-purpose comput-
ers. The coded description of each particular machine is the
program which causes the universal machine to act like that
particular machine.

Abstract and purely logical as it is, Turing’s work had an
obvious technological interpretation: there is no need to build a
separate machine for each computing task. Only one machine
is needed — a universal machine — because it can be made
to perform any conceivable computing task simply by writing
a suitable program for it. Turing himself set out to build a
universal machine.

He began his detailed planning in 1944. After 1943 he had
gradually transferred his activities from Bletchley Park to Hans-
lope Park, ten miles distant from Bletchley, in order to work on
speech-encipherment devices. He had spent four months — from
November 1942 to March 1943 — in the United States, during
which he discussed his 1936 paper and its practical implications
with Claude Shannon at the Bell Laboratories®. There has been
much speculation concerning the plausible possibility that dur-
ing his time in the United States Turing met with von Neumann
for discussions about the possibility of practical general-purpose
computers. The only evidence of any kind we have for this is
the fact that Lord Halsbury in 1959 referred (in Ten Years of
Computer Development, Computer Journal 1, pp. 153-159) to:

...a meeting of two minds which cross-fertilised one another
at a critical epoch in the technological development which
they exploited. I refer of course to the meeting of the late
Doctors Turing and von Neumann during the war, and all
that came thereof

5(Hodges 1983), 241 — 255.

J. A. ROBINSON

But when Professor Brian Randell® later wrote to Lord Halsbury
for more details he received the reply:

[am afraid I cannot tell you more about the meeting between
Turing and von Neumann except that they met and sparked
one another off. Each had, as it were, half the picture in his
head and the two halves came together in the course of their
meeting. I believe both were working on the mathematics
of the atomic bomb project.

I recently became aware of the existence of a photograph,
inscribed National Cash Register Co., Dayton, Ohio, July 1943,
showing Turing together with a group of naval officers, one of
whom is identified” as William Friedman, the famous American
code-breaker. This is the only evidence we have that Turing
made at least one other visit to the United States after the
November 1942 to March 1943 visit.

When the war ended in 1945 he moved to the National Phys-
ical Laboratory to pursue his goal full time. His real motive was
already to investigate the possibility of artificial intelligence, a
possibility he had frequently discussed with Donald Michie, I. J.
Good, and other colleagues. He wanted, as he put it, to build a
brain. By the end of 1945 Turing had completed his design for
the ACE computer, based on his abstract universal machine. In
designing the ACE, he was able to draw on his expert knowl-
edge of the sophisticated new electronic digital technology which
had been used at Bletchley Park to build special-purpose code-
breaking machines (such as the Colossus). In the event, the ACE

This account is taken from (Randell 1972).

"By Henry Tropp, a historian of computing, who has the photograph in
his possession [personal communication, 25 June 1992]. It was Professor J.
A. N. Lee who alerted me to the existence of this photograph. Tropp had
earlier written (The Effervescent Years, IEEE Spectrum, February 1974, p.
76): “The National Cash Register Company offers a particularly intrigu-
ing ‘might have been’. NCR actually had an electronic computing device
constructed during the late 1930s. It was a high-speed arithmetic machine
which could add, subtract and multiply electronically, and presumably this
machine could have become the first commercial electronic computer had
the company wished to pioneer in this field.” Tropp was sent the photo-
graph by the daughter of the late Joseph Desch, the NCR employee who
designed this electronic device at Dayton in 1939.

9

LOGIC, COMPUTERS, TURING, AND VON NEUMANN

would not be the first physical universal machine, for there were
others who were after the same objective, and who beat NPL
to it. Turing’s 1936 idea had started others thinking. By 1945
there were several people planning to build a universal machine.

One of these was John von Neumann?.

Turing and von Neumann first met in 1935, when Turing
was still an unknown 23-year-old Cambridge graduate student.
Von Neumann was already world-famous for his work in many
scientific fields, including theoretical physics, logic and set the-
ory, and several other important branches of mathematics. Ten
years earlier, he had been one of the leading logicians working on
Hilbert’s Program, but after G6del’s discovery he suspended his
specifically logical researches and turned his attention to physics
and to mathematics proper. In 1930 he emigrated to Princeton,
where he remained for the rest of his life.

Turing spent two years (from mid-1936 to mid-1938) in Prince-
ton, obtaining a doctorate under Alonzo Church, who in 1936
had independently solved the Decision Problem. Church’s me-
thod (Church 1936) was quite different from Turing’s and was
not as intuitively convincing. During his stay in Princeton,
Turing had many conversations with von Neumann, who was
enthusiastic about Turing’s work and offered him a job as his
research assistant. Turing turned it down in order to resume his
research career in Cambridge, but his universal machine had al-
ready become an important item in von Neumann’s formidable
intellectual armory. Then came the war. Both men were soon
completely immersed in their absorbing and demanding wartime
scientific work.

8Ironically, von Neumann’s EDVAC Draft Report had already been com-
pleted in June 1945 and a copy of it soon afterwards reached J. R. Womer-
sley at the National Physical Loboratory. Womersley immediately visited
Turing and showed the EDVAC Report to him as part of a (successful)
attempt to recruit him for his project to design and build a comparable
machine. Turing joined the NPL on 1 October 1945, and within three
months had completed the ACE Proposal. So after having freely broadcast
the logical seeds almost a decade previously, Turing was at last preparing
to harvest the results, but only in the knowledge that on the neighboring
farm the ears had ripened even faster.

10

J. A. ROBINSON

By 1943, von Neumann was deeply involved in many projects,
a recurrent theme of which was his search for improved auto-
matic aids to computation. In late 1944 he became a consultant
to a University of Pennsylvania group, led by J. P. Eckert and
J. W. Mauchly, which was then completing the construction of
the ENIAC computer (which was programmable and electronic,
but not universal, and its programs were not stored in the com-
puter’s memory). Although he was too late to influence the
design of the ENIAC, von Neumann essentially supervised the
design of the Eckert-Mauchly group’s second computer, the ED-
VAC. Most of his attention in this period was, however, focussed
on designing and constructing his own much more powerful ma-
chine in Princeton at the Institute for Advanced Study (IAS)
computer (von Neumann 1946). The EDVAC and the IAS ma-
chine both exemplified the so-called von Neumann architecture,
a key feature of which is the fact that instruction words are
stored along with data in the memory of the computer, and are
therefore modifiable just like data words, from which they are
not intrinsically distinguished. -

The IAS computer was a success (Aspray 1990). Many close
copies were eventually built in the 1950s, both in US government
laboratories (the AVIDAC at Argonne National Laboratory, the
ILLIAC at the University of Illinois, the JOHNIAC at the Rand
Corporation, the MANIAC at the Los Alamos National Labora-
tory , the ORACLE at the Oak Ridge National Laboratory, and
the ORDVAC at the Aberdeen Proving Grounds), and in foreign
laboratories (the BESK in Stockholm, the BESM in Moscow,
the DASK in Denmark, the PERM in Munich, the SILLIAC in
Sydney, the SMIL in Lund, and the WEIZAC in Israel); and
there were at least two commercial versions of it (the IBM 701
and the International Telemeter Corporation’s TC-1).

The EDSAC, a British version of the EDVAC, was running in
Cambridge by June 1949, the result of brilliantly fast construc-
tion work by M.V. Wilkes following his attendance at a 1946 ED-
VAC course. Turing’s ACE project was, however, greatly slowed
down by a combination of British civil-service foot-dragging and
his own lack of administrative deviousness, not to mention his
growing preoccupation with AL In May 1948 Turing resigned

11

LOGIC, COMPUTERS, TURING, AND VON NEUMANN

from NPL in frustration and joined the small computer group
at the University of Manchester, whose small but universal ma-
chine started useful operation the very next month and thus
became the world’s first working universal computer. All of
Turing’s Al experiments, and all of his computational work in
developmental biology, took place on this machine and its suc-
cessors, built by others but according to his own fundamental
idea.

Von Neumann'’s style in expounding the design and opera-
tion of EDVAC and the IAS machine was to suppress engineer-
ing details and to work in terms of an abstract logical descrip-
tion, based on the diagrammatic notation of McCullogh and
Pitts’ artificial neuron networks (McCullogh and Pitts 1943).
He discussed both its system architecture and the principles of
its programming entirely in such abstract terms. We can today
see that von Neumann and Turing were right in following the
logical principle that precise engineering details are relatively
unimportant in the essential problems of computer design and
programming methodology. The ascendancy of logical abstrac-
tion over concrete realization has ever since been a guiding prin-
ciple in computer science, which has kept itself organizationally
almost entirely separate from electrical engineering. The reason
it has been able to do this is that computation is primarily a
logical concept, and only secondarily an engineering one. To
compute is to engage in formal reasoning, according to certain
formal symbolic rules, and it makes no logical difference how the
formulas are physically represented, or how the logical transfor-
mations of them are physically realized.

Of course no one should underestimate the enormous impor-
tance of the role of engineering in the history of the computer.
Turing and von Neumann did not. They themselves had a deep
and quite expert interest in the very engineering details from
which they were abstracting, but they knew that the logical
role of computer science is best played in a separate theater.

5 LOGIC AND PROGRAMMING

Since coding is not a static process of translation, but rather the tech-

12

J. A. ROBINSON

nique of providing a dynamic background to control the automatic
evolution of a meaning, it has to be viewed as a logical problem and
one that represents a new branch of formal logics. [von Neumann
1947]

Much emphasis was placed by both Turing and von Neumann, in
their discussions of programming, on the two-dimensional nota-
tion known as the flow-diagram. This quickly became a standard
logical tool of early programming, and it can still be a useful de-
vice in formal reasoning about computations. The later ideas
of Hoare, Dijkstra, Floyd, and others on the logical principles
of reasoning about programs were anticipated by both (Turing
1949) and (von Neumann 1947). They stressed that program-
ming has both a static and a dynamic aspect. The static text
of the program itself is essentially an expression in some formal
system of logic: a syntactic structure whose properties can be
analyzed by logical methods alone. The dynamic process of run-
ning the program is part of the semantic meaning of this static
text.

6 AUTOMATIC PROGRAMMING

Turing’s friend Christopher Strachey was an early advocate, in
the early 1950s, of using the computer itself to translate auto-
matically from high-level ‘mathematical’ descriptions into low-
level ‘machine-language’ prescriptions. His idea was to try to
liberate the programmer from concern with ‘how’ to compute
so as to be able to concentrate on ‘what’ to compute: in short,
to think and write programs in a more natural and human id-
iom, Turing himself was not much interested in this idea, which
he had already in 1947 pointed out as an ‘obvious’ one. In fact,
he seems to have had a hacker’s pride in his fluent machine-
language virtuosity. He was able to think directly and easily in
terms of bare bit patterns and of the unorthodox number repre-
sentations such as the Manchester computer’s reverse (i.e., low-
order digits first) base-32 notation for integers. In this attitude,
he was only the first among many who have stayed somewhat
aloof from higher-level programming languages and higher-level
machine architectures, on the grounds that a real professional

13

LOGIC, COMPUTERS, TURING, AND VON NEUMANN

must be aware of and work closer to the actual realities of the
machine. One senses this attitude, for example, throughout
Donald Knuth’s monumental treatise on the art of computer
programming,. '

It was not until the late 1950s (when FORTRAN and LISP
were introduced) that the precise sequential details of how arith-
metical and logical expressions are scanned, parsed, and evalu-
ated could routinely be ignored by most programmers and left
to the computer to work out. This advance brought an immense
simplification of the programming task and a large increase
in programmer productivity. There soon followed more ambi-
tious language design projects such as the international ALGOL
project, and the theory and practice of programming language
design, together with the supporting software technology of in-
terpreters and compilers, quickly became a major topic in com-
puter science. The formal grammar used to define the syntax
of ALGOL was not initially accompanied by an equally formal
specification of its semantics; but this soon followed. Christo-
pher Strachey and Dana Scott developed a formal ‘denotational
semantics’ for programs, based on a rigorous mathematical in-
terpretation of the previously uninterpreted, purely syntacti-
cal, lambda calculus of Church. It was, incidentally, a former
student of Church, John Kemeny, who devised the enormously
popular ‘best-selling’ programming language, BASIC.

7 DESCRIPTIVE AND IMPERATIVE ASPECTS

There are two sharply-contrasting approaches to programming
and programming languages: the descriptive approach and the
imperative approach. The descriptive approach to programming
focusses on the static aspect of a computing plan, namely on the
denotative semantics of program expressions. It tries to see the
entire program as a timeless mathematical specification which
gives the program’s output as an explicit function of its input
(whence arises the term ‘functional’ programming). This ap-
proach requires the computer to do the work of constructing the
described output automatically from the given input according
to the given specifications, without any explicit direction from

14

J. A. ROBINSON
the programmer as to how to do it.

The imperative approach focusses on the dynamic aspect of
the computing plan, namely on its operational semantics. An
imperative program specifies, step by step, what the computer
is to do, what its ‘flow of control’ is to be. In extreme cases, the
nature of the outputs of an imperative program might be totally
obscure. In such cases one must (virtually or actually) run the
program in order to find out what it does, and try to guess
the missing functional description of the output in terms of the
input. Indeed it is necessary in general to ‘flag’ a control-flow
program with comments and assertions, supplying this missing
information in order to make it possible to make sense of what
the program is doing when it is running.

Although a purely static, functional program is relatively
easy to understand and to prove correct, in general one may
have little or no idea of the cost of running it, since that dynamic
process is deliberately kept out of sight. On the other hand,
although an operational program is relatively difficult to under-
stand and prove correct, its more direct depiction of the actual
process of computation makes an assessment of its efficincy rel-
atively straightforward. In practice, most commonly-used high-
level programming languages — even LISP and PROLOG -
have both functional and operational features. Good program-
ming technique requires an understanding of both. Programs
written in such languages are often neither wholly descriptive
nor wholly imperative. Most programming experts, however,
recommend caution and parsimony in the use of imperative con-
structs. Some even recommend complete abstention. Dijkstra’s
now-classic Letter to the Editor (of the Communications of the
ACM), entitled ‘GOTO considered harmful’ is one of the earliest

and best-known such injunctions.

These two kinds of programming were each represented in
pure form from the beginning: Gédel’s purely descriptive recur-
sive function formalism and Turing’s purely imperative notation
for the state-transition programs of his machines.

15

LOGIC, COMPUTERS, TURING, AND VON NEUMANN
8 LOGIC AND PROGRAMMING LANGUAGES

In the late 1950s at MIT John McCarthy and his group began
to program their IBM 704 using symbolic logic directly (Mc-
Carthy 1960). Their system, LISP, is the first major example
of a logic programming language intended for actual use on a
computer. It is essentially Church’s lambda calculus (Church
1941), augmented by a simple recursive data structure (ordered
pairs), the conditional expression, and an imperative ‘sequen-
tial construct’ for specifying a series of consecutive actions. In
the early 1970s Robert Kowalski in Edinburgh (Kowalski 1974)
and Alain Colmerauer in Marseille (Colmerauer 1973) showed
how to program with another, only slightly augmented, sys-
tem of symbolic logic, namely the Horn-clause-resolution form
of the predicate calculus. PROLOG is essentially this system
of logic, augmented by a sequentializing notion for lists of goals
and lists of clauses, a flow-of-control notion consisting of a sys-
tematic depth-first, back-tracking enumeration of all deductions
permitted by the logic, and a few imperative commands (such
as the ‘cut’). PROLOG is implemented with great elegance
and efficiency using ingenious techniques originated by David
H. D. Warren. The principal virtue of logic programming in
either LISP or PROLOG lies in the ease of writing programs,
their intelligibility, and their amenability to metalinguistic rea-
soning. LISP and PROLOG are usually taken as paradigms of
two distinct logic programming styles (functional programming
~ and relational programming), which on closer examination turn
out to be only two examples of a single style (deductive pro-
gramming). The general idea of purely descriptive deductive
programming is to construe computation as the systematic re-
duction of expressions to a normal form. In the case of pure
LISP, this means essentially the persistent application of reduc-
tion rules for processing function calls (Church’s beta-reduction
rule), the conditional expression, and the data-structuring oper-
ations for ordered pairs. In the case of pure PROLOG, it means
essentially the persistent application of the beta-reduction rule,
the rule for distributing AND through OR, the rule for eliminat-
ing existential quantifiers from conjunctions of equations, and

16

J. A. ROBINSON

the rules for simplifying expressions denoting sets. By merg-
ing these two formalisms one obtains a unified logical system in
which both flavors of programming are available both separately
and in combination with each other.

LISP, PROLOG, and their cousins have thus demonstrated
the possibility, indeed the practicality, of using systems of logic
directly to program computers. Logic programming is more
like the formulation of knowledge in a suitable form to be used
as the axioms of automatic deductions by which the computer
infers its answers to the user’s queries. In this sense this style
of programming is a bridge linking computation in general to
Al systems in particular. Knowledge is kept deliberately apart
(in a ‘knowledge base’) from the mechanisms which invoke and
apply it. Robert Kowalski’s well-known equational aphorism
‘algorithm = logic + control neatly sums up the necessity to
pay attention to both descriptive and imperative aspects of a
program, while keeping them quite separate from each other so
that each aspect can be modified as necessary in an intelligible
and disciplined way.

The classic split between procedural and declarative knowl-
edge again shows up here: some of the variants of PROLOG (the
stream-parallel, committed-choice nondeterministic languages
such as ICOT’s GHC) are openly concerned more with the con-
trol of events, sequences, and concurrencies than on the man-
agement of the deduction of answers to queries. The uneasi-
ness caused by this split will remain until some way is found of
smoothly blending procedural with declarative within a unified
theory of computation.

Nevertheless, with the advent of logic programming in the
wide sense, computer science has outgrown the idea that pro-
grams can only be the kind of action-plans required by Turing-
von Neumann symbol-manipulating robots and their modern
descendants. The emphasis is (for the programmer, but not yet
for the machine designer) now no longer entirely on controlling
the dynamic sequence of such a machine’s actions, but increas-
ingly on the static syntax and semantics of logical expressions,
and on the corresponding mathematical structure of the data
and other objects which are the denotations of the expressions.

17

LOGIC, COMPUTERS, TURING, AND VON NEUMANN

It is interesting to speculate how different the history of com-
puting might have been if in 1936 Turing had proposed a purely
descriptive abstract universal machine rather than the purely
imperative one that he actually did propose; or if, for example,
Church had done so. We might well now have been talking of
‘Church machines’ instead of Turing machines.

Let us call a Church machine an automaton whose states are
the expressions of some formal logic. Each of these expressions
denotes some entity, and there is an obvious semantic notion
of equivalence among the expressions: ‘A and B are equivalent’
means ‘A and B denote the same entity’. For example, the
expressions

(23 +4)/(13 - 4), 1.3+ 1.7, (Az. (2z + 1)/?)(4)

are equivalent, because they all denote the number three. A
Church machine computation is a sequence of its states, start-
ing with some given state and then continuing according to the
transition rules of the machine. If the sequence of states even-
tually reaches a terminal state, and (therefore) the computation
stops, then that terminal state (expression) is the output of the
machine for the initial state (expression) as input. In general
the machine computes, for a given expression, another expres-
sion which is equivalent to it but which is as simple as possible.
For example, the expression ‘3’ is as simple as possible, and is
equivalent to each of the above expressions, and so it would be
the output of a computation starting with any of the expres-
sions above. These simple-as-possible expressions are said to be
in ‘normal form’. The ‘program’ which determines the transi-
tions of a Church machine through its successive states is a set
of ‘rewriting’ rules, together with a criterion for applying some
one of them to any expression. A rewriting rule is given by
two expressions, called the ‘redex’ and the ‘contractum’ of the
rule, and applying the rule to an expression changes (rewrites)
it to another expression. The new expression is a copy of the
old one, except that the new expression contains an occurrence
of the contractum in place of one of the occurrences of the redex.

For example: if the initial state is (23 + 4)/(13 — 4) then the

18

J. A. ROBINSON

transitions are:

(23 +4)/(13 — 4) becomes 27/(13 — 4),
27/(13 — 4) becomes 27/9,
27/9 becomes 3.

but if the initial state is Az.(2z + 1)!/? (4), then the transitions
are:

(Az.(2z + 1)1/2)(4) becomes ((2x4) +1)¥/2,
(2 x 4) + 1)/2 becomes (8 + 1)¥/2,

(8 +1)/2 becomes 9'/2,

91/ becomes 3.

Most of us are trained in early life to act like a simple purely
arithmetical Church machine. We all learn some form of numer-
ical rewriting rules in elementary school, and use them through-
out our lives (but of course Church’s lambda notation is not
taught in elementary school, or indeed at any time except when
people later specialize in logic or. mathematics; but it ought to
be). Since we cannot literally store in our heads all of the in-
finitely many redex-contractum pairs <23 + 4, 27>, <242, 4>,
etc., infinite sets of these pairs are logically coded into simple
finite algorithms. Each such algorithm (for addition, subtrac-
tion, and so on) yields the contractum for any given redex of
its particular type. We hinted earlier that an expression is in
normal form if it is as simple as possible. To be sure, that is
a common way to think of normal forms, and in many cases it
fits the facts. Actually, to be in normal form is not necessarily
to be in as simple a form as possible. What counts as a normal
form will depend on what the rewriting rules are. Normal form
is a relative notion: given a set of rewriting rules, an expression
in normal form is one which contains no redez.

In designing a Church machine care must be taken that no
expression is the redex of more than one rule. The machine
must also be given a criterion for deciding which rule to apply
to an expression which contains distinct redexes, and also for
deciding which occurrence of that rule’s redexes to replace, in
case there are two or more of them. A simple criterion is always

19

LOGIC, COMPUTERS, TURING, AND YON NEUMANN

to replace the leftmost redex occurring in the expression.

A Church machine, then, is a machine whose possible states
are all the different expressions of some formal logic and which,
when started in some state (i.e., when given some expression of
that logic) will ‘try’ to compute its normal form. The compu-
tation may or may not terminate: this will depend on the rules,
on the initial expression, and on the criterion used to select the
redex to be replaced. Some of the expressions for some Church
machines may have no normal form. Since for all interesting
formal logics there are infinitely many expressions, a Church
machine is not a finite-state automaton; so in practice the same
provision must be made as in the case of the Turing machines
for adjoining as much external memory as needed during a com-
putation.

Church machines can also serve as a simple model for parallel
computation and parallel architectures. One has only to provide
a criterion for replacing more than one redex at the same time.
In Church’s lambda calculus one of the rewriting rules (‘beta-
reduction’) is the logical version of executing a function call
in a high-level programming language. Logic programming lan-
guages based on Horn-clause-resolution can also be implemented
as Church machines, at least as far as their static aspects are
concerned.

In the early 1960s Peter Landin, then Christopher Strachey’s
research assistant, undertook to convince computer scientists
that not merely LISP, but also ALGOL, and indeed all past,
present, and future programming languages are essentially the
abstract lambda calculus in one or another concrete manifesta-
tion. One need add only an abstract version of the ‘state’ of
the computation process and the concept of ‘jump’ or change
of state. Landin’s abstract logical model combines declarative
programming with procedural programming in an insightful and
natural way (Landin 1966).

Landin’s thesis also had a computer-design aspect, in the
form of his elegant abstract logic machine (the SECD machine)
for executing lambda calculus programs. The SECD machine
language is the lambda calculus itself: there is no question of
‘compiling’ programs into a lower-level language (but more re-

20

J. A. ROBINSON

cently Peter Henderson has described just such a lower-level
SECD machine which executes compiled LISP expressions). Lan-
din’s SECD machine is a sophisticated Church machine which
uses stacks to keep track of the syntactic structure of the expres-
sions and of the location of the leftmost redex (Landin 1963).

We must conclude that the descriptive and imperative views
of computation are not incompatible with each other. Certainly
both are necessary. There is no need for their mutual antipa-
thy. It arises only because enthusiastic extremists on both sides
sometimes claim that computing and programming are ‘nothing
but’ the one or the other. The appropriate view is that in all
computations we can expect to find both aspects, although in
some cases one or the other aspect will dominate and the other
may be present in only a minimal way. Even a pure functional
program can be viewed as an implicit ‘evaluate this expression
and display the result’ imperative (as in LISP’s classic read-
eval-print cycle).

9 LOGIC AND ARTIFICIAL INTELLIGENCE

In AT a controversy sprang up in the late 1960s over essentially
this same issue. There was a spirited and enlightening debate
over whether knowledge should be represented in procedural or
declarative form. The procedural view was mainly associated
with Marvin Minsky and his MIT group, represented by He-
witt’s PLANNER system (Hewitt 1969) and Winograd’s appli-
cation of it (Winograd 1972) to support a rudimentary natural
language capability in his simple simulated robot SHRDLU. The
declarative view was associated with Stanford’s John McCarthy,
and was represented by Green’s QA3 system (Green 1969) and
by Kowalski’s eloquent advocacy of my resolution logic (Robin-
son 1965a, 1965b), suitably restricted to Horn clauses and ap-
plied parsimoniously according to restrictions which he and oth-
ers had devised in the late 1960s and early 1970s, as a deductive
Programming language. Kowalski was able to make the strong
case that he did because of Colmerauer’s development of PRO-
LOG as a practical logic programminglanguage (Kowalski 1974).
Eventually Kowalski found an elegant way to end the debate,

21

LOGIC, COMPUTERS, TURING, AND VON NEUMANN

by pointing out a procedural interpretation for the ostensibly
purely declarative Horn clause sentences in logic programs®.

There is a big epistemological and psychological difference
between simply describing a thing and giving ezplicit instruc-
tions for constructing it, which corresponds to the difference
between descriptive and imperative programming. Of course,
some descriptions are already explicit recipes for construction,

as for example
the square root of the sum of three cubed and three squared

But one cannot always so immediately see how to construct the
denotation of a descriptive expression efficiently. For example,
the meaning of the descriptive expression

the smallest integer which is the sum of two cubes in two differ-
ent ways.

seems quite clear. We certainly understand the expression, but
those who don’t already (probably from reading of Hardy’s fa-
mous visit to Ramanujan in hospital) know that it denotes 1729
will have to do some work, including some searching, to figure
it out for themselves. It is easier to see that 1729 is the sum of
two cubes in two different ways if one is given as a hint the two
equations

1729 = 13 + 123 1729 = 103 493

®Donald Michie [personal communication, 16 May 1992) writes: “The
first practical demonstration of Kowalski’s fundamental idea was Maarten
[van Emden]’s successful implementation and execution of Quicksort using
Horn-clause Logic with an SL resolution theorem prover ...It was I who
pushed Maarten into the Quicksort attempt.” This makes the point that
at Edinburgh in the early 1970s a theorem prover based on Kowalski and
Kuehner’s linear resolution with selection function, when implemented with
the structure-sharing techniques pioneered by Boyer and Moore, and when
limited to Horn-clause problems, already amounted to the logic program-
ming which was soon to be closely associated with PROLOG. One should
also mention even earlier anticipations of resolution-based logic program-
ming: the 1969 QA3 question-answering system (Green 1969), and the
1969 ABSYS system (Foster and Elcock 1969). See (Elcock 1992) and also
(Kowalski 1988).

22

J. A. ROBINSON

but it needs at least a little work to find these equations oneself.
Then to see that 1729 is the smallest integer with this property,
one has to see somehow that all smaller integers lack it, and
this means checking each one, either literally, or by some clever
shortcut. To find 1729, then, as the denotation of the expression,
one has to carry out the all of this work, in some form or another.
There are of course many different ways to organize the task,
some of which are much more efficient than others, some of
which are less efficient, but more intelligible, than others. So to
write a general computer program which would automatically
and efficiently reduce the expression

the smallest integer which is the sum of two cubes in two differ-
ent ways

to the expression ‘1729’ and equally well handle other similar
€xpressions, is not at all a trivial task.

10 Al AND PROGRAMMING

Automatic programming has never really been that. It is no
more than the automatic translation of one program into an-
other. So there must be some kind of program (written by a
human, presumably) which starts off the chain of translations.
An assembler and a compiler both do the same kind of thing:
each accepts as input a program written in one programming
language and delivers as output a program written in another
Programming language, with the assurance that the two pro-
grams are equivalent in a suitable sense. The advantage of this
technique is of course that the source program is usually more
intelligible and easier to write than the target program, and the
target program is usually more efficient than the source program

ecause it is typically written in a lower-level language, closer
to the realities of the machine which will do the ultimate work.
The advent of such automatic translations opened up the design
of programming languages to express ‘big’ ideas in a style ‘more
like mathematics’ (as Christopher Strachey put it). These big
ideas are then translated into smaller ideas more appropriate
for machine languages. Let us hope that one day we can look
back at all the paraphernalia of this program-translation tech-

23

LOGIC, COMPUTERS, TURING, AND VON NEUMANN

nology, which is so large a part of today’s computer science,
and see that it was only an interim technology. There is no
law of nature which says that machines and machine languages
are condemned, intrinsically, to being low-level. Surely we must
strive towards machines whose topmost levels match our own.

Turing and von Neumann both made important contribu-
tions to the beginnings of Al, although Turing’s contribution is
the better known. His essay Computing Machinery and Intelli-
gence is surely the most quoted single item in the entire litera-
ture of Al if only because it is the original source of the famous
so-called Turing Test (Turing 1950). The recent revival of in-
terest in artificial neural models for Al applications recalls von
Neumann’s deep interest in computational neuroscience, a field
he richly developed in his later years and which was absorbing all
his prodigious intellectual energy during his final illness. When
he died in early 1957 he left behind an uncompleted manuscript
which was posthumously published (von Neumann 1958) as the
book The Computer and the Brain.

11 LOGIC AND PSYCHOLOGY IN Al

I do not mean to say that there is anything wrong with logic; I only
object to the assumption that ordinary reasoning is largely based on
it. M. L. Minsky, The Society of Mind

Al has from the beginning been the arena for an uneasy co-
existence between logic and psychology as its leading themes,
as epitomized in the contrasting approaches to Al of John Mc-
Carthy and Marvin Minsky. McCarthy has maintained since
1957 that Al will come only when we learn how to write pro-
grams (as he put it) which have common sense and which can
take advice. His putative Al system is a (presumably) very
large knowledge base made up of declarative sentences written
in some suitable logic (until quite recently he has taken this to
be the first order predicate calculus), equipped with an inference
engine which can automatically deduce logical consequences of
this knowledge (McCarthy 1958). Many well-known AI prob-
lems and ideas have arisen in pursuing this approach: the Frame
Problem, Nonmonotonic Reasoning, the Combinatorial Explo-

24

J. A. ROBINSON

sion, and so on.

This approach demands a lot of work to be done on the episte-
mological problem of declaratively representing knowledge and
on the logical problem of designing suitable inference engines.
Today the latter field is one of the flourishing special subfields
of Al. Mechanical theorem-proving and automated deduction
have always been a source of interesting and hard problems. Af-
ter over three decades of trying, we now have well-understood
methods of systematic deduction which are of considerable use
in practical applications.

Minsky maintains that humans rarely use logic in their actual
thinking and problem solving, but adds that logic is not a good
basis even for artificial problem solving — that computer pro-
grams based solely on McCarthy’s logical deductive knowledge-
base paradigm will fail to display intelligence because of their
inevitable computational inefficiencies; that the predicate calcu-
lus is not adequate for the heuristically effective representation
of most knowledge; and that the exponential complexity of pred-
icate calculus proof procedures will always severely limit what
inferences are possible.

Because it claims little or nothing, the view can hardly be
refuted that humans undoubtedly are in some sense (biological)
machines whose design, though largely hidden from us at present
and obviously exceedingly complicated, calls for some finite ar-
rangement of material components all built ultimately out of
‘mere’ atoms and molecules and obeying the laws of physics and
chemistry. So there is an abstract design which, when physically
implemented, produces (in ourselves, and the animals) intelli-
gence. Intelligent machines can, then, be built. Indeed, they
can, and do routinely, build and repair themselves, given a suit-
able environment in which to do so. Nature has already achieved
NI — natural intelligence. Its many manifestations serve the Al
research community as existence proofs that intelligence can oc-
cur in physical systems. Nature has already solved all the Al
problems, by sophisticated schemes only a very few of which
have yet been understood.

25

LOGIC, COMPUTERS, TURING, AND VON NEUMANN

12 THE STRONG A! THESIS

Turing believed, indeed was the first to propound, the Strong
AI thesis that artificial intelligence can be achieved simply by
appropriate programming of his universal computer. Turing’s
Test is simply a detection device, waiting for intelligence to oc-
cur in machines: if a machine is one day programmed to carry
on fluent and intelligent-seeming conversations, will we not, ar-
gued Turing, have to agree that this intelligence, or at least this
apparent intelligence, is a property of the program? What is the
difference between apparent intelligence, and intelligence itself?
The Strong Al thesis is also implicit in McCarthy’s long-pursued
project to reconstruct artificially something like human intelli-
gence by implementing a suitable formal system. Thus the Tur-
ing Test might (on McCarthy’s view) eventually be passed by
a deductive knowledge base, containing a suitable repertory of
linguistic and other everyday human knowledge, and an efficient
and sophisticated inference engine. The system would certainly
have to have a mastery of (both speaking and understanding)
natural language. Also it would have to exhibit to a sufficent
degree the phenomenon of ‘learning’ so as to be capable of aug-
menting and improving its knowledge base to keep it up-to-date
both in the small (for example in dialog management) and in
the large (for example in keeping up with the news and staying
abreast of advances in scientific knowledge). In a recent vigorous
defense of the Strong Al thesis, Lenat and Feigenbaum argued
that if enough knowledge of the right kind is encoded in the sys-
tem it will be able to ‘take off’ and autonomously acquire more
through reading books and newspapers, watching TV, taking
courses, and talking to people (Lenat and Feigenbaum 1991).

It is not the least of the attractions of the Strong Al thesis
that it is empirically testable. We will know if someone succeeds
in building a system of this kind: that indeed is what Turing’s
Test is for.

13 EXPERT SYSTEMS

Expert systems are limited-scale attempted practical applica-
tions of McCarthy’s idea. Some of them, such as the Digital

26

J. A. ROBINSON

Equipment Corporation’s XCON system for configuring VAX
computing systems (Bachant and McDermott 1984), and the
highly specialized medical diagnosis systems, such as KARDIO
(Bratko et al. 1989), have been quite useful in limited contexts,
but there have not been as many of them as the more enthusias-
tic proponents of the idea might have wished. The well-known
book by Feigenbaum and McCorduck on the Fifth Generation
Project was a spirited attempt to stir up enthusiasm for Expert
Systems and Knowledge Engineering in the United States by
portraying ICOT’s mission as a Japanese bid for leadership in
this field (Feigenbaum and McCorduck 1983).

There has indeed been much activity in devising specialized
systems of applied logic whose axioms collectively represent a
body of expert knowledge for some field (such as certain dis-
eases, their symptoms, and treatments) and whose deductions
represent the process of solving problems posed about that field
(such as the problem of diagnosing the probable cause of given
observed symptoms in a patient). This, and other, attempts
to apply logical methods to problems which call for inference-
making, have led to an extensive campaign of reassessment of
the basic classicial logics as suitable tools for such a purpose.
New, nonclassical logics have been proposed (fuzzy logic, prob-
abilistic logic, temporal logic, various modal logics, logics of
belief, logics for causal relationships, and so on) along with sys-
tematic methodologies for deploying them (truth maintenance,
circumscription, nonmonotonic reasoning, and so on). In the
process, the notion of what is a logic has been stretched and
modified in many different ways, and the current picture is one
of busy experimentation with new ideas.

14 LOGIC AND NEUROCOMPUTATION

Von Neumann’s view of Al was a ‘logico-neural’ version of the
Strong Al thesis, and he acted on it with typical vigor and sci-
entific virtuosity. He sought to formalize, in an abstract model,
aspects of the actual structure and function of the brain and
nervous system. In this he was consciously extending and im-
proving the pioneering work of McCullogh and Pitts, who had

27

LOGIC, COMPUTERS, TURING, AND VON NEUMANN

described their model as ‘a logical calculus immanent in nervous
activity’. Here again, it was logic which served as at least an ap-
proximate model for a serious attack on an ostensibly nonlogical
problem. A particularly interesting example of his foray into the
practical engineering of artificial neural networks can be found
in his demonstration of how reliability (fault tolerance) can be
obtained by proper design methods even when the elementary
neuron devices are prone to error (von Neumann 1956).

Von Neumann’s logical study of self-reproduction as an ab-
stract computational phenomenon was not so much an Al in-
vestigation as an essay in quasi-biological information process-
ing. It was certainly a triumph of abstract logical formalization
of an undeniably computational process. The self-reproduction
method evolved by Nature, using the double-helix structure
of paired complementary coding sequences found in the DNA
molecule, is a marvellous solution of the formal problem of self-
reproduction. Von Neumann was not aware of the details of
Nature’s solution when he worked out his own logical, abstract
version of it as a purely theoretical construction, shortly before
Crick and Watson unravelled the structure of the DNA molecule
in 1953. Turing, too, was working at the time of his death on
another, closely-related problem of theoretical biology — mor-
phogenesis — in which one must try to account theoretically for
the unfolding of complex living structural organizations under
the control of the programs coded in the genes. This is not ex-
actly an Al problem. One cannot help wondering whether Tur-
ing may have been disappointed, at the end of his life, with his
lack of progress towards realizing Al If one excludes some neces-
sary philosophical clarifications and preliminary methodological
discussions, nothing had been achieved beyond his invention of
the computer itself.

The empirical goal of finding out how the human mind actu-
ally works, and the theoretical goal of reproducing its essential
features in a machine, are not much closer in the early 1990s
than they were in the early 1950s. After forty years of hard
work we have ‘merely’ produced some splendid tools and thor-
oughly explored plenty of blind alleys. We should not be sur-
prised, or even disappointed. The problem is a very hard one.

28

J. A. ROBINSON

The same thing can be said about the search for controlled ther-
monuclear fusion, or for a cancer cure. Our present picture of
the human mind is summed up in Minsky’s recent book The So-
ciety of Mind, which offers a plausible general view of the mind’s
architecture, based on clues from the physiology of the human
brain and nervous system, the computational patterns found
useful for the organization of complex semantic information-
processing systems, and the sort of insightful interpretation of
observed human adult- and child-behavior which Freud and Pi-
aget pioneered. Logic is given little or no role to play in Minsky’s
view of the mind (Minsky 1985).

Minsky rightly emphasizes (as logicians have long insisted)
that the proper role of logic is in the context of justification
rather than in the context of discovery. Newell, Shaw, and Si-
mon’s well-known propositional calculus theorem-proving pro-
gram, the Logic Theorist, illustrates this distinction admirably
(Newell et al. 1957). The Logic Theorist is a discovery simu-
lator. The goal of their experiment was to make their program
discover a proof (of a given propositional formula) by ‘heuristic’
means, reminiscent (they supposed) of the way a human would
attack the same problem. As an algorithmic theorem-prover
(one whose goal is to show formally, by any means, and presum-
ably as efficiently as possible, that a given propositional formula
is a theorem) their program performed nothing like as well as
the best nonheuristic algorithms. The logician Hao Wang soon
rather sharply pointed this out (Wang 1960), but it seems that
the psychological motivation of their investigation had eluded
him (as indeed it has many others). They themselves very
much muddled the issue by contrasting their heuristic theorem-
proving method with a ridiculously inefficient, purely fictional,
‘logical’ one which consisted of enumerating all possible proofs
in lexicographical order and waiting for the first one to turn up
with the desired proposition as its conclusion. This Swiftian
parody may have been no more than a rhetorical flourish which
got out of control, but it strongly suggested that they believed it
really is more efficient to seek proofs heuristically, as in their pro-
gram, than algorithmically with a guarantee of success. Indeed
in the exuberance of their comparison they also provocatively

29

LOGIC, COMPUTERS, TURING, AND VON NEUMANN

coined the wicked but amusing phrase ‘British Museum algo-
rithm’ for this lexicogaphic-enumeration-of-all-proofs method —
the intended sting in the epithet being that just as, given enough
time, a systematic lexicographical enumeration of all possible
texts will of course eventually succeed in listing any given text
in the vast British Museum Library, so a logician, given enough
time, must eventually succeed in proving any given provable
proposition by proceeding along similar lines. Their implicit
thesis was that a proof-finding algorithm which is guaranteed to
succeed for any provable input is necessarily unintelligent. This
may well be so: but that is not at all the same as saying that it
is necessarily inefficient.

Interestingly enough, something like this thesis was antici-
pated in (Turing 1947):

...if a machine is expected to be infallible, it cannot also be
intelligent. There are several mathematical theorems which
say almost exactly that.

15 CONCLUSION

Logic’s abstract conceptual gift of the universal computer has
needed to be changed remarkably little since 1936. Until very
recently, all universal computers have been realizations of the
same abstraction. Minor modifications and improvements have
of course been made, perhaps the most striking one being in-
ternal memories organized into addressable cells, designed to be
randomly accessible, rather than merely sequentially searchable
(although external memories remain essentially sequential, re-
quiring search). Other improvements have consisted largely of
building into the finite hardware some of the functions which
would otherwise have to be carried out by software (although
in the recent RISC architectures this trend has actually been
reversed). For over fifty years, successive models of the basic
machine have been ‘merely’ faster, cheaper, physically smaller
versions of the same device. In the past, then, computer science
has pursued what is in fact an essentially logical quest: explo-
ration of the literally unbounded possibilities of von Neumann’s
version of the universal Turing machine. The technological chal-

30

J. A. ROBINSON

lenge, of continuing to improve its physical realizations, has been
largely left to the electrical engineers and computer architects,
who have performed miracles and show every sign of continuing
to do so.

In the future, we must hope that the logician and the engineer
will find it possible and natural to work even more closely to-
gether to devise new kinds of higher-level computing machines
which, by making programming easier and more natural, will
help to bring artificial intelligence closer. That future has been
under way for at least the past decade. Today we are already
beginning to explore the possibilities of, for example, the Con-
nection Machine (Hillis 1985), various kinds of neural network
machines, and massively parallel machines for logical knowledge-
processing.

It is this future that the bold and imaginative Fifth Gener-
ation Project has been all about. Japan’s ten-year-long ICOT-
based effort has stimulated (and indeed challenged) many other
technologically advanced countries to undertake ambitious logic-
based research projects in computer science. As a result of
ICOT’s international leadership and example, the computing
world has been reminded not only of how central the role of
logic has been in the past, as generation has followed generation
in the modern history of computing, but also of how important
a part it will surely play in the generations yet to come.

REFERENCES

Aspray, W., and Burks, A. W. (1987). Papers of John von Neumann
on Computing and Computer Science. MIT Press.

Aspray, W. (1990). Jokn von Neumann and the Origins of Modern
Computing. MIT Press.

Bachant, J., and McDermott, J. (1984). R revisited: four years in
the trenches. The Al Magazine, Volume 5, Number 3, Fall 1984.

Bratko, I., Mozetic, 1., and Lavrac, N. (1989). KARDIO: a study in
Deep and Qualitative Knowledge for Erpert Systems. MIT Press.

Carpenter, B. E. and Doran, R. W. (editors) (1946). A. M. Turing’s
ACE Report of 1946 and other Papers. MIT Press.

31

LOGIC, COMPUTERS, TURING, AND VON NEUMANN

Church, Alonzo (1936). An unsolvable problem of elementary number
theory. American Journal of Mathematics, 58, pp. 345 — 363.
Church, Alonzo (1936). A note on the Entscheidungsproblem. Jour-

nal of Symbolic Logic, Volume 1 (1936), pp. 40 — 41. Correction,
ibid., pp. 101 - 102. '

Church, Alonzo (1941). The calculi of lambda-conversion. Annals of
Mathematics Studies Number 6. Princeton University Press.

Colmerauer, A., Kanoui, H., Pasero, R., and Roussel, P. (1973). Un
Systeme de communication homme-machine en Francais. Groupe
d’Intelligence Artificielle, Universite d’Aix Marseille II, Luminy,
France.

Davis, Martin (1965). The Undecidable. Evergreen Press.

Feigenbaum, Edward A., and McCorduck, Pamela (1983). The Fifth
Generation: Artifical Intelligence and Japan’s Computer Chal-
lenge to the World. Addison-Wesley.

Foster, J. M., and Elcock, E. W. (1969). Absys-1: an incremental
compiler for assertions Q- an introduction. In Machine Intelli-
gence, 4, edited by D. Michie, pp. 423 — 429.

Godel, Kurt (1931). Uber formal unentscheidbare Satze der Prin-
cipia Mathematica und verwandte Systeme I . Monatshefte f@r
Mathematik und Physik, 38, pp. 173 — 198. English translations
in (Davis 1965), (van Heijenoort 1971).

Green, C. C. (1969). Application of Theorem-proving to Problem-
solving. Proceedings of IJCAI 1 (Walker, D. E., and Norton, L.
M., editors), Washington D. C., 1969, pp. 219 - 240.

Henderson, Peter (1980). Functional Programming. Prentice-Hall.

Hewitt, C. (1969). PLANNER: a Language for proving Theorems in
Robots. Proceedings of IJCAI 1 (Walker, D. E., and Norton, L.
M., editors), Washington D. C., pp. 295 — 301.

Hillis, W. D. (1985). The Connection Machine. MIT Press.

Hodges, Andrew (1983). Alan Turing: The Enigma. Simon and
Schuster.

Kowalski, R. A. (1984). Predicate calculus as a programming lan-
guage. IFIP 1974 Proceedings, North Holland, pp. 569 — 574.
Kowalski, R. A. (1988). The early years of Logic Programming.

Communications of the Association for Computing Machinery,
31, pp. 38 - 42.
Landin, P. J. (1963). The Mechanical Evaluation of Ezpressions.

32

J. A. ROBINSON

Computer Journal, 6, pp. 308 — 320.

Landin, P. J. (1966). The Next 700 Programming Languages. Com-
munications of the Association for Computing Machinery, 9, pp.
157 - 166.

Lenat, Douglas B., and Feigenbaum, Edward A. (1991). On the
Thresholds of Knowledge. Artificial Intelligence, 47, pp. 185 —
250.

Macrae, Norman (1992). John von Neumann. Pantheon Books.

McCarthy, John (1958). Programs with Common Sense. Proceed-
ings of a Symposium on the Mechanisation of Thought Processes,
Volume 1, pp. 77 — 84. National Physical Laboratory, London.

McCarthy, John (1960). Recursive Functions of Symbolic Ezpres-
sions and their Computation by Machine. Communications of
the Association for Computing Machinery, 3, pp. 184 - 195.

McCullogh, W. S., and Pitts, W. (1943). A Logical Calculus of
Ideas Immanent in Nervous Activity. Bulletin of Mathematical
Biophysics, 4, pp. 115 - 133. '

Minsky, Marvin (1985). The Society of Mind. Simon and Schuster.

Newell, A., Shaw, J. C., and Simon, H. A. (1957). Empirical ezxplo-
rations with the logic theory machine: a case study in heuristics.
Proceedings of the Western Joint Computer Conference, pp. 218
- 239.

Randell, Brian (1972). On Alan Turing and the Origins of Digital
Computers. Machine Intelligence, 7, pp. 3 — 20.

Randell, Brian (1982) (editor). The Origins of Digital Computers.
Third Edition, Springer Verlag.

Robinson, J. A. (1965) A machine-oriented logic based on the reso-
lution principle. Journal of the Association for Computing Ma-
chinery, 12, pp. 23 - 41.

Robinson, J. A. (1965). Automatic deduction with hyper-resolution.
International Journal of Computer Mathematics, 1, pp. 227 -
234.

Shannon, Claude E., and McCarthy, John (1956) (editors). Au-
tomata Studies. Annals of Mathematics Studies Number 34.
Princeton University Press.

Stern, Nancy (1981). From ENIAC to UNIVAC. An Appraisal of
the Eckert-Mauchly Computers. Digital Press.

Taub, A. H. (1960) (editor). Jokn von Neumann: Collected Works.

33

LOGIC, COMPUTERS, TURING, AND VON NEUMANN

6 volumes. Macmillan, 1960 - 1963.

Turing, Alan Mathison (1936). On Computable Numbers, with an
application to the Entscheidungsproblem. Proceedings of the
London Mathematical Society, series 2, Volume 42 (1936-37),
pp. 230 —265. A Correction, ibid., Volume 43 (1937), pp. 544 ~
546. :

Turing, Alan Mathison (1945). Proposal for Development in the
Mathematics Division of an Automatic Computing Engine (ACE).
Completed by the end of 1945'°. Published in (Carpenter and
Doran 1986), pp. 20 - 105.

Turing, Alan Mathison (1947). Lecture to the London Mathemati-
cal Society on 20 February 1947. Published in (Carpenter and
Doran 1986), pp. 106 — 124,

Turing, Alan Mathison (1947). Intelligent Machinery. Written in
September 1947, First published in Machine Intelligence 5, edited
by Bernard Meltzer and Donald Michie, Edinburgh University
Press, 1969.

Turing, Alan Mathison (1949). Checking a Large Routine. In The
Collected Works of A. M. Turing, Volume 1, Mechanical Intelli-
gence, 1992, pp. 129 - 131.

Turing, Alan Mathison (1950). Computing Machinery and Intelli-
gence . Mind, Volume 59, Number 236.

van Heijenoort, Jean (1971) (editor). From Frege to Godel: A Source
Book in Mathematical Logic, 1879 — 1931. Harvard University
Press, 1967.
von Neumann, John (1945). First Draft of a Report on the EDVAC
Written in June 1945. Moore School of Electrical Engineer-
ing, University of Pennsylvania, Contract No. W-670-ORD-4926,
June 1945. Excerpts in (Randell 1982). First full publication in
(Stern 1981). Also in (Aspray-Burks 1987), pp. 17 — 82.

Burks, Arthur W., Goldstine, Hermann H., and von Neumann, John
(1946). Preliminary Discussion of the Logical Design of an Elec-
tronic Computing Instrument. Part I, Volume I of a Report
prepared for U.S. Army Ordnance Department under contract
W-36-034-ORD-7481. (Taub 1960), Volume 5, pp. 34 — 79. Also
in (Aspray-Burks 1987), pp. 97 — 142.

Goldstine, Hermann H., and von Neumann, John (1947). Planning

10Cf, (Hodges 1983) note 6.5, p. 557.

34

J. A. ROBINSON

and Coding of Problems for an Electronic Computing Instru-
ment. Part II, Volume 1 of a Report prepared for U.S. Army Ord-
nance Department under contract W-36-034-ORD-7481. (Taub
1960), Volume 5, pp. 80 — 151. Also in (Aspray-Burks 1987),
pp. 553 - 602.

von Neumann, John (1956). Probabilisitic Logics and the Synthesis
of Reliable Organisms from Unreliable Components. In (Shannon
and McCarthy 1956), pp. 43 — 98. Also (Taub 1960), Volume 5,
pp. 329 - 378, and (Aspray —~ Burks 1987), pp. 553 — 602.

von Neumann, John (1958). The Computer and the Brain. Yale
University Press, 1958.

Wang, Hao (1960). Towards Mechanical Mathematics. IBM Journal
of Research and Development, 4, pp. 2 — 22.

Winograd, T. (1972). Understanding Natural Language. Academic
Press.

Woodger, M. (1958). The History and Present Use of Digital Com-
puters at the National Physical Laboratory. Process Control and
Automation, November 1958, pp. 437 — 442. Reprinted in (Car-
penter and Doran 1986).

35

2

Logic and learning: Turing’s legacy

S. Muggleton

Oxford University Computing Laboratory,
11 Kebls Road,

Oxford, OX1 3QD,

UK.

Abstract

Turing’s best known work is concerned with whether universal
machines can decide the truth value of arbitrary logic formulae.
However, in this paper it is shown that there is a direct evolution
in Turing’s ideas from his earlier investigations of computability
to his later interests in machine intelligence and machine learn-
ing. Turing realised that machines which could learn would
be able to avoid some of the consequences of Godel’s and his
results on incompleteness and undecidability. Machines which
learned could continuously add new axioms to their repertoire.
Inspired by a radio talk given by Turing in 1951, Christopher
Strachey went on to implement the world’s first machine learn-
ing program. This particular first is usually attributed to A.L.
Samuel. Strachey’s program, which did rote learning in the
game of Nim, preceded Samuel’s checker playing program by
four years. Neither Strachey’s nor Samuel’s system took up
Turing’s suggestion of learning logical formulae. Developments
in this area were delayed until Gordon Plotkin’s work in the
early 1970’s. Computer-based learning of logical formulae is the
central theme of the research area of Inductive Logic Program-
ming, which grew directly out of the earlier work of Plotkin and
Shapiro. In the present paper the author describes the state of
this new field and discusses areas for future development.

37

LOGIC AND LEARNING: TURING’S LEGACY

1 ALAN TURING AND THE HISTORY OF LOGIC AND LEARNING
1.1 The Hilbert program

At the 1928 International Mathematical Congress David Hilbert,
one of the greatest mathematicians of the previous thirty years,
set out three central questions for logic and mathematics. Was
mathematics

1. complete in the sense that every mathematical statement
could either be proved or disproved,

2. consistent in the sense that false statements could never
be derived by a sequence of valid steps and

3. decidable in the sense that there existed a definite method
which could decide the truth or falsity of any mathematical
assertion?

Hilbert expected a positive answer to all three questions. Within
three years Kurt Godel (1931) had shown that not even arith-
metic could be both complete and consistent. Within a decade
both Alonzo Church (1936) and Alan Turing (1936) had shown

the undecidability of certain mathematical assertions.

Turing’s solution to this problem was based on defining a ma-
chine which emulated an ideal human computer who calculated
with a pen and a one-dimensional roll of paper. A universal ma-
chine was one which could, when loaded with the appropriate
definitions, simulate any other computing machine. Turing had
purposefully devised a machine which had abilities equivalent
to a human computer. However Gédel’s result had been proved
by showing that certain statements which were evidently true
to a human could not be proved within a limited logical sys-
tem. It seems that Turing noticed the clash for in his PhD.
thesis (1939) on ordinal logics Turing attempted to circumvent
Godel’s result. The idea was to introduce a set of ‘oracles’, each
capable of deciding the truth of unprovable statements. The
use of such oracles would allow for a complete logic. However
they required an element of non-mechanical intuition. This ap-
proach failed to reconcile Turing’s belief in purely mechanical
intelligence with Gédel’s incompleteness result.

38

S. MUGGLETON

1.2 The war period

It would appear that an alternative solution to the incomplete-
ness problem presented itself to Turing through his war-time
work as a cryptographer. Later (Turing, 1948) he was to say
that

There is a remarkably close parallel between the problems of
the physicist and those of the cryptographer. The system on
which a message is enciphered corresponds to the laws of the
universe, the intercepted messages to the evidence available,
the keys for a day or a message to important constants which
have to be determined.

Clearly, the physicist, like the cryptographer is continuously
completing his theories. By learning from experience intelligent
machinery should be capable of avoiding many of the problems
of Godel’s incompleteness results. The area of scientific discov-
ery alluded to by Turing in the above quote is the theme of this
present Machine Intelligence volume. The paper in this volume
by Sternberg et al. (1993) describes recent progress in apply-
ing machine learning techniques to discovery of new scientific
knowledge.

At Bletchley Park, in 1943, in numerous out-of-hours con-
texts Turing discussed the problem of machine intelligence with
both Donald Michie and Jack Good. According to Andrew
Hodges (1985), Turing’s biographer,

These meetings were an opportunity for Alan to develop
the ideas for chess-playing machines that had begun in his
1941 discussion with Jack Good. They often talked about
mechanisation of thought processes, bringing in the theory
of probability and weight of evidence, with which Donald
Michie was by now familiar. ... He (Turing) was not so much
concerned with the building of machines designed to carry
out this or that complicated task. He was now fascinated
with the idea of a machine that could learn.

According to Michie, Turing put more effort into thinking about
learning than anyone else in the group. He circulated for com-
ment an unpublished typescript covering his ideas. Unfortu-
nately it appears that this manuscript has not survived, though

39

LOGIC AND LEARNING: TURING'S LEGACY

Michie believes it to have been a conceptual predecessor of Tur-
ing’s N.P.L. report (1948) (see section 1.5).

1.3 The Pilot ACE

At the end of the war Alan Turing joined in the race to design
and implement the first general-purpose stored-program com-
puting machine. In 1945, when working at the National Physi-
cal Laboratory, Turing authored the ACE report (Turing, 1946),
describing a proposed ‘large scale electronic digital computing
machine’. The machine and its implications were described by
Turing (1947) to an audience at the London Mathematical Soci-
ety on 20th February 1947. The end of the lecture was dedicated
to the problem of machine learning.

Let us suppose we have set up a machine with certain initial
instruction tables, so constructed that these tables might on
occasion, if good reason arose, modify those tables. One can
imagine that after the machine had been operating for some
time, the instructions would have altered out of all recognition,
but nevertheless still be such that one would have to admit
that the machine was still doing very worthwhile calculations.
Possibly it might still be getting results of the type desired
when the machine was first set up but in a much more efficient
manner.

In present day jargon this is known as speed-up learning. The
machine does not increase its set of provable statements, but
increases the efficiency of making the proofs. Turing goes on as
follows

In such a case one would have to admit that the progress of the
machine had not been foreseen when its original instructions
were put in. It would be like a pupil who had learnt much from
his master, but had added much more by his own work. When
this happens I feel that one is obliged to regard the machine as
showing intelligence. As soon as one can provide a reasonably
large memory capacity it should be possible to begin to experi-
ment on these lines. .. One might reasonably hope to be able to
make some real progress with a few million digits, especially if
one confined one’s investigation to some rather limited field such

40

S. MUGGLETON

as the game of chess. It would probably be quite easy to find in-
struction tables which would enable the ACE to win against an
average player. Indeed Shannon of Bell Telephone laboratories
tells me he has won games playing by rule of thumb: the skill
of his opponents is not stated. But I would not consider such
a victory very significant. What we want is a machine that can
learn from experience. The possibility of letting the machine
alter its own instructions provides the mechanism for this, but
this of course does not get us very far.

According to Turing learning is an indicator of intelligence. He
realised that most experimentation with machine learning would
have to wait until machines had a few million bytes of memory.
Such a size of core-memory was not common until the 1970’s.
Turing also foresaw that chess would be an ideal domain for test-
ing machine learning programs. Games, especially chess, have
been extensively used for testing machine learning.Turing fol-
lows this passage by resolving Godel’s incompleteness problem
in a discussion of interactive inductive machine learning.

It has for instance been shown that with certain logical systems
there can be no machine which will distinguish provable formu-
lae of the system from unprovable, .. Thus if a machine is made
for this purpose it must in some cases fail to give an answer.
On the other hand if a mathematician is confronted with such a
problem he would search around and find new methods of proof,
.. fair play must be given to the machine. Instead of it some-
times giving no answer we could arrange that it gives occasional
wrong answers. .. if a machine is expected to be infallible, it
cannot also be intelligent. There are several mathematical the-
orems which say almost exactly that. But these theorems say
nothing about how much intelligence may be displayed if a ma-
chine makes no pretence at infallibility. .. No man adds very
much to the body of knowledge, why should we expect more
of a machine? .. the machine must be allowed to have contact
with human beings in order that it may adapt itself to their
standards.

Interestingly, Shapiro’s Model Inference System (Shapiro, 1983),
developed in the early 1980%s, works just like this. A Prolog

41

LOGIC AND LEARNING: TURING'S LEGACY

program, which is a set of logical assertions, is interactively de-
bugged by checking inferences against a human oracle. Shapiro
divides all possible bugs in the program into three categories:
incompleteness, incorrectness and non-termination. The corre-
spondence with Hilbert’s three questions about mathematics is
striking, though this is not commented on by Shapiro.

1.4 Altering the program

Around this time Turing entered into an early discussion on the
relative merits of neural-net learning and logic-based learning.
The question is whether the structure of neural hardware is
a prerequisite for machines to learn. In a letter dated 20th

November 1946 (Hodges, 1985) to W. Ross Ashby, Turing says

It would be quite possible for the machine to try out variations
of behaviour and accept or reject them in the manner you de-
scribe and I have been hoping to make the machine do this. This
is possible because, without altering the design of the machine
itself, it can, in theory at any rate, be used as a model of any
other machine, by making it remember a suitable set of instruc-
tions .. at worst at the expense of operating slightly slower than
a machine specially designed for the purpose in question. Thus,
although the brain may in fact operate by changing its neuron
circuits by the growth of axons and dendrites, we could never-
theless make a model, within the ACE, in which the possibility
was allowed for, .., instead of building a special machine.

Turing clearly sees the necessity of making use of an interpreter
in machine learning. This allows the learning program to be
distinguished from the program being learned and is nowadays
standard practice. The idea of using an interpreter within learn-
ing may seem obvious now but it solved a paradox going back
over a hundred years. In 1842, Ada Lovelace (Bowden, 1953),
describing Babbage’s planned Analytical Engine noted that

The Analytical Engine has no pretensions whatever to origi-
nate anything. It can do whatever we know how to order it to
perform.
In the following passage from his Mind article (Turing, 1950)
Turing describes how secondary (interpreted) rules can be orig-

42

S. MUGGLETON

inated.

How can the rules of a machine change? They should de-
scribe completely how the machine will react whatever its
history might be, whatever changes it might undergo. The
rules are thus quite time invariant .. The explanation of the
paradox is that the rules which get changed in the learning
process are of a rather less pretentious kind, claiming only
an ephemeral validity. The reader may draw a parallel with
the Constitution of the United States.

1.5 The 1948 NPL report

Prior to his resignation from the National Physical Laboratory,
Turing submitted a report (Turing, 1948) devoted almost en-
tirely to his ideas on machine learning. Michael Woodger says
that Turing’s report caused a furore at N.P.L with his prognos-
tications of intelligent machinery. ‘Turing is going to infest the
countryside’ some declared ‘with a robot which will live on twigs
and scrap iron’. They were reacting to the following section in
Turing’s report.

In order that the machine should have a chance of finding

things out for itself it should be allowed to roam the coun-

tryside, and the danger to the ordinary citizen would be

serious. .. although this method is probably the ‘sure’ way

of producing a thinking machine it seems to be altogether

too slow and impractical. ‘

Though machines learning from interacting with the real world
must have sounded wild at the time, it is similar in spirit to
the experiments in learning to fly a plane and balancing a pole
described in this volume by Michie and Camacho (1993) and
Sammut (Sammut, 1993). The present work grew out of in-
vestigations by Michie and Chambers (1968). Turing cautions
about the danger to citizens and the slowness and impracticality
of on-line learning from real-world data. The research reported
in this volume avoids this problem by carrying out all learning
within the safe confines of a simulator.

Much of what Turing wrote in the 1948 report is still relevant
to present research in machine learning. Returning once more
to the connection between learning and Godel’s incompleteness
theorem Turing writes as follows.

43

LOGIC AND LEARNING: TURING’'S LEGACY

The argument from Godel’s and other theorems rests es-
sentially on the condition that the machine must not make
mistakes .. Gauss was asked at school to do the addition
154+184-21+...4-54 .. and immediately wrote down 483, pre-
sumably calculating it as (15+54)(54-12)2.3. .. imagine a
situation where the children were given a number of addi-
tions to do, of which the first 5 were all arithmetic progres-
sions, but the 6th was say 23434445+ ... +-100+112+122+
... 199. Gauss might have given the answer to this as if it
were an arithmetic progression, not having noticed that the
9th term was 112 instead of 111.

This is a neat exposition of the problem of noise in learning.
The question is whether it is better to learn a simple rule which
correctly covers 5 out of the 6 progressions or to make an ex-
ception of the last incorrectly coded progression. This topic is
addressed in the papers by Tsukimoto and Morita (1993) and
Srinivasan et al. (1993) in this volume.

In the report Turing describes the development of the human
infant cortex as that of transforming an unorganised machine
into a universal one. He then goes on to describe an experi-
ment in which, using a hand-simulated program, he managed
to train an unorganised state-transition machine to become a
universal Turing machine. The result is a machine that learns
how to accept and interpret instructions. This goes beyond the
aspirations of almost all modern machine learning algorithms.
Commenting on this experiment Turing notes that

One particular kind of phenomenon I had been hoping to
find in connection with the P-type machines. This was the
incorporation of old routines into new. One might have
‘taught’ (i.e. modified or organise) a machine to add (say).
Later one might teach it to multiply by small numbers by
repeated addition and so arrange matters that the same set
of situations which formed the addition routine, as origi-
nally taught, was also used in the additions involved in the
multiplication.

Here Turing is discussing the problem of incremental learning
with background knowledge. The discussion of learning plus and
then multiply is very reminiscent of Sammut’s Marvin program

44

S. MUGGLETON

(Sammut and Banerji, 1986) which was taught in exactly this
way.

In the following passage Turing discusses child development
with relationship to machine learning.

The training of the human child depends largely on a system
of rewards and punishments, and this suggests that it ought
to be possible to carry through the organising with only two
interfering inputs, one for ‘pleasure’ or ‘reward’ (R) and the
other for ‘pain’ or ‘punishment’ (P).

This is equivalent to the use of ‘positive’ and ‘negative’ exam-
ples in supervised machine learning. Later in his Mind article
(Turing, 1950) Turing commented on this system.

The use of punishments and rewards can at best be a part of the
teaching process. Roughly speaking, if the teacher has no other
means of communicating to the pupil, the amount of informa-
tion which can reach him does not exceed the total number of
rewards and punishments applied. .. It is necessary therefore to
have some other ‘unemotional’ channels of communication. If
these are available it is possible to teach a machine by punish-
ments and rewards to obey orders given in some language, e.g.
symbolic language. .. The use of this language will diminish
greatly the number of punishments and rewards required.

There is a clear understanding here of the information amplify-
ing effect of symbolically encoded background knowledge. With-
out it one gets only one bit of information per example. The
1948 N.P.L. report makes clear the kind of symbolic language
that Turing intended.

Starting with a UPCM (Universal Practical Computing Ma-
chine) we first put a program into it which corresponds to build-
ing in a logical system (like Russell’s Principia Mathematica).
This would not determine the behaviour of the machine com-
pletely ..

The language intended for learning is predicate calculus. This is
the basis of what is now called ‘Inductive Logic Programming’
(ILP). Rather than building in Russell’s Principia, researchers in
this area generally make use of a Prolog theorem-proving inter-

45

LOGIC AND LEARNING: TURING’S LEGACY

preter. This provides the power of first-order predicate calculus
through its use of methods based on Alan Robinson’s (1965)
resolution theorem-proving. ILP is discussed in Section 2.

1.6 Christopher Strachey and the first machine learning program

On 15th May 1951 Turing gave a lecture entitled ‘Can Digital
Machines Think’ on the BBC’s Third Programme. According
to Hodges (1985)

This short talk did not include any details of how he proposed to
program a machine to think, beyond the remark that ‘it should
bear a close relation to that of teaching.” This comment sparked
off an immediate reaction in a listener: Christopher Strachey ..

In May 1951 Strachey was working on writing a draught’s pro-
gram on the recently! working Pilot ACE machine. On the
evening of the broadcast Strachey wrote to Turing.

...The essential thing which would have to be done first, would
be to get the machine to programme itself from very simple and
general input data ... It would be a great convenience to say
the least if the notation chosen were intelligible as mathematics
... once the suitable notation is decided, all that would be nec-
essary would be to type more or less ordinary mathematics and
a special routine called, say, ‘Programme’ would convert this
into the necessary instructions to make the machine carry out
the operations indicated. This may sound rather Utopian, but
I think it, or something like it, should be possible, and I think
it would open the way to making a simple learning programme.
.. as soon as I have finished the Draughts programme I intend
to have a shot at it.

Strachey decided to test his ideas on learning with the game
of Nim. In this game three piles of matches are laid out, and
two players take turns to remove as many matches as they want
from any pile. A non-mathematical friend of Strachey’s had

! According to Mike Woodger (1958) the first program ran on the Pilot
ACE in May 1950. However, the Pilot ACE operated without component
error for more than half an hour for the first time in September 1950. The
first ‘large’ program, which solved 17 simultaneous linear equations, ran on
26th June 1951.

46

S. MUGGLETON

noticed that any player who could achieve the position (n,n,0)
had won, since it was only necessary to copy the opponents
moves to reduce the heaps to (0,0,0). According to Hodges
(1985)

He (Strachey) had worked out a program which could keep a
record of winning positions, and so improve its play by expe-
rience, but it could only store them individually, as (1,1,0),
(2,2,0) and so on. This limitation soon allowed his novice
friend to beat the program.
Strachey wrote

This shows very clearly, I think, that one of the most im-
portant features of thinking is the ability to spot new rela-
tionships when presented with unfamiliar material ...

Strachey’s was a simple rote learning program. It appears to
the author to be the first implemented machine learning pro-
gram. Strachey’s comments show that he had understood the
importance of generalisation within machine learning. In ma-
chine learning the patterns of (1,1,0) and (2,2,0) can be gen-
eralised to (n,n,0) using Plotkin’s (1969) least general general-
isation operator. Interestingly, Strachey’s Nim rule is almost
isomorphic to the colinearity rule in the King-Rook-King ille-
gality domain described in (Muggleton et al. 1989). Machine
learning of the colinearity rule has been shown (Muggleton et
al. 1989) to require relational learning (ILP).

Later A.L. Samuel, in the USA, was also to start work on a
draughts (or checkers) playing program. According to Donald
Michie, Samuel inherited Strachey’s draughts playing program.
Samuel published a technical report in 1955 in which he had
incorporated Strachey’s ideas on rote learning into the checker
player. In a later report (Samuel, 1959) the rote learning ap-
proach was extended by the use of parameter learning. Samuel
(1967) extended this method even further to incorporate ele-
ments of simple logic learning.

2 INDUCTIVE LOGIC PROGRAMMING

In this volume Alan Robinson has the opening paper (Robin-
son, 1993) on Turing and the history of computation. It is

47

LOGIC AND LEARNING: TURING’S LEGACY

a great honour to have been asked to write a related paper
on Turing and machine learning. As every computer scientist
knows Alan Robinson’s (1965) paper on machine-oriented the-
orem proving has had and continues to have an enormous ef-
fect on computer science and artificial intelligence. The modern
subject of Logic Programming is based on Robinson’s theorem-
proving techniques. Prolog is the language at the centre of Logic
Programming.

For the following reasons pure Prolog is also an almost ideal
target language for symbolic learning.

e Prolog has the expressiveness of a substantial subset of
first-order predicate calculus. It is thus capable of express-
ing grammars, plans, mathematical and scientific theories
as well as arbitrary computer programs.

e Prolog programs consist of conjunctions of clauses. Logi-
cal conjunction is both associative and commutative. Be-
cause of this clauses represent independent axioms which
can be added to in any order.

e Pure Prolog programs, treated as sets of logical clauses,
have a clear and simple semantics (LLoyd, 1984).

e Prolog can be efficiently interpreted using SLD resolution.
The importance of an interpreter within a learning system
was noted in Section 1.4.

Inductive Logic Programming (ILP) is a research area formed
at the intersection of Machine Learning and Logic Program-
ming. ILP systems develop predicate descriptions from exam-
ples and background knowledge. The examples, background
knowledge and final descriptions are all described as logic pro-
grams. A unifying theory of Inductive Logic Programming is
being built up (Muggleton, 1991) around lattice-based concepts
such as refinement (Shapiro, 1983; Dzeroski and Lavrac, 1992)
least general generalisation (Plotkin, 1971; Muggleton, 1991) in-
verse resolution (Muggleton and Buntine, 1988) and most spe-
cific corrections (Bain and Muggleton, 1991) In addition to a
well established tradition of learning-in-the-limit convergence
results (Plotkin, 1971; Shapiro, 1983; Deraedt and Bruynooghe,
1992) some results within Valiant’s PAC-learning framework

48

S. MUGGLETON

have been demonstrated for ILP systems (Page, 1992; Dzeroski,
Muggleton and Russell, 1992)

2.1 Theory

In the general setting an ILP system S will be given a logic pro-
gram B representing background knowledge and a set of posi-
tive and negative examples (E*, E~), typically represented as
ground literals. In the case in which B & E*, S must construct
a clausal hypothesis H such that

BAHE E*

where B, H and E~ are satisfiable. In some approaches (Shapiro,
1983; Quinlan, 1990) H is found via a general-to-specific search
through the lattice of clauses. This lattice is rooted at the top
by the empty clause (representing falsity) and is partially or-
dered by #-subsumption (H 6-subsumes H' with substitution
0 whenever HO C H'). Two clauses are treated as equivalent
when they both #-subsume each other.

Following on from work by Plotkin (1971), Buntine (1988)
demonstrated that the equivalence relation over clauses induced
by 6-subsumption is generally very fine relative to the the equiv-
alence relation induced by entailment between two alternative
theories with common background knowledge. Thus when search-
ing for the recursive clause for member/2 (list-membership), in-
finitely many clauses containing the appropriate predicate and
function symbols are f-subsumed by the empty clause. Very
few of these entail the appropriate examples relative to the base
case for member/2.

Specific-to-general approaches based on Inverse Resolution
(Muggleton and Buntine, 1988; Rouveirol, 1992; Sammut and
Banerji, 1986) and relative least general generalisation (Bun-
tine, 1988; Muggleton and Feng, 1992) maintain admissibility
of the search while traversing the coarser partition induced by
entailment. For instance Inverse Resolution is based on invert-
ing the equations of Robinson’s resolution operator to find can-
didate clauses which resolve with the background knowledge to
give the examples. Inverse resolution (Muggleton and Buntine,
1988) can also be used to add new theoretical terms (predicates)

49

LOGIC AND LEARNING: TURING’S LEGACY

to the learner’s vocabulary. This process is known as predicate
invention.

2.2 ILP applications

Many of the ILP applications to date have been developed using
Muggleton and Feng’s (1992) Golem. Bratko, Muggleton and
Varsek (1992) showed that simple naive physics systems could
be learned within an ILP setting. In this case, a qualitative
model of water-filled U-tube was learned by Golem from 5 pos-
itive examples 6 negative examples and background knowledge
representing Kuiper’s (1986) QSIM theory.

Feng (1992) used Golem to construct a complete and correct
set of diagnostic rules from a qualitative model of the power
subsystem of a European Space Agency satellite.

Dolsak and Muggleton (1992) used Golem to construct design
rules for finite element analysis used within CAD packages.

Golem has also had two major successes in discovering new
scientific knowledge in the area of biomolecular modelling. Firstly
(Muggleton et al. 1992) in the area of predicting protein sec-
ondary structure from primary amino acid sequences Golem pro-
duced reasonably intelligible rules with a higher accuracy than
other approach tested on the same domain. Secondly (King et
al. 1992) in a drug design domain Golem produced structure-
activity prediction rules with an accuracy which is at least as
good as the industry-standard Hansch regression technique. The
advantage of the Golem approach lies in the fact that the rules
are much easier for medicinal chemists to understand. These
domains are discussed in detail in the paper within this volume
by Sternberg et al. (1993).

3 FUTURE TRENDS AND DEVELOPMENTS

In his writings Alan Turing did not make the modern distinc-
tion between computer science and artificial intelligence. The
universal Turing machine was in fact inspired by Turing’s idea
of an automatic mathematician. It would therefore not have
surprised him in the least to see automatic theorem proving at
the heart of Logic Programming. With this achievement firmly

50

S. MUGGLETON

established it seems reasonable to take seriously Turing’s other
aspirations.

In Section 1 we showed that Turing saw machine learning as
a central component in the future of computing. Present day
machine learning is a specialised subject area of Artificial In-
telligence. One way to increase the impact of machine learning
might be to develop specialised conceptualising tools as Scien-
tific Assistants. Such a tool would help scientists by suggesting
interesting hypotheses from data and background knowledge,
as has already been started in herbicide selection, cardiology
(Bratko, Mozetic and Lavrac, 1989) and molecular chemistry
(Muggleton et al. 1992; King et al. 1992; Sternberg et al. 1992).
This kind of tool certainly seems like something worth aiming
for.

However in Turing’s vision of learning machines, the learning
played a much more fundamental role. Every action involving
communication between humans and computers, and even be-
tween one computer and another has the potential for triggering
learning processes. It might be possible to achieve Turing’s aims
by making ILP an integral part of machine interfaces. Learn-
ing should eventually become to user-interfaces what theorem
proving has become to program execution within a Logic Pro-
gramming framework.

Shapiro’s (1983) debugging system made a start in this di-
rection. However his system was inefficient and was never in-
corporated into any widely-used program development system.
Present ILP systems lack a standard model for their implemen-
tation. Although FOIL (Quinlan, 1990) and Golem (1992) are
reasonably widely used and efficient, their approaches differ con-
siderably.

If we were to take humans and animals as our model of com-
putation then learning should be a part of every information
processing task within computers. This seems like a very tall
order. However, integrating learning sufficiently strongly into
Logic Programming would in a sense achieve this end. The
Japanese Fifth Generation project proved that Logic Program-
ming could be used throughout an operating system. Although
today’s logic programming systems are likely to be obsolete

51

LOGIC AND LEARNING: TURING’S LEGACY

within a decade, logic will maintain and increase its role within
computing. It has been fifty years since Turing’s initial inves-
tigations of logic and learning. Powerful logic-based learning
systems will play a vital and increasingly central part within
the next fifty years.

Acknowledgments

Thanks are due to Donald Michie for valuable information con-
cerning Alan Turing’s war-time discussions. His inspiration and
support have helped generations of young scientists to share
Alan Turing’s vision.

REFERENCES

Bain, M. and Muggleton, S. (1991) Non-monotonic learning. In D.
Michie, editor, Machine Intelligence 12. Oxford University Press,
Oxford.

Bain, M. and Muggleton, S. (1993) Learning optimal chess endgame
strategies. In K. Furukawa, D. Michie and S. Muggleton, editors,
Machine Intelligence 13. Oxford University Press, Oxford.

Bowden, B.V. (1953). Lady Lovelace’s memoir on the Analytical
Engine. In B.V. Bowden, editor, Faster than thought. London.
Republished document from 1842,

Bratko, I., Mozetic, I. and Lavrac N. (1989). KARDIO: a study in
deep and qualitative knowledge for expert systems. MIT Press,
Cambridge.

Bratko, I., Muggleton, S. and Varsek, A. (1992). Learning qualitative
models of dynamic systems. In S. Muggleton, editor, Inductive
Logic Programming. Academic Press, London.

Buntine, W. (1988). Generalised subsumption and its applications to

~ induction and redundancy. Artificial Intelligence, 36(2):149-176.

Church, A. (1936). An unsolvable problem of elementary number
theory. American Journal of Mathematics, 58:345-363.

de Raedt, L. and Bruynooghe, M (1992). An overview of the inter-
active Concept-Learner and Theory Revisor CLINT. In S. Mug-
gleton, editor, Inductive Logic Programming, 163-192, London,
1992. Academic Press.

Dolsak, B. and Muggleton, S (1992). The application of inductive

52

S. MUGGLETON

logic programming to finite element mesh design. In S. Mug-
gleton, editor, Inductive Logic Programming, 453-472, London,
1992. Academic Press.

Dzeroski, S. and Lavrac, N. (1992). Refinement graphs for FOIL and
LINUS. In S. Muggleton, editor, Inductive Logic Programming,
319-334. Academic Press, London.

Dzeroski, S., Muggleton, S. and Russell S. (1992). PAC-learnability
of determinate logic programs. In Proceedings of the Interna-
tional Conference on Learning Theory (COLTY92), San Mateo,
California. Kaufmann.

Feng, C. (1992). Inducing temporal fault dignostic rules from a
qualitative model. In S. Muggleton, editor, Inductive Logic Pro-
gramming, 473-494. Academic Press, London.

Godel, K. (1931). Uber formal unentscheidbare Sitze der Principia
Mathematica und verwandter System I. Monats. Math. Phys.,
32:173-198.

Hodges, A. (1985). The enigma of intelligence. Unwin Paperbacks,
Hemel Hempstead.

King, R., Muggleton, S., Lewis R. and Sternberg, M (1992). Drug
design by machine learning: the use of inductive logic program-
ming to model the structure-activity relationships of trimetho-

prim analogues binding to dihydrofolate reductase. Proceedings
of the National Academy of Sciences, 89(23):11322-11326.

Kuipers, B. (1986). Qualitative simulation. Artificial Intelligence,
29:289-338.

Lloyd, J.W. (1984). Foundations of Logic Programming. Springer-
Verlag, Berlin.

Michie, D. and Camacho R. (1993). Building symbolic represenata-
tions of intuitive real-time skills from performance data. In K.
Furukawa, D. Michie and S. Muggleton, editors, Machine Intel-
ligence 13. Oxford University Press, Oxford.

Michie, D. and Chambers R.A. (1968). BOXES: An experiment in
adaptive control. In E. Dale and D. Michie, editors, Machine
Intelligence 2, 137-152. Oliver and Boyd, Edinburgh.

Muggleton, S. (1991). Inductive logic programming. New Genera-
tion Computing, 8(4):295-318.

Muggleton, S., King, R., and Sternberg, M. (1992). Protein sec-
ondary structure prediction using logic-based machine learning.

53

LOGIC AND LEARNING: TURING'S LEGACY

Protein Engineering, 5(7):647-657.

Muggleton, S., Bain, M., Hayes-Michie, J. and Michie, D. (1989).
An experimental comparison of human and machine learning for-
malisms. In Proceedings of the Sizth International Workshop on
Machine Learning. Kaufmann.

Muggleton, S. and Buntine, W. (1988). Machine invention of first-
order predicates by inverting resolution. In Proceedings of the
Fifth International Conference on Machine Learning, 339-352.
Kaufmann.

Muggleton, S. and Feng, C. (1992). Efficient induction of logic pro-
grams. In S. Muggleton, editor, Inductive Logic Programming,
281-298. Academic Press, London.

Numao, M., Takashi, M. and Shimura, M. (1993). Inductive speed-
up learning of logic programs. In K. Furukawa, D. Michie and S.
Muggleton, editors, Machine Intelligence 13. Oxford University
Press, Oxford.

Page, C. and Frisch, A. (1992). Generalisation and learnability: a
study of constrained atoms. In S. Muggleton, editor, Inductive
Logic Programming, 29-62. Academic Press, London.

Plotkin, G.D. (1969). A note on inductive generalisation. In B.
Meltzer and D. Michie, editors, Machine Intelligence 5, 153-164.
Edinburgh University Press, Edinburgh.

Plotkin, G.D. (1971). Automatic Methods of Inductive Inference.
PhD thesis, Edinburgh University.

Quinlan, R. (1990). Learning logical definitions from relations. Ma-
chine Learning, 5:239-266, 1990.

Robinson, J.A. (1993). Turing, von Neumann and the universal ma-
chine. In K. Furukawa, D. Michie and S. Muggleton, editors,
Machine Intelligence 18. Oxford University Press, Oxford.

Robinson, J.A. (1965). A machine-oriented logic based on the res-
olution principle. Journal of the Association of Computing Ma-
chinery, 12(1):23-41.

Rouveirol, C. (1992). Extensions of inversion of resolution applied
to theory completion. In S. Muggleton, editor, Inductive Logic
Programming. Academic Press, London.

Sammut, C. (1993). Recent progress with BOXES. In K. Furukawa,
D. Michie and S. Muggleton, editors, Machine Intelligence 13.
Oxford University Press, Oxford.

54

S. MUGGLETON

Sammut, C. and Banerji, R. (1986). Learning concepts by ask-
ing questions. In R. Michalski, J. Carbonnel, and T. Mitchell,
editors, Machine Learning: An Artificial Intelligence Approach.
Vol. 2, 167-192. Kaufmann, Los Altos, CA.

Samuel, A.L. (1959). Some studies in machine learning using the
game of checkers. IBM Journal of research and development,
3:211-229.

Samuel, A.L. (1967). Some studies in machine learning using the
game of checkers, 2 recent progress. ‘IBM Journal of research
and development, 11:601-617.

Shapiro, E.Y. (1983). Algorithmic program debugging. MIT Press.

Srinivasan, A., Muggleton, S., and Bain, M. (1993). The justification
of logical theories. In K. Furukawa, D. Michie and S. Muggle-
ton, editors, Machine Intelligence 13. Oxford University Press,
Oxford.

Sternberg, M., King, R., and Muggleton, S. (1993). Machine learning
and biomolecular modelling. In K. Furukawa, D. Michie and S.
Muggleton, editors, Machine Intelligence 13. Oxford University
Press, Oxford.

Tsukimoto, H. and Morita, C. (1993). The discovery of propositions
in noisy data. In K. Furukawa, D. Michie and S. Muggleton, ed-
itors, Machine Intelligence 13. Oxford University Press, Oxford.

Turing, A. (1947). Lecture to the London Mathematical Society on
20 February 1947. Published in ‘A.M. Turing’s ACE Report of
1946 and other papers’, MIT Press.

Turing, A. (1936). On computable numbers with an application to
the Entscheidungsproblem. Proceedings of the London Mathe-
matical Society, 42:230-265.

Turing, A. (1939). Systems of logic based on ordinals. Proceedings
of the London Mathematical Society, pages 161-228.

Turing, A. (1946). Proposal for development in the mathematics
division of an Automatic Computing Engine (ACE). Technical
report, National Physical Laboratory, 1946. Published in ‘A.M.
Turing’s ACE Report of 1946 and other papers’, MIT Press.

Turing, A. (1948). Intelligent machinery. Technical report, National
Physical Laboratory, 1948. First published in Machine Intelli-
gence 5, Edinburgh University Press.

Turing, A. (1950). Computing machinery and intelligence. Mind,

55

LOGIC AND LEARNING: TURING'S LEGACY

1950. Reprinted in ‘The Mind’s I’ ed. D. Hofstadter and D.
Dennett, pub. by Basic Books, New York, 1981.

Woodger, M. (1958). The history and present use of digital com-
puters at the National Physical Laboratory. Process Control and
Automation, pages 437-442, November 1958. Reprinted in ‘A.M.
Turing’s ACE Report of 1946 and other papers’, MIT Press.

56

INDUCTIVE INFERENCE

3

A Generalization of the Least General
Generalization

H. Arimura
T. Shinohara
S. Otsuki

Department of Artificial Intelligence
Kyushu Institute of Technology

H. Ishizaka
Fujitsu Laboratories, I1SIS

Abstract

In this chapter, we present a polynomial time algorithm, called
a k-minimal multiple generalization (k-mmyg) algorithm, where
k > 1, and its application to inductive learning problems. The
algorithm is a natural extension of the least general general-
ization algorithm developed by Plotkin and Reynolds. Given
a finite set of ground first-order terms, the k-mmg algorithm
generalizes the examples by at most k first-order terms, while
Plotkin’s algorithm does so by a single first-order term. We ap-
ply the k-mmyg algorithm to several learning problems in induc-
tive logic programming, and knowledge discovery in databases.

1 INTRODUCTION

Inductive inference is a process to guess or identify an unknown
general rule from its examples. An inference algorithm receives
finite examples and produces a generalization of them as a hy-
pothesis.

This paper is concerned with inference only from positive ex-
amples. For example, recently, a number of studies have been
aimed at knowledge discovery in databases (Piatetsky-Shapiro

59

A GENERALIZATION OF THE LEAST GENERAL GENERALIZATION

and Frawley 1991). Usually, we think of a database as a col-
lection of positive examples drawn from some rule that applies
in the real world. To discover such a rule in the database, in-
ductive inference from only positive examples rather than from
both positive and negative examples is natural.

However, in general, any successful inference from positive
data should avoid overgeneralizations. In other words, the key
notion in inference from positive data is a minimal generaliza-
tion. Consider the case where an unknown rule to be inferred is
represented by a single first-order term. Then, an algorithm de-
veloped by Plotkin (1970) and Reynolds (1970) efficiently finds
the minimal generalization of given examples. This generaliza-
tion is called the least general generalization (lgg, for short).
For this reason, the least general generalization algorithm plays
an important role in model inference systems (Shapiro 1981;
Ishizaka 1988) and inductive logic programming (Muggleton
1990).

On the other hand, when some rules in question are too com-
plex to be represented in a single term, the least general gen-
eralization algorithm cannot be directly applied because it may
produce an overgeneralization. For example, assume that the
following examples are given:

{ app([]a [, [])’ app([b], (a], [ba a])a app([a], f, [a]), }
app([], [a]’ [a])’ app([a, b]a [C’ d]’ [aa b, cad])

Clearly, the least general generalization of them becomes a
most general term app(z,y,z). However, if we generalize the
examples by a set of several terms instead of a single term,
we might get a less general generalization. For any positive
integer k, we call a minimal generalization by at most k terms
a k-minimal multiple generalization (k-mmg, for short). For
example, the pair

{ app((}, X, X), app([A| X], Y, [A|Z]) }

is a 2-mmg of the examples above. Since the notion of 1-mmyg
coincides with the one of lgg, k-mmyg is a generalization of the
least general generalization.

60

ARIMURA ET AL.

Clearly, there exist several k-mmgs for a finite set of exam-
ples, while the lgg is unique. We say that a k-mmg is reduced
with respect to a set of examples when it has no redundancy.
We can show that the set of all the reduced k-mmgs for a set of
examples is hard to compute. By contrast, one of the k-mmgs
can be found in polynomial time under the assumption of com-
pactness with respect to containment. This assumption ensures
that containment relations are characterized by syntactic rela-
tions.

In Section 2, first we introduce lgg according to Plotkin
(1970) and Reynolds (1970). Then we define mmg in Section 3
by generalizing lgg from a single first-order term to a set of
first-order terms, and present a k-mmg algorithm that finds a
k-mmg in polynomial time. The results in the section are ob-
tained from our work (Arimura et al. 1991). In Section 4, we
apply the k-mmg algorithm to problems in inductive logic pro-
gramming. We introduce three subclasses of logic programs,
unit clause programs, context-free transformations with a flat
base and primitive Prologs, and show that these subclasses are
polynomial time inferable from positive examples. The results
in this section are obtained from previous works (Arimura et al.
1992b; Ishizaka et al. 1992). In Section 5, we show the method
is also applicable to discovery of a set of rules that characterize
a concept in a database. '

2 PRELIMINARIES

For a finite set A, we denote by A the number of elements in A.
Let ¥ be a finite set of function symbols and X be a countable
set of variables disjoint from X, where a mapping arity from
function symbols to positive numbers is associated with ¥. We
call ¥ an alphabet. A first-order term (or a term) is either a
variable, a O-ary function symbol, or a string f(¢y,...,t,) that
is recursively constructed from an n-ary function symbol f and
terms t;,...,t,. A term is ground if it contains no variable. We
denote by 7P the set of first-order terms and by 7T the set of
ground first-order terms. The size of term p is the total number
Ip| of occurrences of function symbols and variables in p, and

61

A GENERALIZATION OF THE LEAST GENERAL GENERALIZATION

the size of set P of terms is ||P|| = L,cp |p|-

A substitution is a mapping @ from terms to themselves such
that for any term ¢ = f(¢1,...,t.), 0(t) = f(0(t1),...,0(ts)). A
set of replacement {z; :=ty,...,z, := t,} denotes the substi-
tution that maps variable z; to term ¢; and any other variable
to itself.

We define a binary relation <’ on 7 by p <' ¢ <= p = 0(q)
for some substitution 0. If p <’ q then we say p is an instance
of g, p is a generalization of ¢, p is more specific than g, or ¢ is
more general than p. We also define <’ by p <' g <= p <’ g but
q &' p. Let TPz be the set of representatives of the equivalence
classes of TP modulo =, wherep=¢g<=p<'gqandg<'p. In
Section 2 and Section 3, we write TP for TP= without further
notice. '

Let P be a finite set of terms. If P C L(p), then we say
a term p is a common generalization of S. The least general
generalization (lgg, for short) of P is a common generalization
p of P such that p <’ q for any common generalization ¢ of P.
The lgg of P is computable in polynomial time in || P|| by the
anti-unification algorithm (Plotkin 1970; Reynolds 1970).

The language defined by term p is the set L(p) = {w €
T |w <’ p}, that is, the set of ground instances of p. A set L of
ground terms is a tree pattern language if L = L(p) for some p.
By definition, p <’ ¢ => L(p) C L(q). In this case, the converse
also holds.

Lemma 3.1 (Reynolds 1970) If ¥ > 1, then L(p) C L(q)
—=p<yq
By Lemma 3.1, we can define the lgg of S as a term that

defines the minimum language containing S with respect to set
inclusion C.

3 POLYNOMIAL TIME K -MMG ALGORITHM

In this section, we present a polynomial time algorithm to com-
pute a k-minimal multiple generalization of a finite set of ground
terms. Let k be a positive integer. A k-multiple term is a set
P of at most k first-order terms, and the language defined by
P is the set L(P) = U,ep L(p). Two k-multiple generalizations

62

ARIMURA ET AL.

P and Q are equivalent if they define the same language. We
denote by 7'P* the class of k-multiple terms. If S C L(P), we
say P is a k-multiple generalization of S. A k-minimal multiple
generalization (k-mmg, for short) of S is a k-multiple gener-
alization P of S such that L(Q) ¢ L(P) for any k-multiple
generalization @) of S. Note that there may be more than one
k-mmg of S if k > 1, while the lgg of S is unique. For example,
let § = {f(a’a)’f(a’b)1f(b,b)} and ¥ = {aaba f(’)}' Then,
P, = {f(2,2), f(a,5)} and Py = {f(aa), f(y,b)} are both 2-
mmg of S.

In this chapter, we are concerning with an eflicient algorithm
that, given S, finds one of the k-mmgs of S. Indeed, it is rea-
sonable to cease trying to find all the answers because we can
show by a reduction from an NP-complete problem that it is
hard to compute all the k-mmgs of S in polynomial time.

A set P in TP* is reduced with respect to S iff S C L(P),
but S € L(Q) for any proper subset @ of P. Any k-mmg of
S is equivalent to a member Q in 7TP* that is reduced with
respect to S, and there are only finitely many such @s. Thus,
by the definition of mmyg, if the decision of L(P) C L(Q)? is
computable (indeed, it is possible from Theorem 3.2 below),
we can use an exhaustive search method to compute a k-mmg
of S. However, this simple method may not efficiently work.
Because even for a fixed £ > 0, S may have exponentially many
reduced k-mmgs. Furthermore, the observation on hardness
of computing all solutions mentioned above also leads to the
difficulty.

Recall that k-multiple generalizations are defined through the
class of languages defined by sets in 7P*. Consider the following
property of the class: for any terms p,q1,...,qn (1 <m < k),

L(p) C L(q1)V-+-UL(gm) = L(p) C L(g:) for some 1 < i < m.

We call this property the compactness with respect to contain-
ment of TP*. If ¥ is sufficiently large, 7P* has this property.
Lassez and Marriott (1986) showed the property in the case
where X is infinite. The next theorem improves their result.

63

A GENERALIZATION OF THE LEAST GENERAL GENERALIZATION

Theorem 3.2 (Arimura et al. 1992a) Let k > 0 and ¥ be
“an alphabet with £ > k. Then the class 7P* has the compact-
ness with respect to containment.

The condition on ¥ above is necessary. For example, let
k = 2 and X consists of two symbols a, f(+,). For terms p =
z, q1 = a,and g = f(a:,y), we see L(p) c L(ql) U L(qz) but
none of ¢; and ¢, is a generalization of p.

Hereafter, we assume ¥ > k for the compactness. Then we
can use Theorem 3.2 to show the necessary and sufficient con-
dition for a k-multiple generalization P consisting of exactly k
terms to be a k-mmg of a finite set S. A k-multiple generaliza-
tion P is said to be of normal form with respect to S iff p is the
lgg of S— L(P\p) for any p € P, where P\ p is the set obtained
by removing p from P. Assume that P is of normal form with
respect to S, and also assume that there is some @ satisfying
S C L(Q) C L(P). If $Q < §P then compactness shows that P
is not reduced with respect to S: contradiction. On the other
hand, if 4@ = §P, then the compactness shows that P cannot
be of normal form. Hence, the following holds.

Theorem 3.3 Let P be a multiple generalization of S that is
reduced with respect to S and §P = k. Then P is of normal
form with respect to S iff P is k-mmg of S.

Now, we give a polynomial time algorithm MMG(k,S) in
Algorithm 1 that finds a k-mmg based on a greedy search. First,
the MMG@G starts from any k-multiple generalization of S that
is reduced with respect to S. The next theorem ensures that
such a candidate can be efficiently found (we prove the theorem
in the latter half of this section).

Theorem 3.4 (Arimura et al. 1991) For any k£ > 0 and any
finite set S of ground terms, a set consisting of exactly k terms
that is reduced with respect to S can be found in polynomial
time with respect to || S|} if it exists.

Once a general candidate is obtained, the algorithm searches
k-mmg in the direction from the general one to the most specific
one. The algorithm tries to make P more specific by replacing

64

ARIMURA ET AL.

Algorithm 1: The algorithm MMG(k, S)

Input: A positive integer k and a finite set S C 7.
Output: A k-mmg of S.

Procedure:
1 if k=1 then return lgg(5)
2 else

3 P(={p1,...,px}) := REDUCED(k,S);
ig,P is found then
for eachi =1,...,k do /* tightening process */
replace p; in P by lgg(S — L(P \ pi));
return P;
else return MMG(k -1, 5);

00 ~3 O Ot W

each component p in P by the more specific term lgg(S — L(P\
p)). We call this process tightening. Any fixed point of this
tightening process is of normal form with respect to S.

Lemma 3.5 In MMG in Algorithm 1, assume that a set of
exactly k terms that is reduced with respect to S is found at
Line 1. Then after executing the lines from Line 2 to Line 6, any
P that M MG returns at Line 7 is of normal form with respect
to S.

Hence, we show the main result of this section. Note that
any finite set of ground terms has its k-mmg for any k > 1 (At
worst, it is the lgg of S).

Theorem 3.6 (Arimura et al. 1991) Let k be a positive in-
teger and X be an alphabet with §£ > k. Then, for any finite
set S of ground terms, a k-mmg of S can be computed in poly-
nomial time in ||S|].

The key to an efficient k-mmyg algorithm is to efficiently find
a reduced k-multiple term which dominates the time complex-
ity of total computation. In the rest of the section, we present
a polynomial time algorithm REDUCED (in Algorithm 2) to
find a reduced ck-multiple term and prove Theorem 3.4. In par-
ticular, the algorithm REDUCED searches k-multiple terms

65

A GENERALIZATION OF THE LEAST GENERAL GENERALIZATION

Algorithm 2: The algorithm REDUCED(k, S)

where gci S is the greatest common instance of a set of
terms.
Input: A positive integer k£ and a finite set S of ground terms.
Output: A set of exactly k terms reduced with respect to .
Procedure:
for each V C § with {V =k do
P = 0,...,Pk = 0,
for each v € V do
let {v1,..., 051} :=V \v;
for each 1 € MAXT (v,v1),...,qk-1 € MAXT(v,v4-;) do
P, :=P, U gei{qr. .., qe-1};
end for;
for each p; € P1,..., px € P, do
P:={p,... s Pk}
if S C L(P) then /* check whether reduced */
return P;
end for;
end for;

that define a maximal language within reduced k-terms with
respect to S instead of all reduced k-multiple terms.

A k-pivot of a k-multiple term P is a set V of just k ground
terms in L(P) such that there is some one-to-one correspondence
f from V to P such that v € L(p,) but for any u € V \ v,
u & L(p,), where p, denotes the member f(v) of P (= {p, |v €
V}). By definition, If P is a k-multiple generalization of S
with §P = k, P is reduced with respect to S iff P has a k-
pivot drawn from S. Let R(V) be the class of k-multiple terms
that has a k-pivot V, and max R(V) be the subclass consisting
of maximal members of R(V) with respect to set inclusion on
their languages. Then, we have the following lemma.

Lemma 3.7 Assume that §P = k and P is a k-multiple term.
If P defines a maximal language within reduced k-terms with
respect to S, then P is a member of maxR(V') for some k-pivot
V contained in S.

66

ARIMURA ET AL.

p1 =f(f(a,w),y) P2 =f(f(xay)af(z’x))
())

(1) 0, (] (J)
@®* @ @@ & @*

Figure 3.1. Two possible shapes p; and p; of max trees con-
sistent with a positive term f(f(a,a), f(b,a)) and a negative
term f(f(b,a), f(a,a)). See Lemma 3.9.

Next, we show how to compute members in maxR(V). We
introduce the notion of consistent max trees. Let uy,,u. be
ground terms. Then, a term p is consistent with a positive term
u4+ and a negative term u_ if uy € L(p) but u_ ¢ L(p). We say
p is a maz tree consistent with vy and u_ if

e p is consistent with v, and u_, and
e for any consistent term q with uy and u_, ¢ £’ p.

To characterize max R(V), we use the set MAXT (uy,u-),
the set of max trees consistent with u, and u_.

Lemma 3.8 Assume that P = {p, |v € V'} is k-multiple term
in maxR(V). Then, each p, is a maximally general term such
that v € L(p,) but for any u € V \ v, u ¢ L(p,). Moreover,
each p, is represented as the greatest common instance of some
terms { ¢, |u € V' \ v} such that for every u € V' \ v, each ¢, is
a max tree consistent with positive v and negative u.

By Lemma 3.8 above, we can see that the algorithm REDUCED
shown in Algorithm 2 finds a k-multiple generalization of S that
is reduced with respect to S.

Finally, we show that the set MAXT(u4,u_) has at most
polynomially many members, and it can be computed in poly-
nomial time. A first-order term is identified with an ordered
tree tree(p) labelled by symbols in ¥ U X in the standard way.
A node « touches a path B4,..., 8, if for some 1 < i < n either

67

A GENERALIZATION OF THE LEAST GENERAL GENERALIZATION

Algorithm 3: The algorithm MAXT(¢;,t-)

where w(a) is the label of the node a of w, and w/a is
the subtree of w whose root is a. See Lemma 3.9 for
1-branch(ts, a) and 2-branch(ty, a1, az).

Input: Ground terms ty,t_.
Output: The set of max trees consistent with ¢, and ¢...
Procedure:
T :=0;
for each node a in ¢4 do
if t4(a) € ¥ and t4(a) #t_(a) th en
T:=T U {1l-branch(t;,a) };
for each pair ay, a3 of nodes in ¢, do
ifty /oy =t4/a but t_ /oy =t_/a; then
T:=T U {2-branch(ty,o1,) };
for each pair p,q € T do
if L(p) C L(q) then T :=T - {p};
return T';

a = f; or « is a child of B;. The following lemma tells us the
possible shapes of max trees (See figure 3.1).

Lemma 3.9 If p is a max tree with ¢, and ¢_, then p is a
generalization of t4 such that free(p) satisfies either 1 or 2:

. There is a node a labelled by a function symbol such that every
node touches the path from the root to a, and all leaves other
than a are labelled by mutually distinct variables.

. There are nodes aj,a; labelled by the same variable, say z,
such that every node touches a path from the root to a; or ay,
and all leaves other than a;, a; are labelled by mutually distinct
variables that are different from z.

In Lemma 3.9, the choice of a and the choice of oy, a3 in t4
determine the unique generalizations p of ¢, satisfying 1 and p
satisfying 2, respectively. We refer to these ps as 1-branch(ty, a)
and 2-branch(t+, a1, @), respectively. By Lemma 3.9, we can
compute the set MAXT(t4+,t-) by the algorithm MAXT shown

in Algorithm 3 in polynomial time with respect to the size |t,|.

68

ARIMURA ET AL.

By the observation above, the algorithm REDUCED in Al-
gorithm 2 runs in time O(m2¥*+1n*+1) with respect to m and n,
where m is the maximum size of terms in S and n is the number
of terms in S because the number of different choices of k-pivot
V is bounded by n*, iMAXT(t,,t.) is bounded by 2m?, and
the greatest common instance of terms can be computed by the
unification algorithm in linear time in m. Hence, we can com-
pute a k-multiple generalization reduced with respect to S in
polynomial time in ||S|| by the algorithm REDUCED. Hence
we have Theorem 3.4.

4 APPLICATIONS IN ILP

In this section, we describe several applications of the mmyg al-
gorithm in inductive logic programming (ILP, for short). In
some inductive inference algorithms for logic programs such as
GEMINTI (Ishizaka 1988) or CIGOL (Muggleton and Buntine
1988), the least general generalization plays a very important
role in inferring heads of clauses. However, in general, a pro-
gram consists of several clauses. In order to infer several heads
using lgg, the inference algorithm has to divide a given set of
positive examples (a finite subset of the least Herbrand model
of a target program) into several appropriate subsets at first,
then it can get candidates for heads of clauses by computing
the lgg of each subset. This process, that is, dividing a set of
positive examples appropriately then generalizing each obtained
subset of examples, exactly corresponds to the mmyg calculation.
Hence, we believe that mmg is more useful than /gg in ILP.

The results we introduce here were obtained from our previ-
ous works (Arimura et al. 1991; Arimura et al. 1992b; Ishizaka
et al. 1992) on inductive inferability of several subclasses of logic
programs from positive facts using the mmg algorithm. Shino-
hara (1991) showed that a class of linear Prologs with at most k
clauses is inferable from only positive facts. However, his result
concerns just inferability but not efficiency. We introduce three
subclasses of linear Prologs, unit clause programs, context-free
transformations with a flat base and primitive Prologs. Each
class is efficiently inferable from only positive facts.

69

A GENERALIZATION OF THE LEAST GENERAL GENERALIZATION

In this section, the reader is assumed to be familiar with
the rudiments of logic programs (Lloyd 1984). Furthermore,
we assume that a first-order language £, that has finitely many
predicate and function symbols (we regard a constant symbol as
a 0-ary function symbol), is given. An atom, a term, a clause,
a logic program (program, for short), and related notions are
defined over £. We denote the set of predicate symbols and
function symbols of £ by II and ¥ respectively. For a program
P, M(P) denotes the least Herbrand model of P.

The following definitions concerned with the notion of iden-
tification in the limit are based on (Gold 1967). An inference
algorithm A is an algorithm that iterates a process input re-
quest — computation — output. Let gy,9s,... be a sequence
of outputs of A for an input sequence ey, €3,... We say that A

converges to g for the input sequence ey, e;,... iff there exists
n > 1 such that g; = g for any ¢ > n.
An enumeration of a model M is a sequence ej,ez,... of

elements in M such that every atom in M occurs as e; for some
i > 1. We say that A identifies a model M in the limit from
positive facts iff A converges to a program P such that M(P) =
M for any enumeration of M. We say that A identifies a class
of programs P in the limit from positive facts iff, for any P € P,
A identifies M(P) in the limit from positive facts.

Let P,, P,,... be a sequence of outputs of A for an enumer-
ation ey, ey,... of a model M and S; be the set {ej,...,€}. An
inference algorithm A is consistent iff S; C M(PF;) for any i. An
inference algorithm A is conservative iff P; = P;_, for any i such
that e; € M(P;—1). An inference algorithm A is a polynomial
update time inference algorithm iff there exists some polynomial
f such that, for any stage ¢, after A feeds the input e; it produces
the output P; in f(||Si||) steps. Any exponential update time
inference algorithm can be converted into a cunning polynomial
update time one, even if either consistency or conservativeness
lacking. Hence, both conditions are necessary for the validity of
polynomial update time inference.

A class of programs P is said to be (consistently, conser-
vatively, polynomial update time) inferable from positive facts
iff there exists an (consistent, conservative, polynomial update

70

ARIMURA ET AL.

time) inference algorithm that identifies P in the limit from
positive facts.

4.1 Unit clause programs

First we consider a class of very simple logic programs that
consist of only unit clauses. We denote the class by UCP and a
class of logic programs that consist of at most k unit clauses by
k-UCP. For any P € UCP, since each clause C € P is unit, it
holds that M(P) = Ugep L(C) where L(C) is a set of all ground
instances of C. Thus, if §(IIUX) > k, then we can directly apply
the k-mmg algorithm to infer UCP.

Algorithm 4: Inference algorithm for k-UCP

Input: An enumeration of a model M(P) where P € k-UCP.
Output: An infinite sequence of programs in k-UCP.
Procedure:
H:=0;S5:=0
repeat
read the next fact e; S := S U {e};
if e ¢ M(H) then H := MMG(k, S);
output H;
forever

Angluin (1980) showed that if a target class has the property
called finite thickness, that is, it contains only finitely many con-
cepts including a given examples, then an inference algorithm
that, at any stage, outputs a minimal hypothesis consistent with
given positive examples can identify the class. A minimal hy-
pothesis is a hypothesis that defines a minimal concept such
as a minimal language or a least Herbrand model; in our con-
text, it corresponds to MMG(k,S). Unfortunately, the class
k-UCP does not have finite thickness when k& > 1. However,
Angluin’s result can be extended to the class with the property
called finite elasticity (Wright 1989a, 1989b). Shinohara (1990)
showed that the class of linear Prologs with at most &k clauses
is inferable from positive facts by showing the class has finite
elasticity. Since k-UCP is a subclass of linear Prologs, it also
has finite elasticity. Thus Algorithm 3 identifies k-UCP. Con-

71

A GENERALIZATION OF THE LEAST GENERAL GENERALIZATION

sistency and conservativeness of Algorithm 4 are trivial. From
Theorem 3.6, it is also clear that Algorithm 4 produces each hy-
pothesis in polynomial steps in ||S||. .Thus we have the following
theorem.

Theorem 3.10 (Arimura et al. 1991) Suppose that §(IIUX) >
k. Then the class k-UCP is consistently and conservatively poly-
nomial update time inferable.

4.2 Context-free transformations with a flat base

mq

Next we consider a slightly complex subclass CF of context-
free transformations (CF T, for short). The class C.7" T was orig-
inally introduced by Shapiro in his study on MIS (Shapiro 1981)
and includes a lot of non-trivial programs such as append, plus,
and so on. We introduce a restricted subclass CFT y? of CFT.

A context-free transformation with a flat base (CFTFB) isa
program that consists of two clauses Cp and Cj:

Co = p(S1y.++98m)
Ci = p(tl,...,tn) « p(z1,...,2m)

that satisfy the following conditions (a)—(c).

(a) Every argument s; (1 < ¢ < m) of the head of Cy is either
a.function symbol of arity 0 or a variable symbol.

(b) All arguments zy,...,z, of the body of Cy are mutually
distinct variables.

(c) For every 1 < i < m, every argument z; of the body of C;
occurs exactly once in the term ¢; of the head. Moreover,
z; does not occur in any argument t; (¢ # j) of the head.

A program P is a CFTpp" iff there exists at most one 2-mmg
of M(P). We denote the class of all CFTEE? programs by
CFT‘unlq

It seems the class CFT e is too restrictive. Furthermore,
the class CFT et is deﬁned according to the least Herbrand
model of each element. Since the least Herbrand model of a
program is an infinite set in general, the definition seems to
be problematic. Fortunately, however, the class is decidable in

72

ARIMURA ET AL.

polynomial time. That is, given a program P, we can decide
whether P is in CFT pg’ in polynomial time of size(P), where
size(P) is the size of P as an expression. In fact, we can show
that several non-trivial programs in CFT are still in CFT g’
For example, the following CFT's are in CFT pg’.

append([],X,X)
append([A|X],Y,[A|Z]) ¢ append(X,Y, Z)

suffix(X,X)
suf fiz(X,[A|Y]) « suf fiz(X,Y)

plus(X,0,X)
plus(X,s(Y),s(2)) + plus(X,Y, Z)

lesseq(0, X)
lesseq(s(X),s(Y)) + lesseq(X,Y)

Algorithm 5 is an inference algorithm for CFT 5! U 2-UCP.
Algorithm 5 does not change the current hypothesis H, if it is
consistent with a newly given positive fact e. Suppose that

S = { app([], {, [])’ app([b), [a]a [b’ al), app([al, [}, [a]), app([l, [a]’ [a])’
app([a, b], [c,d],[a,b, ¢, d])}

is the set of positive facts given so far and the current hypothesis
cannot imply the last fact. First, the algorithm finds a pair of

atoms
{app([l, X, X),app([A|X], Y, [A|Z])}

by MMG(2,S). Next, it tries to find a hypothesis consis-
tent with S. This is done by enumerating every C FTpg? with
{app({], X, X), app([A|X], Y, [A|Z])} as its heads. Actually, the
search is done by enumerating every possible instance of C FTrg?
with pair of atoms obtained by the 2-mmg algorithm as its
heads, because the candidate heads are possibly less general
than the heads of a target program. If such a program P* con-
taining a clause with non-empty body is found, the algorithm
outputs it. Otherwise the algorithm simply outputs M MG(2, S)

73

A GENERALIZATION OF THE LEAST GENERAL GENERALIZATION

as an approximation of the target model. Since P* is an in-
stance of a CFTpy?, Algorithm 5 may need to transform P*
into a CFTpy? that has the same least Herbrand model with
P*. The transformation ¢ performs such model preserving gen-
eralization.

Algorithm 5: Inference algorithm for CFT 4! U 2-UCP

Input: Enumeration of model M(P); P € CFT 4% U 2-UCP.
Output: Infinite sequence of programs in CfTu’"q U 2-UCP.
Procedure:
H:=0;5:=0
repeat
read the next fact e; S := S U {e};
ife ¢ M(H) then
{ho, h1}2= MMG(2, S),
find a hypothesis P* consistent with S
whose heads are {ho, h1};
if found then H := o(P*);
else H := {ho, };
output H;
forever

Since the class CFT ¥ is also a subclass of linear Prologs,
it has finite elasticity. Hence, if Algorithm 5 outputs a min-
imal hypothesis consistent with S at any stage, it is ensured
that the algorithm identifies CFT py? U2-UCP. As described in
the next subsection, in general, there exist several 2-mmgs for
an entire model M(P) of a program P that contains a clause
with non-empty body. If there exist several 2-mmgs of M(P),
then it becomes difficult to decide which 2-mmg is appropri-
ate for the heads of a target program. The difficulty is directly
concerned with the difficulty of finding a consistent minimal hy-
pothesis as described in the next subsection. However, from the
uniqueness of 2-mmg for the model of CFTE4?, it is possible
to ensure that a consistent minimal hypothesis can be found
by a very simple search as mentioned above. Consistency and
conservativeness of Algorithm 5 is trivial. From the syntactical

74

ARIMURA ET AL.

restriction on C F'TFrp, the search for a consistent hypothesis P*
and the transformation P* into a C FTrg? ¢(P*) can be finished
in polynomial time in ||S||. Hence we can obtain the following
theorem.

Theorem 3.11 (Arimura et al. 1992b) Suppose that {£ >
2. Then the class CFT g5’ U 2-UCP is consistently and conser-
vatively polynomial update time inferable.

4.3 Primitive Prologs

Finally, we consider a class of programs called primitive Prologs.
A primitive Prolog P is a program that satisfies the following
conditions (a)—(d):
(a) Only one unary predicate symbol appears in P.
(b) P consists of at most two clauses.
(c) If P consists of two clauses, then both heads of clauses
have no common instance.
(d) Atoms appearing in the body of a clause are most general
atoms as p(z).
(e) Variables appearing in the body of a clause are mutually
distinct and also appear in the head of the clause.

In a word, a primitive Prolog is a program of the form:

p(t[z1, ... Tm]) < p(21), -+, P(Tm)

p(s);
where zy,...,, are mutually distinct variables, t[zy,...,Zn)
is any term containing the variables z,...,Z,, 8 is any term,
and L(t[z1,...,zm]) N L(s) = 0. We denote a class of primitive
Prologs by PP.

Although the class PP is so restricted, there exists a primi-

tive Prolog P that has several 2-mmgs of its model M(P). For
example, consider the following primitive Prolog P:

»([a,b,a])
p([b]X]) ¢+ p(X).

For the least Herbrand model
M(P) = {p([a, b, a]),p([b,a,b, a]),p([b, b,a,b, a])a .. '}s

75

A GENERALIZATION OF THE LEAST GENERAL GENERALIZATION

there exist two kinds of 2-mmg of M(P):
{p(la,b,a]), p([b, X, Y, Z|W])} and {p([},a,d,a]),p([X,b,Y|Z])}.

Actually the former is an instance of the heads of the program

P. Hence, if an inference algorithm selects the former pair as

the heads of a hypothesis, it will be able to identify the target

program. However, if the inference algorithm selects the latter

pair, then it may produce an overgeneralized hypothesis and fail

to identify the target program consistently and conservatively.
Let P, be an instance

p([a,b, a))
p([6, X, Y, Z|W]) + p([X, Y, Z|W])

of P with the former 2-mmyg as its heads, and P, be a program
consisting of the atoms in the latter 2-mmg. We know that P, is
a correct hypothesis but P, is an overgeneralized one. However
the algorithm is given only positive facts and both P, and P, are
consistent with every fact. Hence, in order to achieve conserva-
tive inference, the algorithm has to decide which program has
a smaller model. That is, to construct a consistent and conser-
vative polynomial update time inference algorithm for the class
PP, a model containment problem for primitive Prologs (P; can
be easily transformed into the original primitive Prolog) should
be solved efficiently. Unfortunately the problem is still open.

Although the problem of consistent and conservative polyno-
mial update time inferability of PP is also still open, we have
shown an interesting polynomial update time algorithm that
identifies PP consistently but not conservatively (Ishizaka et al.
1992). The algorithm concentrates its attention on a minimal
size fact given so far to find a unit clause in a target program.
This simple idea works well. Whenever a target primitive Prolog
consists of a unit clause and a recursive clause with non-empty
body as the previous example:

p([a, b, a])
p([61X]) p(X),

a fact p([a, b, a]) of minimal size in the model M (P) should be an
instance of the unit clause. Using this property, the algorithm

76

ARIMURA ET AL.

can identify the correct heads in several 2-mmgs in the limit
working unconservatively. Lange and Wiehagen (1991) showed
an interesting inference algorithm that inconsistently runs in
polynomial update time and infers pattern languages from pos-
itive examples. Our idea is similar to theirs.

5 APPLICATION IN KNOWLEDGE DISCOVERY IN DATABASES

In this section, we describe an application of the k-mmyg algo-
rithm to the problem of discovering knowledge in databases.

5.1 Attribute-oriented induction

There are different two approaches in the discovery of knowl-
edge in databases (Piatetsky-Shapiro and Frawley 1991). One
is, given positive examples and negative examples, to find clas-
sification rules, that is, rules separating positive examples from
negative examples. Another is, given positive examples, to find
characteristic rules, that is, rules characterizing the concept rep-
resented by the positive examples.

The latter one is closely related to inductive inference from
positive examples and can be thought of as computing a gener-
alization of databases. Since a database usually contains only
positive examples of a relation in the real world, we believe dis-
covery algorithms that learn concepts only from positive exam-
ples are useful. Thus, we deal with the discovery of characteristic
rules from positive examples in this section.

Cai et al. (1991) proposed a heuristics algorithm to dis-
cover characteristic rules. Their algorithm LCHR generalizes a
database by using a given conceptual hierarchy. In Table 3.1, we
show an example of databases extracted from (Cai et al. 1991),
which consists of tuples concerning information about graduate
students. In Figure 3.2, we show the corresponding conceptual
hierarchy for the attribute Birth_Place by a tree-like structure.
The tree-like structure shows that a concept placed near the
root is more general than one placed near the leaves.

Given a small positive integer k, called a threshold, a database,
and the corresponding conceptual hierarchy, the algorithm LcHR
iterates the following process. It non-deterministically selects a
tuple from the database and replaces some of attribute values

(s

A GENERALIZATION OF THE LEAST GENERAL GENERALIZATION

Table 3.1. A university database (Cai et al. 1991)

Name Category Major Birth_Place GPA

Anderson M.A. Physics Vancouver 3.5
Fraser M.S. Physics Ottawa 3.9
Gupta Ph.D Math Bombay 3.3

Liu Ph.D. Biology Shanghai 34

Monk Ph.D. Computing Victoria 3.8

Wang M.S. Statistics Nanjing 3.2
GPA = grade point average

Table 3.2. A generalized database obtained by the algorithm LCHR

Major Birth_Place GPA
science Canada excellent
science foreign good

by more general values with respect to the conceptual hierar-
chy. In this process, attribute values to be substituted should
be carefully selected from tuples to avoid overgeneralization.
Successive applications of this process eventually decrease the
number of different tuples in the database. If the number of tu-
ples becomes less than or equal to the threshold k, the algorithm
terminates and outputs the resulting generalized database as a
characteristic rule.

Table 3.2 is a generalized database obtained from the database
in Table 3.1 by LCHR, where two columns for Name and Cate-
gory that have no useful information have been removed (Cai et
al. 1991). The generalized database computed by LCHR char-
acterizes the given database by a kind of clustering. The paper
(Cai et al. 1991) reported that the algorithm LCHR efficiently
computes rules characterizing the database.

78

ARIMURA ET AL.

Burnaby
__British. Edmonton
Columbia Victoria
Canad Richmond
— Canada —
| ECalgary
T Alberta Edmonton
Birth_Place —
— Ontario —-l ,?g:::;i
India ——— Bombay
— foreign —‘[Shanghai

China ———{ Nanjing

Figure 3.2. A concept hierarchy D for attribute Birth_Place (Cai et
al. 1991).

5.2 Applying the k-mmg to attribute-oriented induction

As seen before, the algorithm LCHR finds a generalized database
as specific as possible by careful applications of substituting con-
cept values. In fact, we can see that what LCHR tries to find
is a minimal multiple generalization in the sense of databases
with conceptual hierarchy. In the remaining part, the method
of application of k-mmg to attribute-oriented induction by the
previous example.

First, we formalize the notion of generalized databases with
conceptual hierarchy. A concept hierarchy or domain is a pair
(D, L) of a set D of objects and a partial order < on D. We
assume that (D, <) is a tree with the greatest element T. The
relation < is called the generalization relation. Hereafter, we
write D for (D, <) if it is clear from context. A ground ob-
ject is a minimal element of D. Assume countably many at-
tributes a;,as,... and the corresponding domains D;,D,,... .
Then, a scheme is an m-tuple R = (ay,...,an) of attributes.
For the corresponding tuple (Dy,...,Dy) of domains, a gen-

79

A GENERALIZATION OF THE LEAST GENERAL GENERALIZATION

eralized tuple on R is an m-tuple p = (o1,...,0m) such that
01 € Dy,...,0m € Dp. The value of a;inpiso; (1 <1< m). A
general ized database on R is a finite set R of generalized tuples
on R, equivalently, a subset of Dy X + -+ X Dp,,. If R consists only
of ground objects, then we say R is a ground database. Usual
relational databases are ground databases. We denote by DBr
the class of generalized databases on R.

Then we introduce a generalization relation between general-
ized databases by extending < on concept hierarchies. A tuple
p is more general than q if for every attribute a; (1 < i < m),
the value of a; in p is more general than that of a; in ¢q. A gen-
eralized database P is more general than @), denoted by Q C P,
if for every q in @, there is some p in P that is more general
than ¢q. The careful reader may find that the relation (DBg,C)
is the generalization relation used in the framework of Cai et
al. (1991), and what their heuristics algorithm searches for is
k-minimal multiple generalizations, where k is the threshold.

Let E be a ground database that the learning algorithm is
given, and k > 0 be the predetermined threshold value. Our
method consists of the following three stages:

1. Transform ground database) on the scheme R into a set
S of ground first-order terms that represent tuples in Q.

2. Apply the k-mmg algorithm to S. It finds a k-minimal
multiple generalization P of S in polynomial time in the
size of || S]]

3. Transform P to the corresponding generalized database R
on R. R is a minimally generalized database of Q.

To apply the k-mmg algorithm directly to the problem, we
represent a concept hierarchy (D, <) by a specific class TPp of
first-order terms with generalized relation <’. For each object
o in D, the alphabet Lp of 7Pp contains a function symbol o,
where o is of arity 0 if it is a ground element in D, and of arity
1 otherwise.

Recall that we identified a first-order term p on ¥p with an
ordered tree tree(p) labelled by symbols in £p in Section 3. The
mapping tree maps a term on Xp to a tree consisting of a single
path from the root to the leaf. We use this correspondence to

80

ARIMURA ET AL.

define a mapping 7 from D to 7 Pp. Hereafter, we consider D
as an ordered tree labelled by objects in D. Let o be an object
in D and 7 be a branch from the root T of D to o. If 0 is not a
ground object, we add a node labelled by a variable, say z, to
7 as the child of o.

Then, the single path 7 labelled by function symbols (and
possibly a variable) determines the unique first-order term p
such that tree(p) is the ordered tree m. Intuitively, a path
T = 01,02,...,0, is mapped to a term o01(02(...(0s)...)). Con-
sider the concept hierarchy shown in figure 3.2. Objects China
and Shanghai have the following correspondence with first-order
terms:

o = China - 7(0) = T(foreign(China(z)))
o' = Shanghai 7(0") = T(foreign(China(Shanghat)))

For a generalized tuple p = (01,...,0nr), we define the corre-
sponding first-order term 7(p) by 7(p) = db(r(01),...,7(0m))
using a special m-ary function symbol db, and the set 7(R)
of first-order terms by 7(R) = {7(p)|p € R}. Let TPp =
{7(0)| 0 € D} and TPy = {7(R)| R € DBr}.

Then, (D, <) and (T Pp, <') are order isomorphic. Moreover,
(TPp,<') is closed under generalizations. Thus, if we take a
relation C/ defined by @ E P if for every ¢ in @), there is some p
in P such that ¢ <' p, DBr and TP} become isomorphic. By
careful observation of the result in Section 3, the reader can see
that k-mmg algorithm computes a minimal k-multiple term P
containing a given finite set S of ground terms with respect to
c'.

Hence, we can efliciently find a minimally general database
R in DBy containing a ground database E under threshold k as
follows. First, we transform E to a set of first-order terms S =
7(E), then compute a k-mmg P of S, and again transform P
to a generalized database R = 7=!(P). We now show an exam-
ple of computing a minimally generalized database from a given
ground database E on the scheme R = (Major, Birth_Place, GPA)
by the k-mmg algorithm.

81

A GENERALIZATION OF THE LEAST GENERAL GENERALIZATION

Step 1. Transform a ground database E to the set S of ground
first-order terms by mapping 7 (Figure 3.3).

Major Birth_Place GPA
T(science(Phy)) T(Can(B-C(Van))) T (excellent(3.5))
T (science(Phy)) T(Can(Ont(Ott))) T (excellent(3.9))
T(science(Math)) T(foreign(Ind(Bom))) T(good(3.3))

T (science(Bio)) T(foreign(Chi(Shan))) T(good(3.4))
T (science(Comp)) T (Can(B-C(Vic))) T (excellent(3.8))
T(science(Stat)) T(foreign(Chi(Nan))) T(good(3.2))

Figure 3.3. A set S of ground first-order terms

Step 2. Apply the k-mmg algorithm to S.

1. It first searches for k-multiple terms reduced with respect
to S (Figure 3.4).

2. Then it computes k-minimal multiple generalization P by
tightening @ with respect to S (Figure 3.5).

Step 3. Transform P to the corresponding generalized database
R on R by mapping 7~!. Then, R is a minimally general gen-
eralized database obtained from E with respect to the order

(DBg,C) (Figure 3.6).

Major Birth_Place GPA
T(z1) T(Can(z3)) T(z3)
T (science(y;)) T(y2) T(ys)

Figure 3.4. A k-multiple term @ reduced with respect to S

We can easily see that the generalized database computed
by our method (figure 3.3) corresponds to what the LCHR al-

gorithm finds (figure 3.2). In the work in (Cai et al. 1991),
the correctness and the time complexity of the algorithm LCHR

82

ARIMURA ET AL.

Major Birth Place GPA
T(science(z;)) T(Can(zz)) T(excellent(z3))
T(science(y;)) T (foreign(y2)) T(good(y3))

Figure 3.5. A 2-mimimal multiple generalization P of S

Major Birth_Place GPA
science Can excellent
science foreign good

Figure 3.6. A transformed generalized database R

are not clear. On the other hand, we can estimate those of our
method from the correctness and the time complexity of the
k-mmg algorithm.

Unfortunately, the k-mmg algorithm may not find all of the
answers. This means that our method may lose some of char-
acteristic rules that Cai et al. method can find. Thus, the
study of a k-mmg algorithm that can find any k-mmgs non-
deterministically seems to be interesting from the viewpoint of
knowledge discovery in databases.

REFERENCES

Angluin, D. (1980) Inductive inference of formal languages from
positive data. Information and Control, 45:117-135.

Arimura, H., Shinohara, T. and Otsuki, S. (1991) A polynomial time
algorithm for finding finite unions of tree pattern languages. In
Proc. of the 2nd International Workshop on Nonmonotonic and
Inductive Logic. LNAI 659, pp. 118-131. Springer, 1993.

Arimura, H., Shinohara, T. and Otsuki, S. (1992a) Polynomial
time inference of unions of two tree pattern languages. IEICE
trans. Inf. and Syst., E75-D(7):426-434.

Arimura, H., Ishizaka, H. and Shinohara, T. (1992b) Polynomial

83

A GENERALIZATION OF THE LEAST GENERAL GENERALIZATION

time inference of a subclass of context-free transformations. In
Proceedings of 5th Annual ACM Workshop on Computational
Learning Theory, pp.136-143.

Cai, Y., Cercone, N. and Han, J. (1991) Attribute-oriented induc-
tion in relational databases. In G. Piatetsky-Shapiro and W. J.
Frawley, editors, Knowledge Discovery in Databases, pp. 213-
228. AAAI Press/The MIT Press.

Gold, E. M. (1967) Language Identification in the Limit. Informa-
tion and Control, 10:447-474.

Ishizaka, H. (1988) Model inference incorporating generalization.
Journal of Information Processing, 11(3):206-211.

Ishizaka, H., Arimura, H. and Sinohara, T. (1992) Efficient inductive
inference of primitive prologs from positive data. In S. Doshita,
K. Furukawa and T. Nishida, editors, Proc. ALT ’92, pp. 135~
146.

Lange, S. and Wiehagen, R. (1991) Polynomial-time inference of ar-
bitrary pattern languages, New Generation Computing, 8(4):361-
370.

Lassez, J-L. and Marriott, K. (1986) Explicit representation of terms
defined by counter examples. Journal of Automated Reasoning,
3:301-317.

Lloyd, J. W. (1984) Foundations of Logic Programming. Springer-
Verlag.

Muggleton, S. (1990) Inductive logic programming. In S. Arikawa,
S. Goto, S. Ohsuga, and T. Yokomori, editors, Proc. ALT ’90,
pp. 42-62. Ohmsha.

Muggleton, S. and Buntine, W. (1988) Machine invention of first-
order predicates by inverting resolution. In Proc. 5th Interna-
tional Conference on Machine Learning, pp. 339-352.

Piatetsky-Shapiro, G. and Frawley, W. J. editors. (1991) Knowledge
Discovery in Databases. AAAI Press/The MIT Press.

Pitt, L. and Valiant, L. G. (1988) Computational limitations on
learning from examples. JACM, 35(4):965-984.

Plotkin, G. D. (1970) A note on inductive generalization. In
B. Meltzer and D. Michie, editors, Machine Intelligence 5, pp.
153-163. Edinburgh University Press.

Reynolds, J. C. (1970) Transformational systems and the algebraic
structure of atomic formulas. In B. Meltzer and D. Michie, edi-

84

ARIMURA ET AL.

tors, Machine Intelligence 5, pp. 135-151. Edinburgh University
Press.

Shapiro, E. Y. (1981) Inductive inference of theories from facts.
Technical Report 192, Yale University Computer Science Dept.

Shinohara, T. (1991) Inductive inference of monotonic formal sys-
tems from positive data. New Generation Computing, 8:371-384.

Wright, K. (1989a) Identification of unions of languages drawn from
an identifiable class. In Proceedings of 2nd Annual Workshop
on Computational Learning Theory, pp. 328-333. Morgan Kauf-
mann,

Wright, K. (1989b) Inductive Inference of Pattern Languages. PhD
thesis, University of Pittsburgh.

85

4

The Justification of Logical Theories based
on Data Compression

A. Srinivasan
S. Muggleton

Oxford University Computing Laboratory,
11 Keble Road, Oxford, UK

M. Bain

The Turing Institute,
36 North Hanover Street,
Glasgow, UK.

Abstract

Non-demonstrative or inductive reasoning is a crucial compo-
nent in the skills of a learner. A leading candidate for this form
of reasoning involves the automatic formation of hypotheses.
Initial successes in the construction of propositional theories
have now been followed by algorithms that attempt to gener-
alize sentences in the predicate calculus. An important defect
in these new-generation systems is the lack of a clear model
for theory justification. In this chapter we describe a method
of evaluating the significance of a hypothesis based on the de-
gree to which it allows compression of the observed data with
respect to prior knowledge. This can be measured by compar-
ing the lengths of the input and output tapes of a reference
Turing machine which will generate the examples from the hy-
pothesis and a set of derivational proofs. The model extends
an earlier approach of Muggleton by allowing for noise. The
truth values of noisy instances are switched by making use of
correction codes. The utility of compression as a significance
measure is evaluated empirically in three independent domains.
In particular, the results show that the existence of compression

87

THE JUSTIFICATION OF LOGICAL THEORIES

distinguishes a larger number of significant clauses than other
significance tests. The method also appears to distinguish noise
as incompressible data.

1 INTRODUCTION

The ability to form inductive hypotheses is a fundamental re-
quirement for a learner. This is evident even in the most rudi-
mentary robots that plan actions based on continuity assump-
tions about the state of the world around them. Literature
on the automated formation of hypotheses has largely concen-
trated on their construction. Initial successes in the induction
of propositional theories (Michalski 1983; Quinlan 1986; Clark
and Niblett 1989) have been followed by algorithms that at-
tempt to generalize sentences in the predicate calculus (DeR-
aedt and Bruynooghe 1992; Muggleton and Feng 1990; Quinlan
1990; Rouveirol 1991). However, while the need to justify in-
ductive theories has long been recognized (Carnap 1952; Popper
1972) and is an important topic in the work by Plotkin (1971),
it remains largely unexplored within machine learning. In par-
ticular, although propositional theories have been justified using
statistical measures of significance (see, for example, Clark and
Niblett 1989), probability estimates (Cestnik 1991), or simplic-
ity (Quinlan and Rivest 1989), there appears to be no clear
method for evaluating first-order theories.

In this chapter we describe a model that addresses the is-
sue of hypothesis justification within the framework of learning
first-order theories. There are two principal features in our ap-
proach. First, given a set of alternative first-order hypotheses
for some data, the one chosen is that which is least likely to have
explained the data by chance. Second, the model appears to be
unique in that it accounts for the use of relevant prior knowledge
by the hypotheses. Significance measures used in propositional
learners are typically concerned only with the accuracy of a the-
ory and the number of examples it explains. Simply adopting
such a measure in a first-order learner would mean giving up
the ability to judge if the explanation was based on chance co-
incidences in the prior knowledge.

88

SRINIVASAN ET AL.

2 INCREMENTAL HYPOTHESIS CONSTRUCTION

We adopt the logical framework described by Shapiro (1983). In
this, the task of the learning process is to infer some (unknown)
target logic program P. There is an intended interpretation
(model) for this program Mp. We assume the presence of some
predicates whose interpretations are fixed and do not change in
Mp. These predicates constitute the background knowledge B.
At any given stage ¢ of incremental hypothesis construction, a
learner has accumulated examples known to be included in Mp
(denoted E;*) and those known to be excluded from it (denoted
E;™). Current learning systems attempt to construct hypotheses
H; under the following constraints:

E;=E*UE;"
E;+ﬂE,'—=@
BAH;*‘E,"*'

BAH;ANE; KO

There are in general, infinitely many consistent hypotheses
that satisfy these requirements. A snapshot of the construc-
tion of one such hypothesis by a learning (induction) machine
is shown in Figure 4.1. Despite satisfying the constraints listed

Figure 4.1. A stage in incremental hypothesis construction

above, a hypothesis H; may be incorrect or incomplete with
respect to Mp. This is remedied at subsequent stages when
training examples exposing the problem become available to the
learner.

There are some practical difficulties with this model of learn-
ing:

89

THE JUSTIFICATION OF LOGICAL THEORIES

¢ Examples may arise from a noisy data source and at a
given stage, we may have a theory that appears inconsis-
tent. There is no mechanism for accepting such a theory.

e Even with noise-free data, there may be several consistent
hypotheses to explain the data. There is no method of
evaluating the explanatory power of these hypotheses.

o There is no direction as to how the examples for training
are to be selected.

This chapter is concerned with the first two issues. We note in
passing that the normal approach adopted to address the third
problem involves either random data-sampling or asking queries
of an oracle. The former approach may require a large number
of examples before converging on the target program. Recent
efforts (Bain 1991; Morales 1991) attempt to actively guide the
generation of new examples.

3 INCREMENTAL HYPOTHESIS EVALUATION

In this section we consider evaluating competing hypotheses
constructed at a single stage in the incremental learning pro-
cess described earlier. Although in the 1950s Carnap (1952)
and others suggested ‘confirmation theories’ aimed at providing
statistical significance tests for logic-based inductive inference,
various difficulties and paradoxes encountered with these ap-
proaches meant that they were never applied within machine
learning programs (Mortimer 1988). Instead machine learning
researchers have for the most part made use of Occam’s razor
with various ad hoc definitions of complexity. However the lack
of a clear model underlying such approaches makes it difficult
to associate any independent meaning to the simplicity of a hy-
pothesis.

We concentrate on an approach described by ‘Muggleton in
(Muggleton 1988). This addresses the theory evaluation ques-
tion using ideas from algorithmic information theory (Chaitin
1987; Kolmogorov 1965; Solomonoff 1964). In this approach,
the utility of a Horn clause program is measured on a reference
Turing machine. Unlike the machine in Figure 4.1 this reference
machine behaves like a deduction machine. The input to this

90

SRINIVASAN ET AL.

machine is a program that has two distinct parts: a Horn clause
theory and a proof specification. The machine uses the latter to
output examples derivable by the theory (Figure 4.2).

Input tape Output tape
IllOl 1011000 T 001110110011101 I
Logic Proofs Positive and Negative examples
program

Figure 4.2. A Turing machine model for evaluating logic programs

Following algorithmic information theory, the Horn clause
theory is said to be compressive if the length of an encoding of
the input tape (in bits) is shorter than that of the output tape.
The use of a reference machine (as opposed to a universal one)
is motivated by demonstrating that the probability of obtaining
a compressive theory by chance decreases exponentially with
the amount of compression for any machine. This gives a clear
meaning to the notion of compression. For completeness, we
reproduce the proof of this result here.

Theorem 4.1 Let X, be the set of all binary strings of length
n, T be an arbitrarily chosen reference Turing machine and
the k-bit-compressible strings of length n, K, x, be defined as
{v:y € Zn,z € Tpek, T(x) = y}. The set K, has at most
2"~k elements.

Proof Since Turing machines are deterministic T either induces
a partial one-to-one or many-to-one mapping from the elements
of £, to the elements of K, . Thus |K, x| < |Bn-i] = 2775,
]

Corollary 4.2 The probability of a binary string generated by
tossing an unbiased coin being compressible by k bits using any
Turing machine T' as a decoding mechanism is at most 2=,

These results provide the theoretical justification for the ma-
terial in this chapter. Hypotheses are evaluated on the basis of
the compression they produce. Theories with higher compres-
sion are preferred as they are less likely to explain the data by

91

THE JUSTIFICATION OF LOGICAL THEORIES

chance. This deductive evaluation of hypotheses nicely comple-
ments the induction process depicted in Figure 4.1. Evaluating
the hypothesis constructed at any stage requires us to check the
compression produced by the hypothesis at that stage. As seen
in Figure 4.3, this is, in some sense, like reversing the theory
construction stage. :

B H, Proof(E;&B) T E, B |

Figure 4.3. A Turing machine model for incremental hypothesis eval-
uation

In Figure 4.3, the machine T has the following behaviour:
T(I(B A H;,Proof(B A E;|B A H;))) = O(B A Ey)

where I, O, and Proof are input, output, and proof encodings
for T. The k-bit compression achieved by the theory on the
input tape is then:

k = [O(BAE;)|—|I(BA H;,Proof(B A Ei|B A Hy))|

To be of practical value, we also have to specify the encodings
I, O, and Proof (this aspect was left unexplored in Muggleton
1988). Clearly, we would like an encoding that is guaranteed to
be optimal. However, results from algorithmic information the-
ory have shown that finding an optimal encoding is equivalent to
the halting problem. Consequently, we have to be satisfied with
a sufficient test for significance based on the encoding scheme
adopted. In the next section we describe an efficient coding
scheme that can be used to evaluate Horn clause theories for
the setting described by Figure 4.3.

92

SRINIVASAN ET AL.

4 AN ENCODING SCHEME FOR THE EVALUATION OF LOGICAL THEORIES
4.1 Input tape encoding

The basic premise of the compression model is that efficient
(ideally optimal) encodings are found for the input and output
tapes of a machine. The components of the input tape for the
machine in Figure 4.3 are shown in Figure 4.4. In this diagram,
the first three sections (up to the encoding of B) constitute
header information.

Size-of-B | No-of-clauses | Symbol-Descrip | B | H; | Proofs

Figure 4.4. Sections of the input tape for machine T’

The reference machine T interprets the input tape as follows:

o The size of the background knowledge (number of atoms
and/or clauses in B) allows the machine to distinguish
between it and the hypothesis constructed. The number
of clauses is used for two purposes. It states how many
clauses to expect on the input tape and it is also used to
construct a special clause separator symbol. Although the
background knowledge can consist of clauses, it is common
practice with current first-order learning systems to rep-
resent it by a ground model (Muggleton and Feng 1990;
Quinlan 1990). The need to specify a symbol description
in the header is elaborated shortly.

e A header is generated for the output tape using B and the
examples specified by the proof encoding. This header has
the same form as that on the input tape. The difference is
that the clause count and symbol description refer to the
output tape.

e Each example on the output tape is generated by its proof
encoding. The machine acts as a logic program inter-
preter. For each example, the proof encoding specifies
the clauses in the hypothesis and background knowledge
that are used to derive the example.

¢ The machine outputs the atoms and/or clauses in B with-

93

THE JUSTIFICATION OF LOGICAL THEORIES

out interpreting them on to the output tape.

4.1.1 Background knowledge and hypothesis encoding

A logic program can be viewed as a sequence of symbols. A
near optimal choice for encoding these symbols involves the use
of prefix codes. We assume a vocabulary S of symbols where
each symbol s € S appears with relative frequency p,. A prefix
code is a function

Prefiz: S — {0,1}*

which has the property that no code is a prefix of any other code.
This property ensures that codes are self-delimiting. Informa-
tion Theory (Shannon and Weaver 1963) tells us that the opti-
mal code length for symbol s is —log;p, bits. Huffman coding
(Gallager 1968) is a prefix coding which achieves approximately
this code length for each symbol.

In order for the machine to ‘understand’ the encoding of sym-
bols in B and the hypothesis, it is necessary to define the fre-
quencies of the different symbols used. This can then be used
to construct a code-book for the message on the input tape.
The components of this symbol description header are shown in
Figure 4.5.

PSyms | Zero | FSyms | Zero | Vars | Zero | P-arity | F-arity

Figure 4.5. Sections of the symbol description header

Predicate, function and variable symbols have different codes.
A prefix table, such as that of the predicate symbols, consists
of the individual symbol counts in order of their appearance.
This sequence of natural numbers is sufficient for a unique re-
construction of the codes used in the theory. The clause sep-
arator symbol (constructed using the clause count) is treated
as though it were a predicate symbol. The arities for predicate
and function symbols are also number sequences whose orders
correspond to those in the prefix tables. Clearly the clause sep-
arator ‘predicate’ symbol has no arity. ‘Zero’ is defined to be

94

SRINIVASAN ET AL.

the encoding of the natural number 0 and acts as a separator
for different sections of the header. Separators are not necessary
to delimit the arities since their number is determined by the
predicate and function symbol counts. In order to avoid infinite
regress we must find a universal coding for the natural numbers
that appear in the header. Natural numbers can be encoded
using prefix codes given an appropriate prior distribution. Ris-
sanen (1982) shows that an optimal distribution can be defined
for which the code length L(n) is bounded as follows:

logan < L(n) < logan + r(n)

where r(n)/logan — 0 and r(n) — oo as n — oco. For example,
a universal code for numbers could be constructed using N 0s
followed by a 1 followed by 2V — 1 binary encoded digits N =
0,1,2.... This gives the following codes for natural numbers:

0—-1

1 — 010

2 — 011

3 — 001000

11 — 00010000000

The approximate code-length for the natural number n using
this code is [logz(n + 2)] + [logz[logz(n + 2)]]. The prior
probability distribution assumed for these numbers is p(n) =
(nlog,®n)~!. In general, the lengths of all such universal codes
for natural numbers have log;n as the dominant term and to
first approximation can be taken as bounded by logs(n + 2) +
2logzloga(n + 2).

We assume that logical theories are expressed as a set of
Prolog clauses. The following grammar gives the syntax of our
encoding of theories:

Theory ::= { Clause }No of clauses
Clause ::= Atom Clause | Stop

Atom ::= PredSym [Negated] {Term}AritY(PredSy m)
Term ::= [‘0’] FuncSym {Term}Arity (FuncSym) | [‘1’] VarSym
Negated::= ‘0’ | ‘1’

95

THE JUSTIFICATION OF LOGICAL THEORIES

Example 4.3 Consider encoding a theory that consists of the
following clauses

normal(Year) :- year(Year), not leap4(Year).
leap4(Year) :- mod(Year,4,0).

The predicate symbols in order of appearance are normal/l,
year/1, leap4/1 and mod/3. In addition, there is a clause sepa-
rator ‘predicate’. The function symbols in order of appearance
are 4/0 and 0/0. There is a single variable symbol that occurs
five times. The encodings for the symbol counts and arities fol-
low (P, D, and B stand for Parse, Decimal and Binary). For
the example, we shall use the natural number coding described
earlier:

P P-count F-count V-count
D 1 1 2 1 0 1 1 0 5 0
B 010 010 011 010 1 010 010 1 001010 1
P P-arity F-arity

D1 1 1 3 0 o

B 010 010 010 001000 1 1

This is a total of 44 bits. Huffman codes for the clause sep-
arator and the predicate symbols are 00, 10, 110, 01, and 111 °
respectively. The function symbols have the codes 0 and 1.
Since there is only one variable it does not need a code. Thus
the coding for the theory itself is as follows (predicate names
are abbreviated for typesetting reasons only):

P norm(..) yr(..) notl4(..) Sep 14(..) mod(...) Sep
P Atom
B 101 11001 0111 00 011 11110 00

This is a further 21 bits. The encoding illustrates several
points. First, since we are only concerned with Prolog clauses,
the head of the clause does not have to be flagged for negation.
Further, codes are not needed once the identity of the symbol

96

SRINIVASAN ET AL.

is determined from the count and arity information. This is
evident in the case of encoding the variable: all that is needed
is to indicate where Year occurs (using the flag ‘1’). It is further
illustrated in the encoding for mod/3. From the header, it is
clear that the predicate has three arguments. From the symbol
counts, these have to be single occurences of Year, 4/0 and 0/0.
Thus once the position of the variable is known (from the ‘1’
flag), there is no need to flag the remaining arguments as being
function symbols. From the encoding of the second argument
(by ‘0’), the third is determined and does not have to be stated.

Although for longer theories we would expect that the header
information would be considerably shorter than the statement of
the theory, prefix coding may not be very efficient for small the-
ories. Clearly, each symbol type (predicate, function, variable)
can be coded differently with bits at the front of the input tape
indicating the type of coding adopted for each symbol. This
will change the contents of the header. Within our implemen-
tation, we can select the most efficient amongst three different
coding schemes for a symbol: universal natural number code, a
fixed-length code, or a prefix code (listed in order of increasing
header information). For each scheme, we use the non-integral
code-length as an optimal estimate. The assumption here is
that this value can be reached when sufficiently long messages
are encoded. |

4.1.2 Proof encoding

The reference machine T takes the theory and a proof encoding
and generates the examples. Derivational proofs are represented
as sequences of choices to be taken by a Prolog interpreter. We
illustrate this with a simple example.

Example 4.4 Consider a hypothesis that consists of the fol-
lowing clause:

p(X’Y7Z) - q(X7Y)’ I'(Y,Z)
Background knowledge consists of the following ground atoms:

a(1,2). r(2,3).
a(2,3). 1(2,4).

97

THE JUSTIFICATION OF LOGICAL THEORIES

q(3,4). r(3,4).

q(4,5). r(3,6).

Consider deriving p(1,2,3) using this hypothesis and back-
ground knowledge. In deriving the atom, the interpreter has
to first choose which clause of p/I to execute. In this case,
there is only one such clause and thus, no choice. The first
atom in the body of the chosen clause q(X,Y) can be matched
against any one of the set of four ground unit clauses in the
background. Specifying the choice for the proof (that is q(1,2))
requires 2 bits. This choice determines the choice of the variable
Y and constrains the interpreter to one of two possible choices
for r(Y,Z). Specifying the atom r(2,3) requires 1 bit. The com-
plete choice-point encoding for the atom p(1,2,3) is specified by
the string 011.

Note that the choice-point encoding is procedural: hypothe-
ses that are more efficient to execute have lower choice com-
plexity. This provides a natural bias towards learning efficient
clauses. We want to be able to encode a sequence of proofs;
one for each example on the output tape. This can be achieved
by preceding the series of proofs by an encoding of the number
of examples. This encoding of proofs is sufficient for examples
which are derivable from range-restricted (generative) theories.
However, it has to be extended to accomodate for the following;:

1. For non-generative clauses, substitutions have to be pro-
vided for variables that do not occur in the body of the
clause (since these will never be bound by any choice spec-
ification). The function codes for any substitutions needed
appear after the choice specifications.

2. Incorrect or incomplete theories can still be used for com-
pressing data to a certain degree. The theory in Example
4.3 is an example of a useful, though incorrect, theory for
distinguishing leap years from normal ones.

To address the second issue we distinguish three categories of
results obtained from the theory:

1. Correct. In this case the truth-value of the derived fact
agrees with the intended interpretation.

98

SRINIVASAN ET AL.

2. Error of commission. The truth-value of the derived fact
is the opposite of the intended interpretation.

3. Error of omission. The fact cannot be derived.

Each choice-point encoding is preceded by a prefix code in-
dicating its category. The prefix codes for the categories are
constructed using three numbers indicating the counts in each
category. These numbers are coded using the universal cod-
ing scheme and precede the proof encoding on the input tape.
Clearly, the total number of examples no longer has to be speci-
fied. The encoding of the errors of omission is the same as their
explicit encoding.

4.2 Output tape encoding

The output tape encoding is almost the same as that of the
input tape (see Section 4.1). The difference is that instead of
the hypothesis and proofs, examples are explicitly encoded as
atoms.

4.3 A comparison with FOIL's encoding scheme

The selection criterion used by the model in previous sections
is one of minimizing description length. Within a first-order
framework, the learning system FOIL (Quinlan 1990) uses an
encoding length criterion motivated by the Minimum Descrip-
tion Length principle described in (Rissanen 1978). Viewed as
a Turing machine model, the ‘output’ tape length is computed
using the following function:

|E|

logz(|E|) + loga(e

)

where |E| is the number of examples in the training set, and
| E*| is the number of positive instances covered by the hypoth-
esis. The ‘input’ tape encoding is simply the encoding of the
hypothesised clause. This is given by

> (1 + loga(|PredSyms|) + loga(|Args|)) — loga(n!)

where n is the number of literals in the clause, |PredSyms| is
the number of predicate symbols in the background knowledge,

99

THE JUSTIFICATION OF LOGICAL THEORIES

|Args| is the number of possible arguments. The number of bits
for the input tape must be less than the number of bits for the
output tape. Comparing this to our encoding method we note
the following:

1. There is no notion of proof encoding and consequently no
apparent instructions on how to reproduce the examples
on the output tape.

2. The hypothesis length grows logarithmically with the num-
ber of predicate symbols in the background knowledge. A
particular clause with given coverage can be invalidated by
adding predicates to the background knowledge. There is
thus no distinction between relevant and irrelevant back-
ground knowledge. In contrast, in our model, the effect
of irrelevant background knowledge is equal on input and
output tapes.

3. Negative examples are treated asymmetrically.

4. The factor of logy(n!) is used to correct for the ordering
of literals in clauses. The assumption is that any literal
ordering has equivalent information content. However in
our model the literal ordering affects the choice complexity
for proving examples, and thus the corresponding lengths
of proofs.

5 COMPRESSION AS A SIGNIFICANCE MEASURE

In this section, we illustrate the utility of using compression as
a measure of confidence in clauses learned for three different
problems:

1. Prediction of protein secondary structure. The prediction
of protein secondary structure from primary sequence is
an important unsolved problem in molecular biology. Re-
cently it has been shown that the use of relational learning
algorithms (see King and Sternberg 1990; Muggleton et al.
1991) can lead to improved performance.

2. Modelling drug structure-activity relationships. The de-
sign of a pharmaceutical drug often requires an under-
standing of the relationship between its structure and chem-

100

SRINIVASAN ET AL.

ical activity. Rules learned to model this relationship have
been recently been shown to perform better than existing
numerical methods (King et al. 1992).

3. Learning rules of illegality for the KRK chess end-game.
Despite its simplicity, the KRK problem remains the test-
bed for ILP techniques. We evaluate the compression mea-
sure with different levels of noise. We use a simple noise
model that randomly changes the sign of a fixed percent-
age of the data-set. This is similar to the Classification
Noise Process introduced by Angluin and Laird in (An-
gluin and Laird 1988) ! .Training and testing is done with
1000 examples in each set.

The error rate of a clause on training data (that is, the re-
classification or resubstitution error rate) can give a highly mis-
leading estimate of the accuracy of the clause on the whole do-
main. The protein folding domain provides a striking example
of this. Figure 4.6 shows a correlation diagram of the accura-
cies of clauses on training and unseen (test) data for the protein
structure prediction problem. Each point in this diagram repre-
sents a first-order clause constructed for predicting the position
of an a-helix. 2 The rank correlation between the training and
test set accuracies in the diagram is 0.3.

In this section we evaluate compression as a method of iden-
tifying ‘stable’ clauses in the following sense. In general, we find
a difference between the accuracy of a clause over training and
test data. Consider the variation of this difference over a set of
clauses judged to be significant by some measure. Small varia-
tions indicate that the significance measure has largely avoided
selecting clauses that over-fitted the training data.

In this, a noise of implies that (independently) for each example, the
sign of the example is reversed with probability 7. This is not the only
random noise process possible. For example, a noise of 7 here corresponds
to a class-value noise of 27 in that adopted by Quinlan (1986), and Don-
ald Michie (private communication) advocates a process that preserves the
underlying distribution of positive and negative examples.

2The clauses were learnt by the learning program Golem (Muggleton
and Feng 1990). Note that in this domain the accuracy of a rule which
predicted all positions to be part of an a-helix is 0.5.

101

Test Accuracy

THE JUSTIFICATION OF LOGICAL THEORIES

09 -

08 -

07|

06 -

05 |-

04

03

02
0.65

) T T r v hd)
°
®
Y o
®» o o o °
° °
°
° ®
° ® ° o o
° %0 ®
& o ° °
° 00 ° °
8 ° °
8 ° ° °
% °
° 60 o
°
0
° o o o © o
x o 00 °
° ° ° °
°
£ ° °
1 L 1 L4 1 1 L
07 0.75 08 085 09 098
Train Accuracy

Figure 4.6. Training and test set accuracies of clauses predicting
protein structure

We compare the compression measure against the following
alternatives:

1.

Training set accuracy. The motivation for this is that the
observed sample accuracy is a consistent estimate of the
domain accuracy of clauses. In the presence of noise, this
measure is not very efficient (as seen from Figure 4.6).

Training set coverage. These are the numbers of exam-
ples that can be derived using a clause. The motivation
for this comes from the expectation that the greater the
cover, the less likely that sample accuracy will be far from
domain accuracy. We consider the coverage of a clause as
a percentage of the total training set.

Bayesian posterior variance. This measure is described in
(Cussens 1992). It concerns the variance of the posterior
distribution for the domain accuracy. This distribution is
obtained by using Bayes’ rule to update a uniform prior.

102

SRINIVASAN ET AL.

If a clause covers n examples, t, of which are true positives
then the value of this measure is:

(t,, +1)(n - i + 1)
(n+27(n +3)

VarianceMeasure=1—12

The comparison is done as follows.

e For each domain, we first find the compressive clauses.
These are the clauses that the compression measure re-
ports as having avoided over-fitting (that is, significant).

e The standard deviation of the difference in training and
test accuracies s of compressive clauses is determined.

e For each of the other measures, we order clauses in increas-
ing value of the measure. We want to select the clauses
reported significant by the measure. Unlike the compres-
sion measure, there is no obvious threshold to determine
this clause-set. Consequently, we chose a threshold that
selects the largest clause-set with an s value guaranteed
to be less than or equal to that of compressive clauses.
This ensures that the set of significant clauses is at least
as ‘stable’ as the compressive one.

e We compare the measures on the basis of the number of
clauses reported significant by each measure.

Figure 4.7 shows the number of clauses selected as signifi-
cant by each measure. The thresholds required to obtain these
clauses are shown in Figure 4.8.

The diagrams illustrate the following points:

e Training accuracy appears to be clearly the worst judge of
clauses. Compression usually distinguishes a larger num-
ber of significant clauses than the other measures. Al-
though there is probably not enough data to claim that it
does significantly better, we expect it to perform well in
domains such as the one predicting protein structure. A
characteristic of this domain is that the clauses are highly
relational and the background knowledge is quite com-
plex. In these cases, simple measures relying on coverage
and accuracy may not be enough.

103

THE JUSTIFICATION OF LOGICAL THEORIES

e In practice, the selection threshold for a significance mea-
sure is pre-determined. A compression-based choice is
easy: all that is required is to select clauses that are com-
pressive. On the other hand, the threshold for the other
measures is not obvious.

Domain Total Sd of |Number of significant clauses
clauses [sig. clauses|{Compr.|Acc.|% Cover| Var.
Proteins 89 0.09 16 0 7 9
Drugs 107 0.05 103 | 52 79 76
KRK(5%) 19 0.08 19 19 19 19
KRK(10%)| 36 0.13 31 0 12 23
KRK(20%)| 40 0.15 33 17 36 33

Figure 4.7. A comparison of significance measures

Domain Selection thresholds for significant clauses
Compression | Accuracy |% Cover | Variance
Proteins >0 >0.65 >2.9 >0.97
Drugs >0 =1.0 >2.1 | >0.99
KRK(5%) >0 >0.50 >0 >0.86
KRK(10%) >0 >0.54 | >11.1 | >0.92
KRK(20%) >0 >0.7 >0.59 | >0.83

Figure 4.8. Selection thresholds for significance measures

6 'COMPRESSION AS A NOISE-METER

The results in the previous section suggest that compressive
hypotheses have good ‘accuracy-stability’. We now consider
extending this to estimate the amount of noise in the domain.
Besides being an interesting quantity in itself, this estimate can

be used to provide loose bounds on the expected accuracy of

10

4

SRINIVASAN ET AL.

hypotheses on unseen (test) data. Since we are dealing with
noisy domains, it is necessary to distinguish between the real
sample accuracy (on noise-free data) of a hypothesis and its
observed one (on noisy data).

Consider a noise-free training set classified by an oracle. Let
p be the fraction of examples in this data whose classification by
a hypothesis agrees with the oracle’s classification (this is the
real sample accuracy). Clearly, p < 1. Suppose this data is then
subject to noise that changes the class values of a fraction 1 — ¢
of the examples. That is, a fraction ¢ of the examples is not
affected by the noise process. For noisy domains ¢ < 1. Then,
on unseen data from the same source the observed accuracy of
the hypothesis can at best be pg+(1—p)(1—¢q) = 1—p—g+2pq.
If the hypothesis does not fit any noise at all, then its observed
accuracy on the training set will be q. Its corresponding real
accuracy p can at best be 1. On the other hand, if the hypothesis
fits all the noise, the observed accuracy on the training set will
be 1. The corresponding real accuracy will be gq. Therefore, a
rough estimate is that the observed accuracy of any hypothesis
on independent test data from the same distribution lies in the
interval [2¢% — 2¢ + 1, q].

The problem with this analysis is that in general, the value
of ¢ is unknown. All that is known is that ¢ will be the observed
training accuracy of a hypothesis that exactly avoids fitting any
noise. One possible method of identifying such a hypothesis is
to exploit the feature of noisy data as being incompressible by a
hypothesis. This suggests the following procedure for determin-
ing the amount of noise in the domain. Progressively consider
hypotheses with higher training accuracy. Determine the com-
pression of each hypothesis. Estimate ¢ as the training accuracy
of the most compressive hypothesis. Clearly, given that we can
never prove that our input tape encoding is the shortest one
possible, adopting this definition may result in incorrectly con-
demning some data as noise. Thus, the value of ¢ obtained
using this procedure will be an under-estimate (alternatively,
the amount of noise will be over-estimated). We tested this on
the KRK domain. The experiments involved introducing differ-
ent levels of noise (using the classification noise model) into a

105

THE JUSTIFICATION OF LOGICAL THEORIES

% Noise introduced | % Noise estimated

0 0

5 5.4
10 10.3
15 15.3
20 20.2
30 30.1
40 40.1

Figure 4.9. Noise estimation using compression

data set of 10000 examples. The noise level was then estimated
using the ‘most compressive’ hypothesis. The results tabulated
in Figure 4.9 clearly show the tendency to over-estimate the
amount of noise. The relatively large size of the training set is
also important to obtain reliable estimates using the compres-
sion model. This issue is explored further in the next section.

7 COMPRESSION-GUIDED LEARNING: A CASE STUDY

Based on the positive empirical results of the previous sections,
we now describe a case study that involves incorporating the
compression model in the learning process. We concentrate on
the non-monotonic learning framework called closed-world spe-
cialization (Bain and Muggleton 1991). This method progres-
sively corrects a first-order theory by inventing (and possibly
generalizing) new abnormality predicates. The process has re-
cently been used to construct a complete and correct solution
for the standard KRK illegality problem (Bain 1991). However,
a key issue remains to be addressed: there is no mechanism
by which a non-monotonic learning strategy can reliably distin-
guish true exceptions from noise. For example, a strategy based
on closed-world specialization would continue specialising until
a correct theory is obtained. In noisy domains, this will neces-
sarily result in fitting the noise. To address this, we incorporate

106

SRINIVASAN ET AL.

the Turing machine compression model in Figure 4.3 within the
non-monotonic learning framework. A simple search procedure
is developed to find as compressive an explanation as possible for
the data. The result of this compression-guided non-monotonic
learning is evaluated on the KRK domain.

7.1 Closed-World Specialization

Figure 4.10 shows an algorithm that performs the alternate
operations of specialization and generalisation characteristic of
closed-world specialization.

It is worth noting here that:

1. As in (McCarthy 1986), there is an assumption that the
exceptions to a rule are fewer than the examples that sat-
isfy it.

2. The call to generalize results in an attempt to induce a
(possibly over-general) rule by a learning algorithm.

3. All rules are added to the theory. Further, all negative
examples covered by an over-general clause are taken to
be exceptions and the clause is specialized with a (new)
abnormality predicate.

7.2 Compression-based clause selection

Each correction performed by the CWS algorithm is an attempt
to improve the accuracy of the theory, at the expense of increas-
ing its size. Clearly, if the correction was worth while, the gain
in accuracy should outweigh the penalty incurred in increasing
the theory size. In encoding terms, each correction increases
the theory encoding on the input tape and decreases the proof
encoding. In the model in Figure 4.3, a net decrease in the
length of the input tape occurs when the correction succeeds
in identifying some pattern in the errors (that is, the errors
are not noise). The new theory consequently compresses the
data further by exploiting this pattern. Using this feature, we
evaluate the utility of updating a theory by checking for an in-
crease in compression. We note the following consequences of
using the compression model within the non-monotonic frame-
work adopted:

107

THE JUSTIFICATION OF LOGICAL THEORIES

start:
PosE = positive examples of target concept
NegE = negative examples of target concept
return learn(PosE,NegE)

learn(Pos,Neg):
ClauseList = []
repeat
C = generalize(Pos,Neg)
ifC#{
PosC = positive examples covered by C
NegC = negative examples covered by C
Pos = Pos - PosC
Neg = Neg - NegC
ClauseList = ClauseList + (C,PosC,NegC)

until C =]
Theory = []
foreach (Clause,PosC,NegC) in ClauseList
if [NegC| # 0
Theory = Theory + specialise(Clause,PosC,NegC)
else

Theory = Theory + Clause
return Theory

specialize(HornClause,Pos,Neg):
hd(V4, ..., V;;) = head of HornClause
Body = body of HornClause
ab = a new predicate symbol
SpecializedClause = hd(V}, ..., V;) « Body, not ab(W,..., Vi,)
PosE = positive examples of ab formed from Neg
NegE = negative examples of ab formed from Pos
return SpecializedClause + learn(PosE,NegE)

Figure 4.10. Non-monotonic inductive inference using closed-world
specialization (CWS)

108

SRINIVASAN ET AL.

1. We can be confident of not having fitted the noise only if
the theory itself is compressive.

2. With the closed-world assumption, all examples are cov-
ered. Consequently, the output tape has to be encoded
only once. Input tapes for alternative theories are com-
pared against this encoding.

3. Consider an over-general clause in the current theory. The
proof encoding described ensures all variables of the clause
are bound to ground terms. Specializing this clause in-
volves adding a negated literal to its body. By appending
this literal to the body, we are guaranteed that it will be
ground. This ensures safety of the standard Prolog com-
putation rule used by the Turing machine.

4. Recall that the proof encoding for each example has two
parts: a choice-point specification and a proof tag. Since
the negative literal appended to a clause can never create
bindings, the choice-point specification remains unaltered.
The size-accuracy trade-off referred to earlier therefore re-
duces to a trade-off between increasing theory size and
decreasing tag size. Not having to recalculate the choice-
point encoding for each specialization is a major benefit
as this is an extremely costly exercise.

While the aim is to obtain the most compressive subset of the
clauses produced by the CWS algorithm, it is unnecessary to
examine all subsets since clauses constructed as generalizations
of an abnormality predicate cannot be considered independent
of the parent over-general clause. For example, it makes no
sense to consider the following set of clauses for explaining leap
years:

normal(Year) :- year(Year), not leap{(Year).
leap400(Year) :- modulo(Year,400,0).

Despite this, there may still be an intractably large num-
ber of clause-sets to consider. Consequently, we adopt a greedy
strategy of selecting clauses in order of those that give the most
gain (in compression). This strategy has to confront two impor-
tant issues: devising a reliable method of deciding on the ‘best’

109

THE JUSTIFICATION OF LOGICAL THEORIES

clause to add to the theory and the fact that adding this clause
may not produce an immediate increase in compression.

A simple way to address the first problem is to select the
clause that corrects the most errors. Since decreasing errors is
the only way to shorten the input tape, the gains are larger for
theories that make fewer errors. This works well if all clauses are
of approximately the same descriptional complexity. A better
estimate would account for the complexity of individual clauses
as well. This can be done using average estimates of the cost
of encoding predicates, functions, and variables. In the experi-
ments in the next section, this more sophisticated estimate has
proved unnecessary. This is because the clauses fitting noisy
data tend to correct fewer errors and, therefore, are considered
- later using the simpler estimate. For the other clauses, the gain
from correcting errors dominates the loss from increased theory
size.

To address the problem of local minima, it is clearly desirable
to have a method of looking ahead to see if a (currently non-
compressive) clause will be part of the final theory. To decide
this, we calculate an estimate of the compression produced by
the most accurate theory containing the clause. The clause is re-
tained if this expected compression is better than the maximum
achieved so far. Each time an actual increase in compression is
produced, the theory is updated with all clauses that have been
retained. Figure 4.11 shows how the estimate is calculated.
The estimated compression will usually be optimistic because it
assumes that all errors can be compressed. Of course, one way
to guarantee an optimistic estimate is to assume that there will
be no increase in theory size (as opposed to the scaled estimate
in Figure 4.11). However, this gives no heuristic power and usu-
ally only prolongs a futile search for a correct theory. Figure
4.12 summarises the main steps in the compression-based selec-
tion of clauses as described here. The following points deserve
attention:

1. At any given stage, only some clauses produced by CWS
are candidates to be added to the theory (recall the earlier
statement that over-general clauses have to be considered

110

SRINIVASAN ET AL.

estimate(Theory):
Correct = number of examples correctly classified by Theory
Max = number of examples that learner can classify correctly
Outbits = length of output tape (in bits)
OldTheory = length of Theory (in bits)
OldTags = current length of correction tags (in bits)
Choices = length of choice-point encoding (in bits)

NewTheory = OldTheory x Max / Correct

NewTags = error tag length to classify correctly Max examples
EstInbits = NewTheory 4+ Choices + NewTags

return (Outbits - EstInbits)

Figure 4.11. Estimating the compression from a theory

before their specializations).

2. The ‘best’ clause refers to the clause selected using the
simple error-count measure, or the more sophisticated one
that accounts for the estimated theory increase. To obtain
the latter requires a knowledge of the number of predicate,
function, and variable symbols in the clause.

3. Consider the situation where the estimated compression
from adding the ‘best’ clause is no better than the com-
pression already obtained. Figure 4.12 does not acknowl-
edge the possibility that some of the other clauses can do
better. It is possible to rectify this by progressively trying
the ‘next best’ clause until all clauses have been tried.

4. The procedure in Figure 4.12 is reminiscent of post-pruning
in decision-tree algorithms (the clauses are constructed
first and then possibly discarded). A natural question that
arises is whether it is possible to incorporate the compres-
sion measure within the specialization process The anal-
ogy to zero-order learning algorithms is whether tree pre-
pruning is feasible. The answer is yes, and in practice it is
the mechanism preferred as it avoids inducing all clauses.
The procedure in Figure 4.12 however serves to bring out
the main features succinctly.

111

THE JUSTIFICATION OF LOGICAL THEORIES

start:
ClauseList = clauses produced by CWS
return select_clauses(ClauseList)

select_clauses(ClauseList):
Theory = PartialTheory = []
Compression = 0
repeat
Potential = clauses in ClauseList that can be added to theory
C = ‘best’ clause in Potential
if C # [}
PartialTheory = PartialTheory + C
NewCompression = compression of PartialTheory
if NewCompression > Compression
Theory = PartialTheory
Compression = NewCompression
else
EstCompression = estimate(PartialTheory)
if EstCompression < Compression return Theory
until C =]
return Theory

Figure 4.12. Compression-based selection of clauses produced by
CwWS

112

SRINIVASAN ET AL.

7.3 Empirical evaluation

We evaluate the compression-guided closed-world specialization
procedure on the KRK domain. However, contrary to normal
practice, we chose to learn rules for KRK-legality (as opposed to
KRK-illegality). This provides an extra level of exceptions for
the specialization method. Given background knowledge of the
predicates lt/2 and adj/2, Figure 4.13 shows the target theory.

% legal(WK_file, WK_rank, WR_file, WR_rank, BK_file, BK _rank)
legal(A,B,C,D,E,F) :- not ab00(A,B,C,D,E,F).
ab00(A,B,C,D,C,E) :- not ab11(A,B,C,D,C,E).
ab00(A,B,C,D,E,D) :- not ab12(A,B,C,D,E,D).
ab00(A,B,C,D,E,F) :- adj(A,E), adj(B,F).
ab00(A,B,A,B,C,D).

ab12(A,B,C,B,D,B) :- It(A,D), It(C,A).

ab12(A,B,C,B,D,B) :- lt(A,C), It(D,A).

ab11(A,B,A,C,A,D) :- It(B,D), It(C,B).

ab11(A,B,A,C,A,D) :- It(B,C), It(D,B).

Figure 4.13. A complete and correct theory for KRK-legality

It is possible to achieve an accuracy of about 99.6% without
accounting for the second level of exceptions. In fact, the theory
shown in Figure 4.14 is about 98% correct.

legal(A,B,C,D,E,F) :- not ab00(A,B,C,D,E,F).
ab00(A,B,C,D,C,E).

ab00(A,B,C,D,E,D).

ab00(A,B,C,D,E,F) :- adj(A,E), adj(B,F).

Figure 4.14. An ‘approximately correct’ theory for KRK-legality

We experiment with learning the legality theory with artifi-
cially introduced noise on different sized training sets. For the
experiments, we again adopt the classification noise model re-
ferred to earlier. Finally, although the procedure described in
Figure 4.12 is not dependent on any particular induction algo-

113

THE JUSTIFICATION OF LOGICAL THEORIES

rithm, the results quoted here use Golem (Muggleton and Feng
1990).

Figure 4.15 tabulates the percentage accuracy of the most
compressive theory for different noise levels. Here ‘accuracy’
refers to accuracy on an independent (noise-free) test set of
10000 examples. Since the compression model only guarantees
reliability for compressive theories, nothing can be said about
those for which compression is less than 0 (irrespective of their
accuracy on the test set). In Figure 4.15, an entry of ‘.’ denotes
that the theory obtained is non-compressive on the training data
and consequently, no claim is made regarding its accuracy on the
test set. The results highlight some important points. Com-
pressive theories do appear to avoid fitting the noise to a large
extent. The price for this reliability is reflected in the amount
of data required. In comparison, it is possible that other tech-
niques may require fewer examples. However, they either require
various parameters to be set (Dzeroski 1991), use ad hoc con-
straints (Quinlan 1990), or need an additional data set for prun-
ing (Brunk and Pazzani 1991). Further, most of them are un-
able to offer any guarantee of reliability (the approach followed
in Dzeroski 1991 can select clauses above a user-set significance
threshold). In this respect, our empirical results mirror PAC
(Valiant 1984) results for learning with noisy data in proposi-
tional domains (Angluin and Laird 1988): with increasing noise,
more examples are needed to obtain a good theory. It is also
worth noting that the conditions covered by the second level of
exceptions (the cases in which the White King is in between the
White Rook and Black King) occur less than 4 times in every
1000 examples. This is only picked up in the noise-free data set
of 10000 examples (in which there were 38 examples where the
rules applied).

Extending the PAC analogy further, Figure 4.16 shows the
results from a different perspective. For different levels of noise,
this figure shows the number of training examples required for
the ‘approximately correct’ theory of Figure 4.14 to be compres-
sive. For example, at least 170 examples are required to obtain
a compressive theory that is 98% accurate on noise-free data.
While these numbers are approximate (they are obtained by

114

SRINIVASAN ET AL.

Training Set Size
Noise (%) | 100 | 250 | 500 | 1000 | 5000 | 10000
0 - 99.7 1 99.7 [99.7 | 99.7 | 100
5 - 98.1 | 98.1 { 99.7 | 99.7 | 99.7
10 - - 98.1 | 98.1 |99.7 | 99.7
15 - - 98.1 [98.1 |99.7 | 99.7
20 - - - 98.1 |99.7 | 99.7
30 - - - - 98.1 | 98.1
40 - - - - - 98.1

Figure 4.15. Test-set accuracy for the ‘most compressive’ theory

extrapolating the compression produced by the theory for the
different training sets in Figure 4.15) they do indicate the gen-
eral trend of requiring larger example sets for increasing noise
levels.

8 CONCLUSION

In this chapter we have developed a general encoding scheme
for deciding the significance of first-order hypotheses by refin-
ing the approach found in (Muggleton 1988). The requirement
to encode both hypotheses and proofs results in some unique
advantages:

1. The resulting compression measure appears to be the first
significance measure that accounts for the relevance and
utility of background knowledge. This issue has been
avoided to date by relational learning systems.

2. The measure appears to reliably distinguish noisy data by
finding them to be incompressible with the background
knowledge.

3. The encoding incorporates notions of efficiency in the same
units (bits) as the program description. Michie (1977) dis-
cusses in detail the time-space tradeoff for encoded knowl-

115

THE JUSTIFICATION OF LOGICAL THEORIES

Examples required

Figure 4.16. Examples required for a 98% correct and compressive
theory

116

SRINIVASAN ET AL.

edge using the standard Machine Intelligence problem of
perfect play in chess. Within Machine Learning, vari-
ous methods including EBL (Mitchell et al. 1986) have
been developed to learn the time-space tradeoff. EBL sys-
tems take a set of axioms and add redundant theorems in
order to reduce proof lengths for specific types of prob-
lems. These systems do not contain any sound criterion of
whether theorems being added are significant. A method
of estimating the utility of adding these theorems is de-
scribed in (Subramanian and Hunter 1992). The method
does not appear to directly account for the space dimen-
sion. The compression model described in this chapter
should be able to provide a criterion that accounts for this
as well.

The question of how well hypotheses perform on unseen data
was dealt with first by Gold (1967) and more recently within the
PAC (Probably-Approximately-Correct) framework. The Gold
and PAC frameworks describe the conditions under which a class
of concepts can be said to be learnable. In the PAC framework
it is explicitly assumed that the distribution of examples in the
training and test sets are the same. Blumer et al. (1986), Board
and Pitt (1989), and Li and Vitanyi (1989) have in various ways
shown that a class of concepts is PAC-learnable if and only if
it can be guaranteed that a learning algorithm is able to find
a hypothesis which is smaller than the data. It remains to be
shown that our concept of hypothesis size (that is, hypothesis
and proofs) is equivalent to that adopted in these theoretical
results.

The task of distinguishing between exceptions and noise is an
issue that is typically ignored in the literature on non-monotonic
reasoning. It is, however, of fundamental importance for a learn-
ing program that has to construct theories using real-world data.
One way to approach the problem is to see if the exceptions to
the current theory exhibit a pattern. The compression model
we have used in this chapter does precisely this. Our empirical
results suggest that by selecting the most compressive theory,
it is possible (given enough data) to reliably avoid fitting most

117

THE JUSTIFICATION OF LOGICAL THEORIES

of the noise. Clearly, it would be desirable to confirm these re-
sults with controlled experiments in other domains. In practice,
the method has found interesting rules on an independent prob-
lem of pharmaceutical drug design (King et al. 1992). Finally,
the results also lend support to the link between compressive
theories for first-order concepts and their PAC-learnability.

Acknowledgments

The authors would like to thank Donald Michie and the ILP
group at the Turing Institute for their helpful discussions and
advice. This work was carried out at Oxford University Com-
puting Laboratory and the Turing Institute and was supported
by the Esprit Basic Research Action project ILP (6020), the
IED’s Temporal Databases and Planning Project and the SERC
Rule-Base Systems Project. l

REFERENCES

Angluin, D. and Laird, P. (1988). Learning from noisy examples.
Machine Learning, 2(4):343-370.

Bain, M. (1991). Experiments in non-monotonic learning. In Pro-
ceedings of the Fighth International Workshop on Machine Learn-
ing, pages 380-384, San Mateo, CA. Morgan Kaufmann.

Bain, M. and Muggleton, S. (1991). Non-monotonic learning. In
Michie, D., editor, Machine Intelligence, 12. Oxford University
Press.

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. (1986).
Classifying learnable geometric concepts with the Vapnik Cher-
vonenkis dimension. In Proceedings of the 18th ACM Symposium
on Theory of Computing, pages 273-282.

Board, R. and Pitt, L. (1989). On the necessity of occam algo-
rithms. UIUCDCS-R-89-1544, University of Illinois at Urbana-
Champaign.

Brunk, C. and Pazzani, M. (1991). An investigation of noise-tolerant
relational concept learning algorithms. In Birnbaum, L. and
Collins, G., editors, Proceedings of the Eighth International Work-
shop on Machine Learning, San Mateo. Morgan Kaufmann.

118

SRINIVASAN ET AL.

Carnap, R. (1952). The Continuum of Inductive Methods. Chicago
University, Chicago.

Cestnik, B. (1991). Estimating probabilities: A crucial task in ma-
chine learning. In Proceedings of the European Conference on
Artificial Intelligence, Stockholm, Sweden.

Chaitin, G. (1987). Information, Randomness and Incompleteness
- Papers on Algorithmic Information Theory. World Scientific
Press, Singapore.

Clark, P. and Niblett, T. (1989). The CN2 algorithm. Machine
Learning, 3(4):261-283.

Cussens, J. (1992). Estimating rule accuracies from training data.
In ECAI Workshop on Logical Approaches to Learning.

DeRaedt, L. and Bruynooghe, M. (1992). Interactive concept-learning
and constructive induction by analogy. Machine Learning, 8(2):107-
150.

Dzeroski, S. (1991). Handling Noise in Inductive Logic Program-
ming. University of Ljubljana, (M.Sc. Thesis), Ljubljana.

Gallager, R. G. (1968). Information Theory and Reliable Communi-
cation. Wiley, New York.

Gold, E. (1967). Language identification in the limit. Information
and Control, 10:447-474.

King, R., Muggleton, S., and Sternberg, M. (1992). Drug design
by machine learning: The use of inductive logic programming to
model the structure-activity relationships of trimethoprim ana-
logues binding to dihydrofolate reductase. Proc. of the National
Academy of Sciences, 89(23).

King, R. and Sternberg, M. (1990). A machine learning approach
for the prediction of protein secondary structure. Journal of
Molecular Biology, 216:441-457.

Kolmogorov, A. (1965). Three approaches to the quantitative defi-
nition of information. Prob. Inf. Trans., 1:1-7.

Li, M. and Vitanyi, P. (1989). Inductive reasoning and Kolmogorov
complexity. In Proceedings of the Fourth Annual IEEE Structure
in Complezity Theory Conference, pages 165-185.

McCarthy, J. (1986). Applications of circumscription to formalizing
common sense knowledge. Artificial Intelligence, 28:89-116.
Michalski, R. (1983). A theory and methodology of inductive learn-

ing. In Michalski, R., Carbonnel, J., and Mitchell, T., editors,

119

THE JUSTIFICATION OF LOGICAL THEORIES

Machine Learning: An Artificial Intelligence Approach, pages
83-134. Tioga, Palo Alto, CA.

Michie, D. (1977). A theory of advice. In Elcock, E. and Michie, D.,
editors, Machine Intelligence, 8, pages 151-168. Horwood.

Mitchell, T., Keller, R., and Kedar-Cabelli, S. (1986). Explanation-
based generalization: A unifying view. Machine Learning, 1(1):47-
80.

Morales, E. (1991). Learning features by experimentation in chess.
In Kodratoff, Y., editor, EWSL ’91, pages 494-511, Berlin. Springer
Verlag.

Mortimer, H. (1988). The Logic of Induction. Ellis Horwood, Chich-
ester, England.

Muggleton, S. (1988). A strategy for constructing new predicates in
first order logic. In Proceedings of the Third European Working
Session on Learning, pages 123-130. Pitman.

Muggleton, S. and Feng, C. (1990). Efficient induction of logic pro-
grams. In Proceedings of the First Conference on Algorithmic
Learning Theory, Tokyo. Ohmsha.

Muggleton, S., King, R., and Sternberg, M. (1991). Predicting pro-
tein secondary structure using inductive logic programming. Pro-
tein Engineering, 5:647-657.

Plotkin, G. (1971). Automatic Methods of Inductive Inference. PhD
thesis, Edinburgh University.

Popper, K. (1972). Conjectures and Refutations: The Growth of '
Scientific Knowledge. Routledge and Kegan Paul, London.

Quinlan, J. (1986). Induction of decision trees. Machine Learning,
1:81-106.

Quinlan, J. (1990). Learning logical definitions from relations. Ma-
chine Learning, 5:239-266.

Quinlan, J. and Rivest, R. (1989). Inferring decision trees using the
Minimum Description Length principle. Information and Com-
putation, 80:227-248.

Rissanen, J. (1978). Modeling by shortest data description. Auto-
matica, 14:465-471.

Rissanen, J. (1982). A universal prior for integers and estimation by
Minimum Description Length. Annals of Statistics, 11:416-431.

Rouveirol, C. (1991). Itou: Induction of first-order theories. In First
International Workshop on Inductive Logic Programming, Porto,

120

SRINIVASAN ET AL.

Portugal.

Shannon, C. and Weaver, W. (1963). The Mathematical Theory of
Communication. University of Illinois Press, Urbana.

Shapiro, E. (1983). Algorithmic Program Debugging. MIT Press.

Solomonoff, R. (1964). A formal theory of inductive inference. In-
formation and Control, 7:376-388.

Subramanian, D. and Hunter, S. (1992). Measuring utility and the
design of provably good ebl algorithms. Ninth International Ma-

chine Learning Conference.
Valiant, L. (1984). A theory of the learnable. Communications of
the ACM, 27:1134-1142.

121

5

Utilizing Structure Information in Concept
Formation

K. Handa, M. Nishikimi and H. Matsubara

Electrotechnical Laboratory
Umezono 1-1-4, Tsukuba, JAPAN 305

Abstract

Inductive learning is a quickly growing area of machine learning,
and the methodology of concept formation is to realize the task
of inductive learning incrementally and without supervision. We
have proposed a concept formation system CAFE, that creates a
concept hierarchy from structured instances. The system uses a
new classification algorithm mutual induction and an evaluation
function known as concept-predictability. Our theory is that a
system that deals with structures can not only expand possible
domains of learning but also use structure information of in-
stances as a domain theory, enabling accurate and fast learning.
Such a system can even learn to neglect attributes that do not
affect classification, provided appropriate structure information
is given. We have evaluated CAFE in two domains (artificial and
natural), and the results have proved our theory.

1 INTRODUCTION

An intelligent system, whether natural or artificial, has to adjust
itself to its environment. It is unaware of its surroundings in the
first instance, so it has to be able to acquire information while
dealing with the world around it. Machine learning is, there-
fore, a growing area of artificial intelligence, where we pursue a
system that can autonomously improve its performance.

123

UTILIZING STRUCTURE INFORMATION IN CONCEPT FORMATION

Machine learning systems vary in their targets and tech-
niques. Systems may learn parameters, operators, strategies, or
concepts through reinforcement, deduction, induction, or anal-
ogy. Among these, inductive learning of concept hierarchy from
examples is an exciting area, because we humans create and
utilize concepts based on examples in our everyday intellectual
activities.

Research into incremental and unsupervized learning of con-
cept hierarchy has, until recently, ignored the possibility of using
domain theory, or background knowledge. In this paradigm, a
robust way of constructing a concept hierarchy that accurately
predicts the values of attributes from a series of unclassified in-
stances is sought.

Fisher’s COBWEB (Fisher 1987), for example, assumes no
knowledge of the domain, and thus instances are represented by
a set of attribute-value pairs, where every attribute is treated
equally. The system builds a concept hierarchy from scratch.
This design presupposes that the system has no information
about the relative importance of each attribute and thus all
attributes have equal probability of contribution to the classifi-
cation/discrimination of instances. It is a natural result of this
presupposition that attributes that do not affect the classifica-
tion retard COBWEB’s learning and worsen its performance.

For example, let us consider the tasks necessary to predict
the value of the Class attribute when instances are represented
by a set of attributes [Class, Attrl, Attr2, Attr3, Attr4] but
Attr3 and Attr4 have no correlation with Class. COBWEB re-
quires many instances to learn to ignore Attrd and Attr4. We
call such attributes that do not contribute to classification at-
tribute noise. Although great efforts have been made to cope
with noise in attribute values and noise in classification (Iba et
al. 1988; Carlson et al. 1990; Drastal 1991), attribute noise is left
unchallenged in unsupervized learning. The feature construction
technique in constructive induction (Schlimmer 1987; Matheus
and Rendell 1989; Aha 1991; Drastal 1991) is an attempt to
overcome this problem by reforming instances such that they
do not contain attribute noise, but is still limited in supervized
learning. In unsupervized learning, however, it is difficult to

124

K. HANDA ET. AL

find a good guidance of feature construction.

Instances in natural domains, however, often have structure,
or part-of relations, between themselves, which can be foreseen
when we begin to classify them. This structure information
affords a simple way of favoring some of the attributes. In the
above example, if related attributes Attrl and Attr2 are grouped
together into one component (say Comp), the system classifies
one instance as a body-part Body = [Class, Comp, Attr3, Attr4]
and as its component Comp = [Attrl, Attr2]. In this situation,
it is easier for the system to neglect unrelated attributes because
they are not considered while classifying Comp.

Using part-of relations of instances as background knowledge,
therefore, leads to a more flexible and realistic concept forma-
tion system. Among the few works on this topic is Thompson’s
LABYRINTH (Thompson and Langley 1991a), and which has
had a great influence on our work. We provide a brief review of
LABYRINTH in Section 2.

We previously proposed a concept formation system, CFIX,
that can classify structured instances (Handa 1990). In this
chapter we propose CAFE, an enhanced version of CFIX.

CAFE and LABYRINTH are directly influenced by COBWEB,
and both systems share many features. But the fundamental
differences are as follows:

e In the knowledge representation of CAFE, a component-
part of an instance has a pointer to its body-part and can
be further structured.

o CAFE classifies each instance (and all its components)
twice; once to obtain temporary identifiers of the concepts
to which its components belong, and then to revise the en-
tire concept hierarchy (Mutual Induction).

e CAFE utilizes an evaluation function termed here as concept-
predictability to classify components of instances into con-
cepts of adequate specificity.

The first two characteristics enable CAFE to consider context
while classifying components. Two otherwise identical compo-
nents can form different concepts if they appear in bodies that
are classified differently. The use of concept-predictability keeps

125

UTILIZING STRUCTURE INFORMATION IN CONCEPT FORMATION

information about each instance and, at the same time, avoids
overly specified descriptions in the representation of a body.

This chapter describes the evaluation of CAFE and COBWEB
through two experiments. The results show that CAFE learns
faster and enables higher predictive accuracy in a domain with
much attribute noise.

In the following section, we overview CAFE. We then report
on the experimental results and finally discuss the related work
and problems currently pending.

2 CAFE SYSTEM OVERVIEW
2.1 Knowledge Representation

A knowledge representation formalism used in CAFE resembles
that of LABYRINTH, but is more relation oriented. Both systems
accept an instance composed of components and have two types
of attribute, one whose value is a primitive value (primitive at-
tribute) and one that points to another concept in the hierarchy
tree (relational attribute). In LABYRINTH, the relationships be-
tween components are all described in the body-part of instance.
In CAFE, however, these relations are described in component-
parts. In addition, CAFE not only permits components to be
composed of lower-level components but also accepts instances
related to each other. Therefore, we can apply CAFE to more
relational domains, such as a network of relatives of people.

Figure 5.1 shows the difference between the representations
of an object (learning instance) in CAFE and LABYRINTH using
the same example as in (Thompson and Langley 1991a).

In the diagram, relational attributes of CAFE have subscripts
s and d to indicate the source and destination parts of the re-
lation, because all relations in CAFE are bi-directional. A re-
lation may have an additional subscript to indicate how much
the relation contributes to classification. The value of this fac-
tor defaults to 1 for a primitive attribute and to the number
of primitive attributes of the pointed concept for a relational
attribute.

Getting such instances one by one, CAFE gradually con-
structs a hierarchy tree of concepts as shown in Figure 5.2. The

126

K. HANDA ET. AL

O

RIGHTSTACK-2

LABYRINTH:

(Rightstack-2 (component_1 (color blue) (shape odd))
(component_2 (color red) (shape circular))
(component_3 (color grey) (shape square))
((Left-of component_1 component_3))
((Left-of component_1 component_2))
((on component_3 component_2)))

CAFE:
(Rightstack-2 (left-part/s component_1)
(right-part/s component_2))
(component_1 (left-part/d Rightstack-2)
(left-of/s component_2)
(color blue) (shape odd))
(component_2 (right-part/d Rightstack-2)
(left-of/d component_1)
(top-part/s component_21)
(bottom-part/s component_22))
(component_21 (top-part/d component_2) (on/s component_22)
(color grey) (shape square))
(component_22 (bottom-part/d component_2) (on/d component_21)
(color red) (shape circular))

Figure 5.1. Representation of instance

127

UTILIZING STRUCTURE INFORMATION IN CONCEPT FORMATION

P(C)=1/5 #1 P(V/C)
left-part/s #3 1
right-part/s | #2 1

P(C)=1/5 #2 __ P(VIC)

right-part/d | #1 1
left-of/d #3 1
Root op-part/s #4 1
bfm-part/d #5 1

P(C)=8/5 #6 P(V/C) P(C)=1/3 #3 P(VIC)

left-part/d | #1 1 left-partyd | #1 1

left-of/s #2 1 left-of/s #2 1

top-part/a | #2 1 color blue 1

on's #5 1 shape odd 1
btm-part/d | #2 1

on/d #4 1 P(C)=1/3 #4 P(V/C)

blue 1/3 top-part/d | #2 1

color grey 13 L on/s #5 1

red 18| color grey 1

odd 13 shape square | 1

shape square | 1/3 PC)=I3 #5 P(VIC)
circle [1/3

btm-part/d | #2 1

on/d #4 1

color red 1

shape circle |1

Figure 5.2. Hierarchy tree of concepts

128

K. HANDA ET. AL

diagram shows a tree constructed from the sole instance of Fig-
ure 5.1. In the diagram, each number preceded by # is a concept
identifier. Each concept consists of a list of triplets. The first
element of the triplet is an attribute name, the second is a list
of values of the attribute, and the third is a list of frequencies
of the attribute’s taking the corresponding value. Again, the
tree structure resembles that of LABYRINTH and hence that of
COBWEB. The main difference is that while LABYRINTH holds
a pointer to a generalized concept as a value of relational at-
tributes, CAFE holds all pointers to non-generalized concepts
because of the requirement of CAFE’s evaluation function as
described in the following section.

2.2 Classification and Learning

CAFE generates a concept hierarchy by using an incremental
hill-climbing approach, in the same way as COBWEB and its
descendants. Each time a new instance is given, CAFE clas-
sifies it and, at the same time, revises the concept hierarchy
dynamically to a more plausible one. Since only the current
concept is retained, backtracking is impossible but can be simu-
lated by applying operators to the current hierarchy. Gennari et
al. (1989) shows how COBWEB’s two operators merge and split
work for simulating backtracking. The two main characteris-
tics of CAFE’s learning that make it different from the COBWEB
family are:

e Mutual induction:
A mechanism for integrating structured objects into a con-
cept hierarchy. CAFE classifies the body-parts of a struc-
tured object based on the classification information of
component-parts, which is the same way as is done by
LABYRINTH. In addition, in CAFE, the classification of
component-parts is also influenced by the classification of
body-parts. We named this mutual influence of classifica-
tions Mutual Induction.

e Concept-predictability:
A function to decide how well the value of a relational
attribute is predicted. Like COBWEB, CAFE also uses

129

UTILIZING STRUCTURE INFORMATION IN CONCEPT FORMATION

category utility as an evaluation function to search for a
plausible classification. In it, we must calculate the pre-
dictability of an attribute’s value at each concept. Sim-
ply applying COBWEB’s method to a relational attribute,
however, leads to too low an estimation of predictability,
because such values are pointers to other concepts and are
different from each other. To overcome this problem, we
introduced a concept-predictability function.

Table 5.1 shows the basic CAFE algorithm for classifying and
learning with structured objects. Faced with a new object,
CAFE tries to classify it twice (see the procedure Cafe): first
to obtain temporary identifiers of concept for all relational at-
tributes, next to get real identifiers based on the temporary ones.
In the procedure Cafe2, component objects pointed to by the
relational attributes of an object are first classified, after which
the object itself is classified. After classification of the object,
relational attributes of the component objects are updated to
point to the identifier of the objects.

In the procedure Cafe3, Cobweb” is called as an internal func-
tion. Cobweb” is based on COBWEB, but with the addition of
being able to use concept-predictability in the evaluation func-
tion, as described in the next section.

2.3 Evaluation Function

COBWEB tries to classify a new object by applying the divide-
and-conquer strategy, classifying an object firstly at the top
node of the hierarchy tree, going down to the lower subtrees.
At each level of the tree, COBWEB selects the best subtree cat-
egorization of the tree by using an evaluation function based
on Gluck’s category utility (Gluck and Corter 1985). Candidate
categorizations are:

e incorporating an object into one of the subtrees,

e merging two subtrees into one and incorporating the ob-
ject into it,

e splitting a subtree into further subtrees,

e creating a new subtree for an object.

130

K. HANDA ET. AL

Table 5.1. The basic CAFE algorithm

Procedure Cafe(TABLE, ID, TREE, NEWTREE)
/* Classify the object TABLE[ID] into TREE
and return revised NEWTREE. */
Update: TABLE; /#* An array of objects. */
Input: ID; /* An identifier of object to be classified. */
TREE; /* A hierarchy tree of concepts. */
Output: NEWTREE; /# An updated hierarchy tree. */
{
Cafe2(TABLE, ID, TREE, _);
Cafe2(TABLE, ID, TREE, NEWTREE);
}

Procedure Cafe2(TABLE, ID, TREE, NEWTREE)
/* Classify TABLE[ID] into TREE and return revised NEWTREE. */
Update: TABLE;
Input: ID, TREE;
Output: NEWTREE;

var OBJECT = TABLE[ID], TEMPTREE1 = TREE, TEMPTREE2;
var CID, CID1, CID2; /# Concept identifiers. */
For each component of OBJECT {
Set CID to an identifier of the component;
Cafe2(TABLE, CID, TEMPTREE1, TEMPTREE2);
TEMPTREE1 = TEMPTREE2;
¥
Cafe3(TABLE, TEMPTREE1, OBJECT, NEWTREE, CID1);
Set CID1 to an identifier of OBJECT;
For each CID2 in NEWTREE {
If relational attributes of CID2 points to CID,
Then update the pointer to CIDi;
X
Update each element of TABLE with concerning NEWTREE;
}

Procedure Cafe3(TABLE, TREE, OBJECT, NEWTREE, CID);
Input: TABLE, TREE, OBJECT;
Output: NEWTREE, CID;
{
var ATTRIBUTE, VALUE;
For each set of ATTRIBUTE and VALUE of OBJECT {
If ATTRIBUTE is relational and TABLE[VALUE] has no identifier,
Then set VALUE to nil;
}
Classify OBJECT into TREE by Cobweb’ and get updated NEWTREE;
Set CID to an identifier of classified OBJECT;

131

UTILIZING STRUCTURE INFORMATION IN CONCEPT FORMATION

The evaluation function takes the following form:

K
=(3 P(C) X P(4i = V510"
- P(A=Vy(0)?), (51)

where k varies between subtrees, 7 between attributes, and j be-
tween the values of each attribute. C is the parent node and Cj
is the kth subcategory (i.e. subtree) of C. This function eval-
uates the improvement in the predictability of attribute values
as a result of this categorization. The term P(A; = V,;|Ck)? in
the function is an indicator of the similarity of instances in C;.

In CAFE, however, V;; of relational attribute is a pointer to
another concept in the hierarchy tree. There is no V}; shared by
more than two instances of Cj, therefore, the similarity of the
instances is estimated too low. Hence, we propose new function
named concept-predictability for such an attribute of Cj.

The function takes the form:

L
ESTrw-won, e

where ! varies with the level (or depth) of the hierarchy tree, ¢
with the attributes, and 7 with the concepts at each level of the
tree. Vj;; is an identifier of the jth concept at level [to which
a concept pointed to by the ¢th attribute can be generalized.
= 0 means the top node of the tree and L indicates the deepest
level that contains multiple concepts that are generalizations of
instances in Cy at the level. In a sense, Formula 5.2 averages the
similarities of instances that are calculated with the assumption
that all instances are generalized to each level. The summation
stops at level L instead of at the leaf (deepest) level to avoid
the value becoming too low while the tree is growing deeper and
instances are, accordingly, being classified into a deeper leaf.
Figure 5.3 shows two examples of this calculation. In the up-
per example, concept #1 has one relational attribute rel and the
possible values are concepts A,B, and E. These are distributed in

132

K. HANDA ET. AL

Level P(AI = VIijICK]

1=1 1

I=2(=L) 4/9+1/9=0.555

P(VIC) = (1+0.555)/2 = 0.777

P(Ck) #1 P(VIC)

A
rel| B | 0777
E

Level P(A = Vi)
I=1 1
l=2 1

I=3(=L) 1/9 +4/9 =0.555

P(Ck) #2 P(VIC)

A

rel| C| 0.852
D

P(VIC) = (1+1+0.555)/3 = 0.852

Figure 5.3. Concept-predictability function

133

UTILIZING STRUCTURE INFORMATION IN CONCEPT FORMATION

Predictive Accuracy
1.0 -

0.8 4

06 A

04 -

Y T T T T T

0 20 40 60 80 100
Number of instances

Figure 5.4. Learning curves in artificial domain (1)

the hierarchy tree as shown in the diagram. At level 1, formula
> P(Ai = ViiiCh)?
i

has a value of 1 since all concepts A,B, and E are generalized to
the same node at this level. At level 2 (= L), the same formula
has a value of 0.555. Hence, the concept-predictability of #1 is
calculated to be 0.777.

3 EVALUATION OF THE SYSTEM

We evaluated our system in an artificial domain and in a natural
domain. Both experiments proved that CAFE is superior to
other concept formation systems.

3.1 Artificial Domain
This experiment was done to test the stated theory:
e COBWEB’s learning ability worsens as attribute noise in-
creases.

o If the correlation between contributive attributes and at-
tribute noise is cut off by structure information about in-
stances, the learning ability of the system can be improved.

134

K. HANDA ET. AL

e Since CAFE utilizes such information on learning, its abil-
ity is relatively free of attribute noise.

Learning instances in our artificial domain have the following
nine attributes:

locx, locy, locz, temperature, humidity,
sunlight-hour, air-pressure, soil-type,
water-quality

Each takes an integer number between 1 and 10 as its nomi-
nal value!. Only the first three attributes have meanings. The
values of the remaining attributes are generated randomly (i.e.
attribute noise). The values of locx and locy are also gener-
ated randomly but these values determine the value of locz,
according to the following rule:

If locx < 7 and locy < 7, then locz is high, else locz is low.

Almost half the learning instances generated by this rule have
a high value for locz. In our test, COBWEB was given only a
plain list of attribute values because it can’t handle any more
complicated data, while CAFE was given structured data. The
following is an example of ith instance given to CAFE(see Fig-
ure 5.1 for clarification of how to read it):

(instance_i
(comp comp_i) (temperature 2) (humidity 5)
(sunlight-hour 2) (air-pressure 10) (soil-type 3)
(water-quality 8)

(comp_i
(body instance_i) (locx 6) (locy 4) (locz low))

The performance task of the system is to predict the value of
locz from test instances that are not given the value of locz.
We have run COBWEB and CAFE on 12 random orders of 100
training instances with another 20 test instances (10 high and
10 1ow). Test instances are given with the value of locz being
set to nil (unknown). Figure 5.4 shows the learning curves for
both systems, averaged over 14 trials, with different training and

! Attribute names have no meaning in themselves. Those are assigned
simply to improve readability.

135

UTILIZING STRUCTURE INFORMATION IN CONCEPT FORMATION

Predictive Accuracy
1.0

0.8

06 A

——— Cafe
................ Cobweb

0.4 -~

02 -

0 T T T T T T

0 2 4 6
Number of attribute noise

Figure 5.5. Learning curves in artificial domain (2)

and test instances. The ¢-fest indicates the significant differ-
ence (t > to.05,26) between CAFE and COBWEB, every tenth step
between the 60th and 100th training instances. Also, we have
run each system in similar domains to determine how attribute
noises affects learning performance. The form of instances in
each domain varies only in the number of attribute noises. In
our previous experiments, the number of attribute noise was 6.
In this experiment we varied the number between 0 and 6. Pre-
dictive accuracy was recorded at the 100th training instance in
each domain. Figure 5.5 shows the performance of both sys-
tems at each domain, averaged over 14 trials. This diagram
clearly indicates the resilience of CAFE against attribute noise.
The reason for the low value at an attribute noise of 0 was that
CAFE cannot distinguish body part from components and con-
sequently created an inappropriate concept hierarchy in an early
stage. The number of training instances (100) was not sufficient
for the system to recover from it.

136

K. HANDA ET. AL

3.2 Natural Domain

Our next experiment was to evaluate CAFE in a real world do-

main. Fortunately, we can use the data set for DNA promoters?,

already studied by several researchers in the field of machine

learning (Towell et al. 1990; Ourston and Mooney 1990; Thomp-

son et al. 1991b). This data set contains 53 positive (i.e.promoter)
and 53 negative (i.e.non-promoter) instances, where features of

each instance are 57 sequential DNA nucleotides (the values of

which can be A, G, T, or C). There also exists a domain the-

ory that may serve as background knowledge for the learning

system. The theory can be summarized as follows:

In a promoter, the nucleotide sequence is composed of two con-
tact regions and one conformation region. For each region, four
typical patterns are known.

This gives us two types of background knowledge. One is the
structure information of the data. We can utilize this knowledge
in CAFE by forming an instance such that it is composed of
three components, each corresponding to the three regions in
the theory. The other is an initial bias on the distribution of
values for the attributes in each region.

Our test was conducted in almost the same way as that de-
scribed in (Thompson et al. 1991b), comparing the result with
that shown in this chapter. The test differed in that we ignored
the latter background knowledge to clarify the contribution of
the structure information to learning task. We randomly se-
lected 26 test instances (13 positive and 13 negative) from the
data set and kept the remaining 80 as training instances. We
included positive/negative information as additional attributes
in the body part and component parts of training instances, but
not in the test instances. Training instances were given one by
one, and at every tenth instance, accuracy of predicting a class
(positive or negative) from the test instances was recorded. Fig-
ure 5.6 shows the learning curves of COBWEB and CAFE, aver-
aged over 40 trials, with different selections of test instances and

2We obtained this data set from FTP server at ics.uci.edu. This is a
well-known source of data sets for machine learning, including the famous
‘soybean’, ‘thyroid-disease’, etc.

137

UTILIZING STRUCTURE INFORMATION IN CONCEPT FORMATION

Predictive Accuracy

1.0 -~

08 -

0.6 -

0a 4 e Cobweb’
--------- Cobweb
S Labyrinth

02 4 e Labyrinth / K

0 T T T T T T y !
0 20 40 60 80

Number of instances

Figure 5.6. Learning curves in DNA sequence domain

different ordering of training instances. The #-test indicates that
CAFE is superior to COBWEB with 99.5% certainty (¢ > ¢0.005,73)
at the 40th through to the 80th training instances.

The diagram also shows learning curves from Thompson et
al. (1991b) 3. LABYRINTH had been tested with (Labyrinth/K
in the diagram) and without (Labyrinth in the diagram) the
background knowledge of the second type, mentioned above. It
is interesting to note that our version of COBWEB (Cobweb*)
recorded much better performance than their’s (Cobweb). Any-
way, while we can’t see any difference between the performance
of Labyrinth and Cobweb, Cafe outperformed Cobweb” in our
experiment. Thus, we can conclude that the difference in learn-
ing schemes between CAFE and LABYRINTH is suggestive. We
also predict that the low performance of CAFE at fewer training

3These curves are not particularly accurate because data was manually
picked up from the diagram in (Thompson et al. 1991b).

138

K. HANDA ET. AL

instances can also be improved by utilizing all of the background
knowledge in the same way as Labyrinth/K.

4 DISCUSSION
4.1 Value-distribution of Relational Attributes

Let us assume that one attribute REL of an instance object
OBJ points to another object Part, and that Part is incorpo-
rated in a concept hierarchy tree. When classifying OBJ, what
value should attribute REL take? Or, which concept should be
regarded being representative for Part? There are as many can-
didates as there are levels of the tree, from the root node that
holds all instances to the leaf node whose only instance is Part
itself.

LABYRINTH uses an operator named attribute generalization
to avoid an overly-specified concept identifier. This operator
replaces the values of relational attributes with their ancestors.
LABYRINTH first uses the identifier of the leaf node as the value
of the relational attribute, then decides if the operator should
be applied while examining the information gained by applying
it.

One problem of attribute generalization is that it demands
an exhaustive search and requires much computation to find
the best generalization. In the implementation of Labyrinth,
Thompson and Langley (1991a) evaded this problem by using
the first generalization found rather than the best. Moreover,
LABYRINTH discards the original values of a relational attribute
once they have been generalized. Therefore, when the concept
hierarchy is altered through learning new instances, the values
of relational attributes cannot reflect this change. With all these
defects, attribute generalization can give a relatively rough mea-
surement of similarity.

CAFE, in the meantime, sticks to the leaf node, and the evalu-
ation function concept-predictability considers all the nodes Part
passes to reach the top node. Concept-predictability needs less
computation, and as it keeps every Part which is classified so
far, CAFE can handle any changes in concept hierarchy. Com-
pared to attribute generalization, it is a finer measurement of

139

UTILIZING STRUCTURE INFORMATION IN CONCEPT FORMATION

similarity, which, we believe, improves system performance.

4.2 Weight of an Attribute

Do all the attributes have potentially equal effects on classi-
fication? Assume an instance is represented by one primitive
attribute A, and one relational attribute A,, and the relational
attribute points to a part of the instance described by two primi-
tive attributes. If these three primitive attributes have the same
importance, attribute A, naturally has a greater effect on the
classification than attribute A,. But how much more?

In CAFE, currently, we assign each attribute a weight coeffi-
cient. The weight coefficient for a primitive attribute is 1, and
that for a relational attribute is the number of primitive at-
tributes contained in what it points to. In the example above,
A, has a weight coefficient of 2. When category utilities are
calculated, within-class similarity ; P(A = V;|C)? is weighted
according to the coefficient and, thus, an attribute whose weight
coefficient is 2 has twice as much influence as those with coeffi-
cient 1 upon revising the concept hierarchy.

This, however, is a rough approximation of the importance
of each attribute. We plan to add a new routine to control the
weight coefficient value while learning. In addition, dealing with
a variable number of attributes is also an open problem.

Finally, the weight coefficient provides an easy way of chang-
ing the system’s learning task from unsupervized to supervized,;
however, the usage of the word supervized is slightly different
from what usually used as supervized learning. If we include
class information of those instances as an additional attribute
and supply it with a large weight coeflicient, the system tries to
classify instances by examining the attribute with high priority.
This is almost equivalent to informing the system of the class
into which each instance should be classified.

In our experiment in the DNA domain, we also included class
information in attributes to make the conditions of experiment
the same as (Thompson et al. 1991b) but without any special
weight coefficient. Since the class information was treated in the
same way as the other attributes, we classify the experiment as
unsupervized learning.

140

K. HANDA ET. AL

5 CONCLUSION

We have described a concept formation system CAFE, that learns
from structured instances. The system is equipped with a new
classification algorithm mutual induction and an evaluation func-
tion concept-predictability. Experiments have shown good per-
formance of CAFE both in an artificial domain and in a natural
domain, which supports our theory that:

Structure information of instances serves as background knowl-
edge for a learning system, and by utilizing this information,
the system can improve its performance.

We have also examined the influence of attribute noise on learn-
ing tasks and shown the usefulness of structure information.

Although these results are encouraging to our research, many
problems remain to be solved. One is dynamic evaluation of the
weight coefficient of attributes. As mentioned in Section 1, fea-
ture construction is an attractive means of overcoming this prob-
lem. In unsupervized learning, however, we should construct a
good estimation method for guiding it. Another problem is that
of component matching. Generally, systems that handle struc-
tured objects must find the best match, or the bindings between
the components in the objects and those in the concept. In
CAFE, however, structured objects have unique attribute (re-
lation) names for their components and thus the bindings are
given a priori. Thompson and Langley (1991a) provide good
guidance for this problem and we are pursuing research along the
same lines. Evaluating CAFE in more a relational (and complex)
domain is also within the range of our future task. Although
the system already features a facility to represent flexible rela-
tion inter/intra instances, we need empirical study in a more
complex domain than is covered by this chapter.

REFERENCES

Aha, D. W. (1991). Incremental Constructive Induction: An Instance-
Based Approach. Proc. of the 8th International Workshop on
Machine Learning, 554-8.

141

UTILIZING STRUCTURE INFORMATION IN CONCEPT FORMATION

Carlson, B. and Weinberg, J. and Fisher, D. (1990). Search Control,
Utility, and Concept Induction. Proc. of the 7th International
Workshop on Machine Learning, 85-92.

Drastal, G. (1991). Informed Pruning in Constructive Induction.
Proc. of the 8th International Workshop on Machine Learning,
132-6.

Fisher, D. (1987). Knowledge Acquisition via Incremental Concep-
tual Clustering. Machine Learning, 2, 139-172.

Gennari, J. H. and Langley, P. and Fisher D. (1989). Models of
Incremental Concept Formation. Artificial Intelligence, 40, 11—
62.

Gluck, M. and Corter, J. (1989). Information, Uncertainty and the
Utility of Categories. Proc. of the 7th Annual Conference of the
Cognitive Science Society, 283-7. ‘

Handa, K. (1990). Concept Formation by Interaction of Related
Objects Proc. of the Pacific Rim Interaction Conference on Ar-
tificial Intelligence ’90, 613-8.

Iba, W. and Wogulis, J. and Langley, P. (1988). Trading Off Sim-
plicity and Coverage in Incremental Concept Learning. Proc. of
the 5th International Workshop on Machine Learning, 73-9.

Matheus, C. J. and Rendell, L. A. (1989). Constructive Induction
on Decision Trees. Proc. of the 11th IJCAI, 645-650.

Ourston, D. and Mooney, R. J. (1990). Changing the Rules: A
Comprehensive Approach to Theory Refinement. Proc. of the
8th National Conference of the AAAI 815-820.

Schlimmer, J. C. (1987). Incremental Adjustment of Representa-
tions in Learning. Proc. of the 4th International Workshop on
Machine Learning, 79-90.

Thompson, K. and Langley, P. (1991a). Concept Formation in Struc-
tured Domain. Concept Formation: Knowledge and Ezperience
in Unsupervised Learning, 127-161. Morgan Kaufmann.

Thompson, K. and Langley, P and Iba, W. (1991b). Using Back-
ground Knowledge in Concept Formation. Proc. of the 8th In-
ternational Workshop on Machine Learning, 117-121.

Towell, G. G. and Shavlik, J. W. and Noordewier, M. O. (1990). Re-
finement of Approximate Domain Theories by Knowledge-Based
Neural Networks. Proc. of the 8th National Conference of the
AAAT 861-866.

142

6

The Discovery of Propositions in Noisy
Data

Hiroshi Tsukimoto and Chie Morita

Systems & Software Engineering Laboratory,
Toshiba Corporation,
70 Yanagi-cho, Saiwai-ku, Kawa;akl 210, Japan

Abstract

In science, the discovery of propositions in noisy data is impor-
tant. This discovery is the unsupervised inductive learning with
pruning. This chapter presents an efficient algorithm to induce
an appropriate proposition from noisy data. A brief outline of
the algorithm follows. The frequency data are transformed into
a probability vector. The probability vector is transformed into
a logical vector. This logical vector is then approximated by
a classical logical vector. The classical logical vector is trans-
formed into a logical proposition. This proposition is subse-
quently reduced to a minimum one. In this algorithm, the most
original feature is the pruning method, which is executed at the
approximation step. Such pruning is possible due to the trans-
formation from a probability vector to a logical vector. The
transformation is possible because (1) a proposition is repre-
sented as a vector in Euclidean space and (2) the probability
vector can be transformed into a logical vector by a correspon-
dence between the logical vector and the probability vector. Ex-
perimental results show that this algorithm performs well and
also show that the propositions obtained by the algorithm ba-
sically satisfy MDL criteria. We apply this method to some
problems to discover appropriate propositions or rules.

143

THE DISCOVERY OF PROPOSITIONS IN NOISY DATA

1 INTRODUCTION

The discoveries of laws and rules from a lot of data are important
in science. The laws and rules are represented by quantitative
formulas or qualitative propositions. Even when laws and rules
are represented by quantitative formulas, such laws and rules
are first represented as propositions.

This chapter deals with the discovery of propositions from
noisy data. If the propositions are regarded as the structure of
an object, the discovery of propositions is the acquisition of the
structure of the object from noisy data. Since we can know the
object only through the data, we regard the data as consist-
ing of both structure and noise. The acquisition of propositions
means the division of the data into the structure part and the
noise part. For example, assume that the data are represented
in a table consisting of events with the frequency of occurrence.
(See Table 6.1.) Then, the division of the data into the struc-
ture part: and the noise part means setting the threshold for
the frequency of occurrence. The events whose frequency is less
than the threshold are pruned. When the threshold is small, few
data are pruned. This situation is called overfitting. Overfitting
degrades prediction accuracy, so this degradation must be miti-
gated by pruning. A performance task for unsupervised learning
is the prediction accuracy (Fisher 1987a,b) and the prediction
accuracy depends on the threshold for the pruning. Therefore,
setting the optimal threshold for pruning is an important prob-
lem.

Although some researchers (Quinlan 1986, Mingers 1989)
deal with the pruning problem, they are concerned with super-
vised learning. A few researchers deal with the pruning probiem
in unsupervised learning. Nakakuki et al.(1990) present a mech-
anism to induce an optimal probabilistic model in MDL (Min-
imum Description Length) criteria from observed data. This
mechanism corresponds to a pruning method, but the method
is similar to a brute-force search. Fisher (1989) presents a prun-
ing method which is similar to Quinlan’s reduced error pruning
(Quinlan 1987). Because these methods are a kind of search
based on heuristics, they do not have a rigid theoretical back-

144

HIROSHI TSUKIMOTO AND CHIE MORITA

ground and they also consume much computation time.

This chapter presents an efficient algorithm to induce an ap-
propriate proposition from noisy data. The most original fea-
ture in the algorithm is setting the optimal threshold for prun-
ing. This pruning method does not use any heuristics, so it
has a rigid theoretical basis for setting the optimal threshold for
pruning. The pruning method is not a search, so it does not
consume much computation time.

Table 6.1 shows a simple example about the weather. In this
example, X stands for rain and Y stands for cloud. Using the
algorithm presented in this chapter, an appropriate proposition
can be induced from the given frequency data. In this example,
the frequency data are (23, 2, 30, 45). This frequency data
means that the number of days of rain and cloud are 23, and so
on. The induced proposition is X VY (= X — Y), which means
“Whenever it rains, it is cloudy.” As probability (X V Y) is
0.95(= (23+30+45)/(23+2+30+45)), this result is reasonable.

Event Rain Fine/Cloud No. of days Logical function

E1l Rain Cloud - 23 XY
E2 Rain Fine 2 XY
E3 Not rain Cloud 30 XY
E4 Not rain Fine 45 XY

Table 6.1. Events with frequency of occurrence

The outline of the algorithm is as follows:

1. The frequency data are transformed into a probability vec-
tor. (The probability vector is (0.23, 0.02, 0.3, 0.45) in the
above case.)

2. The probability vector is transformed into a logical vector.
(The logical vector will be explained intuitively in this
section and formally in Section 2.)

3. The logical vector is approximated by a classical logical
vector.

4. The classical logical vector is transformed into a logical
proposition.

145

THE DISCOVERY OF PROPOSITIONS IN NOISY DATA

5. The proposition is reduced to the minimum one.

This algorithm also holds for multi-valued attributes. Incre-
mental processing is also possible. The computational complex-
ity does not depend on the number of events, but it does depend
on the number of training examples.

The pruning is performed in the second and third steps. The
most important step is step 2, that is, the transformation from
a probability vector to a logical vector. This transformation is
possible, because (1) a proposition is represented as a vector
in Euclidean space, which is called a logical vector, and (2) a
probability vector can be transformed into a logical vector by a
correspondence between the logical vector and the probability
vector.

We now explain why a proposition is represented as a logical
vector. It is worth noticing that classical logic has properties
similar to vector space. These properties are seen in Boolean
algebra with atoms, which is a model for classical logic. Atoms
in Boolean algebra have the following properties:

1. a; - a; = a; (unitarity).
2. a;-a; =0 (i # j) (orthogonality).
3. Xa; =1 (completeness).

For example, the proposition X VY is represented as (1,0, 1,1),
where XY = (1,0,0,0), XY = (0,1,0,0), XY = (0,0,1,0),
XY =(0,0,0,1). '

Figure 6.1 is the Hasse diagram of Boolean algebra of two
variables. This diagram can be regarded as the projection of
a four-dimensional hypercube to a two-dimensional space. The
diagram shows that atoms in Boolean algebra correspond to unit
vectors.

In other words, atoms in Boolean algebra are similar to the
orthonormal functions in Hilbert space. Watanabe (1969) intro-
duced ‘logical spectra’ to discuss the above properties; however
it was just an analogy. This chapter shows that the space of
logical functions actually becomes Euclidean space.

As Boolean algebra has properties similar to Hilbert space,
constructing Euclidean space starts with Boolean algebra. The

146

IIIIIIIIIIIIIIIIIIIIIIIIIIIII

THE DISCOVERY OF PROPOSITIONS IN NOISY DATA

process from Boolean algebra to Euclidean space is divided into
four stages:

1. Represent Boolean algebra by elementary algebra. In other
words, present an elementary algebra model for classical
logic.

2. Extend the truth value ({0,1} — [0,1]).

3. Eliminate the idempotent law partially to expand the model
to the space where the idempotent law does not hold.

4, Introduce an inner product to the above space and con-
struct a Euclidean space where logical functions are rep-
resented as vectors.

This theory can be regarded as the functional analysis of logical
functions. A more detailed explanation will be found in Section
2.

We now explain why a probability vector can be transformed
into a logical vector by a correspondence between the logical
vector and the probability vector. In the Euclidean space, the
information of logical functions will be defined. For example, the
information of ‘z’ and ‘zy’ is one bit and two bits respectively.
A principle will be presented about the correspondence between
the logical vector and the probability vector. This principle is
explained using a primitive case. AV A is tautology, therefore
the information of AV A is 0 bit. Let E1 and E2 be events corre-
sponding to A and A respectively. The probability distribution
over E1 and E2, which corresponds to A V 4, should have no
information, that is, the entropy of the probability distribution
corresponding to tautology should be zero bit. The probabil-
ity vector whose entropy is zero bit is (1/2, 1/2). The vector
representation of AV A is (1,1), where the atoms are 4 and A.
Therefore logical vector (1,1) corresponds to probability vector
(1/2, 1/2). This correspondence principle can be regarded as
Baysian. The correspondence is possible due to the extension
of logical model. The details will be discussed in Section 3.

In Section 4, we will explain the algorithm in detail using an
example. We will briefly compare this algorithm with other
methods to confirm that the algorithm is better than other
methods. We will show experimental analyses, which examine

148

HIROSHI TSUKIMOTO AND CHIE MORITA

correct prediction after training under the effect of noises. The
experimental results show that this algorithm performs well.
We also show that the propositions obtained by the algorithm
basically satisfy MDL (Minimum Description Length) criteria
(Rissanen 1978). We are at present applying this algorithm to
several problems to discover propositions or rules.

2 LOGICAL VECTOR

We review the model for classical logic introduced in (Tsukimoto
1990). A more detailed explanation can be found in (Tsukimoto
1990,1991). Hereinafter, let F, G, ... stand for propositions, f,g,
.. stand for functions, X, Y, ... stand for propositional variables
and z,y,... stand for variables.

2.1 Some definitions

Definition 6.1 Let f(z) be a real polynomial function; 7 is
defined as follows:

T(f(mnayn,)) = f(x7ya)a

where z,y,... € {0,1}. For example, 7(z? +y+1) =z +y+1.

Definition 6.2 Let L be the set of all functions satisfying 7(f) =
f. Then L = {f : 7(f) = f}. L is the set of pseudo-linear

real polynomial functions. In the case of two variables, L =

{azy + bz + cy + d|a,b,c,d € R}.
Definition 6.3 L, is inductively defined as follows:

1. Variables are in L;.

. If f and g are in Ly, then 7(f-g), 7(f+9g— f-g) and 7(1 = f)
are in L;. (We call these three calculations 7 calculation.)

. Ly consists of all functions finitely generated by the (repeated)
use of 1 and 2.

If fisin L;, then f satisfies 7(f?) = f. That is, f € L; =
7(f?) = f. Obviously, if f € Ly, then f € L.

149

THE DISCOVERY OF PROPOSITIONS IN NOISY DATA

2.2 A new model for classical logic

Theorem 6.4 Let the correspondence between Boolean alge-
bra and 7 calculation be as follows:

1. FAG & 7(fg).

2. FVG & 7(f+g- f9g).

3. F & 7(1-1).
Then (L, 7 calculation) is a model for classical propositional
logic; that is, Ly and 7 calculation satisfy the axioms for Boolean
algebra. Proofs can be found in (Tsukimoto 1991).

We show a simple example. (X VY)A(XVY)=XVYis

calculated as follows:

T((z+y—zy)(e+y—2y) = 7(z®+* +2% + 22y - 2%y - 229°)
= z+y+zy+2zy—2zy—2zy
= z+y-—uzy.

2.3 Extension of model
2.3.1 Eztension of truth value

The truth value is extended from {0, 1} to [0,1]. By this exten-
sion, functions become continuous functions (f : [0,1] = R).

2.3.2 Elimination of (fH)=f
Let f be a function of one variable (az + b). Then 7(f?) =
f is 7((az + b)?) = az + b. The solutions are 0, 1, z, and
1 — z, which correspond to contradiction, truth, affirmation (of
a proposition), and negation, respectively. These functions are
classical logical functions of one variable. This property also
holds for cases of many variables. Therefore, f in a subset of
L, which satisfies 7(f?) = f, is a member of L; and (f € L) A
(r(f*) = f) & f € L, follows from (f € L) A (7(f?) = f) =
f € Lyand f € Ly = 7(f%) = f in Section 2.1. Thus, the
subset of L which satisfies 7(f?) = f is equal to L; (classical
logical functions).

Here, 7(f?) = f is eliminated in order to expand this space;

_then the space of pseudo-linear polynomial functions(L) is ob-

tained. Elimination of 7(f?) = f means the elimination of the

150

HIROSHI TSUKIMOTO AND CHIE MORITA

idempotent law for formulas except variables (for example z,
y,...). Therefore, this space is a model for a weak logic where the
contraction rule holds only for variables. Therefore this space
must related to Grisin’s logic (Grisin 1982), where the contrac-
tion rule does not hold. The study of the relation between this
model and Grisin’s logic will be done in the future.

Hereinafter, this space(L) will be made into a Euclidean
space (a finite-dimensional inner product space).

2.4 Euclidean space
2.4.1 Inner product
Definition 6.5 An inner product is defined as follows:

< f,g>=2" /01 7(fg)dz,

where f and g are in L, and the integral is generally a multiple
integral.

This inner product has the following properties:

1. < f,f>>0,<f,f>=0&f=0.
2. <af,g>=a< f,g>, where ais a real number.
3. <f+g,h>=<f,h>+<g,h>.

Property 1 is proved in the case of one variable as follows. Let

f=fiz+ fo(l —2):

<f,f>

2 fo r(ff)de
2' o (fa(1 — z) + fiz)dz
= fe+fi20

and

<ff>=00f+ff=0&f=0.

A4+ f =0« f=0,because f € L. This property is also
proved in the same manner in the case of many variables.

151

THE DISCOVERY OF PROPOSITIONS IN NOISY DATA

242 Norm
Definition 6.6 A norm is defined as follows:

I fll=v<ff>

This norm has the following properties:
LIfIZo N fll=0& f=0.
2. laf ll=lal || £ 1.
Bl f+glslhfli+1gll

This norm is denoted by N,(f). N, stands for relative norm,
which depends on the dimension of space (the number of vari-

ables).

Theorem 6.7 L becomes an inner product space with the above
norm. The dimension of this space is finite, because L consists of
the pseudo-linear polynomial functions of n variables, where n is
finite. Therefore, L becomes a finite-dimensional inner product
space, namely a Euclidean space.

2.4.3 Orthonormal system

The orthonormal system is as follows:
b= TTe(es) (=125 = 1,m),
J=l1

where e(z;) = 1 — z; or z;. It is easily understood that these
orthonormal systems are the expansion of atoms in Boolean al-
gebra. In addition, it can easily be verified that the orthonormal
system satisfies the following properties:

<¢¢',¢j> = 0(7’7&.7)’
= 101 =),
f=;<f7¢i>¢i-

For example, the vector representation of z + y — zy of two
variables (dimension 4) is as follows:

152

HIROSHI TSUKIMOTO AND CHIE MORITA

< fizy> = 22f01 fol (z +y— zy)zydz dy = 1,
<fie(l-y)> = 22f) [jr(e+y—zy)e(l-y)dedy=1,
<fl-a)y> = 22f; yr(z+y—=zy)(

<fl-2)1-y)> = 2 firz+y-ay)(l

—-z)ydzdy =1,
—z)(1 —y)dzdy = 0.
Therefore, f = 1-zy+1-2(l—y)+1-(1—-2)y+0-(1—z)(1—y)
and the vector representation is (1,1,1,0), where the bases are
ry =(1,0,0,0),z(1 - y) = (0,1,0,0),(1 — =)y = (0,0,1,0) and
(1 - :C)(l - y) = (0’ 0,0, 1)'

The space of the functions of n variables is 2"-dimensional.
The vector representation of classical logical functions is the
same as the representation expanded by atoms in Boolean alge-
bra. This vector representation is called a logical vector. This
Euclidean space is an expansion of the Hasse diagram of classical
propositional logic. Nonclassical logical vector (ex. (0.8,0.8))
will be discussed in Section 3.2.

3 CORRESPONDENCE BETWEEN THE LOGICAL VECTOR AND THE PROB-
ABILITY VECTOR

The following terms and notations are used. f stands for a
logical function, f((f;)) stands for a logical vector and p((p:))
stands for a probability vector. Note that f stands for a logical
function, while f; stands for an element of a logical vector f.

3.1 The information of a logical function

3.1.1 A new norm

Definition 6.8 A new norm is defined as follows:
N(f) = V2" N.(f).

The. values of the square of this norm for 1, z, zy and 0 are as
follows:

(N = 1,
(N(z))* = 0.5,
(N(zy))* = 0.25,
(N(0))* = 0.

THE DISCOVERY OF PROPOSITIONS IN NOISY DATA

As these figures show, this norm can be interpreted as the degree
* of satisfiability of propositions.

3.1.2

The information of a logical function

The information of a logical function which is called logical en-
tropy is introduced.

Definition 6.9 The logical entropy Hy, is defined as follows:

HL(f) = ~logi(N(f)(= ~loga([7(*)dz).

Examples are shown below.

1.

2.

Hp(1) = 0, which means that the information contained
in a tautology is zero bit.

Hy(z) = 1, which means that the information contained
in z (namely the affirmation of a certain proposition) is
one bit.

Hi(zy) = 2, which means that the information contained
in zy (namely the conjunction of a certain proposition and
another proposition) is two bits.

Hp(0) = oo, which means that the information contained
in a contradiction is infinite.

That the information contained in a contradiction is infi-
nite can be explained as follows. Generally speaking, the
information in a proposition is proportional to the num-
ber of propositional variables in the proposition. However,
the probability of contradiction in the proposition is also
proportional to the number of propositional variables in
the proposition. Therefore, the information contained in
the conjunction of infinite propositional variables should
be infinite and could be false.

As the above examples show, the logical entropy is reasonably

defined.

154

HIROSHI TSUKIMOTO AND CHIE MORITA

3.1.3 The logical entropy is equal to the information of prob-
ability distribution
The information of probability distribution I is as follows:

2"

I=n—H(H=-Y pilog.p),
1

where n is the number of variables and p; is probability.
Theorem 6.10 The logical entropy is equal to the information
of probability distribution, that is, Hy, = I.

Proof. Let a logical function be of n variables and let m ele-
ments of the logical vector be 1. The information of the logical
function is calculated as follows:

HL(f) = =loga2(N(f))?
= —logy(fy 7(f*)dz)
= —log(Jy fdz)
= —loggf(1/2)
= —logy(m(1/2"))
= n—logym.

(/01 7(f)dz = f(1/2) can be easily veriﬁed).

The information of a probability distribution (I) is calculated
as follows:

I = n-H
= n— (=} pilogzp:)
= n+ X1 pilog:p;
= n+m x (1/mlog:(1/m))
= n—logym.
(pi = 1/m is Baysian-like).

As both values are calculated to n — logym, the proof is com-
pleted. Therefore Hy, = I.

155

THE DISCOVERY OF PROPOSITIONS IN NOISY DATA

3.2 Interpretation of nonclassical logical vectors

We discuss the case of one variable. Let (a,b) be a logical vector,
where (a, b) means az+b(1—x). The logical vectors whose logical
entropy is 1 are the arc whose radius is 1, as shown in Figure 6.2.
z(= (1,0)) corresponds to a proposition, while 1 — z(= (0,1))
corresponds to the negative proposition.

The vectors on the arc are perfect in information. That is,
such vectors correspond to a concrete fact. The vectors on the
arc represent an intermediate proposition between the propo-
sition represented by (1,0) and the proposition represented by
(0,1). For example, let the proposition represented by (1,0) be
“The tree is tall.” Then the proposition represented by (0,1) is
“The tree is low.” and the proposition represented by the point
on the arc is “The tree is not tall and is not low.” and so on.

The proposition represented by (1,5)(0 < b < 1) is less than
the proposition represented by (1,0) in the information, there-
fore (1,) represents an imperfect proposition such as “The tree
may be tall.” Similarly, (a,1) represents an imperfect proposi-
tion such as “The tree may be low.” (0.8,0.8) represents an in-
termediate proposition, because it lies between (1,0) and (0, 1).
It also represents an imperfect proposition, because the infor-
mation is less than 1.

3.3 Correspondence principle between the logical vector and the probabil-
Ity vector

First, the case of logical function 1 (= z + (1 — z)) of one vari-
able, which means a tautology X V X is considered. The logical
vector of 1 (= z + (1 — z)) is (1, 1). Then, this logical function
means a tautology. Therefore, this logical function has no infor-
mation, namely the information of the logical function is zero
bit. The probability vector whose information is zero bit is (1/2,
1/2). Therefore, logical vector (1, 1) corresponds to probability
vector (1/2, 1/2). Similarly, the following correspondences are
obtained:

2 variables (1,1,1,1) & (1/4,1/4,1/4,1/4),
n variables (1,..,1) < (1/(2"%),...,1/(2")).

156

HIROSHI TSUKIMOTO AND CHIE MORITA

(a, 1) (1,1
©, 1) .

S

Arc whosp radius is 1
b (1,b)

0,0 (1,0

Figure 6.2. Interpretation of nonclassical logical vector

The following correspondences are obtained in the same manner:

z of 1 variable (1,0) & (1,0),
z of 2 variables (1,1,0,0) < (0.5,0.5,0,0).

The latter correspondence follows from the following two facts.
The first fact is that z does not contain 1—z, therefore the prob-
ability of events corresponding to 1 — z must be 0. Therefore,
the third element and the fourth element are 0. The other fact
is that the logical vector (1, 1) corresponds to the probability
vector (0.5, 0.5). Therefore, the first element and the second
element are 0.5.

These correspondences can be generalized to the following
principle:

Suppose m elements of (f;) are 1.
If fi =1, then p; = 1/m and if f; = 0, then p; = 0.

157

THE DISCOVERY OF PROPOSITIONS IN NOISY DATA

Examples of two variables are shown below:

(1,1,1,0) & (1/3,1/3,1/3,0),
(0,0,1,1) <« (0,0,1/2,1/2),
(1,0,0,0) « (1,0,0,0).

This correspondence principle means that a logical vector whose
information is the smallest corresponds to a probability vector
whose information is the smallest. The correspondence princi-
ple is Baysian-like, because when we have no information, the
probability distribution is uniform. This correspondence princi-
ple means that the direction of the logical vector is the same as
that of the probability vector and that they differ in the norm.

In classical logic, = of two variables corresponds to (a,b,0,0),
where a and b are probabilities. For example, (a,b,0,0) is
(0.7,0.3,0,0) or (0.5,0.5,0,0). Therefore z does not necessar-
ily correspond to (0.5,0.5,0,0). However, we have constructed
an extended model to represent nonclassical logics, so we can
represent a logical function corresponding to (0.7, 0.3, 0, 0) as
cxy+dz(l —y)+e(l —z)y+ f(1 —z)(1 — y), which is not equal
to z. (As for the calculation of coefficients, refer to (Tsuki-
moto 1991).) Therefore, in this extended model, z corresponds
to (0.5,0.5,0,0). In other words, the mapping from probability
to L; is a homomorphism (n-to-one correspondence), while the
mapping from probability to L is an isomorphism (one-to-one
correspondence).

3.4 Transformation formula

Two important relations about the correspondence between the
logical vector and the probability vector are obtained:

1. The information of the two vectors is the same.
2. The directions of the two vectors are the same.

Hereinafter, these relations are extended to nonclassical logics.
In other words, we will use the above relations in nonclassical
logics too. This extension is natural, so no problems are antici-
pated. However, further study of this extension will be done in
future work.

158

HIROSHI TSUKIMOTO AND CHIE MORITA

The transformation from a probability vector to a logical
vector is obtained from the above two relations. From 1 (Hf =

I), N, = 2H/2 js obtained as follows:
H, =1
- HL = n—H
— —l0g2(27"?N,)? = n—H
Ly o2y o oH[2-n/2
— N, = 282,

The directions are the same from 2. Therefore, the transforma-
tion formula is

f = 2"/lp)p,
where H = —Y2"(pilogap;),
ol = (ZUPD)Y?,
p = (Pl,---,P?.")-
By this transformation formula, we can transform a proba-
bility vector to a logical vector. Since this formula also holds

when attributes are non-binary, we also use this formula in such
cases. (See Table 6.2.)

4 INDUCTIVE LEARNING FROM FREQUENCY DATA
4.1 The algorithm ‘

The transformation formula from a probability vector to a logi-
cal vector has been obtained. Therefore, we can infer a proposi-
tion inductively from frequency data. The method is as follows.

1. The frequency data are transformed into a probability vec-

tor using the following method. Let the frequency data be
(a;), then the probability vector (p;) is (a;/ 3 ;).
Since the events whose frequency data is 0 can be ignored,
only those whose frequency data is not 0 are computed.
That is, the actual vector size is not exponential in the
number of attributes. Therefore, the computational com-
plexity does not depend on the number of events, but on
the number of training examples. This case also holds for
items 2 and 3.

159

THE DISCOVERY OF PROPOSITIONS IN NOISY DATA

2.

3.

The probability vector (p) is transformed into a logical
vector (f) by the formula f= (2%/2/|p|)p.

The logical vector is approximated by the nearest classical
logical vector. Let (f;) be a logical vector which represents
a nonclassical logical proposition, and let (g;)(¢; = 0,1) be
a classical logical vector whose elements are 0 or 1. Note
that a classical logical vector does not necessarily represent
a classical logical proposition, because when attributes are
nonbinary, it does not represent a classical logical proposi-
tion. (See Section 3.3.) The nearest classical logical vector
minimizes 3 (f; — ¢;)>. Each term can be minimized in-
dependently and g; = 1,0. Therefore, the approximation
method is as follows. If f; > 0.5, then g; = 1, otherwise
g = 0.

This classical logical vector is transformed into a logical
proposition. Propositions are used as the presentation
method in this chapter, but decision trees can also be used
for the representation.

The proposition is reduced to a minimum one. We can
use several methods. We use a multivalued version of the
Quine-McCluskey method, which has been developed by
ourselves.

The algorithm is described as a batch processing. However, an
incremental processing is also possible. (We will give a brief
description below.)

The approximation by a classical logical vector corresponds
to pruning the items whose value is less than 0.5. Some thresh-
old in probability corresponds to 0.5 in logic, but it is very dif-
ficult to find the threshold in probability, because the threshold
depends on the probability vector. This difficulty can be seen
from the transformation formula f= (29/2/|p|)p. It is clear that
a fixed threshold in probability is not effective for the pruning
(Fisher 1989).

As the above explanation shows, this algorithm uses no heuris-
tics and has a rigid theoretical background. We briefly compare
the algorithm with other methods in computational time. To
make the comparison simple, an incremental processing for the

160

HIROSHI TSUKIMOTO AND CHIE MORITA

algorithm is assumed.
The incremental processing is as follows:

1. Frequency data are modified by new data.

2. A classical logical vector is derived from the given fre-
quency data.

3. The logical proposition (or decision tree) is modified; that
is, the logical proposition or the decision tree is minimized
only when the classical logical vector changes

4. These steps are repeatedly performed.

The pruning in this algorithm is independent of constructing
trees or propositions and is not a search, while the pruning in
other methods is not independent of constructing trees or propo-
sitions and is a search (Fisher 1989). Therefore, the pruning in
this algorithm consumes less time than other methods, because
the pruning in this algorithm is not a search, while the pruning
in other methods is a search.

The number of objects for constructing trees or propositions
in this method is smaller than that of other methods, because
the objects for constructing trees or propositions in this method
is the pruned data, which is smaller than the original data.

Therefore, if the number of necessary training examples is
the same, the computational time of this method is shorter than
other methods, because the pruning in this method consumes
less time than other methods and the number of objects for
constructing trees or propositions is smaller than other methods.

We give the results for the example in the Introduction:

The frequency data is (23, 2, 30, 45).

So, the probability vector is (0.23, 0.02, 0.3, 0.45).
The logical vector is (0.69, 0.06, 0.90, 1.35).

The nearest classical logical vector is (1, 0, 1, 1).
The proposition is XY vV XY v XY.

This proposition is reduced to X VY (= X = Y).

4.2 Experiments

We will give experimental analyses here. The first experiment
consists of ten attributes with 5%, 10%, and 25% noise. We set a

161

THE DISCOVERY OF PROPOSITIONS IN NOISY DATA

correct concept, which contains ten atoms. (Atoms correspond
to events in Tables 1 and 2.) Figure 6.3 shows the results. After
about 100 training examples, the correct prediction is greater
than 90% under the effect of 5%, 10% and 25 % noise. This
result means that this algorithm is noise proof.

The second experiment consists of the same condition as the
first except that 16 attributes are used. As Figure 6.4 shows,
the result is almost the same as the first.

The third experiment consists of the same conditions as the
first except that the concept contains 100 atoms. As Figure
6.5 shows, the necessary training examples are more than for
the ten-atom concept. This result is reasonable, because a 100-
atom concept is more complicated than a ten-atom concept, so
the learning of a 100-atom concept is more difficult than that of
a ten-atom concept. The third experiment also shows that this
algorithm is noise proof.

The fourth experiment consists of 16 attributes and the other
conditions are the same as the third experiment. As Figure 6.6
shows, the results are almost the same.

These four experiments show that the number of necessary
training examples does not depend on the number of attributes.
In four experiments, the correct prediction decreases at a few
points and increases again. This phenomenon happens when the
threshold. for pruning increases. To summarize these results, this
algorithm is noise proof and the convergence of correct predic-
tion is good. Experimental comparison with other methods will
be undertaken in the future.

4.3 Description length of the proposition obtained by this algorithm

In this section, we calculate the description lengths of the propo-
sitions obtained by our algorithm to confirm that they basically
satisfy MDL criteria. We use the example in (Nakakuki et al.
1990), because we can compare the results. Table 6.2 gives an
example about the malfunctions of some devices. There are
16 events, each of which has two attributes. One is type {
a,b,c,de,f,g,h }, the other is age{old,new}. Instance A con-
tains the same data as in (Nakakuki et al. 1990). The obtained
proposition is (b A old) V (b Anew) V (g A new), which is reduced

162

HIROSHI TSUKIMOTO AND CHIE MORITA

% Correct prediction

100.00 %

z 10%

80.00 5%

60.00] s

4000 &

20.00

0.00 No. of training objects
0 20 40 60 80 100

Figure 6.3. Learning curves

% Correct prediction

100.00 ! - 3%
P g,

80.00 5%

60.00 | Gl

40.00

20.00

0.
00 No. of training objects
0 20 40 60 80 100

Figure 6.4. Learning curves

% Correct prediction

100.00 %

10%

80.00 5%

60.00

40.00

20.00

0.
00 No. of training objects
0 100 200 300

Figure 6.5. Learning curves

163

THE DISCOVERY OF PROPOSITIONS IN NOISY DATA

% Correct prediction

100.00 5%
10%

80.00 et 5%
goool oK T T
40.00
20.00

.00

0 No. of training objects
0 100 200 300

Figure 6.6. Learning curves

to the proposition bV (g A new). This result is the same as
in (Nakakuki et al. 1990),which searches the optimal decision
tree(proposition) in MDL criteria. Therefore, we can obtain the
optimal proposition in MDL criteria using our algorithm. In in-
stance B, the induced proposition is (bAnew)VeV(gAold). The
description length is 147.1. In instance C, the induced proposi-
tion is ((bV ¢V h) A old) V (¢ A new). The description length is
124.6. These propositions also satisfy MDL criteria.

Other experiments also show that the propositions obtained
by this algorithm satisfy MDL criteria. However, the proposi-
tions obtained by this algorithm will not always satisfy MDL
criteria, because the result depends on the reduction method to
the minimum proposition. In reality, in instance C, the propo-
sition can be reduced to (bAold)VcV (hAold) and this proposi-
tion’s description length is 126.2, which is bigger than 124.6. It
is plausible that the description length depends mainly on the
threshold for pruning and only slightly on the method for reduc-
tion. Therefore, it is expected that, even when the description
length of the proposition obtained by this algorithm is not the
minimum, it would be close to the minimum.

In MDL, only methods such as brute-force searches are used.
The computational complexity of this algorithm is much better
than that of brute-force searches. Therefore, this algorithm is
very eflicient as a quasi-algorithm for MDL.

164

HIROSHI TSUKIMOTO AND CHIE MORITA

Attributes Number of observations

Event Type Age A B C
1 a old 1 0 1
2 a new 0 2 1
3 b old 13 1 8
4 b new 9 9 0

5 c old 1 12 13
6 c new 1 10 5
7 d old 0 0 0
8 d new 0 0 1
9 e old 0 1 1
10 e new 0 0 0
11 f old 1 1 0
12 f new 0 1 0
13 g old 0 6 0
14 g new 5 0 0
15 h old 1 0 7
16 h new 0 1 1

Total 32 44 38

Table 6.2. Malfunctions of some devices

165

THE DISCOVERY OF PROPOSITIONS IN NOISY DATA

5 CONCLUSIONS

We have presented an algorithm to induce an appropriate propo-
sition from frequency data. This algorithm is possible due to the
combination of the vector representation of logical proposition
(logical vector) and the correspondence between the probabil-
ity vector and the logical vector. The most important feature is
setting the optimal threshold for pruning. This pruning method
does not use any heuristics and has a theoretical background.
The pruning method is not a search and the number of objects
for constructing trees or propositions is smaller than for other
methods, therefore the computational time is shorter than for
other methods when the number of necessary training exam-
ples is the same. Experimental results show that this algorithm
performs well. Experimental results also show that the proposi-
tions obtained by the algorithm basically satisfy MDL. We are
applying this algorithm to several problems to discover appro-
priate propositions or rules. The results using our algorithm are
propositions, so if we want causalities, the propositions must
be transformed to causalities. However, this transformation is
another problem. Future work also includes a comparison study
with other methods and the relationship between this algorithm
and MDL.

REFERENCES

Fisher, D. H. (1987a). Conceptual clustering, learning from examples
and inference. Proceedings of the Fourth International Workshop
on Machine Learning, 38-49.

Fisher, D. H. (1987b). Knowledge acquisition via incremental con-
ceptual clustering. Machine Learning, 2, 139-172.

Fisher, D. H. (1989). Noise-tolerant conceptual clustering. Proceed-
ings of 11th IJCAI, 825-830.

Grisin, V. N. (1982). Predicate and set theoretic calculi based on
logic without contraction. Math. USSR Izvestija,18, 1982, pp4l-
59.

Mingers, J. (1989). An empirical comparison of pruning methods for
decision tree induction. Machine Learning, 4, 217-243.

166

HIROSHI TSUKIMOTO AND CHIE MORITA

Nakakuki, Y., Koseki, Y. and Tanaka, M. (1990). Inductive learning
in probabilistic domain. Proceedings of 8th AAAI 809-814.
Quinlan, J. R. (1986). Induction of decision tree. Machine Learning,
1, 81-106.

Quinlan, J. R. (1987). Simplifying decision trees. International
Journal of Man-Machine Studies, 27, 221-234.

Rissanen, (1978). J. Modeling by shortest description. Automatica,
14, 465-471.

Tsukimoto, H. (1990). A topological model for propositional logics.
Transactions of Information Processing Society of Japan,31, 783-
791 (in Japanese).

Tsukimoto, H. (1991). A topological model for logics. working pa-
per.

Watanabe, S. (1969). Knowing and guessing. John Wiley and Sons.

167

v

Learning Non-deterministic Finite Automata
from Queries and Counterexamples

T. Yokomori

Department of Computer Science and Information Mathematics,

University of Electro-Communications

1 INTRODUCTION

In the recent theoretical research activity of inductive learn-
ing, in particular, of inductive inference, Angluin has introduced
the model of learning called minimally adequate teacher (MAT),
that is, the model of learning via membership queries and equiv-
alence queries, and has shown that the class of regular lan-
guages is efficiently learnable using deterministic finite automata
(DFAs) (Angluin 1987b). More specifically, she has presented
an algorithm which, given any regular language, learns from
MAT a minimum DFA accepting the target in time polynomial
in the number of states of the minimum DFA and the maximum
length of any counterexample provided by the teacher.

The MAT learning model is reasonably accepted for the fol-
lowing reasons. First, the limit of the learning capability from
only given example data is well-recognized. Actually, Gold
shows that the time complexity of learning consistent DFAs from
given data is computationally intractable (Gold 1978). Hence,
learning models from more than given data are required to study
the feasible learnability. On the other hand, there is another mo-
tivation for introducing the MAT learning model which comes
from a more practical viewpoint. Suppose one wants to con-
struct an expert system (or knowledge system) and (s)he is try-
ing to collect inference rules by interviewing human experts.

169

QUERY LEARNING OF NFAS

Teacher

counterexamples
N Learner

O TN Yes
/ No '
Queries ‘_/ A—

(Expert) ~ 8uess G (System

Software)

Figure 7.1. An Interactive Learning in MAT Model

The problem here is that human experts often do not retain
their expert knowledge as a form of rules in a systematic fash-
ion, and thus, no one can expect to obtain those expert rules
directly from human experts. However, it is usually possible for
experts to provide concrete example (knowledge) derived from
those rules to be collected. Hence, it is of crucial importance to
find a method for achieving rule acquisition from a large number
of examples through queries and answering. Thus, this require-
ment nicely meets an interactive learning by the MAT model
which is illustrated by Figure 7.1.

Following Angluin’s work, several extended results about
polynomial-time MAT learnability for subclasses of context-free
grammars have been reported (Berman and Roos 1987; Ishizaka
1990; Shirakawa and Yokomori 1993). However, the polynomial-
time learnability of the whole class of context-free grammars is
still open and seems to be negative, which is strongly suggested
by a recent result that under a certain cryptographic assumption

the class of context-free grammars is not learnable in polynomial
time from MAT (Angluin and Kharitonov 1991).

On the other hand, it is well recognized that non-deterministic
finite automata (NFAs) are useful in many domains for both
theoretical and practical reasons. We know, for example, that
various theoretical properties of DFAs can be easily proved us-
ing the notion of NFAs. From a more practical viewpoint, we
can pick up the pattern matching problem as a typical task for
which the non-determinism works in a much more elegant man-

170

T. YOKOMORI

a,b
NFA
-—a->O—-l—)-—> @ for M[p]

b a
Yoo W
a
=P e

b

Figure 7.2. NFA and DFA for Pattern Matching

ner than the determinism.

Let t and p be strings over {a,b}, called tezt and pattern,
respectively. Assuming that p = ab, the problem here is, given
an input text ¢, to check if a text ¢ ends with a pattern p or
not. A finite automaton M|[p] is usually constructed for this
purpose, and it is checked whether ¢ is accepted by M[p] which
accepts {a,b}*p. The non-deterministic version of M|[p] is given
together with its deterministic version in Figure 7.2. It is seen
that an NFA yields a simpler and more natural description for
a concept in question than a DFA.

More generally, it may be said that human experts often
retain their expert knowledge in the form of non-deterministic
rules. (In the case above, an NFA description is much easier for
human experts to recognize its correctness for their knowledge
M[p] than is a DFA description.)

Returning to the MAT-learnability issues, a recent study
shows that under a certain cryptographic assumption the class
of NFAs is not learnable in polynomial time from MAT. More
exactly, under the assumption the class is not learnable from
MAT in time polynomial in the number of states of a minimum

171

QUERY LEARNING OF NFAS

NFA equivalent to the target NFA and the maximum length of
any counterexample (Angluin and Kharitonov 1991).

In this chapter we shall show that the class of NFAs is learn-
able in polynomial time from MAT in the following sense that
given any regular language L an algorithm learns an NFA M ac-
cepting L in time polynomial in n and ¢, where n is the number
of states of a minimum DFA equivalent to M and £ is the maxi-
mum length of any counterexample provided during the learning
process. This provides an alternative algorithm for learning reg-
ular languages in polynomial time from MAT.

The idea used in this chapter is roughly explained in two
steps. First, all the necessary states and transition rules are
introduced from positive counterexamples. Then, among these
transition rules, wrong (incorrect) transitions are removed us-
ing negative counterexamples. A learning method based on this
idea is employed by Angluin (1987a), Ishizaka (1989, 1990) and
in fact, the learning algorithm proposed here is almost immedi-

ately obtained as a special case from one of our recent papers
(Shirakawa and Yokomori 1993).

Using an example, we shall outline the basic idea used in
the present chapter. Let L = {a™blm > 0} be a target reg-
ular language. The goal is to find an NFA M accepting L in
the MAT learning model. Suppose that, in response to the
initial conjecture My (accepting an empty set) from a learn-
ing algorithm, a string w; = ab is given as the first (pos-
itive) counterexample. Then, we construct the set of candi-
date states @; = {[)],[a], [ab]}, and set [A] and [ab] as the ini-
tial and final states, respectively. For simplicity, let us rename
g = [A}, 1 = [a],q2 = [ab]. By constructing a set of transition
rules &;:

(roo:) 0% g0, (rho:) g0 b g, (ro1:) 908 q1, (rhy:) g0 b q1,
(ro2:) 0% q2, (r63:) 00 4 g2, (ro) a1 B q0, (o) @ L3 g0,
(rud)and q, (h)a B, re)aB g (Ph)a B g,
(r20:) 929 q0, (rho:) 2 b g, (ra1:) 228 a1, (rhy) a2 L\ q,
(r22) 2% g2, (thot) a2 B ga

172

T. YOKOMORI

The first conjecture is M1 = ({0, q1, 92}, {, b}, 1,90, {g2})-
Since L(Mj) generates the set £*, we expect a (negative) coun-
terexample from MAT, say, ws = ba. Then, after parsing w; via
M; we have a transition sequence: ¢ b q1 % q;. Then, check
if [a](= 1) & [ab](= ¢2) is correct for L or not. This is done
making a query that aa € L'? Since the answer is No, we decide
that a transition rule (ryz :)g1 % ¢2 is an incorrect rule for L
and remove it from §;, making the second conjecture M, with
82(= &; — {r12}). This procedure is justified by the principle
called contradiction backtracing (Angluin 1987a; Ishizaka 1989,
1990; Shapiro 1981), which will be discussed in detail later.

For the next (negative) counterexample wz = bb, using the
current conjecture M; we have a transition sequence : ¢ —

g & g To check if [a)(= q1) 8 [ab](= ¢2) is correct for
L, we make a query that ab € L? Since the answer is Yes, this
implies that (g, :)qo b g, is incorrect for L and removed from
;. Thus, we have the third conjecture M3 with §3(= 62— {rg,})-

In a similar way, we see that when negative counterexam-
ples bb, a,abb, bab, bbb, ba are provided in this order, rule sets

{roosm22}s {ro2}, {rio,ruu}s {rao,ra1}y {r20,721}, {rae} are, re-
spectively, removed from the conjecture. As a result, we have a

conjecture M’ = ({qo, q1, 92}, {a,b},¢', g0, {q2}) with

& ={00% g0, 0% g, 0D % a0 @S a, ad el

If we transform this NFA M’ into an equivalent minimum DFA
M = ({po,p:}, {a,b}, &,p0, {p1}) with 6 = {po % po,po % p1},
it is easy to see that M accepts the target L.

Thus, the above procedure works as a learning algorithm to
identify an NFA accepting a target L from MAT.

This chapter is organized as follows. After providing basic
definitions in Section 2, we formalize the above idea to show
that the class of regular languages is polynomial-time learnable
from MAT using NFAs in Section 3. A learning algorithm LA
for NFAs is first described, and the worst-case analysis for the
time complexity of the proposed algorithm as well as its cor-
rectness is then given. The main result provides an alternative
efficient MAT learning algorithm for regular languages. Section

173

QUERY LEARNING OF NFAS

4 deals with related topics, in which a comparative analysis of
two algorithms (i.e., LA and Angluin’s one) for learning regu-
lar languages is discussed in Section 4.1. We also mention in
Section 4.2 a corollary of the main result claiming that there
exists a subclass of NFAs which is polynomial-time learnable
from MAT, in contrast to the fact that it seems not to be the
case for the whole class of NFAs. Further, a practical variant of
LA is briefly discussed in Section 4.3.

2 PRELIMINARIES
2.1 Definitions and Notation

We assume the reader to be familiar with the rudiments of for-
mal language theory (see, e.g., Harrison 1978 or Salomaa 1973).

For a given finite alphabet ¥, the set of all strings with finite
length (including zero) is denoted by £*. (An empty string is
denoted by A.) lg(w) denotes the length of a string w. X+
denotes £* — {A}. A language L over ¥ is a subset of E*. For
any strings z, y € £* and any languge L over X, let z\L = {y |
zy € L}.

A non-deterministic finite automaton (NFA) is denoted by
M =(Q, %, 4, po, F), where Q) and X are finite sets of states
and terminals, respectively, po is the initial state in Q, F(C Q)
is a set of final states, and ¢ is a finite set of transition rules of
the form : p % q, where p, q are states and a is a terminal from
Y. M is deterministic iff for each a € ¥ and p € @, there exists
at most one q € @ such that p % qis in §. For each p,p’,q € Q
and a € Z,w € ¥*, deﬁnepi p, and p ¥4 qiff p %5 p' and
5 q.

For each p € Q, let L(p) = {w € Z*|p Y ¢, g € F}. In
particular, L(po), equivalently denoted by L(M), is called the
language accepted by M. Two NFAs M and M’ are equivalent
iff L(M) = L(M’) holds.

By |@|(the cardinarity of Q) we define the size of an NFA M,
denoted by size(M). M is minimum iff size(M) is minimum,
that is, for any NFA M’ that is equivalent to M, size(M) <
size(M') holds.

174

T. YOKOMORI

A language L is regular if there exists an NFA M such that
L =L(M).

Since we are concerned with the learning problem of regu-
lar languages, without loss of generality, we may restrict our
consideration to only A-free regular languages.

2.2 MAT Learning

Let L be a target language to be learned over a fixed alphabet
Y. We assume the following types of queries in the learning
process.

A membership query proposes a string ¢ € ¥* and asks
whether z € L or not. The answer is either yes or no. An equiv-
alence query proposes an NFA M and asks whether L = L(M)
or not. The answer is yes or no, and in the latter case together
with a counterexample w in the symmetric difference of L and
L(M). A counterexample w is positive if it is in L — L(M), and
negative otherwise.

The learning protocol consisting of membership queries and
equivalence queries is called minimally adequate teacher (MAT).
The purpose of the learning algorithm is to find an NFA M =
(Q,%,6,po, F) such that L = L(M) with the help of the mini-
mally adequate teacher.

3 MAIN RESULTS
3.1 Learning NFAs
Throughout this section, for a target regular language L, let
M. = (Q., £, ., o Fx) be a minimum DFA such that L =
L(M.).
3.1.1 Introducing new states
Given a positive counterexample w of L, let Q(w) be a set of
new states consisting of all the prefixes of w, that is,

Q(w) = {[z] | w = zy for some y € £*}.
The following lemma obviously holds.

Lemma 7.1 Let w be in L = L(M.,). Then, for any state
P € Q. that appears in the transition sequence py % ¢ (for
some § € F.), there is an [z] in Q(w) such that L(p) = z\L. O

175

QUERY LEARNING OF NFAS

3.1.2 Constructing new candidate rules

Suppose that we have a conjectured NFA M = (Q, X, 4, po, F)
at the current stage of learning process, where py = [A]. From
the set of new states Q(w) produced above and the current set of
states (), we newly construct the set of new candidate transition
rules 4., as follows:

bnew = {P% q|p,g€ QUQ(w),a € L, and at least
one of p and ¢ is in Q(w)}.

(As seen below, we set M = (Q U Q(w), E, § U bpew, po, F U
{[w]}) to obtain new conjectured NFA for the next stage.)

3.1.3 Diagnosing the set of transition rules §

Let M = (Q, %, 8, po, F') be a conjectured NFA, where py = [)].

Let r be a transition rule p % ¢ in §, where p = [z],q = [y].
Then, r is incorrect for L iff there exists w € X* such that
yw € L and zaw ¢ L. A rule is correct for L iff it is not
incorrect for L.

Now, given a negative counterexample w’, the algorithm has
to prevent the conjectured NFA from accepting w’ by remov-
ing wrong rules. In order to determine such wrong rules, the
algorithm calls the diagnosing procedure whenever a negative
counterexample is provided.

Let w’ be in ¥*. A transition sequence : p’ 2wy q (for some
q € F) in M is denoted by Trans(M, p',w’).

The diagnosing algorithm is a modification of Shapiro’s con-
tradiction backtracing algorithm (Shapiro 1981). For a given
transition sequence Trans(M, p’,w’) as an input, this procedure
outputs a transition rule r of M which is incorrect for L, where
w' € L(M) — L.

Let Trans(M,p',w’) : p' % p Ysq(€ F), where v’ = aw(a €
¥, w e ¥*) and p = [y].

procedure diag(Trans(M, p’,w"))
If w' =a € X, then output r: p’ % q and halts
else make a membership query yw € L? ;
if the answer is no

176

T. YOKOMORI

then call diag(Trans(M,p,w)) ;
else output r: p’ % p and halts

We are now ready to prove the correctness of the diagnosing
algorithm.

Lemma 7.2 Given a negative counterexample w' and a con-
jectured NFA M, the diagnosing algorithm always halts and
outputs a rule incorrect for L.

Proof. It is clear that since the procedure diag is recur-
sively called with a proper suffix of the initial input string w’ in
Tans(M, po,w'), the algorithm always halts and outputs some
rule in . Let po Xop’ %

p 5 g(e F), where v = uaw and po = [\, 7' = [2], p = [t
q = [z]. By definition, we note that z € L.

If w’ is a terminal @ in ¥, then a rule r : po -5 ¢ is returned,
where u = w = X and pp = p/, p=gq. Since 2 € L and v’ ¢ L,
a rule r is incorrect for L.

Assume that a rule r : p’ % p is returned by this algorithm.
Then, since this is the first time the answer of a membership
query is yes, at this moment we have that yw € L. Further,
from the property of procedure diag, it must hold that raw ¢ L.
This implies that a rule r is incorrect for L. m

3.1.4 Learning algorithm LA
The following is a learning algorithm LA for NFAs:

Input : a regular language L over fixed Z.
Output : an NFA M such that L = L(M);
Procedure :
initialize M = ({po}, Z, 0, po, #), where po = [A] ;
repeat
make an equivalence query to the current M = (Q, L, §, po, F) ;
If the answer is yes then output M and halts
else if the answer is a positive counterexample w
then introduce the set of new states Q(w) from w;

Q = QU Q(w);

construct the set of new rules dpeuw;
§:=0Udnew;

F:=FU{[u]}

else (the answer is a negative counterexample w')

177

QUERY LEARNING OF NFAS

parse w’ via the conjectured NFA M to obtain

the transition sequence Trans(M, po, w');

call diag(Trans(M, po, w')) to find an incorrect rule r;
§:=8-{r}

A flowchart diagram for LA is given in Figure 7.3.

3.2 The Correctness and Time Analysis of LA
3.2.1 Correctness

For states p = [z] in @ and p € Q., we say that p is well-
corresponding to p iff £\L = L(p) holds. A state p is non-
corresponding to M, iff there is no state p € Q. to which p
is well-corresponding. A transition rule p -4 ¢ in § is well-
corresponding to p % § in 4, iff p and g are well-corresponding
to p and ¢, respectively.

It is clear that every rule well-corresponding to a rule of M,
is correct for L.

We show that if a string w’ which is not in L is accepted by
the conjectured NFA M, then there exists at least one incorrect
rule in 4, that is, if § has no incorrect rule for L, then M accepts
no string w’ such that w' & L.

Lemma 7.3 Let M = (Q, X, 4, po, F') be a conjectured NFA
and L be a target language. If all of the rules in § are correct

for L, then for all p = [z] € @, L(p) C z\L holds.

Proof. Let w be a string such that w € L(p). By the induc-
tion on the length ¢ of the transition sequence for w, we show
that w is also in z\L. Suppose i = 1, that is, p % ¢ for some
q € F. Let q = [z], then z € L. Further, suppose za ¢ L,
then we have that p % ¢ is incorrect for L, contradicting the
assumption. Therefore, a € z\L.

Next, suppose that the claim holds for all w’ such that lg(w') <
lg(w). Let p B p'(= [2]) —“—’-I+ q and ¢ € F. Then, by the in-
duction hypothesis, we have that w’ € z’\ L. Suppose w = aw’
is not a string in z\ L. Then, since w’ € z'\ L, we have that the
rule p % p' is incorrect for L. This contradicts the assumption,
and therefore, the lemma holds. a

Corollary 7.4 If all of the rules in § are correct for L, then
L(M) C L.

178

Y

T. YOKOMORI

Y
:=M¢ (M¢ : empty NFA)

Y

8 :=8 U Snew

|

construct Snew
from w

0 =§ -(r} |e———

| output M

l

—| output M

é

Isce. w
positive ?

lNo

find out an

incorrect rule

r from w

Figure 7.3. Flowchart Diagram for LA

179

QUERY LEARNING OF NFAS

Let M. = (Q«, L, 04, Po, Fi) be a minimum DFA such that
L = L(M.,).

Lemma 7.5 The number of positive examples needed to iden-
tify a correct NFA by LA is at most |Q.| (the cardinality of the
state set of M,).

Proof. Let M =(Q, L, 6, po, F) be a conjectured NFA from
LA, and suppose a positive counterexample w is given. Then,
we claim that at least one new state p well-corresponding to
some p in @, is introduced.

For w € L, let Q.(w) be the set consisting of all the states
in Q. used in the transition sequence of M, for accepting w.
By the nature of LA, if a positive counterexample w is given,
then there exists at least one state p not contained in @ but
needed to accept w. By Lemma 7.1, Q(w) contains all states
well-corresponding to the states in Q.(w) that appear in the
transition sequence po -+ §(€ F.). Further, for each new state
p in Q(w), all the rules containing p are added to the rule set
d, and only incorrect rules in § are removed by the diagnosing
procedure.

To sum up, whenever a positive counterexample w is given,
there exists at least one state p in Q(w) — @ that is necessary for
accepting w and is well-corresponding to p. Thus, this justifies
the claim and, hence, completes the proof. a

Note that this lemma implies that after receiving at.most
|@.] positive counterexamples, @ includes sufficient number of
states to accept the target language L.

When |Q.| positive counterexamples are given, the set of
transition rules § includes all the rules that are well-corresponding
to the ones in §,. In other words, any string in L is accepted
by the conjectured NFA M. Thus, at that time it holds that
L C L(M), and hence no more positive counterexample is re-
quired and provided. By Lemma 7.2, each time a negative
counterexample is given, one incorrect rule is determined and
removed from § of the current conjecture M. Further, we know
that no correct rule is removed at any stage. Therefore, the num-
ber of required negative counterexamples is at most the maxi-

180

T. YOKOMORI

mum number of rules of conjectured NFA. By Corollary 7.4, if
all incorrect rules are removed, the resulting conjectured NFA
M accepts no string which is not in L, that is, L(M) C L.

From these facts described above, we conclude that LA al-
ways converges and outputs a correct NFA. Thus, we obtain the
main theorem. '

Theorem 7.6 For any regular language L, the learning algo-
rithm LA eventually terminates and outputs an NFA M accept-
ing L. O

3.2.2 Time Analysis

We note that for a positive counterexample w, the number of
states newly introduced from w in LA is obviously bounded by
lg(w), i.e., it holds that |Q(w)| £ lg(w).

Let £ be the maximum length of any counterexample provided
during the learning process. Futher, let n(= |Q.|) be the number
of states of a minimum DFA accepting a target L.

Lemma 7.7 The total number |8;51q1] of all rules introduced in
the learning algorithm is bounded by |X|n2¢2. 0

Proof. Let |@Qmaz| be the maximum number of states of any
conjectured NFA. Let {wy,...,w;} be the set of positive coun-
terexamples provided by LA in the entire process of learning.
(Note that, by Lemma 7.5, ¢ is at most |Q.].) Then, from the
above observation, |Qmaz| < Tie;lg(wi) < |Q.]¢ is obtained.
Further, from the manner of constructing 4,

Iétotali S |2||Qmal‘l2
< |Z]|Q.
= |Z|n?f?

is obtained. ‘ a

Now, suppose a negative counterexample w' is given. Then,
the learning algorithm LA constructs the transition sequence
Trans(M, po,w’) by parsing w’ via the conjectured NFA M =
(Q, &, 6, po, F) at that time. Since there exists an algorithm
that constructs a transition sequence for w’ in time proportional

181

QUERY LEARNING OF NFAS

to || lg(w')z, each parsing procedure requires at most |§;ota1] €
times.
From these observations, the next lemma follows.

Lemma 7.8 The total time complexity of LA is bounded by
O(|Z|*n*£%), where n is the number of states of a minimum
DFA for a target language, and £ is the maximum length of any
counterexample provided.

Proof. It is obvious that the total time complexity of LA is
dominated by those of parsing negative counterexamples and of
obtaining the transition sequences for them.

Each time a negative counterexample is provided, the num-
ber of transition rules § of the resulting conjecture from LA is
reduced by exactly one. Further, by Lemma 7.7, the number
of transition rules § of any conjectured NFA M is at most k,
where k = |Z|n2¢2. Hence, the total time required for parsing is

bounded by

B4 (k= 1) 4 oee £ = %k(k+ N

Thus, we have the following theorem.

Theorem 7.9 The total running time of LA is bounded by a -
polynomial in £ the maximum length of any counterexample
provided during the learning process and n the number of states
of a minimum DFA for a target language. O

4 DISCUSSIONS
4.1 A Comparative Analysis

We will make a comparison of the main results in this chapter
with that of Angluin (1987). The time complexity of her algo-
rithm is dominated by the task of constructing the observation
table whose size is at most O(n%£? 4+ n®¢), and the algorithm
makes at most n different guesses before terminating with a
correct minimum DFA for the target, where n is the number of
states of the minimum DFA and £ is the maximum length of
any counterexample. As a result, the total time complexity is

182

T. YOKOMORI

bounded by O(n®¢? + n*f). (See Table 7.1.) From these, in the
worst-case analysis, Angluin’s algorithm has a great advantage
over LA presented in this article.

(1) Although Table 7.1 shows that LA does not seem better
than Angluin’s one in the worst case, we do not know whether or
not the worst case can really occur in LA. Moreover, we should
like to call one’s attention to the following fact that there is a
subclass of regular languages for which LA in the worst case
runs faster than the other in the best case.

Let L = {w € {a,b}*|lg(w) = 2}(= {a,b}* — {),a,b}) be a
target language to be learned. As the first (positive) counterex-
ample, suppose w; = ab is given. Then, LA produces as the first
guess M, pictured in Figure 7.4. At this moment, since there
are only two negative counterexamples: a and b to M, suppose
wy = a is taken for the second counterexample. Then, after
diagnosing the transition sequence for w,, the second guess of
LA will be M,. Further, for the third counterexample ws = b,
LA eventually outputs M3 which is correct for L and termi-
nates. (Note that this termination is independent of the choice
of counterexamples, i.e., the other choice of w; = b and w3 = a
leads to the same correct NFA M3.) It is important to note that
no membership query is actually needed in this case, and that
the choice for w; is completely arbitrary. Thus, we observe that
only three counterexamples have been provided to successfully
terminate even in the worst case.

On the other hand, Angluin’s algorithm works as follows.
As the initial guess, using three membership queries, it first
produces M] accepting the empty set in Figure 7.4. Then, given
a positive counterexample w;, the algorithm eventually produces
a correct DFA M; after 16 membership queries and terminates
at its best. Thus, for a target language L, LA clearly terminates
faster than Angluin’s algorithm, provided that each operation
involved equally takes one unit time.

This shows that the total time performance of the two algo-
rithms strongly depends upon what class of regular languages is
targeted.

(2) When we look at these two algorithms from the human-

183

QUERY LEARNING OF NFAS

Table 7.1. Performance Comparison in the Worst-case Analysis

DFA learning | NFA learning

Number of guesses O(n) O(n*¢%)
Total time O(n3¢% + n'l) O(n%)
Number of membership O(nf) !

queries per revison

machine interface point of view, the most important factor is the
response time between conjectures and, in particular, the time
complexity the teacher (human) must get involved in. That is,
the comparison of the number of membership queries required
per one revison of conjecture shows that our algorithm LA is
superior to Angluin’s one in this respect. Although the total
number of guesses of LA is greater than that of Angluin’s one
in the worst case, taking the empirical number of guesses into
consideration, we believe that the former may provide better
human-machine interface for (at least some type of) application
systems than the latter. (See 4.3.)

Thus, it is an interesting open problem to investigate the
empirical performance of LA over Angluin’s one, and such a
quantitative analysis will give clearer and more practical com-
parisons of the two algorithms.

4.2 A Subclass of NFAs

As strongly suggested by a recent result (Angluin and Kharitonov
1991), the whole class of NFAs seems not to be learnable in poly-
nomial time from MAT. This leads us to consider a subclass of
NFAs which allows us to have a positive result for learning the
subclass.

We say that an NFA M is polynomially deterministic if there
exists a DFA M’ equivalent to M such that the number of states
of M’ is bounded by a polynomial in the number of states of M.
It is trivially clear that any DFA is polynomially deterministic,
and there is an NFA which is not polynomially deterministic.
(For example, L, = {a,b}*a{a,b}™ accepted by an NFA with
(n 4 2) states has no DFA with states less than 27+1.)

184

T. YOKOMORI

a,b aab

a "/ -, \3
HR,” Fe
= //@0

a,b
M, (NFA)

a,

a,b

a,b
_Q :j —0 a,b O a,b@

M} M’, (DFA)

Figure 7.4. Example Runs

185

QUERY LEARNING OF NFAS

Let NFA ., be the class of polynomially deterministic NFAs.
Then, we have that DFAC NFA,,;, C NFA, where NFA
(DFA) denotes the class of NFAs (DFAs).

From the main result, we immediately obtain the following
proposition. '

Proposition 7.10 The class NFA,,, is learnable in polyno-
mial time from MAT.

It remains open whether or not the polynomial-time learn-
ability from MAT can be extended to the whole class NFA,
although it is strongly suggested that this is not the case.

4.3 A Practical Variantot LA

In a practical situation in performing the algorithm LA, there
may be a problem on the feasibility of equivalence queries be-
cause, when compared with the membership queries, the equiva-
lence queries cost too much to carry out, and they are sometimes
even computationally infeasible.

In this respect, it would be very convenient if the equivalence
queries could be replaced with an other device. Actually, the
algorithm LA can induce in a straightforward manner its mod-
ified version which is viewed as a learning algorithm on the in
the limit basis (Gold 1967) where no equivalence queries are re- .
quired. That is, we can think of LA as an algorithm LA,, which
learns a correct NFA in the limit from membership queries and
the complete presentation (i.e., positive and negative examples)
of a target language. Further, LA,, learns any regular language
L consistently, conservatively, and responsively in the sense of
Angluin (1980), and may be implemented to run in time poly-
nomial in n (the number of states of a minimum DFA for L)
and m (the total lengths of all examples provided so far). Note
that Angluin’s algorithm mentioned above also has its variation
of this type. A flowchart diagram for LA,, is given in Figure
7.5.

Proposition 7.11 The class of regular languages is learnable
in the limit using membership queries by an algorithm LA,,.
Further, LA,, may be implemented to run in time polynomial

186

T. YOKOMORI

=M
¢

=895, [~ [Louper 1] ——

I | request next w |
construct Snew
from w Yes
l No Is w
positive ?
l—‘—’ R=R U {r}
§:=8-{r) No
t find out an Yes
incorrect rule *
r from w

Figure 7.5. ‘Flowchart Diagram for LA,

in n (the number of states of a minimum DFA for a target

language) and m (the total lengths of all examples provided so
far).

Thus, the algorithm LA,, provides a reasonably practical, ef-
ficient algorithm for learning the class of regular languages. In
a related work (Ishizaka 1989) Ishizaka proposes an algorithm
for learning regular languages based on the model inference al-
gorithm. His algorithm learns a correct DFA in a logic program
formulation in the limit from membership queries and the com-
plete presentation, and may be implemented to run in time poly-
nomial in n, £, and N (the total number of examples provided
so far). Thus, this algorithm is close to LA, but is different in
that it learns DFAs in a logical formulation.

187

QUERY LEARNING OF NFAS

An interesting problem to be investigated is how far we can
go along the line of research proposed here in the MAT learning
paradigm. In fact, we have obtained a couple of extended results
to superclasses of regular languages (Yokomori 1992; Shirakawa
and Yokomori 1993). ‘

Acknowledgments

The author would like to thank a referee for many construc-
tive suggestions which greatly improved the quality as well as
readability of this chapter.

This work is supported in part by Grants-in-Aid for Scientific
Research No. 04229105 from the Ministry of Education, Science
and Culture, Japan.

REFERENCES

Angluin, D. (1980). Inductive inference of formal language from
positive data. Information and Control, 45, 117-135.

Angluin, D. (1987a). Learning k-bounded context-free grammars.
Research Report, 557, Dept. of Computer Sci., Yale Univ.

Angluin, D. (1987b). Learning regular sets from queries and coun-
terexamples. Information and Computation, 75, 87-106.

Angluin, D. and Kharitonov, M. (1991). When won’t membership
queries help? Proceedings of 28rd ACM Symposium on Theory
of Computing, 444-454.

Berman, P. and Roos, R. (1987). Learning one-counter languages
in polynomial time. Proceedings of 28th IEEE Symposium on
Foundations of Computer Science, 61-67.

Gold, E.M. (1967). Language identification in the limit. Information
and Control, 10, 447-474.

Gold, E.M. (1978). Complexity of automaton identification from
given data. Information and Control, 37, 302-320.

Harrison, M.A. (1978). Introduction to Formal Language Theory.

- Addison-Wesley, Reading, MA.

Ishizaka, H. (1989). Inductive inference of regular languages based
on model inference. International Journal of Computer Mathe-
matics, 27, 67-83.

Ishizaka, H. (1990). Polynomial time learnability of simple deter-

188

T. YOKOMORI

ministic languages. Machine Learning, 9, 151-164.

Salomaa, A. (1973). Formal Languages. Academic Press, New York,
NY.

Shapiro, E. (1981). Inductive inference of theories from facts. Re-
search Report, 192, Dept. of Computer Sci., Yale Univ.

Shirakawa, H. and Yokomori, T.(1993). Polynomial time MAT Learn-
ing of c-deterministic context-free grammars. Transactions of
Information Processing Society of Japan, 34, 380-390.

Yokomori, T. (1992). On learning systolic languages. Proceedings of
$rd Workshop on Algorithmic Learning Theory, 41-52.

189

SCIENTIFIC DOMAINS

8

Machine Learning and Biomolecular Modelling

M. J. E. Sternberg
R. A. Lewis

Biomolecular Modelling Laboratory,
Imperial Cancer Research Fund,
Lincoln’s Inn Fields,

London WC2A 3PX, UK.

R. D. King

Department of Statistics, Strathclyde University,
Glasgow , G1 1XH, UK

S. Muggleton

Turing Institute, George House,
36 North Hanover Street,
Glasgow G1 2AD, UK

Abstract

Two problems in biomolecuiar modelling have been tackled by
the machine learning program, Golem. The program, based
on inductive- based logic programming, takes as input observa-
tions and combines them with background knowledge to yield
rules. The first system tackled was modelling the quantitative
structure-activity relationship (QSAR) of a series of trimetho-
prim analogues binding to E. coli dihydrofolate reductase. The
Golem rules were a better model than standard regression ap-
proaches. More importantly, these rules described the chemical
properties of the enzyme binding site that were in broad agree-
ment with the crystallographic structure. The other system was
the prediction of the secondary structure of proteins to identify
regions that form a-helices. On a test set the prediction was
81% accuracy which is better than the results achieved by neu-

193

MACHINE LEARNING AND BIOMOLECULAR MODELLING

ral networks. The rules from Golem defined patterns of residues
forming a-helices.

1 INTRODUCTION

Biomolecular modelling aims to understand the inter-relationships
of chemical formula, three-dimensional structure and function
of molecules of biological importance. In many area, rules are
derived from a experimental observation of the properties of a
series of compounds. This paper will describe two topics where
the approach of inductive-based machine learning, implemented
in a program Golem (Muggleton and Feng, 1990) , has been
applied to map the experimental relationship. The first topic
is to model quantitatively the structure activity relationship of
a series of drugs. The second topic is the prediction of the lo-
cal secondary structure of a protein from its sequence. In both
systems rules are obtained that are better than conventional
statistical approaches and also yield rules that provide insight
into the stereochemistry of the system. All figures referred to in
the text are to be found at the end of this chapter.

2 GOLEM

Golem (Muggleton and Feng, 1990) is a program for machine
learning by inductive logic programming (ILP). In Golem the
concepts are expressed in a language that is a subset of first-
order predicate calculus. The input consists of: (1) observations
coded as facts and negative counter-examples and (2) back-
ground knowledge that in both applications describes the rel-
evant chemical principles. Golem then forms an inductive hy-
pothesis by generalising the observations and background knowl-
edge (Figure 8.1).
The basic algorithm implemented by Golem is:

1. take at random two examples from the observations;

2. computes the set of properties that are common to both
examples;

3. generate a rule which will be true for both examples;
4, evaluate the accuracy of the rule on the remaining data;

194

STERNBERG ET AL.

5. repeat steps (1) to (4) several times (typically 10) and
then keep the best rule;

6. choose a further example is at random and apply steps (2)
and (3) to generate a rule;

7. test the rule from (6) on further observations;

8. if the rule continues to be accurate, store the rule and
added it to the background knowledge;

9. start again from (1) and generate new rules until no further
rules can be obtained.

In Golem, PROLOG is used to represent the observations,
background knowledge and rules. The use of the predicate cal-
culus in PROLOG is expressive enough for most mathematical
concepts but is readily comprehensible and therefore makes an
ideal representation for machine learning. The program Golem

is written in the language C and runs on SUN Sparcstations and
VAXes.

3 DRUG DESIGN
3.1 Background

In the design of a potent drug, the pharmaceutical chemist
starts with a lead compound with some of the required activ-
ity. Modifications are then made introducing different chemi-
cal groups whose activities are assayed. To direct the choice
of better compounds to synthesise, one requires a quantitative
structure-activity relationship (QSAR) (see reviews (Goodford,
1985). One standard method is the Hansch equation (Hansch,
1969; Hansch, et al., 1962) in which an empirical equation based
on linear regression links the properties of the substituents to
their observed activity. More recently, neural networks (Andrea
and Kalayeh, 1991) have also been applied to model QSAR.
However neither approach yields insight into the chemistry of
the drug / receptor interaction.

Here we report a comparison of modelling a QSAR by the
Hansch method (Hansch, et al., 1982) and by Golem. The par-
ticular system is the activities of trimethoprim analogues on

dihydrofolate reductase (DHFR). In most QSAR problems, the

195

MACHINE LEARNING AND BIOMOLECULAR MODELLING

three-dimensional structure of the receptor in which the drug
binds is not known. However for DHFR there is precise three-
dimensional information at the atomic level about the stereo-
chemistry of the interaction obtained by protein crystallogra-
phy (Champness, et al., 1986; Matthews, et al., 1985) . Thus
we have an ideal system to establish whether Golem can learn
rules describing this stereochemistry. Full details of this study
can be found in King et al. (1992).

3.2 Method

The study was performed with the same training set of 44 trimetho-
prim analogues (Figure 8.2) as used in the study on the Hansch
linear regression (Hansch, et al., 1982). In addition a testing set
of 11 drugs was obtained from the literature.

The input to Golem consisted of

1. The observed activities of the drugs expressed as paired
examples of greater activity, e.g. great(d20, d15) which
states that drug no. 20 has higher activity than drug no.
15.

2. The background knowledge in which the chemical struc-
ture of the drugs is represented in the form struc(d3s,
NO2, NHCOCHS, H) which states that drug no. 35 has:
NO2 substituted at position 3 , NHCOCHS3 substituted at "
position 4, and no substitution at position 5;

3. The background knowledge of the chemical properties of
the substituents in which the properties were assigned
heuristically. The particular properties are: polarity, size,
flexibility, hydrogen-bond donor, hydrogen-bond acceptor,
p donor, p acceptor, polarisability, branching and s effect.
This was represented using different predicates for each
property and value, e.g polar(Br, polar3) states that Br
has polarity of value 3.

4. In-built arithmetic so information was explicitly given about
the relative values of these properties for the substituent
groups e.g. great_polar(polarf, polar3). The input to Golem
was 871 observations and 2976 items of background infor-
mation. The run time was about 30 cpu minutes on a

196

STERNBERG ET AL.

SUN SparcStation 1 to generate one rule.

3.3 Results

Nine rules were obtained that predicted the relative activity of
two drugs in terms of the chemical properties of the substituents
(see Appendix A). An example of a rule as a PROLOG clause
is:
great(A, B):-

struc(A, D, E, F), struc(B, h, C, h),

h_donor(D, h_don0), pi-donor(D, pidonl),

flex(D, G), less4 flex(G).

The interpretation in English is:

Drug A is better than drug B if
drug B has no substitutions at positions 3 and 5 and
drug A at position 3 has hydrogen donor = 0 and
drug A at position 3 has pi-donor = 1 and
drug A at position 3 has flexibility < 4.

The rank values predicted for the 44 drugs in the training
set by Golem and by the application of the Hansch equation are
tabulated in Figure 8.3 and shown graphically in Figures 8.5 and
8.6. The Spearman rank correlation with the observed order is
0.92 for Golem and 0.79 for the Hansch equation. The difference
in these rank correlation was shown to be significance at the 5%
level by FisherUs z transformation (Kendall and Stuart, 1977) .

A better test of a prediction method is its performance on
data not used in developing the algorithm. Tabulation of the
results for the 11 testing drugs are also shown in Figure 8.4. The
rank correlation for the 11 drugs by Golem was 0.46 compared to
0.42 for the Hansch method. The Fisher z-value is 0.54 which is
not significant reflecting the similar rank correlations obtained
on a small test set. Further cross- validation trials selecting at
random 44 training drugs and evaluating the success on the 11
remaining compounds gave similar results. In general, on the
test set the machine learning approach is slightly more accurate
than the regression method of Hansch.

We now consider whether the rules obtained by Golem de-
scribing the chemical properties of favourable drugs can provide

197

MACHINE LEARNING AND BIOMOLECULAR MODELLING

information about the stereochemistry of drug / DHFR inter-
actions. The second half of Figure 8.2 shows a cartoon of the
crystallographically- observed binding of trimethoprim to E. coli
DHFR in the complex (Champness, et al., 1986) with NADPH.
Golem suggested that the general properties of a favourable sub-
stituent at the 3 position are: pi-donor of 1; neither a hydrogen
bond donor nor an acceptor; flexibility < 4 and a polarity of zero.
The crystal structure shows that the 3 position is constrained
in size and is not exposed to solvent. Thus the substituents
should not be polar or have hydrogen bond donor or acceptor
character. In addition, Golem found that the properties that
favour positions 4 are: polarity of 2; size of 3 or size of 2 with
the potential to be a hydrogen bond acceptor. These properties
are consistent with a site that is exposed to solvent and should
be polar.

To summarise, the rules produced by Golem are at least as
good as those obtained by the linear regression method of Han-
sch. More importantly, these rules can automatically provide
a chemical description of the interaction of the drug with the
receptor.

4 SECONDARY STRUCTURE PREDICTION
4.1 Background

Proteins are biological macromolecules whose activity, such as
catalysis, results from its complex three-dimensional structure
(called tertiary structure). However structure determination
remains difficult so today there are around 500 different ter-
tiary structures known. In contrast, the chemical structure of
the protein, known as the amino-acid sequence, can readily be
obtained from the gene sequence and today more than 50,000
sequences are known.

Experiments suggest that it should be possible to predict the-
oretically the three- dimensional structure of a protein from its
sequence, for reviews see (Blundell, et al., 1987). This prob-
lem remains complex and a simpler, first step, has attracted
much research. Most proteins have segments of the chain that
adopt a regular local conformation, known as secondary struc-

198

STERNBERG ET AL.

ture. There are two major types, a-helices and (-sheets, and
typically between 5 to 15 residues of the chain can be assigned
to one local region of secondary structure. Thus a protein chain
that ranges between 50 and 1000 amino-acid residues will have
several regions of a and/or f structure linked by less regular
(but still defined) conformation known as coil.

Many early methods of secondary structure prediction were
based on simple statistical analyses and these achieved about
60% accuracy for a three state (,3 and coil) prediction (Kabsch
and Sander, 1983) . Recently, approaches using larger data
sets (Gibrat, et al., 1987) and/or sophisticated analyses such
as neural networks (Kneller, et al., 1990) yielded only marginal
improvements of up to 65% accuracy. One method of improving
prediction is to restrict the algorithm to a subset of all proteins
that have just o-helices and coil. Recently neural networks by
Kneller et al (Kneller, et al., 1990) have been applied to this
a/a class and yielded 76% accuracy. However a major problem
with neural networks is that the weights do not provide insight
into principles of folding. Here we report on the use of Golem to
secondary structure prediction. This extends earlier work (King
and Sternberg, 1990) and full details can be found in Muggleton
et al (Muggleton, et al., 1992) .

4.2 Method

The structural data consisted of a training set of 12 protein
with a testing set of 4 proteins that were not related (i.e. non-
homologous). The absence of any homology between the train-
ing and testing set is essential for an evaluation of the power
of any algorithm. We note that there are several studies where
this requirement has been ignored.

The input to Golem was:

1. The observations of the\ location in the protein of the -
helices coded as: alpha(protein_name,position). For exam-
ple: alpha(155C, 110) states that residue 110 in protein
155C is in an a-helix.

2. The background information of the amino-acid sequence
coded as: position (155C,110,V) that states residue at

199

MACHINE LEARNING AND BIOMOLECULAR MODELLING

position 110 in 155C is a valine.

3. The background knowledge about the chemical proper-
ties of each of the 20 different amino-acid residues. These
properties were:
hydrophobic, very_hydrophobic, hydrophilic,
positive, negative, neutral,large, small, tiny,
polar, aliphatic, aromatic, hydrogen_bond-donor,
hydrogen_bond_acceptor, not_aromatic, small.or_polar,
not_polar,aromatic.or_very hydrophobic,
either_.aromatic_or.aliphatic,not_proline, not_lysine.
These were coded as: aliphatic(V).

4. Built-in arithmetic that explicitly coded information about
the sequential relationship of residues.

4.3 Results

Golem was applied and yie/lded rules that led to a speckled
prediction with individual residues not predicted as helical but
within a run of helical residues. a-Helices are continual runs of
at least 5 residues and this was then included into the algorithm.
A bootstrapping procedure was followed where the predictions
made by Golem were used as background knowledge and Golem
learnt how to smooth the data. This was repeated twice and
the resultant rules generalised by hand to include symmetry.

The accuracy of secondary structure prediction is convention-
ally expressed as the percentage of residues whose state is cor-
rectly predicted. The final prediction, after smoothing, was 78%
and 81% on the training and testing sets. The better improve-
ment on the testing set rather than the training data reflects the
standard error in each of these values of about 2%. This result
can be compared with the recent work on neural networks on
a/a proteins that was 76% accurate (Kneller, et al., 1990) .

The rules described the properties of residues at different
positions along the helix (e.g. Figure 8.7). Inspection showed
that well-known chemical principles of a-helix formation are de-
scribed in the rules, for example the preference for one face to
be formed from oily (i.e. hydrophobic) residues. However new
insights into protein folding which may be included in the pat-

200

STERNBERG ET AL.
terns are not easy to discern.

5 CONCLUSIONS

There are many similarities in the methodology and the results
from the two studies. First the system was described as simple
observations- for drugs the relative activities of the two com-
pounds and for proteins the observed secondary structure. The
background knowledge had two parts. First the chemistry was
defined, either the substituents of the drug or the residue type
in the protein. Then chemical properties were assigned. This is
the most critical step as the choice of representation is central
to the success of the approach. Finally built-in arithmetic had
to be supplied explicitly.

The results showed that machine learning was at least as good
as the state-of-the- art statistical methods, neural networks or
linear regression. The rules obtained did include some informa-
tion about the stereochemistry of the system. However careful
study of the rules is required to extract this information.

Two areas in biomolecular modelling have been tackled by
machine learning. There are however many other problems that
await input from the artificial intelligence community. For ex-
ample, we have developed an algorithm that searches for the
most probable association in three-dimensions of two proteins
of known structure (Walls and Sternberg, 1992) . This docking
problem was tackled by an exhaustive search to match the two
surfaces. The algorithm was implemented on the single instruc-
tion multiple datastream architecture of an AMT DAP . The
search took two days on the DAP but would require at least
two orders of magnitude longer on a SparcStation 1.

In general, there is an explosion in the data in the biologi-
cal sciences. Machine learning can provide a powerful tool to
extract generalisations of predictive quality that yield new in-
sights.

Acknowledgments

MJES is supported by the Imperial Cancer Research Fund; RAL
by a fellowship from the Royal Commission of 1851; RDK by

201

MACHINE LEARNING AND BIOMOLECULAR MODELLING

the Esprit "Statlog” project; SM by for an SERC research fel-
lowship.

APPENDIX A
Rules for QSAR derived by machine learning

The rules are first given as Prolog clauses (in which “:-” is a definition
and a “” is logical “and”) and then in English. The rules have been
classified into those primarily relating to substituent 3 (rule 3.1 to
3.4); to substituent 4 (4.1 and 4.2). The rules given are the more
general and three other more specific are not given.

Rule 3.1 (coverage 119/0 train : 105/0 test)

great(A, B):-
struc(A, D, E, F), struc(B, h, C, h),
h_donor(D, h-don0), pi-donor(D, pidonl),
flex(D, G), less4flex(G).

Drug A is better than drug B if

drug B has no substitutions at positions 3 and 5 and
drug A at position 3 has hydrogen donor = 0 and
drug A at position 3 has pi-donor = 1 and

drug A at position 3 has flexibility < 4.

Rule 3.2 (coverage 244/71 train : 248/4 test)
great(A, B):-

struc(A, C, D, E), struc(B, F, h, G), not except3.2(A, B).
except3.2(A, B):-

struc(A, C, D, h), struc(B, E, h, F), h_donor(E, h_don0).

Drug A is better than drug B if

drug B has no substitution at position 4 unless
drug A has no substitution at position 5 and
drug B at position 3 has hydrogen donor = 0.

Rule 3.3 (coverage 102/13 train : 33/0 test)

great(A, B):-
struc(A, G, H, I), struc(B, C, h, D),
pi-donor(C, pi-don0), polar(C, E),
great0_polar(E), h-acceptor(C, F), great0_h.acc(F).

Drug A is better than drug B if
drug B has no substitutions at position 4 and

202

STERNBERG ET AL.

drug B at position 3 has p-donor = 0 and
drug B at position 3 has polarity > 0 and
drug B at position 3 has hydrogen acceptor > 0.

Rule 3.4 (coverage 129/2 train: 126/0 test)

great(A, B):-
struc(A, C, D, E), struc(B, G, h, h), h_donor(C, h-don0),
pi-donor(C, pi-donl), flex(C, F), less4 flex(F),
polarisable(G,), less3_polari(H).

Drug A is better than drug B if

drug B has no substitutions at position 4 and 5 and
drug B at position 3 has polarisability < 3 and
drug A at position 3 has hydrogen donor = 0 and
drug A at position 3 has p-donor = 1 and

drug A at position 3 has flexibility < 4.

Rule 4.1 (coverage 289/72 train: 99/0 test)
great(A, B):-
struc(A, D, E, F), struc(B, h, C, h), not except4.1(A,B).
except4.1(A,B):-
struc(B, h, C, h), size(C, size3).
except4.1(A,B):-
struc(B, h, C, h), size(C, size2), h_acceptor(C,h_accl).

Drug A is better than drug B if
drug B has no substitutions at position 3 and 5 unless
drug B at position 4 has size = 3 or
drug B at position 4 has size = 2 and hydrogen acceptor = 1.

Rule 4.2 (coverage 187/2 train: 193/2 test)
great(A, B):-
struc(A, E, F, G), struc(B, C, D, h),
not_h(E), polar(F, polar2).

Drug A is better than drug B if
drug B has no substitution at position 5 and
drug A has a substitution at position 3 and
drug A at position 4 has polarity = 2.

203

MACHINE LEARNING AND BIOMOLECULAR MODELLING

REFERENCES

Andrea, T.A. and Kalayeh, H. (1991). Applications of neural net-
works in quantitative structure-activity relationships of dihydro-
folate reductase inhibitors. J. Med. Chem. 34, 2824-2836.

Blundell, T.L., Sibanda, B.L., Sternberg, M.J.E. and Thornton, J.M.
(1987). Knowledge-based prediction of protein structures and the
design of novel molecules. Nature (London) 326, 347-352.

Champness, J.N., Stammers, D.K. and Beddell, C.R. (1986). Crys-
tallographic investigation of the cooperative interaction between
trimethoprim, reduced cofactor and dlhydrofolate reductase. FEBS
Letters 199, 61-67.

Gibrat, J.F., Garnier, J. and Robson, B. (1987). Further develop-
ments of protein secondary structure prediction using informa-

tion theory. New parameters and consideration of residue pairs.
J Mol Biol 198, 425- 443.

Goodford, P.J. (1985). A computational procedure for determin-
ing energetically favorable binding sites on biologically important
macromolecules. J. Med. Chem. 28, 849-857.

Hansch, C. (1969). A quantitative approach to biochemical structure-
activity relationships. Acc. Chem. Res. 2, 232-239.

Hansch, C., Li, R.-l., Blaney, J.M. and Langridge, R. (1982). Com-
parison of the inhibition of Escherichia coli and Lactobacillus ca-
sei dihydrofolate reductase by 2,4-diamino-5-(substituted-benzyl)
pyrimidines: quantitative structure-activity relationships, X-ray
crystallography, and computer graphics in structure-activity anal-
ysis. J. Med. Chem. 25, 777-784.

Hansch, C., Maloney, P.P., Fujita, T. and Muir, R.M. (1962). Corre-
lation of biological activity of phenoxyacetic acids with Hammett
substituent constants and partition coefficients. Nature 194, 178-
180.

Kabsch, W. and Sander, C. (1983). How good are predictions of
protein secondary structure. FEBS Lett 155, 179-182.

Kendall, M. and Stuart, A. (1977). The Advcnced Theory of Statis-
tics, Griffen and Company, London.

King, R.D., Muggleton, S., Lewis, R.A. and Sternberg, M.J.E. (1992).
Drug design by machine learning : the use of inductive logic pro-
gramming to model the structure-activity relationship of trimetho-

204

STERNBERG ET AL.

prim analogues binding to dihydrofolate reductase. Proc. Nat.
Acad. Sci., USA. 89, 11322-11326.

King, R.D. and Sternberg, M.J.E. (1990). A machine learning ap-
proach for the prediction of protein secondary structure. J. Mol.
Biol. 216, 441- 457.

Kneller, D.G., Cohen, F.E. and Langridge, R. (1990). Improvements
in protein secondary structure prediction by an enhanced neural
network. J. Mol. Biol. 214, 171-182.

Matthews, D.A., Bolin, J.T., Burridge, J.M., Filman, D.J., Volz,
K.W., Kaufman, B.T., Beddell, C.R., Champness, J.N., Stam-
mers, D.K. and Kraut, J. (1985). Refined crystal structures of
Escherichia coli and chicken liver dihydrofolate reductase con-
taining bound trimethoprim. J. Biol. Chem. 260, 381-391.

Muggleton, S. and Feng, C. (1990). Efficient induction of logic pro-
grams. Proceedings of the first conference on algorithmic learning
theory, Arikawa, S., Goto, S., Ohsuga, S. and Yokomori, T., eds.
(Japanese Society for Artificial Intelligence, Tokyo) pp. 368-381.

Muggleton, S., King, R.D. and Sternberg, M.J.E. (1992). Protein
secondary structure prediction using logic. Prot. Eng. 5 647-
657.

Walls, P.H. and Sternberg, M.J.E. (1992). New algorithm to model
protein-protein recognition based on surface complementarity -
Applications to antibody-antigen docking. J. Mol. Biol. 228,
277-297 .

205

MACHINE LEARNING AND BIOMOLECULAR MODELLING

Test accuracy of rules on observations

Observations

Learn rules
Input .

Background

Knowledge

Add rules accepted to background knowledge

Output

Figure 8.1. Machine learning by Golem.

206

STERNBERG ET AL.

NH,
R3
ZZ"Y
«
R4 N HN2

CH

3
H(’@\

Figure 8.2. (a) the structure of trimethoprim analogues; (b) a car-
toon of the interaction of trimethoprim with DHFR from X-ray struc-
tures (Champness, et al., 1986; Matthews, et al., 1985). Faint stip-
pling indicates that the residue lies below the plane of the phenyl
ring, darker stippling that the atoms are above.

SOLVENT
/N

207

MACHINE LEARNING AND BIOMOLECULAR MODELLING

X log(l/l\'.‘app) Observed | rank by | rank by
rank Golem Hansch
3,5-(OH)2 3.04 1 17 2
4-O(CH2)6CH3 5.60 2 4.5 4
4-O(CH2)5CH3 6.07 3 4.5 10
H 6.18 4 1 6.5
4-NO2 6.20 5 7.5 20.5
3-F 6.23 6 6 6.5
3-O(CH2)7CH3 6.25 7 15 6.5
3-CH20H 6.28 8 2 16
4-NH2 6.30 9 7.5 3
3,5-(CH20H)2 6.31 10 3 23
4-F 6.35 11 9.5 6.5
3-O(CH2)8CH3 6.39 12 18 11
4-OCH2CH20CH3 6.40 13 20 20.5
4-Cl 6.45 14 12 17.5
3,4-(OH)2 6.46 i5 18 1
3-OH 6.47 16 13 9
4-CH3 6.48 17 9.5 17.5
3-OCH2CH20CH3 6.53 18 21 34
3-CH20(CH2)3CH3 6.55 19 24 35.5
3-OCH2CONH?2 6.57 20.5 14 13
4-OCF3 6.57 20.5 19 22
3-CH20CH3 6.59 22 28 29.5
3-Cl 6.65 23 30.5 29.5
3-CH3 6.70 24 30.5 27.5
3-N(CH3)2 6.78 25 22.5 27.5
4-Br 6.82 26 11 24
4-OCH3 6.82 27 22.5 26
3-O(CH2)3CH3 6.82 28 29 32
3-O(CH2)5CH3 68.86 29 26 14
4-O(CH2)3CH3 6.89 30.5 27 15
4-NHCOCH3 6.89 30.5 25 12
3-0SO2CH3 6.92 32 33 25
3-OCH3 6.93 33 38 38
3-Br 6.96 34 37 35.5
3-NO2, 4-NHCOCH3 6.97 35 34 37
3-OCH2C6HS 8.99 36 35 31
3-CF3 7.02 37 32 19
3,4-(OCH2CH20CH3)2 7.22 38 39 40
3-1 7.23 39 38 33
3-CF3, 4-OCH3 7.69 40 41.5 39
3,4-(OCH3)2 7.72 41 41.5 41
3,5-(OCH3)2, 4-O(CH2)20CH3 8.35 42 43 43
3,5-(OCH3)2 8.38 43 40 42
3,4,5-(OCH3)3 8.87 44 44 44

208

Figure 8.3. Predicted and observed activity of trimethoprim ana-
logues on training data. X gives the substituents. The observed
value of the affinity is expressed as log(1/Kj,pp). The first 44 drugs
were used in the training set and the observed rank ranges from 1 to

STERNBERG ET AL.

X log Observed [rank by {rank by
(1/Kiapp) | rank Golem Hansch
3,5-(CH3)2, 4-OCH3 7.56 40 (1) 52.5 (9) |45.5 (4.5)
3-Cl, 4-NH2, 5-CH3 7.74 43 (2) 40 (2) 44 (3)
3,5-(CH3)2, 4-OH 7.87 44.5 (3.5) |40 (2) 41 (1)
3,5-Cl2, 4-NH2 7.87 44.5 (3.5) |40 (2) 45.5 (4.5)
3,5-Br2, 4-NH2 8.42 48 (5) 44 (4) 53 (10)
3,5-(OCH3)2, 4-OCH2C6H5 |8.57 49 (6) 52.5 (9) |51 (9)
3,5-(OCH3)2, 4-CH3 8.82 50.5 (7.5)|47.5 (9) |54 (2)
3,5-(OCH3)2, 4-O(CH2)7CH3 | 8.82 50.5 (7.5)|52.5 (5.5) |42 (11)
3,5-(OCH3)2, 4-O(CH2)5CH3 | 8.85 52 (9) 52.5 (9) |48.5(7)
3,5-12, 4-OCH3 8.87 54 (10.5) |52.5 (9) |50 (8)
3,5-12, 4-OH 8.87 54 (10.5) |47.5 (5.5) |47 (6)

Figure 8.4. Predicted and observed activity of trimethoprim ana-
logues on test data. The final 11 drugs are the testing set and the
first number is the rank in the 55 drugs and the second the rank for

the 11,

209

MACHINE LEARNING AND BIOMOLECULAR MODELLING

1 2 [" 1 " (]) [
© training A AAA A
s0 4 A& testing o L
A A
— oo A
- 40 7 o AA -
3 °o °
I] ° o
o ©
~ 00 °
g 30 A o "
° o
M o
o ° i
7 . o
& 20 1 o ° -
o o o °
o} 1 ° o
v 0°
A 10 - o o ° -
o o
o
o o]
[«]
0 o, T v T T T Y T T T v
0 10 20 30 40 50
True rank

Figure 8.5. Scattergram of the observed rank versus that predicted
by Golem.

210

STERNBERG ET AL.

M 1 M 1 1 1 M 1 2 1 A
b . e of
o training AAA
so 4 A testing ° T At
o
] A AA A X
°A
= 40 A s %o B
g (o] Oo
@] !
1] °) o o
5 30 - 00 .
- oo
=] ° 5 X
« o
b o]
o o
© 20 ° o o =
© oo
= o
© . 0° -
Q o
e o 0
m 10 = o o =
0 00 o
{ o I
o ° o
0 v T T T T T v T v T v
0 10 20 30 40 50
True rank

Figure 8.6. Scattergram of thc observed rank versus that predicted
by Hansch.

211

MACHINE LEARNING AND BIOMOLECULAR MODELLING

internal face of helix

hydrophobic,

hydrophobic not_k

large,
not_aromatic 3
not_k

not_aromatic,
small_or_polar

not_p not_aromatic,

. not_p
not_aromatic,

not_p

external face
of helix

Figure 8.7. Schematic representaion a rule for secondary structure
prediction.

212

9

More Than Meets the Eye: Animal Learning
and Knowledge Induction

E. J. Kehoe

School of Psychology,
University of New South Wales,
Kensington, NSW 2033 Australia

Abstract

Animals share many of the same learning problems as faced by
untutored machine systems. In the ordinary environment, ani-
mals must continuously discover associations between potential
signals and subsequent events that are crucial to their wellbe-
ing. Moreover, the animals must build this world model from a
highly limited training set, without having prior knowledge or
verbal instructions. Experiments using conditioned reflex meth-
ods have examined issues fundamental to all learning systems.
These inclyde:

o Credit assignment, e.g., animals capitalize on any sequence
of reliable signals for subsequent events.

o Representation, e.g., the XOR problem can be solved by
animals.

o Productivity, e.g., the rate of learning improves across suc-
cessive problems that are structurally similar but differ in
their superficial features.

¢ Anticipation, e.g., conditioned responses are finely timed
so that they are neither too early nor too late during a
warning signal.

These behavioural phenomena can be modelled by small connec-
tionist networks and/or single-unit real time models. Thus, the

213

ANIMAL LEARNING

study of learning in animals provides a biological counterpart to
nonsymbolic learning systems.

1 INTRODUCTION

Animals share many of the same learning problems as faced
by untutored machine systems. Among other things, animals
must continuously discover associations between potential sig-
nals, actions, and subsequent events that are crucial to their
wellbeing. Animals must build this world model from a highly
limited training set, without having prior knowledge or verbal
instructions. In addition, the relationships among events are
changeable; both opportunities and threats can change in place
and time. Over the last century, a large body of research con-
cerning the fundamental principles of learning has emerged from
laboratory experiments with animals. More recently, it has be-
come increasingly clear that these principles may be useful in
designing adaptive machines. However, the traffic is not all one
way; developments in machine intelligence and adaptive systems
have proved increasingly valuable in explaining animal learning.
This chapter will describe how the principles of animal learning
correspond to key issues in designing algorithms for learning.
The chapter will be divided into five sections. First, the major
procedures for the study of animal learning will be described
and classified with respect to more general learning paradigms.
The remaining four sections will describe the study of animal
learning as it pertains to the issues of credit assignment, repre-
sentation, productivity, and anticipation. Each of these latter
sections will include a description of the issue, examples of well-
substantiated findings, and examples of algorithms relevant to
those findings. All figures referred to in the text are to be found
at the end of this chapter.

2 ISSUES AND DEFINITIONS
2.1 Basic Procedures

Animal learning has been studied in a variety of ways in a va-,
riety of situations using a variety of species, ranging from flat-
worms to elephants. However, the variety of experiments can be

214

E. J. KEHOE

grouped into two basic categories, namely, classical conditioning
and operant conditioning.

2.1.1 Classical conditioning

The prototype for classical conditioning is Pavlov’s (1906, 1927)
method of conditioned reflexes. Pavlov’s method entails the pre-
sentation of two stimuli to a dog. First, the conditioned stimu-
lus (CS) is usually a relatively innocuous event, for example the
well-known ringing of a bell. Second, the unconditioned stim-
ulus (US) is an event of biological significance to the dog, for
example the consumption of food. When presented in close suc-
cession, the CS acts as a signal for the US. Pavlov’s method
takes advantage of the innate ability of the US to elicit strong
reactions known as the unconditioned responses (URs). Pavlov
measured one of those responses, namely, salivation. Across re-
peated CSPUS pairings, the CS itself comes to elicit a response
that broadly resembles the UR. This learned response to the CS
is known as the conditioned response (CR).

2.1.2 Operant conditioning

Operant conditioning is also known as instrumental learning
and sometimes as trial-and-error learning. It is commonly iden-
tified with Skinner (1938) but was started by Thorndike (1898).
In the prototypic experiment, a cat is placed in a puzzle box,
really a modest-sized cage. Just outside the cage, a bowl of
food is visible. The cat is allowed to explore the box without
constraint, but only a single action Q pressing a certain latch
Q opens the cage door and permits access to the food reward.
Across repetitions of the problem, the cat progressively refines
its actions so that it smoothly and quickly opens the necessary
latch. The distinguishing feature of this and all operant proce-
dures is the contingency between the designated action and its
reward, which is known technically as a positive reinforcer.

22 Perspectives

At various times, classical and operant conditioning have been
thought to reflect different learning processes (see Gormezano
and Kehoe, 1975). Classical and operant conditioning are usu-

215

ANIMAL LEARNING

ally distinguished in terms of the relationship between the learned
response and the final significant event. In classical condition-
ing, the final event Q) the unconditioned stimulus Q is presented
on a preprogrammed basis irrespective of the conditioned re-
sponse. In contrast, in operant conditioning, the delivery of the
reward depends on whether or not the designated action occurs.
However, from the perspective of adaptive systems, a different
distinction is possible. Specifically, classical and operant con-
ditioning can be viewed as two species of supervized learning.
According to this distinction, it is the instructive or noninstruc-
tive nature of the final event itself that is important, not its
programmed or contingent relationship to the prior action.

From an adaptive systems’ perspective, classical conditioning
is an example of supervized learning with instructive feedback.
Instructive feedback contains explicit instructions as to the de-
sired response. For example, in a classification task, such feed-
back would include the name of the appropriate category. If the
learner classifies an item correctly, such feedback confirms the
response. If the learner makes an incorrect classification, then
the same feedback provides an explicit corrective. Likewise, in
classical conditioning, the elicitation of the UR by a US effec-
tively acts to either confirm an existing CR or to instruct the
subject as to the nature of the CR to be acquired.

In contrast to classical conditioning, operant conditioning
usually involves critical feedback. That is to say, the feedback
only indicates whether or not the preceding action matched the
desired output. Critical feedback gives no explicit guidance as
to what a more appropriate response might be. In the case of
a classification task, the learner would only be told whether a
particular classification was ’right’ or 'wrong’. Where there are
many possible categories, being told that one’s choice is 'wrong’
is minimally informative. In operant conditioning, the delivery
or absence of a reward serves the same critical function as 'right’
and ’wrong’.

2.3 The Rabbit Eyeblink Preparation

The remainder of this chapter will focus on classical conditioning
in one particular version, namely, classical conditioning of the

216

E. J. KEHOE

protective eyelid closure in the rabbit. This preparation was cho-
sen because it has generated a large and well-established body of
findings relevant to key issues in adaptive systems. Moreover,
the rabbit preparation is now the most widely used prepara-
tion for the neurophysiological study of learning in mammals
(Gormezano, 1966; Gormezano, Thompson, and Prokasy, 1987;
see also Gabriel, 1988). In this preparation, closure of the rab-
bit’s inner, third eyelid Q the nictitating membrane (NM) Q is
the measured response. The CSs have been mild auditory or
visual stimuli that themselves do not innately elicit eyelid clo-
sure. Conversely, the US is a tactile stimulus Q either a puff of
air to the eye or a low, electrical current delivered to the skin
around the eye. These USs innately elicit closure of the eyelids
as URs (see Figure 9.1). As is true of Pavlov’s preparation, re-
peated presentation of a CS and US in close succession yields
the acquisition of a CR, namely closure of the eyelids during the
warning period provided by the CS in advance of the US (see
Figure 9.2).

3 CREDIT ASSIGNMENT

Reliable signals for biologically significant events are usually
embedded in a continuous and multifaceted stream of sensory
events. An adaptive organism must possess mechanisms for
discovering associations among reliable sequences and reject-
ing spurious associations among accidental sequences. From
the perspective of adaptive systems, identification of reliable
sequences is an example of credit assignment (Sutton, 1984). In
game-playing, the credit-assignment problem is one of determin-
ing which single move or combination of moves is responsible for
ultimately winning or losing a given game (Minsky, 1961). In
classical conditioning, credit is assigned to stimuli rather than
actions (Kehoe, 1990). CSs that reliably signal the US receive
credit in the form of associative strength that drives the CR.
Unreliable CSs receive no associative strength. CSs that signal
long periods without the US receive credit in the form of neg-
ative associative strength that inhibits expression of the CR.
In its simplest form, credit assignment has been examined by

217

ANIMAL LEARNING

manipulating the interval between a CS and US. More complex
forms of credit assignment have been examined by using a se-
quence of two or more CSs prior to the US.

3.1 CSPUS Interval

Aristotle’s Law of Contiguity has served as the historic princi-
ple for credit assignment in associative learning. That is to say,
events that occur close together in time become strongly associ-
ated. Conversely, events more widely separated gain proportion-
ally less associative strength. Since the inception of conditioning
research, there have been numerous studies examining CR ac-
quisition across manipulations of the interval between the CS
and US (e.g., Gormezano and Moore 1969; Hall 1976). Figure
9.3 summarizes the results from several studies using the rabbit
NM preparation in which the CSPUS interval was manipulated.
Each point on the diagram represents the mean CR likelihood
achieved for a given CS-US interval used in training. As can
be seen, the function is not monotonic but is concave. No CR
acquisition occurs when the CSPUS interval is zero, that is to
say, when CS onset and US onset occur simultaneously. As the
CSPUS interval approaches values between 200 and 400 ms, CR
acquisition reaches progressively higher levels. CSPUS intervals
longer than 400 ms produce progressively less CR acquisition.
The longest CS-US interval that produces any discernible CR
acquisition appears to be less than 6000 ms. Concave functions
of this sort are common in other conditioning procedures. These
functions reveal that there is an optimal warning period for an-
ticipating the US; the animal does not waste its resources on
signals that give too short or too long a warning period. Be-
yond their adaptive significance, these concave functions have
been used to map the time course of the trace of the CS, that
is, it’s internal representation. According to real-time models
of learning (e.g., Kehoe 1990; Sutton and Barto 1981, 1990),
it is the intensity of the trace at the time of US delivery that
determines the rate of conditioning, Thus, the concave function
reveals the moment-by-moment intensity of the CS trace as it
recruits and then decays.

218

E. J. KEHOE

3.2 Serial CSs

Although the nature of credit assignment with a single, reliable
CS is relatively straightforward, a sequence of discrete CSs en-
gages additional mechanisms. The rabbits do not just use the
CS that has the most optimal CSPUS interval but capitalize on
the relationships among CSs. Studies with the rabbit prepa-
ration have commonly used a sequence of just two CSs such
as a tone and a light to signal the US (CSAPCSXPUS) (Ke-
hoe, 1982a). Using this minimal sequence, there have been two
paradoxical findings.

3.2.1 Facilitation of Remote Associations

Facilitation of remote associations occurs when CSA is presented
several seconds in advance of CSX and the US. The acquisi-
tion of the CR to CSA proceeds more quickly and reaches a
higher level than would otherwise be the case. In fact, con-
trol experiments have revealed that, without CSX in the se-
quence, virtually no CR acquisition to CSA occurs (Kehoe,
Gibbs, Garcia, and Gormezano, 1979; Kehoe, Marshall-Goodell,
and Gormezano, 1987; Kehoe and Morrow, 1984) (see Figure
9.4).

3.2.2 Impairment of Prozimal Associations

Impairment of proximal associations occurs when CSA precedes
CSX by a short interval, say, less than a second. CSA has a
deleterious effect on CR acquisition to CSX. That is to say, the
level of responding to CSX is low and considerably less than that
of a control group given only CSXPUS training (e.g., Kehoe,
1979; Kehoe et al., 1979; Kehoe, 1983) (see Figure 9.5).

3.3 Basic Principles

Two processes appear to underlie the findings obtained with
serial compounds.

3.3.1 Associative Transfer

The facilitation of responding to CSA in a serial compound ap-
pears to rely heavily on transfer of associative strength from

CSX (Gibbs, Cool, Land, Kehoe, and Gormezano, 1991a; Gibbs,

219

ANIMAL LEARNING

Kehoe, and Gormezano, 1991b). Such associative transfer has
been demonstrated clearly in ’second-order conditioning’ (Pavlov,
1927; Rizley and Rescorla, 1972). In that procedure, the sub-
jects are given separate ’second-order’ CSAPCSX trials and
first-order’ CSXPUS trials. As CRs are acquired on the CSX-
PUS trials, CRs are also acquired to CSA on the CSAPCSX
trials (Kehoe, Feyer, and Moses, 1981). Associative transfer
occurs in a serial compound (CSAPCSXPUS), because it con-
tains both the CSAPCSX and CSXPUS relationships of second-
order conditioning (Gormezano and Kehoe, 1989) (see Figure
reffig:kehoe6).

3.3.2 Competitive Learning

Concurrent CSs appear to compete for a limited resource such
as associative strength or attention (e.g., Rescorla and Wagner,
1972; Sutherland and Mackintosh, 1971). That is to say, one
CS loses access to the key resource, because the other CS cap-
tures the resource very rapidly or has already captured all of it.
Such factors as the intensity of the two CSs, their prior associa-
tive strengths, and their temporal order are commonly thought
to influence their relative competitive advantage (Kehoe, 1987).
In a serial compound, CSA may capture the subject’s atten-
tion before the onset of CSX, thus precluding CSX from gaining
associative strength.

3.4 The Sutton-Barto Model

It might seem paradoxical that CSA both gains strength through
associative transfer from CSX but also competes with CSX for
a key resource. However, associative transfer and stimulus com-
petition have been woven together by Sutton and Barto (1981,
1990). Their model assumes that the animal is continuously
updating associative strengths by comparing recent values with
current values. Thus, changes in the associative strength of a
CS occur whenever there is a discrepancy between the net asso-
ciative strength at one moment versus the next. Such discrepan-
cies can arise through presentation of another CS as well as the
US. In a CSAPCSXPUS compound, CSA’s associative strength
(VA) would gain an increment at the onset of CSX from any

220

E. J. KEHOE

associative strength previously gained by CSX (VX). Thus, as
quickly as CSX gains associative strength, it would be transmit-
ted to CSA. Later within a trial, at the point of US onset, both
CSA and CSX gain associative strength on a competitive basis
according to their relative salience. Thus, VA increases at the
onsets of both CSX and the US, while VX increases only at the
onset of the US. As VA approaches the asymptotic value, the
summated associative strengths (VA + VX) could exceed that
sustainable by the US. Consequently, at US onset, there would
be decrements in both VA and VX. On the next trial, VA would
regain its lost value at CSX onset, while VX would continue to
suffer decrements at US onset until the sum VA + VX stabilized
at a level sustainable by the US.

4 REPRESENTATION

Among its many aspects, representation concerns the learning
of arbitrary mappings from stimulus inputs to response outputs.
Representation problems of fundamental importance can be cre-
ated with as few as two stimulus inputs. Specifically, a solution
to the exclusive-OR (XOR) problem requires a response to each
of two inputs presented separately but not to their joint occur-
rence (Barto, 1985, p. 35; Rumelhart, Hinton, and Williams,
1986, p. 319). Thus, it is impossible to generate the appropri-
ate reaction, namely no response, to the joint stimulus inputs
by summing the responses attached to the two separate inputs.
The XOR problem has been studied in classical conditioning by
using combinations of two CSs, most commonly tone and light.
These studies have revealed two mapping processes that may
operate in parallel. One is a linear process in which the asso-
ciative strengths of the two CSs add together in a simple way.
The other is a nonlinear process that can counteract the linear
process and permit the animals to solve the XOR problem.

4.1 Summation in Conditioning

The left-hand side of Figure 9.7 shows evidence for the summa-
tion of associative strengths in determining the performance of
a CR. The training procedure is known as stimulus compound-
ing. The animals received a mixture of two types of trials: (a)

221

ANIMAL LEARNING

a tone CS by itself consistently signalled the US, and (b) a light
CS also consistently signalled the US. To determine how the an-
imals would combine the associative strengths of the tone and
light CSs, they were occasionally given a third type of trial on
which the two stimuli were presented together to form a com-
pound, which was never followed by the US. Inspection of the
left-hand side of Figure 9.7 reveals that the animals showed CR
acquisition to the separate tone and light CSs. The likelihood
of the CR to each CS rose steadily to an asymptote around 80%
over ten days of training. Moreover, on the compound test trials,
the likelihood of a CR was even greater. This relationship had a
very precise quantitative character. Specifically, the percentage
CRs to the compound (Pc) equalled the sum of the percentage
CRs to the separate CSs (Pt, P1) as combined by the formula
for statistically-independent events, namely Pt + P1 - (Pt x Pl)
(Kehoe, 1982b; Kehoe, 1986; Kehoe and Graham, 1988).

4.2 Nonlinear, Configural Learning

Notwithstanding the strong evidence for linear summation in
conditioning, it is also possible to engage a nonlinear process
when required. The middle and right-hand portions of Figure
9.7 show the acquisition of XOR behaviour in a procedure known
as negative patterning. In negative patterning, the animals con-
tinued to receive trials in which the tone signalled the US and
the light signalled the US. However, the number of compound
trials was increased dramatically so that they outnumbered the
separate trials with the tone or the light. The compound was
never followed by the US. Eventually, the rabbits were able to
overcome summation and solve the XOR problem. That is to
say, the rabbits still showed CRs on tone trials and light trials
but gradually suppressed responding on compound trials. By
the end of training on Day 28, the levels of responding on tone
trials and light trials exceeded 80% CRs, while responding on
compound trials had dropped to 40% CRs.

4.3 A Layered Network Model

In conventional psychological theory, processes of perceptual fu-
sion have been postulated to account for nonlinear phenomena

222

E. J. KEHOE

such as negative patterning (see Kehoe and Gormezano, 1980;
Pearce, 1987). However, thanks to interdisciplinary develop-
ments, it is now well known that layered, neural networks can,
in principle, solve any linear or nonlinear problem. What re-
mains to be determined is whether a given network with a given
set of parameter values can realistically duplicate both the linear
and nonlinear outcomes like those seen in classical conditioning.
For a small set of inputs, the answer appears to be ’yes’. Kehoe
(1988, 1989) has presented a small network that can simulate
both stimulus compounding and negative patterning. Figure 9.8
shows the architecture of that network. The network has three
’sensory’ inputs, one each for the tone (T), the light (L), and
the US. The inputs for the tone and the light have adaptive con-
nections with the two hidden units (X, Y). In turn, the X and
Y units have adaptive connections with a response generation
unit (R). At the start of training, all these connections have
zero weights. These adaptive connections can be altered dur-
ing training according to a learning rule known variously as the
RescorlaPWagner rule, the WidrowP Hoff rule, and the least-
mean square rule. The US input acts as a teacher input and has
fixed, highly weighted connections with X, Y, and R. Depending
on the pattern of inputs and the operation of the learning rule,
the adaptive connections can be tuned so that the units respond
selectively to the tone, the light, or their compound as required.

Using a fixed set of parameters, the model can duplicate the
results shown in Figure 9.7. Figure 9.9 shows the results of the
simulations for stimulus compounding and negative patterning.
The simulated learning curves are not perfect, but they are ade-
quate to a first approximation. Thus, for a simple environment,
a correspondingly simple network has considerable explanatory
power.

5 PRODUCTIVITY

Productivity denotes the application of knowledge in flexible
ways to novel situations (Agostino, 1984, p. 86; Reynolds and
Flagg, 1977, p. 241). The most widely recognized example
of productivity in adult humans is their ability to utter novel

223

ANIMAL LEARNING

sentences as the occasion arises (Chomsky, 1964, pp. 7P8). De-
spite the widespread occurrence of productivity, its emergence
in naive creatures is not well understood. Research in cognitive
psychology has focused largely on the already highly-productive
performance by highly-experienced human subjects. Thus, the
emergence of productivity is taken as an accomplished fact,
whatever its origins may be. In the study of both animal and
human learning, the application of previous learning to new sit-
uations falls under the heading of ’transfer of training’. Transfer
to novel situations has been explained partially through stimulus
generalization. In stimulus generalization, responses acquired
to one stimulus are applied to new stimuli depending on their
physical similarity to the original stimulus. However, stimulus
generalization does not explain readily the more abstract rela-
tionships that can arise between old and new situations. Such
abstract relationships for applying knowledge seem to require
the application of rules or schemas rather than the direct trans-
fer of specific reactions. One means for tracing the emergence
of productivity in its more abstract form is learning to learn.
Learning to learn denotes a progressive increase in the rate of
learning across a series of tasks that are similar in their abstract
structure but differ dramatically in their superficial stimuli (EI-
lis, 1965, p. 32). Another researcher concluded, ’... learning to
learn transforms the organism from a creature that adapts to
a changing environment by trial and error to one that adapts
by seeming hypothesis and insight’ (Harlow, 1949). There is
growing evidence that learning to learn can be obtained in a
clear but simplified form in classical conditioning by conduct-
ing transfer between CSs from different sensory modalities, such
as tone and light. Figure 9.10 shows the details of learning to
learn as it has been observed in conditioning of the rabbit NM
response (Holt and Kehoe, 1985; Kehoe and Holt, 1984; Ke-
hoe, Morrow, and Holt, 1984; 1991c). In Stage 1, one group
of rabbits (Group E) received presentations of a CS (e.g., tone)
which was the signal for a US presented 400 ms later. A second
group (Group R) served as a no learning’ control. The control
rabbits were restrained in the cubicles but did not receive pre-
sentations of either the CS or US. As can be seen in Figure 9.10,

224

E. J. KEHOE

Group E showed rapid CR acquisition to the CS that reached
a terminal level of 98% CRs, while Group R showed only a few
spontaneous responses that never exceeded 2% during the mea-
surement periods (Kehoe and Holt, 1984, Experiment 2). In
Stage 2, both groups received CS-US training with a new CS
(e.g., light). Learning to learn was evident almost as soon as
training began with the new CS. As can be seen in the acqui-
sition curves for Stage 2, the experimental group (E) showed
extremely rapid CR acquisition to the new CS. For example,
Group E achieved a mean CR likelihood of 46% CRs within the
first block of CSPUS trials. In comparison, the control group
(R) achieved a mean CR likelihood less than 10% CRs within
the first block of trials. In this and other studies, the positive
transfer between tone and light was symmetric.

Learning to learn can be explained by the same layered net-
work used to explain summation and negative patterning. In
fact, only one hidden unit (X) is needed. Nothing else about
the model is changed in any way. Figure 9.11 shows simulations
of learning to learn. CR acquisition with the initial CS, tone,
requires the strengthening of both the TPX and XPR connec-
tions. In subsequent training with a new CS (light), only the
LPX connection needs to be strengthened. As the LPX con-
nection starts to strengthen, the earliest firings of X by L are
translated immediately into CRs via the previously-established
XPR connection, thus facilitating CR acquisition to L. In Fig-
ure 9.11, this facilitation can be seen in the lower right-hand
panel, specifically in the simulated acquisition curve labelled as
PRE, which denotes pretraining. For purposes of comparison, a
learning curve for a naive rest control condition is also displayed,
labelled as REST.

6 ANTICIPATION

One of the keys to behavioural adaptation is anticipation. It
entails the ability to use signals to predict future events and
to make an appropriate response. However, in taking anticipa-
tory action, an organism faces a fundamental conundrum. On
the one hand, early anticipation maximizes the amount of time

225

ANIMAL LEARNING

available for planning and preparation. On the other hand, pre-
mature action can be wasteful and even deleterious to the organ-
ism. Take eyelid closure as an example of a protective response.
Closure in anticipation of a threat maximizes protection of the
eye but, at the same time, blinds the organism. Thus, the tim-
ing of such a response must be a compromise between protection
of the eye and the current need for vision. In classical condi-
tioning, examination of the time course of the CR is one means
for discovering how a biological system meets the constraints on
its anticipatory responses. Contrary to textbook depictions of
'reflexes’ as stereotyped actions, CRs are graded in a manner
that is finely attuned to the CSPUS interval. Specifically, the
CRUs time of initiation moves away from the US, but the maxi-
mal extent of the CR Q the CR peak QQ remains near the time of
US onset. Figure reflig:kehoel2 shows two examples of CR tim-
ing. In the top example, rabbits were given training with two
separate CSs, namely, a light and a tone. The light onset sig-
nalled that the US would occur 250 ms later, and the tone onset
signalled that the US would occur 500 ms later. The diagram
shows the time course of the CR on the separate tone and light
'test’ trials, which were presented without the US. The upward
excursion in each line represents eyelid closure. As can be seen
in the diagram, the CRs began around 125 ms after CS onset.
However, the CRs reached maximum closure at different times,
corresponding to the expected time of US delivery.

The lower portion of Figure 9.12 shows the time course of the
CR when there was some uncertainty about the arrival of the
US. Specifically, the rabbits were given training with one CS. In
half the trials, the US occurred 400 ms after CS onset. In the
other half of the trials, the US occurred 900 ms after CS onset.
Inspection of the diagram reveals that the rabbits covered both
possibilities by blinking twice. Each peak in the CR coincided
with one or the other of the two points of US delivery.

Certain 'real-time’ models have been aimed at explaining the
time course of such CRs (Desmond, 1990; Desmond and Moore,
1988; Desmond and Moore, 1991; Grossberg and Schmajuk,
1989; Sutton and Barto, 1990). These models assume that each
CS generates a cascade of stimulus elements, each with its own

226

E. J. KEHOE

time course. To illustrate how these real-time models build a
CR from a cascade of stimulus elements, Figure 9.13 shows a
schematic version of such models. Panel A shows the time course
of ten stimulus elements (Xit) generated by the CS. The asso-
ciative strength (Vi) of each element is proportional to its inten-
sity at its point of contiguity with US delivery. Panel B shows
the moment-by-moment product of each element’s associative
strength and its momentary intensity (ViXit). Panel C shows
the simulated time course of the CR that would be generated by
summing across the products for each element (SUM[ViXit]) at
each time point f. The simulated CR is crude but nevertheless
displays the key features of real CRs. First, the simulated CR is
anticipatory. Because the time course of each element stretches
over a substantial portion of the CS, the associative strength of
an element is not confined to the point of US delivery but is
smeared around that point. Second, the peak of the CR tends
to occur near US delivery where the elements with the greatest
associative strength coincide with each other.

Although the real-time models have successfully explained
the time course of CRs, they have a curious character. They
assume that anticipation is largely an accident related to the
spread of associative strength along each stimulus element. Re-
cently, Sutton and Barto (1990) have attempted to recast real-
time models such that the CR reflects a predictive process. That
is to say, the moment-by-moment amplitude of the CR reflects
the animal’s prediction concerning the forthcoming US weighted
by its imminence. Thus, in at least a primitive way, the animal
may be said to be planning for its future. In this way, Sutton
and Barto are promoting a convergence between the processes
of animal learning and those of machine systems that attempt
to act in a proactive way.

7 CONCLUSION

The reader should be aware that the experiments and theo-
ries described in this chapter are only a small sample drawn
from what is known about animal learning. The research us-
ing classical conditioning is much greater than described here,

227

ANIMAL LEARNING

and this paper barely mentions the vast literature concerning
operant conditioning. Moreover, there are conditioning studies
using human subjects; these studies are often concerned with
the interaction between language-based cognition and nonsym-
bolic learning systems. At the risk of being overly bold, there is
probably at least one study in conditioning on any variable that
one could imagine. And researchers in animal learning are still
pushing the boundaries of what is known. From the perspective
of adaptive systems and machine learning, the results of animal
learning should be heartening. At a minimum, the ability of an-
imals to show credit assignment, representation, productivity,
and anticipation reveals that these issues are as fundamental in
the biological realm as in machine systems. Hence, we can have
confidence that we are on the right track in both fields. More-
over, the richness of the phenomena seen in animal learning
demonstrates what can be done in a relatively simple system,
one with little prior experience and no language ability. The
brain of a rabbit is perhaps only simple when compared to that
of a human. However, there is growing evidence that animals
with very simple neural networks, namely varieties of sea slugs,
can show some basic features of classical conditioning. There
is undoubtedly a limit to how much learning a simple system
can show. However, over the past 20 years, that limit has been
pushed downward and outward. So, there may be more sur-
prises.

Acknowledgments

Preparation of this manuscript was supported by Australian Re-
search Council Grant AC89322441. The author is grateful to
Amanda Horne, Peter Horne, and Michaela Macrae for their
assistance in preparing this manuscript.

REFERENCES

Agostino (1984). Chomsky on creativity. Synthese, 58, 85-117.

Barto, A. G. (1985). Learning by statistical cooperation of self-
interested neuron-like computing elements. (COINS Tech. Rep.
85- 11). Amherst, MA: University of Massachusetts.

228

E. J. KEHOE

Chomsky, N. (1964). Current issues in linguistic theory. The Hague:
Mouton.

Desmond, J. E. (1990). Temporal adaptive responses in neural mod-
els: the stimulus trace. In M. Gabriel & J. W. Moore (Eds.),
Learning and computational neuroscience (pp. 421- 456). Cam-
bridge, MA: MIT Press.

Desmond, J. E., & Moore, J. W. (1988). Adaptive timing in neural
networks: the conditioned response. Biological Cybernetics, 58,
405-415.

Desmond, J. E., & Moore, J. W. (1991). Altering the synchrony of
stimulus trace processes: tests of a neural-network model. Bio-
logical Cybernetics, 65, 161-169.

Ellis, H. (1965). The transfer of learning. New York: Macmillan.

Gabriel, M. (1988). An extended laboratory for behavioral neuro-
science: A review of classical conditioning (3rd Edition). Psy-
chobiology, 6, 79-81.

Gibbs, C. M., Cool, V., Land., T., Kehoe, E. J., & Gormezano,
I. (1991a). Second-order conditioning of the rabbit’s nictitating
membrane response: Interstimulus interval and frequency of CS-
CS pairings. Integrative Physiological and Behavioral Science,
26, 282-295. -

Gibbs, C. M., Kehoe, E. J., & Gormezano, I. (1991b). Condition-
ing of the rabbit’s nictitating membrane response to CSA-CSB-
US serial compound: Manipulations of CSB’s associative char-
acter. Journal of Ezperimental Psychology: Animal Behavior
Processes, 17, 423-432.

Gormezano, I. (1966). Classical conditioning. In J. B. Sidowski
(Ed.), Ezperimental methods and instrumentation in psychology
(pp. 385-420). New York: McGraw-Hill.

Gormezano, I., & Kehoe, E. J. (1975). Classical conditioning: some
methodological-conceptual issues. In W. K. Estes (Ed.), Hand-
book of learning and cognitive processes. NY: Lawrence Erlbaum
Associates.

Gormezano, 1., & Kehoe, E. J. (1989). Classical conditioning with
serial compound stimuli. In J. B. Sidowski (Ed.), Conditioning,
cognition, and methodology: Contemporary issues in experimen-
tal psychology (pp. 31-61). Lanham, MD: University Press of
America.

229

ANIMAL LEARNING

Gormezano, I., & Moore, J. W. (1969). Classical conditioning. In M.
H. Marx (Eds.), Learning Processes. New York, NY: Macmillan.

Gormezano, I., Thompson, R. F., & Prokasy, W. F. (Ed.). (1987).
Classical conditioning III. Englewood Cliffs, NJ: Lawrence Erl-
baum. '

Grossberg, S., & Schmajuk, N. A. (1989). Neural dynamics of adap-
tive timing and temporal discrimination during associative learn-
ing. Neural Networks, 2, 79-102.

Hall, J. F. (1976). Classical conditioning and instrumental learning:
a contemporary approach. Philadelphia, PA: J. B. Lippincott Co.

Harlow, H. F. (1949). The formation of learning sets. Psychological
Review, 56, 51-65.

Holt, P. E., & Kehoe, E. J. (1985). Cross-modal transfer as a function
of similarities between training tasks in classical conditioning of
the rabbit. Animal Learning & Behavior, 13, 51-59.

Kehoe, E. J. (1979). The role of CS-US contiguity in classical con-
ditioning of the rabbit’s nictitating membrane response to serial
stimuli. Learning and Motivation, 10, 23-38.

Kehoe, E. J. (1982a). Conditioning with serial compound stim-
uli: Theoretical and empirical issues. Ezperimental Animal Be-
haviour, 1, 30-65.

Kehoe, E. J. (1982b). Overshadowing and summation in compound
stimulus conditioning of the rabbit’s nictitating membrane re-
sponse. Journal of Ezperimental Psychology: Animal Behavior
Processes, 8, 313-328.

Kehoe, E. J. (1983). CS-US contiguity and CS intensity in condi-
tioning of the rabbitUs nictitating membrane response to serial
and simultaneous compound stimuli. Journal of Ezperimental
Psychology: Animal Behavior Processes, 9, 307-319.

Kehoe, E. J. (1986). Summation and configuration in condition-
ing of the rabbitUs nictitating membrane response to compound
stimuli. Journal of Experimental Psychology: Animal Behavior
Processes, 12, 186-195.

Kehoe, E. J. (1987). RSelective associationS in compound stimulus
conditioning with the rabbit. In I. Gormezano,W. F. Prokasy,
& R. F. Thompson (Eds.), Classical conditioning (pp. 161-196).
Hillsdale, NJ: Erlbaum.

230

E. J. KEHOE

Kehoe, E. J. (1988). A layered network model of associative learning:
Learning-to-learn and configuration. Psychological Review, 95,
411-433.

Kehoe, E. J. (1989). Connectionist models of conditioning: A tuto-
rial. Journal of the experimental analysis of behavior, 52, 427-
440.

Kehoe, E. J. (1990). Classical conditioning: Fundamental issues
for adaptive network models. In M. Gabriel & J. W. Moore
(Eds.), Learning and computational neuroscience(pp. 389-408).
Cambridge, MA: MIT Press.

Kehoe, E. J., Feyer, A., & Moses, J. L. (1981). Second-order condi-
tioning of fhe rabbit’s nictitating membrane response as a func-
tion of the CS2- CS1 and CS1-US intervals. Animal Learning &
Behavior, 9, 304-315.

Kehoe, E. J., Gibbs, C. M., Garcia, E., & Gormezano, I. (1979). As-
sociative transfer and stimulus selection in classical conditioning
of the rabbit’s nictitating membrane response to serial compound
CSs. Journal of Ezperimental Psychology: Animal Behavior Pro-
cesses, 5, 1-18.

Kehoe, E. J., & Gormezano, I. (1980). Configuration and combina-
tion laws in conditioning with compound stimuli. Psychological
Bulletin, 87, 351-378.

Kehoe, E. J., & Graham, P. (1988). Summation and configuration in
negative patterning of the rabbit’s conditioned nictitating mem-
brane response. Journal of Experimental Psychology: Animal
Behavior Processes, 14, 320-333.

Kehoe, E. J., & Holt, P. E. (1984). Transfer across CS-US intervals
and sensory modalities in classical conditioning in the rabbit.
Animal Learning & Behavior, 12, 122-128.

Kehoe, E. J., Marshall-Goodell, B., & Gormezano, I. (1987). Differ-
ential conditioning of the rabbit’s nictitating membrane response
to serial compound stimuli. Journal of Ezperimental Psychology:
Animal Behavior Processes, 13, 17-30.

Kehoe, E. J., & Morrow, L. D. (1984). Temporal dynamics of the
rabbit’s nictitating membrane response in serial compound con-
ditioned stimuli. Journal of Experimental Psychology: Animal
Behavior Processes, 10, 205-220.

231

ANIMAL LEARNING

Kehoe, E. J., Morrow, L. D., & Holt, P. E. (1984). General transfer
across sensory modalities survives reductions in the original con-
ditioned reflex in the rabbit. Animal Learning & Behavior, 12,
129-136.

Kehoe, E. J., & Napier, R. M. (1991c). Temporal specificity in cross-
modal transfer of the rabbit nictitating membrane response. Jour-
nal of Ezperimental Psychology: Animal Behavior Processes, 17,
26-35.

Minsky, M. L. (1961). Steps toward artificial intelligence. Proceed-
ings of the Institute of Radio Engineers, 49, 8-30.

Pavlov, I. P. (1906). The scientific investigation of the psychical
faculties or processes in the higher animals. Lancet, {336, 911-
915.

Pavlov, I. P. (1927). Conditioned reflezes (G. V. Anrep, Trans.).
London: Oxford University Press. :

Pearce, J. M. (1987). A model for stimulus generalization in Pavlo-
vian conditioning. Psychological Review, 94, 61-73.

Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian
conditioning: Variations in the effectiveness of reinforcement and
nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.), Clas-
sical conditioning II (pp. 64-99). New York: Appleton-Century-
Crofts.

Reynolds, A. G., & Flagg, P. W. (1977). Cognitive psychology. Cam-
bridge, MA: Winthrop.

Rizley, R. C., & Rescorla, R. A. (1972). Associations in second-order
conditioning and sensory preconditioning. Journal of Compara-
tive and Physiological Psychology, 81, 1-11.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning
internal representations by error propagation. In D. E. Rumel-
hart & J. L. McClelland (Eds.), Parallel distributed processing:
Ezplorations in the microstructures of cognition (pp. 318-362).
Cambridge, MA: MIT Press.

Skinner, B. F. (1938). The behavior of organisms. New York, NY:
Appleton-Century-Crofts.

Sutherland, N. S., & Mackintosh, N. J. (1971). Mechanisms of ani-
mal discrimination learning. New York: Academic Press.

Sutton, R. S. (1984) Temporal credit assignment in reinforcement
learning. Unpublished doctoral dissertation, University of Mas-

232

E. J. KEHOE

sachusetts, Amherst.

Sutton, R. S., & Barto, A. G. (1981). Toward a modern theory of
adaptive networks: Expectation and prediction. Psychological
Review, 88, 135-171.

Sutton, R. S., & Barto, A. G. (1990). Time-derivative models of
Pavlovian reinforcement. In M. Gabriel & J. W. Moore (Eds.),
Learning and computational neuroscience (pp. 497-537). Cam-
bridge, MA: MIT Press.

Thorndike, E. L. (1898). Animal intelligence: An experimental study
of the associative processes in animals. Psychological Mono-
graphs, 2,(pp. 1-100).

233

ANIMAL LEARNING

Figure 9.1. Drawing of a rabbit prepared for classical conditioning.
The conditioned stimuli (CSs) can be either flashing of a neon light
and/or presentation of pure tones through a speaker. The uncondi-
tioned stimulus (US) is a superficial tactile stimulus delivered by a
brief, low-level electrical pulse delivered through wire leads to the
skin near the eye. The learned, conditioned response (CR) and
innate, unconditioned response (UR) entail movements of the rab-
bit’s eyelids as measured by a mechanico- photo-electric transducer
mounted over the rabbit’s head.

234

E. J. KEHOE

100 1
CR ACQUISITION
801
CS-US PAIRED
S eof
-
<
[TE)
(&)
& o4f
a.
20Fr
CS/US RANDOM

0 2 4 6 8 10 12 14 16 18
10-TRIAL BLOCKS

Figure 9.2. Example of a learning curve in classical conditioning of
the rabbit’s eyeblink. The abscissa represents blocks of 10 trials and
the ordinate represents the proportion of trials on which the rabbits
made a CR, that is, a blink during the warning period provided by
the CS. The figure shows two curves. One curve shows successful
CR acquisition in rabbits that received training in which the CS
was always paired with the US at an interval of 250 ms. The other
‘curve’, which never rises from the line of the abscissa represents a
control group of rabbits in which the CS and US were presented in
a random order and never closer together than 30 sec.

235

ANIMAL LEARNING

100 o} g
o
0%o 08
o] °0 5 0
80r le)
¢ o 2°
S (o]
= 60 o
E (¢} o ©
o]
(&)
o L
Lnl-_l 40 o
o
o
201 o
o
oL A : .
0 25 50 100 250 500 1000 2500 5000 10000

LOG (CS-US INTERVAL) in MILLISECONDS

Figure 9.3. CR likelihood as a function of CSPUS interval. Each
point represents the mean for a group of 8 to 12 rabbits trained at a

given CSPUS interval.

236

E. J. KEHOE

100+ FACILITATION OF A REMOTE ASSOCIATION

sor

60 [SERIAL: CSA-CSX-US

4aor

PER CENT CRs to CSA

ok SINGLE: CSA----US

TWO-DAY BLOCKS

Figure 9.4. Facilitation of a remote association. Learning curves for
CR acquisition to CSA in two groups of rabbits. One group (Serial)
received training in which a sequence of two CSs signalled the US
(CSAPCSXPUS). The other group (Single) had only CSA as a signal
for the US (CSAPUS). The CSA preceded the US by 2800 ms in both
groups. In Group Serial, the CSXPUS interval was 400 ms.

237

ANIMAL LEARNING

IMPAIRMENT OF A PROXIMAL ASSOCIATION

100

SINGLE: CSX-US

8or

60

0r

PER CENT CRs to CSX

SERIAL: CSA-CSX-US

20r

TWO-DAY BLOCKS

Figure 9.5. Impairment of a proximal association. Learning curves
for CR acquisition to CSX in two groups of rabbits. One group
(Serial) received training in which a sequence of two CSs signalled
the US (CSAPCSXPUS). The other group (Single) had only CSX as
a signal for the US (CSXPUS). CSX preceded the US by 400 ms in
both groups, and CSA preceded the US by 800 ms in Group Serial.

238

E. J. KEHOE

100

FIRST ORDER:
CsXx-Us
80
60
40
20
SECOND ORDER:
CSA-CSX
0 1] — |
0 1 2 3 4 5 6

DAYS

Figure 9.6. First- and second-order conditioning. One group of rab-
bits received training with two types of trials, namely, first-order tri-
als (CSXPUS) and second-order trials (CSAPCSX). The curve for
the first-order trials shows CR acquisition to CSX, and the curve for
the second-order trials shows CR acquisition to CSA. The ordinate
of the figure denotes percentage CRs.

239

ANIMAL LEARNING

100

g o

O

Woef —8— COMP

1 g

E —0— TONE

é 40 —&— LIGHT

=

Q

< a0t STIMULUS 12 14

NEGATIVE NEGATIVE

COMPOUNDING PATTERNING PATTERNING

0 2z 4 6 8 10 12 14 16 18 2 2 24 2% 2
BLOCKS OF TRIALS

Figure 9.7. Learning curves that show linear and nonlinear out-
comes. In the first phase (‘stimulus compounding’), one group of
rabbits received training with three types of trial: (1) pairings of a
tone CS with the US, (2) pairings of a light CS with the US, and (3)
occasional test presentations of a compound stimulus in which the
tone and light were presented together but without the US. In this
phase, response to the compound was a linear sum of the separate
responding to the tone and light. In phases two and three (‘negative
patterning’) the frequency of compound stimulus trials was increased
so that there were two compound trials and later four compound tri-
als, still without the US, for every separate pairing of the tone or
light with the US. During these phases, the rabbits showed acquisi-
tion of XOR behaviour: they sustained responding to the separate
tone and light but learned to suppress responding to the compound.

240

E. J. KEHOE

WOorm—m m<——<TmOmo>D

Figure 9.8. Architecture of a layered network that can produce linear
and nonlinear behaviour in classical conditioning. The T and L units
represent inputs for tone and light CSs, respectively. They have
adaptive connections with hidden X and Y units, which in turn have
adaptive connections with a response generator unit (R). The US
unit represents the input for the unconditioned stimulus, which has
fixed connections to the X, Y and R units.

241

ANIMAL LEARNING

100 r
T
O 8or
b=
Z
3]
o 60
w
Q.
0
E ar
=
5 of 1.2
STIMULUS NEGATIVE
COMPOUNDING PATTERNING

1:4
NEGATIVE

PATTERNING

T Y

8 10 12 14 16 18 2'0
BLOCKS OF SIMULATED TRIALS

Figure 9.9. Simulations of stimulus compounding and negative pat-
terning based on a layered network.

242

E. J. KEHOE

100 100
STAGE | STAGE Il

80 |- 80 |
60 |- 60
40 | —e— E 40 —eo— E
—A— R —A— R
20 | 20
0 T T b T 2y T T v 0 v T T T T T T T T 1
0 2 4 L] 8] 2 [] 8 10

35-TRIAL BLOCKS

Figure 9.10. Demonstration of learning to learn. In Stage I, Group
E received CSPUS pairings, while Group R received no exposure
to either the CS or US. In Stage II, both groups received CSPUS
pairings using a different CS from that used in Stage I. For example,
if the CS in Stage I was tone, the CS in Stage II was light. The
ordinate of the figure denotes percentage CRs.

243

ANIMAL LEARNING

10 r o0 - 00
... oOo
o ® oo
™
e TX ° Lx
o
05 -
L4 o

0.0 J]
1.0 9 e [eeo0o0ccoose

X-R o0 ?

o °

™
°

0.5 o

°
o.o-—'. !)
100 [
80
60 |
40 P
20
o L1 1 1 1 1. J1_J

30-TRIAL BLOCKS

Figure 9.11. Simulations of learning to learn based on a layered net-
work. Top: growth of the TPX and LPX connections in Stages I
and II. Middle: growth and maintenance of the interior XPR con-
nection. Lower: simulated acquisition curves to the tone and light
in the ‘PRE condition’ (Group E). Simulated acquisition curve for
the light is also shown for the ‘REST condition’ (Group R).

244

E. J. KEHOE

CR to CSA - 250-ms ISI
CR to CSB - 500-ms ISI

0 100 200 300 400 500 600 700 800 9800 1000 1100 1200
Time Sinca CS Onset inms

CRtoTone CS
Mixed ISIs - 400, 900

us us

0 IS S I S ST S G SIS S S |

0 100 200 300 400 500 600 700 800 900 1000 1100
Time Since CS Onset in ms

Figure 9.12. Moment-by-moment time course of conditioned re-
sponses. Upward excursions represent closure of the rabbit’s eyelid.
Top: two different CRs that evolved when stimulus CSA signalled
the US at 250 ms and stimulus CSB signalled the US at 500 ms.
Bottom: CR that evolved when one CS was followed unpredictably
by the US at either 400 or 900 ms. Ordinate denotes CR magnitude
in mm.

245

ANIMAL LEARNING

- A
s 40 0. Ot B g B P ELEMENT INTENSITY
X ,
E o
7]
4
s
Z
'2 0.4
w
Z o2
-
i

0.0

0
4
>
500 600 700 800 900
40
C
SIMULATED CONDITIONED RESPONSE

30 |
§ 20
=
>
&

10 |

1 1 1 1 1 1 Il 1 1 1

0.0
0 100 200 300 400 500 600 700 800 800 1000

TIME SINCE CS ONSET = t

Figure 9.13. Generic real-time model. Top: momentary intensities
of traces for ten stimulus elements following CS onset. Middle:
time course of the traces weighted by their respective associative
strengths. Bottom: simulated conditioned response obtained from
summing the weighted traces. Arrow on the abscissa shows the locus

of US delivery at 250 ms after CS onset.

246

10

Regulation of Human Cognition and its
Growth

C. Trevarthen

The Edinburgh Centre for Research in Child Psychology,
Department of Psychology,
The University of Edinburgh

I will present a psychobiologist’s view, citing three directions of
research that have been fruitful in the past 25 years.

1 GENESIS OF CONSCIOUSNESS

Unlike technical structures which are constructed from with-
out, living organisms grow from within. Cells dividing from the
fertilized egg receive their genes and interact under the regu-
lation of gene-produced molecules that determine the cells’ co-
hesivness, mobility, multiplication, and capacity to survive in
competition for essential substances. Messenger molecules pass
between cells, changing gene transcription and directing pop-
ulations of cells towards different life functions in specialized
organs. Out of the undifferentiated multicellular mass an inte-
grated individual forms—in the case of an animal, a perceptuo-
motor individual that will displace, orient, search, and choose
objects, making selective use of the environment to maintain
and develop its adaptive activities and structure. These activi-
ties are formed in a nervous system that carries nerve cell action
potentials throughout the body. Molecular messengers (neuro-
hormones), related to those that pattern gene expression, are
transmitted at synapses to target cells, to control the intensity
and selectivity of behaviour, patterning the animal’s motivation.

247

REGULATION OF HUMAN COGNITION AND ITS GROWTH

At any given stage of development, because of the way it
develops, the organism and its component parts show evidence
of preparation for future selective use of its organization and
the environment. The phenomenon of prefunctional morpho-
genesis is ubiquitous in the growth of organisms. Birds have
wings, feathers, and beaks when in the egg. The eye, a camera-
like optical instrument, is formed in the dark. As indicated,
prefunctional organization also prevails at the physiological and
bio-chemical levels.

Psychological activities of the brain, including consciousness,
are no exception to this rule. Brain systems that will sense en-
vironmental situations and objects, and others that generate
movements to change an animal’s relations with the world in
adaptive ways, were formed at a stage when no such experience
or activity was possible. The brain forming in the embryo of
all vertebrates becomes the central coordinator of behaviour.
It integrates internal visceral and autonomic regulations with
the requirements of behaviour; it incorporates basic reward and
punishment systems that guide adaptive learning, controls body
support and coordination in the field of gravitation, directs sen-
sory orientations to the world, and integrates movement of the
whole body. New components that increase the power and adap-
tive learning capacity of these functions, principally the cerebral
hamispheres and cerebellum, are added in higher vertebrates in
a foetal period.

In humans there are clear preparations for cultural intelli-
gence in the way the cerebral hemispheres of a foetus are formed
in utero. The cerebral cortex, which develops most of its sig-
nificant functions after birth, some very slowly over years, al-
ready has organization related to the learning of speech half
way through gestation, at 20 weeks post-conception. Its de-
velopment is regulated by activity of other parts of the brain,
especially neurones on the reticular core of the brainstem that
started its development in the embryo, before there were any
connections between the brain and sense organs or muscles.

It is always difficult to distinguish in the mature animal crea-
ture what is learned from what is prepared for in the morpho-
genesis of the brain before any learning could have occurred. We

248

C. TREVARTHEN

need a comprehensive theory of the strategy by which the moti-
vation for learning is derived from the epigenetic elaboration of
neural systems. Rival theories of how mature coordination and
regulation of intelligence are achieved are of two main kinds.
Embryologists, anatomists, and ethologists emphasize the au-
topoesis or self-creation of the brain before it has functional
commerce with the environment outside the body. After all,
the brain’s component nuclei, tracts, and cortical mantles are
clearly differentiated in their correct locations at birth, and an-
imals show elaborate instinctive behaviours that link their life
activities with each other and with the environment in ways
that could not have been learned. On the other hand, psycho-
logical, physiological, and molecular-biological theories tend to
a constructivist position. They hold that integrated psycholog-
ical control of behaviour is a consequence of selective reinforce-
ment, or selective retention, of neuronal assemblies that have
the capacity to retain traces of the effects of environmental stim-
uli. These theories presume that the newborn brain must have
little psychological organization, that its primary elements are
detached from one another and require integration by plastic
adaptation of redundant populations: of messenger molecules
or cell adhesion molecules, of synaptic contacts or nerve circuits
or reflexes, etc., that is, by selective retention determined from
outside. They emphasize the role of learning.

In fact, the integrated and specialized behaviours and prefer-
ences of newborn infants indicate that prenatally formed brain
mechanisms direct, gate, and choose the environmental effects
that will be learned. Innate motive systems have a voice in
deciding what kind of experience will be sought and what will
implant in the brain new adaptive categories for awareness and
new adaptive forms of action vis a vis the environment. Once
this point is grasped, it becomes clear that psychological devel-
opment throughout a person’s life, including the construction
in the child of a cultural consciousness mediated and transmit-
ted by symbols, is guided by interaction and mutual influence
of components of mental activity that were differentiated in the
brain before birth. The brain system of our cultural intelligence
is the key component of our evolutionary inheritance.

249

REGULATION OF HUMAN COGNITION AND ITS GROWTH

There are several different research strategies for exposing
the original organization of perceptuomotor systems before the
experience-dependent cortical structures are formed. I will here
sketch three that have made significant strides in recent decades.

1. Developmental anatomy and experimental embryology of
the nervous system.

2. Neuropsychological analysis of the effects of disconnec-
tions of key elements of the CNS.

3. Psychological analysis of newborn intelligence to deter-
mine its motives and learning capacities and their changes
through early childhood.

2 BRAIN DEVELOPMENT FROM EMBRYO TO YOUNG CHILD

The neural structures of intelligence that develop to coordinate
perceptions and voluntary action of one subject’s integrated
mind are formed before birth. They are the products of multi-
plication, migration, differential death, selective grouping, and
interlinking of embryo brain cells into cooperative assemblies.
The brain of an embryo is an integrated tissue system, one coac-
tive fabric of closely coupled cells in which clusters and sheets
emerge that are endowed with a dynamic form. They bunch,
migrate, and fold under the influence of adhesive forces cre-
ated by molecular interactions at the surfaces between them,
or with non-neural tissues. Their activity, the way they adhere
and move in relation to each other and surrounding substrates,
within the brain itself and in interaction with the body, deter-
mines the ground plan of the future mind’s awareness and its
intentional response to the outside world, even before recogniz-
able neurones are formed. The many brain systems identified in
a newborn baby’s brain are the product of intricate cell-to-cell
communications that regulate the expression of genes in millions
of multiplying neurones. For nine months this process has had
no instructive input from the environment outside the body, ex-
cept for diffuse physiological influences from the mother’s body
into the foetus attached to her as a benign parasite.

Neurones appear in the reticular core of the embryo brain
that will generate clocks setting a common time base for brain

250

C. TREVARTHEN

activity. By axons distributed throughout the brain, they sub-
sequently transmit neuromodulator substances (biogenic amines
and others) that direct the activity, receptivity, and plasticity of
the cortical neurone net. They also direct motor gating of sen-
sory input (movements of selective attention and exploration by
head, eyes, mouth, respiratory system, and hands). They, with
diencephalic and limbic systems, constitute the motivations of
the adult brain. From them are generated periodic expressive
movements that, when perceived by a partner, can co-regulate
motives and transfer learning. Such coupling, activated through
prenatally-aimed person-seeking cells (in frontal and temporal
cortex?) that detect expressive parts of another person’s body,
has unique developmental potential in humans. Subcortical reg-
ulators in the human brain induce an asymmetry in emotions
and cortical development which affects growth of complemen-
tary cognitive functions and memories in the hemispheres.

A most important feature of brain morphogenesis is the con-
struction of a mechanism for generating a Behavioural Field
in which experience and action will be coordinated. Brain tis-
sue has a specified place in the dorsal midline of the embryo
body, and body and brain share the same morphogenetic axes of
symmetry and polarity. They are bi-laterally mirror-symmetric
with two orthogonal asymmetric or polarized anterio-posterior
and dorso-ventral axes. Long before nerve conduction lines are
formed or are active in transmitting action potentials, regions of
the Central Nervous System (CNS) become committed to for-
mation of neuronal arrays or networks that will serve different
aspects of the body’s self-regulation. Thus the active individual
is endowed, from before the first movement in relation to an
out-of-body event is perceived, with ground plans for distinct
special purpose neural regulators of internal state. These spec-
ify a set of ideal sensory-motor relations to the outside world,
ready to act in relation to its temporo-spatial arrays.

There are many body-shaped (somatotopic) maps in the new-
born brain. These are further elaborated and more closely in-
terconnected in postnatal development into a coherent control
mechanism for behaviour that has many levels of complexity
and refinement. They appear to be generated as subdivisions

251

REGULATION OF HUMAN COGNITION AND ITS GROWTH

ANTERIOR

CONSUMMATION ‘
e

y | ’

’

ORIENTATION

LEFT RIGHT

Focus on

¥, LOCOMOTION { rient to

POSTERIOR

Locomote

Figure 10.1. Simple Schema for a Visuo-motor Animal. Kinds of
visuo-motor action regulated in the brain: A: A simple swimming
animal with an anterior convex visual receptor and a mouth opening.
Polarized Behaviour Field with the bi-symmetry of the body. B: A
cyclopean with a lensed eye that can focus an image on a concave
retina and turn to aim its optic axis independently of the head.

252

C. TREVARTHEN

Grasp

Transport

Locomote

§
¥

Figure 10.1. C: A right-armed cyclopean that can deploy a jointed
member to grasp and manipulate under the visual guidance of a
moveable eye.

253

REGULATION OF HUMAN COGNITION AND ITS GROWTH

Figure 10.1. D: One right-armed cyclopean watches another, assim-
ilating the other’s orientations and fixations of interest, potentially
imitating or cooperating.

254

C. TREVARTHEN

of a body-shaped whole brain map that is formed first in reg-
ister with the body of the early embryo. The future capacity
of the brain to move one body coherently through information
fields of many separate sensory modalities, and to have inte-
grated mechanical effects by movements of the mouth, separate
limbs, and digits, depends on the systematic interconnection or
registration of the brain maps according to the common body-
related plan. Cells of the primordial maps in the embryo are
coded by chemical differentiation of their powers of adhesion so
that links are established between corresponding points in the
different body representations when nerve cell axons grow out
and penetrate far in the CNS and the body. Distribution of one
centre of attention in several modalities at once to different loci
in one space-time frame, and the capacity to selectively attend
with one specialized modality at a time (e.g. to see, touch or
hear) both depend on this coherent somatotopy.

We cannot understand the development of articulate learned
intelligence without a psychobiological analysis of the prepa-
ration for awareness and voluntary action that takes place in
prenatal brain growth. This growth generates core regulator
mechanisms that specify the parameters of a time-space be-
haviour field in terms of what the body can do and what it
can be sensitive to. Motor activity and perception then create a
partnership with the environment. Cognitive processes generate
“perceptuo-motor cycles”, and are regulated within them.

3 LEVELS AND DIRECTIONS OF CONSCIOUSNESS IN SPLIT BRAINS

The contribution of brain stem systems to consciousness and
cognition has been revealed in a new way by the study of in-
dividuals in which the cortical mechanisms have been divided
by neocortical commissurotomy. This operation, performed in
humans to control devastating epilepsy, cuts the very large bun-
dles of fibres in the corpus callosum and anterior commissure
that provide the only direct links between the two halves of the
cerebral cortex (Figure 10.2). According to latest estimates, the
forebrain commissures of a human adult comprise nearly 1000
million (10°) fibres. Because of the way somatotopic maps and

255

REGULATION OF HUMAN COGNITION AND ITS GROWTH

neural projection systems are wired up prenatally, each cerebral
hemisphere of a monkey or human receives its main sensory
inflow from one half of the body-centered extracorporal space.
The left hemisphere has full visual input pertaining to the right
half of the subject’s visual world. The right hemisphere likewise
sees the left half of the world. Perceptual testing of split brain
subjects with careful control of orientations shows that all vivid
object-identifying consciousness is divided down the middle of
body-centred space, for touch, hearing, seeing, and for smelling
(note that, because of a peculiar overlap of the anatomy of the
olfactory projection and the commissures of the brain, the sense
of smell is represented for the left nostril in the left hemisphere,
and for the right nostril in the right hemisphere in a commis-
surotomy patient).

In a monkey with a split brain (i.e. after commissurotomy
between the cerebral cortices of the two hemispheres and divi-
sion of the chiasma or cross-over of optic fibres underneath the
brain so each eye is connected only to the visual centres on the
same side of the brain) visual object-awareness and learning is
divided in two. The animal learns separately what it sees with
left and right eyes. Consciousness in each side is found to be
contingent upon preparation of the action of response with one
hand or the other. That is, the motive for using one hand makes
awareness and learning active in the hemisphere of the opposite
side. Meanwhile, the other hemisphere does not register what it
receives from the eye to which it is connected. One can switch
learning or recall from one eye to the other by making the split
brain monkey change hands to respond.

These results fit the known anatomy of the most conspicuous
visual projection, through the lateral geniculate nucleus of the
thalamus to the striate cortex. However, some kinds of visual
judgement, less dependent on high resolution of hue, brightness,
and spatial detail, show “leakage” accross the surgical divide.
Finding this lead me to identify a contribution to visual uptake
of information that unsplit parts of the monkey’s brain use for
orienting and preparing whole-body or postural adjustments,
such as simply reaching to a location outside the body, with-
out taking account of the identity and reward-significance of

256

m
W T R
3 .Mc.. %
g P d
2 s |
g [}
t & 2

N

N , H t
G ALY ,m,
| -
/ R
[o]
|

T~ 9fé%%%%%%%

&7

To Left Hand

A\

dob /W?/@u’

Left Visual

Field

LEFT

:

Corpus callosum).

Figure 10.2. Anatomy of a Split Brain (C. C.

257

REGULATION OF HUMAN COGNITION AND ITS GROWTH

the goal. This at least partly undivided Ambient Vision, which
has relatively coarse spatial and light-intensity discrimination
but high sensitivity to motion cues, is probably processed in
the midbrain and cerebellum. These brain stem centres have
their own visual inputs, partly direct and partly relayed by de-
scending projections from the cerebral cortex. The completely
divided Focal Division of detailed features that is needed for
precise identification of forms, textures, hues, etc., that distin-
guish objects, and for refined manipulation and precise bimanual
coordination, is wholly dependent on neocortical systems, and
hence is split by forebrain commissurotomy.

The most striking feature of consciousness in a human com-
missurotomy patient, revealed when orientations of their recep-
tors and cross-cuing across the midline of the body are well-
controlled, is that they only speak about what they experience
in the left hemisphere, the brain that holds the representation
of the right half of their body-centred space. With rare ex-
ceptions in which the distribution of brain functions has been
changed by early brain injury, only the left hemisphere of a
commissurotomy patient can speak. Proper testing by non-
verbal techniques reveals, however, that the right hemisphere
has a versatile and skilful consciousness. It is actually superior
to the left in tasks requiring synthetic or “appositional” men-
tal activity. The left hemisphere, in keeping with its superior
linguistic and declarative intelligence, is superior in itemizing
serial strategies of propositional thinking. It quickly recognizes
familiar nameable features, often overlooking circumstantial or-
ganization or arrangement of ensembles of features or objects.
In the intact brain these two hemispheric cognitive systems, one
more analytical and declarative, the other more holistic, prag-
matic, and aesthetic, function as complements. Indeed, their
differences are augmented in development through the selective
removal of duplicate connections between and within the two
halves of the cerebral cortex. Cortical centres differentiate in
relation to each other under the direction of brain stem atten-
tional and emotional systems which have inherent asymmetry.
All the above effects of disconnection of the two halves of the
cerebral neocortex, with all their acquired memories of conscious

258

C. TREVARTHEN

and culturally codified meanings, confirm the pre-eminence of
the cortex in consciousness. However, when one examines the
fundamental sensory-motor coordinations of locomotion and at-
tentional orienting, and the self-regulatory functions of emotion,
the surgery appears not to have divided the human mind. Be-
cause the subcortical circuits of the brain stem, cerebellum, and
spinal cord are still fully integrated, the commissurotomy pa-
tient, like the split-brain monkey, retains the ability to orient
his senses and react emotionally (at least in more direct ways,
without cognitive mediation) as one being. He can turn his eyes
and head and distribute the movements of his limbs and guide
his body in locomotion much as before the operation.

The undivided subcortical mechanisms of attention and emo-
tional feeling can also exercise powerful editorial influences over
consciousness, even turn consciousness off when the cortical level
has full information about phenomena to be perceived. For
example, consciousness of something being looked at may be
erased completely within one hemisphere by an effort of atten-
tion that the other hemisphere has initiated when preparing
“its” hand, the contralateral one that has to cross the midline
of the visual array to respond. It is even possible for this kind of
directing of mind work to lead to futile attempts by one hemi-
sphere to do a task for which it is not skilled. The hemisphere
lacking the cognitive mechanism or memories required offers an
inadequate answer or guess to the question posed, at the same
time as the other more appropriately gifted hemisphere, given
all the information required for a ready solution to the task,
fails to respond. Levy and I called this capacity to direct, or
misdirect, intelligence “metacontrol”. It is undoubtedly neces-
sary to have a capacity to recruit memory, imagination, and
conscious discrimination in the most effective direction in rela-
tion to what one, as one mind, is motivated to do. In the nor-
mal fully-interconnected brain, this cognitive allocation process
does not lead to prolonged or repeated misuse of the different
resources of the hemispheres.

The mind-dividing effects in commissurotomy subjects have
encouraged theories of consciousness as the work of a modular
system, with differing quasi-independent parts of knowledge and

259

REGULATION OF HUMAN COGNITION AND ITS GROWTH

cognitive specialism held together by external information loops,
by expression through one body with its receptors. It is sup-
posed that reasoning and the solution of motor problems may
often be a debate or even a blind competition for solutions be-
tween different channels for processing environmental informa-
tion. There is certainly abundant physiological and anatomical
evidence that the cortex has specialized territories. Their tran-
sitory differential activation when a person engages in different
kinds of mental activity is now dramatically demonstrated with
the techniques of PET scan, regional cerebral blood flow moni-
toring, etc. But looking at the shifting patterns of nerve energy
in the surface mantle of the brain of an immobile, observing,
thinking, talking subject, who is kept still seated or lying down
and performing a boring and repetitive task, may be mislead-
ing. We should not forget that the brain is designed for a freer
existence. The modules of consciousness are products of the en-
terprise of the whole brain designed to coordinate and plan the
activities of a complex body with many special senses, and to
take up experience of one phenomenal field of existence. Men-
tal activity is normally unified in whole-body activity. When
thinking and apparently doing nothing else we borrow experi-
ence from more active states of being, including memories of
interacting with other persons in dialogue or cooperative activ-
ity.

All these innate psychological aspects of central coordination
in awareness and intention come to the fore when we consider

consciousness in an infant, and how it develops through educa-
tion of the child.

4 EMOTIONS OF INFANTS AND MOTHERS, AND DEVELOPMENT OF THE
BRAIN

Detailed analysis of the expressive and orienting behaviours of
infants has revealed that they are born with a consciousness that
seeks communication with the emotions, interests, and actions
of other minds. Mental interaction between the mother and
her infant goes far beyond what is required to give the highly
dependent young organism food, protection, rest, and comfort

260

C. TREVARTHEN

Human newborns are, of course, adapted to receive physiological
support from a caretaker in a protected environment, but the
human needs more. Mother love involves giving human emotion
that seeks a partnership with the emotions of the other. It
is communicated in intricate protoconversational and imitative
exchanges.

Neonates imitate face expressions, vocalizations, and hand
movements, sometimes within a few minutes of birth. A foe-
tus can learn to recognize, and prefer, the mother’s voice, so
that when the baby is born it will choose a recording of her
and not one of another woman. Ultrasound movies show that
fetuses in utero perform many coordinated movements, includ-
ing patterns for communication — smiles, eye movements, hand
gestures, lip and tongue movements, and, if injected air fills the
lungs, vocalizations.

At two months after birth infants eagerly join in face-to-
face “protoconversations” with their mothers, responding to the
rhythms and intonation of a babytalk called “intuitive moth-
erese”, the melody of which transcends cultural conventions
and language (Figure 10.3. A two-month-old can communicate
through a double-television system by audition and vision alone.
When the recordings are analysed, it is found that intercoordi-
nations between mother and infant may be timed to a few tens
of milliseconds and “intersynchrony” is achieved. Mother and
infant both use vision, hearing, body-position, and touch to
pick-up emotional and motivational invariants in the partner,
and both make expressions with eyes, face, mouth-and-tongue,
vocal organs, hands, and head. The infant’s movements, as
well as cortical electrical activity evoked by maternal signals,
tend to be asymmetric, which shows that the newborn human
brain has one-sided mechanisms for perceiving and generating
expressions of communication, precursors of the territories that
organize speech and language in the adult brain.

Evidence for a complex field of emotions in the two-month-
old that respond to and influence the mother’s expressions in
lawful ways, comes from perturbation experiments, in which
the mother’s reactions are changed, as, for example, when she is
asked to keep her face still and not to speak for a minute or two.

261

REGULATION OF HUMAN COGNITION AND ITS GROWTH

INFANT'S MOTHER'S
EMOTIONS EMOTIONS
BABY'S BABY'S MOTHER'S <« MOTHER'S
VIRTU.
sr "My ostiviamg EMOTIONS » SELF

EXPRESSED H

PROTOCONVERSATION
EXPRESSIV
ACTOR/PERCEIVER
BRAIN BODY

Receptor
Muscles

Receptor

Skeletal
Muscles

Figure 10.3. Above: Protoconversation mediated by eye-to-eye ori-
entations, vocalizations, hand gestures, and movements of the arms
and head, all acting in coordination to express interpersonal aware-
ness and emotions. Below: Motor “gating” of perceptual informa-
tion and the signals of mental activity that pass between two sub-
jects, an actor and an observer. Motives M direct acts A and motor
adjustments of the receptors a. At the same time, they set per-
ceptual systems P for uptake of information from receptors. Large
acts of the body A, including walking and reaching and grasping
objects, have lower temporo-spatial periodicities than anticipatory
adjustments of receptors a, such as saccadic eye movements or finger
movements to feel objects. All movements can give information to
an observer about the motives in an actor.

262

C. TREVARTHEN

This causes immediate distress to the infant. Infants’ reactions
to strangers also show their emotional attachment to familiar
persons. When a mother suffers from post-natal depression,
the effects on the infant’s behaviour and learning confirm the
developmental importance of this communication with a familiar
and affectionate person.

After three months, as an infant develops more effective sup-
port of the body against gravity and begins to actively seek ob-
jects for exploration and manipulation, the infant’s communica-
tion becomes more obviously “self-conscious”. It is increasingly
monitored through others’ reactions, by “emotional referencing”
that checks on what others feel about the baby’s “Me”. Emo-
tional negotiations of games, joking, and teasing lead to trans-
fer of feelings to “objects of contemplation” or to “objects of
use”, and these things become animated and are given meaning
in rhythmic and repetitive games with other persons. Moth-
ers, fathers, and siblings, are uniquely playful and instructive
when they are with an infant. In baby-songs and rhythmic
body-games the mother solicits intense attention and cooper-
ative movements and vocalizations from her infant. Six-month-
olds are capable of participating in and learning a litany in po-
etic or musical form that lasts many seconds. Musical terms
(beat, thythms, pitch, intervals, harmony, timbre, melody) give
exact description, of the innate forms and timing of the vo-
cal and gestural communications in action games and songs for
infants, and these are similar in all the world’s languages. Evi-
dently infants are equipped to learn in a particular style of dra-
matic or emotionally-transforming narrative or performance.

When they acquire referential content, baby-talk narratives
in song and rhyme become stories, the primary vehicle of lin-
guistic learning that is so readily adapted to comment on and
explain pragmatic tasks of culture, such as building.a construc-
tion, making a meal, delivering a gift, dressing up, performing a
symbolic act or a role, and so on. Before speech, communication
becomes integrated in one shared space for orientations; it be-
comes cooperative and conventionalized and the infant displays
“protosigns”. At the threshold of language, play is richly imag-
initive, seeking expressions in imitated and socially approved

263

REGULATION OF HUMAN COGNITION AND ITS GROWTH

roles, attitudes, and humorous displays that other persons in
the familiar community readily recognize and appreciate.

The precocious development of conversational play in infancy
has clear implications for brain growth. At least on the baby’s
side, the earliest communication is almost certainly largely gen-
erated and adjusted in subcortical systems of the brain, because
for several weeks the neocortical circuits in the human are in a
very rudimentary condition. The interconnections between cor-
tical modules, including the links of the corpus callosum, have
yet to differentiate. In spite of its relative immaturity, the brain
that will learn language and traditional conventions for coop-
erative use of objects is born seeking an identified partner and
teacher who “converses”.

We must conclude that the infant, too immature to regu-
late exploratory or performatory contact with physical objects,
and lacking focal perception, refined motor control, and “object
memory”, has dedicated cognitive and intentional systems seek-
ing “operational closure” in communication with an affection-
ate partner. The Norwegian sociologist and cybernetician Stein
Braten has proposed, on the evidence of early communication,
that the human brain is born with a dual personality; with a
“virtual other” that can be fully active only when supported by
another person’s reactions.

Basic human communication establishing “dialogic closure” .
by “affect attunement” is used in teaching and in therapeu-
tic communication. The “virtual other” is a key component
of the innate intersubjectivity out of which cultural learning
grows. Human social learning is in relationships identifying
individual others as distinct sources of psychological or inter-
subjective teaching, and of cooperative initiative. Correspond-
ingly, a parent is more than a caregiver, protector or scaffold
for action. The infant seeks, in succession: an identified, emo-
tionally available and responsive partner in communication of
basic motives and emotions; an opponent in affectionate play; a
companion and guide in emotionally evaluated experience with
objects and events; a helper in task-performance; an audience,
admirer, and critic, whose feelings convey the value of shared
experiences and provide guidance towards greater competence

264

C. TREVARTHEN

and facility. These are the characteristics of the cognitive system
that has employed symbols to transmit knowledge cumulatively
over thousands of years.

REFERENCES

Bogen, J. E. (1969). The other side of the brain, II An appositional
mind. Bulletin of the Los Angeles Neurological Society , 34: 135-
162.

Braten, S. (1988). Dialogic mind: The infant and adult in protocon-
versation. In: Nature, Cognition and System , ed. M.Cavallo.
Dordrecht: Kluwer Academic Publications, pp. 187-205.

Changeux, J.-P. (1985) Neuronal Man: The Biology of Mind . New
York: Pantheon.

Edelman, G.M. (1987). Neuronal Darwinism: The Theory of Neu-
ronal Group Selection. New York: Basic Books.

Fodor, J. (1983). The Modularity of Mind. Montgomery VT: Brad-
ford.

Gardner, H. (1984). Frames of Mind. London: Heinemann.

Gazzaniga, M. (1970). The Bisected Brain. New York: Appleton-
Century-Crofts

Hunt, R. K. and Cowan, W. M. (1990). The chemoaffinity hypoth-
esis: an appreciation of Roger W. Sperry’s contributions to de-
velopmental biology. In: C. Trevarthen (ed.), Brain Circuits
and Functions of the Mind: FEssays in honor of Roger W.
Sperry . New York: Cambridge University Press.

Innocenti, G. M. (1986). General organization of callosal con-
nections in the cerebral cortex. In: E. G. Jones and A. Pe-
ters (eds.), Cerebral Cortez , Volume 5. New York: Plenum,
291-353. .

Levy, J. (1990). Regulation and generation of perception in the
asymmetric brain. In: C. Trevarthen (ed.), Brain Circuits
and Functions of the Mind: FEssays in honor of Roger W.
Sperry . New York: Cambridge University Press.

Murray, L. (1992). The impact of postnatal depression on infant
development. Journal of Child Psychology and Psychiatry ,
33 (3): 543-561.

265

REGULATION OF HUMAN COGNITION AND ITS GROWTH

Murray, L. and Trevarthen C. (1985). Emotional regulation of
interactions between two-month-olds and their mothers. In:
T. Field and N. Fox (eds.), Social Perception in Infants .
Norwood, N.J., Ablex, 177-197.

Singer, W. (1987). Activity dependent self-organization of synap-
tic connections as a substrate for learning. In: J.-P. Changeux
and M. Konishi (eds.) The Neural and Molecular Basis of
Learning. Wiley: New York.

Sperry, R. W. (1982). Some effects of disconnecting the cerebral
commissures. Science, 217(4566): 1223-1226.

Sperry, R. W. (1984). Consciousness, personal identity and the
divided brain. Neuropsychologia, 22(6): 661-667.

Stephan, M. (1990). A Transformational Theory of Aesthetics.
London: Routledge.

Stern, D. N. (1985). The Interpersonal World of the Infant:
A View from Psychoanalysis and Development Psychology.
New York, Basic Books.

Trevarthen, C. (1984). Biodynamic structures, cognitive corre-
lates of motive sets and development of motives in infants.
In: W. Prinz and A.F. Saunders (eds.), Cognition and Mo-
tor Processes. Berlin-Heidelberg-New York: Springer Ver-
lag, 327-350.

Trevarthen, C. (1985a). Facial expressions of emotion in mother—
infant interaction. Human Neurobiology , 4, 21-32.

Trevarthen, C. (1985b). Neuroembryology and the development
of perceptual mechanisms. In: Human Growth (Second Edi-
tion), eds. F. Falkner and J.M. Tanner. New York: Plenum,
301-383.

Trevarthen, C. (1986). Brain Science and the human spirit.
Zygon. Journal of Religion and Science , 21(2) June 1986:
161-200.

Trevarthen, C. (1987a). Brain development. In: R.L. Gregory
and O.L. Zangwill (eds.), Ozford Companion to the Mind .
Oxford, New York: Oxford University Press, 101-110.

Trevarthen, C. (1987b). Split brain and the mind. In: R.L.
Gregory and O.L. Zangwill (eds.), Ozford Companion to the

266

C. TREVARTHEN

Mind . Oxford, New York: Oxford University Press, 740-
747.

Trevarthen, C. (1987c). Subcortical influences on cortical pro-
cessing in “split” brains. In: D. Ottoson (ed.) Duality and
Unity of the Brain . (WennerGren International Symposium
Series, Vol. 47). Basingstoke, Hampshire: Macmillan/New
York: Stockton Press, 382-415.

Trevarthen, C. (1987d). Infancy, mind. In: R.L. Gregory and
O.L. Zangwill (eds.) Ozford Companion to the Mind . Ox-
ford, New York: Oxford University Press, 362-368.

Trevarthen, C. (1989). Development of early social interactions
and the affective regulation of brain growth. In: Neurobi-
ology of Early Infant Behaviour , eds. C. von Euler and
H. Forssberg. (Wenner-Gren International Symposia Series)
Basingstoke, Macmillan.

Trevarthen, C. (1990a). Growth and education of the hemi-
spheres. In: C. Trevarthen (ed.), Brain Circuits and Func-
tions of the Mind: FEssays in honor of Roger W. Sperry .
New York: Cambridge University Press.

Trevarthen, C. (1990b). Integrative functions of the cerebral
commissures. In: F. Boller and J. Grafman (eds.), Handbook
of Neuropsychology , Vol. 4. Amsterdam; Elsevier Science
Publishers BV (Biomedical Division), 49-83.

Trevarthen, C. (1990c). Grasping from the inside. In: M. A.
Goodale (ed.) Vision and Action: The Control of Grasping
. Norwood, N.J.:Ablex, 181-203.

Trevarthen, C. (1993a). The function of emotions in early in-
fant communication and development. In: J. Nadel and L.
Camaioni (Eds.) New Perspectives in Early Communicative
Development . London: Routledge. (in press)

Trevarthen, C. (1993b). The self born in intersubjectivity: An
infant communicating. In: U. Neisser (Ed.) Ecological and
Interpersonal Knowledge of the Self . New York: Cambridge
University Press (in press).

Tucker, D. M. (1991). Developing emotions and cortical net-
works. In: M. Gunnar and C. Nelson (Eds.) Minnesota

267

REGULATION OF HUMAN COGNITION AND ITS GROWTH

Symposium on Child Psychology , Vol. 24: Developmental
Behavioral Neuroscience. Hillsdale, NJ: Erlbaum.

Willshaw, D.J. and von der Malsburg, C., (1976). How pat-
terned neural connections can be set up by selforganization.
Proceedings of the Royal Society of London, Series B. , 194:
431-445.

Wilson, A. C., (1991). From molecular evolution to body and
brain evolution. In: J. Campisi (ed.) Perspectives on Cellu-
lar Regulation: From Bacteria to Cancer , New York:Wiley-
Liss, 331-340.

Zaidel, D. (1990). Long-term semantic memory in the two cere-
bral hemispheres. In: C. Trevarthen (ed.), Brain Circuits
and Functions of the Mind: Essays in Honour of Roger W.
Sperry . New York: Cambridge University Press.

Zaidel, E. (1990). The saga of right hemisphere reading. In: C.
Trevarthen (ed.), Brain Circuits and Functions of the Mind:
Essays in honor of Roger W. Sperry . New York: Cambridge
University Press.

268

11

Large Heterogeneous Knowledge Bases

E. Tyugu

Royal Institute of Technology,
Dept. of Teleinformatics, Electrum/204, S-16440 Kista, Sweden

Abstract

This chapter discusses large knowledge bases as software devel-
opment tools which support the creativity of programming in
the large. User requirements, architecture and internal knowl-
edge representation language of large knowledge bases are con-
sidered. Higher order constraint networks are proposed for rep-
resenting knowledge about computability.

1 SOFTWARE REUSABILITY

An important characteristic of the software development process
is the degree of reusability of software. Simply speaking, knowl-
edge once encoded in the form of programs must be reusable
every time it could be needed in programming new problems.
A natural way to reuse programs is to apply large software li-
braries. It is expected that this increases the productivity of
software development and reliability of the software produced.
However, with the exception of a small number of specific appli-
cations, the software libraries of today tend to be very difficult
to use. They lack comprehensive user interface, and require from
the users too much effort in studying of documentation. One can
use the following analogy. From a usability standpoint, a soft-
ware library is like an ordinary library of literature containing
a large number of books, except that it has no comprehensive
catalogue, the books don’t have title pages, and they are stored
in a random order and are accessible only by numbers which

269

LARGE HETEROGENEOUS KNOWLEDGE BASES

User interface

Concepts:

Programs:

Figure 11.1. Layers of programming knowledge

are their formal addresses. Attempts are being made to build
knowledge bases which could provide a guidance in selecting
suitable software from software libraries (Devanbu et al. 1991).

The goal of the present work is to propose a design for a
knowledge base which would support automatic construction of
large programs from their declarative specifications. Roughly
speaking, we shall build a software library which contains two
layers of knowledge, Figure 11.1.

The lower layer is a repository of programs. These programs
are not directly visible in the software development process.
They are covered by the layer of knowledge about their applica-,
bility for solving different problems. This knowledge is visible
to users (software developers) and it is represented in terms of
concepts of problem domains, not in terms of programs. Besides
that, we distinguish between the internal knowledge represen-
tation language, which is essentially a language for representing
knowledge about computability, and a user language which is
a high level knowledge representation language for specifying
concepts and for reasoning about them.

This kind of kowledge representation has already been suc-
cessfully used in several knowledge-based programming environ-
ments (Tyugu 1991). The novelty of the present work is the ap-
proach to a knowledge base as a general purpose software tool,
not a narrowly problem oriented tool. This approach changes
the requirements to the design of a knowledge base, as will be

270

E. TYUGU

shown in section 3. The knowledge tools which worked satisfac-
torily in restricted problem domains such as engineering applica-
tions of computers for circuit analysis, design of machine parts,
or selecting fits and tolerances, are not applicable for developing
a large general purpose knowledge base.

We start with the explanation of the representation of knowl-
edge about computability which is the key issue of software
knowledge bases. Thereafter we present requirements to large
knowledge bases and present some architectural solutions of
large knowledge bases. We shall not discuss here the user lan-
guage built on top of the internal knowledge representation lan-
guage, as it has been represented in full details in several papers

(Tyugu 1991).

2 REPRESENTATION OF KNOWLEDGE ABOUT COMPUTABILITY

In this section we describe briefly the internal knowledge rep-
resentation language. This is a language used for representing
semantics of concepts of the ‘real world’ in terms of programs
available in the knowledge base. This language itself is divided
into two parts: alanguage of constraints for describing computa-
tions and a language of rules for metareasoning about concepts.

The language of constraints which we use can be described
as a language of higher order functional constraints. Any con-
straints in it can be represented by a program. HoweveR, SOme
constraints appear from declarations which are not programs,
but still have functional semantics. An example of such a con-
straint is equation, for instance,

U=1%7

which can be interpreted as a source of the following three pro-
grams:

U = Lk (11.1)
i o= ufr (11.2)
r o= uft (11.3)

depending on what must be computed: v, i, or r.

271

LARGE HETEROGENEOUS KNOWLEDGE BASES

a) b)
Figure 11.2. Functional constraints

To explain higher order functional constraints, we shall con-
sider two programs a and b which represent the constraints
shown in Figure 11.2.

The first program has input variables z, y, and an output
variable z. The second program has an input variable s, an
output variable ¢, and a procedural parameter g which is also
an input of this program. Let us assume that this parameter
can take values which have input u and output v. Figure 11.2
shows these programs as constraints between the variables z, y,
z and s, t, u, v respectively. Arrows show possible directions of
dataflow during the computations. .

Observing the dataflow of the second program, we distinguish
its input and output data (i.e. the values of the variables s and
t) and the data passed between this program and the pogram
f which is the value of its parameter g. The program b pro-
duces input of f (the value of the variable u) and gets back the
value of the variable v which is the output of f. This happens
every time the f is called, and that, in its turn depends on the
computations performed by the program b. We must distin-
guish this dataflow, which occurs during the subcomputations
performed by the program b, from the “ordinary” input and

272

E. TYUGU

output of programs. This is reflected in markings of arcs bind-
ing the variables u, v which differ from the arcs binding other
variables with programs. The role of the higher order variable
g is binding the variables u and v as input and output of one
and the same subcomputation. In general, a program can have
more than one procedural parameter, as well as several input
and output variables.

A higher order constraint network is a graph which has vari-
ables and constraints as its nodes. The constraints are func-
tional or higher order dependencies represented by programs
(or even by equations, etc.). Its arcs bind variables with con-
straints, as has been shown in Figure 11.2. It is remarkable,
that this graph is a bipartitioned graph with the nodes divided
into nonintersecting sets of variables and constraints (procedural
parameters are not represented as nodes in this graph). An exm-
ple of a higher order constraint network is shown in Figure 11.3.
Such a network can be used as a program specification, provided
a goal is given in the form of lists of input and output variables
of the desired program. For instance, Figure 11.3 becomes a
program specification as soon as realizations of its constraints
are given and we say that z is the input and y is the output of
the program desired.

It is quite easy to build a schema of the program required
above. Two possible schemas are shown in Figure 11.4 a,b where
we can see that the program implementing the constraint ¢ has
a subcomputation which is the application of the constraints
a, b, d, and e in one case and the constraints d and e in an-
other case. Program synthesis from specifications of this kind
has been applied in several programming environments (Tyugu
1991a; Mints 1988).

The knowledge representation language described above is
suitable for representing knowledge about the computability.
But it is still too restricted to represent general knowledge re-
quired in universal software knowledge bases. We propose an
extension of this language which is a metalanguage about con-
straint networks.

Let us have a knowledge base of concepts each of which is
specified as a constraint network. Let a concept C have a speci-

273

LARGE HETEROGENEOUS KNOWLEDGE BASES

Figure 11.3. Higher-order functional constraint network

274

E. TYUGU

a
l b a
c d
d b
e
e
a) b)
Figure 11.4. Synthesized program schemas
fication which contains variables z,...,y. We shall consider this

specification as a description of a relation between these vari-
ables, and shall introduce a predicate C for expressing this re-
lation. Variables z,...,y in the atomic formula C(z,...,y) can
be unified with corresponding objects of any particular instance
of the concept C. The predicates associated with concepts give
us a possibility to represent theories about the concepts in the
knowledge base as well as the situations described in terms of
these concepts. In particular, if we restrict ourselves to Horn
clauses, we get a knowledge system for metareasoning about
concepts which can be efficiently implemented. This has been
done in the NUT programming environment described in (Tyugu
1991a). Actually, the metareasoning component of the NUT sys-
tem does more than described above. It also works with parts
of constraint networks, not only with separate concepts.

275

LARGE HETEROGENEOUS KNOWLEDGE BASES

3 REQUIREMENTS

A large knowledge base is intended for applications in the con-
ditions where the scope of possible applications cannot be made
precise in advance. This means that conformity, extendibility,
reusability, etc. must be inherent features of such a knowledge
base. Most of the existing knowledge bases have been designed
for applications in some well-defined problem domain: in a par-
ticular field of CAD, management decision making, medicine,
etc. This facilitates the design of a knowledge base consider-
ably, enabling a designer to make reasonable commitments on
the basis of information about the application domain.

From the other side, knowledge-based techniques of today
are already powerful enough to enable one to build and to ap-
ply general purpose knowledge bases in knowledge areas such as
basic geometry and physics (Tyugu 1988) as well as in general
engineering fields such as machine parts in mechanical engineer-
ing of typical devices (filters, transformers, etc.) in electrical
engineering. Our goal will be to make these knowledge bases ap-
plicable in various combinations and, ultimately, to unite them
into a single knowledge body as is operational in human beings.
Actually, the analogy with human reasoning and, in particular,
with teaching people is much deeper here: conceptual design of
a heterogeneous multidisciplinary knowledge base is principally
not different from putting together a curriculum of studies for
students. The differences appear at the stage of implementa-
tion. The students are considered to be universal in the sense
that they must be able to absorb and apply any kind of knowl-
edge systematically presented to them. The knowledge-based
tools of today are still very restricted and we do not expect to
be able to present knowledge in a natural language at the input
of knowledge bases.

The following is a summary of requirements to a large het-
erogeneous knowledge base.

Support of knowledge acquisition is a requirement closely sha-
red with the project CycC (Lenat 1990) where this requirement
has been thoroughly investigated. This requirement means that
all the knowledge available in a knowledge base must, first of all,

276

E. TYUGU

be applicable for declarative specifications of new knowledge.
This will give the cumulative effect when the knowledge is ac-
quired. In the case of natural language input, this requirement
necessitates associative reasoning. For formal knowledge rep-
resentation languages, it requires a well-developed inheritance
mechanism.

Transparency of knowledge for the user becomes a crucial
feature of a knowledge base as soon as the latter grows out
of easy comprehension. Analogy with large databases, and, in
particular, understanding the reasons of introduction of data
dictionaries in the thesaurus form is useful here. In the case
of a large amount of knowledge, a user must discover what is
available for the usage and how to use it. Invisibility leads
to errors caused by misunderstanding of knowledge and to the
necessity to solve the discovery task which can take up to 60% of
the development time of procedural knowledge bases (Devanbu
et al. 1991).

Modularity of knowledge is required for the following rea-
sons. First of all, concentrating attention on a small number
of comparatively small knowledge entities at each inference step
improves the efficiency of an inference engine. Modularity en-
ables one to represent various kinds of knowledge in a single
integrated knowledge base by encapsulating different microthe-
ories in separate knowledge modules (Tyugu 1991b).

Heterogeneity of knowledge is the feature that requires the
ability to select a suitable form for representing each piece of
knowledge. For instance, one can distinguish hard and soft
knowledge, or in another dimension, shallow or deep knowledge.
When shallow and soft knowledge can be well represented in the
form of productions, this is not true for hard and deep knowl-
edge. In engineering fields, for instance, the latter can exist
in the form of precise mathematical models. A representation
language for this kind of knowledge must be close enough to
usual mathematical notations. The two knowledge representa-
tion formalisms presented in the previous section are very much
intended to support the heterogeneity of knowledge.

Conformity means a possibility to use a knowledge base for
different tasks and in various environments. One expects that a

277

LARGE HETEROGENEOUS KNOWLEDGE BASES

large knowledge base will be applicable whenever the knowledge
in it becomes useful. In a more restricted context of procedural
knowledge, conformity means interoperability, i.e. the ability of
programs to communicate and work together even when having
been written in different languages (Wileden et al. 1991).

Openness—eatendability is the feature mentioned at the be-
ginning of this section. Because a large knowledge base is not de-
signed for any predefined application domain, it must be adapt-
able and extendable during its whole life-cycle.

Changeability is another feature which follows from the un-
defined scope of applications of a knowledge base at its devel-
opment time. This feature is essentially different from openness
and extendability, because it implies the nonmonotonic charac-
ter of knowledge in a knowledge base. Nonmonotonicity is a
strong requirement in knowledge handling and there are a num-
ber of logical models of it, see (Genesereth and Nilsson 1987).

Integrity is a feature which is known from database mainte-
nance. In a logical framework it means preserving consistency
after introducing any permissible change into knowledge. Prac-
tically, it can be only partially guaranteed by introducing in-
tegrity constraints which must be checked at every change of
the knowledge base.

Size of a large heterogeneous knowledge base can be esti-
mated only roughly, because there is no precise measure of.
knowledge. A possible measure of knowledge is the number of
simple bindings (i.e. instances of symbolic names) in a knowl-
edge base. A large knowledge base can, possibly, contain about
the order of 10M bindings, as we shall see in Section 5. -

Brittleness bottleneck is typically the problem which arises in
connection with practical usage of knowledge-based techniques.
In its essence, this means getting unsatisfactory responses to
unexpected situations. When applying a program to solve a
problem, one is always expected to know the precondition of
the program, i.e. the predicate which determines whether the
program could be applied to the problem. When a knowledge-
based technique is being used, the preconditions are not so ex-
plicit. If knowledge is represented in the form of rules, one still
can look at the conditions of the rules as preconditions. But,

278

E. TYUGU

firstly, these conditions do not apply to the problem as a whole.
Secondly, they may be expressed in imprecise terms the mean-
ing of which remains hidden from a user. As a consequence, the
user will not be satisfied with the responses he will get from a
knowledge-based system. When the amount of knowledge in-
creases and when the knowledge domain becomes wider, then
the knowledge base appears to be unreliable to users—it will not
satisfy their expectations, because they will be unable to get the
inferences expected to be done automatically by the knowledge
base. This is a brief review of requirements which must be taken
into account in designing the architecture of large programming
knowledge bases.

4 ARCHITECTURE

Requirements of modularity and diversity of knowledge repre-
sentation cannot be satisfied in a flat and homogeneous know!l-
edge base. Besides that, a knowledge representation formalism
for internal use in a knowledge base must, first of all, satisfy the
requirements of efficiency and need not be suitable for human
understanding. This gives us the first architectural principle for
building a large knowledge base:

1. The input language for knowledge representation should be
different from the internal knowledge representation formalisms.

An input language can support a frame-based representation
and it is highly preferable that its translation would be straight-
forward and simple. One way to achieve this is to use a calcu-
lus of inheritance for translating from an input language into
a formal internal language which must be suitable for making
inferences (Tyugu 1991b).

The second principle is concerned with the internal knowl-
edge representation. Experience shows us that no universally
efficient knowledge representation and handling technique ex-
ists. On the contrary, a number of very different methods have
been developed for solving problems in various knowledge do-
mains. Also considering human intelligence, one can distinguish
basically different knowledge handling mechanisms that are as-
sociated with logical and intuitive ways of thinking. This gives

279

LARGE HETEROGENEOUS KNOWLEDGE BASES

us the following principle:

2. Several knowledge systems are needed in a large knowledge
base.

Elaborating on the meaning of a knowledge system gives us
the third principle:

3. Any knowledge system (KS) which is knowledge repre-
sentation plus inference engine can be represented as a formal
calculus with interpretation that adequately represents knowledge
processing in this system.

This thesis cannot be proved formally without formalizing the
adequacy requirement, which we will not do. However, looking
at the numerous examples of knowledge systems, we can find
good evidence in favour of this thesis. First of all, making infer-
ences means using knowledge in a deductive way. The possibility
of formalisation of a KS becomes obvious as soon as we loosen
the requirement of adequacy: on a sufficiently low level, we can
use the well-known formal systems—Turing machines or Post’s
systems for representing KS. This principle lies in the basis of
inference éngines of knowledge systems.

The following principle considers the stratification of knowl-
edge:

4. Several levels of generality are required even in one and
the same knowledge domain.

Even in one and the same knowledge domain one must be
able to use very general knowledge as well as specific knowledge.
The first kind of knowledge can be presented in the form of a
metatheory about the domain knowledge, see Section 2.

In Figure 11.5, the operational part of a large knowledge
base is shown. It contains all basic knowledge-paths for knowl-
edge acquisition and application to external problems. It does
not show the knowledge flow for self-referential reasoning and
for explanations. At the knowledge acquisition stage, concepts
are being formed by a translator (1). A concept has a lay-
ered structure and this structure is aalso preserved later, when
a representation of a particular situation (a problem) is being
constructed. Different layers need different inference engines
for making inferences (3,4). The knowledge repository (5) can

280

E. TYUGU

2
5
- language processor

1

2 knowledge handler
3, 4 - inference engines
5

6

© = knowledge repository
+7 - knowledge packages

Figure 11.5. Operational part of a large knowledge base

281

LARGE HETEROGENEOUS KNOWLEDGE BASES

4 4

Query
processor
v y Analyser
O O
g____/ T
Metaknowledge Main knowledge-
basge

= =

Figure 11.6. Referential part of a large knowledge base

be structured into knowledge packages (6,7) and can have self-
referential (meta) knowledge about its own contents.

Figure 11.6 shows the referential part of a knowledge base.
This part is intended for processing users’ queries about the
knowledge. It provides transparency of the knowledge in the
knowledge base and supports both knowledge acquisition and
its usage. There are two ways of processing users queries:

e direct analysis of the knowledge,
e answering on the basis of the metaknowledge.

In the first case, metaknowledge is not needed, but this method
is applicable only to limited amounts of knowledge, i.e. not to
the knowledge base as a whole. The second method is analogous
to the usage of data dictionaries in data-bases. It requires the
existence of metaknowledge about the contents of the knowledge
base, which can be presented in the form of a thesaurus, inverted

282

E. TYUGU

circuit
analysis

DA

bearings

geometry

Figure 11.7. A “landscape” of engineering knowledge bases

files, or an object-oriented information system. The problems
arising in the construction of information systems of this kind
have been discussed in (Devanbu et al. 1991).

5 CONTENTS AND SIZE

This section is based on our experience gained in engineering ap-
plications of knowledge-based programming tools. Most of the
applications belong to the electrical and mechanical engineering
fields (Pahapill 1985), but there are also examples of successful
development of knowledge bases in civil engineering design and
other engineering fields. These experiments have given us the
confidence that all kinds of engineering knowledge can already
be presented in computer by means of knowledge tools available
now.

Figure 11.7 shows a landscape formed by our development of
engineering knowledge bases. It shows several clusters of knowl-
edge corresponding to the electrical, mechanical, and civil en-
gineering fields, as well as some general knowledge in physics,
mathematics, and chemistry.

283

LARGE HETEROGENEOUS KNOWLEDGE BASES

Once again, we shall use here the analogy between building
up a knowledge base and teaching people. At a first glance,
when the amount of stored knowledge is considered, it could
seem that the more the better. But, even if we assume an un-
limited capacity of the knowledge repository, we must take into
account the costs of knowledge acquisition as well as mainte-
nance costs. Therefore, it is reasonable to design our knowledge
base for engineering applications similarly to the curriculum of
a technical university, taking into account restrictions on the
resources for teaching. In doing so, we assume that available
knowledge handling tools are sufficiently powerful and can sup-
port all kinds of knowledge needed for applications. In other
words, we feel free from technical restrictions in presenting a
conceptual design of an engineering knowledge base in this sec-
tion. However, we are restricted by the resources available for
introducing the knowledge, for teaching a knowledge base.

We must remember that a number of different knowledge
systems (representation forms and inference engines) for repre-
senting the knowledge we are going to use must be available.
The choice of a knowledge system for representing a knowledge-
module is not purely a technical question. For instance, non-
specific knowledge which, in general, is seldomly used by an
engineer must be represented in a more transparent way than
specific and well-understood knowledge. But, here we should
not be concerned with the form of knowledge. We can still
make a comment on the overall organization of the knowledge
base. Knowledge is represented there in modules, each of which
we can consider as a microtheory about some narrow part of the
engineering field. These microtheories can be nested. But, in
general, they constitute a metasemantic (conceptual) network,
where these microtheories refer to one another in the same way
as texts in a hypertext.

We classify engineering knowledge into three categories: non-
specific, general engineering knowledge, and specific engineer-
ing knowledge. Nonspecific knowledge corresponds to generally
known knowledge in science which is usually taught in schools
for technically oriented students. General engineering knowl-
edge is mainly knowledge from handbooks and standards. Spe-

284

E. TYUGU

cific engineering knowledge is the most problem-oriented and
supports particular designs or engineering solutions by compos-
ing different knowledge modules into a single body and by pro-
viding the design solutions and plans.

The following is a brief outline of a universal engineering
knowledge base segmentation and this does not reflect in which
form the knowledge is actually stored (organized) in the knowl-
edge base.

Nonspecific knowledge:

e mathematics

* geometry

* symbolic computations
e physics

* mechanics

* electricity

* heat and heat transfer

* optics
e chemistry

Part of this nonspecific knowledge can be represented only
in a very shallow way today, as in general handbooks for engi-
neers where only basic definitions and some formulas are given.
This does not mean that mathematical knowledge could not be
presented in a hard and deep form. The research towards for-
malizing mathematics has been going on for a long time, and
special efforts have been directed towards automating mathe-
matical reasoning (de Bruijn 1980).

General engineering knowledge:

e engineering graphics
e general standards
e general engineering handbooks (fits and tolerances, etc.)

Specific engineering knowledge which is divided into different
engineering fields:

1. mechanical engineering

285

LARGE HETEROGENEOUS KNOWLEDGE BASES

e machine parts
e devices and machines

e ...
2. electricity

e basic laws
e analysis of alternating current circuits

o ...
3. civil engineering

Looking at the contents above, one can see that a knowledge
engineer is in a rather good position when building an engi-
neering knowledge base. An essential part of the engineering
knowledge is already presented in a well structured and formal
form which is well suited for computerized processing. We have
built knowledge modules which can be used separately as well as
together. The architectural difference is that when a knowledge
module is used independently, it must have an interactive user
interface, whereas in the case of an integrated knowledge base
the interface must, first of all, satisfy interoperability require-
ments.

We have estimated the amount of knowledge which must be
put into a general engineering knowledge base. We suggest to
measuring knowledge by the number of bindings. This is the
number of arcs in a network representation or the number of
instances of names in the case of symbolic representation of
knowledge. The estimate is that a universal engineering knowl-
edge base will contain at least 10 M bindings.

6 CONCLUDING REMARKS

As it has been stated at the beginning of the chapter, this work
was provoked by the need for a sufficiently universal program-
ming knowledge base which could be used as an aid in program-
ming a great variety of problems. At present, this goal has been
partially achieved—one can build a knowledge base which is an
oracle for a restricted knowledge domain, and this has been done

286

E. TYUGU

for many particular domains. However, we expect to get a sig-
nificant breakthrough in problem-solving by uniting smaller and
specialized knowledge bases into a large heterogeneous one. This
task presents new requirements to the knowledge base which
were reviewed in Section 3.

Some insights into the architecture of knowledge bases were
obtained and contents of a large engineering knowledge base
was outlined. This enabled us to estimate the amount of the
knowledge needed, and an estimate for a general engineering
knowledge base is 10 M bindings.

The amount of work needed for building a knowledge base
can be estimated in two different ways: by guessing how much
work is needed for introducing the given amount of knowledge
or by summing up estimates for particular knowledge modules
which constitute the contents of the knowledge base. The second
is a direct way and, presumably, more precise. Our experience
in introducing the knowledge modules gives us a rough estimate
which shows that more than 140 man years are required for
building a general purporse engineering knowledge base.

Finally, it seems that a realistic way to get a large program-
ming knowledge base is by evolutionary development. This re-
minds us again how people are being taught. The crucial ques-
tion in this case will be the ability of a knowledge base system
to perceive the knowledge, i.e. to learn gradually.

Acknowledgments

I would like to thank my former colleagues Ahto Kalja and Jaak
Pahapill from Tallinn for developing numerous microtheories for
engineering knowledge-bases and Tiit Tiidemann for shaping a
landscape of the engineering knowledge.

REFERENCES

de Bruijn, N. (1980). A survey of the project AUTOMATH. Es-

says in combinatory logic, Lambda calculus and formalism (Eds.
J.P. Seldin and J.R. Hindley). Academic Press, 586-606.

Devanbu, P., Brachman, R. J., Selfridge P. G., Ballard B. W. (1991).
LaSSIE: A Knowledge-Based Software Information System. Comm

287

LARGE HETEROGENEOUS KNOWLEDGE BASES

ACM, v. 84, No. 5; 34-49.

Genesereth, M. R., Nilsson, N. J. (1987). Logical Foundations of
Artificial Intelligence. Morgan Kaufman Publishers.

Lenat, D. (1990). Cyc: Towards Programs with Common Sense.
Comm ACM, v. 83, No. 8, 30-49. »
Mints, G., Tyugu, E. (1988). The Programming System PRiz. Jour-

nal of Symbolic Computations, No. 5, 359-375.

Pahapill, J. (1985). Programmpaket zur Modellierung der Hydro-
maschinen Systeme. 6. Fachtagung Hydraulik und Pneumatik,
Magdeburg. 609-617.

Tyugu, E. (1988). Knowledge-Based Programming. Addison Wesley
Publishers Ltd (Turing Institute Press).

Tyugu, E. (1991a). Three New-Generation Software Environments.
Comm ACM, v. 34, No. 6, 46-59.

Tyugu, E. (1991b). Modularity of Knowledge. Machine Intelligence,
12. (Eds. J.E. Hayes, D. Michie and E. Tyugu) Clarendon Press,
Oxford, 3-16. .

Wileden, J. C., Wolf, A. L., Rosenblatt, W. R., Tarr, P. L. (1991).
Specification-Level Conformity. Comm ACM, v. 84, No. 5, 72-
87.

288

EXPERIMENTAL MACHINE LEARNING

12

Learning Optimal Chess Strategies

M. Bain

Turing Institute
S. Muggleton

Oxford University Computing Laboratory

Abstract

Move-perfect databases for chess endgames can be constructed
by full-width backup from won positions. Complete tabula-
tions are available for certain endgames, such as King and Rook
against King (KRK), which contain optimal depth-to-win infor-
mation. Previous work has applied decision-tree learning to con-
struct rules for the classification of positions from such databases
as won or not won, but with limited success. The current work
takes an Inductive Logic Programming approach, using meth-
ods of generalization in first-order logic and specialization by
predicate invention. Results are given on learning rules from
example black-to-move KRK positions which are won-for-white
in a fixed number of moves.

1 MOTIVATION AND FIRST RESULTS

Could a machine learn to play a simple chess endgame optimally
given only example positions and some facts about the geometry
of the hoard 7 Below is a chess program, in Prolog, machine-
learned from examples, which could legitimately form part of a
feasibility demonstration for such a project.

krk(0,Kfile,3,WRfile,1,Kfile,1) :-
not(wrfile_threat(Kfile, WRfile)).

291

LEARNING OPTIMAL CHESS STRATEGIES

krk(0,c,WKrank,a,WRrank,a,BKrank) :-
wrrank.safe(WKrank, WRrank,BKrank).

wrfile_threat(BKfile, WRfile) :- diff(BKfile, WRfile,1).

wrrank_safe(2,WRrank,1) :- 1t(2,WRrank). .
wrrank_safe(Krank, WRrank,Krank) :- diff(Krank, WRrank,2).
wrrank_safe(Krank,WRrank,Krank) :- diff(Krank,WRrank,3).
wrrank_safe(Krank,WRrank,Krank) :- diff(Krank, WRrank,4).
wrrank _safe(Krank, WRrank,Krank) :- diff(Krank, WRrank,5).
wrrank_safe(Krank,WRrank,Krank) :- diff(Krank,WRrank,6).
wrrank.safe(1,8,1).

This program is complete and correct for the canonical set of
legal black-to-move (BTM) positions in the King and Rook
against King (KRK) endgame which are won-for-white (WFW)
at a depth of 0 moves (i.e. checkmate). The top-level predicate
is krk/7, the first argument of which gives the depth of win
in moves for a minimax-optimal strategy. The other six argu-
ments specify positions by the file and rank (z and y) chessboard
coordinates of, respectively, the White King, White Rook, and
Black King. The two clauses for the top-level predicate are com-
plete and correct in the sense that they cover all and only those
positions in an exhaustive database (described in Section 2.1)
which are won at depth 0. This solution, which is discussed in
more detail in Section 4, calls the primitive predicates 1t /2 and
diff/3 which define the relations < and symmetric difference
for files and ranks. Apart from these background predicates,
two machine-invented predicates which are here labelled wr-
file_threat/2 and wrrank_safe/3 complete the definition 1.
‘Previous attempts to learn classification rules in chess endgame

domains have typically used a much more powerful set of domain
features to describe example positions than is the case in the cur-
rent study. Quinlan (1983) has reported that in an application
of ID3 to learning a classification for the “lost n-ply” relation in
the King and Rook against King and Knight (KRKN) endgame
the main obstacle to producing a complete and correct set of

1Variables and constants have been renamed to improve readability.

292

" M. BAIN

classification rules was the lack of suitable attributes. The ap-
proach taken in our work is to attempt to overcome this problem
by relying on the learning system’s ability to change its domain
representation incrementally, as demanded by the learning task.

In the KRK endgame the maximum depth of win for BTM
positions is 16 moves. Currently, we have Prolog programs
learned by the Inductive Logic Programming system GCWS (de-
scribed in Section 3) which are complete in the above sense for
all depths of win, i.e. from 0 to 16. To our knowledge this is the
first time an optimal strategy for a complete endgame has been
learned automatically in this way from example positions and
low-level background knowledge predicates. In this chapter we
present results for complete and correct Prolog predicates for
depths of win of 0 and 1 moves. We are continuing to work on
correction by specialization of predicates covering the remaining
depth levels, and expect to incorporate these results in subse-
quent reports on this work. For the present however we will
describe only the results from learning the definitions of won at
depths 0 and 1. The outline of the chapter is as follows. Section
2 contains descriptions of the KRK endgame database used. In
Section 3 the learning approach is discussed. The definitions
learned are given in Section 4 and the relation to other work in
Section 5.

2 MATERIALS

In previous work (Shapiro 1987; Muggleton 1987; Muggleton et
al. 1989; Bain 1991) chess endgame databases have been used
as sources of training and testing examples for machine learning
experiments. The current work employs an exhaustive database
which is a complete tabulation for the KRK endgame. The
entries of this database contain optimal depth-to-win values for
all positions. These entries constititute examples of position
classes at each depth of an optimal strategy. Our training and
testing examples were randomly sampled from this database.

2.1 Retrograde analysis of endgame databases

The retrograde analysis method for generating chess endgame
databases as described by Thompson (1986) employs reduction

293

LEARNING OPTIMAL CHESS STRATEGIES

Key:

WK octant

..... WK reflection

----- BK reflection

----- WR reflection

N W A O O N O

Figure 12.1. Canonical positions. ‘
WK octant - the ten squares {al,bl,cl,d1,b2,c2,d2,c3,d3,d4}
are the canonical locations for the White King (WK).

WK reflection - reflection about the axes indicated places the
WK in a canonical location:

if the WK is above the central horizontal (rank 5 or greater),
reflect the WK below (into the lower half of the board);

if the WK is right of the central vertical (file e or greater),
reflect the WK to the left of (into the left half of the board);

if the WK is above the diagonal al to hS§,
reflect the WK below this diagonal (into the WK octant).

BK reflection — with the WK on squares al, b2, ¢3 or d4 and
the Black King (BK) above the diagonal al to h8, reflect the BK
about this axis to place it below the diagonal.

WR reflection - with both WK and BK on the diagonal al to
h8 and the White Rook (WR) above the diagonal, reflect the WR

about this axis to place it below the diagonal.

294

M. BAIN

Table 12.1. Depth of win, optimal play.

Depth is depth-of-win for white in moves with black-to-move;
Number is number of positions. There are a total of 25 260 wins.
Together with 2796 draws this gives a total of 28 056 positions
used for positive and negative example sets.

Depth Number | Depth Number
0 27 9 1712

1 78 10 1985

2 246 11 2854

3 81 12 3597

4 198 13 4194

5 471 14 4553

6 592 15 2166

7 683 16 390

8 1433 Total 25260

of the space of positions by removing from consideration those
positions equivalent to a canonical set by symmetry. Conse-
quently, any legal position which could be encountered, for ex-
ample in over-the-board play, must be translated to its canonical
equivalent before its database value may be retrieved. The exact
symmetries which may be exploited vary according to the pieces
in the endgame. In the KRK database used to provide examples
for the current work three types of symmetrical translation were
applied. These are shown in Figure 12.1.

Only information on black-to-move (BTM) positions was ex-
tracted from the database. However this is sufficient to allow
optimal play using only a legal move generator which is operated
with 2-ply (one move) lookahead. Since every won position is
tagged in the database with its minimax-optimal depth-of-win
value, and the learned definitions contain the same values, this
method holds also to allow the output of the learning-from-
examples method to play optimally.

2.2 BTM WFW positions In the KRK database

By the removal of redundancy due to symmetries the total space

- 295

LEARNING OPTIMAL CHESS STRATEGIES

of legal canonical positions in the KRK endgame is reduced from
a potential 262 144 to 28 056. In the BTM database used in our
experiments the number of legal positions won-for-white was
25 260. Each of these positions is tagged with its depth-of-win
value. The number of positions in each depth-of-win class is
given in Table 12.1. "

3 METHOD

In the present work the goal was the induction of complete, cor-
rect, and concise theories in the KRK domain. Example posi-
tions for black-to-move (BTM) and win at depth D, where D isa
number of moves, were extracted from an exhaustive database
computed by the standard retrograde analysis method as dis-
cussed above. In this method, each entry in the database con-
tains a position labelled by its minimax-optimal game-theoretic
value, which in this case is its depth D. Such a database is
taken to be a complete and correct definition of the endgame
(although this has not yet been proved), containing as it does
all legal positions for the given pieces together with their opti-
mal depth-of-win labels. In logical terminology such a database
may be thought of as an extensional definition of the endgame.
Therefore the database is a complete and correct theory of KRK.
Alternatively, the database is a relation < P,D > where P is
a canonical position and D is depth-of-win. However, despite
reductions due to the removal of positions equivalent by sym-
metry, the database is too large to be called a concise theory.
The goal was therefore the induction of a program which:

1. on input of a legal BTM position in KRK outputs the
minimal depth-of-win for white;
2. on some measure was more concise than the database rep-
~ resentation.

In this chapter the experimental tasks were restricted to posi-
tions with depth 0 or 1. Also, we did not apply any measure of
relative conciseness 2. A suitable candidate measure could be
HP-compression as proposed in Muggleton et al. (1992).

2See discussion in Section 5.

296

M. BAIN

Algorithm GCWS

Input : P, training, test, background
if training = () then
Py =P

else

P = Gen(training, background)

P'=PUP

(P", exceptions) = Spec(P’, test, background)

P; = GCWS(P", exceptions, test, background)
Output : Py

Figure 12.2. GCWS algorithm schema.

We adopted an Inductive Logic Programming approach. Gen-
eralization steps were carried out using a version of Relative
Least General Generalization (RLGG) as implemented in the
GOLEM system (Muggleton and Feng 1992). This is shown in
Figure 12.2 as the procedure call “Gen(training, backgound)”.
Correction of over-general clauses with respect to a target model
was carried out using the Closed-World Specialization technique
(Bain and Muggleton 1991). This is shown in Figure 12.2 as the
procedure call “Spec(P’, test, background)”. The combined sys-
tem is called GCWS and is as described in (Bain 1991) with a
new extension which enables the automatic invention and intro-
duction of non-negated exception predicates during the special-
ization process. The method can be viewed as implementing a
form of automatic hierarchical problem decomposition.

An informal complexity constraint limiting the number of
clauses used in any predicate definition to 7 + 2 was applied
when learning the depth 0 and 1 definitions. This is based on
the hypothesized limit on human short term memory capacity
of 7+ 2 chunks. (A Prolog predicate is defined using one or
more Horn clauses, where each clause contains a single positive

297

LEARNING OPTIMAL CHESS STRATEGIES

literal with the same predicate symbol and arity.)

To avoid bias of the method by supplying the learning algo-
rithm with a large number of predefined domain-specific back-
ground predicates, the background knowledge was restricted to
contain only one specifically chess-oriented geometrical predi-
cate, namely the symmetric difference between files and between
ranks. This is defined as follows: for two file (resp. rank) val-
ues Vi and V; the symmetric difference is abs(V; — V;), where
Wi,V € {1,..,8} and abs(X) is X if X > 0 and 0—X otherwise.
The other background predicate available was strictly-less-than
(<) over files and over ranks.

These background predicates were selected as basic build-
ing blocks for the expression of piece relations in terms of the
geometry of the chess board. In particular, they facilitate ex-
pression of the types of attack and counter-attack relationships
which would seem to be essential for the expression of higher-
level chess concepts such as capture, safety, check, etc. Thus
they supply some of the raw materials for relevant predicate
invention in chess domains.

Details of the experimental method are given in Figure 12.2
in the form of an algorithm schema. At each depth of win,
the positive examples are all positions in the database which
are won-for-white at that depth, and the negative examples are
selected randomly from the remaining positions in the database.

Each depth of win was treated as a separate learning problem.
The results for depth 0 are in Section 4.1 and for depth 1 in
Section 4.2.

4 RESULTS

To recap on the Prolog representation used, the target predicate
for the concept was krk/7. The first argument of this predicate
indicates depth of win, in the range 0 - 16 (although only 0 and
1 were used in the present study). The remaining six arguments
give the file and rank coordinates for, respectively, the White
King, the White Rook, and the Black King. File arguments are
in the range a — h while rank arguments are in the range 1 - 8.
Note that these values are those used in the standard algebraic

298

M. BAIN

krk(0,A,3,B,1,A,1) :- not(nonkrk1(A,B)). % Clause 1
nonkrk1(A,B) :- diff(A,B,d1).

krk(0,c,A,a,B,a,C) :- krk2(A,B,C). % Clause 2
krk2(2,A,1) :- 1t(2,A).

kek?2(A,B,A) = difi(A,B,d2).

kek2(A,B,A) - diff(A,B,d3).

kek2(A,B,A) - diff(A,B,d4).

kek2(A,B,A) :- diff(A,B,d5).

krk2(A,B,A) - diff(A,B,d6).

krk2(1,8,1).

% Key (labels for machine-invented and background predicates) :
% nonkrkl(A,B) = “wrfile_threat(WKf,WRf)”

% krk2(A,B,C) = “wrrank_safe(WKR,WRr,BKr)”

% diff(A,B,d1) = “symmetric difference between A and B is 17
% 1t(2,A)= 2< A

Figure 12.3. BTM WFW depth 0.

chess notation. For instance, the unit clause “krk(0, c, 1, a, 3, a,
1)” is read as “the black-to-move position WK:cl WR:a3 BK:al
is won-for-white at depth 0 (i.e. in 0 moves)”. Recall that only
legal positions are considered.

Background knowledge was restricted to the predicates diff/3,
symmetric difference, and 1t/2, strictly less than. Two argu-
ment types were used for file and rank arguments, as for the
target predicate. A third type was used for symmetric differ-
ence arguments.

Throughout this section we illustrate each top-level clause
in the induced definition with a figure containing diagrams of
partial chessboards. The diagrams indicate position classes cov-
ered by the clause indicated. Dotted lines and arrows are used
to show variations in placing the attacking White Rook.

- 299

LEARNING OPTIMAL CHESS STRATEGIES

(i)

a b ¢c d e f g
Figure 12.4. BTM WFW depth 0, clause 1.

4,1 BTM WFW depth 0

The induced Prolog definition for BTM WFW depth 0 is shown
in Figure 12.3. Clause 1 of this definition is illustrated in Fig-
ure 12.4. As in clause 1, when the new predicate has only a
single clause in its definition, it may be replaced with the clause
body. In incremental learning this could however be undesirable
— the invented predicate if retained might have further clauses
added to its definition. For the time being we can interpret
clause 1 as follows : any BTM KRK position with the kings
on the same file, the white king on rank 3 and both the rook
and black king on rank 1 is WFW depth 0 when the symmetric

300

M. BAIN

(ii)

N W A

a b ¢ d a b c¢c d
Figure 12.5. BTM WFW depth 0, clause 2.

difference between king and rook files is not 1. The machine-
invented predicate nonkrk1/2 clearly relates to the idea of rook
safety when the black king is in check. It might be labelled wr-
file_threat/2. This concept is apparent from the diagrams in
Figure 12.4. Diagram (i) shows the placings of the White Rook
on rank 1, essentially on file a and files e to h. Diagram (ii)
illustrates the same pattern shifted one file to the right, with
the White Rook on rank 1, files a, b and f to h.

The second clause is in a sense the dual of the first, this time
for rank values, with the machine-invented predicate krk2/3
being labelled wrrank_safe/3. This is shown in Figure 12.5.
Diagram (i) illustrates the first clause of krk2/3, with the Kings
not in opposition. Diagram (ii) covers the remaining clauses of
krk2/3 where the Kings are in opposition. In all cases the
White Rook attacks the Black King on file a from the safety of
rank 3 or above.

These two clauses cover all 27 positions won at depth 0. Al-
though this is a small number of examples, the complexity of
describing the concepts involved is clear from the diagrams of
Figures 12.4 and 12.5.

4.2 BTM WFW depth 1

The induced Prolog definition for BTM WFW depth 1 is show
in Figure 12.6. The top-level predicate krk/7 has three clauses

301

LEARNING OPTIMAL CHESS STRATEGIES

krk(1,A,3,B,C,D,1) :-

krk1(A,B,C,D), diff(A,B,d2), diff(A,D,d1). % Clause 1

krk1(c,a,A,b) :- not(nonkrk12(A)).
krk1(c,e,A,d) :- not(nonkrk12(A)).
krk1(d,b,Ac) :- not(nonkrk12(A)).
krk1(d,f,A e) :- not(nonkrk12(A)).

nonkrk12(1).
nonkrk12(2).

krk(1,c,2,A,B,a,C) :- krk2(A,B,C).

krk2(A,4,3) :- not(nonkrk21(A)).
krk2(A,3,2) :- not(nonkrk22(A)).
krk2(A,4,1) :- not(nonkrk22(A)).
krk2(A,5,1) :- not(nonkrk22(A)).
krk2(A,6,1) :- not(nonkrk22(A)).
krk2(A,7,1) :- not(nonkrk22(A)).
krk2(A,8,1) :- not(nonkrk22(A)).

nonkrk21(a).
nonkrk21(b).

nonkrk22(a).

krk(1,c,1,A,3,a,2) :- not(nonkrk3(A)).

nonkrk3(a).
nonkrk3(b).

% Clause 2

% Clause 3

% Key (labels for machine-invented predicates) :
% krk1(A,B,C,D) =“wrrank_safe(WKf,WRf,WRr,BKf)”
% krk2(A,B,C) =“wrfile_safe(WRf,WRr,BKr)”

% nonkrkl12(A) =“ranklte2(WRr)”
% nonkrk21(A) =“filelteb(WRf)”
% nonkrk22(A)=“cornerfile(WRf)”

% nonkrk3(A) =“filelteb(WRf)”

Figure 12.6. BTM WFW depth 1.

302

M. BAIN

(i . (i)

Figure 12.7. BTM WFW depth 1, clause 1.

303

LEARNING OPTIMAL CHESS STRATEGIES

Figure 12.8. BTM WFW depth 1, clause 2.

304

M. BAIN

Figure 12.9. BTM WFW depth 1, clause 3.

in this definition. Clause 1 of this definition is illustrated in Fig-
ure 12.7. There are four diagrams in this figure, each of which
show essentially the same pattern of attacking relationships be-
tween the pieces. Diagrams (i) — (iv) depict the patterns for the
four clauses of the definition of the invented predicate krk1/4.
This predicate might be labelled wrrank_safe, since it is prin-
cipally a condition on the White Rook’s rank safety. This is
because the key attack relationships are defined by the top-level
of clause 1. To see that the patterns do indeed cover checkmate
at depth 1, refer to diagram (i) in Figure 12.7. The Black King
is forced to move to cl, which is followed by the White Rook
moving to al. Black is in check with no further moves. Re-
call that this checkmate position is covered by the pattern of
diagram (i) in Figure 12.4.

The second clause of the BTM WFW depth 1 definition has
only the machine-invented predicate krk2/3 in the clause body.
The clause has the White King fixed on square c2, and a con-
dition is required on the relation of the White Rook to the
Black King. We might label this condition wrfile_safe, since
the White Rook is restricting the movement of the Black King
without directly attacking it or being attacked by it. The key
patterns are shown in Figure 12.8. In diagram (i) the locations
of the Kings are fixed with the White Rook free to occupy rank
4 on any file apart from a or b. This pattern corresponds to the

305

LEARNING OPTIMAL CHESS STRATEGIES

first clause in the definition of krk2/3. Diagram (ii) presents
an interesting configuration with the Kings in opposition. This
pattern corresponds to the second clause of krk2/3, which cov-
ers one position where the White Rook is attacked by the Black
King but defended by the White King. The remaining clauses in
the definition cover positions falling into pattern classes closely
related to that of diagram (i). For instance diagrams (iii) and
(iv) correspond to clauses 3 and 4, with the Black King forced
to move into opposition on file a followed by the White Rook
moving to give checkmate on this file.

The third clause in the definition of the predicate krk/7
covers positions fitting the pattern of Figure 12.9. Here the
positions of both Kings are fixed, and the Black King is forced
to move into square al. From its safe position on rank 3 at
file c or greater, the White Rook moves to a3 giving checkmate.
The patterns shown account for all 78 of the canonical BTM
positions which are WFW at depth 1.

5 DISCUSSION

In Section 3 we stated that a long-term goal of this work was
to induce programs from database examples such that on some
measure the programs were more concise than the examples.
Although some work has been done on this front (Muggleton et
al. 1992) we do not present any results in this chapter. However,
the Prolog programs 2 from Section 4 are more compact on
an informal lines of code criterion than their representation as
ground examples. More importantly, these rules together with
their accompanying chessboard diagrams have been verified as
meaningful by chess expert and Prolog specialist Ivan Bratko.
Work on the inductive synthesis of knowledge employing the
easy inverse trick (Michie 1986) pushed the nascent technol-
ogy of decision-tree induction to its limits in the late 1970s
and early 1980s (Quinlan 1983). These initial results in chess
endgame domains led to a variety of successful applications.
The landmark KARDIO system used a deep model of the heart
to synthesize shallow rules for ECG interpretation (Bratko et

3Not including background predicates.

306

M. BAIN

al. 1989). Among the rules which came out of this study were
some previously undiscovered in over 200 years of cardiology.
This route was also taken in an application to satellite fault di-
agnosis (Pearce 1988). Most recently, an ILP approach in the
same domain allowed the learning of significant temporal rela-
tions not expressed in the earlier solution (Feng 1992).

The réle of Machine Learning in previous work has focused
on database compression. Even with decision tree induction
this compression can be significant, as in the KARDIO work.
Typically, however, in the chess endgame applications to date
the bottleneck for decision-tree induction has been selection of
an adequate set of attributes. For example, in experiments on
the KPa7KR domain (Shapiro and Michie 1986) most of the
effort was expended on hand-crafting the attributes which cap-
ture the necessary relational features of the won/not won predi-
cate. The novelty of the present approach lies in the application
of relational learning using RLGG as implemented in GOLEM
coupled with specialization techniques based on predicate inven-
tion. This follows from earlier results with a similar approach
in the simpler KRK illegality domain (Bain 1991).

The predicate invention methods by which induced clauses
are specialized by introducing literals into the clause body are
a special case of predicate invention within Muggleton’s (Mug-
gleton 1993) refinement lattice.

6 CONCLUDING REMARKS

We have presented results from learning optimal strategies in the
KRK endgame. Optimality is achieved through the use of ex-
amples extracted from an exhaustive database for the endgame.
A complete theory for black-to-move, won-for-white positions at
all depths (0 to 16) has been learned automatically from ground
instances of positions and only low-level background knowledge.
The definitions for win at depths 0 and 1 have been fully spe-
cialized and were presented as a complete and correct definition
of the target concept at these depths. They have been tested
fully on the exhaustive example set and certificated by a human
expert.

307

LEARNING OPTIMAL CHESS STRATEGIES

Acknowledgments

This work was supported by IED project 4/1/1320 on Temporal
Databases and Planning and by the ESPRIT Basic Research
Action ILP 6020. We thank Prof Donald Michie, Prof Ivan
Bratko and the members of the Turing Institute ILP Group for
their comments and suggestions regarding thls work.

REFERENCES

Bain, M. (1991). Experiments in non-monotonic learning. In Birn-
baum, L. and Collins, G., editors, Proceedings of the Eighth Inter-
national Workshop on Machine Learning, pages 380-384, Mor-
gan Kaufmann, San Mateo, CA.

Bain, M. and Muggleton, S. (1991). Non-monotonic learning. In
Hayes, J. E., Michie, D., and Tyugu, E., editors, Machine Intel-
ligence, 12, pages 105-119. Oxford University Press, Oxford.

Bratko, I., Mozetic, 1., and Lavrac, N. (1989). KARDIO: A study in
deep and qualitative knowledge for ezpert systems. MIT Press,
Cambridge.

Feng, C. (1992). Inducing temporal fault diagnostic rules from a
qualitative model. In Muggleton, S., editor, Inductive Logic
Programming, pages 473-493, Academic Press, London.

Michie, D. (1986). Towards a knowledge accelerator. In Beal,
D. F., editor, Advances in Computer Chess, volume 4, pages 1-
8. Pergamon Press, Oxford.

Muggleton, S. (1993). Predicate invention and utility. Journal of
Ezperimental and Theoretical Artificial Intelligence (to appear).

Muggleton, S., Srinivasan, A., and Bain, M. (1992). Compression,
Significance and Accuracy. In Sleeman, D. and Edwards, P., ed-
itors, ML92: Proceedings of the Ninth International Conference
on Machine Learning, pages 338-347, Morgan Kaufmann, San
Mateo, CA.

Muggleton, S. (1987). An oracle-based approach to constructive
induction. In IJCAI-87, pages 287-292, Morgan Kaufmann, Los
Altos, CA.

Muggleton, S. and Feng, C. (1992). Efficient induction of logic pro-
grams. In Muggleton, S., editor, Inductive Logic Programming,
pages 281-298, Academic Press, London.

308

M. BAIN

Muggleton, S., Bain, M., Hayes-Michie, J., and Michie, D. (1989).
An experimental comparison of human and machine learning for-
malisms. In Segre, A., editor, Proceedings of the Sizth Interna-
tional Workshop on Machine Learning, pages 113-118, Morgan
Kaufmann, Los Altos, CA.

Pearce, D. (1988). The induction of fault diagnosis systems from
qualitative models. In AAAI-88: Proceedings of the 7th Na-
tional Conference on Artificial Intelligence, pages 353-357, Mor-
gan Kaufmann, San Mateo, CA.

Quinlan, J. R. (1983). Learning efficient classification procedures
and their application to chess end games. In Michalski, R.,
Carbonnel, J., and Mitchell, T., editors, Machine Learning: An
artificial intelligence approach, pages 464-482. Tioga, Palo Alto,
CA.

Shapiro, A. D. (1987). Structured Induction in Ezpert Systems.
Turing Institute Press with Addison Wesley, Wokingham, UK.

Shapiro, A. D. and Michie, D. (1986). A self-commenting facil-
ity for inductively synthesised endgame expertise. In Beal, D.,
editor, Advances in Computer Chess, volume 4, pages 147-165.
Pergamon, Oxford.

Thompson, K. (1986). Retrograde Analysis of Certain Endgames.
International Computer Chess Association Journal, 8(3):131-139.

309

13

A Comparative Study of Classification
Algorithms: Statistical, Machine Learning
and Neural Network

R. D. King
R. Henery

Department of Statistics and Modelling Science,
University of Strathclyde, Glasgow.

C. Feng
Turing Institute, Glasgow.

A. Sutherland

Department of Statistics and Modelling Science,
University of Strathclyde, Glasgow.

Abstract

The aim of the StatLog project is to compare the performance of
statistical, machine learning, and neural network algorithms, on
large real world problems. This paper describes the completed
work on classification in the StatLog project. Classification is
here defined to be the problem, given a set of multivariate data
with assigned classes, of estimating the probability from a set
of attributes describing a new example sampled from the same
source that it has a pre-defined class. We gathered together
a representative collection of algorithms from statistics (Naive
Bayes, K-nearest Neighbour, Kernel density, Linear discrimi-
nant, Quadratic discriminant, Logistic regression, Projection
pursuit, Bayesian networks), machine learning (CART, C4.5,
NewID, AC2, CALS5, CN2, ITrule - only propositional symbolic
algorithms were considered), and neural networks (Backpropa-
gation, Radial basis functions, Kohonen). We then applied these
algorithms to eight large real world classification problems: four

311

STATLOG

from image analysis, two from medicine, and one each from engi-
neering and finance. Our results are still provisional, but we can
draw a number of tentative conclusions about the applicability
of particular algorithms to particular database types. For ex-
ample: we found that K-nearest Neighbour can perform well on
complex image analysis problems if the attributes are properly
scaled, but it is very slow; machine learning algorithms are very
fast and robust to non-Normal features of databases, but may be
out-performed if particular distribution assumptions hold. We
additionally found that many classification algorithms need to
be extended to deal better with cost functions (problems where
the classes have an ordered relationship are a special case of

this).

1 INTRODUCTION

StatLog is an ESPRIT project with ten academic and indus-
trial partners (Appendix A). Its aim is to evaluate the perfor-
mance of Statistical, Machine Learning, and Neural Network
Algorithms on large-scale, complex commercial and industrial
problems. The problems are in the areas of classification, fore-
casting, control, and unsupervized learning. The objectives of
the project are threefold:

1. to provide critical performance measurements, and criteria
for measurement on available Learning Algorithms which
improve confidence for full exploitation;

2. to indicate the nature and scope of the next-stage devel-
opment which particular algorithms require to meet com-
mercial performance expectations;

3. to indicate the most promising avenues of development for
the commercially immature approaches.

This chapter describes the completed work on classification
in the StatLog project. Classification is here defined to be the
problem, given a set of multivariate data with assigned classes,
of estimating the probability from a set of attributes describ-
ing a new example sampled from the same source that it has a
pre-defined class (this problem is often known as discrimination
in statistics, and supervised learning in machine learning - it

312

KING ET AL.

fused with clustering which is also sometimes termed classifica-
tion). We gathered together a representative collection of algo-
rithms from statistics (Naive Bayes, K-nearest Neighbour, Ker-
nel density, Linear discriminant, Quadratic discriminant, Logis-
tic regression, Projection pursuit, Bayesian networks), machine
learning (CART, C4.5, NewID, AC2, CAL5, CN2, Itrule - only
propositional symbolic algorithms were considered), and neural
networks (Backpropagation, Radial basis functions, Kohonen).
We then applied these algorithms to eight large real world classi-
fication problems: four from image analysis, two from medicine,
and one each from engineering and finance. This basic method-
ology can be thought of as a table: with the algorithms along
one axis, the datasets along the other, and a performance mea-
sure at each position in the matrix. The objective measures
of performance we use include processing time (for training and
test data), and error rate (or cost if there is a cost function avail-
able). Subjective measures are much more difficult to use and
we have done relatively little work on them, but they include:
understandability of the decision rule, ease of use of the algo-
rithm (particularly as perceived by a naive user), and robustness
to required parameter input. Some results have already been
presented by Henery and Taylor 1992, Sutherland et al. 1992.
Tables of results obtained are at the end of this chapter.

1.1 Previous Comparative Studies

Several authors have recently compared the performance of neu-
ral algorithms to other machine learning methods such as ID3
(Quinlan 1986). Some of the tests indicated that neural algo-
rithms worked better than other methods. Other tests have
shown that neural algorithms performed worse.

Particular methods may do well in some domains, but not
in others. For example, k-nearest neighbour methods usually
do fairly well in handwritten character recognition, although
backpropagation and/or radial basis function methods may be
preferred for reasons of speed and memory.

Fisher and McKusick (1989), for example, compared ID3
with backpropagation (a neural net method) on two natural
domains and found that backpropagation was a few percentage

313

STATLOG

points more accurate. Shavlik et al. (1991) compared ID3 with
backpropagation on five natural domains. The performance of
both systems was rather similar, but on some datasets back-
propagation worked better.

Weiss, Galen, and Tadepalli (1987) compared the PVM algo-
rithm (that produces classification rules) with backpropagation.
In this series of tests, the symbolic method performed better in
three out of four domains. Weiss and Kapouleas (1989) showed
that the CART system of Breiman et al. (1984) (similar to
ID3) usually worked better than backpropagation. These com-
parative studies are further described in Weiss and Kulikowski
(1991).

Quinlan (1990) compared the neural network approach as re-
ported in Hinton with FOIL, a system that is capable of learning
relational descriptions. Quinlan showed that FOIL can learn the
given task as well as Hinton’s neural network.

Difficulties in interpreting recent comparative studies arise
from a number of problems, as the following extract from the
StatLog Technical Annex makes clear:

e They have not always compared like with like; some meth-
ods are based on assumptions about the domain that can
give the method an unfair advantage.

e Some learning methods are not complete, and require pa-
rameters to be ‘tweaked’ to tune the system to a particular
domain. Sammut (1988) also reported that this tweaking
was considerably important to achieve reasonable perfor-
mance with some algorithms. Parameter tweaking, com-
mon, for instance, with neural net software, needs to be
taken into account in the comparative evaluation.

e Some comparative studies use variant but not identical
data sets and algorithms. A related problem is that some
researchers preprocess their data sets in a manner that pre-
vents direct comparison of results, for instance by treating
unknown or unspecified values in some manner, or by par-
titioning a real-valued attribute into discrete attributes.

e When comparing different learning methods, the stud-
ies need to be carried out by experts both in the differ-

314

KING ET AL.

ent methods and in the problems tackled. Three studies
were presented at the International Joint Conference on
A.IL ’89 that compared pattern recognition, neural net-
works and Al machine learning techniques (Fisher and
McKusick 1989, Mooney et al. 1989, Weiss et al. 1989).
Questions raised at this conference indicated that there
was widespread concern that these comparisons were un-
fair. Two of the studies used decision-tree induction meth-
ods that were discarded by the applied statistics com-
munity in the early seventies. All three used a neural
net method (back-propagation) that is several years out
of date in a rapidly developing field. One study used a
Bayesian classifier that would not have been applied by
a trained Bayesian to the problems concerned. Because
relative navices may well misuse techniques or apply out-
dated techniques, it is important that comparative trials
be advised by experts in the areas concerned.

e Very frequently, studies use simulated data. These have
the advantage of investigating the behaviour of algorithms
under known conditions. For example, Cherkaoui and
Cléroux (1991) investigated the performance of six proce-
dures applied to data with a mixture of binary, nominal,
ordinal, and continuous attributes.

2 TESTING METHODOLOGY

To ensure the fairness of comparison, a number of measures
were taken in StatLog to reduce bias towards one category of
algorithm or another.

o Firstly, all the data sets were collected at one centre for
pre-processing. Each data set was issued to all testing sites
at the same time with the same format and pre-processing.
This was designed to eliminate the possible pre-knowledge
the users have about the data sets.

e Part of the data was kept back from the testing sites in case
the results were disputed. Missing values were replaced by
a constant method.

315

STATLOG

o It was aimed for all algorithms to be tested by experts. For
example, many of the statistical algorithms were tested
at the Department of Statistics in Strathclyde University,
and many machine learning algorithms were tested in The
Turing Institute Ltd. Many results were validated by an-
other naive partner. The validating sites were supplied
with and used the log files from the testing sites, which
kept records of the procedure followed.

3 STATLOG ALGORITHMS

This section describes a collection of algorithms that reflect the
state of the art in statistical and logical learning. In the context
of classification problems, they divide into three broad groups:

3.1 Statistical Algorithms
3.1.1 Naive Bayes algorithm (Bayes)

This algorithm directly applies the Bayes rule: P(c|e) = P(ec)-
P(c)/P(e), where c is the class and e is a given example. The
aim is to obtain the most probable class given the data. This
is ¢;, if P(e|c;)P(ci) > P(elcj)P(c;) for all j (i # 7). Be-
cause the Bayes method requires complete and accurate proba-
bility data, for real problems it is not directly applicable. Some
simplifying assumptions are made, i.e. all attributes are in-
dependent conditional on the classes, which entails P(e|c) =
P(ailc) - P(az|c) - ... - P(an|c), where a; (i = 1,...,n) are the n
attributes. Despite the unrealistic nature of this assumption,
it is found to perform well in many simple tasks in practice.
In principle, it is possible to include prior information into the
Bayesian analysis, but this is rarely done in reality. Naive Bayes
is very simple to apply, it can cope with missing values and often
it can produce reasonable results even when its assumptions are
violated.

3.1.2 K-nearest neighbour (K-N-N)

This is a very simple algorithm, it assigns each new object to
the class of the majority of its k nearest neighbours in attribute
space (normally Euclidean).

316

s it

KING ET AL.

3.1.3 Kernel density estimation (ALLOCS0)

The program performs multigroup discriminant analysis; within
each group the variability is modelled using a non-parametric
density estimator, based on kernel functions. Suppose that
we have to estimate the p—dimensional density function f(z)
of an unknown distribution. Information about f is given by
n independent observations from this distribution, i.e. Y; =
(Yiy.ooyYim,...,Ysp) with i = 1,2,...,n. Let K®?)(X;Y}, \) be
a kernel function centred at Y; and let A denote the window
width of the kernel. The estimate of f(z) is given by

fla) = = 3 KP(X; Y,)
=1

Observations in the test data are then allocated to classes based
on a calculation of the posterior odds by a standard Bayesian
calculation. The smoothness of the kernel density estimate is
determined in a data-based manner by a pseudo maximum like-
lihood method. The program can handle continuous as well as
mixed (discrete) data. This program is computationally expen-
sive, both in storage and CPU terms. The methods to choose the
smoothing parameter automatically are not always successful,
and the version in StatLog used is rather unwieldy . However,
it has performed consistently well in the trials. It is expected
to do better than standard methods where the data are highly
non-Normal. For more bizarre datasets, such as two interlocking
spirals, this method performs very well. In general, any situation
where the boundaries between classes is not easily modelled by
a straight line or quadratic may lend themselves well to this ap-
proach. The main difficulty, as with most nonparametric density
estimators, is to ensure a good choice of smoothing parameter.

3.1.4 Linear discriminants (Discrim)

This is an implementation in Splus of Fisher’s linear discrimi-
nant analysis (1936). The algorithm calculates a linear combi-
nation of the attribute values for each class and assigns a new
observation to the class with the largest value. The algorithm is
optimal when the data are multivariate normal with a common

317

STATLOG

covariance matrix. The boundaries between classes are hyper-
planes in attribute space. This algorithm like Quadra and Lo-
gReg were implemented in Splus/Fortran by the Department
of Statistics and Modelling Science, University of Strathclyde,
Glasgow, Scotland.

3.1.5 Quadratic discriminants (Quadra)

This a variant of the above linear algorithm for the unequal
covariance case. The algorithm calculates a quadratic combi-
nation of the attribute values for each class and assigns a new
observation to the class with the largest value. The boundaries
between classes are conic sections in attribute space. The algo-
rithm requires to estimate many more co-efficients than linear
discriminants and so will only perform well when the training
set is sufficiently large (and close to multivariate normal).

3.1.6 Logistic regression (LogReg)

Discriminant algorithms above cannot cope with combinations
of continuous, categorical and qualitative attributes. So models
of generalised linear models (GLIM) are proposed, which in-
cludes the logistic class (Cox 1966, Day and Kerridge 1967). In
the logistic class of generalized linear models, the probability of
an example e given the class of ¢, = k (k = 1,...,m) can be cal-
culated from the relative probability R(e|c. = k) to a fixed class
(the last one, say) which is a logistic function of the parametric
linear combination of attributes:

R(e|c. = k)

P(elc. = k) = — ,
> R(ele. =1)
=1
R(elce — k) — P(elce = k) — e—(amaf-l-...-}-cxknaf‘),

P(e|ce = m)

where af (i = 1,...,n) are the attribute values of the example
e and R(e|c. = m) = 1. The coefficients ay; (k = 1,...,m,j =
1,...,n) are estimated for each class and it must maximize the
total likelihood:

318

KING ET AL.

p({ele is in the sample}). Assume that the sample is randomly
chosen so the examples are independent:

p({ele in sample}) = [plelee=1) [plelc.=2)...

{elce=1} {elce=2}

p(e|ce = k) has close links with the binomial distribution, thus
its arguments can be categorical.

The logistic regression method also produces a linear separa-
tion of classes although it appears to be different from other lin-
ear discriminants. It is identical, in theory, to Discrim for many
restricted (e.g. normal or binomial) distributions with equal co-
variances. In fact, logistic regression may start the search for
actual coefficients from the coefficients estimated by Discrim.
So, the only differences between the two are in the way that
the coefficients og;(k = 1,...,m,5 = 1,...,n) (the parameters
for the separation hyperplanes) are estimated. Fisher’s linear
discriminants optimize a quadratic cost function whereas logis-
tic regression optimises on the total likelihood. There may well
be occasions when a quadratic cost function is appropriate, in
which case Fisher’s linear discriminants are justified without
appealing to the assumption of multivariate normality.

The logistic model can also be extended to include prior prob-
ability, but the number of parameters required in the function
grows exponentially as the complexity of the model increases. In
the training phase it is considerably more expensive computa-
tionally than linear discriminants, although in the testing phase
the two methods are indistinguishable. While the model un-
derlying logistic regression is more general, its success depends
more critically on the correctness of the underlying assumptions.

3.1.7 Projection pursuit (SMART)

SMART (Smooth Multiple Additive Regression Technique) is a
collection of FORTRAN subroutines written by Friedman. It is
a generalization of projection pursuit regression PPR (Friedman
and Stutzle 1981). The regression models take the form

M P
ElYizi, 22, z) = Yi+ D Bim (D ajmz;)
m=1 J=1

319

STATLOG

with Y; = EY;, Ef, = 0, Ef2 = 1 and Yr.ad, =1 The
coefficients B;m, ¢;m and the functions f,, are parameters of
the model and are estimated by least squares. The criterion

q . M
L, = Z E[K -Y; - z ﬁimfm(ozzsc)]2
=1 m=1

is minimised wrt to the parameters Bim, of = (aim,... y Opm)
and the functions f,,.

Classification is closely related. The objective here is to min-
imise the misclassification risk

g
R= E[lréljiélq ?::1 Lijp(i|lzy, 22y ...y 2p)]

where [;; is the user specified loss for predicting Y = ¢; when
its true value is ¢; (I;; = 0). The conditional probability is refor-
mulated using a conditional expectation which is then modelled
by the regression model above.

This algorithm would be expected to perform very well when-
ever a cost matrix is applicable, because it (unusually) uses the
cost matrix in the training phase as well as in the classifica-
tion stage. Although the training time is not competitive, the
algorithm does generally produce good misclassification rates.

3.1.8 Bayesian networks (CASTLE)

CASTLE (CAusal STructures From Inductive Learning (Acid
et al. 1991) is an implementation of the polytree algorithm de-
fined by Pearl (1988). Causal networks are directed acyclic
graphs (DAGs) in which the nodes represent propositions (or
variables), the arcs signify the existence of direct causal depen-
dencies between the linked propositions, and the strengths of
these dependencies are quantified by conditional probabilities.
The structure of a causal network can be determined in the
following way: each variable in the domain is identified with a
node in the graph. We then draw arrows to each node X; from
a set of nodes C(X;) considered as direct causes of X;. The
strengths of these direct influences are quantified by assigning
to each variable X; a matrix P(X;|C(X;)) of conditional prob-
abilities of the events X; = z; given any combination of values

320

KING ET AL.

of the parent set C(X;). The conjunction of these local proba-
bilities defines a consistent global model, i.e., a joint probability
distribution. Once the network is constructed it constitutes an
efficient device to perform probabilistic inferences. The prob-
lem of building such a network remains. The structure and con-
ditional probabilities necessary for characterizing the network
could be provided either externally by experts or from direct
empirical observations.

Under the Bayesian approach, the learning task in causal
networks separates into two highly related subtasks, structure
learning, that is, to identify the topology of the network, and
parameter learning, the numerical parameters (conditional prob-
abilities) for a given network topology.

CASTLE, currently being developed by members of the De-
partment of Computer Science and Artificial Intelligence at the
University of Granada, focuses on learning a particular kind
of causal structure: polytrees (singly connected networks), net-
works where no more than one path exists between any two
nodes. As a consequence, a polytree with n nodes has no more
than n —1 links. It is in polytrees (and specially in trees) where
the ability of networks to decompose and modularize the knowl-
edge attains its ultimate realization. Polytrees do not contain
loops, that is, undirected cycles in the underlying network (the
network without the arrows or skeleton), and this fact allows a
locally efficient propagation procedure (Pearl 1988).

3.2 Machine Learning

From the field of machine learning only propositional symbolic
algorithms were considered by StatLog. No algorithms from
the emerging field of Inductive Logic Programming (ILP) were
included, nor were Genetic algorithms examined.

3.21 CART

CART, Classification and Regression Tree, is a binary decision
tree algorithm. The acronym CART comes from Classification
And Regression Tree (Breiman et al. 1984). CART is not really
a single algorithm, but a collection of algorithms and analysis
methods for classification and regression trees (or Discrimina-

321

STATLOG

tion And Forecasting Trees). The algorithm described in this
section is the most commonly used version. CART is a binary
decision tree algorithm A binary decision tree consists of nodes
and each node has two branches. There is a single test (or
decision) on each node, splitting the node into two subtrees.
Depending on whether the result of a test is true or false, the
tree will branch to left or right, at which this splitting process
recursively continues. At each leaf node a decision is made on
the class assignment.

The advantages of using a decision tree methodology are that
it is non-parametric and produces classifications which can be
easily understood. This latter feature has made them popular
in machine learning.

The fundamental idea in CART’s tree construction is to select
each split so that the data in each of the descendant subsets
are ‘purer’ than the data in the parent subset. The splitting
evaluation function developed for CART is different from that
used in the ID3 family of decision tree algorithms. Consider the
case of a problem with two classes, and a node has 50 examples
from each class, the node has maximum impurity. If a split could
be found that divides the data into one subgroup of 40:5 and
another of 10:45, then intuitively the impurity has been reduced.
The impurity would be completely removed if a split could be
found that produced sub-groups 50:0 and 0:50. In CART this
intuitive idea of impurity is formalized in the GINT index for the
current node c:

Gini(c) =1 - p}
i

where p; is the probability of class j in ¢. For each possible split
the impurity of the subgroups is summed and the split with the
minimum impurity chosen.

The GINI criteria is local: there is no guarantee that the
overall tree is optimal. As a result, decision trees produced can
potentially contain many nodes. This may result in the number
of examples available to test on becoming very small for some
branches. The original CART authors explored related impurity
measures such as entropy.

322

KING ET AL.

In CART each split depends only on a single attribute. For
ordered and numeric attributes, CART considers all possible
splits in the sequence. For n values of the attribute, there are
n splits. For categorical attributes CART examines all possi-
ble binary splits, which is similar to the attribute subsetting
method used for C4.5. At each node CART searches through
the attributes one by one. For each attribute it finds the best
split. Then it compares the best single splits and selects the
best attribute of the best splits.

CART uses a sophisticated form of pruning to try and avoid
over-fitting the data. If no pruning is used then the trees gen-
erated by CART will be too specialized and biased towards the
training data. CART uses cost-complexity pruning to decide
the order of branches to prune, and cross-validation to decide
on the pruning parameters.

Two versions of CART were investigated: the commercial
version of CART (used by the University of Granada), and IN-
DCART (a free version of CART supplied by Wray Buntine at
NASA Ames, who also supplied the Naive Bayes program). IN-
DCART differs from the standard version of CART (Breiman et
al. 1984) by using a different (probably better) way of handling
missing values, in a different default setting for pruning, not
fully using costs, and in not implementing the regression part of

CART.

3.2.2 NewID

NewID from the Turing Institute Ltd in Glasgow, Scotland, is
a direct descendant of the decision tree algorithm ID3 (Quinlan
1986). It differs from the original ID3 in being designed to
cope with continuous variables and noise. Its basic structure is
very similar to that of CART. It differs from CART in using
a different splitting criterion and a different pruning method.
NewlID uses entropy gain instead of GINI. The entropy of the
example set at a node is — 3_; p;logp;, where p; is the probability
estimate of the jth class in that set. The entropy gain is the
difference of entropy between the current set and the subsets
created by the split. The attribute with the highest gain is
selected, giving the most informative split at that node.

323

STATLOG

3.2.3 C4.5

C4.5 (Quinlan 1987) is also a direct descendant of the decision
tree algorithm ID3 (Quinlan 1986). It also is designed to cope
with continous variables and noise. It differs from NewID in
using a slightly different splitting criterion and pruning method.
C4.5 uses the entropy gain ratio as a splitting criteria. This
takes the information provided by the attribute @ into account.
The attribute to split on should maximise the information gain
relative to the information needed to determine the attribute
value, i.e. the ratio:

gain(c,a) _ I(cAa)~—I(c)
I(a) I

gain_ra.tio(c, a) =

3.24 AC?

AC2 from Isoft in Paris is an extension of ID3 to deal with
hierarchical data. It can learn structures from a predefined hi-
erarchy of attributes. A hierarchy may be imposed to create
trees that are more meaningful to the end-user: there is the ad-
ditional advantage of savings in learning and testing time since
certain tests may be ruled out by the hierarchical structure.

3.2.5 Cals

Cal5 is a decision tree algorithm based on statistical methods
and designed for continuous variables. It is contributed by the
Institute of Automation, Berlin (Unger and Wysotzki 1981).
Interestingly, it was developed by the Institute of Automation
in East Berlin independently of the work on decision trees in the
West. In Cal5 trees are constructed sequentially starting with
one attribute and branching with other attributes recursively,
if no sufficient discrimination of classes can be achieved. That
is, if at a node no decision for a class ¢; according to the above
formula can be made, a branch formed with a new attribute is
appended. If this attribute is continuous, a discretization, i.e.
intervals corresponding to qualitative values, has to be used.
Let N be a certain non-leaf node in the tree construction
process. At first the attribute with the best local discrimination
measure at this node has to be determined. For that a method

324

KING ET AL.

working without any knowledge about the result of the desired
discretization is used. For continuous attributes the quotient

A2

quotient(N) = 1D

is a discrimination measure for a single attribute, where A is the
standard deviation of examples in N from the centroid of the at-
tribute value and D is the mean value of the square of distances
between the classes. This measure has to be computed for each
attribute. The attribute with the least value of quotient(N) is
chosen as the best one for splitting at this node. Note that at
each current node NV all available attributes ay, as, ..., a, will be
considered again. If a; is selected and occurs already in the path
to N, than the discretization procedure leads to a refinement of
an already existing interval.

3.26 CN2

CN2 is a decision rule algorithm (Clark and Niblett 1988, Clark
and Boswell 1991). It learns decision rules for each class in turn.
Initially it starts with a ‘universal rule’: ‘If all conditions Then
Current class’. This rule ought to cover at least one of the
examples in the current class. Specializations of this rule are
then repeatedly generated and explored until a rule has been
found. This rule ought to cover examples of the ‘right’ mixture
belonging to the current class and other classes. The mixture is
usually determined by heuristics or is user-specified. Intuitively,
as few as possible negative examples, i.e. examples in other
classes, should be covered. Each specialization is obtained by
adding a condition to the left-hand side of the rule, i.e. requiring
one particular attribute to have value within a range. Similar
to decision tree algorithms such algorithms are better suited to
deal with logical attributes and classes.

CN2 is an extension of an earlier algorithm AQ (Michalski
1983) that can deal with noise in data. It can also accept contin-
uous numeric values in attributes though not classes. The main
technique for reducing error is use of Laplace’s Law of Succes-
sion. If there are m1,m2,...,mk examples of classes 1,2,..,k,
where the total no. of examples is n, then the probability that

325

STATLOG

a new data item will fall into class 1 is:
(mi+1)/(n + k).

3.2.7 ITrule

ITrule (Goodman and Smyth 1989) from CalTech University
produces rules of the form ‘If ... Then ... with probability
..”. This algorithm contains probabilistic inference in its eval-
uation function of rule candidates through the J-measure and
varies from AQ and CN2 in its method of constructing rules by
incorporating generalization as well (i.e. dropping conditions).
The J measure is a product of conditional prior probabilities and
the cross-entropy of class values conditional on the attributes
values. ITrule cannot deal with continuous numeric values.

3.3 Neural Networks
3.3.1 Back-propagation Multi-Layer Perceptron (Backprop)

Back-propagation Multi-Layer Perceptron is a neural network
algorithm (McClelland et al. 1986) which consists of a network
of ‘neurons’ arranged in a number of layers, where each neuron
is connected to every neuron in the adjacent layers. Each neuron
sends a signal along the connections to the neurons in the layer
above. The signals are multiplied by weights corresponding to
each connection.

We used a version with three layers: an input layer, a hidden
layer and an output layer. strictly layered, 3-layer MLP which
is the mapping

ny) = f) (Zw(HI) (I))
P = o ()

from the inputs y(to the targets y(7), via the hidden nodes
y), The parameters are the weights w#) and w(TH), The
univariate functions f() are usually each set to be logistic which
varies smoothly from 0 at —oo to 1 at oo.

326

KING ET AL.

This is also called a ‘2-layer’ MLP by authors who prefer to
count layers of weights rather than layers of nodes. It can be
shown that, given enough hidden nodes, this can approximate
any mapping to an arbitrary accuracy.

This mapping has a biological interpretation: Node (model
neuron) ¢ produces a strong output if its activation potential
2_; wijy; is positive, and a weak output if it is negative. The
activation is increased if node ¢ is connected to an active node j
via an ezcitatory synapse (w;; > 0), and is decreased by active
nodes connected via inhibitory synapses (w;; < 0).

One input to each layer, say node 0, is traditionally assigned
the constant value 1.0 so that w;g provides a constant offset or
bias for the activation of ¢. This device allows the threshold
activation (due to the remaining nodes), at which y; = 0.5, to
be adjusted away from 0.

The code was written by R. Rohwer whilst at the Centre for
Speech Technology Research, Edinburgh, Scotland.

3.3.2 Radial basis functions (Radial)

Radial basis function methods are closely related to the kernel
estimator methods discussed under nonparametric discriminant
analysis Poggio and Girosi, 1990). The radial basis function
network mapping is given by

g = f(zf)(\/zj(y§l)—cij)2)

Ty

yET) _ Zwl(_}'fl)y‘gll)
j

It has a linear output layer like an MLP with such an option,

but the hidden layer is different. Hidden node i computes a

function of the Euclidian distance of an input from its centre

¢;., on a scale determined by its radius r;. Usually the chosen

function is the Gaussian.

As in the MLP, a bias node is introduced into the linear
layer. Sometimes non-Euclidian distance measures are used.
The loosely-defined region for which a radial basis function has
a significant output is its receptive field. The functions com-
puted at the hidden nodes are the ‘radial basis functions’ per

327

STATLOG

se. They are ‘radial’ in that their receptive fields are spherically
symmetric; there is an r; for each centre i but not an r;; for
each centre and input coordinate. Such a generalization is often
made, however, and if it is not, then it is desirable to prescale
the input data to give it equal variance in each dimension. The
code was supplied by Richard Rohwer then at the Department of
Statistics and Modelling Science, Strathclyde University, Scot-
land.

3.3.3 Kohonen net (Kohonen)

Kohonen net is a self-organizing mapping algorithm (Kohonen
1989). Our implementation comes from J. Paul, Institut fuer
Kybernetick und Systemtheorie, Am Hlsenbusch 54, W-4630
Bochum 1, Germany. It is capable of learning a mapping be-
tween an input space and an output space by establishing a
topology-conserving map on a usually planar array of ‘neuronal’
nodes. A feature map is a data structure where the interrela-
tionships of the data are captured in the spatial arrangement
of the corresponding nodes. The map defines the ordering of
the nodes allowing the algorithm to freely develop within this
structure.

4 STATLOG DATASETS

The datasets studied by StatLog were all the large classifica-
tion datasets of commercial and industrial interest that could

be found.

4,1 Satellite Image (Satellite)

The database consists of the multi-spectral values of pixels in
3 x 3 overlapping neighbourhoods in a satellite image, and the
classification associated with the central pixel in each neigh-
bourhood. The aim is to predict this classification, given the
multi-spectral values. In the sample database, the class of a
pixel is coded as a number.

This sample database from LandSat Multi-Spectral Scanner
image data was provided by: Ashwin Srinivasan, Department
of Statistics and Modelling Science, University of Strathclyde.
The original LandSat data for this database was generated from

328

KING ET AL.

data purchased from NASA by the Australian Centre for Re-
mote Sensing, and used for research at The Centre for Remote
Sensing, University of New South Wales.

The sample database was generated taking a small section
(82 rows and 100 columns) from the original data. The binary
values were converted to their present ASCII form by Ashwin
Srinivasan. Each line of data corresponds to a 3 x3 square neigh-
bourhood of pixels completely contained within the 82 x 100
sub-area. Each line contains the pixel values in the four spec-
tral bands (converted to ASCII) of each of the nine pixels in the
3 X 3 neighbourhood and a number indicating the classification
label of the central pixel. The number is a code for the following
classes:

The data has 36 numerical attributes and six classes. The
data was divided into a training set with 4435 examples and a
test set with 2000 examples. A one-shot train-and-test was used
to calculate the accuracy.

4.2 Handwritten Digits (Digits)

The purpose of the hand-written digit dataset is to classify 4 x 4
pixel images as the digits 0-9. Each member of a set of 18
000 handwritten digits was digitized onto a 16 x 16 pixel array
with greylevels 0(white)-255(black). The pixel values were then
averaged over 4 x 4 neighbourhoods to produce the 4 x 4 images.
Each line of the dataset consists of the 16 pixel-values read out
from left-to-right and top-to-bottom across the image, followed
by the value of the digit appropriate to that image. The dataset
has been divided into equal test and training sets with 9000
examples in each set. There are 900 examples of each digit in
either set. The digits were gathered from postcodes on letters
passing through the German Federal Post. A very small number
of mistaken images have been allowed to appear, e.g. one of the
ones is actually an ‘!’ and one of the eights is actually a capital
letter ‘B’.

This dataset has already been studied by Kressel et al (1990),
and Kressel (1991) of AEG, Ulm, who have published a com-
parative study of backpropagation and their own ‘polynomial

329

STATLOG

classifier’. They used the full 256 attribute version and achieved
results of the order of 98% accuracy.

The data has 16 numerical attributes and 10 classes. The
data was equally divided into a training set with 9000 examples
and a test set with 9000 examples. A one-shot train-and-test
was used to calculate the error rate.

4.3 Karhunen-Loeve Digits (KL)

The Karhunen-Loeve (k1) digits dataset is very closely related to
the other handwritten digits dataset. Whereas the other dataset
was produced by averaging over 4 x 4 neighbourhoods in the
original 16 x 16 images, the kl dataset is produced by a linear
transformation of the original 16 x 16 images. The eigenvectors
of the covariance matrix of the original 16 x 16 images were
computed. The scalar products of the top 40 eigenvectors with
the original images were calculated. It was found that the orig-
inal images could be reconstructed from these 40 eigenvectors
with minimal loss of information. Therefore, the original 256 at-
tributes had been compressed down to 40. It is these 40 scalar
products which are the attributes of the kl dataset. In statisti-
cal terminology, the 256 attributes were replaced by the first 40
principal components.

The data has 40 numerical attributes and 10 classes. The
data was equally divided into a training set with 9000 examples
and a test set with 9000 examples. A one-shot train-and-test
was used to calculate the error rate.

4.4 Vehicle Silhouettes (Vehicle)

The purpose of this dataset is to classify a given silhouette as
one of four types of vehicle, using a set of features extracted
from the silhouette. The vehicle may be viewed from one of
many different angles.

This data was originally gathered at the Turing Institute in
1986-87 by J.P. Siebert (1987). It was partially financed by Barr
and Stroud Ltd. The original purpose was to find a method of
distinguishing 3D objects within a 2D image by application of
an ensemble of shape feature extractors to the 2D silhouettes of
the objects. Measures of shape features extracted from example

330

KING ET AL.

silhouettes of objects to be discriminated were used to generate
a classification rule tree by means of computer induction. This
object recognition strategy was successfully used to discriminate
between silhouettes of model cars, vans, and buses viewed from
constrained elevation but all angles of rotation.

The features were extracted from the silhouettes by the HIPS
(Hierarchical Image Processing System) extension BINATTS,
which extracts a combination of scale independent features uti-
lizing both classical moments based measures such as scaled
variance, skewness, and kurtosis about the major/minor axes
and heuristic measures such as hollows, circularity, rectangular-
ity, and compactness. Four ‘Corgi’ model vehicles were used for
the experiment: a double decker bus, Chevrolet van, Saab 9000,
and an Opel Manta 400. This particular combination of vehicles
was chosen with the expectation that the bus, van and either
one of the cars would be readily distinguishable, but it would be
more difficult to distinguish between the cars. The attributes
were all real and the range for each attribute was different.

The data has 18 numerical attributes and four classes. There
are 846 examples and nine-fold cross-validation was used to es-
timate the error rate.

4.5 Head Injury (Head)

The data set is a series of 1000 patients with severe head in-
jury collected prospectively by neurosurgeons between 1968 and
1976. This head injury study was initiated in the Institute of
Neurological Sciences, Glasgow. After four years two Nether-
lands centres (Rotterdam and Groningen) joined the study, and
late data came also from Los Angeles.

The original purpose of the head injury study was to inves-
tigate the feasibility of predicting the degree of recovery which
individual patients would attain, using data collected shortly af-
ter injury. Severely head injured patients require intensive and
expensive treatment; even with such care almost half of them die
and some survivors remain seriously disabled for life. Clinicians
are concerned to recognize which patients have potential for re-
covery, so as to concentrate their endeavours on them. Outcome
was categorized according to the Glasgow Outcome Scale, but

331

STATLOG

the five categories described therein were reduced to three for
the purpose of prediction. Titterington et al (1981) compared
several discrimination procedures on this dataset. Qur dataset
differs by replacing all missing values with the class median. All
attribute values are integers.

There are five numerical attributes and one binary (categor-
ical), and there are three classes. There are 900 examples in
the dataset. Nine-fold cross-validation was used to estimate the
average cost.

This is one of the two datasets with a cost matrix. The
matrix below gives the different cost of various possible misclas-
sifications (d/v = dead or vegetative, sev = severe disability,
and m/g = moderate disability or good recovery).

| d/v sev m/g
dv] 0 10 75
sev | 10 O 90
m/g| 750 100 0

4.6 Heart Disease (Heart)

This database comes from the Cleveland Clinic Foundation and
was supplied by Robert Detrano, M.D., Ph.D. of the V.A. Med-
ical Center, Long Beach, CA. It is part of the collection of
databases at the University of California, Irvine collated by
David Aha.

The purpose of the dataset is to predict the presence or ab-
sence of heart disease given the results of various medical tests
carried out on a patient. This database contains 13 attributes,
which have been extracted from a larger set of 75. The database
originally contained 303 examples but six of these contained
missing values and so were discarded leaving 297. 27 of these
were left out as a validation set, leaving a final total of 270.
There are two classes: presence and absence (of heart-disease).
This is a reduction of the number of classes in the original
dataset where there were four different degrees of heart-disease.

This data has been studied before, but without taking the
cost matrix into account. In an unpublished study Detrano
et al. got approximately a 77% correct classification accuracy

332

KING ET AL.

with a logistic-regression-derived discriminant function. Aha
and Kilber (1988) used instance-based prediction and got 77.0%
accuracy with NTgrowth and 74.8% with C4. John Gennari got
78.9% with the CLASSIT conceptual clustering system.

There are eight numerical attributes and five binary/categorical
ones, there are two classes. There are 270 examples in the
dataset. Nine-fold cross-validation was used to estimate the
average cost.

This is one of the two datasets with a cost matrix. The
matrix below gives the different costs of various possible mis-
classifications. It was supplied by doctors in Leeds to Dr. C.C.
Taylor, Statistics Dept, Leeds University.

| absent present
absent 0 1
present) 0

4.7 Credit Risk (Credit)

The purpose of this dataset is to evaluate various customers of
the credit industry as good or bad credit risks. The dataset
was supplied by Attar Software Ltd of Leigh, Lancashire. For
commercial reasons the meaning of the attributes is secret. The
original dataset had 39 attributes some of which were numerical
and others categorical. Some of the categorical attributes had
very large numbers of categories.

This original dataset presented structural problems for many
of the StatLog algorithms (statistical, machine learning, and
neural netwok). For example CART cannot deal with categori-
cal attributes with large numbers of categories.

Therefore a new dataset with 16 attributes was produced by
J. Mitchell of Strathclyde University. Many of the less infor-
mative attributes were thrown away, others were binarzsed and
some of the numeric attributes were log-transformed to make
them closer to normal. Missing values were replaced.

The ratio of good to bad customers in the dataset is almost
1:1. This is not representative of the population as a whole,
where the ratio is more like 10:1. However, we assumed that
the effect of this would be cancelled out by the different costs

333

STATLOG

of misclassifying a good or bad customer; it is about ten times
more costly to misclassify a bad customer as good compared to
a good customer as bad.

The data has eight numerical and eight binary/categorical
attributes, with two classes. The data was divided into a train-
ing set with 6230 examples and a test set with 2670 examples.
A one-shot train-and-test was used to calculate the error rate.

4.8 Shuttle control (Shuttle)

The dataset was provided by Jason Catlett who was then at the
Basser Department of Computer Science, University of Sydney,
N.S.W., Australia. The data originated from NASA and concern
the position of radiators within the Space Shuttle. The problem
appears to be noise-free in the sense that arbitrarily small error
rates are possible given sufficient data.

The data was divided into a train set and a test set with 43500
examples in the train set and 14500 in the test set. A one-shot
train-and-test was used to calculate the accuracy. With samples
of this size, it should be possible to obtain an accuracy of 99 -
99.9%. Approximately 80% of the data belong to class 1. At
the other extreme, there are only six examples of class 6 in the
learning set, so no rule could be constructed to have uniform
accuracy for all classes.

The data has seven numerical attributes with seven classes.
The data was divided into a training set with 43500 examples
and 14500 examples test set. A one-shot train-and-test was used
to calculate the error rate.

4.9 Characterization of Datasets

An important objective in StatLog is to investigate why certain
algorithms do better on some datasets and other algorithms do
better on different datasets Table 13.1. Appendix B describes
a list of measures which will help to explain our findings. At
present these measures are mostly very simple or statistically
based, and none of these measures is really appropriate to deci-
sion trees as such.

There is a need for a measure which indicates when decision
trees will do well. Bearing in mind the success of decision trees

334

KING ET AL.

in the Tsetse Fly data described by Ripley (1992), it seems that
some measure of multimodality might be useful in this connec-
tion.

Some algorithms have built-in measures which are given as
part of the output. For example, CASTLE measures the Kullback-
Leibler information in a dataset. Such measures are useful in
establishing the validity of specific assumptions underlying the
algorithm, and although they do not always suggest what to do
if the assumptions do not hold, at least they give an indication
of internal consistency.

5 RESULTS

The results fall naturally into three groups based on the databases.
The first group contains the four image analysis datasets: satel-
lite image, handwritten digits, Karhunen-Loeve digits, and ve-
hicle recognition. The second group includes the two medical
datasets (both involving cost matrices): head injury, heart dis-
ease. The last group includes the two datasets most difficult to
characterize: credit risk, and shuttle.

5.1 Image Analysis

Within the group of image analysis datasets all the attributes
are numerical. The attributes for satellite image, and handwrit-
ten digits come directly from the images with only minimum
processing, i.e. are brightness levels. The attributes for the
vehicle dataset were generated using an image analysis package.

5.1.1 Satellite

In the satellite dataset K-nearest Neighbour performs best, Ta-
ble 13.2. Not surprisingly, radial basis functions and Alloc80
also do fairly well as these three algorithms are closely related.
Their success suggests that all the attributes are equally scaled
and equally important. There appears to be little to choose
between any of the other algorithms, except that Naive Bayes
does badly (and its close relative CASTLE does relatively badly
also). This dataset has the highest correlation between at-
tributes (corr_abs = 0.5977). This may partly explain the
failure of Naive Bayes (assumes attributes are conditionally in-

335

STATLOG

dependent), and CASTLE (confused if several attributes con-
tain equal amounts of information). Note that only three lin-
ear discriminants are sufficient to separate all six class means
(fract-3 = 0.9691). This may be interpreted as evidence of se-
riation, with the three classes ‘grey soil’, 'damp grey soil’ and
‘very damp grey soil’ forming a continuum. Equally, this result
can be interpreted as indicating that the original four attributes
may be successfully reduced to three with no loss of informa-
tion. Here ‘information’ should be interpreted as mean square
distance between classes, or equivalently, as the cross entropies
of the normal distributions.

5.1.2 Digits

The results for the digits dataset and the KL-digits dataset
are very similar so are treated together, Table 13.3 and Ta-
ble 13.4. Most algorithms perform a few percent better on the
KL-digits data. The Karhunen-Loeve version of digits is the
closest to being normal. This could be predicted beforehand,
as it is a linear transformation of the attributes that, by the
Central Limit Theorem, would be closer to normal than the
original. Because there are very many attributes in each lin-
ear combination, the KL-digits dataset is very close to normal
(skewness = 0.1802, kurtosis = 2.9200) as against the exact
normal values of (skewness = 0, kurtosis = 3.0).

In both Digits datasets dataset K-nearest Neighbour comes
top and Radial basis functions and Alloc80 also do fairly well.
These three algorithms are all closely related. Kohonen also
does well in the Digits dataset (it has not yet been applied to
KL-digits); Kohonen has some similarities with nearest neigh-
bour type algorithms. The success of such algorithms suggests
that the attributes are equally scaled and equally important.
Quadratic discriminant also does well, coming second in both
datasets. The KL version of digits appears to be well suited to
quadratic discriminants: there is a substantial difference in vari-
ances (SD.ratio = 1.9657), while at the same time the distribu-
tions are not too far from multivariate normality with kurtosis
of order 3.

Backpropagation does quite well on the Digits dataset. This

336

KING ET AL.

might be expected from the literature (McClelland et al. 1986).
Neural networks are widely considered to do well at character
recognition.

5.1.3 Vehicle

The attributes for the vehicle dataset, unlike the other im-
age analysis, were generated using image analysis tools and
were not simply based on brightness levels. This suggests that
the attributes are less likely to be equally scaled and equally
important. This is confirmed by the lower performances of
K-nearest Neighbour and Radial Basis functions Table 13.5.
Alloc80 still does very well and appears to be more robust
than the other two algorithms. The original Siebert (1987) pa-
per showed machine learning performing better than K-nearest
Neighbour. Quadratic discriminant does best. The high value
of fract2 = 0.8189 might indicate that linear discrimination
could be based on just two discriminants. This may relate to
the fact that the two cars are not easily distinguishable, so might
be treated as one (reducing dimensionality of the mean vectors
to 3D). However, although the fraction of discriminating power
for the third discriminant is low (1 minus 0.8189), it is still
statistically significant, so cannot be discarded without a small
loss of discrimination. Backpropagation also does well on this
dataset.

5.2 Medical Datasets with Costs

Both medical datasets have cost matrices associated with them.
In the results for both datasets the top ten algorithms (algo-
rithms with the lowest costs) are all capable of utilizing costs in
the testing phase. SMART performed best on the Head injury
dataset, Table 13.6. It is the only algorithm that as standard can
utilize costs directly in the training phase (we used in our results
a modified version of Backpropagation that could utilise costs,
but this is very experimental). Naive Bayes performed best on
the heart dataset, Table 13.7. This may reflect the careful selec-
tion of attributes by the doctors. Logistic regression does very
well and so do Linear and Quadratic discriminants.

It appears that in the head dataset a single linear discrimi-

337

STATLOG

nant is sufficient to discriminate between the classes (more pre-
cisely: a second linear discriminant does not improve discrimina-
tion). Therefore the head injury dataset is very close to linearity.
This may also be observed from the value of fract_1 = 0.9787,
which is very close to unity. In turn, this suggests that the
class values reflect some underlying continuum of severity, so
this is not a true discrimination problem. Note the similarity
with Fisher’s original use of discrimination as a means of or-
dering populations. Perhaps this dataset would best be dealt
with by a pure regression technique, either linear or logistic. If
so, manova indicates that the middle group is slightly nearer to
category 3 than 1, but not significantly nearer. It appears that
there is not much difference between the covariance matrices for
the three populations in the head dataset (SD_ratio = 1.1231),
so the procedure quadratic discrimination is not expected to do
much better than linear discrimination.

In the heart dataset the leading correlation coefficient cancorl
= 0.7384, this is not very high (bear that in mind it is correlation
that gives a measure of predictability). Therefore the discrimi-
nating power of the linear discriminant is only moderate.

5.3 Other Datasets
5.3.1 Credit

In the credit dataset most of the attributes are symbolic. Many
of them are also irrelevant; it is possible to get 87% accuracy by
using just one attribute (N.B. many algorithms do worse than
this), Table 13.8. Most machine learning algorithms agree that
this simple rule is indeed the best rule (NewID, AC2, CART,
CN2), and this is also the conclusion of CASTLE. Due credit
should be given to these procedures for finding a rule that is not
only simple but efficient.

On the other hand, some algorithms (SMART and backprop)
achieve about the same accuracy but the simple structure of
the problem is completely masked. The statistical procedures
(discrim, logdiscr and quadisc) also fail to find the simple rule:
although there are procedures for dropping attributes that do
not contribute usefully to the discrimination, these have not

338

KING ET AL.

been implemented.

The poor performance of k-nearest neighbour on this dataset
is thought to be due to the presence of symbolic attributes
(which are difficult to scale): irrelevant attributes are also known
to decrease its performance.

It is interesting to note that the characterization of this dataset
is quite similar to that of the heart dataset. This would suggest
that it would be an interesting experiment to see how well the
algorithms do on the heart dataset without a cost matrix. If the
dataset characterization is useful then algorithms that did well
on credit should also do well on head without a cost matrix.

5.3.2 Shuttle

The shuttle dataset also departs widely from typical distribu-
tion assumptions. One important feature of the data is that
there is very little ‘noise’, i.e. it is possible to get arbitrarily
close to 100% accuracy Table 13.9. The attributes are numeri-
cal and appear to exhibit multimodality (we do not have a good
statistical test to measure this).

In this dataset the data seem to consist of isolated islands
or clusters of points, each of which is pure (belongs to only one
class), with one class comprising several such islands. How-
ever, neighbouring islands may be very close and yet come from
different populations. The boundaries of the islands seem to
be parallel with the coordinate axes. If this picture is correct,
and the present data do not contradict it, as it is possible to
classify the combined dataset with 100% accuracy using a de-
cision tree, then it is of interest to ask which of our algorithms
are guaranteed to arrive at the correct classification given an
arbitrarily large learning dataset. In the following, we ignore
practical matters such as training times, storage requirements
etc., and concentrate on the limiting behaviour for an infinitely
large training set.

Procedures guaranteed to give the perfect rule for this dataset
would seem to be: k-nearest neighbour, Bayes rule, CASTLE,
backprop and Alloc80. Radial basis functions should also be
capable of perfect accuracy, but some changes would be required

339

STATLOG

in the particular implementation used in the project (to avoid
singularities). ’
Decision trees will also find the perfect rule provided that
the pruning parameter is properly set, but may not do so under
all circumstances as it is occasionally necessary to override the
splitting criterion (Gordon and Olshen 1978).
The statistical procedures Discrim, Quadisc and LogReg would

not improve their accuracy much beyond that given in Table
13.9 (97.1% for Quadisc).

6 CONCLUSIONS

It is not easy to compare the performance of 19 algorithms tested
on eight datasets, with three different criteria (accuracy/cost,
time), especially as, at this stage in the project, some of the
trials are not yet performed. However a number of tentative
conclusions can be made.

The most important of these is: that there appears to be
no one algorithm that is best for all types of dataset. What
algorithm is best depends on features of the dataset. Much work
needs to be done, both theoretical and empirical, to determine
what features of datasets suit what types of algorithms.

If the distribution assumptions of Linear discriminant are
met then this algorithm is provably optimal in terms of max-
imizing accuracy (not necesarily in terms of speed or human
understandability, If the attributes are equally important and
equally scaled then nearest neighbour algorithms can do very
well; this appears to be true for some image analysis tasks where
the attributes have not been overly transformed.

Machine Learning algorithms (symbolic propositional ones)
can perform relatively well when the attributes are symbolic or
far from assumptions of normality. They appear to be very ro-
bust, but may lose efficiency if certain distribution assumptions
are met. There is a confusing profusion of Machine Learning
algorithms, but they all seem to perform at about the same
level.

With care, neural networks perform well on some problems.
It is not clear how to characterize these problems. In terms

340

KING ET AL.

of computational burden, and the level of expertise required,
they are much more complex than, say, the machine learning
procedures.

There were great differences in the time taken by the various
algorithms. This may be important in some applications. The
fastest algorithms were the simplest statistical ones Linear dis-
criminant and Naive Bayes. The machine learning algorithms
were also fast (AC2 is an exception, probably because of its com-
plex interface and it is written in LISP). Backpropagation was
very slow, but there are however some variations which make
improvements to this. The nearest neighbour algorithms were
extremely slow to classify new examples, however it is known
(Hart 1968) that substantial time saving can be effected, at the
expense of some slight loss of accuracy, by using a condensed
version of the training data.

7 FURTHER WORK

Much more attention needs to be paid to the use of cost matri-
ces in algorithms. Very few algorithms use costs in their learn-
ing phase, and many algorithms do not even use costs in their
testing phase (this is easy to implement if a class probability
estimate can be made). This use of costs has been virtually ig-
nored by machine learning and neural network workers. Many
problems are a combination of discrimination and regression,
i.e. the classes are linearly ordered (e.g. Head injury). This
problem can be considered as a special case of the use of cost
matrices.

It can fairly be said that the performance of linear and quadratic
discriminants was exactly as might be predicted on the basis of
theory. Several practical problems remain however: (i) the prob-
lem of deleting attributes if they do not contribute usefully to
the discrimination between classes; (ii) the desirability of trans-
forming the data; and the possibility of including some quadratic
terms in the linear discriminant as a compromise between pure
linear and quadratic discrimination. Much work needs to be
done in this area.

The performance of CASTLE should be related to how ‘tree-

341

STATLOG

like’ the dataset is. A major criticism of CASTLE is that there is
no internal measure that tells us how closely the empirical data
are fitted by the chosen polytree. We recommend that any fu-
ture implementation of CASTLE incorporates such a ‘polytree’
measure. Although it would seem that this measure could be
based on the Kullback-Leibler information for the fitted poly-
tree, it is not clear exactly how this should be done. The main
reason for using CASTLE is that the polytree models the whole
structure of the data, and no special role is given to the variable
being predicted, viz. the class of the object. However instruc-
tive this may be, it is not the principal task in StatLog (which
is to produce a classification procedure). So maybe there should
be an option in CASTLE to produce a polytree which classifies
rather than fits all the variables. To emphasize the point, it is
easy to deflect the polytree algorithm by making it fit irrelevant
bits of the tree (that are strongly related to each other but are
irrelevant to classification).

In decision trees there are no indications in our results that
any splitting criterion is best, but the case for using some kind
of pruning is overwhelming, although, again, our results are too
limited to say exactly how much pruning to use (it appears to
be some function of the amount of noise in the data). Work
needs to be done to relate the performance of a decision tree
to some measures of complexity and pruning, specifically the
average depth of the tree and the number of terminal nodes
(leaves).

One major weakness of neural nets is the lack of diagnostic
help. If something goes wrong, it is difficult to pinpoint the
difficulty from the mass of inter-related weights and connectiv-
ities in the net. For example, in the prediction problems, the
two neural nets performed rather badly. This is primarily due
to their inability, as black boxes, to react to the several compo-
nents of time series — trend, seasonality and correlated random
effects. Any neural net predictor would need an architecture ca-
pable not only of incorporating these features but also of telling
the operator when and how to adjust for changes in the features.

It may be possible to combine the best features of algorithms
to produce a hybrid system than does better than any one single

342

KING ET AL.

system.

Acknowledgments

This work has been supported by the Commission of the Euro-
pean Community under ESPRIT project no. 5170. We thank
all the partners in StatLog, in particular Charles Taylor of Leeds
University. We would also like to acknowledge the help of G.
Nakhaeizadeh of Daimler-Benz, R. Molina of Granada Univer-
sity and J. Stender of Brainware, Germany. We also thank Pavel
Brazdil of Porto University for work on software tools that were
used in algorithm testing. A special acknowledgement is due to
Ashwin Srinivasan of Strathclyde University, who contributed
the satellite image database. The heart disease data came from
the University of California in Irvine. It was given to us by
David Aha of the Applied Physics Laboratory, John Hopkins
University. Some algorithms came from Wray Buntine of the
NASA Ames laboratory. Finally we would like to thank Don-
ald Michie of the Turing Institute and Brian Ripley of Oxford
University for initiating StatLog.

APPENDIX A - STATLOG. KEY PERSONNEL: PARTNERS

Dr. Pavel B. Brazdil (Principal Investigator),
University of Porto,

Laboratory of AI and Computer Science (LIACC),
R. Campo Alegro 823,

4100 Porto,

Portugal.

Prof. E. von Goldammer (Principal Investigator),
Institut fuer Kybernetick und Systemtheorie,

Am Hlsenbusch 54,

W-4630 Bochum 1,

Germany.

Dr. R.J. Henery (Technical Director),
Department of Statistics and Modelling Science,
University of Strathclyds,

Glasgow Gi 1XH,

UK.

Dr. R. Molina (Principal Investigator),

343

STATLOG

University of Granada,

Department of Computer Science and AI,
Facultad de Ciencias,

18071 Granada,

Spain.

Dr. G. Nakhaeizadeh (Project Director),
Daimler-Benz AG,

Forschungzentrum Ulm,

Ebeerhard-Finckh Str. i1,

D-7900 Ulm,

Germany.

Mr. H. Hendrix (Principal Investigator),
Isoft,

Chem de Moulon,

91190 Gif sur Yvette,

France.

Dr. S. Muggleton (Project Coordinator Algorithms),
Turing Institute,

Glasgow G1 2AD,

UK.

Dr. R. Rohwer,

Department of Computer Science and Applied Mathematics,
Aston University,

Birmingham B4 7ET,

UK.

Herr J. Stender (Project Coordinator Prediction and Control),
Brainware GmbH,

Gustav-Meye-Allee 25,

1000 Berlin,

Germany.

Dr. C.C. Taylor (Project Coordinator Data),
Department of Statistics,

School of Mathematics,

Leeds University,

Leeds LS2 9JT,

UK.

Prof. Wysotzki,
Fraunhofer-Gesellschaft IITB-EPO,

344

KING ET AL.

Kurstrasse 33,
0-1086 Berlin,
Germany.

Dr. Alejandro Moya (Project Dfficer),
Breydei 9/179,

45 Ave. d“Auderghem,

B-1049 Brussels,

Belgium.

APPENDIX B - MEASURES FOR DATASETS
Number of observations

This is the total number of observations in the whole dataset.

Number of attributes

The total number of attributes.

Number of classes

The total number of classes represented in the entire dataset.

Number of bin_cat

The total number of number of attributes that are binary or
categorical.

Cost_matrix

If the dataset has a cost matrix (1 = yes).

Homogeneity of covariances

Homogeneity of covariances is the geometric mean ratio of stan-
dard deviations of the populations of individual classes to the
standard deviations of the sample, and is tabulated as SD ratio.
The S D _ratio is strictly greater than unity if the covariances dif-
fer, and is equal to unity if and only if all individual covariances
are equal to the covariances of the whole sample.

Mean absolute correlation coefficient

The correlations p;; between all pairs of attributes indicate the
dependence between the attributes. They are calculated for

345

STATLOG

each class separately. The absolute values of these correlations
are averaged over all pairs of attributes and over all populations
to give the measure corr_abs, which is a measure of interdepen-
dence between attributes. If corr_abs is near unity, there is much
redundant information in the attributes, and some procedures
such as logistic discriminants may have technical problems as-
sociated with this. Also, CASTLE may be misled substantially
by fitting relationships to the attributes instead of concentrating
on relationship between the classes and the attributes.

Canonical discriminant correlations

Examples of n attributes from a sample are points in a n-
dimensional space, where they form clusters of roughly elliptical
shape. The sample points from one population of class form a
cluster around its population mean. In general, if there are k
populations, the k& means lie in a kK — 1 dimensional subspace.
On the other hand, it happens frequently that the populations
form some kind of sequence so that the population means are
strung out along some curve that lies in a m — —dimensional
space (m < k —1). For example, the simplest case occurs when
m =1 and the population means lie along a straight line.

Canonical discriminants are a way of systematically project-
ing the mean vectors in an optimal way to maximize the ratio of
between-mean distances to within-cluster distances, successive
discriminants being orthogonal to earlier discriminants. Thus
the first canonical discriminant gives the best single linear com-
bination of attributes that discriminates between the popula-
tions. The second canonical discriminant is the best single lin-
ear combination orthogonal to the first, and so on. The success
of these discriminants is measured by the canonical correlations.
If the first canonical correlation is close to unity, the £ means lie
along a straight line nearly. If the ¢ 4+ 1th canonical correlation
is near zero, the means lie in ¢ — —dimensional space.

Variation explained by first four canonical discriminants

The sum of the first q eigenvalues of the canonical discrimi-
nant matrix divided by the sum of all the eigenvalues repre-
sents the ‘proportion of total variation’ explained by the first ¢

346

KING ET AL.

canonical discriminants. We tabulate, as fract.q, the values of
M+ A)/ (M + A+ ...+) for g =1,2,3,4. This gives
a measure of collinearity of the class means. When the classes
form an ordered sequence, for example soil types might be or-
dered by wetness, the class means typically lie along a curve in
low dimensional space. The As are the squares of the canonical
correlations. The significance of the As can be judged from the
x? statistics produced by ‘manova’.

Univariate skewness and kurtosis

These are univariate measures of the non-Normality of the at-
tributes when considered separately. The univariate skewness
B1(, j) is a measure of asymmetry of the distribution of the ith
attribute in the jth class, essentially describing how the left and
right tails differ. As a single measure of skewness for the whole
data set, we quote the mean absolute value of §1(z, 5), averaged
over all attributes and over all classes. This gives the measure
skew_abs. For a normal population skew_abs should be zero:
for uniform and exponential variables, the theoretical values of
skew_abs are zero and 16 respectively.

To compare the thickness of the tails of the distributions com-
pared to that of the Gaussian or normal, we use the kurtosis
B2(7, j) of the ith attribute in the jth class. As an overall mea-
sure, we use the average of the univariate kurtosis 3,(z, j), aver-
aged over all attributes and populations. This gives the measure
kurtosis. For a normal population, kurtosis = 3 exactly, and
the corresponding figures for a uniform and an exponential are
1.8 and 9 respectively.

REFERENCES

Acid, S., de Campos, L., Gonzélez, A., Molina, R. and Pérez de la
Blanca (1991) CASTLE : A Tool for Bayesian Learning. In Esprit
Conference 1991.

Aha, D. and Kibler, D. (1988) Detecting and Removing Noisy In-
stances From Concept Descriptions (Technical Report 88-12).
Department of Information and Computer Science. University
of California, Irvine, CA, 92717.

347

STATLOG

Breiman, L., Friedman, J.H., Olshen, R. and Stone, C. (1984) Classi-
fication and Regression Trees. Wadsworth and Brooks, Monterey,
Ca.

Cherkaoui, O. and Cléroux, R. (1991) Comparative study of six clas-
sification methods for mixtures of variables. In Computing Sci-
ence and Statistics. Proceedings of the 28rd Symposium on the
Interface, Fairfaz, Virginia. (ed. E. M. Keramidas), pp. 233-
236.

Clark, P. and Niblett, T. (1988) The CN2 induction algorithm. Ma-
chine Learning, 3(4), 261-283.

Clark, P. and Boswell, R. (1991) Rule induction with cn2: some re-
cent improvements. In EWSL ’91: Machine Learning: Proceed-
ings of the European Working Session on Learning, pp. 151-163,
Springer-Verlag, Berlin.

Cox, D.R. (1966) Some procedures associated with the logistic quali-
tative response curve. Research Papers in Statistics: Frestschrift
for J. Neyman, vol 45 (ed. F.N. David), Wiley, New York.

Day, N. and Kerridge, D. (1967) A general maximum likelihood dis-
criminant. Biometrics, 23, 313-323.

Fisher, D.H. and McKusick, K.B. (1989) An empirical comparison
of ID3 and back-propagation and machine learning classification
methods. In International Joint Conference on Artificial Intelli-
gence, pp. 788-793. Morgan Kaufmann, Detroit.

Fisher, R.A. (1936) The use of multiple measurements in taxonomic
problems. Ann. Eugen., 7, 179.

Friedman, J.H. and Stutzle, W. (1981) Projection pursuit regression.
J. Amer. Statist. Assoc., 76, 817-823.

Gennari, J. Models of Incremental Concept Formation (to appear in
the AI journal)

Goodman, R.M. and Symth, P. (1989) The induction of probabilistic
rule sets — the itrule algorithm. In Proceedings of the Sizth In-
ternational Workshop on Machine Learning (ed. B. Spatz), pp.
129-132, Morgan Kaufmann, San Mateo, CA.

Gordon, L. and Olshen, R.A. (1978) Asymptotically efficient solu-
tions to the classification problem. Annals of Statistics, 6, 515~
544.

Hart, P.M. (1968) The condensed nearest neighbour rule. IEEE
Trans. Comput., 24, 515-516.

348

KING ET AL.

Henery, R.J. and Taylor, C.C. (1992) StatLog: An evaluation of
machine learning and statistical algorithms. Compstat 1992,
Neuchatel.

Kohonen, T. (1989) Self-Organisation and Associative Memory. Springer-
Verlag.

Kressel U., Franke J. and Schuermann J. (1990) Polynomial Classifier
versus Multilayer Perceptron, DAGM.

Kressel U., (1991) The impact of the learning set size in handwritten
digit recognition. In ICANN 91, Helsinki.

McClelland, J.L., Rumelhart, D.E. and Hinton, G.E. (1986) Paral-
lel Distributed Processing: explorations in the microstructure of
cognition. Volumes I, IT and III. MIT Press, Cambridge, MA.

Michalski, R.S. (1983) A theory and methodology of inductive learn-
ing. Artificial Intelligence, 20(2) 111-161.

Mooney, R., Shavlik, J., Towell, G. and Gove, A. (1989) An ex-
perimental comparison of symbolic and connectionist learning
algorithms. In International Joint Conference on Artificial In-
telligence, pp. 775-780 Morgan Kaufmann.

Pearl, J. (1988) Networks of Belief: Probabilistic Reasoning in Intel-
ligent Systems. Morgan Kaufman,

Poggio, T. and Girosi, F. (1990) Networks for approximation and
learning. Proceedings of the IEEE, 78(9), 1481-1497.

Quinlan, J.R. (1986) Induction of Decision Trees. Machine Learning,
1, 81-106.

Quinlan, J.R. (1987) Simplifying decision trees. International Jour-
nal of Man-Machine studies, 27(3), 221-234.

Quinlan, J.R. (1990) Learning logical definitions from relations. Ma-
chine Learning, 5, 239-266.

Ripley, B.D. (1992) Statistical aspects of neural networks SemStat,
Sanbjerg, Denmark.

Sammut, C. (1988) Experimental results from an evaluation of al-
gorithms that learn to control dynamic systems. In Proceedings
of the Fifth International Conference on Machine Learning, pp.
437-443, Morgan Kaufmann

Shavlik, J.W., Mooney, R.J. and Towell, G. (1991) Symbolic and
neural learning algorithms: an experimental comparison. Ma-
chine Learning, 6, 2, 111-143.

Siebert, J.P. (1987) Vehicle recognition using rule based methods.

349

STATLOG

Turing Institute Technical Report TIRM-87-018.

Sutherland, A., Henery, R., Molina, R., Taylor, C. and King, R.
(1992) Statistical Methods in Learning In Conference on In-
formation Processing and Management of Uncertaznty (IPMU
’92), Palma de Mallorca.

StatLog Technical Annexe (1990) Esprit project no 5170.

StatLog Report on phase II (1992) Esprit project no 5170.

Titterington, D.M., Murray, G.D., Murray, L.S., Spiegelhalter, D.J.,
Skene, A.M.,Habbema, J.D.F. and Gelpke, G.J. (1981) Compar-
ison of Discrimination Techniques Applied to a Complex Data
Set of Head Injured Patients (with discussion). J. Royal Statist.
Soc., 144, 145-175.

Unger, S. and Wysotzki, F. (1981) Lernfaehige Klassifizierungssys-
tems, Academieverlag, Berlin.

Weiss, S.M., Galen, R.S. and Tadepalli P.V. (1987) Optimizing the
predictive value of diagnostic decision rules. In Proceedings AAAI-
87: Sizth National Conference on Artificial Intelligence, pp. 521~
526

Weiss, S.M. and Kapouleas, I. (1989) An empirical comparison of
pattern recognition, neural nets and machine learning classifica-
tion methods. In IJCAI 89: Proceedings of the Eleventh Inter-
national Joint Conference on Artificial Intelligence, pp. 781-787

Weiss, S.M. and Kapouleas, I. (1991) Computer Systems that Learn.
Morgan Kaufmann, San Mateo.

350

Table 13.1.

KING ET AL.

The characterization of the eight datasets: Satellite,
Digits, KL-Digits, Vehicle, Head, Heart, Credit, and Shuttle (see
Appendix A for details). The measures for KL-digits are based on the
training examples (except no. of examples). For Shuttle a reduced
dataset was used with all members of classes 2,3,6,7 and only 2000
examples each from classes 1,4,5. Formally speaking, the skewness
and kurtosis figures for classes 2 and 7 are undefined as there are
variables here with attributes whose values are constant (attribute 4
for class 2 and attribute 1 for class 7).

Satellite Digits KL-digits Vehicle Head Heart Credit Shuttle
N_examples 6435 18000 18000 846 900 270 8900 58000
N_attributes 36 16 40 18 6 13 16 9
N_classes 6 10 10 4 3 2 2 7
N bin.cat 0 0 0 0 1 5 8 0
cost_matriz 0 0 0 0 1 1 0 0
SD_ratio 1.2970 1.5673 1.9657 1.5392 1.1231 1.0612 1.0273 1.6067
corr_abs 0.5977 0.2119 0.1093 0.4828 0.1217 0.1236 0.0825 0.3558
cancor.1 0.9366 0.8929 0.9207 0.8420 0.7176 0.7384 0.7618 0.9668
cancor_2 0.9332 0.8902 0.9056 0.8189 0.1057 0.0000 0.0000 0.6968
cancor_38 0.7890 0.7855 0.8440 0.3605 0.0000 NA NA 0.2172
cancor-4 0.2385 0.6982 0.7761 0.0000 NA NA NA 0.1458
fract_1 0.3586 0.2031 0.1720 0.4696 0.9787 1.0000 1.0000 0.6252
Jract_2 0.7146 0.4049 0.3385 0.9139 1.0000 1.0000 1.0000 0.9499
fract_8 0.9691 0.5621 0.4830 1.0000 1.0000 NA NA 0.9814
fract4 0.9923 0.6862 0.6053 1.0000 NA NA NA 0.9957
skew_abs 0.7316 0.8562 0.1802 0.8282 1.0071 0.9560 1.2082 4.4371
kurtosis 4.1737 5.1256 2.9200 5.1800 5.0408 3.6494 4.4046 160.3108

351

STATLOG

Table 13.2. Satellite image results — ‘Q’ times based on transputer;

‘¥’ no time given for classifying training examples; ‘!

‘1 uses new

version of Cal5, so real time should be higher; examples were cycled
40 times and 1600 nodes are used in this Kohonen feature map.

Algorithm Source Accuracy(%) Time(sec.)
Train Test Train Test
k-N-N leeds 91.1 90.6 2105 944
Radial strath 88.9 879 723 74
Alloc80 leeds 96.4 86.8 63840 28757
INDCART strath 98.9 86.3 2109 9
CART granada NA 86.3 348 14
Backprop strath 88.8 86.1 54371 39
NewID turing 93.3 85.0 296 53
C4.5 turing 95.7 84.9 449 11
CN2 daimler 98.6 84.8 1718 16
Quadra strath 89.4 84.7 276 93
Calb! fraunh 87.8 84.6 1345 13
AC2 isoft NA 84.3 8244# 17403
SMART leeds 87.7 84.1 83068 20
LogReg strath 88.1 83.1 4414 41
Kohonen@ luebeck NA 821 12627 129
Discrim’ strath 85.1 82.9 68 12
CASTLE granada 814 80.6 NA NA
Bayes strath 71.3 69.3 56 12

352

KING ET AL.

Table 13.3. Digits results — ‘@’ times based on transputer

Algorithm Source Accuracy(%) Time(sec.)

Train Test Train Test
k-N-N leeds 98.4 953 2231 2039
Quadra strath 94.8 94.6 194 152
Alloc80 leeds 93.4 93.2 3250 134370

Kohonen@ luebeck NA 92,5 67176 2075
Backprop strath 92.8 92.0 28910 110

Radial strath 92.0 91.7 1150 250
LogReg strath 921 914 5110 138
SMART leeds 90.4 89.6 51435 33
Discrim strath 89.0 88.6 65 30
CN2 turing 99.9 86.6 2229 78
NewlID turing 91.9 85.5 516 80
C4.5 turing 95.9 85.1 543 39
INDCART strath 98.9 84.6 3615 51
AC2 isoft NA 84.5 32965 22384
CASTLE granada 82.5 82.1 4341 4090
CART granada 84.1 81.9 291 40
ITrule brainwr NA 778 8283 NA
Bayes strath 78.0 76.7 104 62
Calb fraunh 785 715 570 55

353

STATLOG

Table 13.4. KL digits results

Algorithm Source Accuracy(%) Time(sec.)
Train Test Train Test
k-N-N leeds 100.0 98.0 0 13881
Alloc80 leeds 100.0 97.6 48106 48188
Quadra strath 98.4 97.5 1990 1648
Backprop strath 95.9 95.1 129840 240
LogReg strath 96.8 94.9 3538 1713
Radial strath 95.2 94.5 2280 580
SMART leeds 95.7 94.3 389448 58
Discrim strath 93.0 92.5 141 54
C4.5 daimler NA 822 1434 35
CASTLE granada 87.4 86.5 49162 45403
NewID isoft 100.0 83.8 785 109
AC2 isoft 100.0 83.2 27382 24791
INDCART granada 99.7 83.2 3550 53
CN2 turing 96.4 82.0 9183 103
ITrule brainwr NA 784 NA 8175
Bayes isoft 795 777 141 76
Cal5 fraunh 75.2 66.9 3049 64.0

354

KING ET AL.

Table 13.5. Vehicle data results — ‘Q’times based on transputer, il
indicates that the time includes training and testing

Algorithm _ Source Accuracy(%) Time(sec.)
Train Test Train Test
Quadra strath 91.5 85.0 251 29

Alloc80 leeds 100.0 82.7 30 10

LogReg strath 83.3 80.9 758 8
Backprop strath 83.2 793 14411 4
Discrim strath 798 784 16 3
SMART leeds 93.8 783 3017 1
C4.5 turing 93.5 734 153 1
k-N-N leeds 100.0 725 164 23
CART granada NA 716 29 1
AC2 isoft NA 703 595 23

NewlID turing 97.0 70.2 18 1
INDCART strath 95.3 70.2 85 1
Radial strath 90.2 69.3 1736 12

CN2 turing 98.2 68.6 100 1
ITrule brainwr NA 676 985* NA
Kohonen@ luebeck 88.5 66.0 5962 50
Calb fraunh 70.3 64.9 41 1
CASTLE granada 49.5 45.5 23 3
Bayes strath 48.1 44.2 4 1

355

STATLOG

Table 13.6. Head injury results — ‘*’ indicates that the time includes

both training and testing; ‘!’ present version does not utilize costs
fully.

Algorithm Source Avg. Cost Time(sec.)
Train Test Train Test
LogReg strath 16.6 180 736 7

Discrim strath 19.8 19.9 28 3
Quadra strath 17.8 20.1 253 32
CASTLE granada 18.9 20.9 30 3

CART granada 19.8 204 20 1
Backprop strath 182 21.5 656 32
SMART leeds 13.6 21.8 420 4
Bayes strath 23.6 25.0 2 1
INDCART! strath 21.9 293 56 1
k-N-N leeds 9.2 35.3 9 11
ITrule brainwr NA 37.6 7™ NA
Calb fraunh 32.3 384 5 1
Alloc80 leeds 45.3 46.1 322 276
NewID isoft 18.9 53.6 16 2
Radial strath 53.4 63.1 17 5
C4.5 daimler 59.8 82.0 49 1

356

KING ET AL.

Table 13.7. Heart disease results — ‘*’ indicates that the time in-
cludes both training and testing; ‘I’ present version does not utilize
costs fully; ‘@’ times based on transputer.

Algorithm Source Avg. Cost Time(sec.)
Train Test Train Test
Bayes strath 0.351 0.374 6 3

Discrim strath 0.315 0.393 14 3
LogReg strath 0.271 0.396 128 7
Alloc80 leeds 0.394 0.407 31 5
Quadra strath 0.274 0.422 60 16
CASTLE granada 0.374 0.441 16 3

CART granada 0.463 0.452 7 1
k-N-N leeds 0 0.478 0 1
SMART leeds 0.264 0478 725 1
ITrule brainwr NA 0.515 5 NA
Cal5 fraunh 0.517 0.559 - 8* NA

Backprop strath 0.381 0.574 128 13
INDCART! strath 0.261 0.630 8 1
Kohonen@ luebeck 0.429 0.693 227.1 1.9

AC2 isoft 0 0.744 250* NA
CN2 turing 0.206 0.767 25 5
C4.5 turing 0.439 0.781 34 1
Radial strath 0.303 0.781 26 4
NewlID isoft 0 0.844 12* NA

357

STATLOG

Table 13.8. Credit data results — ‘I’ These algorithms may have
classified the test set exactly the same way (perhaps based only on
attribute 14; “*’ indicates times based on training and testing; ‘@’
times based on transputer.)

Algorithm Source Accuracy(%) Time(sec.)
Train Test Train Test

INDCART isoft 92.0 92.0 206 193
SMART leeds 89.5 89.1 2151 5
CASTLE granada 88.3 88.1 81 33
Calb fraunh 89.5 874 76 12
CART! granada 87.2 87.0 19 19
NewlID! isoft 100 87.0 380 4
Discrim! strath 87.2 87.0 71 16
AC2 isoft 100 87.0 7970 410

Radial strath 87.5 87.0 837 54
LogReg strath 873 86.9 251 30
Backprop strath 88.2 86.9 28819 19

CN2 daimler 100 86.7 2309 13
Quadra strath 86.3 86.0 78 20
Bayes isoft 85.0 844 44 8
ITrule strath 839 833 T773* NA
Alloc80 leeds 97.7 83.0 24 738
Kohonen@ luebeck 83.3 81.0 30704 71
k-N-N leeds 100.0 80.6 0 1851

358

KING ET AL.

Table 13.9. Shuttle control data results ~ ‘!’ indicates that only a
sample of the training data could be used (C4.5 32760; AC2 4351;
Bayes, INDCART 32625; Discrim, Quadra, LogReg 20000); ‘** indi-
cates times based on training and testing.

Algorithm Source Accuracy(%) Time(sec.)
Trai Test Train Test
NewlD daimler 100 99.99 6180* NA
CN2 daimler 100 99.97 11160* NA
C4.5! turing 99.90 99.96 11131 11
SS1 0.81 INDCART! strath 99.96 99.92 1152 16
AC2! isoft 100.0 99.68 4493 3397
Cal5 fraunh NA 99.60 552 18
k-N-N leeds 99.61 99.56 65270 21698
SMART leeds 99.39 99.41 110010 93
Alloc80 leeds 99.05 99.17 55215 18333
CASTLE granada 96.34 96.23 819 263
LogReg strath 96.06 96.17 6946 106
Bayes! strath 95.42 95.45 1030 22
Discrim! strath 95.02 95.17 508 102
Backprop strath 95.1 95.1 28800 75
Quadra! strath 93.65 93.28 709 177

359

LEARNING CONTROL

14
Recent Progress with BOXES

C. Sammut

Schoo! of Computer Science and Engineering
University of New South Wales
Sydney, Australia

Abstract

The BOXES algorithm of Michie and Chambers (1968) has
proved to be an effective and flexible method for learning to
control dynamic systems. The algorithm, in its original form
has been used as a benchmark for many experiments in control
tasks such as pole balancing. Recent work in our laboratory
has shown that the BOXES algorithm can be improved to yield
very good learning rates. We describe experiments on a vari-
ety of update functions and discuss their robustness. We also
develop the notion of freezing of BOXES, suggested by Michie
and implemented by Bain (1990).

We have also been concerned with synthesising a readable ac-
count of the control strategy employed by a set of boxes. Some
preliminary work has begun in combining decision tree learning
algorithms with BOXES. Using this method, we regard BOXES
as the acquirer of sub-cognitive skills and the decision tree in-
duction as a means of introspecting on the learned strategy to
generate understandable control rules.

1 POLE BALANCING

The BOXES algorithm addresses the problem of learning to con-
trol a pole and cart system by trial and error. The physical plant
consists of a cart which can run on a track of fixed length. A
pole is hinged to the cart such that it can only swing in one

363

RECENT PROGRESS WITH BOXES

Figure 14.1. The pole and cart

dimension. As usually stated, the task only allows bang-bang
control. That is, only a force of fixed magnitude can be applied
to push the cart to the left or right. The task of the learner
is to construct a control strategy that will keep the pole from
falling over and the cart from hitting the ends of the track. It
is important to note that the problem is to avoid failure rather
than to reach a specified target value. A pole and cart system
is depicted in Figure 14.1.

The state of the pole and cart system can be fully determined
by the variables: z (the position of the cart), & (the velocity of
the cart), 6 (the angle of the pole), 8 (the angular velocity of
the pole). That is, the system can be represented by a four
dimensional state space.

The most significant problem to be overcome in designing a
learning algorithm for this task is that of credit assignment. The
control system may make an incorrect choice as to whether to
push the cart left or right. However, the consequences of that
incorrect choice may not be noticed for some time, when the
system finally fails. Many actions may have been taken between
the incorrect choice and failure. So how can the learner decide

which of those actions was truly incorrect? This is the main
task of the BOXES algorithm.

2 BOXES

The algorithm derives its name from the way in which it parti-
tions the state space. The state space is partitioned into regions
(boxes) by dividing the range of each dimension into intervals.
Thus, the entire space is tessellated by four dimensional boxes.

364

C. SAMMUT

The state of the system determines a box. Each box contains an
action setting indicating that when the system enters the box,
the action to be performed is given by the setting of the box.
We regard each box as an independent learning element. The
task of a box is to learn which action setting is appropriate for
that region of the state space. In order to accomplish learning,
each box contains statistics on its performance. These are:

e How many times each action has been performed (the ac-
tion’s usage).

e The sum of the lengths of time the system has survived
after taking a particular action (the action’s lifetime).

Each sum is weighted by a number less than one which places
a discount on earlier experience. This will be represented by,
DK, in the algorithms described below.

The BOXES algorithm proceeds by making an initial random
selection of setting for the boxes. A trial is performed by using
the current box settings to control the system. If the controller
fails, then the actions settings in each box are reviewed and
possibly changed. These new settings are then used for a new
trial. This process repeats until the system can be kept under
control for a predetermined time which signifies success. Clearly,
the critical operation in the algorithm is the choice of action
setting.

2.1 Deciding which action to take

After a failure, a decision is made in each box, whether to set the
action of that box to be ‘push right’ or ‘push left’. This decision
must trade off exploration versus exploitation. That is, should
the setting be chosen such that the most successful action, so
far, is chosen or should the learner switch actions if the other
action has not been tried very frequently and thus there is little
information about its likelihood of success?

To make the choice between actions, BOXES determines the
relative merits of pushing left or right and then applies the fol-
lowing rule:

if valuer, > valuep then

365

RECENT PROGRESS WITH BOXES

choose left

if valuer, < valueg then
choose right

if valuey, = valuep then
make random choice

The calculation of the value of an action must include the
trade-off described above. In the following subsections we will
describe a succession of formulas that have been used in this
calculation. We begin with the original Michie and Chambers
formula and then proceed to describe, in historical order, im-
provements that have yielded faster learning rates.

2.1.1 The Michie and Chambers algorithm

The original method for calculating an actionUs merit in a box
is as follows. To find the value for ‘push left’ we use the left
action’s lifetime (LL) and usage (LU) statistics.

LL + K X target
LL+ LU

valuer, =

where
target = Co + Cy X merit

and

merit = U

K, C0 and C1 are experimentally determined parameters.
GL is the global life time (the sum of the lengths of time the sys-
tem has survived after taking any action) and GU is the global
usage (the number of actions taken). Like the local lifetimes
and usages, the global statistics are also subject to decay.

This formula was devised to provide for trade-off between
exploration and exploitation. The target was introduced to tie
the level of exploration to the overall performance of the sys-
tem. The learner becomes more conservative in its exploration

366

C. SAMMUT

as the overall performance improves. The Michie and Cham-
bers algorithm was a milestone in learning to control dynamic
systems. However, the number of trials required to learn to con-
trol the pole and cart is quite high. A number of variations of
the original algorithm have lead to improved learning rates. We
described these variations and follow these with comparisons of
performance.

2.1.2 Cribb’s local merit

James Cribb (Cribb, 1989) introduced a variation in which each
box used a local merit function. Cribb argued that the level of
exploration within a box should be tied to the performance of
the box rather than the whole system. Thus, he devised the
following local merit, replacing the global merit in the Michie
and Chambers formula The local merit is the larger of and
RU Local merit was found to halve the number of trials to learn
to control the pole and cart.

2.1.3 Variations on local merit

Cribb’s version of BOXES can be simplified further by making
the trade-off between exploration and exploitation explicit in the
control structure of the algorithm rather than hiding it inside
the update formula.

if an action has not been tested
choose that action

LL
else 1f (iU <1% A
0 1 X LU
choose left
else
choose right
else
if I < Co+Cy x &
choose right
else

choose left

Co and C are experimentally determined parameters.

367

RECENT PROGRESS WITH BOXES

In this variation of the BOXES algorithm, running averages
of the lifetimes of actions are compared. Assuming that the left
average is greater than the right, the default action is to push
left. However, before taking that action, we ensure that the
ratio of usages, £, does not exceed a target value.

The intuition behmd this formula is that the trade-off of ex-
ploration and exploitation is related to the ratio of usages of the
actions. If the ratio favours the left action this suggests that the
left action has been used in preference to the right. If the merit
of the box is not sufficiently large, then the program should try
the right action.

This variation learns more quickly than Cribb’s version as
well as being easier to understand.

2.1.4 Law’s algorithm
LL
Law (1991) replaced the test £% < Co+Cy x L& by 229 > L.
RU
If the ratio of average lifetimes exceeds the ratio of usages
then the action represented by the numerator in the ratios should
be favoured. Thus the selection algorithm in BOXES can be
simplified to:

if an action has not been tested
choose that action
else if 7175 LL T > RU2
choose left
else if 775 LL Tz < RU;
choose right
else
choose an action at random

2.1.5 Variation on Law’s algorithm

The exponent in Law’s variation can be seen as an exploration
factor. Let us rewrite the algorithm above as:

if an action has not been tested
choose that action

else lf m > R_U"'
choose left

else ‘fZUF < W

368

C. SAMMUT

choose right
else
choose an action at random

As K approaches one, the level of exploration falls to zero.
The higher the value of K, the greater the level of exploration.
This variation is the most successful version of BOXES to date.
The following section describes comparisons between some of
the variations.

3 COMPARISON

Three variations of BOXES are compared: Law and Sammut,
Cribb and Sammut and the original Michie and Chambers al-
gorithm. Learning experiments were repeated 20 times for each
variant. The system is started in random states for each trial.
Table 14.1 shows the number of trials required to learn to con-
trol the system for each of the 20 experiments. The average
number of trials is shown at the bottom of the table. To study
the consistency of the results, logs were calculated. The stan-
dard deviations of the logs are also shown at the bottom of the
table. ‘

One of the points of comparison is that the Michie and Cham-
bers algorithm can vary considerably in learning rates, whereas
the other two variants are more consistent. The Law and Sam-
mut variant has a learning rate comparable to Selfridge, Sutton

and Barto (1985).

4 PROPERTIES OF THE LAW AND SAMMUT ALGORITHM

The problem of most learning systems for this domain is that
their properties are not well understood. In particular, the val-
ues of parameters can only be determined experimentally. This
section describes some of the properties of the Law and Sammut
variant, determined by experiment.

Figure 14.2 shows a plot of the average number of trials
against K values for a series of learning experiments. The av-
erage was obtained over five learning runs. The graph shows
that the algorithm is stable over the range 1.4 to 1.8. For the
standard pole balancing problem, 1.7 was found to be the best.

369

RECENT PROGRESS WITH BOXES

Table 14.1. Comparison of number trials for variations on BOXES

Law & Cribb & Michie &

Sammut Sammut Chambers

79 152 115
120 80 60
94 131 140
69 171 158
45 90 211
89 209 747
80 224 285
73 105 279
68 116 2207
81 166 2586
81 230 484
90 138 455
43 130 387
43 143 873
103 85 189
48 146 505
81 61 249
89 112 228
68 122 392
65 61 581
75 134 557 Average
0.29 0.38 0.92 Std. Dev. of log

370

C. SAMMUT

Optimum value for K (DK =

3000 0.98)
2000
[
[
=
5
<
1000
0 i
1 2 3
K

Figure 14.2. Determining the value of K

371

RECENT PROGRESS WITH BOXES

Optimum value for DK (k = 1.7)

Av. Trials

0.6 0.7 0.8 0.9 1.0 1.1

DK
Figure 14.3. Determining the value of DK

The DK value in the previous experiments was set at 0.98.
While exhaustive experiments have not been completed, Figure
14.3 shows the results of experiments to determine an appropri-
ate value for DK.

Once workable values for parameters have been found, it is
reasonable to ask what are these settings sensitive to. One pos-
sibility is that the value of K depends on the number of boxes
in the state space partition. Throughout these experiments we
have used the standard pole and cart simulation of Anderson
(1987). This uses 162 boxes. The original Michie and Cham-
bers set up used 225 boxes. Determination of K was redone
using 225 boxes. The results are shown in Figure 14.4. As can
be seen, the different number of boxes had little effect. While
this is not conclusive evidence, it suggests that K does not de-
pend heavily on the number of boxes used in the state space
partition.

The final property tested was that of sensitivity to the prob-
lem. Often, the parameters in reinforcement learning algorithms
are dependent on the learning task. To find out if this was the

372

C. SAMMUT

Optimum value for K (DK = 0.98) 3*5*3*5

B
3000 oxes

2000 A
o
]
T
-
>
« 1000 J

0 y Y
1.0 1.5 2.0 2.5
K

Figure 14.4. Sensitivity to the number of boxes

case with the Law and Sammut algorithm, the problem was
varied as follows. Rather than using an equal force to push left
and right, asymmetric pushing was used. That is, only half the
force was used in a right push as in a left push. This makes the
system less easily controlled. Therefore, we expect the learning
times to increase. We wish to observe how the learning rate
degrades and if parameters must be changed to find the best
learning rate. Figure 14.5 shows the determination of K for the
asymmetric pushing task. As can be seen, the best value for K
still lies within roughly the same range. However, the best value
is 1.4, Thus, K is slightly sensitive to the problem.

Table 14.2 shows a comparison of the three variants from
Table 14.1 for the asymmetric pushing problem. We also show
the Law and Sammut algorithm for K’ = 1.4 and K = 1.7. It
is interesting to note that, proportionally, the Cribb and Sam-
mut variant does not degrade as much with constant parameter
setting as the Law and Sammut variant.

373

RECENT PROGRESS WITH BOXES

Table 14.2. Comparison on asymmetric pushing

Law Law Cribb & Michie &
(K=1.4) (K=1.7) Sammut Chambers

134 545 43 1382
562 445 168 487
120 911 314 1360
224 123 917 1195
132 383 2789 3145
394 101 780 431
413 1977 253 1768
83 125 1726 1916
273 1044 376 709
821 735 236 816
249 1155 607 297
262 611 319 2008
611 661 214 833
150 308 265 1643
278 1179 94 965
547 227 1125 565
73 439 157 574
305 107 97 6493
669 284 493 5657
532 517 360 712
342 594 567 1628 Average

374

C. SAMMUT

K values for asymmetric
pushing

400

300 o

200

Av. Trials

100

0 v T L T v T v
1.2 1.4 1.6 1.8 2.0

K

Figure 14.5. Sensitivity to the problem

5 RELIABLE CONTROLLERS

Sammut and Cribb (1990) noted that a program that learns
to control the pole and cart in a single learning run does not
necessarily learn how to control the pole and cart in general.
That is, the program has not learned how to control the system,
no matter what the starting state is. Instead, it has learned to
control the system from one particular start state. Figure 14.6
illustrates why this may be so.

The dynamic behaviour of BOXES can be characterised by
a graph in which the nodes represent boxes and the edges rep-
resent transitions from one box to another when a left or right
push is performed. Strictly, the edges should have labels corre-
sponding to TleftU and TrightU transitions. It should be noted
that the transitions are non-deterministic since the same action
in the same box does not guarantee a transition along the same
edge. Thus the control of the pole and cart system can be viewed
as a Markov process.

The goal of the learning algorithm is to keep the system from

375

RECENT PROGRESS WITH BOXES

Figure 14.6. State transitions in BOXES

entering a fail state, indicated by the heavy circle. In other
words, if the learning algorithm can find a closed set (i.e. a set
of nodes which the system never leaves, indicated by the heavy
arrows) then its task will be accomplished. If the learning algo-
rithm is able to find such a set quickly from a particular starting
state, then it may never explore many regions of the state space.
Thus, when the system is restarted in a state which has not be
explored, the learned control strategy may fail. Indeed, it is very
likely to fail. Sammut and Cribb (1990) described a solution to
this problem where the system was allowed to learn to control
the pole and cart a number of times and the results of each of
these runs were pooled into one control strategy.

5.1 Voting and incremental freezing

The results from different learning runs are pooled by a sys-
tem of voting. Corresponding boxes in successive learning runs
contribute votes for the correct action in that box. A x? test
is used to determine when a vote is significant, so when a vote
passes the x? test, the action for that box is frozen. Sammut and
Cribb report that when 20 to 30 learning runs are collected and
then voting is applied, the result is a reliable controller that can
control the pole and cart system from any recoverable random
starting position without requiring further learning.

Bain (1990) reports on a method called incremental freez-

376

C. SAMMUT

Reliability of controller
produced by freezing

30

20
N j v b)il
~—
=
=
C
e o 10

o) L] T L]
0 100 200 300 400

Number of Runs
Figure 14.7. First attempt at incremental freezing

ing, suggested by Donald Michie, where votes are collected as
learning runs are completed and freezing occurs as soon as the
x? is passed. We conducted similar experiments with previous
versions of the BOXES algorithm which confirmed the efficacy
of this method. However, when incremental freezing was at-
tempted with the Law and Sammut variant the results were not
encouraging.

Figure 14.7 shows a plot of the reliability of the controller
obtained by incremental freezing. The reliability of the con-
troller is tested by running it 20 times on new pole balancing
tasks which all start in random states. If the system successfully
controls all 20 runs, then it is deemed reliable. Despite some er-
ratic behaviour, controllers produced beyond about 70 runs are
mostly reliable. When this experiment was repeated with a dif-
ferent random number sequence the results were as shown in
Figure 14.8. Thus, the latest version of BOXES causes incre-
mental freezing some problems. It is not yet clear why this is
the case.

377

RECENT PROGRESS WITH BOXES

Reliability of controller
produced by freezing

- | |
E 1o-l\ I“ "
o. — L‘.‘MM“’N -l :

—
0 20 40 60 80 100 120

Number of runs

Figure 14.8. Second attempt at incremental freezing

378

C. SAMMUT

0 0 0 1 0 1 0 0 o 0 0 1 0 0 1 111
0 0 O o 0 1 1 00 01 1 1 01 0 1 1
[] 0 0 1 0 0o o 1 01 0 1 1 111
0 0 1 0 0 1 0 0 o 0 0 1 0 0 1 111
0 0 1 o 0 1 111 0 1 0 0 1 1 111
0 0 0 0o 0 1 110 0 1 1 0 1 1 111
1 0 1 1 0 1 110 0 1 1 1 0 1 01 1
0 0 1 01 1 1 0 1 11 1 0 1 1 01 1
0 0 1 0 0 1 111 0 1 1 01 1 01 1
0 0 1 0 0 1 0 0 1 0 ¢ 1 o 11 0 1 1
0 0 1 o 0 1 0 0 1 0 0 1 01 1 01 1
o 0 1 0 0 1 0 0 1 o 0 1 0 1 1 0 1 1
0 0 1 0 0 1 0 0 1 ¢ 0 1 0 1 1 0 1 1
0 0 1 o 0 1 0 0 1 0 1 1 0 1 1 01 1
0 0 1 0 0 1 0 1 1 01 1 011 0 1 1
0 0 1 0 0 1 0 1 1 0 11 011 01 1
0 0 1 0 0 1 011 0 1 1 0 1 1 0 1 1
0 0 1 0 0 1 01 1 0 1 1 0 1 1 0 1 1

Figure 14.9. Cleaning up BOXES

6 DISCOVERING PATTERNS IN BOXES

Sammut and Cribb (1990) also reported on progress in making
the results of BOXES more understandable. The upper rect-
angle in Figure 14.9 shows the settings of all the boxes after
learning. A ‘0’ represents a ‘push left’ action and a ‘1’ rep-
resents a ‘push right’. The set of boxes can be stored in the
computer as a four dimensional decision array and it this array
that has been reproduced in the figure. The display groups all
boxes in the region where the pole is leaning to the far left in
the left hand side major column. All boxes in the region where
the cart is placed at the far left of the track are grouped in the
top major row.

It is very desirable that the output of a learning program
should be readable. In that way, humans can learn something
as well as the program. Unfortunately, the top display is not
very informative. However, Sammut and Cribb noted that there
is noise in the display. That is, some boxes have settings that
are inconsistent with their neighbours. In quite a number of
cases, the setting of a box is not critical and can be either 0 or
1. Therefore, Sammut and Cribb experimented with coercing
boxes to conform to a regular pattern. For example, the lower

379

RECENT PROGRESS WITH BOXES

rectangle in Figure 14.9 shows a cleaned up set of boxes which is
reliable. More importantly, the regularity in the boxes permits
compression of this representation to the point where the boxes
can be read as a simple rule. This was first noted by Makarovic.
His rule is shown below. '

theta_dot = -inf..-0.87
push left

theta_dot = -0.87..0.87
theta = -0.2..-0.017

push left
theta = -0.017..0.017
x.dot = -inf..-0.5
push left
x.dot = -0.5..0.5
x==-2.4..0
push left
x=-2,4,..0
push right
x_.dot = 0.5..inf
push right
theta = 0.017..0.2
push right
theta_dot = 0.87..inf
push right

6.1 Comblining induction and reinforcement learning

In recent experiments, we have tried to improve the method of
discovering patterns in boxes by using decision tree induction.
The method used is as follows.

e Each box contributes one example to an ID3-like algo-
rithm.

o The description of a box gives the attributes and the left /right
decisions are the class values.

o After running the ID3 algorithm, the decision tree is pruned
top-down, breadth-first.

¢ Each non-leaf node in the tree is replaced by a leaf node
whose class value is the majority class of the unpruned

380

C. SAMMUT

node.

o If the boxes defined by the decision tree preserve 20/20
performance then pruning of the node is made permanent.

e Otherwise, we try pruning a sub-tree.

20/20 performance refers to the reliability test described ear-
lier. The decision tree that results from this method is shown
below.

theta_dot = -inf..-0.87
push left

theta_dot = -0.87..0.87
theta = -0.2..-0.017

push left
theta = -0.017..0
x==-2.4..-1
push left
x =-1..2.4
push right
theta = 0..0.017
x=-2.4,.-1
push left
x=-1..1
x_dot = -inf..-0.5
push left
x.dot = -0.5..inf
push right
x=1..2.4
push right
theta = 0.017..0.2
push right
theta_dot = 0.87..inf
push right

This tree generates a set of boxes which is regular as can be
seen in Figure 14.10. The great advantage of readable control
rules is that they can instruct humans about the nature of con-
trol. Sammut and Michie (1991) describe the way in which they

381

RECENT PROGRESS WITH BOXES

0 0 1 o 0 1 0 0 1 o 0 1 0 1 1 01 1
o 0 1 0 0 1 00 1 0o 0 1 0 1 1 0 1 1
0 0 1 0 0 1 00 1 00 1 0 1 1 0 1 1
0o 0 1 0 0 1 011 0o 0 1 0 1 1 0 1 1
o 0 1 0 0 1 01 1 0 1 1 0 11 0 1 1
o 0 1 o 0 1 0 1 1 0 1 1 0 1 1 0 1 1
¢ 0 1 ¢ 0 1 o 1 1 0 1 1 0 1 1 0 1 1
o 0 1 0 0 1 ¢ 1 1 o 1 1 0 1 1 0 1 1
0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 1

Figure 14.10. Pattern of decision tree

were able to transpose knowledge of pole balancing to control-
ling the attitude of an orbiting spacecraft.

7 CONTINUING WORK

Work on improving the readability of BOXES output continues.
We have found that the order of pruning the decision tree influ-
ences the outcome. To avoid this problem, it may be necessary
to re-learn the boxes when a pruned decision tree imposes new
patterns on the boxes. That is, the boxes specified by the tree
are fixed, but all other boxes are subject to further training. It
is also important that intervals can be re-defined, that is, that
adjacent nodes in the tree can be merged. This may be eas-
ily achieved by the adoption of more sophisticated decision tree
induction programs.

REFERENCES

Anderson, C. W. (1987). Strategy Learning with Multilayer Con-
nectionist Representations. Technical Report No. TR87-509.3.
GTE LAboratories Incorporated, Waltham MA.

Bain, M. (1990). Machine-learned rule-based control. In M. Grimble,
S. McGhee, & P. Mowforth (Eds.), Knowledge-base Systems in
Industrial Control. Peter Peregrinus.

Cribb, J. (1989). Comparison and Analysis of Algorithms for Rein-
forcement Learning. Honours Thesis, Department of Computer
Science, University of New South Wales.

Law, J. K. C. (1992). Adaptive Rule-based Control. Master of Cogni-
tive Science Thesis, School of Computer Science and Engineering,
University of New South Wales.

382

C. SAMMUT

Michie, D. & Chambers, R. A. (1968). Boxes: An Experiment in
Adaptive Control. In E. Dale. and D. Michie (Eds.), Machine
Intelligence 2. Edinburgh: Oliver and Boyd.

Selfridge, O. G., Sutton, R. S. & Barto, A. G. (1985). Training and
Tracking in Robotics. In Proceedings of the Ninth International
Conference on Artificial Intelligence (pp. 670-672). Los Altos:
Morgan Kaufmann.

Sammut, C. & Cribb, J. (1990). Is Learning Rate a Good Perfor-
mance Criterion of Learning? In Proceedings of the Seventh In-
ternational Machine Learning Conference, Austin, Texas: Mor-
gan Kaufmann.

Sammut, C. & Michie, D. (1991). Controlling a ‘Black-Box’ Simula-
tion of a Spacecraft. AI Magazine, 12(1), 56-63.

383

e v sl

15

Building Symbolic Representations of Intuitive
Real-time Skills from Performance Data

D. Michie and R. Camacho

The Turing Institute,
Glasgow, UK

Abstract

Real-time control skills are ordinarily tacit — their possessors
cannot explicitly communicate them. But given sufficient sam-
pling of a trained expert’s input-output behaviour, machine
learning programs have been found capable of constructing rules
which, when run as programs, deliver behaviours similar to those
of the original exemplars. These ‘clones’ are in effect symbolic
representations of subcognitive behaviours.

After validation on simple pole-balancing tasks, the princi-
ples have been successfully generalized in flight-simulator exper-
iments, both by Sammut and others at UNSW, and by Cama-
cho at the Turing Institute and Oxford. A flight plan switches
control through a sequence of logically concurrent sets of reac-
tive behaviours. Each set can be thought of as a committee of
subpilots who are respectively specialized for rudder, elevators,
rollers, thrust, etc. The chairman (the flight plan) knows only
the mission sequence, and how to recognize the onset of each
stage.

This treatment is essentially that of the ‘blackboard model’,
augmented by machine learning to extract subpilot behaviours
(seventy-two behaviours in Camacho’s auto-pilot for a simulated
F-16 combat plane). A ‘clean-up’ effect, first noted in the pole-
balancing phase of this enquiry, results in auto-pilots which fly

385

REAL-TIME SKILLS

the F-16 under tighter control than the human from whom the
behavioural records were sampled.

1 INTRODUCTION

The labels ‘strong A’ and ‘weak AI’ have sometimes been used
to differentiate two schools. Criteria are summarized in Table

15.1.

Table 15.1. Criteria of strong and weak Al

Strong

Weak

Feasibility
of goals

Forms of
implemen-
tation

Personnel

Human-level intelligence
will be achieved in
machines within
foreseeable time.

All thought can be
mechanized as sequential
logical reasoning from
axiomatic descriptions
of the world. The
‘physical symbol system
hypothesis’: all agents,
including intelligent,

are best implemented
symbolically.

Vintage Al professionals,
e.g. Turing, Simon,
Newell, McCarthy,
Feigenbaum, Nilsson, and
their followers.

Human-level intelligence
will be implemented only
in some unimaginable

future, or perhaps never.

Most thought is
intuitive, not
introspectable,
non-logical, associative,
approximate and
‘fuzzy’: best modelled
by brain-like
ultra-parallel networks.

Members of other
professions, particularly
in linguistics,
neurobiology, physics,
and philosophy.

The taxonomy in Table 15.1 lays emphasis on the ‘physical
symbol system hypothesis’ of Newell and Simon (1976). Their
intended interpretation restricts symbol systems to those which
can transparently support communication with human users.

386

D. MICHIE AND R. CAMACHO

Thus the lists of numerical weights in which neural nets express
themselves constitute ‘symbols’ of a sort, but not in the sense
intended by the above authors. This restriction has persuaded
some practitioners that the physical symbol system hypothe-
sis excludes intuitive processes from AI’s domain of discourse.
Such separatism is unsafe, since much knowledge-based thought
seems irredeemably intuitive and sub-articulate (for a recent
commentary see French, 1990). For its subcognitive processes,
there is no direct evidence that the brain employs a symbolic
regime. Hence those who accept subarticulate expertise as a
proper Al concern may wonder whether for this purpose they
should abandon symbolic representations as untrue to nature.
The present chapter advocates a different position, namely that
a conceptually transparent symbolic style offers a way of improv-
ing on nature. By representing intuitive processes symbolically,
inductive inference can do something which is both non-brainlike
and also highly useful, catering to the client who says: ‘My in-
house experts may be ‘intuitive’. But I want an expert system
to formulate its reasons more explicitly than that.’

2 KNOWLEDGE AND THOUGHT

In industrial knowledge systems the implementer has to distin-
guish between thought as something to be communicated and
thought as problem solving. Choice of representation remains
a developer’s option. In implementing intuition, he or she may
decide that it is something over which to draw a veil. The veil
may be woven of neural nets, or of hand-crafted spaghetti-code,
or of something else. But suppose that the developer has to
supply the customer also with means to draw the veil aside, for
purposes of interrogation about goals, plans, evidence, justifi-
cation, and the like. At the price of being less true to nature,
he or she might then be better off not to have veiled it in the
first place. Like cognitive and brain scientists, knowledge engi-
neers also study the structure of expertise. Unlike cognitive and
brain scientists, they do this (or should do) for the purpose not
of emulating but of transcending the brain’s limitations. First
among these is the relative inarticulacy of what both cognitive

387

REAL-TIME SKILLS

scientists and knowledge engineers call ‘procedural knowledge’,
thus distinguishing it from ‘declarative’.

2.1 Declarative knowledge

It is characteristic of the retrieval and use of declarative knowl-
edge that it is ordinarily done in conscious awareness. From a
wealth of neurobiological observations concerning the effects of
brain lesions on memory, L. R. Squire (1987, chapter 11) distin-
guishes declarative memory from procedural as ‘memory that is
directly accessible to conscious recollection’. By contrast, the
hall-mark of a highly trained expert brain is that it does much
of its work intuitively. ‘Dialogue elicitation’ of rules for building
expert systems may therefore be frustrated whenever a given
expertise involves strategies stored in procedural memory. Inac-
cessibility to consciousness of even parts of a targeted expertise
can then cause serious problems for large knowledge engineering
projects, such as Japan’s ambitious ‘Fifth Generation’ (Michie,
1988). Differentiation of the two forms is thus desirable.
Declarative knowledge comprises whatever lends itself to log-
ical formulation: goals, descriptions, constraints, possibilities,
hypotheses. The declarative category also includes facts. When
these relate directly or indirectly to events in the agent’s own ex-
perience, their place of storage is referred to as ‘episodic’ mem-
ory. Another subdivision of declarative knowledge is held to
reside in ‘semantic’ memory, which Squire defines as follows:

Semantic memory refers to knowledge of the world. This
system represents organised information such as facts, con-
cepts, and vocabulary. The content of semantic memory is
explicitly known and available for recall. Unlike episodic
memory, however, semantic memory has no necessary tem-
poral landmarks. It does not refer to particular events in a
person’s past. A simple illustration of this difference is that
one may recall the difference between episodic and semantic
memory, or one may recall the encounter when the difference
was first explained.

A school founded by John McCarthy (1959) aims to extend
formal logic to serve as a vehicle for mechanizing declarative
knowledge (see a recent collection edited by Ginsberg, 1987).

388

D. MICHIE AND R. CAMACHO

We will say little further about the project, beyond expressing
respect for such work. Its philosophical importance is matched
only by its difficulty. Our theme is closer to the name and nature
of expert systems. These are not so much to do with giving
computers knowledge of the world, as with equipping them with
useful know-how. In face of the difficulties which confront the
McCarthy project, there is something to be said for separately
studying the mechanization of procedural knowledge and only
later integrating the two levels.

2.2 Nature of procedural knowledge

In Anderson’s (1990) text on cognition, skilled procedures are
pictured as arising in part by derivation from pre-existing mental
descriptions. No direct evidence is offered. Knowledge engineers
concerned with real-time skills have been led by practical expe-
rience in a rather different direction. The empirical picture is
one of inductive compilation from sensorimotor data gathered
in the course of trial and error. In this picture the role of higher-
level knowledge is not to participate directly, but to steer the
learning process, setting and adjusting the frame within which
skill-bearing rules are constructed.

The final phase of skill-learning, described by Anderson and
others as ‘automatization’, does not ordinarily support intro-
spective report by the expert performer, hence the ‘knowledge-
acquisition bettleneck’ of applied Al Procedural knowledge, as
we have seen, limits itself to the ‘how to’ of skilled tasks, whether
physical as in making a chair, or more abstract as in prediction of
sterling rates against the dollar or the diagnosis of acute abdomi-
nal pain. A common synonym for such knowledge is know-how,
and its manifestation in observable behaviour is called ‘skill’.
One difficulty is that observed task-performance does not nec-
essarily reveal whether a given expert’s behaviour really exem-
plifies a skill in the procedural sense or whether he or she is
using declarative-semantic memory to form action-plans on the
fly. Squire’s earlier-cited definition supplies a test, namely the
ability to give a verbal account of the way in which each decision
was made, possible only for declarative memory. A second crite-
rion is the frequency of the recognize-act cycle: this may simply

389

REAL-TIME SKILLS

be too fast for ‘what-if’ inferential planning to be feasible.

For those concerned to recover procedural rules, as in build-
ing expert systems, lack of verbal access (on which Anderson
also remarks) is a problem. Yet there is widespread faith among
knowledge engineers that special methods of ‘dialogue elicita-
tion’ can be found which will permit the construction of rule-
based systems on the scale of such inductively built systems
as the GASOIL (Slocombe et al., 1986) and BMT programs of
Table 15.2.

Is rule induction from expert-supplied data nevertheless in
some sense a second-best option for building systems on the
BMT scale? On the contrary. Experts can rapidly and effec-
tively communicate their skills (as in the BMT case) solely via
illustrative responses to selected cases. Does he or she thereby
omit something indispensable? Certainly the practitioner’s ex-
plicit and communicable awareness is basic to expertise in some
task domains. But other domains, which lack this property,
can be found not only among a rather wide variety of industrial
tasks, but even in such purely ‘mental’ forms of expertise as
playing a strong game of checkers (see below).

As a paradigm of procedural knowledge, Feigenbaum and
McCorduck (1983, p.55) give the example of tying one’s shoes.
It is interesting that once this skill has reached the stage known
as automatization it can continue unaffected by destruction of
the individual’s brain mechanisms for acquiring and handling
important forms of declarative knowledge. Damasio describes a
patient named Boswell. The following summary is from Patricia
Smith Churchland (personal communication).

In addition to losing the hippocampal structures, he has mas-
sive damage to frontal cortex. He can identify a house, or a car,
but he cannot identify his house or his car; he cannot remem-
ber that he was married, that he has children, and so forth.
He seems to have no retrograde episodic memory, as well as
no anterograde episodic, ... Boswell can still play a fine game
of checkers, though when asked he says it is bingo. He cannot
learn new faces and does not remember ‘pre-morbid’ faces such
as that of his wife and his children... Boswell can play checkers,
tie his shoes, carry on a conversation, etc.

390

D. MICHIE AND R. CAMACHO

Table 15.2. Of the world’s three largest expert systems the two lat-
est (GASOIL and BMT) were not constructed from rules obtained in
dialogue fashion, but by automated induction from expert-supplied
data. In each case the induction engineer trained the system in the
desired skill in the style that the master of a craft trains an appren-
tice, by a structured sequence of selected examples. Rates of code
production are typically in excess of 100 lines of installed Fortran,
C, Pascal, etc., per programmer day. The methodology allows vali-
dation to be placed on a user-transparent basis (Michie 1989), and
maintenance costs are in many cases trivialized. Tabulation is from
Slocombe et al. (1986) with 1990 data on BMT added. The BMT
program is described on p.10 of Pragmatica, vol. 1 (ed. J.E. Hayes
Michie), Glasgow, UK: Turing Institute Press.

APPLICATION NO. OF DEVELOP. MAINTENANCE INDUCTIVE

RULES MAN-YRS MAN-YRS/YR TOOLS
medical
MYCIN diagnosis 400 100 N/A N/A
VAX
XCON computer 8,000 180 30 N/A
configuration
hydrocarbon
separation ExpertEase
GASOIL system 2,800 1 0.1 and
configuration Extran 7
configuration
of 1st Class
BMT fire-protection >30,000 9 2.0 and
equipment in RuleMaster
buildings

391

REAL-TIME SKILLS

Of considerable interest is the survival of Boswell’s check-
ers skills. Evidently what we shall later term ‘fast’ skills are
not the only ones for which procedural knowledge may domi-
nate over declarative. In contrast to chess skill, checkers was
already known not to lend itself to the planning approach and
to be essentially ‘intuitive’. When A.L. Samuel was engaged in
his classic studies of machine learning using the game of check-
ers, he had numerous sessions with leading checkers masters di-
rected towards dialogue acquisition of their rules and principles.
Samuel reported (personal communication) that he had never
had such frustrating experiences in his life. In terms of rela-
tionship to what the masters actually did, the verbal material
which he elicited contained almost nothing which he could use
or interpret. In similar vein, Feigenbaum and McCorduck (loc.
cit., p.82) describe this type of expert response in the following
terms: ‘That’s true, but if you see enough patient/rocks/chip-
designs/instrument readings, you see that it is not true after all.’
They conclude ‘At this point, knowledge threatens to become
ten thousand special cases.’

The message from clinical studies is that skilled performance
of even sophisticated tasks can still be manifested, and learned,
when the brain is so damaged that knowledge of new happen-
ings cannot be retained and previously stored facts and relations
(declarative-semantic memory) are seriously disrupted. Another
circumstance under which the mediation of declarative mem-
ory is at least equally disabled can be observed in the normal
brain by imposing a sufficiently restrictive constraint on the time
available for the recognize-act cycle, as in touch-typing. This
skill does not depend on the storage and retrieval of declarative
knowledge, and can be acquired and executed in its virtually
complete absence. Recall that when copy-typing at speed the
typist does not need to understand the words as he or she reads
them. Indeed, after a speed test little or nothing of the text’s
content can be recalled. Moreover, educated onlookers are sur-
prised, although they should not be, by the outcome of a request
to the typist (supposing that he or she has been using a type-
writer with unlabelled keys) to label the keyboard correctly with
the proper alphanumeric symbols. Lacking a declarative model,

392

D. MICHIE AND R. CAMACHO

the touch-typist is ordinarily unable to do so (see, for example,
Posner, 1973), other than by deliberately typing a symbol and
observing where the finger went!

Simon (in press) has recently re-emphasized that simple recog-
nition of a familiar object takes at least 500 milliseconds. Opera-
tions involving reference to a semantic model of the task domain
require retrieval from long-term memory of relatively complex
knowledge-structures and an associated apparatus for inferring,
storing, and utilizing intermediate results. Such elaborate trans-
actions are to be found only in the ‘slow lane’. Here seconds,
minutes, or even hours are required to incubate a decision. The
bare bones of an explicit rationale for a slow-lane decision, when
it comes, can usually be elicited from the expert by verbal re-
port. Not so in the fast lane, to which the present discussion
is confined. ‘Fast’ skills cannot be accessed by ‘dialogue elici-
tation’ methods. How then are expert systems to be built for
these skills? A solution is to record behavioural traces from
the expert subject. Inductive inference then reconstructs from
recorded decision-data rule-based models of the brain’s hidden
strategies. As reported in this review, machine execution of
data-derived models has been found to generate performance
exceeding in reliability the trained subject’s own.

2.3 Postulates of skill acquisition

Experimental work which will now be described was animated
by a point of view about brains, summarized below as a list
of postulates. Declarative knowledge is abbreviated to ‘D’ and
procedural to ‘P’. P designates only procedural knowledge which
has already reached the automatized stage.

human agents are able verbally to report their own D;
human agents cannot verbally report their P;

D can be augmented by being told, and also by deduction;
P is built by learning, whether by imitation or by trial and
error;

5. P can be executed independent of D, but not vice versa;
decision-taking via P is fast relative to use of D;

7. sufficiently fast control skills depend on P alone;

Ll o

&

393

REAL-TIME SKILLS

8. even for some slow skills P is sufficient for expert perfor-
mance;

9. rule-induction can extract an explicit form of P from be-
havioural traces.

Experiments on dynamical control have yielded illustrations
of the listed postulates, culminating in a test of 9 above, namely
induction of rules from silent brains. But a comment is first
requisite on the undoubted existence of expert systems (EXCON
was mentioned earlier) whose rule-bases have, with whatever
difficulty, been constructed by dialogue acquisition.

Many observers have noted that experts seek to escape from
the requirement of rule-formulation (which they find unconge-
nial) by supplying ‘rules’ of such low-level form that they con-
stitute no more than concocted sample cases, i.e. specimen
decision-data. The phenomenon has been described by Sterling
and Shapiro (1986) in their description of the construction of a
credit evaluation expert system. The finance specialists contin-
ually gravitated towards concrete instances rather than general
rules. This has indeed been a universal finding in knowledge
engineering, in line with the known facts concerning procedural
memory and its mode of access.

But what if knowledge engineers in search of improvements
on raw formulations were consciously or unconsciously to apply
their own powers of inductive inference to such sample cases?
They could then themselves create the kind of high-level rule
structures that they had hoped to elicit. The result would of
course be testimony more to their own powers of inductive gen-
eralization than evidence that experts can introspect their own
rules. In a recent aerospace application two knowledge engineers
were able, by deliberately exploiting this style of ‘rule-conjecture
and test’, to construct a rule-based solution with no more than
a black-box simulator of the task domain to provide corrective
feed-back. No set of rules pre-existed, either in an expert’s brain
or anywhere else.

394

D. MICHIE AND R. CAMACHO

3 AN EXPERIMENT IN RULE-BASED CONTROL

The role of the systems developer postulated above requires only
a reactive oracle. This source need not be an expert. Indeed, it
need not be human. As will be described it could be a simulator
on which the developers can play ‘what-if’ games with their
latest conjectured rules (what if we modify the rules like this?
. what would result from that adjustment? ... etc.). In an R
& D contract for a US space consortium Sammut and Michie
(1991) were given access to just such an interactive oracle.

When building a controller for a physical process, traditional
control theory requires a mathematical model to predict the
behaviour of the process. Many processes are either too compli-
cated to model accurately or insufficient information is available
about the process environment. Space-craft attitude control is
an example of the latter. The client was interested in the devel-
opment by machine learning of a rule-structured controller. A
check was desirable as to whether dynamical control tasks can be
satisfactorily handled by production rules at all, whether these
are captured by learning algorithms or developed in some other
way. :

If the attitude of a satellite in low Earth orbit is to be kept
stable by means of thrusters, the control system must inter-
act with many unknowns. For example, although very thin,
the Earth’s atmosphere can extend many hundreds of kilome-
ters into space. At different times, the solar wind can cause the
atmosphere’s density to change, thus altering the drag and aero-
dynamic torques on the vehicle. These are factors which earth-
bound designers cannot predict and even after three decades of
space flight, attitude control is still a major problem.

The client required a trial of rule-based control, using a com-
puter simulation of an orbiting space-craft under ‘black box’
conditions. By this is meant that knowledge of the simulation’s
structure and parameters was unavailable to the developers and
hence to the controller. Constraints and assumptions included
minimal human supervision. Only one ground station was to
be used for control. The ground crew therefore have only a 16-
minute window in each 90-minute orbit during which they can

395

REAL-TIME SKILLS

communicate with the space-craft. A premium was thus placed
on the controller’s aptness for generating intelligible reports.

The client’s ‘black box’ simulated three-axis rigid body atti-
tude control with three non-linear coupled second order differen-
tial equations, and was supplied as Fortran object code. The use
of pseudo-random generators introduced various time-varying
disturbances, not only concerned with aerodynamic effects of
solar wind variations and of atmospheric density and altitude
changes, but also effects of propellant expenditure, payload re-
distribution, solar array articulation, extension and retraction of
the gravity gradient boom and the motion of robotic and other
on-board manufacturing appliances. Due to such unpredictabil-
ities and to the possibility of a failure while out of communica-
tion with the ground, interest in a rule-based back-up controller
centred on robustness, simplicity, and conceptual transparency.

The BOXES adaptive rule-based control algorithm (Michie
and Chambers, 1968; Chambers and Michie, 1969) was recently
the subject of new work by Sammut (1988) who also reviewed
trials of other algorithms for learning rule-based solutions to the
‘pole and cart’ problem. A rigid pole is hinged to a cart which is
free to move along a track of fixed length. The learning system
attempts to keep the pole balanced, and the cart within the
limits of the track, by applying to the cart a force of constant
magnitude but variable sign, either right or left (‘bang-bang’
control). The pole and cart system is characterized by four
state variables which make up a four-dimensional space. By
dividing each dimension into intervals, the state space is filled
by four-dimensional ‘boxes’. With each box (i.e. local region of
state-space, or ‘situation’ in the terminology of situation-action
rules) is associated a setting which indicates that for any point
within the given box the cart should be pushed either to the left
or to the right. Essentially this representation was tested on the
client’s simulated spacecraft.

3.1 The black box

The task was to drive the system from its initial state to the
specified final state and maintain that state. Included in the
black box was a fourth order Runge-Kutta numerical algorithm

396

D. MICHIE AND R. CAMACHO

which integrated the dynamics of the equations of motion. The
time step had a fixed value of 10 seconds. The black box kept
track of time and randomly injected various time-dependent dis-
turbances as earlier described.

The state variables:
Attitudes: yaw (z), roll (y), pitch (z)
Body rates: wg, wy, w,.

Initial values of the state variables:
r=y=2z=10deg
Wy = wy = w, = 0.025 deg/sec

The desired state;
z=y=2=0=3deg
Wy =wy = w, = 0.005 deg/sec

Failure conditions:
z or y or z exceeds 30 deg
Wz OF Wy OF w, exceeds £ 0.05 deg/sec

A flag is turned on if any of these go out of bounds.

Available control inputs:
Torque: T, Ty, T,.

Torque was applied by the firing of thrusters which were
aligned to the body axes. Although other attitude control de-
vices (momentum exchange systems) will be used on the satel-
lite in addition to thrusters, this work only addressed the use of
thrusters. The following are minimum and maximum torques
which can be applied by the thrusters:

T;(Min) = Ty(Min) = T,(Min) = 0 ft-1bf
T;(Max) = £ 0.5 ft/1bf; Ty(Max) = T,(Max) = % 1.5 ft/Ibf.

3.2 Therules

The first trial was made by directly adapting a set of BOXES-
derived rules from the pole-and-cart domain to a sequential logic

397

REAL-TIME SKILLS

suggested by hand-derived rules due to Makarovic (1987, 1991).
In each recognize-act cycle rule-matching follows a certain pri-
ority order, cycling through the state variables until an action
is selected. For each in turn the rule first checks that the first
derivative does not exceed certain bounds. If it does, then a
force is applied to oppose it. If it does not, then with respect
to the same variable check its magnitude. If it exceeds given
bounds then a force is applied accordingly.

In the case of the pole and cart, there was a clear priority to
the order in which dimensions were checked. It was critical that
the angular velocity and the angle of the pole were considered
before the cart variables, since neglect of the pole leads to failure
much more rapidly than neglecting to keep the cart away from
the ends of the track. If this principle is applicable to the case
of the space-craft then it is necessary to determine which of the
state variables changes most rapidly. This was done, yielding
rules expressible in ‘if-then-else’ form, thus:

if w, < -0.002 then apply a T, of +1.5
else if w, > 0.002 then apply a T, of -1.5

else if z < -2 then apply a T, of +1.5

else if z > 2 then apply a T, of -1.5

else if w, < -0.002 then apply a T, of +1.5
. and so on ...

Note the use of ‘bang-bang’ control, i.e. the torquers were set
either fully positive or fully negative just as in the pole-balancing
experiments. With a space vehicle there are three dimensions,
not one, to which a control motor (torquer) can apply a posi-
tive or negative thrust, corresponding to the yaw, roll, and pitch
dimensions of rotation respectively. The thresholds for the vari-
ables were determined by choosing an arbitrary value slightly
within the bounds given for the desired values of the variables.

This control strategy proved to be successful but slow, requir-
ing 8700 seconds to bring the vehicle within desired bounds, and
it also consumed 11.2 units of propellant. The question arose
whether the control of each dimension could be decoupled. The
cited rule only allows one thruster to be fired at any one time. If

398

D. MICHIE AND R. CAMACHO

Table 15.3. A decision array for control of the yaw dimension.

Yaw too-

positive T, /4 0 -Ty/4 -Tx/2 -Ty
Yaw OK T;/2 0 0 0 -Tz/2
Yaw too-

negative T, Tz/2 T, /4 0 -T, /4

Yaw-rate Yaw-rate Yaw-rate Yaw-rate Yaw-rate
too-neg. negative OK positive too-pos.

each axis of the craft were considered separately then all three
thrusters could be fired simultaneously. This modification re-
sulted in rules which brought the vehicle under control very
quickly, requiring only 4090 seconds. But propellant consump-
tion, although improved, was still too high, using 7.68 units
before the vehicle became stable. Therefore a partial retreat
was made from pure ‘bang-bang’, with a view to replacing it
with finer control of the thrusters.

The resulting strategy is best understood by a decision array.
For example, yaw control can be displayed as in Table 15.3 and
the resulting performance as in Figure 15.1. Each of the 15
boxes corresponds to one control rule. Thus the box in the top
left hand corner states that if the yaw is positive (i.e. above
the bounds on the desirable yaw) and the yaw rate w, is well
below the bounds of desirability then apply a quarter of the
full torque in the positive direction. Thresholds were set for
angles at +2 deg and for angular velocities they were £0.002
and £0.003. The decision arrays for roll and pitch dimensions
were of the same form. The resulting control behaviour was
highly satisfactory. The pitch dimension was the slowest of the
three to be brought within the desirability zone.

The client’s engineers stated that both in speed of recovery
and in propellant expenditure results were close to calculated

399

REAL-TIME SKILLS

15 = ™ 003

Total Propellant used 1.66 units o

Yaw -

(degrees) (deg/sec)

5 - = -0.01

0 500 1000 1500 2000

Time (seconds)

Figure 15.1. Plot over time of vehicle’s yaw behaviour (see text)

optima. Since however it appeared that the satellite had greater
inertia in the z-axis (pitch) than in the other two the thrust of
the z-torquer was increased. This brought the vehicle under con-
trol in 5290 seconds, somewhat more slowly than the previous
controller. But it only required 1.7 units of propellant, a sub-
stantial saving. Also calculations and simulations by the client’s
engineers made the result appear slightly better than optimal.
This doubtless arose from minor approximations and/or distri-
butional assumptions made in their numerical work. Time did
not permit the point to be elucidated. But the broad conclu-
sion was seen as extremely encouraging. An industrial-strength
problem had shown that the simplicity, robustness, and con-
ceptual transparency of rule-based control does not have to be
purchased at the cost of significant degradation of performance.

4 EXPERIMENTS WITH SKILL-GRAFTING

Supported by the freedom interactively to test each conjectured
modification on the simulator, Sammut and Michié found their
own powers of inductive conjecture adequate. But tasks of
higher complexity, such as remote control of pilotless aircraft,
demand a less primitive approach. Present ideas are oriented
towards the industry’s use of interactive simulators for train-

400

D. MICHIE AND R. CAMACHO

ing pilots. A simulator-trained performer cannot tell you his
or her strategy, but can demonstrate it. What is demonstrated
can be automatically recorded. What is recorded can be in-
ductively analysed by computer. With psychology-trained col-
leagues, Michael Bain, Jean Hayes-Michie, and Chris Robertson,
one of us (D.M.) engaged in an investigation into the use of the
rule-induction algorithm C4.5 (see Quinlan, 1987) to uncover
effective control rules from such behavioural records. Experi-
mental subjects were trained on an interactive simulation of a
task illustrated in Figure 15.2. Control was exercised through a
joystick of a pole-and-cart simulation which refreshed the screen
approximately 20 times per second. New results together with
earlier findings with this experimental system (Chambers and
Michie 1969) lead to conclusions as follows (details are available
in Michie, Bain, and Hayes-Michie 1990).

4.1 Conclusions from pole-balancing

First conclusion: role of problem representation. Chambers and
Michie used two regimes of training, identical except for the
graphical animation seen by the subject. In one variant the
picture was as shown. In the other the subject saw only a display
of four separate horizontal lines, along each of which a pointer
wandered to and fro. The subjects in this second variant were
kept in ignorance of the nature of the simulated physical system.
Unknown to them, the pointers actually represented the current
status of four state variables, namely position of cart, velocity of
cart, angle of pole, and angular velocity of pole. Our hypothesis
was that when the system is run fast, leaving only time for
use and up-dating of procedural memory, then there will be
no difference in the learning curves of subjects using the two
different representations. Although not explicitly reported in
their paper, an indication of this was observed by Chambers and
Michie. In recent work a rate was additionally used sufficiently
slow for subjects to report the task as having a major ‘planning’
component. This slow-trained group learned more slowly, at
least in the initial stages. In the new work trials have not yet
been made of the lines-and-pointers representation.

401

REAL-TIME SKILLS

Arrow indicates current direction of motor

Figure 15.2. Diagram of the pole and cart task

Second conclusion: induction of rules from behaviour. Ma-
chine learning by imitation of a trained human was first shown
for the inverted pendulum by Donaldson (1960) and partially
reproduced under bang-bang conditions by Widrow and Smith
(1964). Our concern was to test the ability of modern induction
algorithms to extract from the behavioural record the kinds of
rules believed to accumulate in procedural memory during skill-
learning. Results have been positive. A task was investigated
where the object was to cross the centre of the track as often
as possible in an allotted time-span without dropping the pole
or crashing the cart. When induction-extracted rules were in-
stalled in the computer as an ‘auto-pilot’, performance on the
task was similar to that of the trained human who had gen-
erated the original behavioural trace, but more dependable, as
described below.

Third conclusion: the clean-up effect. Rules induced from a
behavioural record can be assessed in two different ways. Pre-
dictive mode tests the ability of a rule-set correctly to predict
other behaviour sampled from the same source. Performance
mode tests the ability of the rules to substitute for the human
source in executing the skilled task.

Induced rule-sets performed satisfactorily in the second mode
while consistently showing high prediction error, often exceed-
ing 20 per cent. One of the team, Mr. Michael Bain, pointed
out that when watching a machine-generated rule-set’s perfor-
mance on the screen one is struck by an appearance of super-
human precision and stability. A trained human skill, although

402

D. MICHIE AND R. CAMACHO

Table 15.4. Clean-up effect shown by induced control rules over a
5-minute test period. x = position, § = angle: ‘dot’ denotes first
derivatives. These results are typical, and have been many times
confirmed in test runs with the same, and with other, subjects.

Trained human (ranges) 2.79 4.85 0.562 5.021
Induced rule (ranges) 0.46 1.83 0.134 2.276
Range differences 233 3.02 0.428 2.745

‘Clean-up’ 83% 62% T76% 55%

controlled by an equally precise and stable set of production
rules, is obliged to execute via an error-prone sensorimotor sys-
tem. Inconsistency and moments of inattention would then be
stripped away by the averaging effect implicit in inductive gen-
eralization, thus restoring to the experimenters a cleaned-up
version of the original production rules. When tested in predic-
tive mode, such a rule-set can do no better than the cumulative
sum of human perceptual and execution errors allow. But in
performance mode one would expect a super-reliable stereotype
of the behaviour of the human exemplar. Direct confirmation of
this idea was obtained by calculating the magnitude of the pole
and cart’s excursions during a control session along each of the
four dimensions of the state space. Observed ranges tabulated
in Table 15.4 were obtained from a behavioural trace recorded
from Mr. Bain’s own trained performance.

The findings suggest that ‘skill-grafting’ from behavioural
traces may be possible for more demanding tasks, such as those
encountered in aircraft flight control. The key idea is that if

403

REAL-TIME SKILLS

we could look inside the head of the ground-based pilot of a re-
motely controlled aircraft, or of the on-board pilot of a difficult
vehicle such as a helicopter, we might see a neural encoding of
a fully sufficient skill, but degraded in real-time execution by
sensorimotor delays and errors. Recovery of a logically equiva-
lent rule structure and its transplantation to an error-free device
(i.e. to a control computer) then offers a source of enhanced and
more reliable performance. In advanced rotorcraft control there
is a current need for libraries of individual autopilot manouevres
(‘circle at 50 feet’, ‘fly slowly sideways for one minute’, etc.)
which the pilot could activate in difficult weather or other con-
ditions, so as to free his attention for some main task in hand,
visual search of water surface, target acquisition, etc.

4.2 Learningto fly

Sammut and colleagues have recently been able to reproduce
the ‘skill-grafting’ phenomenon in the complex task of flying a
simulated aircraft (Sammut, Hurst, Kedzier, and Michie, 1992).
Using a flight simulator developed by Silicon Graphics, three
subjects trained themselves by repeatedly piloting a simulated
Cessna through the successive stages of a defined flight plan,
consisting of the following manouevres:

1. Take off and fly to an altitude of 2000 feet.

2. Level out and fly to a distance of 32 000 feet from the
starting point.

3. Turn right to a compass heading of approximately 330°.

4. At a North/South distance of 42 000 feet, turn left to head
back towards the runway.

5. Line up on the runway.
6. Descend to the runway, keeping in line.
7. Land on the runway.

Taking ‘events’ as being signalled by the occurrence of con-
trol actions, then up to 1000 events were recorded per flight.
Each of three trained subjects performed 30 flights, so that the
complete data comprised about 90 000 events. For each event
the control action was recorded, together with values of state

404

D. MICHIE AND R. CAMACHO

variables measured at a moment selected 1-3 seconds earlier.
The ‘offset’ makes approximate allowance for the pilot’s delay
in responding to complex stimuli. To give a rough impression
of the data, the following are names of recorded variables:

boolean variables: on-ground, g-limit, wing-stall,

integer variables: twist, elevation, azimuth, roll-speed,
elevation-speed, azimuth-speed, air-speed,
climb-speed, fuel, thrust, flaps;

real variables: E/W distance, altitude, N/S distance,

rollers, elevator.

The simulation program was modified to log the subjects’
actions during flight. Log files from trained subjects were used
to create the input to an inductive rule-learning program. The
learning program was Quinlan’s (1987) C4.5. Its output took
the form of separate decision trees for each of the four different
control actions, further sub-divided into the seven stages listed
above. For example, to quote from the original paper,

The critical rule at take-off is the elevator rule:

elevation > 4: level-pitch
elevation < 4
airspeed < 0: level-pitch
airspeed > 0: pitch-up-5

This states that as thrust is applied and the elevation is
level, pull back on the stick until the elevation increases to
4°, Because of the delay, the final elevation usually reaches
11° which is close to the values usually obtained by the pilot.
‘pitch-up-5’ indicates a large elevator action, whereas ‘pitch-
up-1’ would indicate a gentle elevator action. The other
significant control at this stage is flaps:

elevation < 6: full-flaps
elevation > 6: no-flaps

405

REAL-TIME SKILLS

Once the aircraft has reached an elevation angle of 6°, the
flaps are raised.

The 28 decision trees were automatically converted to C-code
routines, arranged as a suite of seven flight control modules, each
responsible for all aspects of a given stage. A new module was
invoked as soon as a pre-programmed precondition was satisfied
for the onset of the next stage. Within each module, four sets
of if-then rules separately supervized the four separate control
actions.

An autopilot was generated in this fashion from each of the
trained subjects. Tests were made by running the simulator in
autopilot mode, substituting as autopilot code one or another
of the three inductively synthesized program suites. The en-
tire flight plan was executed with conspicuous competence, but
with individual mannerisms characteristic of the flying styles of
the individual human data source. Indications of the ‘clean-up
effect’ (see earlier) were also evident, particularly during the
approach stage.

4.3 Learning to fly straight

What is the significance of the foregoing experiment? Primarily
that a suitable decomposition of the problem allows the skill-
grafting methodology to be scaled up. Inductive skill-grafting
evidently is not just applicable to pole-balancing but also to
more complex domains such as flight control.

The same workers also reported indications of the ‘clean-up’
effect earlier found in the pole-balancing experiments, but these
indications were of a preliminary nature only. We now report
a more detailed examination of this phenomenon independently
conducted by Camacho (1992) using a more challenging flight
control task. He used a computer simulation (ACM public-
domain software down-loaded onto a Sun Sparcstation 2) of the
F-16 combat aircraft. Using Quinlan’s C4.5 (see Quinlan, 1987)
decision-tree induction package Camacho not only found that
clean-up was operating, but was also able to show that in his
experimental context it played a very large, almost dominating,
role.

W

406

D. MICHIE AND R. CAMACHO

Camacho followed a similar methodology to that of Sammut
et al., details being as follows.

Flight plan stages:

1.
2.
3.

8.

Take off.
Climb to 1500 feet.

Reduce climbing angle and thrust attaining level flight at
2 kilo-feet.

Fly parallel to the runway’s long axis for a distance of 200
kilo-feet.

Turn left 270°.

Turn right to line up with the runway.

As soon as distance to runway is less than 70 kilo-feet,
start descent to runway keeping in line.

Land on the runway.

Variables sampled.

real;
real:

magnitude of airspeed (knots) (Geoparallel system)
y coordinate of airspeed (knots) (Geoparallel system)

integer: x position (ft) (Geoparallel system)
integer: y position (ft) (Geoparallel system)
integer: altitude (ft) -

real:
real:
real:
real:
real:
real:
real:
real:
real:
real:
real:
real:
real:
real:

climb rate (ft/h)

g-force vector in acft system (only z coordinate)
roll rate (rad/sec)

pitch rate (rad/sec)

yaw rate (rad/sec)

heading (rad) /* Euler angles for acft */
pitch (rad) /* Euler angles for acft */
roll (rad) /* Euler angles for acft */
angle of attack (rad)

angle of sideslip (rad)

elevators setting (radl)

ailerons setting (rad)

rudder setting (rad)

elevator trim setting (NOT used)

407

REAL-TIME SKILLS

real: flaps setting (rad)

real: speedBrake setting (rad)
integer: throttle

boolean: gear handle
boolean: brakes

boolean: afterBurner

Control commands used were: elevators, rollers, rudder, flaps,
speed brake angle, throttle, gear handle, brakes and after burner
The last three are boolean valued. Thus for each of the flight
plan’s eight stages nine separate decision trees were synthesized.

From each of typically twenty missions, successive ‘state-
vectors’ were sampled and written to file, making about 213
thousand ‘state-records’ in all. As a post-processing operation,
between 1100 and 1600 ‘events’ were then machine-selected from
each of these, making about 25 thousand ‘events-records’. As
in Sammut et al., only those state vectors were selected which
precede by a fixed interval in the file the subsequent record of
a control action. The set of events so constructed formed the
‘training set’ for inductive synthesis of a complete autopilot of
the form: flight plan plus 72 decision trees.

The earlier-mentioned clean-up effect became evident when
autopilots synthesized according to the above formulation were
substituted for human control. The magnitude of this gain in
steadiness of control can be appreciated by a study of Figures
15.3 and 15.4, which relate only to one dimension, namely con-
trol of horizontal deviation from flight plan during the first four
stages (straight-line flight on a constant bearing).

This has so far been the main result of an investigation still
in its early stages. It should be emphasized that on the other
criteria there are local stages of the total mission where improve-
ment is needed. In particular, probably because the human pi-
lot himself (R. C.) has not yet adequately mastered stage eight,
the autopilot induced from these records has not either. Self-
training, as well as autotraining, is currently continuing. Since
the foregoing was written, both human and clone have become
able routinely to land the simulated F-16 without mishap.

408

D. MICHIE AND R. CAMACHO

| | |
20 I
0
y
(feet) -
.20 i
-40 F i
-60 | . N
1 | |
0 50 100 150 200

x (units of a thousand feet)

Figure 15.3. The ‘clean-up’ effect. Plotted lines show distances trav-
elled in the horizontal plane from take-off by a human pilot (thin line)
and the autopilot (heavy line) using the ACM flight simulator of the
F-16 combat plane (see text): the y axis represents deviations in the
horizontal plane from straight flight.

409

REAL-TIME SKILLS

y
(feet)

0 50 100 150 200
x (units of a thousand feet)

Figure 15.4. Further measurements of the ‘clean-up’ effect, see pre-
vious figure. The six thin-line plots represent the first six missions
of a total of 20 flown by the human pilot (R. Camacho) to form the
training set of about 25 000 events. The general appearance of the re-
maining 14 was very similar when plotted in the same way (see text):
z represents distance travelled in the horizontal plane from take-off;

the y axis represents deviations in the horizontal plane from straight
flight.

410

D. MICHIE AND R. CAMACHO

4.4 A blackboard-like model for coordination among agents

In both of the flight control implementations reviewed above,
there is a two-level hierarchy of control: a high level ‘chairman’
(the flight plan) and a set of low-level ‘agents’ (decision trees).
So far the only role played by the chairman is to monitor the
stage of flight and switch the subset of active agents according
to context (stage of flight). Each low-level agent has a very
specialized task of deciding upon one control in one given stage.
All active low-level agents have the same view of the situation
(inspect all the state variables) including access to the decision
values of their peer agents. Despite the two-level design of the
current controller there is no supervized coordination of the low-
level agents. How then is the work done?

There is a strong similarity between the community of low-
level agents and the AI paradigm of the blackboard (see Nii,
1986, for review). Each agent behaves like a blackboard’s ‘knowl-
edge source’ responsible for a specialized problem solving activ-
ity (decide one of the controls in one particular stage of flight).
The blackboard (shared memory) role is played by the variables
of the aircraft depicting the overall situation. Since all vari-
ables are visible to every agent the agents have the same view
of the situation and, most importantly, have information about
their peer agents by watching their corresponding decision val-
ues in the ‘blackboard’. This latter facility is responsible for
the coordination among low-level agents. As an example, if the
rudder agent decides to change its value (moving the physical
rudder) the change will be noted on the ‘blackboard’ and the
roller agent, seeing it, may compensate the banking effect of
the physical movement of the rudder. For achieving this co-
ordination effect the decision values of the other agents must
also be used as attributes during the learning phase. The chair-
man represents explicit knowledge that is easily articulated and
therefore can be hand-crafted. The specialist agents, on the
other hand, implement low-level real-time control skills that, in
a human, are not performed at a conscious level and therefore
cannot be articulated. To create this kind of knowledge, each
agent is separately derived by inductive learning from recorded

411

REAL-TIME SKILLS

human performance of the skilled task — a step which is an
extension of previous blackboard models. The current imple-
mentation of the low-level agents may be effective if some small
variations to ‘normal conditions’ appear (mild wind). But if
the wind is abnormally strong (serious exception to normal fly-
ing conditions) then an understanding of the situation is needed
and possibly a reformulation of some current goal, like make a
slight change in the bearing to accommodate the wind compo-
nent in the final velocity. Therefore to improve the skills of the
chairman and to incorporate planning capabilities, a deep model
(possibly qualitative, as suggested by Sammut (1992)) will be
needed and the capability of reasoning from first principles us-
ing it. In a way similar to the human counterpart the computer
high-level agent should be silent most of the time, just moni-
toring the overall situation and making small corrections from
time to time. It should be fully activated only when the sit-
uation requires considerable replanning and deep reasoning for
dealing with exceptions for which the low-level agents have no
decision.

There is obviously a strong case for implementation of the
chairman in a logic programming language. Sammut (1992) has
suggested that the low-level agents should also be coded in a first
order language and constitute a library of primitive actions that
the high-level planner could use, setting values for parameters
and defining goals.

4.5 Conclusions from autopilot Induction

Models extracted as above from decision-data by rule learning
are purely heuristic in form. They incorporate no explicit ref-
erences to time or causality. Yet as reviewed earlier, real-time
human problem-solving involves co-operation between two sepa-
rate kinds of mental model associated with two separate memory
systems, updated by separate kinds of learning. The dichotomy
of models is recognized in Al under the labels ‘heuristic’ and
‘causal’, reflecting the procedural/declarative distinction. The
balance in humans is set by the time-constraints imposed by
different tasks. A fast situation-action cycle allows time only
for executing heuristics and virtually none for reasoning about

412

D. MICHIE AND R. CAMACHO

causes.

As the autopilot experiments demonstrate, complex skills can
be built entirely from heuristics. Bears can learn to ride bicy-
cles, and humans can fly combat planes through mission phases
which allow no time for analysis. Under such circumstances,
everything goes by pattern-invocation. The formal identity be-
tween pattern classification and control then stands out clearly.
This identity has recently been discussed (Michie, 1991) in con-
nection with a definition of learning which says:

a learning system uses sample data (the training set) to gen-
erate an up-dated basis for improved classification of subse-
quent data from the same source.

The above-cited discussion continues:

Notice that the definition, although phrased strictly in terms
of classification, logically extends to acquisition of improved
performance on tasks which do not look at all like classifica-
tion. Iterative situation-action tasks come to mind such as
riding a bicycle, solving an equation, or parsing a sentence.
The extension becomes obvious when for the decision classes
we choose names which refer to partitions of the space of sit-
uations as ‘suitable for action A’, ‘suitable for action B’, etc.

Why should one want, in addition to finding a machine-
efficient representation of the above mapping, to construct an
operationally redundant superstructure to capture causal rela-
tions and to support ‘what-if’ planning? Answers suggest them-
selves as soon as one moves to the more demanding definition
which animates the characteristically Al approach to learning:

a learning system uses sample data to generate an up-dated ba-
sis for improved classification of subsequent data from the same
source and expresses the new basis in intelligible symbolic form.

The requirement for social communication of the ‘updated
basis’ now forces the issue. If synthetic autopilots are to show
‘understanding’ of flight situations and their own responses,
then however necessary heuristic models may continue to be
for the sub-structures of skill, insightful performance and ex-
planation at higher and more strategic levels demands causal

413

REAL-TIME SKILLS

modelling of a sophisticated kind. It is towards this difficult ob-
jective that much work of the kind here reviewed is now turning
(see Bratko, 1991).

5 SUMMING UP

In the debate between symbolic and neural-net representations,
the two sides have tended to overlook the possibility that differ-
ent parts of the brain, specialized to address different purposes,
employ different representations. Specifically such differing pur-
poses can be broadly grouped under two contrasted main heads:

(1) ‘run-time’ thinking;
(2) communication of the process and its outcome.

For (1), there is no obvious biological reason to expect sym-
bolic representations to have evolved, in the sense in which
‘symbolic’ is here used. Indeed there is little evidence that
such structures are employed in the brain’s real-time problem-
solving, some of which is critically supported by varieties of
visual and spatial reasoning associated with the brain’s right
cerebral cortex, and by subcognitive procedures. But the so-
cial dissemination of knowledge and thought listed under (2) is
of such predominant importance in our species that elaborate
symbolic mechanisms have emerged to support the execution
of this function. The evolutionary processes have partly been
biological and partly cultural. Eccles (in Popper and Eccles,
1987) paints a picture of divergent specialization between the
two hemispheres of the brain according to which the ‘minor’
(usually the right) hemisphere plays roles central to run-time
problem-solving, involving pattern-handling and spatial and so-
cial orientation. Yet this hemisphere almost wholly lacks ca-
pabilities of symbolic reasoning, notably those associated with
language and logic. The dominant (usually left) hemisphere, by
contrast, not only fluently handles the decipherment of linguistic
and logical expressions, but is also the clearing-house for reports
on subgoal attainment during problem-solving. Eccles argues
that, although ‘consciousness’ is also manifested by the right
hemisphere in the sense of a diffuse awareness, the focussed and
organized forms of goal-oriented awareness which we associate

414

D. MICHIE AND R. CAMACHO

with ‘self’” are functions of the left brain. More recently the pos-
sibility has been aired in neurobiological circles (see Benjamin
Libet’s observations and associated discussion in Behavioural
and Brain Science, 1988-89) that the seat of consciousness acts
more as a news room than as a planning headquarters, putting
a coherent retrospective gloss on the consequences of decision.
The decisions themselves, in this model, emanate from activi-
ties localized elsewhere. An elaboration of this view has recently
been developed by Dennett (1992). Whatever the neural nature
of functions (1) and (2) above, modern brain science sees them
as operationally and topographically distinct. In such a view,
the mechanisms of (2) face a serious problem. Modules special-
ized to symbolic reporting must interface with dissimilar, even
alien, architectures if explanations of the ‘self’s problem-solving
decisions are to be generated. When required to support the
more intuitive field of real-time skills, the brain’s explanation
module tends to fail, or resorts, when pressed by the dialogue-
elicitation specialist, to confabulation.

Are we, as engineers of cognition, obliged to burden intelli-
gent artifacts with similar problems? On the contrary, to do so
would seem the height of folly. Moreover, from such work as has
here been reviewed, an alternative strategy is available. We can
treat expert sub~cognition as a ‘black box’ from which articulate
models can be extracted. The product: symbolic models of sub-
symbolic behaviour, or, more concretely, machine-executable yet
articulate skills derived from ‘silent’ brains.

Acknowledgments

Thanks are due to Professor Quinlan for active assistance in the
use of his C4.5 algorithm. The preparation of the review also
benefited from criticisms and suggestions made by Dr. Patricia
Smith Churchland, Mrs. J.E. Hayes Michie, Prof Colwyn Tre-
varthen, and by colleagues in the helicopter division of the Royal
Aerospace Establishment, Bedford, UK, and at Advanced Ro-
torcraft Technology Inc., Mountain View, USA. We were helped
by facilities at the Turing Institute, UK, at the Department of
Computer Science, University of New South Wales, Australia,
at the Department of Statistics, Virginia Tech, USA, and at the

415

REAL-TIME SKILLS

Oxford University Computing Laboratory. Thanks are also due
to the Japan Society for Artificial Intelligence, in whose 1991
Proceedings some of the material of this article first appeared.
Rui Camacho is supported by a scholarship from Junta Nacional
de Investigacdo Cientifica e Tecnoldgica (JNICT) in Portugal.

REFERENCES

Anderson, J.R. (1990). Cognitive Psychology and its Implications
(Third Edition), W.H. Freeman & Co.

Bratko, I. (1991). Qualitative modelling: learning and control. Proc.
Al-91, Prague. Copies also available from Electr. Eng. and
Comp. Sci., Ljubljana University, Slovenia.

Camacho, R. (1992). Laboratory notes on ezperiments with the ACM
flight simulator. Available from the author: Fax no: +44-865-
273839. e-mail: camacho@prg.ox.ac.uk.

Chambers, R.A. and Michie, D. (1969). Man-machine co-operation
on a learning task. In Computer Graphics: Techniques and Ap-
plications (eds. R. Parslow, R. Prowse and R. Elliott-Green),
London: Plenum, pp. 179-185.

Dennett, D.C. (1992). Consciousness Ezplained. Little, Brown and
Co.

Donaldson, P.E.K. (1960). Error decorrelation: a technique for
matching a class of functions, in Proc. Third Internat. Conf.
on Medic. Electronics , pp. 173-178.

Feigenbaum, E.A. and McCorduck, P. (1983). The Fifth Genera-
tion: Artificial Intelligence and Japan’s Computer Challenge to
the World , Reading, MA: Addison-Wesley.

French, R.M. (1990). Subcognition and the limits of the Turing Test.
In Mind , 99, pp.53-65.

Ginsberg, M.L. (ed. 1987). Readings in Nonmonotonic Reasoning,
Los Altos, CA: Morgan Kaufman.

McCarthy, J. (1959). Programs with common sense. In Mecha-
nization of Thought Processes Vol. I, London: Her Majesty’s
Stationary Office. Reprinted in M. Minsky, ed. (1960), Semantic
Information Processing, Cambridge, MA: MIT Press.

Makarovic, A. (1987). Pole-balancing as a benchmark problem for
qualitative modelling. Technical Report DP-4953, Ljubljana: Josef

416

D. MICHIE AND R. CAMACHO

Stefan Institute. Revised as (1991): A qualitative way of solving
the pole-balancing problem. In Machine Intelligence 12 (eds.
J.E. Hayes, D. Michie and E. Tyugu), Oxford University Press.

Michie, D. (1988). The Fifth Generation’s unbridged gap. In A
Half-Century of the Universal Turing Machine (ed. R. Herken),
Oxford University Press.

Michie, D. (1989). Problems of computer-aided concept formation.
In Applications of Ezpert Systems 2 (ed. R. J. Quinlan). Wok-
ingham and Reading, MA: Addison Wesley, pp 310-333.

Michie, D. (1991). Methodologies from machine learning in data
analysis and software. Computer Journal , 34, 559-565.

Michie, D., Bain, M. and Hayes-Michie, J. E. (1990). Cognitive
models from subcognitive skills. In Knowledge-based Systems in
Industrial Control (eds. Grimble, M., McGhee, S. and Mowforth,
P.), Peter Peregrinus.

Michie, D. and Chambers, R.A. (1968) BOXES: an experiment in
adaptive control, In Machine Intelligence 2 (eds. E. Dale and
D. Michie), Edinburgh: Edinburgh University Press.

Newell, A. and Simon, H.A. (1976). Computer science as empirical
inquiry: symbols and search. Commun. of the ACM , 19, 113-
126. ‘

Nii, H. P. (1986). Blackboard systems: the blackboard model of
problem solving and the evolution of blackboard architectures.
In AT Magazine , 7, 38-53.

Popper, K.R. and Eccles, J.C. (1977). The Self and its Brain. Lon-
don and New York: Routledge and Kegan Paul.

Posner, M.I. (1973). Cognition: An Introduction, Glenview, IL:
Scott, Foresman.

Quinlan, J.R. (1987). Generating production rules from decision
trees. Proc. Tenth Internat. Joint Conf. on Art. Intell. (IJCAI-
87) , Los Altos, CA: Kaufmann, pp. 304-307.

Sammut, C. (1988). Experimental results from an evaluation of al-
gorithms that learn to control dynamic systems. In Proc. Fifth
Internat. Conf. on Machine Learning (ed. J. Laird), San Mateo:
Morgan Kaufmann.

Sammut, C. (1992). Automatically constructing control systems by
observing human behaviour. In Proc. of the Second Internat.
Workshop on Inductive Logic Programming , June 6-7, 1992,

417

REAL-TIME SKILLS

Tokyo, Japan.

Sammut, C., Hurst, S., Kedzier, D. and Michie, D. (1992). Learning
to fly. In Proc. Ninth Intern. Machine Learning Conf. (eds.
D.H. Sleeman and P. Edwards), San Mateo, CA: Morgan Kauf-
man, pp. 385-393. .

Sammut, C. and Michie, D. (1991). Controlling a ‘black box’ simu-
lation of a space craft. AI Magazine , 12, (Part 1, Spring), pp.
56-63.

Simon, H.A (in press) Machine as mind, In Proceedings of the Turing
1990 Colloquium , 3-6 April 1990, Brighton, UK (ed. Millican,
P.) to appear.

Slocombe, S., Moore, K. and Zelouf, M. (1986). Engineering ez-
pert system applications. Presented at BCS Annual Conference,
December 1986.

Squire, L. R. (1987). Memory and Brain, Oxford University Press.

Sterling, L. and Shapiro, E. (1986). The Art of Prolog, Cambridge,
MA: The MIT Press, p.357.

Widrow, B. and Smith, F.W (1964). Pattern recognising control
systems, In Computer and Information Sciences (eds. Tou, J.T.
and Wilcox, R.H.). Clever Hume Press.

418

16

Learning Perceptually Chunked Macro
Operators

M. Suwa and H. Motoda

Advanced Research Laboratory, Hitachi Ltd.,
2520, Hatoyama, Saitama, 350-03, Japan

Abstract :

In previous studies search control knowledge has been acquired
using explanation-based learning (EBL) techniques. These learn
goal-oriented control knowledge by explaining how a decision at
a control decision node leads to the goal. In the domain of ge-
ometry problem-solving, however, this leads to knowledge which
is neither sufficiently general nor sufficiently operational. This
paper addresses an alternative form of search control knowl-
edge in which the search is controlled at each decision node in
such a way that a problem solver can locally recognize rele-
vant ‘perceptual chunks’. Previously the effectiveness of per-
ceptual chunks as control knowledge has been reported in a
geometry domain. In this paper, we propose a new chunking
technique, which acquires, as a chunk, an assembly of diagram
elements that can be recognized and grouped together with the
control decision node. In order to implement this chunking cri-
terion a learner, PCLEARN, employs recognition rules, domain-
specific knowledge describing necessary conditions for a domain
object to be recognizable. Experiments in a geometry domain
show that the set of learned knowledge exhibits higher opera-
tionality than EBL macro-operators. They also suggest that the
PCLEARN chunking technique can be a powerful method for
obtaining a small and highly organized set of domain-specific

419

LEARNING PERCEPTUALLY CHUNKED MACRO OPERATORS

perceptual chunks if augmented with a mechanism for dynami-
cally managing the utility of each chunk.

1 INTRODUCTION

The ability to learn search control knowledge is critically im-
portant for problem solvers due to the exponential growth in
size of the search spaces they confront. It has been shown that
explanation-based learning (EBL), including macro-operator learn-
ing by simple EBL techniques (Fikes et al. 1972; Minton 1985)
and a more sophisticated one that actively selects what to learn
(Minton et al. 1989), is a powerful technique for learning search
control knowledge. This research shares the common view that
learners acquire ‘goal-oriented’® search control knowledge by ex-
plaining why a choice taken at a control decision node eventually
satisfies the target concept of the problem.

The objective of this paper is to pose and answer the following
question. ‘Is there any kind of effective search control knowl-
edge which is not goal-oriented?’ In the domain of geometry, one
of the classical but typical domains with exponential growth in
size of search spaces, it has been reported that use of ‘perceptual
chunks’ in the Diagram Configuration (DC) model (Koedinger
and Anderson 1990) drastically reduces search spaces. Percep-
tual chunks are regarded as search control knowledge which is
not aimed at achieving a certain goal/subgoal, but at guiding
the search process at a control decision node in such a way
that problem solvers can recognize the chunks in the problem
space. Suwa and Motoda (1989; 1991) have shown that use of
‘figure-pattern strategies’, a small set of macro-operators whose
figurative patterns are the chunks meaningful in geometry do-
main, enables problem solvers to intelligently select appropriate
‘construction-lines by adding a new point out of an indefinite
number of candidate constructions. This research suggests that
perceptual chunks also provide critically important search con-
trol knowledge in the geometry domain. Here, we pose a sec-

1EBL learns from a target concept and produces search control knowl-
edge that is used for accomplishing a unifiable goal in future problems. In
this chapter we say that such control knowledge is ‘goal-oriented’.

420

M. SUWA AND H. MOTODA

ond question, ‘Can the EBL technique simulate acquisition of
perceptual chunks in geometry?’ Koedinger (1992) suggested
that macro-operator-like perceptual chunks in geometry are not
primarily organized around the goal-structure explaining target
concepts but, rather, are organized around objects or aggrega-
tions of objects in the domain of geometry. We will find an
answer to the above questions and justify Koedinger’s sugges-
tion.

In this chapter, we will address two issues along the lines of
the above questions, by illustrating experimental data in the do-
main of geometry. The first issue is about operationality of EBL
macro-operators in the domain of geometry. It is a critical issue
because unless learners provide a mechanism of acquiring a small
and highly organized set of macro-operators with high opera-
tionality, problem solving performance degrades drastically with
increasing numbers of macro-operators (Minton 1984, 1985).
Operationality of EBL macro-operators depends upon the in-
trinsic nature of the geometry domain itself concerning whether
there is a consistency in goal-structure across many problems or
not, because EBL macro-operators can be applied only to those
future problems which include the same goal-structure. It is an
open empirical question (Koedinger 1992). We will examine it
by collecting experimental data on the frequency at which EBL
macro-operators are acquired from and applied to many prob-
lems, which is a simple measure of the utility of macro-operators
(Minton 1985).

The second issue is the proposal of a new learning technique,
which is based on another concept different from that of EBL;
the learned concept is to be acquired as a chunk, an assembly of
diagram elements that can be recognizable and grouped together
with each control decision node. The learned chunk can be used
as control knowledge which guides problem-solving search so
that solvers can locally recognize a perceptual-chunk relevant to
each of the control decision nodes. The distinguishing point is
that there is no notion corresponding to target concepts of EBL.
This requires us to provide a criterion for dynamically determin-
ing the range of chunking. Suwa and Motoda (1991) proposed
the idea of ‘recognition rules’, domain-specific rules describing

421

LEARNING PERCEPTUALLY CHUNKED MACRO OPERATORS

necessary conditions for a domain object to be recognizable, as
a guide to determine the area of problem-solving traces to be
chunked out. In this chapter, we present a computer program
PCLEARN, a domain-independent system of learning percep-
tual chunks, by use of recognition rules. We also investigate the
utility of the rules using experimental data.

In the second section, we characterize the geometry domain
and enumerate the problems in applying EBL to this domain.
In the third section, we describe the details of the recognition
rules themselves and their use in learning perceptual-chunks. In
the fourth section, experimental results in the geometry domain
are presented and comparisons are made between EBL and the
proposed technique in terms of operationality of the learned
knowledge. The current limitations of the PCLEARN system
and future research issues are discussed in the fifth section.

2 LEARNING SEARCH CONTROL KNOWLEDGE IN GEOMETRY
2.1 Geometry domain

A general characterization of geometric problem-solving is that
it is the task of proving a fact holding among an assembly of
geometrical objects when a set of other facts are known to hold
as given conditions. Domain rules are used for deriving new
facts from the set of already given facts. Once a fact is derived,
it will never be undone in this domain, because it has been
already proved to hold in the given environment. Therefore,
the number of facts will increase monotonically as the proving
process proceeds. As discussed later, these characteristics are
major factors in bringing about difficulties in applying EBL in

this domain, :

The geometrical objects in this domain are points, segments,
directed segments, angles, and triangles. A fact is a nature of an
object or a relation between geometrical objects, which is rep-
resented in this chapter using the predicate symbols egs, eqa,
cong, sim, para, collinear, exist. These express equality of the
lengths of two segments, equality of the sizes of two angles, con-
gruence of two triangles, similarity of two triangles, the state
of two directed segments being parallel, collinearity of two seg-

422

M. SUWA AND H. MOTODA

Bmk_l_e_m_l Sivens: Domain Rules .
BC=CD, AC=CF Congruence of triangle
E AB=DE, IF XY=PQ, YZ=QR, ZX=RP
BCD collinear, THEN AXYZ=APQR
B C D AECEF collinear Isosceles
Goal: IF XY=YZ
LBAC=4DEC THEN AYXZ=/YZX

Figure 16.1. Geometry domain: examples of a problem and domain
rules

If there is a control choice node, XY=YZ

IF XY=YZ, WY=YYV, collinecarXYZ,
collinearVYW
THEN
X Z LXYW=LZYV,AXYWmAZYV,
LXWY=LZVY, LWXY=LVZY,
\'% XW/HVZ, XW=ZV

w

Figure 16.2. An example of perceptual-chunk (which can be useful
in solving Problem 1 of Fig.16.1)

ments and the existence of a segment respectively. Domain rules
are general knowledge describing the natures of geometrical ob-
jects. Figure 16.1 shows an example of a geometry problem as
well as two examples of domain rules. Figure 16.2 is an example
of a perceptual chunk, which says, ‘When there is a fact (con-
trol decision node) such as segment XY = segment Y Z, try to
apply the domain rule of Triangle-Congruence to the fact prefer-
ably, and subsequently apply the designated macro-operator if
possible.’

2.2 EBL as a learner in geometry

Various versions of EBL systems have been proposed as a tech-
nique for learning search control knowledge. Experiments with
a STRIPS-like pure EBL technique (Minton, 1985) confirmed
that problem solving efficiency degrades remarkably as macro-
operators are learned, which is caused by the two limitations of
these earlier EBL systems. One is the limitation of the ways
of selecting what to learn, i.e. their target concepts were essen-
tially the same as the goals of the problem solving traces (as in

423

LEARNING PERCEPTUALLY CHUNKED MACRO OPERATORS

(Fikes et al. 1972; Mitchell et al. 1983)). The second is the lack
or deficiency of utility measures for storing only useful macro-
operators. Some methods had no measure (Fikes et al. 1972;
Minton 1984) and others merely had a simple measure (Minton
1985). The PRODIGY system (Minton et al. 1989) addresses
these two problems by providing four kinds of meta-level tar-
get concepts (i.e. ‘succeeds’, ‘fails’, ‘sole-alternative’ and ‘goal-
interference’) and by evaluating the cost-effective utility of the
learned control knowledge (Minton 1990) over a series of expe-
riences of solving other problems.

However, in the domain of geometry problem-solving, learn-
ing from ‘fails’, ‘sole-alternative’, and ‘goal-interference’ will not
lead to useful knowledge, because there may be no positive rea-
son why a choice leads to a failure, and there may be no problem-
solving phenomenon corresponding to sole-alternative and goal-
interference in this domain where facts increase monotonically
in the problem space as reasoning proceeds. This is unlike task
planning where applications of operators successively change the
state of the reasoning target. Consequently, it is only ‘succeeds’
that may work well in the domain of geometry problem-solving.
This means again that the target concept is essentially the same
as the goal node of the problem. So, the EBL technique cannot
go beyond the first limitation mentioned above in this domain.

In the fourth section, we will examine the operationality of
the knowledge learned by EBL, based on the experimental data
in solving geometry problems.

3 THE PCLEARN SYSTEM
3.1 The learning concept

In order to address the problems mentioned in the previous
section for the purpose of learning a useful set of perceptual-
chunks from problem-solving traces, we proposed a new learn-
ing concept quite different from the ‘goal-orientedness’ of EBL;
PCLEARN acquires, for each control decision node in the problem-
solving traces, an assembly of diagram elements that are visually
recognizable and grouped together with the control decision node
as a chunk. It then learns the macro-operator information in-

424

M. SUWA AND H. MOTODA

Input
Training Example : each control decision node
Domain Rules : knowledge represented as production rules
Chunking Criterion : *‘recognition rules”
Output
The pair of a control decision node and the relevant perceptual-chunk
with macro-operator information.

Figure 16.3. The specification of PCLEARN chunking technique

cluded in the chunk as search control knowledge.

For that purpose, PCLEARN has a criterion for determin-
ing which portion of the problem diagram is recognizable and
grouped together with each control decision node. The criterion
is a set of ‘recognition rules’, domain-specific knowledge which
describes the necessary conditions for a domain object to be
recognizable. These take the following form;

recognizable(Obj):- recognizable(Obj), ..., recognizable(Objn),
a(Obji,. . .,0bjN).

In order for Obj to be recognizable, all the objects Obj; through
Objn must be recognizable and also an additional condition
a(0bj1,...,Objn) has to hold. a(Objy,...,Objn) is a relation
between the argument objects and/or the objects composing the
argument objects. The precise procedure for acquiring perceptual-
chunks by use of these recognition rules is shown in the Sec-
tion 3.3.

The specification of PCLEARN perceptual chunking is sum-
marized in Figure 16.3. PCLEARN selects training examples
from the problem-solving traces according to the definition of
control decision node. Control decision nodes are nodes that are
members of the successful proof tree for which there is at least
one tested domain rule which has been found to be applicable
when the other tested ones were not. The output of PCLEARN
is the pair of a control decision node and the perceptual chunk
relevant to that node with macro-operator information telling
what domain rules should be subsequently applied to that node.
The learned knowledge can be regarded as a counterpart of ‘pref-
erence rules’ (Minton et al. 1989) of the PRODIGY system.

425

LEARNING PERCEPTUALLY CHUNKED MACRO OPERATORS

3.2 The overview of PCLEARN
The PCLEARN system includes the following modules;

¢ A domain-independent problem solver. This deals
with the task of proving a fact that holds in a given assem-
bly of domain objects when a set of other facts is known
to hold, e.g. theorem-proving or diagnosis, using domain
rules as well as search control rules. Domain rules are
general domain knowledge. They are represented as pro-
duction rules which have preconditions (sets of facts) in
the IF part and a conclusion (a fact) in the THEN part.

e Chunking facility. PCLEARN’s chunking method is ex-
plained in the previous section.

The problem solver’s search is conducted by repeating the
following decision cycle until the goal node is derived;

1. A node in the search tree is chosen. A node represents a
fact which has been given or proved to hold in the problem
space.

2. Domain rules (or search control rules) which can be ap-
plied to that node in a forward direction are searched for.
The domain rule applicable in a forward direction to a
node is the one which has an element of the IF part unifi-
able to that node and whose other elements in the IF part
can also be unifiable to the already existing facts.

3. If there is no applicable domain rule, go back to 1 and
select another node. If there is one, add a new parent
node(s), representing the instantiated fact of the THEN
part of the domain rule, whose children are the nodes rep-
resenting the set of facts in the IF part. Unless the new
node is unifiable to the goal node, go back to 1.

3.3 Algorithm for PCLEARN chunking

In creating a perceptual-chunk for a domain rule which is suc-
cessfully applied to a control decision node, PCLEARN first
identifies all the recognizable domain objects included in the
rule.? It then enumerates all the recognizable features of these

2This rule is denoted as SAR (Successfully Applied Rule) in this paper.

426

M. SUWA AND H. MOTODA

recognizable(X):- recognizable(s(X,Y)).
recognizable(s(X,Y)):- recognizable(a(X,Y,Z})).
recognizable(s(X,Y)):- recognizable(tn(X,Y,Z)).
recognizable(s(X,Y)):- recognizable(X), recognizable(Y), exist(s(X.Y)).
recognizable(s(X,Y)):- recognizable(X), recognizable(Y), collinear(X.Z.Y).
recognizable(a(X,Y,Z)):- recognizable(s(X,Y)), recognizable(s(Y,Z)).
recognizable(tr(X,Y,Z)):-

recognizable(s(X,Y)), recognizable(s(Y,Z)), recognizable(s(Z,X)).

where s(X,Y) -- segment XY, tr(X,Y.Z) -- triangle XYZ, a(X,YZ)-- angle XYZ
The literals underlined are additional conditions.

Figure 16.4. The set of recognition rules in geometry

objects. This produces a perceptual chunk which is the assem-
bly of the objects with their features. Recognition rules are used
in the first process.

Figure 16.4 is the set of recognition rules in the geometry
domain. Points, segments, triangles and angles are the domain
objects in this domain. The first rule states that a point X
is always recognizable when a segment XY is found to be rec-
ognizable because X is a constituent member of XY. In gen-
eral, when an object is already found to be recognizable and
we want to prove the recognizability of another object which
is a structural constituent member of the former object, we do
not need any additional conditions. The first three rules in Fig-
ure 16.4 belong to this category. On the other hand, when we
prove the recognizability of an object from the other objects
which compose that object, we need some (sometimes no) addi-
tional conditions. For example, when we prove the recognizabil-
ity of segment XY from the recognizabilities of the two points
X and Y, an additional condition is needed, i.e. the segment
XY actually has to exist in the problem space(corresponding
to ezist(s(X,Y)) in Figure 16.4), or two segments s(X, Z) and
s(Z,Y) have to be on the same line for another point Z (cor-
responding to collinear(X, Z,Y) in Figure 16.4). The last two
recognition rules are examples where no additional condition is
needed by chance, although they belong to this category.

3.3.1 Step 1: Picking up recognizable objects.

The first step is to enumerate all the recognizable objects rele-
vant to a control decision node. The procedures are

427

LEARNING PERCEPTUALLY CHUNKED MACRO OPERATORS

a(b,a,c)=za(d,e,c)
a(c,ab)=a(d,e.f)

a(cfd =M’L\
collinear(e,c,f) = a(c,a,b)=a(c,f,d)
s(f.d)= i
s(a,b)=5(d.e) =E
Domain rule

Cong-by-2Side-1Ang € ====cmeean. .. i tr(de,b) mm tr(fc,d)

o sac=se) ¢ sbe)=s(ed) | aach
exist(s(a,b)) | exist(s(d,f)) :Collinear(a,c,): collinear(b,c,d) "

Figure 16.5. The successful proof tree of Problem 1 of Fig.16.1

1. to assert that all the objects which appear as the argu-
ments of the literals in the SAR are recognizable, and

2. to enumerate all the objects which can be proved as rec-
ognizable, using recognition rules.

Figure 16.5 is a successful proof tree of the Problem 1 in
Figure 16.1. The underlined nodes are the control decision
nodes. Here, the learning process for the control decision node,
AC = CF, is illustrated. The SAR for this control decision
node is Cong-by-2Side-1Ang. First, the objects appearing in this
SAR, s(b, ¢), s(a,c), s(c,d), s(f,c), a(b,c,a), a(d,c, f), tr(a,b,c)
and tr(f,c,d), are asserted to be recognizable. Then, by use of
the recognition rules, the following objects, a, b, ¢, d, f, s(a,b),
s(d, £), 5(b,d), s(a, f), a(b,a,0), a(b,a, f), a(a,b,), a(a,b,d),
a(d, f,c), a(d, f,a), a(f,d,c), a(f,d,b), a(b,c, f) and a(a,c,d)

are justified to be recognizable.

3.3.2 Step 2: Enumerating recognizable features.

The second step is to derive from the problem-solving traces all
the recognizable features of the above recognizable objects. The
procedures are

1. the literals appearing in the SAR are recognizable,

2. the literals of the additional conditions which appeared
in the recognition rules used successfully for proving the
recognizability of objects in Step 1 are recognizable, and

428

M. SUWA AND H. MOTODA

3. all the features that can be derived from the above recog-
nizable literals using domain rules are recognizable.

What we have obtained so far is the derivation tree (the third
procedure of Step 2). Note that the derivation tree itself repre-
sents a piece of macro-operator information that can be applied
to the same control decision node in future problems. The lowest
nodes of the tree are the IF-part of the macro-operator and the
other nodes are the THEN-part. If we notice that the macro-
operator has been derived only from the recognizable features
that have been determined by use of recognition rules, the sig-
nificant role of recognition rules in chunking the macro-operator
may be clear.

Let us look at the example case of learning from AC = CF
in Figure 16.5. The recognizable literals to be picked up before
the derivation process are shown in Fig. 16.5 as the nodes col-
ored grey, out of which the literals that have been incorporated
as a result of using recognition rules (the 2nd of Step 2) are
collinear(a, c, f), collinear(b, c, d), exist(s(a,b)), exist(s(d, f)).
The first two have been picked up because they appeared in the
recognition rules used for proving the recognizability of the ob-
ject s(a, f) and s(b,d) respectively. Out of these four, the last
two will not be used in the derivation process and therefore will
be removed from the macro-operator.

Note that owing to the existence of some additional condi-
tions in the set of recognition rules, the learned macro-operator
becomes more specific® than the SAR itself. In case of the above
example, incorporating the two collinearities has been significant
in obtaining a perceptual-chunk of the two congruent triangles
located in a completely point-symmetry (the one in Figure 16.2),
which is more specific than the two merely congruent triangles.

3.3.3 Step 3: Generalizing.

The final step is to generalize each node of the acquired deriva-
tion tree by dissolving the bindings of the variables of the used

3This specificity directly influences the operationality of the learned
perceptual-chunks. In this sense, recognition rules play a crucial role in
determining the chunked area.

429

LEARNING PERCEPTUALLY CHUNKED MACRO OPERATORS

Table 16.1. Assignment of problems to training and test sessions

Sessions Category 1 Category2 Category 3

Learning 7 7 6
Test 3 4 3

domain rules. The generalized tree itself represents a macro-
operator that has been learned for the control decision node. In
the case of the above example, the one in Figure 16.2 is acquired.

We call this sort of macro-operator a perceptually-chunked
macro operator because the recognition rules work as a percep-
tual criterion for determining the area to be chunked out, just
as human experts might do visually.

4 EXPERIMENTAL RESULTS
4.1 Method of experimentations

For simplicity, we divided the experiments into two sessions; a
training session where problems are solved without using learned
search control knowledge and learning is conducted for each
problem, and a test session where problems are solved by use of
search control knowledge obtained from the training session and
no new learning is performed. We selected 30 geometry prob-
lems from some reference books on geometry, 20 of which are
assigned to the training session and 10 are assigned to the test
session. The problems we selected are limited to three problem
categories; congruence (and/or similarity) of triangles (Category
1), natures of isosceles and right-angled triangles (Category 2)
and natures of quadrilaterals (Category 3). The numbers of
the problems selected for each category and assigned to the two
sessions are shown in Table 16.1.

In selecting problems, we paid attention mainly to two issues.
The first is that the numbers of training problems selected for
the three categories should be approximately equal. This is in
order to avoid problem selection in terms of categories for the
training session which may cause the bias that certain percep-
tual chunks are learned more frequently, obscuring the issues of
consistency in perceptual chunks across problems. The second
is that the numbers of the test problems should also be approxi-

430

M. SUWA AND H. MOTODA

Table 16.2. Frequencies of the same perceptual-chunks being learned
from many problems

Frequencies of The number of perceptual-chunks

being learned PCLEARN EBL
1 43 86
2 9 7
3 5 0
4 3 1
more than 4 4 0
total 64 94

mately equal in the three categories because the problems in the
three categories should be equally tested using macro-operators.

4.2 Operationality of macro-operators

In this chapter, operationality of macro-operators is measured
by the frequency at which each of the macro-operators is ac-
quired from the problems in the learning session and applied to
the problems in the test sessions. We investigated it in both
cases of the EBL learner which learns from ‘succeeds’ and the
PCLEARN system.

Table 16.2 shows the frequency at which macro-operators
with the same diagram configuration are acquired during solving
20 problems in the training session. It seems to be quite a rare
case that the EBL learner acquires the same set of perceptual
chunks from different problems. On the other hand, PCLEARN
learns several kinds of perceptual chunks more frequently in dif-
ferent problems.

Table 16.3 shows the results of the frequency at which those
learned macro-operators are successfully applied to problems in
the test session. The macro-operators of the EBL learner were
applied 15 times, out of which 13 were successful, while the
macro-operators by PCLEARN were applied 44 times, out of
which 39 applications were successful. Success rate is about the
same with both learners but the frequency is much larger in
PCLEARN.

Table 16.4 shows the percentage of the nodes which were re-
lated to applications of macro-operators against all the nodes

431

LEARNING PERCEPTUALLY CHUNKED MACRO OPERATORS

Table 16.3. Frequencies of applications of the learned knowledge

Frequency PCLEARN EBL

Total applications 44 15

Successful applications 39 13
(ratio) (89%) (87%)

Table 16.4. The ratio of the nodes related to applications of macro-
operators against all the nodes in a proof-tree (average over all the
test problems)

PCLEARN EBL
Mean (%) Max. (%) Min. (%) Mean (%) Max. (%) Min. (%)
67.5 86.0 38.0 30.0 80.0 0

in the successful proof tree, i.e. a measure of how much macro-
operators contribute to constructing a proof-tree in the test ses-
sion. The shown data (mean, maximum and minimum) are
statistics over all the test session problems. The degree of the
macro-operators’ contributions to constructing proof-trees are
larger in using PCLEARN macro-operators.

According to the data on cross-problem learnability (Table
16.2), successful applicability (Table 16.3) and the degree of
contribution to proof-trees (Table 16.4), an-answer to the em-
pirical question mentioned in the first section is that there is lit-
tle consistency in goal-structure across geometry problems while
there is indeed cross-problem consistency in perceptual chunks,
i.e. in the domain of geometry, ‘perceptually-chunked’ macro-
operators have higher operationality than ‘goal-oriented’ EBL
macro operators and hence PCLEARN is more appropriate to
this domain than EBL.

Table 16.5 shows an explanation why goal-oriented macro-
operators have low operationality. The average size of the ap-
plied macro-operators weighted with the frequency of appli-
cations is compared with the average size of all the macro-
operators learned in the training session?. Expert-selected macro-

4We define that the size of a macro-operator is the number of its IF part
elements, a measure reflecting the ease of finding appropriate instantiations
of its preconditions.

432

M. SUWA AND H. MOTODA

Table 16.5. The average sizes of all the learned and applied macro-
operators

Range of average EBL PCLEARN Expert-selected
All the learned macros 5.1 39 32
The applied macros 29 25 3.1

operators in the third column are the ones which are carefully
selected by a geometry expert from among the set of perceptual
chunks PCLEARN has acquired. In general, a large difference
in both quantities means that a group of macro-operators with
a certain size is not applicable. However this may cause consid-
erable costs in testing to apply them in vain. In the case of the
EBL macro, the average size of all the macro-operators is much
bigger than that of the others which were actually applicable.
This is mainly because the EBL learner acquires a chunk from
all the paths from each control decision node to the goal of the
problem and hence the learned macro-operators tend to be too
big in size to be applied to the control decision nodes of future
problems. The experimental data suggest that more localized
small macro-operators, around control decision nodes which are
not always goal-oriented, would have higher operationality in
geometry domain.

From all this discussion, we conclude that the PCLEARN
chunking module is superior to the typical EBL technique as a
method for learning perceptual chunks in the geometry domain,
and also that recognition rules are effective as an operationality
criterion for determining the area of problem-solving traces to
be chunked out.

4.3 Learning performance results

Previous experiments have revealed that macro-operator learn-
ing has some distinct (both positive and negative) effects on
the search process. These reflect two sides of the same coin.
The major good effect is referred to as the ‘re-ordering effect’
(Minton 1990); the domain rules encoded as macro-operators
are tried before other rules which might be tried first if there
were no macro-operators, and consequently unsuccessful search

433

LEARNING PERCEPTUALLY CHUNKED MACRO OPERATORS

Table 16.6. Reduction of the explored nodes by use of macro-
operators as well as frequencies of macro-operator applications, in
four macro modes

Problem _Without macros EBL PCLEARN Expert-selected
No. Expl. Suc. Tot. Expl. Suc. Tot. Expl. Suc. Tot. Expl. Suc. Tot.
1 33 - - 33 0 o 4 7 7 12 4 4
2 10 - - 10 1 1 5 4 4 5 4 4
3 10 - - 23 2 4 7 2 2 7 2 2
4 9 - - 18 2 2 15 8 8 19 2 2
5 12 - - 11 2 2 9 4 4 9 2 2
6 17 - - 15 2 2 15 3 3 15 2 2
7 17 = - 17 0 O 7 2 2 7 2 2
8 14 - - 11 2 2 12 3 6 10 3 3
9 8§ = - 4 2 2 8 2 4 4 1 1
10 15 - = 15 0 0O 8 4 4 7 3 3

Expl. -- The number of the explored nodes in the proof tree
Suc., -- Frequencies of macro-operators being applied successfully
Tot. -- Total frequencies of macro-operators being applied

will be put off later or sometimes left out. This reduces the
search space.

Another negative effect is ‘increased matching cost’ (Minton
1990). As the number of macro-operators increases, the po-
tential frequencies of testing domain knowledge (domain rules
and macro-operators) at each control decision node also in-
creases; if no macro-operators are applicable at a control de-
cision node, the problem solver will have to resort to its domain
rules, which means that the matching cost in considering the
macro-operators was unnecessarily consumed. The number of
bindings for each precondition of a domain rule is especially
large in domains like geometry. Thus increased matching cost
produced by macro-operators severely affects the performance.

The third effect, which also tends to degrade performance, is
unsuccessful macro-operator application. The way PCLEARN
applies macro-operators is not in goal-oriented search control
but in a more local, opportunistic search control. This may
sometimes guide the solution search in the wrong direction,
which will increase the search space as a whole.

We investigated the above three effects in solving 10 test
problems using the following four macro modes; with no macro-

434

M. SUWA AND H. MOTODA

operators and with each of the three sets of macro-operators
mentioned in Table 16.5. A simple measure of the search space
explored by the problem solver is the number of nodes to which
the problem solver applied domain knowledge (domain rules
and macro-operators). Table 16.6 shows the numbers of the
explored nodes in solving 10 problems in each of the four macro
modes, together with the statistics about all the applications
of macro-operators and successful applications. It is observed
that in all three macro-modes the search spaces are reduced (i.e.
‘re-ordering effect’), compared to no macro mode. There are
some exceptional cases of unsuccessful macro-operator applica-
tions. Especially the PCLEARN macro-operators contributed
much more to reducing the search space than the EBL macro-
operators did. In order to reduce the search space considerably,
problem solvers need a set of macro-operators with operational-
ity higher than a certain threshold. The PCLEARN macro-
operators exhibit a relatively high percentage of success, 89%.
The ideal value 100% is seen in the case of Expert-selected-
macro mode (see Table 16.6). This shows that the third effect
mentioned above is just a minor one in the PCLEARN system.

Table 16.7 shows the experimental data of ‘matching costs’
(the total cost, the cost of domain rule matchings and the cost
of macro-operator matchings) when solving the test problems in
the four macro modes. In EBL-macro mode, the cost of macro-
operator matchings is extremely large compared to the total cost
in No-macro mode. This is mainly because a large number of
inapplicable macro-operators with relatively large IF sizes (refer
to Table 16.5) were unnecessarily tested.

In PCLEARN-macro mode, the cost of domain rule match-
ings is smaller than that in No-macro mode, due to the reduction
of the search space by the re-ordering effect using PCLEARN
macro-operators which have relatively high operationality. How-
ever, the cost of macro-operator matchings still exceeds the re-
duction amount of the cost of domain rule matchings, and hence
the total cost does not pay in all the test problems compared
to No-macro mode. Expert-selected macro-operators are ones
which have been obtained by eliminating some of the PCLEARN
macro-operators (as mentioned before) which do not satisfy sim-

435

LEARNING PERCEPTUALLY CHUNKED MACRO OPERATORS

Table 16.7. Matching costs in solving the test problems in each of
the four macro-operator modes

Problem Without macros EBL PCLEARN Expert-selected
No. Tot. Rule Macro Tot. Rule Macro Tot. Rule Macro Tot. Rule Macro

1 477 477 0 3889 841 3048 629 278 351 329 199 130
2 67 67 0 1052 57 995.110 14 96 44 11 31
3 45 45 0 1060 162 898 131 32 99 59 26 33
4 87 87 O 1205 159 1046 198 35 163 267 121 146
5 33 33 0 660 53 607 112 34 78 35 21 14
6 170 170 O 621 100 521 305 75 230 169 67 102
7 81 81 O 541 117 424 103 32 71 57 31 26
8 98 98 O 941 173 768 318 130 188 137 86 5l
9 54 54 0 92 5 87 150 52 98 15 6 9
10 106 106 O 1506 175 1331 168 79 8% 66 39 27

Tot. -- The total cpu-time cost taken in solving the problem
Rule --The cpu-time cost taken for domain-rule matchings
Macro -- The cpu-time cost taken for macro-operator matchings (unit: sec)

ple requirements such as successful applicability and cross-problem
learnability. This elimination contributed to reducing the cost
of macro-operator matchings considerably (ranging from 20%
reduction to even 90%) and thereby reducing the cost of do-
main rule matchings marginally. Consequently, in some of the
test problems, the total cost is less than the cost in No-macro
mode.

However, there are still some problems in which even the
use of the Expert-selected macros does not pay in terms of the
total matching cost. This is an issue to be addressed. From
the data of Tables 16.6 and 16.7, in all the problems (No. 1, 2,
7,9, 10) where the use of macro-operators pays, the reduction
ratio of search space is more than 50%. This data shows that
since the cost of macro-operator matchings is inevitable, the
only way to minimize cost using macro-operators is to use those
macro-operators which are empirically promising and give great
re-ordering effects. For that purpose, we need to manage the
utility of each macro-operator dynamically (as in Minton 1990).
This must be based on empirical data of how frequently each
macro-operator can be successfully applied to problems and in
how many nodes of each of the applied macro-operator sequences
re-ordering effects are expected.

436

M. SUWA AND H. MOTODA

5 FUTURE WORK

The experiments show that PCLEARN provides a method of
learning perceptual chunks with high operationality. However,
in order to obtain a small and highly organized set of cost-
saving perceptual chunks further study must be made on 1) the
mechanism of collecting empirical data of operationality and re-
ordering effects for each macro-operator and 2) managing the
utility of macro-operators dynamically. PRODIGY addresses
this problem (Minton 1990). This is one of the areas we intend
to study with a perceptual-chunking learner.

The PCLEARN chunking mechanism must be compared with
other goal-structure-based learning methods like SOAR (Laird
et al. 1987) and compilation of ACT theory (Anderson 1983)
in terms of operationality and dynamic utility of learned search
control knowledge. The characterization of learning mechanism
is that problem solvers learn knowledge of how to satisfy the
subgoals the solvers have established during problem solving,
i.e. chunking all the lower subgoal structures of the target sub-
goal. If we applied this method to the domain of geometry,
the learning procedure would be as follows. Problem solvers
establish a subgoal for finding a domain rule which can be suc-
cessfully forward applied to a control decision node and then
chunk all the necessary conditions for deriving each precondition
of the domain rule which was actually applied to the decision
node. This mechanism may chunk quite a different range of the
problem solving traces from a chunking mechanism which uses
‘recognition rules’.

Finally, we have to examine the generality of the PCLEARN
perceptual chunking mechanism. Currently, domain indepen-
dentness is assured if PCLEARN deals with tasks of reasoning
within structured objects that satisfy the requirement of mono-
tonicity of the derived facts. A candidate task in which the
extension of this method has to be examined might be in design
and/or planning tasks where operator applications will change
the state or forms of the domain objects, producing domain
objects unseen at the initial state of reasonings. The two key
requirements that have to be retained even in this extension are

437

LEARNING PERCEPTUALLY CHUNKED MACRO OPERATORS

the following. Firstly all the kinds of domain objects which will
potentially appear in the reasonings have to be listed in advance.
Secondly recognition rules holding between those objects can be
explicitly described as domain-specific knowledge.

6 CONCLUSION

We proposed a new technique of learning search control knowl-
edge from problem solving episodes by the perceptual chunking
mechanism. This approach is quite different from the ‘goal-
oriented’ principle in EBL. Our method learns control knowl-
edge that guides problem-solving search at a control decision
so that the solver can recognize locally a perceptual chunk rel-
evant to the node. The learned knowledge consists of chunks
which are assemblies of diagram elements that can be recogniz-
able and grouped together with the control decision node. In
order to implement chunking, PCLEARN employs recognition
rules, domain-specific knowledge describing the necessary con-
ditions for a domain object to be recognizable.

In this chapter, experimental results of solving and learning
from 30 geometry problems were presented for comparing both
the goal-oriented EBL technique and the PCLEARN technique
in terms of operationality of the learned knowledge and perfor-
mance improvement by use of them. In the domain of geometry,
there is little consistency across many problems in goal struc-
ture, but rather a lot of cross-problem consistency in perceptual
chunks primarily. Reflecting the intrinsic nature of the geome-
try domain, perceptually-chunked macro-operators, have higher
operationality than goal-oriented EBL ones, which tend to be
too large to be applied to problems. In this respect, the EBL
technique does not work well in this domain.

‘Recognition rules’ are useful because they produce search
control knowledge with high cross-problem learnability, a high
percentage of successful applications, and high contribution to
proof-trees construction. The learned knowledge has a re-ordering
effect on the search process which reduces the search space con-
siderably. However, the cost of macro-operator matchings, a
negative effect, cannot be neglected because some of the learned

438

M. SUWA AND H. MOTODA

knowledge is inevitably not operational. So, a key issue in fu-
ture research is how to obtain a small and highly organized set
of perceptual chunks by eliminating ones with low utility and
selecting ones with large re-ordering effects. This requires that
we add to the current framework a mechanism for empirically
measuring the utility of each perceptual chunk.

REFERENCES

Anderson, J. R. (1983). The Architecture of Cognition, Harvard
University Press, Massachusetts, London, England.

Fikes, R., Hart, P. and Nilsson, N. (1972). Learning and executing
generalized robot plans, Artificial Intelligence, 3, 251-288.

Koedinger, K. R. (1992). Emergent properties and structural con-
straints: advantages of diagrammatic representations for reason-
ing and learning, Working Notes of the 1992 AAAI Spring Sym-
posium on Reasoning with Diagrammatic Representations, Stan-
ford Univ., March 27-29.

Koedinger, K. R. and Anderson, J. R. (1990). Abstract planning and
perceptual chunks: elements of expertise in geometry, Cognitive
Science, 14, 511-550.

Laird, J. E., Newell, A. and Rosenbloom, P. S. (1987). SOAR: an
architecture for general intelligence, Artificial Intelligence, 33,
1-64.

Minton, S. (1984). Constraint-based generalization, Proceedings AAAI-
84, 251-254.

Minton, S. (1985). Selectively generalizing plans for problem solving,
Proceedings IJCAI-85, 596-602.

Minton, S. (1990). Quantitative results concerning the utility of
explanation-based learning, Artificial Intelligence, 42, 363-391.

Minton, S., Carbonell, J. G., Knoblock, C. A., Kuokka, D. R., Et-
zioni, O. and Gil, Y. (1989). Explanation-based learning: a prob-
lem solving perspective, Artificial Intelligence, 40, 63-118.

Mitchell, T., Utgoff, P. and Banerji, R. (1983). Learning by ex-
perimentation: acquiring and refining problem-solving heuristics,
Michalski, R. S., Carbonell, J. G. and Mitchell, T. M., eds., Ma-
chine Learning: An Artificial Intelligence Approach. Tioga, Palo
Alto, CA, 163-190.

439

LEARNING PERCEPTUALLY CHUNKED MACRO OPERATORS

Suwa, M. and Motoda, H. (1989). Acquisition of associative knowl-
edge by the frustration-based learning method in an auxiliary-
line problem, Knowledge Acquisition, 1, 113-137.

Suwa, M. and Motoda, H. (1991). Learning abductive strategies from
an example, Working Notes of AAAI-91 workshop on Towards
Domain-independent Strategies for Abduction; also Tech. Report
91-JJ-WORKSHOP, Department of Computer and Information
Science, The Ohio State University, 72-79.

440

17
Inductively Speeding Up Logic Programs

M. Numao, T. Maruoka, and M. Shimura

Department of Computer Science
Tokyo Institute of Technology, Tokyo

Abstract

This chapter presents a speed-up learning method for logic pro-
grams, which accelerates a program by composing macro clauses
based on partial structures of proof trees. Many systems have
been proposed for composing useful macros, e.g., some of them
select macros that connect two peaks in a heuristic function.
Another employs heuristics that select useful macros. Although
they work well in some domains, such methods depend on domain-
dependent heuristics that have to be exploited by their users.

We propose a heuristic-independent mechanism by detecting
backtracking. The method uses a dead-end path as a nega-
tive explanation tree, compares it with positive one, and finds a
first different node to remove its corresponding rule by compos-
ing a macro. Repeated substructures in such a macro are then
combined by applying the generalize-number technique and by
sharing common substructures.

Experimental results in STRIPS domain show that, by se-
lecting an appropriate set of macros, 1) backtracking in solving
training examples are suppressed, 2) its problem solving effi-
ciency does not deteriorate even after learning a number of ex-
amples, 3) after learning 30 training examples, no backtracking
occurs in solving 100 test examples different from the training
examples. In conclusion, the proposed method speeds up the
problem solving from 10 to 100 times.

441

INDUCTIVELY SPEEDING UP LOGIC PROGRAMS

1 INTRODUCTION

Explanation-Based Learning (EBL) has been used for speed-up
learning in problem solving. Since there are many combinations
of macros in each explanation, EBL systems need a selective
learning mechanism of macros. Some systems select macros that
connect two peaks in a heuristic function (Iba 1985; Minton
1985). Another system employs heuristics that select useful
macros (Yamada and Tsuji 1989). Although they work well
in some domains, such methods depend on domain-dependent
heuristics that have to be exploited by their users.

This chapter presents a heuristic-independent mechanism by
detecting backtracking. The method uses a dead-end path as
a negative explanation tree, compares it with positive one, and
finds a first different node to remove its corresponding rule by
composing a macro. Experimental results in STRIPS domain
show that, after learning 30 training examples, no backtrack-
ing occurs in solving 100 test examples, and that the problem
solving is speeded up from 10 to 100 times.

2 OUR APPROACH

Symbol-Level Learning (SLL) improves a rule set based on train-
ing examples. Figure 17.1 shows some classes of SLL. A rule set
is better than the others if it works faster and occupies smaller
memory space, i.e., i) its reasoning speed is faster, and ii) its
size is smaller. Reasoning speed depends on the cost of uni-
fication and backtracking. Optimization by the recent Prolog
compilers removes most of the unification processes, while they
do not optimize backtracking that depends on the query and
occurs dynamically. Al programs are usually declarative and
nondeterministic, and thus cause backtracking. They have had
to be hand-rewritten to efficient ones.

Composing macros is a classical method of speed-up learn-
ing, which decreases both the cost of backtracking and uni-
fication. However, composing too large or too many macros
worsens reasoning speed and causes the utility problem (Minton
1988). Another method controls reasoning by employing a meta-
interpreter. It is analysed very well (Minton 1988), though such

442

NUMAO ET. AL.

Symbol-Level Learning

Smaller Size Speed Up
Backtracking Unification
Guards Macro Meta-control Others

Figure 17.1. Classes of Symbol-Level Learning.

an interpreter usually slows down reasoning. A rather new tech-
nique is to attach guards to each clause and to select an appro-
priate clause (Cohen 1990; Zelle and Mooney 1992). This works
well for suppressing backtracking, if the guards are kept simple
and checked fast.

On the other hand, the authors proposed a learning method
based on partial structures of explanations, which selectively
learns macro operators (Numao and Shimura 1989, 1990). The
method learns at the knowledge level in the field of translation
and logical circuit design, and outputs term-rewriting rules for
a production system Nat. In this chapter, we apply this method
to the learning of Horn-clauses, and investigate a method to sup-
press backtracking by assuming a failure as a negative instance.

To reduce the size of a learned rule grown during the learning
process, we will develop a method for folding a repetition in
each macro and extracting a common subsequence in macros.
It makes the subsequence shared to save the memory space and
the cost of unification.

443

INDUCTIVELY SPEEDING UP LOGIC PROGRAMS

3 LEARNING ALGORITHM

3.1 Generalization and Specilalization

In prolog, a computation progresses via goal reduction®. In each
stage of the computation, there exists a resolvent, i.e., a con-

junction of goals to be proved. To suppress backtracking, we
construct a learning mechanism for avoiding failing paths.

Definition 17.1 (Instance) An instance is a pair of a query
and a resolvent: (query, resolvent). A clause set derives an
instance iff the query in the instance derives the resolvent. An
instance is positive if its resolvent is reduced to be empty, and
negative otherwise.

Example 17.2 Consider the following logic program:

P - q(X), q(V), rX,V).

q(b). qfc). r(a,b). r(b,c).
A computation of a query ¢ 7= p.’ progresses via the following
goal reduction:

p b q(X),q(Y),r(X,Y)
> q(Y),r(b,Y)
> r(b,b) (failure)
(backtracking) b r(b,c)

B> O (success)

A pair of p and each resolvent above is an instance. The resol-
vents in the following instances are reduced to be empty:

(p, (q(X),q(Y),r(X,Y)))
(p, (a(¥),r(b,Y)))
(P’r(bsc))

(p,0)

Thus, they are positive instances. The following instance is
negative since its resolvent fails:

(p,r(b,b))

1See 1.8 (p.12) and 4.2 (p.72) in (Sterling and Shapiro 1986).

444

NUMAO ET. AL.

Definition 17.3 (Generalization and Specialization of a Clause
Set) Let I and I, be instance sets derived from clause sets S;
and S, respectively. S; is a generalization of S, and S, is a
specialization of S;, denoted by Sy < S, iff I} D I.

The following two theorems show that Explanation-Based Gen-
eralization (EBG) (Mitchell et al. 1986; Kedar-Cabelli and Mc-
Carty 1987) specializes a clause set:

Theorem 17.4 Let ¢ be a macro generated by EBG from an
explanation including clauses ¢y, ..., ¢,. Then, {c,...,c,} < c.

Proof. Let ¢ be any instance derived from {c}. Since c is gener-
ated from c;,...,¢cn, ¢ is also derived from {cy,...,c,}. There-
fore, {c1,...,cn} =X {c}. In general, {c1,...,cn} # {c}, since
some instances derived from ¢,..., ¢, are not derived from ¢.0

Theorem 17.5 If §; <X S; and S3 <X S, then, S$;US; < S,US,.

Proof. Suppose S; U Sy derives ¢. Consider a clause in S; ap-
plied at a step in the derivation. Since S; < S5, S; derives the
same step. Similarly when a clause in Sy is applied, S5 derives
the same step. Since Sy U S5 derives each step of the derivation,
S1US3 derives 7, by which we conclude that (S1US3) X (S2U8y).

a

These theorems proclaim that a clause set is specialized when
C1y...,Cn is replaced by c¢. We speed up a program by making
a specialization that avoids backtracking.

3.2 An Algorithm for Speed-Up Learning

Figure 17.2 shows an algorithm to suppress backtracking based
on positive and negative instances. A proof tree is an ordered
tree, each of whose nodes specifies a clause. Children of a node
specify clauses applied to its subgoals in their order. The func-
tion clause(z) gives a clause applied in a node z. The algorithm
traverses a proof tree, finds an inappropriate application of a
clause, and replaces the clause by a macro to suppress back-
tracking.

The algorithm only needs part of the instances given in Def-
inition 17.1. A positive instance P;, is: (instantiatedQuery,{})

445

INDUCTIVELY SPEEDING UP LOGIC PROGRAMS

begin
clauseSet := domain_theory;
EP; := proof tree of each positive instance P; (i = 1,...,n);

for i :=1ton do
while clauseSet derives any negative instance do begin
N := the derived negative instance;
EN := the proof tree of N;
Compare each node in EN with its corresponding node
in EP; in depth-first order;
h := the first different node;
clauseSet := {};
fori=1tondo
for each p € EP,; do
if clause(p) = clause(h) then begin
q := the parent or a child of p; ... (*)
Make a macro ¢ based on clause(p) and clause(q);
clauseSet := clauseSet U {c}
end
else clauseSet := clauseSet U {clause(p)}
end
end.

Figure 17.2. Learning Algorithm.

where instantiatedQuery is a query with output variables instan-
tiated correctly. In the fifth line, the algorithm checks whether a
query with output variables uninstantiated causes backtracking
or not. If it does, the derived negative instance N in the sixth
line is a pair: (query,resolvents) where resolvents is a set of
resolvents at the point of failure. EP; and EN are proof trees of
P; and N, respectively. The algorithm finds the first incorrectly
applied clause in EN by comparing both the proof trees, and
replaces it by a macro.

Let us suppress backtracking in Example 17.2 by using this
algorithm. Positive and negative instances P, and N are (p,)
and (p,r(b,b)), respectively. Their proof trees EP; and EN
are shown in Figure 17.3. In each node, predicate_place specifies

446

NUMAO ET. AL.

"""""""""" EP EN

Figure 17.3. Proof Trees of the Positive and Negative Instances.

a clause, where predicate and place are a predicate and a place
in its definition, respectively; e.g., q-2 is the second clause in
the definition of q, i.e., the fact ¢ q(c)’. The first different
node h between EP, and EN is the shadowed node q_1. While
traversing EP; in the for loop, clause(p) = clause(h) when p =
q-1. Thus, the algorithm makes a macro ¢ based on clause(p-1)
~and clause(q-1) encircled with a dotted line, and generates the
following deterministic clauseSet:

p :- q(¥),r(b,Y).
q(c).
r(b,c).

We need only one macro for removing backtracking above. In
general, the while loop in the fifth line invokes iterative compo-
sition of a larger macro while the clauseSet causes backtracking.

A clause usually checks their applying conditions in the left-
most part of its body as follows:?

head :- conditions, ..., goals,

We assume such conditions are operational and ignore back-
tracking there.

EBG generates a macro ¢ based on p and its parent or child
q at (*) in the algorithm. Nodes p and q should be a node and
its first child; e.g., p-1 and q-1 in Figure 17.3. A macro based
on the node and its other children does not suppress backtrack-

2The planning program for the following experiment consists of such
clauses.

447

INDUCTIVELY SPEEDING UP LOGIC PROGRAMS

gothrudr gothrudr

gothrudr

gothrudr

gothrudr

Figure 17.4. Generalizing Number.

ing, since the generated clause has conditions and goals aligned
alternatively.

3.3 Generalizing Number and Sharing a Common Sequence

The presented algorithm tends to generate a large macro, which
occupies much memory space and slows down its unification.
Since such a large macro usually contains a repeated sequence,
we apply the generalizing-number technique (Shavlik and De-
Jong 1987a, 1987b) to the extracted macros, which integrates
the different number of repetitions. Figure 17.4 shows an exam-
ple of a generalizing number. Such a generalized repetition is
implemented as a group of clauses internally calling one another.

After the generalizing number, if two sequences have a com-
mon structure, such as the left trees in Figure 17.5, make the
sequence shared as shown in the right tree. This transformation
saves memory space and the cost of unification.

Sharing a common sequence may cause over-generalization,
i.e., the left trees do not include the combination of nil and
subtree C, while the right tree does. In the experiment to be
presented in the next section, this causes no problem since the
selection between subtree B and subtree C' does not depend on
gothrudr nor nil, though in general we need more investigation.

448

NUMAO ET. AL.

Figure 17.5. Sharing a Common Sequence.

4 EVALUATION OF THE METHOD
41 STRIPS in Prolog

We evaluate the proposed method based on STRIPS planning
system (Fikes et al. 1971, 1972). A system written in Prolog is
needed to apply the proposed learning mechanism. The authors
rewrote a simple planner in (Sterling and Shapiro 1986)3. It
searches a plan in a depth-first manner prevented from an infi-
nite loop by checking formerly occurred models and by limiting
the search depth.

Consider forming a plan for achieving the goal state in Fig-
ure 17.6 from the initial state. The proof tree in the figure shows
its planning process. The solid line shows the proof tree of the
positive instance (EP;). Each dotted line partially describes a

proof tree of a negative instance (EN).
The following is a query for the planning procedure:

?- transform(
[type(roomi,room),...,pushable(box1),

connects(doori,roomi,room2)], .« fact
[inroom(box1i,rooml),inroom(robot,roomi),

status(doori,closed)], -+« initial state
[inroom(robot,room2),inroom(boxi,room2)], .- goal state
Plan).

3Program 14.11 (p.222).

449

INDUCTIVELY SPEEDING UP LOGIC PROGRAMS

Initial State
O robot l
door1
Ej box
room1 room2
Goal State
IO robot
/1cjtmx
roomi room2

Figure 17.6. A Planning Example and its Proof Tree.

This query invokes the following clause, represented by initial-
Goal in the proof tree:

transform(Fact,Model,Goal,Plan):~
diff(Model,Goal,Diff),
transform(Fact,Model,Goal,Diff,Ac, [],Model,Actions,N,0),
reverse(Actions,Plan).

where diff (Model,Goal,Diff) is an operational predicate
that calculates the difference between Model and Goal. If no
difference is detected, the following clause terminates the recur-
sion:

transform(Fact,Model,G, [],Na,Vg,Vm, [],Model,).
It is indicated by nil in the proof tree.

Each of the other nodes indicates a planning clause selecting
an operator. The system has the following eight operators:

gotob(BX) Go to object BX.

gotod(DX) Go to door DX.

pushb(BX,BY) Push BX to object BY.

pushd(BX,DX) Push BX to door DX.
gothrudr(DX,RX) Go through door DX into room RX.

pushthrudr(BX,DX,RX) Push BX through door DX into
room RX.

open(DX) Open door DX.
e close(DX) Close door DX.

450

NUMAO ET. AL.

As an example of the planning clauses, one selecting pushthrudr
operator is as follows:

transform(Fact,Model,Goal,Diff,pushthrudr(BX,DX,RX),
Vgoal,Vmodel,Plan,New_model,M) :-

conditions(Fact,Model,Goal,pushthrudr(BX,DX,RX),Diff), ...,

transform(Fact,Model,Sub_goal,Diffi,Action, [Effect|Vgoall,
Vmodel,Actions,Nmodel,NM), ...,

transform(Fact,Update_model,Goal,Diff2,Next_ac,
[Effect|Vgoall, [Update_model|Vmodel] ,Acts,
New_model,NM),

append(Acts, [pushthrudr (BX,DX,RX,RY) |Actions],Plan).

where conditions(.,-,-,-,-) is an operational predicate that
checks conditions for applying the operator. The first sub-
goal transform(Fact, Model, :--) makes a subplan required
before the application of the operator. The second subgoal
transform(Fact, Updatemodel, .-) makes a subplan after

the application.

The differences between the initial state and the goal state
in Figure 17.6 are the places of the robot and the box. If the
planner selects the latter, the operator is pushthrudr(box1,
doori, rooml, room2) (node 5 in the figure), whose precondi-
tion is: :

inroom(bbxi.roomi), inroom(robot,rooml),

nextto(robot,boxi), nextto(boxi,doorl), status(doori,open),
out of which a subplan has to reduce:

nextto(robot,box1l), nextto(boxi,doorl), status(doori,open).

If the planner determines to reduce status(doori,open),
the operator is open(doori1) (node 2). nextto(robot,door1)
is reduced by the directly applicable operator gotod(doori1)
(node 1). After open(door1) is applied, the subtree whose
root is node 4 reduces other differences for the application of
pushthrudr(box1, doori, roomi, room2). The result is the
inorder sequence of operators in the tree, indicated by numbers
in the figure, as follows:

gotod(doorl)

open(doorl)

gotob(box1)
pushd(box1,doorl)
pushthrudr(box1,doorl,room?2)

451

INDUCTIVELY SPEEDING UP LOGIC PROGRAMS

room1i room2 room3 room4 room5

m@\l @\I IKI(
R | |

|
= \@4@)1\ BN

room6 room7 room8 room9

Figure 17.7. A State.

Backtracking occurs when the planner determines to reduce
other differences during the above process. If it selects the place
of the robot instead of the box, the operator is gothrudr(doori,
room2) as shown in a dotted line in the figure. As such, the op-
erator becomes gotob(box1) and pushd(box1, dooril), if the
planner tries to reduce nexto(robot, box1) and nextto(box1,
door1l), respectively, instead of status(open). To suppress
backtracking, the algorithm in Figure 17.2 composes a macro
based on nodes 3 and 4, and removes gothrudr, gotob and
pushd. Since the composed macro is applied instead of node 2,
a larger macro shadowed in the figure is composed. Operators
pushthrudr, open, gotod, nil and the last macro make the
plan without backtracking.

4.2 Experiments
The authors performed experiments on planning in a robot do-
main shown in Figure 17.7. They generated the initial and the
goal states of planning by randomly choosing:

¢ the number of boxes (0-9),

o the locations of boxes,

e whether each box contacts another box or not,

e whether each door is open or not, and

e the location of robot.

1000 pairs of such states are stored, out of which training and
test examples were sampled for each experiment. The length of

452

NUMAO ET. AL.

plans for the pairs are from 10 to 120 steps.
By solving the training examples with learned clauses, the
authors first verified that our method suppresses backtracking:

Experiment A After learning 20 examples, com-
pare CPU time for the non-learned and the learned
clauses to solve the same examples.

If the system extracts superfluous macros, problem solving ef-
ficiency deteriorates after learning a number of examples. This
phenomenon is checked by the following experiment:

Experiment B Perform the same experiment for
30 examples by adding 10 examples to Experiment
A.

Figure 17.8 shows the result of Experiments A and B. The
CPU time is for SICStus Prolog version 0.7 on Sparc Station 2.
No backtracking occurred after learning in Experiment A. The
learning accelerated the problem solving from 10 to 100 times,
and reduced the number of searched nodes from 1/50 to 1/1000
in both the experiments.

Although learned sets of clauses in both the experiments are
different, their efficiency is almost the same as shown in Fig-
ure 17.8, exhibiting that correct macros are extracted. When
the system learns more than 30 examples, it composes no more
combinations as a macro, i.e., the result is the same even if the
system learns more than 30 examples.

After learning 30 examples, the system composes 5 or 6
macros. Each macro is constructed from some clauses, which
implement the generalizing number and share a common se-
quence. The number of clauses constructing the macros sums
up to 104, occupying rather much memory space, though their
reasoning speed is fast.

To test generality of extracted macros, the system solved a
different set of examples:

Experiment C After learning 30 training examples,
solve the other 100 test examples.

Figure 17.9 shows the result of Experiment C. The learned
macro solved the 100 examples without any backtracking, and

453

INDUCTIVELY SPEEDING UP LOGIC PROGRAMS

Cumulative Time (CPU Seconds)

T T T] ‘None learned

5000 —

200 -

100 -

50—

— Problems

Figure 17.8. The Result of Experiments A and B.

improved the problem solving similarly to Experiment B. This
result shows that the system learned general and useful macros.

The problem in the current system is that it takes much
time for learning, e.g., about 10 hours for learning 30 examples.
Therefore, the method is appropriate for speeding up frequently
used programs, though it should be improved in a future imple-
mentation.

5 RELATED WORK

Iba (1985) and Minton (1985) proposed the peak-to-peak heuris-
tics that composes a macro connecting two peaks in an eval-

454

NUMAO ET. AL.

Cumulative Time(CPU Seconds)

100000 [~ T I I T I "] None learned

30 learned
50000

20000
10000

5000

2000
1000
500

200
100
50

Problems

0 20 40 60 80 100

Figure 17.9. The Result of Experiment C.

uation function. However, it is usually hard to construct an
appropriate heuristic function for evaluating goals in logic pro-
grams.

Minton (1985), Yamamura and Kobayashi (1991) presented
methods to extract common substructures in explanations. This
is useful for reducing the number of macros, though it may
not accelerate problem solving. Our method concentrates on
suppressing backtracking, after which it reduces the number
of macros by applying the generalizing-number technique and
making common structures shared.

Yamada and Tsuji (1989) proposed a heuristics called the

455

INDUCTIVELY SPEEDING UP LOGIC PROGRAMS

perfect causality for selecting appropriate macros. Although it
works well in many problems, it may slow down problem solving
in others. By suppressing backtracking, our method straightfor-
wardly speeds up problem solving.

Minton (1988) presented learning from failure. It is a similar
method to ours in the sense that both the methods are based
on failures. The difference is in their representation of learned
knowledge. Minton’s method learns control heuristics for the
Prodigy system, and thus needs a meta-
interpreter for application to logic programs. Such an inter-
preter runs slower than compiled Prolog programs. In contrast,
our method learns macros, efliciently executable by Prolog pro-
cessors.

In the field of Combining Empirical and Explanation-based
Learning, some researchers pursue methods to extract partial
structures of explanations based on positive and negative exam-
ples (Numao and Shimura 1989, 1990), and to search a macro
on a generalization hierarchy of common explanation structures
(Kobayashi et al. 1991). In contrast to our research focusing
on learning at the symbol level, they evaluate macros at the
knowledge level.

Cohen (1990), Zelle and Mooney (1992) proposed to add
some guards to each clause for controlling and speeding up a
program. Such guards are synthesized by using the techniques of
Inductive Logic Programming. Instead of introducing such ad-
ditional guards, our method composes macros, which are decom-
posed into simpler clauses by generalizing numbers and sharing
common structures.

6 CONCLUSION

We have presented a method for extracting macros based on
backtracking, and evaluated it by using planning examples in
STRIPS. This method is widely applicable to automatic im-
provement of logic programs and knowledge bases.

456

NUMAO ET. AL.

ACKNOWLEDGMENT

The author would like to thank Dr. Seiji Yamada, who sent
us data of his experiment (Yamada and Tsuji 1989). Tatsuya
Kawamoto has assisted us in using SICStus Prolog.

REFERENCES

Cohen, W. (1990). Learning approximate control rules of high util-
ity. Proc. the Seventh International Conference on Machine
Learning, 268-276, Morgan Kaufmann, San Mateo.

Fikes, R. E., Hart, P. E., and Nilsson, N. J. (1972). Learning and
executing generalized robot plans. Artificial Intelligence, 3, 251—
288.

Fikes R. E. and Nilsson N. J. (1971). STRIPS: a new approach to
the application of theorem proving to problem solving. Artificial
Intelligence, 2, 189-208.

Iba G. A. (1985). Learning by discovering macros in puzzle solv-
ing. Proceedings of the Ninth International Joint Conference on
Artificial Intelligence, 640-642, Morgan Kaufmann.

Kedar-Cabelli S. T. and McCarty. L. T. (1987). Explanation-based
generalization as resolution theorem proving. Proceedings of the
Fourth International Workshop on Machine Learning, 383-389,
Morgan Kaufmann.

Kobayashi, S., Shirai, Y., and Yamamura, M. (1991). Acquiring
valid macro rules under the imperfect domain theory by top-
down search on a generalization hierarchy of common explana-
tion structures (in Japanese). Journal of Japanese Society for
Artificial Intelligence, 6(3), 416-425.

Minton. S. (1985). Selectively generalizing plans for problem-solving.
Proceedings of the Ninth Iniernational Joint Conference on Ar-
tificial Intelligence, 596-599, Morgan Kaufmann.

Minton, S. (1988). Learning Search Control Knowledge. Kluwer
Academic Publishers, Boston/Dordrecht/London.

Mitchell, T. M., Keller, R. M., and Kedar-Cabelli, S. T. (1986).
Explanation-based generalization: a unifying view. Machine
Learning, 1, 47-80.

Numao, M. and Shimura, M. (1989). A learning method based on
partial structures of explanations (in Japanese). The Transac-

457

INDUCTIVELY SPEEDING UP LOGIC PROGRAMS

tions of the Institute of Electronics, Information and Communi-
cation Engineers, J72-D-11(2), 263-270.

Numao, M. and Shimura, M. (1990). A knowledge-level analysis of
explanation-based learning. Proceedings of the Third Interna-
tional Conference on Industrial & Engineering Applications of
Artificial Intelligence & FEzpert Systems, 959-967, ACM Press,
New York.

Shavlik, J. W. and DeJong, G. F. (1987a). BAGGER: an EBL sys-
tem that extends and generalizes explanations. Proceedings of
the Sizth National Conference on Artificial Intelligence, Morgan
Kaufmann.

Shavlik, J. W. and DeJong, G. F. (1987b). An explanation-based
approach to generalizing number. Proceedings of the Tenth In-
ternational Joint Conference on Artificial Intelligence, Morgan
Kaufmann. 4

Sterling L. and Shapiro. E. (1986). The Art of Prolog. The MIT
Press, Cambridge.

Yamada, S. and Tsuji, S. (1989). Selective learning of macro-operators
with perfect causality. IJCAI89, 603-608, Morgan Kaufmann,
San Mateo.

Yamamura, M. and Kobayashi, S. (1991). An augmented EBL and
its application to the utility problem. IJCAI91,623-629, Morgan
Kaufmann, San Mateo.

Zelle J. M. and Mooney, R. J. (1992). Speeding-up logic programs by
combining EBG and FOIL. Proc. ML92 Workshop on Knowledge
Compilation & Speedup Learning.

458

INDEX

Note: illustrations and captions are indicated by italic page

numbers, footnotes by suffix ’

AC2 algorithm 324
performance on various data-
sets 338, 341, 352-5, 857~
9
ACE computer 9-10, 11, 40-2
ACT theory 437
agents
coordination using blackboard
411
derivation by inductive learn-
ing 411-12
low-level skills implemented
by 411
aircraft flight simulators 400-1

inductive rule-learning exper- °

iments 404-8
results 406, 408, 409-10
ALGOL 14
algorithm, use by Turing 7
algorithmic information theory, hy-
pothesis evaluation using
90, 91
Alloc80 algorithm 317
performance on various data-
sets 335, 336, 339, 352-
9
a-helix formation 101n, 200
chemical principles 200, 212
ambient vision 258
Angluin’s learning algorithm
compared with Yokomori’s al-
gorithm 182-4, 185
example operation 183, 185
animal learning 213-28
basic procedures 214-15
perspectives 215-16
anticipation 225-7, 245-6
AQ algorithm 325

n’

459

see also CN2 algorithm
artificial intelligence
and logic 6, 21-3
Turing’s contribution 9, 24
von Neumann’s contribution
24
artificial neuron concept 4, 12, 28
see also neural networks
assembler program 23
associative transfer (in condition-
ing) 219-20
atoms, Boolean algebra 146
attribute generalization 139
attribute noise 124
CAFE’s learning ability af-
fected by 135, 136, 156
COBWEB?’s learning ability
affected by 134, 136
attribute-oriented induction 77-9
application of minimal mul-
tiple generalization 79-
83
automated hypothesis-formation 87,
88
automatic programming 13-14, 23
automatization, skill-learning 389
autopilots 406, 408
degree of control achieved 408,
409-10
heuristic vs causal models 413-
14
Babbage’s Analytical Engine 42
background knowledge
chess endgames 298, 299
drug design 196, 201
encoding of 94-7
protein structure 199-200

INDEX

representation of 93, 196, 200,
201
back-propagation 326-7
compared with other systems
313-14, 352-9
performance on various data-
sets 336, 337, 338, 339,
341, 352-9
Back-propagation Multi-Layer Per-
ceptron 326-7
biological interpretation 327
backtracking 442, 443
occurrence in planning 452
suppression of 443, 444, 446~
7, 453
bang-bang control 364, 396, 398
batch processing, inductive infer-
ence from frequency data
159-60
Bayesian metworks 320-1
see also CASTLE algorithm
Bayesian posterior variance, as sig-
nificance measure 102-3,
104
Bayes rule algorithm 316
performance on various data-
sets 335, 337, 339, 341,
352-9
behavioural field, mechanism for
generating 251, 252, 255
beta-reduction rule 16, 20
bimolecular modelling, aims 194
bindings
meaning of term 286
minimum number in univer-
sal engineering knowledge
base 286, 287
blackboard-like model, coordina-
tion of agents using 411-
12
BMT expert system 390, 391
Boolean algebra
atoms 146
construction of Euclidean sp-
ace 146, 148

460

Hasse diagram 147
Boswell (patient with no episodic
memory) 390, 392
BOXES algorithm 364-9, 396
cleaning up 379, 379-80
comparison of variants 370
Cribb-Sammut variant 367-
8
Cribb’s version 367
decisions on action 365-9
Law-Sammut variant 368-9
properties 369, 370-3
Law’s version 368
local merit criterion introduced
367
original Michie~Chambers al-
gorithm 366-7, 396
patterns discovered 379-80
readability of code 379, 381-
2
task addressed 363-4
brain
left hemisphere 257
activities associated 258, 414
right hemisphere 257
activities associated 258, 414
brain development, embryo-to-young-
child 250-5
brain stem systems, activities con-
trolled 258-9
brain systems 248, 249
British Museum algorithm 30
brittleness bottleneck (problem in
knowledge bases) 278-9
C4.5 algorithm 324
aircraft flight simulation 405,
406
performance on various data-
sets 352-7, 859
pole-and-cart system control
rules 401
CAFE concept formation system
algorithm 131
characteristics 125, 129-30

classification and learning by
129-30
compared with COBWEB 129~
30, 184, 1356, 137-8
compared with LABYRINTH
125, 126, 129, 138-9
concept-predictability used 139~
40
evaluation of system 134-9
artificial domain 134-6
natural domain 137-9
knowledge representation for-
malism 126-9
learning curves 184, 136, 138
Calb algorithm 324-5
discrimination measure used
325
performance on various data-
sets 352-9
canonical discriminant correlations
(of StatLog project data-
sets) 346, 351
canonical discriminants, variation
(for StatLog project data-
sets) 346-7, 351
cardiology 306-7, 332-3
see also heart disease data-
set; KARDIO system
CART system 321-3
compared with ID3-type al-
gorithms 322, 323
compared with neural networks
314
impurity measure used 322
performance on various data-
sets 333, 338, 352-3, 355~
8
pruning used 323
versions available 323
see also INDCART
CASTLE algorithm 320-1
characterization measures for
334, 342
performance on various data-
sets 335, 336, 338, 339,

461

INDEX

341-2, 352-9
category utility 130
causal networks 320
approach to learning 321
determination of structure 320~
1
see also CASTLE
Central Limit Theorem 336
cerebral cortex
development 248
links between two halves 255,
257
specialized areas 260
Cessna aircraft flight simulator 404-
6
flight plan described 404
variables sampled 405
CFIX concept formation system
125
checkers (draughts)
knowledge acquisition 392
playing programs 37, 46, 47
chess endgames
learning classification rules 292
learning optimal strategies 291-
307
materials used 293-6
method used 296-8
results 298-306, 307
see also KRK chess endgame
chess playing machines, Turing’s
discussions 39, 41
chess program 291-2
child development, comparison with
machine learning 45
choice-point encoding 98-9
Church, Alonzo 10
solution of Decision Problem
10, 38
Church machines 18-20
Church’s lambda calculus 5
beta-reduction rule 16, 20
mathematical interpretation
14

see also lambda calcuius

INDEX

classical conditioning 215
with feedback 216
classical logic, new (Boolean alge-
bra) model 150
classification, meaning of term 311,
312
classification algorithms
comparative study 311-59
representative collection 313
classification noise model 101, 113
CLASSIT conceptual clustering sys-
tem 333
clause sets, specialization of 445
clean-up effects
aircraft flight simulator con-
trol 406, 408, 409-10
BOXES algorithm 879, 380
pole-balancing control system
379, 380, 402-3, 403
closed-world specialization (CWS)
107, 297
algorithm 108
clauses produced, compression-
based selection used 112
CN2 algorithm 325-6
performance on various data-
sets 338, 852-5, 357-9
COBWERB 124, 125
compared with CAFE 129-
30, 134, 135-6, 137-8
evaluation function used 130,
132-4
learning curves 134, 136, 138
Colmerauer, Alain 16, 21
commissurotomy 255-6
effect on speech 258
effect on visual information
256, 258
common sequence, sharing in learn-
ing algorithm 448, {49
common substructures, extraction
in explanations 455
communication mechanisms, hu-
man infants 261

462

compactness, with respect to con-
tainment 63-4
competitive learning (in condition-
ing) 220
compiler program 23
sompression ‘
estimation from theory 111
meaning of term 91
as noise-meter 104-6
as significance measure 100-
4,115
compared with other mea-
sures 102-3, 104
see also database compression
compression-based clause selection
107-13
CWS-produced clauses 112
compression-guided learning
case study 106-15
empirical evaluation 113-
15
compression model
characteristics 117-18
effect of noise 114-15
computers, and logic 4-6, 6-12
concept formation
structure information utilized
123-41
see also CAFE; COBWEB;
LABYRINTH
concept hierarchy 77, 79
generation of 124, 129
inductive learning of 124
concept-predictability, CAFE us-
ing 125, 129-30, 132, 139-
40
concept-predictability function 132,
141
examples of calculation 133
conditioned stimulus/response 215
conditioning 215
associative transfer in 219-
20, 239
CSPUS interval studied 218,
236

facilitation of remote associ-
ations 219, 237
first-order 220, 239
impairment of proximal asso-
ciations 219, 238
representation in 221-3
second-order 220, 239
serial conditioned stimuli 219
summation in 221-2, 240
SuttonPBarto model 220-1
confirmation theories 90
conformity (for knowledge base)
277-8
Connection Machine 31
consciousness, genesis of 247-50,
414
consistent max trees 67
constraint networks 273, 274
context-free grammars, learnabil-
ity 170
context-free transformations with
flat base 72-5
inference algorithm for 74
operation of 73-4
contradiction backtracking 173, 176
control decision nodes 425, 428
successfully applied rule 428
correlation coefficients (for Stat-
Log project datasets) 345—
6, 351
cost matrices, use with classifica-
tion algorithms 337, 341
counterexamples, learning using 171,
173
credit assignment 217-21, 364
basic principles 219-20
credit risk dataset (StatLog pro-
ject) 333-4
characteristics 351
performance of various algo-
rithms 338-9, 358
Cribb-Sammut algorithm (for pole-
balancing problem) 367-
8

463

INDEX

compared with other variants
of BOXES algorithm 870
asymmetric pushing 373, 374
Cribb’s local merit criterion 367
critical feedback 216
curriculum construction, design of
knowledge base similar to
276, 284
CWS see closed-world specializa-
tion
cyclopean 252
with jointed member 259
watching another cyclopean
254
CYC project 276
database compression 307
databases, discovery of knowledge
in, minimal multiple gen-
eralization algorithm used
77-83
datasets (StatLog project) 328-
35
characterization of datasets 334-
5, 340-1, 851
measures described 345-7
performance of various algo-
rithms 335-40, 352-9
see also credit risk...; hand-
written digits...; head in-
Jjury...; heart disease...;
Karhunen-Loeve digits...;
satellite image...; Space
Shuttle control...; vehi-
cle silhouettes dataset
Decision Problem 7
solutions 8, 10, 38
decision rule algorithm 325
see also CN2
decision tree algorithms 321-2, 323,
324
advantages 322
see also AC2; C4.5; Calb; CART;
ID3; INDCART; NewID
decision tree induction 307
patterns discovered using 380

INDEX

decision trees, aircraft simulation
data 405, 406
declarative knowledge 388-9
compared with procedural knowl-
edge 393-4
declarative memory, contrasted with
procedural memory 388
deductive knowledge base 25, 26
Desch, Joseph 9n
descriptive approach to program-
ming 14-15, 16, 21
deterministic finite automata (DFAs)
learning using 169
compared with NFA learn-
ing 184
see also non-deterministic fi-
nite automata
device malfunction data 165
description length of propo-
sitions obtained 164
Diagram Configuration (DC) mo-
del, perceptual chunks used
420
dialogic closure 264
dialogue (knowledge) elicitation meth-
ods 390, 392, 393
digits datasets (StatLog project)
329-30
characteristics 351
performance of various algo-
rithms 336-7, 353-4
see also handwritten...;
Karhunen-Loeve digits data-
set
dihydrofolate reductase (DHFR)
binding of trimethoprim ana-
logues 195-8
favourable interactions 197-
8, 207
Discrim algorithm 317-18
performance on various data-
sets 338, 340, 352-9
discriminant analysis see linear...;
quadratic discriminant anal-
ysis

464

DNA promoters data set 137
evaluation of CAFE and other
systems 137-9
draughts see checkers
drug design 100-1, 195-8
Golem used
compared with Hansch equa-
tion 196-8, 208-11
rules obtained for favourable
drugs 197-8
significance measures compared
104
dual personality, human brain born
with 264
EBL systems 117
see also explanation-based learn-
ing
ECG interpretation 306-7
Eckert, J.P. 4, 11
Eckert-Mauchly computers 11
EDSAC computer 11
EDVAC computer 11
embryo brain 250
emotional referencing 263
emotions, infant-mother 260-5
engineering, role in computer de-
sign 12
engineering knowledge
classification 284-6
general 284, 285
specific 284-5, 285-6
see also nonspecific knowledge
engineering knowledge base
clusters of knowledge 283
segmentation of knowledge 285~
6
size 286, 287
ENIAC computer 11
entropy gain 323
entropy gain ratio 324
episodic memory 388
equivalence queries, learning us-
ing 169, 175
error rate

data for protein structure pre-
diction 101, 102
reduction/correction 110
Escherichia coli dihydrofolate re-
ductase
modelling of trimethoprim ana-
logues binding to 195-6
see also dihydrofolate reduc-
tase (DHFR)
Euclidean space, construction us-
ing Boolean algebra 146,
148, 151-3
evaluation of logical theories
encoding scheme for 93-100
comparison with FOIL’s sch-
eme 99-100
input tape encoding 93-9
background knowledge and
hypothesis encoding 94-
7
example 96
proof encoding 97-9
output tape encoding 99
exclusive-OR (XOR) problem, solv-
ing of 221
experimental machine learning 289-
359
expert systems 26-7
knowledge acquisition 392
typical rule-based systems 391
Explanation-Based Generalization
(EBG) 445, 447
explanation-based learning (EBL)
420
compared with PCLEARN 431-
6
in geometry domain 423-4
macro-operators 421
operationality in geometry
domain 421, 431-3
use in speed-up learning 442
eyelid closure
conditioning in rabbit 217, 226,
284-5, 245
real-time models 226-7, 246

465

INDEX

as protective measure 217, 226
F-16 aircraft flight simulator 406-
8, 409-10
clean-up effect due to autopi-
lot 409-10
flight plan described 407
variables sampled 407-8
failure, learning from 456
familiar objects, time taken for
recognition 393
feature construction technique (in
CAFE) 124, 125, 141
Fifth Generation Project 27, 51,
388
figure-pattern strategies 420
finite elasticity 71
finite thickness 71
fire-protection equipment config-
uration, expert system for
391
see also BMT
first-order conditioning 220, 239
flight control simulations
blackboard-like model for co-
ordination among agents
411-12
Cessna aircraft 404-6
F-16 combat aircraft 406-10
flowchart diagram
early use 13
learning algorithms (for NFAs)
179, 187
FOIL learning system 51
compared with neural network
approach 314
encoding scheme 99-100
forebrain commissurotomy 258
see also commissurotomy
Friedman, William 9
functional constraints 272
see also higher-order constraint
network
functional programming 143
GASOIL expert system 390, 391
GCWS algorithm 297

INDEX

chess endgame Prolog programs
learned by 293
generalization relation 79
generalized database 80
with conceptual hierarchy 79
LCHR algorithm used 77-8
generalized linear models (GLIMs)
318
generalizing-number technique 448
geometry domain 422-3
EBL techniques used 423-4,
431-6
experimental results using EBL
and PCLEARN 430-6
learning search control knowl-
edge in 422-4
PCLEARN used 427, 431-6
recognition rules 427
GINI criterion 322
Glasgow Outcome Scale 331-2
Gluck’s category utility 130
goal-oriented search control knowl-
edge, learning 420
goal reduction, Prolog computa-
tion via 444
Godel, Kurt, as first programmer
7
Godel’s descriptive recursive func-
tion formalism 6-7, 15
Godel’s Incompleteness Theorem
6-7, 38, 39
Turing’s attempt to circum-
vent 38
Golem learning program 194-5
algorithm used 194-5
applications 50
bimolecular modelling 193~
212
drug design 196-8, 208-10
protein structure prediction
101n, 199-201, 212
approach 51, 193, 206
compared with Hansch equa-
tion 196-8, 208-11
inputs 194, 196-7, 199-200

466

RLGGs implemented 297, 307
Good, Jack 9, 39
Grisin’s logic 151
guards, speed-up learning using
443,456
handwritten digits dataset (Stat-
Log project) 329-30
characteristics 851
performance of various algo-
rithms 336-7, 353
Hansch linear regression equation
195
compared with Golem 196-8,
208-11
Hasse diagram 146, 147
head injury dataset (StatLog pro-
ject) 331-2
characteristics 851
performance of various algo-
rithms 337-8, 356
heart disease dataset (StatLog pro-
ject) 332-3
characteristics 351
performance of various algo-
rithms 337, 338, 857
helicoptor control 404
heterogeneity of knowledge 277
Hierarchical Image Processing Sys-
tem (HIPS) 331
hierarchy tree of concepts 128
higher-level computing machines
31
higher-order constraint network 273,
274
Hilbert Program 6, 7, 10, 38
historical perspectives 1-52
homogeneity of covariances (of Stat-
Log project datasets) 345,
351
Horn-clause-resolution predicate cal-
culus 5, 16
implication on Church machines
20
Huffman coding 94, 96

human cognition, regulation of 247-
65
human experts
non-determinism used 171
rule-formulation not liked 392,
394
human mind, working of 28-9
human reasoning, logic rarely used
24, 25
human short-term memory capac-
ity 297
hydrocarbon separation system con-
figuration, expert system
for 891
see also GASOIL
hypotheses
automated formation 88
construction 89-90
evaluation 90-2
see also incremental hypoth-
esis
IAS computer 11
similar machines listed 11
ID3 algorithm
application to KRKN chess
endgame 292-3

compared with neural networks

313-14
other algorithms based on 323,
324
patterns discovered using 380
image analysis datasets (StatLog
project) 328-31
performance of various algo-
rithms 335-7, 852-5
see also handwritten digits...;
Karhunen-Loeve digits...;
satellite image...; vehicle
silhouettes dataset
imperative approach to program-
ming 15, 21
incremental freezing 376-7
difficulties with BOXES al-
gorithm 377, 878
incremental hypothesis

467

INDEX

construction 89-90
evaluation 90-2
incremental learning 44
frequency data 161
INDCART system 323
performance on various data-
sets 352-9
see also CART system
induced rule-sets, performance 402-
3
inductive inference 57-189
from frequency data 159-65
algorithm used 159-61
batch processing 159-60
cloud/rain example 145, 161
incremental processing 161
see also concept formation
inductive logic programming (ILP)
45-6, 47-9
applications 50
chess endgame 291-307
minimal multiple generaliza-
tion used 69-77
theory 49-50
see also Golem
inductive skill-grafting
applications 400-10
see also skill-grafting experi-
ments
infant consciousness, development
260-5
inference algorithm 70
information of probability distri-
bution 155
inheritance calculus, use in lan-
guage translation for large
knowledge bases 279
inner product, definition 151
inner product space see Euclidean
space
input tape encoding (for evalua-
tion of logical theories)
93-9
instance, definition 444
instance-based prediction 333

INDEX

Institute for New Computer Tech-
nology (ICOT) 27, 31
instructive feedback 216
instrumental learning 215
integrity, knowledge bases 278
intelligence, theories of regulation
249
interpreter, use in machine learn-
ing 42, 48
intuitive motherese (babytalk) 261
Inverse Resolution 49
Ishizaka’s learning algorithm 187
ITrule algorithm 326
performance on various data-
sets 353-8
Jjustification of logical theories 87—
118
KARDIO system 306-7
Karhunen-Loeve (KL) digits data-
set (StatLog project) 330
characteristics 351
performance of various algo-
rithms 336, 854
Kemeny, John 14
kernel density estimation method
317
see also ALLOCS80 algorithm
k-minimal multiple generalization
63
algorithm for 59

application to attribute-oriented

induction 79-83
compared with use of LCHR
algorithm 82-3
k-nearest-neighbour (K-N-N) al-
gorithm 316
performance on various data-
sets 335, 336, 337, 339,
352-9
knowledge
types 387-8
see also declarative...; proce-
dural knowledge
knowledge acquisition, support of
276-7

468

knowledge-based programming en-
vironments, knowledge rep-
resentation in 270
knowledge bases
applications 276
building analogous to teach-
ing humans 276, 284, 287
changeability 278
conformity 277-8
engineering knowledge base
clusters of knowledge 283
segmentation of knowledge
285-6
size 286, 287
extendability 278
integrity 278
large knowledge bases 269-
87
openness 278
processing users’ queries 282-
3
stratification of knowledge 280
uniting into large knowledge
bases 276, 287
knowledge engineers, aims 387
knowledge representation
CAFE system 126-9
large knowledge bases 271-5,
279-80
knowledge system, formalization
of 280
Knuth, Donald 14
Kohonen net 328
performance on various data-
sets 336, 352-3, 855, 357-
8
Kowalski, Robert 16, 17, 21
k-pivot 66
KRK chess endgame
BTM (black-to-move) WFW
(won-for-white) positions
300, 301, 303-4
depth 0 induced Prolog def-
inition 299, 300~1

depth 1 induced Prolog def-
inition 301, 302, 305-6
number of legal positions
295-6, 295
canonical positions 294
databases 291, 293-6
depths of win 293
number of positions avail-
able 295
illegality induction task 101
significance measures com-
pared 104
legality learning task
compression-guided CWS pro-
cedure used 113-15
GCWS algorithm used 297~
306
symmetrical translation 294,
295
KRKN chess endgame 292
Kullback-Leibler measure 335, 342
kurtosis (of StatLog project data-
sets) 347, 351
LABYRINTH 125, 126
attribute generalization used
139
compared with CAFE 125, 126,
129, 138-9 :
representation of instance 127
lambda calculus
on Landin machine 20
see also Church’s lambda cal-
culus
Landin, Peter 20
LandSat image data 328-9
see also satellite image data-
set
Laplace’s Law of Succession 325
large knowledge bases 269-87
amount of work needed to build
287
architecture 279-83
contents 283-6
knowledge representation for
271-5

469

INDEX

operational parts described 280-
2
referential part 282
requirements 276-9
size 278, 286, 287
Law-Sammut algorithm (for pole-
balancing problem) 368-
9
compared with other variants
of BOXES algorithm 370
asymmetric pushing 373, 374
properties 369, 370-3
Law’s version of BOXES algorithm
368
layered network model 222-3, 2/1
simulated learning curves us-
ing 223, 225, 242, 244
LCHR algorithm 77
generalized database obtained
using 78
compared with use of k-mmg
algorithm 82-3
leap-year example 109
learning, definitions 413
learning algorithm
LA (for NFAs) 177-8
correctness 178, 180-1
flowchart diagram 179
time analysis 181-2
speed-up learning 445-8
learning control 361-456
learning curves
animal learning 2385, 237-40
simulations on layered net-
work 242-4
CAFE system 134, 1386, 138
COBWEB 134, 136, 138
LABYRINTH 138
Tsukimoto-Morita algorithm
163-4
learning from failure 456
learning to learn 224-5
demonstration 243
simulation on layered network

225, 244

INDEX

least general generalization 60
applications 69
generalization of 59-83
meaning of term 62

least Hebrand model (of program)

70, 72
least-mean square rule 223
linear discriminant analysis 317-
18
performance on various data-
sets 337, 338, 340, 341
see also Discrim algorithm
linear regression methods, com-
pared with Golem 197-
8, 208-11

linguistic learning 263-4

LISP 16

living organisms, growth 247

local merit criterion 367

logic
and artificial intelligence 6,

21-3
and computers 4-6, 6-12
and neurocomputation 27-30
and programming 12-13
and programming languages
16-21

logical entropy 154

and information of probabil-
ity distribution 155

logical function, information of 154

logical theories
evaluation, encoding scheme

for 93~100
justification 87-118

logical vector 146, 149-53
definitions used 149
interpretation of nonclassical

logical vectors 156, 157
meaning of term 153
relationship to probability vec-

tor 148, 153-9

correspondences 156-8
transformation from probabil-

ity vector 146, 158-9

470

Logic Theorist 29-30
logistic regression (LogReg) me-
thod 318-19
performance on various data-
sets 337, 338, 340, 352~
9
McCarthy, John 16, 21
Minsky’s opinion on his ap-
proach to Al 24, 25

McCarthy’s logical deductive knowledge-

base paradigm 24, 25, 26,
388-9
McCullogh, W.S. 4, 12, 27
machine learning
first program developed 37,
46-7

first shown by imitation of trained

human 402

integral role in computers 51

memory size required 41

Turing’s ideas 41, 51

see also concept formation;
inductive learning

machine learning algorithms 321-

6

performance on various data-
sets 340, 352-9

time taken 341

see also AC2...; C4.5...; Cal5...;
CART...; CN2...; Golem;

ID3...;INDCART...;ITrule..;

NewlID algorithm
macro-operators
average sizes {33
increased matching cost 434
matching costs compared 435—
6
operationality
experimental results 431-3
factors affecting 421
re-ordering effect 433-4, 435
unsuccessful application 434,
435
see also PCLEARN; percep-
tual chunks

Makarovic’s rules (for pole-and-
cart system) 380, 398
Martin-Lof’s Intuitionistic Type
Theory 5
Marvin program 44-5
Mauchly, J.W. 4, 11
MAXT algorithm 68
max trees see consistent max trees
medical datasets (StatLog project)
331-3
performance of various algo-
rithms 337-8, 856-7
see also head injury...; heart
disease dataset
medical diagnosis expert system
391
membership queries, learning us-
ing 169, 175
memory
accessibility to 388
declarative 388
procedural 388, 394
metacontrol (in split brain) 259
meta-interpreter 442-3, 456
metaknowledge 282
Michie, Donald, discussions with
Turing 39, 40
Michie-Chambers algorithm (for
pole-balancing problem)
366-7, 396
compared with other variants
of BOXES algorithm 370
microtheories, knowledge represen-
tation using 284
minimally adequate teacher (MAT)
learning model 169
interactive learning in 170
learnability of NFAs in poly-
nomial time 171-2
minimal multiple generalization
(MMG)
algorithm for 59, 65
applications
in inductive logic program-
ming 69-77

INDEX

in knowledge discovery in
databases 77-83
Minimum Description Length
(MDL) criteria 99, 144
proposition obtained by
Tsukimoto-Morita algo-
rithm 162, 164
Minsky, Marvin 21
on McCarthy’s approach to
Al 24, 25
MMG algorithm 65
modularity of knowledge 277
molecular modelling, Golem used
50
mother love 261
multigroup discriminant analysis
317
see also Alloc80 algorithm
multimodality measures 335, 339
mutual induction, use by CAFE
125, 129, 141
MYCIN expert system 891
naive Bayes algorithm 316
performance on various data-
sets 335, 337, 341, 852-
9
NASA
LandSat image data 328-9
Space Shuttle data 334
National Cash Register (NCR) Com-
pany 9n
National Physical Laboratory
(NPL), Turing’s work 9-
10, 40, 43
natural intelligence (NI) 25
natural numbers, encoded using
prefix codes 95
nearest-neighbour algorithms 316,
340, 341
see also k-nearest-neighbour
(K-N-N) algorithm
negative patterning 222, 240
simulation by layered network
model 223, 242

neocortical commissurotomy 255

INDEX

see also commissurotomy
nervous system 247
neural networks 326-8
compared with ID3 algorithm
313-14
compared with other algorithms
and systems 200, 201, 313-
14, 352-9
drug design using 195
lack of diagnostic help criti-
cized 342
performance on various data-
sets 336, 337, 340-1, 352~
9
problems solved 223
protein structure prediction
using 199, 200
see also back-propagation...;
Kohonen algorithm...;lay-
ered network model...; ra-
dial basis functions
neurocomputation 27-30
neurological data see head injury
dataset
neurone activity 250-1
newborn baby’s brain 249, 250
NewlD algorithm 323
performance on various data-
sets 338, 352-9
see also 1D3 algorithm
Nim game 37, 46-7
noise
effect in learning 44, 101
compressive theories 114, 115
estimation using compression
104-6
noisy data, discovery of proposi-
tions in 143-66
nonclassical logical vectors, inter-
pretation 156, 157
nonclassical logics 27
non-determinism, use by human
experts 171
non-deterministic finite automata

(NFAs)

472

application in pattern match-
ing 171
query learning by 172-88
algorithm used 177-8
compared with DFA learn-
ing 184
construction of new candi-
date rules 176
diagnosis of set of transi-
tion rules 176-7
introduction of new states
175
learning protocol used 175
notation used 174-5
usefullness 170-1
non-monotonic inductive inference,
closed-world specialization
used 108
nonmonotonicity 278
nonspecific knowledge 284, 285
norm, definition 152
NTgrowth 333
NUT programming environment
275
Occam’s razor 90
operant conditioning 215
with feedback 216
optimal chess strategies, learning
291-307
orthonormal systems 152-3
output tape encoding (for evalu-
ation of logical theories)
99
overfitting 144
pruning to avoid 144, 323
PAC-learning 114, 117
parallel computation, Church ma-
chines used 20
partial structures of explanations,
learning methods based
on 443, 456
pattern-matching problem
DFA compared with DFA 171
non-determinism used 170-1
Pavlovian conditioning 215

PCLEARN system 424-30

chunking facility 426
algorithm used 426-30
method used 425
specification 425

compared with EBL learner

431-6
experimental results

learning performance results

433-6
methods used 430-1
operationality of

macro-operators measured

431-3
future work proposed 437-8
input 425
learning concept 424-5
output 425
overview 426
problem-solver module 426
peak-to-peak heuristics 454-5
perceptual chunks 420
learning based on 421-2
see also PCLEARN
perceptually chunked
macro-operators 430
perfect causality 456
physical symbol system hypothe-
sis 386, 386-7
Pitts, W. 4, 12, 27
planning
example 449-50
proof tree for 450
experiments in robot domain
452-4
Plotkin, Gordon 37
pole-balancing problem 363-4
asymmetric pushing problem
373
comparison of various al-
gorithms 374
BOXES algorithm used 364-
9, 396
clean-up effects 879, 380
C4.5 algorithm used 401, 402

473

INDEX

clean-up effects 402-3, 403
determination of DK 872
determination of K 369, 371
induction of rules from be-
haviour 402

line-and-pointers representa-
tion 401 '

order in which dimensions che-
cked 398

reliable controllers 375-8

role of problem representation

401

pole-and-cart system 363-4, 396,
402

see also pole-balancing prob-

lem

polynomial time k-mmg algorithm
62-9

polynomial update time inference
algorithm 70

polytree algorithms 320, 342
see also CASTLE algorithm
polytrees 321
pooling of learning results 376
predicate calculus 46, 48
use in Golem 195
see also Inductive Logic Pro-
gramming
predicate invention 50, 307
prefix codes 94
natural numbers encoded us-
ing 95
prefunctional morphogenesis 248
primitive attribute 126
primitive Prologs 75-7
definition 75
inference algorithms for 76-7
probability vector
relationship to logical vector
148, 153-9
correspondences 156-8
transformation to logical vec-
tor 146, 158-9
problem-solving, involvement of both
declaraive and procedu-

INDEX

ral knowledge 412
procedural knowledge 389-93
compared with declarative knowl-
edge 393-4
procedural memory 394

chemical rules governing 200,
212

error rate data 101, 102

Golem used 199-201

significance measures compared

contrasted with declarative mem- 104
ory 388 protoconversations (baby-mother)
PRODIGY system 424, 425, 437, 261, 262
456 proximal associations, impairment
PFOdUCtiViFY 223-5 in conditioning 219, 238
programming psychological development 249

descriptive approach 14-15
imperative approach 15
and logic 12-13
Turing’s attitude 1314
see also automatic program-
ming
programming languages
development 5, 16
and logic 5, 16-21
program-translation programs 23—
4
projection pursuit regression 319-
20
see also SMART algorithm
Prolog 16
computation via goal reduc-
tion 444
as ideal language for symbolic
learning 48
proof encoding 97-9
example 97-8
proof trees 445
geometry problem 428
planning example 450

-positive/negative instances 447
propositional calculus theorem prov-

ing program 29
propositions
acquisition of 144
discovery in noisy data 143~
66
protein docking problem 201
protein secondary structure pre-

diction task 100, 198-9

474

psychology, in Al 24-5, 401
PVM algorithm, compared with
backpropagation 314
quadratic discriminant analysis 318
performance on various data-
sets 336, 337, 338, 340,
341, 852-9
quantitative structure-activity re-
lationship (QSAR) mod-
elling 195-6
rules 202-3
query learning 169-88
see also minimally adequate
teacher (MAT) learning
model
rabbit eyeblink, conditioning of 216~
17
radial basis functions 327-8
performance on various data-
sets 335, 336, 337, 339,
852-8
real-time skills, building symbolic
representations 385-415
reclassification error rate 101
recognize-act cycle, frequency 389~
90
REDUCED algorithm 66
operation of 65-6, 67
reinforcement learning, combined
with induction 380-2
relational attributes 126
value distribution 129, 139-
40

relative least general generaliza-
tions (RLGGs) 49, 297,
307
remote associations, facilitation in
conditioning 219, 287
RescorlaPWagner rule 223
resubstitution error rate 101
retrograde analysis method, chess
endgame databases gen-
erated using 293-5
rewriting rules 18-19
Robinson’s resolution logic 21
inversion 49
see also Inverse Resolution
rote learning programs 37, 47
rotorcraft control systems 404
rule-based control, experimental
study 395-400
rule-conjecture-and-test procedure
394
Runge-Kutta algorithm 396-7
run-time thinking 414
Samuel, A.L. 37, 47
satellite fault diagnosis, ILP ap-
proach used 307
satellite image dataset (StatLog
project) 328-9
characteristics 351
performance of various algo-
rithms 335-6, 352
scientific domains 191-287
Scott, Dana 14
search control knowledge
learning 420
in geometry domain 422-4
SECD machine 20-1
second-order conditioning 220, 299
self, origin in brain 414-15
self-reproduction 28
semantic memory 388
Shapiro’s contradiction backtrack-
ing algorithm 176

INDEX

Shuttle... see Space Shuttle...
skewness (of StatLog project data-
sets) 347, 851
skill, meaning of term 389
skill acquisition, postulates for 393~
4
skill-grafting experiments 400-14
aircraft flight 404-10
pole-balancing 401-4
SMART algorithm 319-20
performance on various data-
sets 337, 338, 352-9
SOAR learning method 437
software reusability 269-71
somatotopic maps 251, 255
spacecraft attitude control prob-
lem 382, 395-400
black-box simulator 396-7
constraints 395-6
decision arrays used 399
result of control strategy 398~
400
rules used 397-8, 399
Space Shuttle control dataset (Stat-
Log project) 334
characteristics 351
performance of various algo-
rithms 339-40, 859
speed-up learning 40, 441-56
algorithm for 445-8
split brain
anatomy 257
levels and directions of con-
sciousness in 255—60
state transition diagram, BOXES
algorithm 376
statistical algorithms 316-21
performance on various data-
sets 338, 340, 352-9
time taken 341
see also Alloc80...; Bayes...;

Shapiro’s debugging system 42, 51 CASTLE...; Discrim...; K-
Shapiro’s Model Inference System N-N...; LogReg...; Quadra...;
41-2 SMART algorithm

475

INDEX

statistical analysis methods, pro-
tein structure prediction
using 199
StatLog project
aim 311, 312
algorithms studied 316-28
machine learning algorithms
321-6, 352-9
neural network algorithms
326-8, 352-9
statistical algorithms 316-
21, 852-9
time taken 341
datasets studied
characterization of datasets
334-5, 340-1, 351
credit risk data 333-4, 338-
9, 858
handwritten digits data 329~
30, 336-7, 353
head injury data 331-2, 337~
8, 356
heart disease data 332-3,
337, 338, 357
image analysis data 328-
31
Karhunen-Loeve (KL) dig-
its data 330, 336, 354
medical data 331-3, 337-
8, 856-7
satellite image data 328-9,
335-6, 352
Space Shuttle control data
334, 339-40, 359
vehicle silhouettes data 330~
1, 337, 855
key personnel listed 343-5
objectives 312
previous studies commented
on 314-15
results 335-40, 852-9
credit risk dataset 338-9,
358
image analysis datasets 335~
7, 852-5

476

medical datasets 337-8, 356-
7
Space Shuttle dataset 339~
40, 358
testing methodology described
315-16
stimulus compounding 221, 240
simulation by layered network
model 223, 242
Strachey, Christopher 13, 14, 37,
46-7
STRIPS planning program 449-
52
strong Al 26
criteria summarized 386
logico-neural version 27
supporters of thesis 26, 386
structure information, utilization
in concept formation 123-
41
supervised learning 124, 140
with instructive feedback 216
pruning methods used 144
support, knowledge acquisition 276~
7
SuttonPBarto model 220~1
symbol description header, com-
ponents 94
symbolic propositional algorithms
321
performance on various data-
sets 340, 852-9
see also machine learning al-
gorithms
symbolic representation of intu-
itive processes 387
- compared with neural-net rep-
resentations 414-15
Symbol-Level Learning (SLL) 442
classes 443
teaching of humans, building of
knowledge bases analo-
gous to 276, 284, 287
thought, and knowledge 387-94
tightening process 65

touch-typing, declarative memory
disabled during 392-3
training set accuracy/covery, as
significance measure 102,
103, 104
transfer of training 224
see also learning to learn
transparency of knowledge 277
tree pattern language 62
trial-and-error learning 215
trimethoprim analogues 207
binding with dihydrofolate re-
ductase 195-8, 207
observed vs predicted ac-
tivity 208-9
Tsukimoto-Mcrita algorithm 145-
6, 159-61
description length of propo-
sition obtained 162, 164
experimental analyses 161-2,
163-4
incremental processing version
161
Turing, Alan
attitude to programming 13-
14
building of universal machine
8, 9-10
child development compared
with machine learning 45
contributions to Al 24, 37,
43
on Hilbert’s decidability ques-
tion 7, 8, 38
on incremental learning 44
invention of universal machine
1-2, 6, 7-8
at Manchester 12
on neural-net vs logic-based
learning 42
at NPL 9-10, 40, 43
at Princeton 10
and von Neumann 2, 3n, 8-9
war-time work 8-9, 39-40
Turing machine 7-8

477

INDEX

invention 1-2, 6
model for
evaluating logic programs
91
incremental hypothesis eval-
uation 92
von Neumann'’s practical ver-
sion 11, 30
Turing’s imperative notation 15
Turing Test 24, 26
tying shoelaces, as example of pro-
cedural knowledge 390
unconditioned response 215
unconditioned stimulus 215
unit clause programs, inference al-
gorithm for 71-2
univariate skewness (of StatLog
project datasets) 347, 851
universal computing machine 38
implications of concept 3-4,
8
invention by Alan Turing 1-
2,6, 7-8, 18, 38
practical exploitation 5, 8, 9-
10, 30-1
unsupervised learning 124-5, 140
VAX computer configuration, ex-
pert system for $91
see also XCON
vehicle silhouettes dataset (Stat-
Log project) 330-1
characteristics 851
performance of various algo-
rithms 337, 855
virtual other 264
visual information uptake 256
visual input (to brain hemispheres)
256
von Neumann, John
contribution to Al 24, 27-8
practical development of Tur-
ing machine 11, 30
on practical implications of
universal machine 34

INDEX

propensity to develop other
people’s ideas 2, 4
and Turing 2, 3n, 8-9, 10
von Neumann architecture 2, 11
voting, use in learning 376
weak Al, criteria summarized 386
weather (rain/cloud) example 145,
161
Widrow-1off rule 223
Winograd, T. 21
Womersley, J.R. 4n
XCON expert system 391
Yokomori’slearning algorithm 177~
8
compared with Angluin’s al-
gorithm 182-4, 185
correctness 178, 180-1
example operation 183, 185
flowchart diagram 179
practical variant 186-8
flowchart diagram 187
time analysis 181-2

478

é
?\rn;w...\....w..
. »w.e.in.\!»?
R

& !.U.

s
T

el i
— o o,

o

