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Foreword

The last seven years have seen the field of artificial intelligence (Al) trans-
formed. This transformation is not simple, nor has it yet run its course.
The transformation has been generated by the emergence of expert systems.
Whatever exactly these are or turn out to be, they first arose during the
1970s, with a triple claim: to be Al systems that used large bodies of heu-
ristic knowledge, to be Al systems that could be applied, and to be the
wave of the future. The exact status of these claims (or even whether my
statement of them is anywhere close to the mark) is not important. The
thrust of these systems was strong enough and the surface evidence im-
pressive enough to initiate the transformation. This transformation has at
least two components. One comes from the resulting societal interest in
Al expressed in the widespread entrepreneurial efforts to capitalize on
Al research and in the Japanese Fifth-Generation plans with their subse-
quent worldwide ripples. The other component comes from the need to
redraw the intellectual map of Al to assimilate this new class of systems—
to declare it a coherent subarea, or to fragment it into intellectual subparts
that fit the existing map, or whatever.

A side note is important. Even if the evidence from politics is not
persuasive, science has surely taught us that more than one revolution can
go on simultaneously. Taken as a whole, science is currently running at
least a score of revolutions—not a small number. Al is being transformed
by more than expert systems. In particular, robotics, under the press of
industrial productivity, is producing a revolution in Al in its own right.
Although progressing somewhat more slowly than expert systems at the
moment, robotics in the end will produce an effect at least as large, not
just on the applied side, but on the intellectual structure of the field as
well. Even more, both Al and robotics are to some degree parts of an
overarching revolution in microelectronics. In any event, to focus on one
revolution, namely expert systems, as I will do here for good reason, is not
to deny the importance of the others.

The book at whose threshold this foreword stands has (also) a triple
claim on the attention of someone interested in expert systems and Al
First, it provides a detailed look at a particular expert system, MYCIN.
Second, it is of historical interest, for this is not just any old expert system,
but the granddaddy of them all—the one that launched the field. Third,
it is an attempt to advance the science of Al, not just to report on a system
or project. Each of these deserves a moment’s comment, for those readers
who will tarry at a foreword before getting on with the real story.

MYCIN as Example It is sometimes noted that the term expert system
is a pun. It designates a system that is expert in some existing human art,

xi
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and thus that operates at human scale—not on some trifling, though per-
haps illustrative task, not on some toy task, to use the somewhat pejorative
term popular in the field. But it also designates a system that plays the role
of a consultant, i.e., an expert who gives advice to someone who has a task.
Such a dual picture cannot last long. The population of so-called expert
systems is rapidly becoming mongrelized to include any system that is ap-
plied, has some vague connection with Al systems and has pretentions of
success. Such is the fate of terms that attain (if only briefly) a positive halo,
when advantage lies in shoehorning a system under its protective and pro-
ductive cover.

MYCIN provides a pure case of the original pun. It is expert in an
existing art of human scale (diagnosing bacterial infections and prescribing
treatment for them) and it operates as a consultant (a physician describes
a patient to MYCIN and the latter then returns advice to the physician).
The considerations that came to the fore because of the consultant mode—
in particular, explanation to the user—play a strong role throughout all of
the work. Indeed, MYCIN makes explicit most of the issues with which
any group who would engineer an expert system must deal. It also lays
out some of the solutions, making clear their adequacies and inadequacies.
Because the MYCIN story is essentially complete by now and the book tells
it all, the record of initial work and response gives a perspective on the
development of a system over time. This adds substantially to the time-
sliced picture that constitutes the typical system description. It is a good
case to study, even though, if we learn our lessons from it and the other
early expert systems, we will not have to recapitulate exactly this history
again.

One striking feature of the MYCIN story, as told in this book, is its
eclecticism. Those outside a system’s project tend to build brief, trenchant
descriptions of a system. MYCIN is an example of approach X leading to
a system of type Y. Designers themselves often characterize their own sys-
tems in such abbreviated terms, seeking to make particular properties
stand out. And, of course, critics do also, although the properties they
choose to highlight are not usually the same ones. Indeed, I myself use
such simplified views in this very foreword. But if this book makes anything
clear, it is that the MYCIN gang (as they called themselves) continually
explored, often with experimental variants, the full range of ideas in the
Al armamentarium. We would undoubtedly see that this is true of many
projects if we were to follow their histories carefully. However, it seems to
have been particularly true of the effort described here.

MYCIN as History MYCIN comes out of the Stanford Heuristic Pro-
gramming Project (HPP), the laboratory that without doubt has had the
most impact in setting the expert-system transformation in motion and
determining its initial character. I said that MYCIN is the granddaddy of
expert systems. I do not think it is so viewed in HPP. They prefer to talk
about DENDRAL, the system for identifying chemical structures from
mass spectrograms (Lindsay, Buchanan, Feigenbaum, and Lederberg,
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1980), as the original expert system (Feigenbaum, 1977). True, DENDRAL
was the original system built by the group that became HPP, and its origins
go back into the mid-1960s. Also true is that many basic design decisions
that contributed to MYCIN came from lessons learned in DENDRAL. For
instance, the basic production-system representation had been tried out in
DENDRAL for modeling the mass spectrometer, and it proved highly ser-
viceable, as seen in all the work on Meta-DENDRAL, which learned pro-
duction rules. And certainly true, as well, is that the explicit focus on the
role of expertise in Al systems predates MYCIN by a long stretch. I trace
the focus back to Joel Moses’s dissertation at M.I.'T. in symbolic integration
(Moses, 1967), which led to the MACSYMA project on symbolic mathe-
matics (Mathlab Group, 1977), a system often included in the roster of
early expert systems.

Even so, there are grounds for taking DENDRAL and MACSYMA as
precursors. DENDRAL has strong links to classical problem-solving pro-
grams, with a heuristically shaped combinatorial search in a space of all
isomers at its heart and a representation (the chemical valence model) that
provided the clean space within which to search. DENDRAL started out
as an investigation into scientific induction (on real tasks, to be sure) and
only ended up becoming an expert system when that view gradually
emerged. MYCIN, on the other hand, was a pure rule-based system that
worked in an area unsupported by a clean, scientifically powerful repre-
sentation. Its search was limited enough (being nongenerative in an im-
portant sense) to be relegated to the background; thus MYCIN could be
viewed purely as a body of knowledge. MYCIN embodied all the features
that have (it must be admitted) become the clichés of what expert systems
are. MACSYMA also wears the mantle of original expert system somewhat
awkwardly. It has never been an Al system in any central way. It has been
regarded by those who created it, and now nurture it, as not belonging to
the world of Al at all, but rather to the world of symbolic mathematics.
Only its roots lie in Al—though they certainly include the attitude that
computer systems should embody as much expertise as possible (which
may or may not imply a large amount of knowledge).

My position here is as an outsider, for I did not witness the day-to-day
development of MYCIN in the research environment within which (in the
early 1970s) DENDRAL was the reigning success and paradigm. But I still
like my view that MYCIN is the original expert system that made it evident
to all the rest of the world that a new niche had opened up. Indeed, an
outsider’s view may have a validity of its own. It is, at least, certain that in
the efflorescence of medical diagnostic expert systems in the 1970s (CAS-
NET, INTERNIST, and the Digitalis Therapy Advisor; see Szolovits,
1982), MYCIN epitomized the new path that had been created. Thus,
gathering together the full record of this system and the internal history
of its development serves to record an important event in the history of
Al

MYCIN as Science The first words of this foreword put forth the
image of a development within Al of uncertain character, one that needed
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to be assimilated. Whatever effects are being generated on the social or-
ganization of the field by the development of an applied wing of Al, the
more important requirement for assimilation, as far as I am concerned,
comes from the scientific side. Certainly, there is nothing very natural about
expert systems as a category, although the term is useful for the cluster of
systems that is causing the transformation.

Al is both an empirical discipline and an engineering discipline. This
has many consequences for its course as a science. It progresses by building
systems and demonstrating their performance. From a scientific point of
view, these systems are the data points out of which a cumulative body of
knowledge is to develop. However, an Al system is a complex join of many
mechanisms, some new, most familiar. Of necessity, on the edge of the art,
systems are messy and inelegant joins—that’s the nature of frontiers. It is
difficult to extract from these data points the scientific increments that
should be added to the cumulation. Thus, Al is case-study science with a
vengeance. But if that were not enough of a problem, the payoft structure
of Al permits the extraction to be put off, even to be avoided permanently.
If a system performs well and breaks new ground—which can often be
verified by global output measures and direct qualitative assessment—then
it has justified its construction. Global conclusions, packaged as the dis-
cursive views of its designers, are often the only increments to be added
to the cumulated scientific base.

Of course, such a judgment is too harsh by half. The system itself
constitutes a body of engineering know-how. Through direct study and
emulation, the next generation of similar systems benefits. However, the
entire history of science shows no alternative to the formation of explicit
theories, with their rounds of testing and modification, as the path to gen-
uine understanding and control of any domain, whether natural or tech-
nological. In the present state of Al, it is all too easy to move on to the
next system without devoting sufficient energies to trying to understand
what has already been wrought and to doing so in a way that adds to the
explicit body of science. An explosive development, such as that of expert
systems, is just the place where engineering progress can be expected to
occur pell-mell, with little attention to obtaining other than global scientific
lessons,

This situation is not to be condemned out of hand, but accepted as a
basic condition of our field. For the difficulties mentioned above stem from
the sources that generate our progress. Informal and experiential tech-
niques work well because programmed systems are so open to direct in-
spection and assessment, and because the loop to incremental change and
improvement is so short, with interactive creation and modification. Al,
like any other scientific field, must find its own particular way to science,
building on its own structure and strengths. But the field is young, and
that way is not yet clear. We must continue to struggle to find out how to
extract scientific knowledge from our data points. The situation is hardly
unappreciated, and many people in the field are trying their hands at
varying approaches, from formal theory to more controlled system exper-
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imentation. There has been exhortation as well. Indeed, I seem to have
done my share of exhortation, especially with respect to expert systems.
The editors of the present volume, in inviting me to provide a foreword
to it, explicitly noted that the book was (in small part) an attempt to meet
the calls I had made for more science from our expert-systems experi-
ments. And recently, Harry Pople asserted that his attempt at articulating
the task domain of medical diagnosis for INTERNIST was (again, in small
part) a response to exhortation (he called it criticism) of mine (Pople, 1982).
I am not totally comfortable with the role of exhorter—I prefer to be in
the trenches. However, if comments of mine have helped move anyone to
devote energy to extracting the science from our growing experience with
expert systems, I can only rejoice.

The third claim of this book, then, is to extract and document the
scientific lessons from the experience with MYCIN. This extraction and
documentation occurs at two levels. First, there has been a very substantial
exploration in the last decade of many of the questions that were raised
by MYCIN. Indeed, there are some 26 contributors to this book, even
though the number of people devoted to MYCIN proper at any one time
was never very large. Rather, the large number of contributors reflects the
large number of follow-on and alternative-path studies that have been un-
dertaken. This book documents this work. It does so by collecting the
papers and reports of the original researchers that did the work, but the
present editors have made substantial revisions to smooth the whole into
a coherent story. This story lays to rest the simplified view that MYCIN
was a single system that was designed, built, demonstrated and refined; or
even that it was only a two-stage affair—MYCIN, the original task-specific
system, followed by a single stage of generalization into EMYCIN, a kernel
system that could be used in other tasks. The network of studies was much
more ramified, and the approaches considered were more diverse.

The step to EMYCIN does have general significance. It represents a
major way we have found of distilling our knowledge and making it avail-
able to the future. It is used rather widely; for example, the system called
EXPERT (Kulikowski and Weiss, 1982) bears the same relation to the CAS-
NET system as EMYCIN does to MYCIN. It is of a piece with the strategy
of building special-purpose problem-oriented programming languages to
capture a body of experience about how to solve a class of problems, a
strategy common throughout computer science. The interesting aspect of
this step, from the perspective of this foreword, is its attempt to capitalize
on the strong procedural aspects of the field. The scientific abstraction is
embodied in the streamlined and clean structure of the kernel system (or
programming language). The scientific advance is communicated by direct
study of the new artifact and, importantly, by its use. Such kernel systems
still leave much to be desired as a vehicle for science. For example, evalu-
ation still consists in global discussion of features and direct experience,
and assessment of its use. (Witness the difficulty that computer science has
in assessing programming languages, an entirely analogous situation.) Still,
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the strategy represented by EMYCIN is an important and novel response
by Al to producing science.

The second level at which this book addresses the question of science
is in surveying the entire enterprise and attempting to draw the major
lessons (see especially the last chapter). Here the editors have faced a hard
task. Of necessity, they have had to deal with all the complexity of a case
study (more properly, of a collection of them). Thus, they have had to
settle for reflecting on the enterprise and its various products and expe-
riences, and to encapsulate these in what I referred to above as qualitative
discussion. But they have a long perspective available to them, and there
is a lot of substance in the individual studies. Thus, the lessons that they
draw are indeed a contribution to our understanding of expert systems.

In sum, for all these reasons I've enumerated, I commend to you a
volume that is an important addition to the literature on Al expert systems.
It is noteworthy that the Stanford Heuristic Programming Project previ-
ously produced an analogous book describing the DENDRAL effort and
summarizing their experience with it (Lindsay, Buchanan, Feigenbaum and
Lederberg, 1980). Thus, HPP has done its bit twice. It is well ahead of
many of the rest of us in providing valuable increments to the accumulation
of knowledge about expert systems.

Pittsburgh, Pennsylvania Allen Newell
March 1984
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Preface

Artificial intelligence, or Al, is largely an experimental science—at least as
much progress has been made by building and analyzing programs as by
examining theoretical questions. MYCIN is one of several well-known pro-
grams that embody some intelligence and provide data on the extent to
which intelligent behavior can be programmed. As with other Al pro-
grams, its development was slow and not always in a forward direction.
But we feel we learned some useful lessons in the course of nearly a decade
of work on MYCIN and related programs.

In this book we share the results of many experiments performed in
that time, and we try to paint a coherent picture of the work. The book is
intended to be a critical analysis of several pieces of related research, per-
formed by a large number of scientists. We believe that the whole field of
AI will benefit from such attempts to take a detailed retrospective look at
experiments, for in this way the scientific foundations of the field will
gradually be defined. It is for all these reasons that we have prepared this
analysis of the MYCIN experiments.

The MYCIN project is one of the clearest representatives of the experi-
mental side of Al It was begun in the spring of 1972 with a set of discus-
sions among medical school and computer science researchers interested
in applying more intelligence to computer programs that interpret medical
data. Shortliffe’s Ph.D. dissertation in 1974 discussed the problem and the
MYCIN program that implemented a solution. In itself, the 1974 version
of MYCIN represents an experiment. We were testing the hypothesis, ad-
vanced in previous work at Stanford, that a rule-based formalism was suf-
ficient for the high performance, flexibility, and understandability that we
demanded in an expert consultation system. The positive answer to this
question is one of the best-known lessons in the history of Al

In addition to, or rather because of, the original MYCIN program and
the medical knowledge base that was accumulated for that work, many
derivative projects explored variations on the original design. EMYCIN!
is among the best known of these, but there are several others. In this book
we discuss many of the experiments that evolved in the period from 1972

'We use the name EMYCIN for the system that evolved from MYCIN as a framework for
building and running new expert systems. The name stands for “essential MYCIN,” that is,
MYCIN’s framework without its medical knowledge base. We have been reminded that E-
MYCIN is the name of a drug that Upjohn Corp. has trademarked. The two names should
not be confused: EMYCIN should not be ingested, nor should E-MYCIN be loaded into a
computer.

xvii
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to 1982 based on the 1972—1974 design effort. We have chosen those
pieces of work that, at least in retrospect, can be seen as posing clear
questions and producing clear results, most of which were documented in
the AI or medical literature and in technical reports.

We are taking a retrospective view, so as to restate questions and rein-
terpret results in a more meaningful way than that in which they were
originally documented. Among other things, we now present these pieces
of work as a collected whole, whereas they were not originally written as
such. Each paper is heavily edited—new sections have been added to put
the work in context, old sections have been deleted to avoid redundancies
and “red herrings,” and the entire text has been reworked to fit each paper
into the unified picture. Each part begins with an overview chapter posing
the central question of the section, discussing the implications of the ques-
tion in its historical context, and providing a current framework for inter-
preting the results. Some entirely new papers were prepared specifically
for this book. In addition, we are including several papers and technical
reports that have previously been difficult to find and will therefore be
generally available for the first time.

The last chapter is entirely new and could not have been written until
the experiments were performed. It presents a set of conclusions that we
have drawn from the experimental results. In a sense, the rest of the book
discusses the data that support these conclusions. We believe this book is
unique in its attempt to synthesize 10 years of work in order to demonstrate
scientific foundations and the way in which Al research evolves as key
issues emerge.
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In the early stages of the development of any science different men
confronting the same range of phenomena, but not usually all the same
particular phenomena, describe and interpret them in different ways. What is
surprising, and perhaps also unique in its degree to the fields we call science, is
that such initial divergences should ever largely disappear.

T. S. Kuhn, The Structure of
Scientific Revolutions (International
Encyclopedia of Unified Science,

vol. I1, no. 2). Chicago:
University of Chicago Press, 1962.

The philosopher’s treatment of a question is like the treatment of an illness.

L. Wittgenstein, Philosophical
Investigations, para. 255 (trans.
G. E. M. Anscombe). New York:
Macmillan, 1953.

Every one then who hears these words of mine and does them will be like a
wise man who built his house upon the rock; and the rain fell, and the floods
came, and the winds blew and beat upon that house, but it did not fall, because
it had been founded on the rock. And every one who hears these words of mine
and does not do them will be like a foclish man who built his house upon the
sand; and the rain fell, and the floods came, and the winds blew and beat against
that house, and it fell; and great was the fall of it.

Matthew 7:24-27
(Revised Standard Version)



PART ONE

Background



The Context of the MYCIN
Experiments

Artificial Intelligence (Al) is that branch of computer science dealing with
symbolic, nonalgorithmic methods of problem solving. Several aspects of
this statement are important for understanding MYCIN and the issues
discussed in this book. First, most uses of computers over the last 40 years
have been in numerical or data-processing applications, but most of a per-
son’s knowledge of a subject like medicine is not mathematical or quanti-
tative. It is symbolic knowledge, and it is used in a variety of ways in prob-
lem solving. Also, the problem-solving methods themselves are usually not
mathematical or data-processing procedures but qualitative reasoning tech-
niques that relate items through judgmental rules, or heuristics, as well as
through theoretical laws and definitions. An algorithm is a procedure that
is guaranteed either to find the correct solution to a problem in a finite
time or to tell you there is no solution. For example, an algorithm for
opening a safe with three dials is to set the dials on every combination of
numbers and try the lock after each one. Heuristic methods, on the other
hand, are not guaranteed to work, but will often find solutions in much
shorter times than will exhaustive trial and error or other algorithms. For
the example of the safe, one heuristic is to listen for tumblers to drop into
place. Few problems in medicine have algorithmic solutions that are both
practical and valid. Physicians are forced to reason about an illness using
judgmental rules and empirical associations along with definitive truths of
physiology.

MYCIN is an expert system (Duda and Shortliffe, 1983). By that we
mean that it is an Al program designed (a) to provide expert-level solutions
to complex problems, (b) to be understandable, and (c) to be flexible
enough to accommodate new knowledge easily. Because we have designed
MYCIN to provide advice through a consultative dialogue, we sometimes
refer to it as a consultation system.

There are two main parts to an expert system like MYCIN: a knowl-
edge base and an inference mechanism, or engine (Figure 1-1). In addition,
there are often subprograms designed to facilitate interaction with users,

3
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EXPERT SYSTEM
Description User
P ——> _ Inference
of new case inter- ﬂ—b .
Engine
face
USER T
Advice &
é— Knowledge
Explanation [1-—5 ¢
Base

FIGURE 1-1 Major parts of an expert system. Arrows indicate
information flow.

to help build a knowledge base, to explain a line of reasoning, and so forth.
The knowledge base is the program’s store of facts and associations it
“knows” about a subject area such as medicine. A critical design decision
is how such knowledge is to be represented within the program. There are
many choices, in general. For MYCIN, we chose to represent knowledge
mostly as conditional statements, or rules, of the following form:
IF: There is evidence that A and B are true,

THEN: Conclude there is evidence that C is true.

This form is often abbreviated to one of the following:

If A and B, then C

A&B->C
We refer to the antecedent of a rule as the premise or left-hand side (LLHS)
and to the consequent as the action or right-hand side (RHS).

The inference mechanism can take many forms. We often speak of
the control structure or control of inference to reflect the fact that there
are different controlling strategies for the system. For example, a set of
rules may be chained together, as in this example:

If A, then B (Rule 1)
If B, then C (Rule 2)
A (Data)

-G {Conclusion)
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This is sometimes called forward chaining, or data-directed inference, be-
cause the data that are known (in this case A) drive the inferences from
left to right in rules, with rules chaining together to deduce a conclusion
(C).

MYCIN primarily uses backward chaining, or a goal-directed control
strategy. The deductive validity of the argument is established in the same
way, but the system’s behavior is quite different. In goal-directed reasoning
a system starts with a statement of the goal to achieve and works “back-
ward” through inference rules, i.e., from right to left, to find the data that
establish that goal, for example:

Find out about C (Goal)

If B, then C (Rule 1)

If A, then B (Rule 2)

~If A, then C (Implicit rule)
Question: Is A true? (Data)

Since there are many rule chains and many pieces of data about which the
system needs to inquire, we sometimes say that MYCIN is an evidence-
gathering program.

The whole expert system is used to perform a task, in MYCIN’s case
to provide diagnostic and therapeutic advice about a patient with an in-
fection as described in Section 1.2. We sometimes refer to the whole system,
shown in Figure 1-1, as the performance system to contrast it with other
subsystems not so directly related to giving advice. MYCIN contains an
explanation subsystem, for example, which explains the reasoning of the
performance system (see Part Six).

Several of the chapters in this book deal with the problems of con-
structing a performance system in the first place. We have experimented
with different kinds of software tools that aid in the construction of a new
system, mostly by helping with the formulation and understanding of a
new knowledge base. We refer to the process of mapping an expert’s knowl-
edge into a program’s knowledge base as knowledge engineering.! The in-
tended users of these kinds of tools are either (a) the so-called knowledge
engineers who help an expert formulate and represent domain-specific
knowledge for the performance system or (b) the experts themselves. Al-

'The term knowledge engineering was, to the best of our knowledge, coined by Edward Fei-
genbaum after Donald Michie’s phrase epistemological engineering. Like the phrases expert system
and knowledge-based system, however, it did not come into general use until about 1975. For
more discussion of expert systems, see Buchanan and Duda (1983).
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though either group might also run the performance system to test it,
neither overlaps with the intended routine users of the performance sys-
tem. Our model is that engineers help experts build a system that others
later use to get advice. Elaborating on the previous diagrams, we show this
model in Figure 1-2.

Choice of Programming Language

LISP has been the programming language of choice for Al programs for
nearly two decades (McCarthy et al., 1962). It is a symbol manipulation
language of extreme flexibility based on a small number of simple con-
structs.? We are often asked why we chose LISP for work on MYCIN, so
a brief answer is included here. Above all, we needed a language and
programming environment that would allow rapid modification and test-
ing and in which it was easy and natural to separate medical rules in the
knowledge base from the inference procedures that use the rules. LISP is
an interpretive language and thus does not require that programs be re-
compiled after they have been modified in order to test them. Moreover,
LISP removes the distinction between programs and data and thus allows
us to use rules as parts of the program and to examine and edit them as data
structures. The editing and debugging facilities of Interlisp also aided our
research greatly.

Successful Al programs have been written in many languages. Until
recently LISP was considered to be too slow and too large for important
applications. Thus there were reasons to consider other languages. But for
a research effort, such as this one, we were much more concerned with
saving days during program development than with saving seconds at run
time. We needed the flexibility that LISP offered. When Interlisp became
available, we began using it because it promised still more convenience
than other versions. Now that additional tools, such as EMYCIN, have been
built on top of Interlisp, more savings can be realized by building new
systems using those tools (when appropriate) than by building from the
base-level LISP system. At the time we began work on MYCIN, however,
we had no choice.

]_. ] Historical Perspective on MYCIN

As best as we can tell, production rules were brought into artificial intel-
ligence (AI) by Allen Newell, who had seen their power and simplicity
demonstrated in Robert Floyd’s work on formal languages and compilers

2See Winston and Horn (1981), Charniak et al. (1980), and Allen (1978) for more information
about the language itself.
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(Floyd, 1961) at Carnegie-Mellon University. Newell saw in production
systems an elegant formalism for psychological modeling, a theme still
pursued at Carnegie-Mellon University and elsewhere. Through conver-
sations between Newell and himself at Stanford in the 1960s (see Newell,
1966), Edward Feigenbaum began advocating the use of production rules
to encode domain-specific knowledge in DENDRAL. Don Waterman
picked up on the suggestion, but decided to work with rules and heuristics
of the game of poker (Waterman, 1970) rather than of mass spectrometry.
His success, and Feigenbaum’s continued advocacy, led to recoding much
of DENDRALSs knowledge into rules (Lindsay et al., 1980).

The DENDRAL program was the first Al program to emphasize the
power of specialized knowledge over generalized problem-solving methods
(see Feigenbaum et al., 1971). It was started in the mid-1960s by Joshua
Lederberg and Feigenbaum as an investigation of the use of Al techniques
for hypothesis formation. It constructed explanations of empirical data in
organic chemistry, specifically, explanations of analytic data about the mo-
lecular structure of an unknown organic chemical compound.? By the mid-
1970s there were several large programs, collectively called DENDRAL,
which interacted to help organic chemists elucidate molecular structures.
The programs are knowledge-intensive; that is, they require very special-
ized knowledge of chemistry in order to produce plausible explanations of
the data. Thus a major concern in research on DENDRAL was how to
represent specialized knowledge of a domain like chemistry so that a com-
puter program could use it for complex problem solving.

MYCIN was an outgrowth of DENDRAL in the sense that many of
the lessons learned in the construction of DENDRAL were used in the
design and implementation of MYCIN. Foremost among these was the
newfound power of production rules, as discussed in Chapter 2. The senior
members of the DENDRAL team, Lederberg and Feigenbaum, had con-
vinced themselves and Bruce Buchanan that the Al ideas that made DEN-
DRAL work could be applied to a problem of medical import. At about
that time, Edward Shortliffe had just discovered AI as a medical student
enrolled in a Computer Science Department course entitled “Models of
Thought Processes,” taught at the time by Jerome Feldman. Also, Stanley
Cohen, then Chief of Clinical Pharmacology at the Stanford University
Medical School, had been working on a medical computing project, the
MEDIPHOR drug interaction warning system (Cohen et al., 1974). He had
sought Buchanan’s involvement and had also just accepted Shortliffe as a
research assistant on the project. In addition, the late George Forsythe,
then Chairman of the Computer Science Department, was strongly sup-
portive of this kind of interdisciplinary research project and encouraged

SEven more specifically, the data about the unknown compound were data from a mass
spectrometer, an instrument that bombards a small sample of a compound with high-energy
electrons and produces data on the resulting fragments.
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Shortliffe in his efforts to obtain formal training in the field. Thus the
scene was set for a collaborative effort involving Cohen, Buchanan, and
Shortliffe—an effort that ultimately grew into Shortliffe’s dissertation.

After six months of collaborative effort on MEDIPHOR, our discus-
sions began to focus on a computer program that would monitor physi-
cians’ prescriptions for antibiotics and generate warnings on inappropriate
prescriptions in the same way that MEDIPHOR produced warnings re-
garding potential drug-drug interactions. Such a program would have
needed to access data bases on three Stanford computers: the pharmacy,
clinical laboratory, and bacteriology systems. It would also have required
considerable knowledge about the general and specific conditions that
make one antibiotic, or combination of antibiotics, a better choice than
another. Cohen interested Thomas Merigan, Chief of the Infectious Dis-
ease Division at Stanford, in lending both his expertise and that of Stanton
Axline, a physician in his division. In discussing this new kind of monitor-
ing system, however, we quickly realized that it would require much more
medical knowledge than had been the case for MEDIPHOR. Before a
system could monitor for inappropriate therapeutic decisions, it would
need to be an “expert” in the field of antimicrobial selection. Thus, with
minor modifications for direct data entry from a terminal rather than from
patient data bases, a monitoring system could be modified to provide con-
sultations to physicians. Another appeal of focusing on an interactive sys-
tem was that it provided us with a short-term means to avoid the difficulty
of linking three computers together to provide data to a monitoring sys-
tem. Thus our concept of a computer-based consultant was born, and we
began to model MYCIN after infectious disease consultants. This model
also conformed with Cohen’s strong belief that a computer-based aid for
medical decision making should suggest therapy as well as diagnosis.

Shortliffe synthesized medical knowledge from Cohen and Axline and
Al ideas from Buchanan and Cordell Green. Green suggested using In-
terlisp (then known as BBN-LISP), which was running at SRI International
(then Stanford Research Institute) but was not yet available at the univer-
sity. Conversations with him also led to the idea of using Carbonell’s pro-
gram, SCHOLAR (Carbonell, 1970a), as a model for MYCIN. SCHOLAR
represented facts about the geography of South America in a large se-
mantic network and answered questions by making inferences over the
net. However, this model was not well enough developed for us to sece how
a long dialogue with a physician could be focused on one line of reasoning
at a time. We also found it difficult to construct semantic networks for the
ill-structured knowledge of infectious disease. We turned instead to a rule-
based approach that Cohen and Axline found easier to understand, par-
ticularly because chained rules led to lines of reasoning that they could
understand and critique.

One important reason for the success of our early efforts was Short-
liffe’s ability to provide quickly a working prototype program that would
show Cohen and Axline the consequences of the rules they had stated at
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each meeting. The modularity of the rules was an important benefit in
providing rapid feedback on changes. Focusing early on a working pro-
gram not only kept the experts interested but also allowed us to design the
emerging program in response to real problems instead of trying to imag-
ine the shape of the problems entirely in advance of their manifestations
in context.

Green recommended hiring Carli Scott as our first full-time employee,
and the MYCIN research began to take shape as a coordinated project.
Axline subsequently enlisted help from infectious disease fellows to com-
plement the expertise of Cohen’s clinical pharmacology fellow. Graduate
students from the Computer Science Department were also attracted to
the work, partly because of its social relevance and partly because it was
new and exciting. Randall Davis, for example, had been working on vision
understanding at the Stanford Al Lab and had been accepted for medical
school when he heard about MYCIN and decided to invest his research
talents with us.

In our first grant application (October, 1973), we described the goals
of the project.

For the past year and a half the Divisions of Clinical Pharmacology and
Infectious Disease plus members of the Department of Computer Science
have collaborated on initial development of a computer-based system (termed
MYCIN) that will be capable of using both clinical data and judgmental de-
cisions regarding infectious disease therapy. The proposed research involves
development and acceptable implementation of the following:

A. CONSULTATION PROGRAM. The central component of the MY-
CIN system is an interactive computer program to provide physicians with
consultative advice regarding an appropriate choice of antimicrobial therapy
as determined from data available from the microbiology and clinical chem-
istry laboratories and from direct clinical observations entered by the physi-
cian in response to computer-generated questions;

B. INTERACTIVE EXPLANATION CAPABILITIES. Another impor-
tant component of the system permits the consultation program to explain
its knowledge of infectious disease therapy and to justify specific therapeutic
recommendations;

C. COMPUTER ACQUISITION OF JUDGMENTAL KNOWLEDGE.
The third aspect of this work seeks to permit experts in the field of infectious
disease therapy to teach the MYCIN system the therapeutic decision rules
that they find useful in their clinical practice.

The submission of our initial grant application encouraged us to choose a
name for the project on which we had already been working for two years.
After failing to find a suitable acronym, we selected the name MYCIN at
Axline’s suggestion. This name is simply the common sutfix associated with
many antimicrobial agents.

Although we were aiming at a program that would help physicians,
we also realized that there were many computer science problems with
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FIGURE 1-3 HPP programs relating to MYCIN. (Program
names in boxes were Ph.D. dissertation research programs.)

which we had to grapple. No other Al program, including DENDRAL,
had been built using so much domain-specific knowledge so clearly sepa-
rated from the inference procedures.

A schematic review of the history of the work on MYCIN and related
projects is shown in Figure 1-3. MYCIN was one of several projects in the
Stanford Heuristic Programming Project (HPP); others were DENDRAL,
CONGEN, Meta-DENDRAL, and SU/X.* There was much interaction

‘Later renamed HASP/SIAP (Nii and Feigenbaum, 1978; Nii et al., 1982).



12

The Context of the MYCIN Experiments

among the individuals working in HPP that is not shown in this simplified
diagram, of course. Within the MYCIN project individuals were working
on several nearly separable subprojects, some of which are shown: Ques-
tion Answering (QA), Inference (including certainty factors, or CF’s, and
the therapy recommendation code), Explanation, Evaluation, and Knowl-
edge Acquisition. These subprojects formed the basis of several of the
experiments reported in this volume. All were well-focused projects since
we were undertaking them partly to improve the knowledge base and the
performance of MYCIN. Figure 1-3 shows roughly the chronology of
work; however, in the organization of this book chronology is not empha-
sized.

Ancient History

Jaynes (1976) refers to a collection of 20,000—30,000 Babylonian tablets,
about 20% of which contain sets of production rules (“omens”) for gov-
erning everyday affairs.® These were already written and catalogued by
about 650 B.c. He describes the form of each entry as “an if-clause or
protasis followed by a then-clause or apodosis.” For example,

“If a horse enters a man’s house and bites either an ass or a man,
the owner of the house will die and his household will be scattered.”
“If a man unwittingly treads on a lizard and Kkills it,

he will prevail over his adversary.”

Included in these are medical rules, correlating symptoms with prog-
noses. According to one of Jaynes’ sources (Wilson, 1956; 1962), these
tablets of scientific teachings were catalogued by subject matter around 700
B.C. Among the left-hand sides quoted from the medical tablets are the
following (Wilson, 1956):

“If, after a day’s illness, he begins to suffer from headache . . .”

“If, at the onset of his illness, he had prickly heat ...

“If he is hot (in one place) and cold (in another) . ..”

“If the affected area is clammy with sweat . ..”

Each clause is catalogued as appearing in 60—150 entries on the tablets.
One right-hand side for the medical rules cited by Wilson is the following:

“. .. he will die suddenly.”

5We are indebted to James Bennett for pointing out this reference.
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Thus we see that large collections of simple rules were used for medical
diagnosis long before MYCIN and that some thought had been given to
the organization of the knowledge base.

l 2 MYCIN’s Task Domain—Antimicrobial
o Selection

Because a basic understanding of MYCIN’s task domain is important for
understanding much of what follows, we include here a brief description
of infectious disease diagnosis and therapy.”

1.2.1 The Nature of the Decision Problem

An antimicrobial agent is any drug designed to kill bacteria or to arrest
their growth. Thus the selection of antimicrobial therapy refers to the
problem of choosing an agent (or combination of agents) for use in treating
a patient with a bacterial infection. The terms antimicrobial and antibiotic
are often used interchangeably, even though the latter actually refers to
any one of a number of drugs that are isolated as naturally occurring
products of bacteria or fungi. Thus the well-known penicillin mold is the
source of an antibiotic, penicillin, that is used as an antimicrobial. Some
antibiotics are too toxic for use in treating infectious diseases but are still
used in research laboratories (e.g., dactinomycin) or in cancer chemother-
apy (e.g., daunomycin). Furthermore, some antimicrobials (such as the sul-
fonamides) are synthetic drugs and are therefore not antibiotics. There
are also semisynthetic antibiotics (e.g., methicillin) that are produced in
chemical laboratories by manipulating a naturally occurring antibiotic mol-
ecule. In writing about MYCIN we have tended not to rely on this formal
distinction between antimicrobial and antibiotic and have used the terms
as though they were synonymous.

Antimicrobial selection would be a trivial problem if there were a single
nontoxic agent effective against all bacteria capable of causing human dis-
ease. However, drugs that are highly useful against certain organisms are
often not the most effective against others. The identity (genus) of the
organism causing an infection is therefore an important clue for deciding

5The fact that the rules on the tablets were themselves indexed by premise clauses would
suggest that they were used in data-directed fashion. Yet the global organization of rules on
tablets was by subject matter, so that medical rules were together, house-building rules to-
gether, and so on. This “big switch” organization of the knowledge base is an early instance
of using rule groups to focus the attention of the problem solver, a pressing problem, espe-
cially in large, data-directed systems such as the Babylonian omens.

"This section is based on a similar discussion by Shortliffe (1974).
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what drugs are apt to be beneficial for the patient. Initially, MYCIN did
not consider infections caused by viruses or pathogenic fungi, but since
these other kinds of organisms are particularly significant as causes of
meningitis, they were later added when we began to work with that do-
main.

Selection of therapy is a four-part decision process. First, the physician
must decide whether or not the patient has a significant infection requiring
treatment. If there is significant disease, the organism must be identified
or the range of possible identities must be inferred. The third step is to
select a set of drugs that may be appropriate. Finally, the most appropriate
drug or combination of drugs must be selected from the list of possibilities.
Each step in this decision process is described below.

Is the Infection Significant?

The human body is normally populated by a wide variety of bacteria.
Organisms can invariably be cultured from samples taken from a patient’s
skin, throat, or stool. These normal flora are not associated with disease in
most patients and are, in fact, often important to the body’s homeostatic
balance. The isolation of bacteria from a patient is therefore not presump-
tive evidence of significant infectious disease.

Another complication is the possibility that samples obtained from
normally sterile sites (such as the blood, cerebrospinal fluid, or urinary
tract) will be contaminated with external organisms either during the col-
lection process itself or in the microbiology laboratory where the cultures
are grown. It is therefore often wise to obtain several samples and to see
how many contain organisms that may be associated with significant dis-
ease.

Because the patient does have a normal bacterial flora and contami-
nation of cultures may occur, determination of the significance of an in-
fection is usually based on clinical criteria. Does the patient have a fever?
Is he or she coughing up sputum filled with bacteria? Does the patient
have skin or blood findings suggestive of serious infection? Is his or her
chest x-ray normal? Does the patient have pain or inflammation? These
and similar questions allow the physician to judge the seriousness of the
patient’s condition and often demonstrate why the possibility of infection
was considered in the first place.

What Is the Organism’s Identity?

There are several laboratory tests that allow an organism to be identified.
The physician first obtains a sample from the site of suspected infection
(e.g., a blood sample, an aspirate from an abscess, a throat swabbing, or a
urine specimen) and sends it to the microbiology laboratory for culture.
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There the technicians first attempt to grow organisms from the sample on
an appropriate nutritional medium. Early evidence of growth may allow
them to report the morphological and staining characteristics of the or-
ganism. However, complete testing of the organism to determine a definite
identity usually requires 24—48 hours or more.

The problem with this identification process is that the patient may be
so ill at the time when the culture is first obtained that the physician cannot
wait two days before beginning antimicrobial therapy. Early data regarding
the organism’s staining characteristics, morphology, growth conformation,
and ability to grow with or without oxygen may therefore become crucially
important for narrowing down the range of possible identities. Further-
more, historical information about the patient and details regarding his or
her clinical status may provide additional useful clues as to the organism’s
identity.

What Are the Potentially Useful Drugs?

Even once the identity of an organism is known with certainty, its range
of antimicrobial sensitivities may be unknown. For example, although a
Pseudomonas is usually sensitive to gentamicin, an increasing number of
gentamicin-resistant Pseudomonae are being isolated. For this reason the
microbiology technicians will often run in vitro sensitivity tests on an or-
ganism they are growing, exposing the bacterium to several commonly
used antimicrobial agents. This sensitivity information is reported to the:
physician so that he or she will know those drugs that are likely to be
effective in vivo (i.e., in the patient).

Sensitivity data do not become available until one or two days after
the culture is obtained, however. The physician must therefore often select
a drug on the basis of the list of possible identities plus the antimicrobial
agents that are statistically likely to be effective against each of the ident-
ities. These statistical data are available from many hospital laboratories
(e.g., 82% of E. coli isolated at Stanford Hospital are sensitive in vitro to
gentamicin), although, in practice, physicians seldom use the probabilistic
information except in a rather intuitive sense (e.g., “Most of the E. coli
infections I have treated recently have responded to gentamicin.”).

Which Drug Is Best for This Patient?

Once a list of drugs that may be useful has been considered, the best
regimen is selected on the basis of a variety of factors. These include the
likelihood that the drug will be effective against the organism, as well as a
number of clinical considerations. For example, it is important to know
whether or not the patient has any drug allergies and whether or not the
drug is contraindicated because of age, sex, or kidney status. If the patient
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has meningitis or brain involvement, whether or not the drug crosses the
blood-brain barrier is an important question. Since some drugs can be
given only orally, intravenously (IV), or intramuscularly (IM), the desired
route of administration may become an important consideration. The se-
verity of the patient’s disease may also be important, particularly for those
drugs whose use is restricted on ecological grounds or which are particu-
larly likely to cause toxic complications. Furthermore, as the patient’s clin-
ical status varies over time and more definitive information becomes avail-
able from the microbiology laboratory, it may be wise to change the drug
of choice or to modify the recommended dosage.

1.2.2 Evidence That Assistance Is Needed

The “antimicrobial revolution” began with the introduction of the sulfon-
amides in the 1930s and penicillin in 1943. The beneficial effects that these
and subsequent drugs have had on humanity cannot be overstated. How-
ever, as early as the 1950s it became clear that antibiotics were being mis-
used. A study of office practice involving 87 general practitioners (Peterson
et al., 1956) revealed that antibiotics were given indiscriminately to all pa-
tients with upper respiratory infections by 67% of the physicians, while
only 33% ever tried to separate viral from bacterial etiologies. Despite
attempts to educate physicians regarding this kind of inappropriate ther-
apy, similar data have continued to be reported (Kunin, 1973).

At the time we began work on MYCIN, antibiotic misuse was receiving
wide attention (Scheckler and Bennett, 1970; Roberts and Visconti, 1972;
Kunin, 1973; Simmons and Stolley, 1974; Carden, 1974). The studies
showed that very few physicians go through the methodical decision pro-
cess that was described above. In the outpatient environment antibiotics
are often prescribed without the physician’s having identified or even cul-
tured the offending organism (Kunin, 1973). In 1972 the FDA certified
enough (2,400,000 kg) of the commonly used antibiotics to treat two ill-
nesses of average duration in every man, woman, and child in the country.
Yet it has been estimated that the average person has an illness requiring
antibiotic treatment no more often than once every five to ten years (Kunin,
1973). Part of the reason for such overprescribing is the patient’s demand
for some kind of prescription with every office visit (Muller, 1972). It is
difficult for many physicians to resist such demands; thus improved public
education is one step toward lessening the problem.

However, antibiotic use is widespread among hospitalized patients as
well. Studies have shown that, on any given day, one-third of the patients
in a general hospital are receiving at least one systemic antimicrobial agent
(Roberts and Visconti, 1972; Scheckler and Bennett, 1970; Resztak and
Williams, 1972). The monetary cost to both patients and hospitals is enor-
mous (Reimann and D’ambola, 1966; Kunin, 1973). Simmons and Stolley
(1974) have summarized the issues as follows:
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1. Has the wide use of antibiotics led to the emergence of new resistant
bacterial strains?

2. Has the ecology of “natural” or “hospital” bacterial flora been shifted
because of antibiotic use?

3. Have nosocomial (i.e., hospital-acquired) infections changed in inci-
dence or severity due to antibiotic use?

4. What are the trends of antibiotic use?
5. Are antibiotics properly used in practice?
e Is there evidence that prophylactic use of antibiotics is harmful, and
how common is it?
e Are antibiotics often prescribed without prior bacterial culture?

e When cultures are taken, is the appropriate antibiotic usually pre-
scribed and correctly used?

6. Is the increasingly more frequent use of antibiotics presenting the med-
ical community and the public with a new set of hazards that should be
approached by some new administrative or educational measures?

Having stated the issues, these authors proceed to cite evidence that in-
dicates that each of these questions has frightening answers—that the ef-
fects of antibiotic misuse are so far-reaching that the consequences may
often be worse than the disease (real or imagined) being treated!

Our principal concern has been with the fifth question: are physicians
rational in their prescribing habits and, if not, why not? Roberts and Vis-
conti examined these issues in 1,035 patients consecutively admitted to a
500-bed community hospital (Roberts and Visconti, 1972). Of 340 patients
receiving systemic antimicrobials, only 35% were treated for infection. The
rest received either prophylactic therapy (55%) or treatment for symptoms
without verified infection (10%). A panel of expert physicians and phar-
macists evaluated these therapeutic decisions, and only 13% were judged
to be rational, while 66% were assessed as clearly irrational. The remainder
were said to be questionable.

Of particular interest were the reasons why therapy was judged to be
irrational in those patients for whom some kind of antimicrobial therapy
was warranted. This group consisted of 112 patients, or 50.2% of the 223
patients who were treated irrationally. It is instructive to list the reasons
that were cited, along with the percentages indicating how many of the
112 patients were involved:

Antimicrobial contraindicated in patient 7.1%
Patient allergic 2.7
Inappropriate sequence of antimicrobials 26.8
Inappropriate combination of antimicrobials 24.1
Inappropriate antimicrobial used to treat condition 62.5

Inappropriate dose 18.7



18

The Context of the MYCIN Experiments

Inappropriate duration of therapy 9.8
Inappropriate route 3.6
Culture and sensitivity needed 17.0
Culture and sensitivity indicate wrong antibiotic being used 16.1

The percentages add up to more than 100% because a given therapy may
have been judged inappropriate for more than one reason. Thus 62.5%
of the 112 patients who required antimicrobial therapy but were treated
irrationally were given a drug that was inappropriate for their clinical con-
dition. This observation reflects the need for improved therapy selection
for patients requiring therapy—precisely the decision task that MYCIN
was designed to assist.

Once a need for improved continuing medical education in antimi-
crobial selection was recognized, there were several valid ways to respond.
One was to offer appropriate post-graduate courses for physicians. An-
other was to introduce surveillance systems for the monitoring and ap-
proval of antibiotic prescriptions within hospitals (Edwards, 1968; Kunin,
1973). In addition, physicians were encouraged to seek consultations with
infectious disease experts when they were uncertain how best to proceed
with the treatment of a bacterial infection. Finally, we concluded that an
automated consultation system that could substitute for infectious disease
experts when they are unavailable or inaccessible could provide a valuable
partial solution to the therapy selection problem. MYCIN was conceived
and developed in an atter.pt to fill that need.

1.3 Organization of the Book

This volume is organized into twelve parts of two to four chapters, each
highlighting a fundamental theme in the development and evolution of
MYCIN. This introductory part closes with a classic review paper that
outlines the production rule methodology.

The design and implementation of MYCIN are discussed in Part Two.
Shortliffe’s thesis was the beginning, but the original system he developed
was modified as required.

In Part Three we focus on the problems of building a knowledge base
and on knowledge acquisition in general. TEIRESIAS, the program result-
ing from Randy Davis’ dissertation research, is described.

In Part Four we address the problems of reasoning under uncertainty.
The certainty factor model, one answer to the question of how to propagate
uncertainty in an inference mechanism, forms the basis of this part.

Part Five discusses the generality of the MYCIN formalism. The EMY-
CIN system, written largely by William van Melle as part of his dissertation
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work, is a strongly positive answer to the question of whether MYCIN could
be generalized.

Work on explanation is reviewed in Part Six. Explanation was a major
design requirement from the start, and many persons contributed to MY-
CIN’s explanation capabilities.

In Part Seven we discuss some of the experimentation we were doing
with alternative representations. Jan Aikins’ thesis work on CENTAUR
examined the advantages of combining frames and production rules. Larry
Fagan’s work on VM examined the augmentations to a production rule
system that are needed to reason effectively with data monitored over time.

As an outgrowth of the explanation work, we came to believe that
MYCIN had some pedagogical value to students trying to learn about
infectious disease diagnosis and therapy. William Clancey took this idea
one step further in his research on the GUIDON system, described in Part
Eight. GUIDON is an intelligent tutor that we initially believed could tutor
students about the contents of any knowledge base for an EMYCIN system.
There is now strong evidence that this hypothesis was false because more
knowledge is needed for tutoring than for advising.

In Part Nine we discuss the concept of meta-level knowledge, some of
which we found to be necessary for intelligent tutoring. We first examined
rules of strategy and control, called meta-rules, in the context of the TEI-
RESIAS program. One working hypothesis was that meta-rules could be
encoded as production rules similar to those at the object level (medical
rules) and that the same inference and explanation routines could work
with them as well.

From the start of the project, we had been concerned about perfor-
mance evaluation, as described in Part Ten. We undertook three different
evaluation experiments, each simpler and more realistic but somewhat
more limited than the last.

Another primary design consideration was human engineering, the
subject of Part Eleven. We knew that a useful system had to be well enough
engineered to make people want to use it; high performance alone was
not sufficient. The chapters in this part discuss experiments with both
natural language interfaces and customized hardware and system archi-
tectures.

Finally, in Part Twelve, we attempt to summarize the lessons about
rule-based expert systems that we have learned in nearly a decade of re-
search on the programs named in Figure 1-3. We believe that Al is largely
an experimental science in which ideas are tested in working programs.
Aithough there are many experiments we neglected to perform, we believe
the descriptions of several that we did undertake will allow others to build
on our experience and to compare their results with ours.



The Origin of Rule-Based
Systems in Al

Randall Davis and Jonathan J. King

Since production systems (PS’s) were first proposed by Post (1943) as a
general computational mechanism, the methodology has seen a great deal
of development and has been applied to a diverse collection of problems.
Despite the wide scope of goals and perspectives demonstrated by the
various systems, there appear to be many recurrent themes. We present
an analysis and overview of those themes, as well as a conceptual frame-
work by which many of the seemingly disparate efforts can be viewed, both
in relation to each other and to other methodologies. Accordingly, we use
the term production system in a broad sense and show how most systems that
have used the term can be fit into the framework. The comparison to other
methodologies is intended to provide a view of PS characteristics in a
broader context, with primary reference to procedurally based techniques,
but also with reference to more recent developments in programming and
the organization of data and knowledge bases.

This chapter begins by offering a review of the essential structure and
function of a PS, presenting a picture of a “pure” PS to provide a basis for
subsequent elaborations. Current views of PS’s fall into two distinct classes,
and we shall demonstrate that this dichotomy may explain much of the
existing variation in goals and methods. This is followed by some specu-
lations on the nature of appropriate and inappropriate problem domains
for PS’s—i.e., what is it about a problem that makes the PS methodology
appropriate, and how do these factors arise out of the system’s basic struc-
ture and function? Next, we review characteristics common to all systems,
explaining how they contribute to the basic character and noting their

This chapter is based on an article taken with permission from Machine Intelligence 8: Machine
Representations of Knowledge, edited by E. W. Elcock and D. Michie, published in 1977 by Ellis
Horwood Ltd., Chichester, England.
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interrelationships. Finally, we present a taxonomy for PS’s, selecting four
dimensions of characterization and indicating the range of possibilities
suggested by recent efforts.

Two points of methodology should be noted. First, we make frequent
reference to what is “typically” found, and what is “in the spirit of things.”
Since there is really no one formal design for PS’s and recent implemen-
tations have explored variations on virtually every aspect, their use becomes
more an issue of a programming style than of anything else. It is difficult
to exclude designs or methods on formal grounds, and we refer instead
to an informal but well-established style of approach. A second, related
point is important to keep in mind as we compare the capabilities of PS’s
with those of other approaches. Since it is possible to imagine coding any
given Turing machine in either procedural or PS terms [see Anderson,
(1976) for a formal proof of the latter], in the formal sense their compu-
tational power is equivalent. This suggests that, given sufficient effort, they
are ultimately capable of solving the same problems. The issues we wish
to examine are not, however, questions of absolute computational power
but of the impact of a particular methodology on program structure, as
well as of the relative ease or difficulty with which certain capabilities can
be achieved.

2. l “Pure” Production Systems

A production system may be viewed as consisting of three basic compo-
nents: a set of rules, a data base, and an interpreter for the rules. In the
simplest design a rule is an ordered pair of symbol strings, with a left-hand
side and a right-hand side (LLHS and RHS). The rule set has a predeter-
mined, total ordering, and the data base is simply a collection of symbols.
The interpreter in this simple design operates by scanning the LHS of
each rule until one is found that can be successfully matched against the
data base. At that point the symbols matched in the data base are replaced
with those found in the RHS of the rule and scanning either continues
with the next rule or begins again with the first. A rule can also be viewed
as a simple conditional statement, and the invocation of rules as a sequence
of actions chained by modus ponens.

2.1.1 Rules
More generally, one side of a rule is evaluated with reference to the data

base, and if this succeeds (i.e., evaluates to TRUE in some sense), the action
specified by the other side is performed. Note that evaluate is typically taken
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to mean a passive operation of “perception,” or “an operation involving
only matching and detection” (Newell and Simon, 1972), while the action
is generally one or more conceptually primitive operations (although more
complex constructs are also being examined; see Section 2.4.9). As noted,
the simplest evaluation is a matching of literals, and the simplest action, a
replacement.

Note that we do not specity which side is to be matched, since either
is possible. For example, given a grammar written in production rule
form,!

S—-ABA
A-A1
A-1
B-BoO
B-0

matching the LHS on a data base that consists of the start symbol § gives
a generator for strings in the language. Matching on the RHS of the same
set of rules gives a recognizer for the language. We can also vary the
methodology slightly to obtain a top-down recognizer by interpreting ele-
ments of the LHS as goals to be obtained by the successful matching of
elements from the RHS. In this case the rules “unwind.” Thus we can use
the same set of rules in several ways. Note, however, that in doing so we
obtain quite different systems, with characteristically different control
structures and behavior.

The organization and accessing of the rule set is also an important
issue. The simplest scheme is the fixed, total ordering already mentioned,
but elaborations quickly grow more complex. The term conflict resolution
has been used to describe the process of selecting a rule. These issues of
rule evaluation and organization are explored in more detail below.

2.1.2 Data Base

In the simplest production system the data base is simply a collection of
symbols intended to reflect the state of the world, but the interpretation
of those symbols depends in large part on the nature of the application.
For those systems intended to explore symbol-processing aspects of human
cognition, the data base is interpreted as modeling the contents of some
memory mechanism (typically short-term memory, STM), with each symbol
representing some “chunk” of knowledge; hence its total length (typically
around seven elements) and organization (linear, hierarchical, etc.) are im-

'One class of production systems we will not address at any length is that of grammars for
formal languages. While the intellectual roots are similar (Floyd, 1961; Evans, 1964), their
use has evolved a distinctly different flavor. In particular, their nondeterminism is an impor-
tant factor that provides a different perspective on control and renders the question of rule
selection a moot point.
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portant theoretical issues. Typical contents of STM for psychological
models are those of PSG (Newell, 1973), where STM might contain purely
content-free symbols such as:

QQ
(EE FF)
TT

or of VIS (Moran, 1973a), where STM contains symbols representing di-
rections on a visualized map:

(NEW C-1 CORNER WEST L-1 NORTH L-2)
(L-2 LINE EAST P-2 P-1)
(HEAR NORTH EAST % END)

For systems intended to be knowledge-based experts, the data base
contains facts and assertions about the world, is typically of arbitrary size,
and has no a prieri constraints on the complexity of organization. For ex-
ample, the MYCIN system uses a collection of quadruples, consisting of
an associative triple and a certainty factor (CF), which indicates (on a scale
from —1 to 1) how strongly the fact has been confirmed (CF > 0) or
disconfirmed (CF < 0):

(IDENTITY ORGANISM-1 E.COLI .8)
(SITE CULTURE-2 BLOOD 1.0)
(SENSITIVE ORGANISM-1 PENICILLIN -1.0)

As another example, in the DENDRAL system (Feigenbaum et al., 1971;
Lindsay et al., 1980) the data base contains complex graph structures that
represent molecules and molecular fragments.

A third style of organization for the data base is the “token stream”
approach used, for example, in LISP70 (Tesler et al., 1973). Here the data
base is a linear stream of tokens, accessible only in sequence. Each pro-
duction in turn is matched against the beginning of the stream (i.e., if the
first character of a production and the first character of the stream differ,
the whole match fails), and if the rule is invoked, it may act to add, delete,
or modify characters in the matched segment. The anchoring of the match
at the first token offers the possibility of great efficiency in rule selection
since the productions can be “compiled” into a decision tree that keys off
sequential tokens from the stream. A very simple example is shown in
Figure 2-1.

Whatever the organization of the data base, one important character-
istic that should be noted is that it is the sole storage medium for all state
variables of the system. In particular, unlike procedurally oriented lan-
guages, PS’s do not provide for separate storage of control state informa-
tion—there is no separate program counter, pushdown stack, etc.—and all
information to be recorded must go into the single data base. We refer to
this as unity of data and control store and examine some of its implications
below. This store is, moreover, universally accessible to every rule in the
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production set decision tree
ABC _, XY } 1stchar
ACF _, W2z } 2ndchar
BBA _, XZ A } 3rdchar
ACD _, WY (wz | [w | [z
FIGURE 2-1 Production rule and decision tree representa-
tions of a simple system that replaces sequences of three sym-
bols in the data base with sequences of two others.
system, so that anything put there is potentially detectable by any rule. We
shall see that both of these points have significant consequences for the
use of the data base as a communication channel.
2.1.3 Interpreter

The interpreter is the source of much of the variation found among dif-
ferent systems, but it may be seen in the simplest terms as a select-execute
loop in which one rule applicable to the current state of the data base is
chosen and then executed. Its action results in a modified data base, and
the select phase begins again. Given that the selection is often a process of
choosing the first rule that matches the current data base, it is clear why
this cycle is often referred to as a recognize-act, or situation-action, loop. The
range of variations on this theme is explored in Section 2.5.3 on control
cycle architecture.

This alternation between selection and execution is an essential ele-
ment of PS architecture, which is responsible for one of its most funda-
mental characteristics. By choosing each new rule for execution on the
basis of the total contents of the data base, we are effectively performing
a complete reevaluation of the control state of the system at every cycle.
This is distinctly different from procedurally oriented approaches in which
control flow is typically the decision of the process currently executing and
is commonly dependent on only a small fraction of the total number of
state variables. PS’s are thus sensitive to any change in the entire environ-
ment, and potentially responsive to such changes within the scope of a
single execution cycle. The price of such responsiveness is, of course, the
computation time required for the reevaluation.

An example of one execution of the recognize-act loop for a greatly
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simplified version of Newell’s PSG system will illustrate some of the fore-
going notions. The production system, called PS.ONE, is assumed for this
example to contain two productions, PD; and PDs. We indicate this as
follows:

PS.ONE: (PD, PD,)

PD,: (DD AND (EE) — BB)
PD,: (XX — CC DD)

PD, says that if the symbol DD and some expression beginning with EE,
i.e, (EE .. ), is found in STM, then insert the symbol BB at the front of
STM. PDy says that if the symbol XX is found in STM, then first insert
the symbol CC, then the symbol DD, at the front of STM.

The initial contents of STM are

STM: (QQ (EE FF) RR XX 8S)

This STM is assumed to have a fixed maximum capacity of five elements.
As new elements are inserted at the front (left) of STM, therefore, other
elements will be lost (forgotten) off the right end. In addition, elements
accessed when matching the condition of a rule are refreshed (pulled to the
front of STM) rather than replaced.

The production system scans the productions in order: PD;, then PDs.
Only PDy matches, so it is evoked. The contents of STM after this step are

STM: (DD CC XX QQ (EE FF))

PD; will match during the next cycle to yield

STM: (BB DD (EE FF) CC XX)

completing two cycles of the system.

2.2 Two Views of Production Systems

Prior work has suggested that there are two major views of PS’s, charac-
terized on one hand by psychological modeling efforts (PSG, PAS 11, VIS,
etc.) and on the other by performance-oriented, knowledge-based expert
systems (e.g., MYCIN, DENDRAL). These distinct efforts have arrived at
similar methodologies while pursuing differing goals.

The psychological modeling efforts are aimed at creating a program
that embodies a theory of human performance of simple tasks. From the
performance record of experimental human subjects, the modeler for-
mulates the minimally competent set of production rules that is able to
reproduce the behavior. Note that “behavior” here is meant to include all
aspects of human performance (mistakes, the effects of forgetting, etc.),
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including all shortcomings or successes that may arise out of (and hence
may be clues to) the “architecture” of human cognitive systems.?

An example of this approach is the PSG system, from which we con-
structed the example above. This system has been used to test a number
of theories to explain the results of the Sternberg memory-scanning tasks
(Newell, 1973), with each set of productions representing a different theory
of how the human subject retains and recalls the information given to him
or her during the psychological task. Here the subject first memorizes a
small subset of a class of familiar symbols (e.g., digits) and then attempts
to respond to a symbol flashed on a screen by indicating whether or not it
was in the initial set. His or her response times are noted.

The task was first simulated with a simple production system that per-
formed correctly but did not account for timing variations (which were
due to list length and other factors). Refinements were then developed to
incorporate new hypotheses about how the symbols were brought into
memory, and eventually a good simulation was built around a small num-
ber of productions. Newell has reported (Newell, 1973) that use of a PS
methodology led in this case to the novel hypothesis that certain timing
effects are caused by a decoding process rather than by a search process.
The experiment also clearly illustrated the possible tradeoffs in speed and
accuracy between differing processing strategies. Thus the PS model was
an effective vehicle for the expression and evaluation of theories of be-
havior.

The performance-oriented expert systems, on the other hand, start
with productions as a representation of knowledge about a task or domain
and attempt to build a program that displays competent behavior in that
domain. These eftorts are not concerned with similarities between the re-
sulting systems and human performance (except insofar as the latter may
provide a possible hint about ways to structure the domain or to approach
the problem or may act as a yardstick for success, since few Al programs
approach human levels of competence). They are intended simply to per-
form the task without errors of any sort, humanlike or otherwise. This
approach is characterized by the DENDRAL system, in which much of the
development has involved embedding a chemist’s knowledge about mass
spectrometry into rules usable by the program, without attempting to
model the chemist’s thinking. The program’s knowledge is extended by
adding rules that apply to new classes of chemical compounds. Similarly,
much of the work on the MYCIN system has involved crystallizing informal
knowledge of clinical medicine in a set of production rules.

Despite the difference in emphasis, researchers in both fields have

2For example, the critical evaluation of EPAM must ultimately depend not on the interest it
may have as a learning machine, but on its ability to explain and predict phenomena of verbal
learning (Feigenbaum, 1963). These phenomena include stimulus and response generaliza-
tion, oscillation, retroactive inhibition, and forgetting—all of which are “mistakes” for a system
intended for high performance but are important in a system meant to model human learning
behavior.
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been drawn to PS’s as a methodology. For the psychological modelers,
production rules ofter a clear, formal, and powerful way of expressing
basic symbol-processing acts that form the primitives of information-pro-
cessing psychology (ct. Newell and Simon, 1972). For the designer of
knowledge-based systems, production rules offer a representation of
knowledge that can be accessed and modified with relative ease, making it
quite useful for systems designed for incremental approaches to compe-
tence. For example, much of the MYCIN system’s capability for explaining
its actions is based on the representation of knowledge as individual pro-
duction rules. This makes the knowledge far more accessible to the pro-
gram itself than it might be if it were embodied in the form of ALGOL-
like procedures. As in DENDRAL, the modification and upgrading of the
system occur via incremental modification of, or addition to, the rule set.

Note that we are suggesting that it is possible to view a great deal of
the work on PS’s in terms of a unifying formalism. The intent is to offer
a conceptual structure that can help organize what may appear to be a
disparate collection of eftorts. The presence of such a formalism should
not, however, obscure the significant differences that arise from the various
perspectives. For example, the decision to use RHS-driven rules in a goal-
directed tashion implies a control structure that is simple and direct but
relatively inflexible. This offers a very different programming tool than
the LHS-driven systems do. The latter are capable of much more complex
control structures, giving them capabilities much closer to those of a com-
plete programming language. Recent efforts have begun to explore the
issues of more complex, higher-level control within the PS methodology
(see Section 2.4.9).

Production systems are seen by some as more than a convenient par-
adigm for approaching psychological modeling—rather as a methodology
whose power arises out of its close similarity to fundamental mechanisms
of human cognition. Newell and Simon (1972, pp. 803-804, 806) have
argued that human problem-solving behavior can be modeled easily and
successfully by a production system because it in fact is being generated
by one:

We confess to a strong premonition that the actual organization of hu-
man programs closely resembles the production system organization. . . . We
cannot yet prove the correctness of this judgment, and we suspect that the
ultimate verification may depend on this organization’s proving relatively
satisfactory in many different small ways, no one of them decisive.

In summary, we do not think a conclusive case can be made yet for
production systems as the appropriate form of [human] program organiza-
tion. Many of the arguments . . . raise dithiculties. Nevertheless, our judgment
stands that we should choose production systems as the preferred language
for expressing programs and program organization.

Observations such as this have led to speculation that the interest in pro-
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duction systems on the part of those building high-performance knowl-
edge-based systems is more than a coincidence. Some suggest that this is
occurring because current research is (re)discovering what has been
learned by naturally intelligent systems through evolution—that structur-
ing knowledge in a production system format is an effective approach to
the organization, retrieval, and use of very large amounts of knowledge.

The success of some rule-based Al systems does lend weight to this
argument, and the PS methodology is clearly powerful. But whether or
not this is a result of its equivalence to human cognitive processes and
whether or not this implies that artificially intelligent systems ought to be
similarly structured are still open questions, in our opinion.

2.3 Appropriate and Inappropriate Domains

Program designers have found that PS’s easily model problems in some
domains but are awkward for others. Let us briefly investigate why this
may be so, and relate it to the basic structure and function of a PS.

We can imagine two very different classes of problems—the first is best
viewed and understood as consisting of many independent states, while
the second seems best understood via a concise, unified theory, perhaps
embodied in a single law. Examples of the former include some views of
perceptual psychology or clinical medicine, in which there are many states
relative to the number of actions (this may be due either to our lack of a
cohesive theory or to the basic complexity of the system being modeled).
Examples of the latter include well-established areas of physics and math-
ematics, in which a few basic tenets serve to embody much of the required
knowledge, and in which the discovery of unifying principles has empha-
sized the similarities in seemingly different states. This first distinction
appears to be one important factor in distinguishing appropriate from
inappropriate domains.

A second distinction concerns the complexity of control flow. At two
extremes, we can imagine two processes, one of which is a set of indepen-
dent actions and the other of which is a complex collection of multiple,
parallel processes involving several dependent subprocesses.

A third distinction concerns the extent to which the knowledge to be
embedded in a system can be separated from the manner in which it is to
be used [also known as the controversy between declarative and procedural
representations; see Winograd (1975) for an extensive discussion]. As one
example, we can imagine simply stating facts, perhaps in a language like
predicate calculus, without assuming how those facts will be employed.
Alternatively, we could write procedural descriptions of how to accomplish
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a stated goal. Here the use of the knowledge is for the most part prede-
termined during the process of embodying it in this representation.

In all three of these distinctions, a PS is well-suited to the first descrip-
tion and ill-suited to the latter. The existence of multiple, nontrivially dif-
ferent, independent states is an indication of the feasibility of writing mul-
tiple, nontrivial, modular rules. A process composed of a set of
independent actions requires only limited communication between the ac-
tions, and, as we shall see, this is an important characteristic of PS’s. The
ability to state what knowledge ought to be in the system without also
describing its use greatly improves the ease with which a PS can be written
(see Section 2.4.9).

For the second class of problems (unified theory, complex control flow,
predetermined use for the knowledge), the economy of the relevant basic
theory makes for either trivial rules or multiple, almost redundant, rules.
In addition, a complex looping and branching process requires explicit
communication between actions, in which one action explicitly invokes the
next, while interacting subgoals require a similarly advanced communica-
tion process to avoid conflict. Such communication is not easily supplied
in a PS-based system. The same difficulty also makes it hard to specity in
advance exactly how a given fact should be used.

It seems also to be the nature of production systems to focus upon the
variations within a domain rather than upon the common threads that link
different facts or operations. Thus, for example, the process of addition
is naturally expressed via productions as n? rewrite operations involving
two symbols (the digits being added). The fact that addition is commuta-
tive, or rather that there is a property of “commutativity” shared by all
operations that we consider to be addition, is a rather awkward one to
express in production system terms. This same characteristic may, con-
versely, be viewed as a capability for focusing on and handling significant
amounts of detail. Thus, where the emphasis of a task is on recognition of
large numbers of distinct states, PS’s provide a significant advantage. In a
procedurally oriented approach, it is both difficult to organize and trou-
blesome to update the repeated checking of large numbers of state vari-
ables and the corresponding transfers of control. The task is far easier in
PS terms, where each rule can be viewed as a “demon” awaiting the oc-
currence of a specific state.®

The potential sensitivity and responsiveness of PS’s, which arise from
their continual reevaluation of the control state, has also been referred to
as the openness of rule-based systems. It is characterized by the principle
that “any rule can fire at any time,” which emphasizes the fact that at any
point in the computation any rule could be the next to be selected, de-
pending only on the state of the data base at the end of the current cycle.
Compare this to the normal situation in a procedurally oriented language,

3In the case of one PS (DENDRAL) the initial, procedural approach proved sufficiently
inflexible that the entire system was rewritten in production rule terms (Lindsay et al., 1980).
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where such a principle is manifestly untrue: it is simply not typically the
case that, depending on the contents of that data base, any procedure in
the entire program could potentially be the next to be invoked.

We do not mean to imply that both approaches couldn’t perform in
both domains, but that there are tasks for which one of them would prove
awkward and the resulting system unenlightening. Such tasks are far more
elegantly accomplished in only one of the two methodologies. The main
point is that we can, to some extent, formalize our intuitive notion of which
approach seems more appropriate by considering two essential character-
istics of any PS: its set of multiple, independent rules and its limited, in-
direct channel of interaction via the data base.

2.4 Production System Characteristics

2.4.1

Despite the range of variation in methodologies, there appear to be many
characteristics common to almost all PS’s. It is the presence of these and
their interactions that contribute to the “nature” of a PS, its capabilities,
deficiencies, and characteristic behavior.

The network of Figure 2-2 is a summary of features and relationships.
Each box represents some feature, capability, or parameter of interest, with
arrows labeled with +’s and —’s suggesting the interactions between them.
This rough scale of facilitation and inhibition is naturally very crude, but
does indicate the interactions as we see them. Figure 2-2 contains at least
three conceptually distinct sorts of factors: (a) those fundamental charac-
teristics of the basic PS scheme (e.g., indirect, limited channel, constrained
format); (b) secondary effects (e.g., automated modifiability of behavior);
and (c) performance parameters of implementation (e.g., visibility of be-
havior flow, extensibility), which are helpful in characterizing PS strengths
and weaknesses.

Indirect, Limited Channel of Interaction

Perhaps the most fundamental and significant characteristic of PS’s is their
restriction on the interactions between rules. In the simplest model, a pure
PS, we have a completely ordered set of rules, with no interaction channel
other than the data base. The total effect of any rule is determined by its
modifications to the data base, and hence subsequent rules must “read”
there any traces the system may leave behind. Winograd (1975, p. 194)
characterizes this feature in discussing global modularity in programming:
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FIGURE 2-2 Basic features and relationships of a production
system. Links labeled with a + indicate a facilitating relation-
ship, while those labeled with a — indicate an inhibiting rela-
tionship.

We can view production systems as a programming language in which
all interaction is forced through a very narrow channel. ... The temporal
interaction [of individual productions] is completely determined by the data
in this STM, and a uniform ordering regime for deciding which productions
will be activated in cases where more than one might apply. . .. Of course it
is possible to use the STM to pass arbitrarily complex messages which embody
any degree of interaction we want. But the spirit of the venture is very much
opposed to this, and the formalism is interesting to the degree that complex
processes can be described without resort to such kludgery, maintaining the
clear modularity between the pieces of knowledge and the global process
which uses them.

While this characterization is clearly true for a pure PS, with its limitations
on the size of STM, we can generalize on it slightly to deal with a broader
class of systems. First, in the more general case, the channel is not so much
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narrow as indirect and unigue. Second, the kludgery* arises not from arbi-
trarily complex messages but from specially crafted messages, which force
highly specific, carefully chosen interactions.

With reference to the first point, one of the most fundamental char-
acteristics of the pure PS organization is that rules must interact indircctly
through a single channel. Indirection implies that all interaction must oc-
cur by the effect of modifications written in the data base; uniqueness of
the channel implies that these modifications are accessible to every one of
the rules. Thus, to produce a system with a specified behavior, one must
not think in the usual terms of having one section of code call another
explicitly, but rather use an indirect approach in which each piece of code
(i.e., each rule) leaves behind the proper traces to trigger the next relevant
piece. The uniform access to the channel, along with the openness of PS’s,
implies that those traces must be constructed in the light of a potential
response from any rule in the system.

With reference to Winograd’s second point, in many systems the action
of a single rule may, quite legitimately, result in the addition of very com-
plex structures to the data base (e.g., DENDRAL; see Section 2.5). Yet
another rule in the same system may deposit just one carefully selected
symbol, chosen solely because it will serve as an unmistakable symbol for
precisely one other (carefully preselected) rule. Choosing the symbol care-
fully provides a way of sending what becomes a private message through
a public channel; the continual reevaluation of the control state assures
that the message can take immediate effect. The result is that one rule has
effectively called another, procedure style, and this is the variety of kludg-
ery that is contrary to the style of knowledge organization typically asso-
ciated with a PS. It is the premeditated nature of such message passing
(typically in an attempt to “produce a system with specified behavior”) that
is the primary violation of the “spirit” of PS methodology.

The primary effect of this indirect, limited interaction is the devel-
opment of a system that is strongly modular, since no rule is ever called
directly. The indirect, limited interaction is also, however, the most signif-
icant factor that makes the behavior of a PS more difficult to analyze. This
results because, even for very simple tasks, overall behavior of a PS may
not be at all evident from a simple review of its rules.

To illustrate many of these issues, consider the algorithm for addition
of positive, single-digit integers used by Waterman (1974) with his PAS I1
production system interpreter. First, the procedural version of the algo-
rithm, in which transfer of control is direct and simple:

add(m,n) =
A] count—0; nn<n;
B] L,: if count = m then return(nn);

*Kludge is a term drawn from the vernacular of computer programmers. It refers to a “patch”
or “trick” in a program or system that deals with a potential problem, usually in an inelegant
or nongeneralized way. Thus kludgery refers to the use of kludges.
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C] count—successor(count);
D} nn<successor(nny;
E] go(Ly):

Compare this with the set of productions for the same task in Figure 2-3.
The S in Rules 2, 3, and 5 indicates the successor function. After initiali-
zation (Rules 1 and 2), the system loops around Rules 4 and 5 producing
the successor rules it needs (Rule 5) and then incrementing NN by 1 for
M iterations. In this loop, intermediate calculations (the results of successor
function computations) are saved via (PROD) in Rule 5, and the final an-
swer is saved by (PROD) in Rule 3. Thus, as shown in Figure 2-4, after
computing 4 + 2 the rule set will contain seven additional rules; it is
recording its intermediate and final results by writing new productions and
in the future will have these answers available in a single step. Note that
the set of productions therefore is memory (and in fact long-term memory,
or LTM, since productions are never lost from the set). The two are not
precisely analogous, since the procedural version does simple addition,
while the production set both adds and “learns.” As noted by Waterman
(1974), the production rule version does not assume the existence of a
successor function. Instead Rule 5 writes new productions that give the
successor for specific integers. Rule 3 builds what amounts to an addition
table, writing a new production for each example that the system is given.
Placing these new rules at the front of the rule set (i.e., before Rule 1)
means that the addition table and successor function table will always be
consulted before a computation is attempted, and the answer obtained in
one step if possible. Without these extra steps, and with a successor func-
tion, the production rule set could be smaller and hence slightly less com-
plex.

Waterman also points out some direct correspondences between the
production rules in Figure 2-3 and the statements in the procedure above.
For example, Rules 1 and 2 accomplish the initialization of line A, Rule 3
corresponds to line B, and Rule 4 to lines C and D. There is no production
equivalent to the “goto” of line E because the production system execution
cycle takes care of that implicitty. On the other hand, note that in the
procedure there is no question whatsoever that the initialization step
nn < n is the second statement of “add” and that it is to be executed just
once, at the beginning of the procedure. In the productions, the same
action is predicated on an unintuitive condition of the STM (essentially it
says that if the value of N is known, but NN has never been referenced or
incremented, then initialize NN to the value that N has at that time). This
degree of explicitness is necessary because the production system has no
notion that the initialization step has already been performed in the given
ordering of statements, so the system must check the conditions each time
it goes through a new cycle.

Thus procedural languages are oriented toward the explicit handling
of control flow and stress the importance of its influence on the funda-
mental organization of the program (as, for example, in recent develop-
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Production Rules:

Condition (LHS) Action (RHS)
1] (READY) (ORDER X;) - (REP (READY) (COUNT X,))
(ATTEND)
2] (N X;) -(NN) -(S NN) — (DEP (NN X,))

3] (COUNT X;) (M X,) (NN X,) (N X5)  — (SAY X, IS THE ANSWER)
(COND (M X;) (N X))
(ACTION (STOP))
(ACTION (SAY X, IS THE ANSWER))
(PROD)
(STOP)

4] (COUNT) (NN) - (REP (COUNT) (S COUNT))
(REP (NN) (S NN))

5) (ORDER X, X) = (REP (X; X;) (X5))
(COND (S X, X4))
(ACTION (REP (S X, X,) (X5 X))
(PROD)

Initial STM.:

(READY) (ORDER 012345678 9)

Notation:

The X,;’s in the condition are variables in the pattern match; all other symbols
are literals. An X, appearing only in the action is also taken as a literal. Thus if
Rule 5 is matched with X, =4 and X,=25, as its second action it would deposit
(COND (S X4 4)) in STM. These variables are local to each rule; that is, their
previous bindings are disregarded.

o All elements of the LHS must be matched for a match to succeed.
e A hyphen indicates the ANDNOT operation.
e An expression enclosed in parentheses and starting with a literal [e.g., (COUNT)

in Rule 4] will match any expression in STM that starts with the same literal
(e.g., (COUNT 2)]. The expression (ORDER X, X,) will match (ORDER 0 1 2
.9) and bind X;=0 and X,=1.

REP stands for REPlace, so that, for example, the RHS of Rule 1 will replace
the expression (READY) in the data base with the expression (COUNT X,)
[where the variable X, stands for the element matched by the X, in (ORDER
Xyl

DEP stands for DEPosit symbols at front of STM.

o ATTEND means wait for input from computer terminal. For this example, typ-

ing (M 4)(N 2) will have the system add 4 and 2.
SAY means output to terminal.

FIGURE 2-3 A production system for the addition of two sin-
gle-digit integers [after Waterman (1974), simplified slightly].
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e (COND.. ) is shorthand for (DEP (COND. . .)).

e (ACTION .. ) is shorthand for (DEP (ACTION . . ).

e PROD means gather all items in the STM of the form (COND . . .) and put them
together into an LHS, gather all items of the form (ACTION .. .) and put them
together into an RHS, and remove all these expressions from the STM. Form a
production from the resulting LHS and RHS, and add it to the front of the set
of productions (i.e., before Rule 1).

FIGURE 2-3 continued

ments in structured programming). PS’s, on the other hand, emphasize
the statement of independent chunks of knowledge from a domain and
make control flow a secondary issue. Given the limited form of commu-
nication available in PS’s, it is more difficult to express concepts that require
structures larger than a single rule. Thus, where the emphasis is on global
behavior of a system rather than on the expression of small chunks of
knowledge, PS’s are, in general, less transparent than equivalent procedural
routines.

2.4.2 Constrained Format

While there are wide variations in the format permitted by various PS’s, in
any given system the syntax is traditionally quite restrictive and generally
follows the conventions accepted for PS’s.> Most commonly this means,
first, that the side of the rule to be matched should be a simple predicate
built out of a Boolean combination of computationally primitive opera-
tions; these involve (as noted above) only matching and detection. Second,
it means the side of the rule to be executed should perform conceptually
simple operations on the data base. In many of the systems oriented toward
psychological modeling, the side to be matched consists of a set of literals
or simple patterns, with the understanding that the set is to be taken as a
conjunction, so that the predicate is an implicit one regarding the success
or failure of matching all of the elements. Similarly, the side to be executed
performs a simple symbol replacement or rearrangement.

Whatever the format, though, the conventions noted lead to clear re-
strictions for a pure production system. First, as a predicate, the matching
side of a rule should return only some indication of the success or failure
of the match.® Second, as a simple expression, the matching operation is

5Note, however, that the tradition arises out of a commonly followed convention rather than
any essential characteristic of a PS.

SWhile binding individual variables or segments in the process of pattern matching is quite
often used, it would be considered inappropriate to have the matching process produce a
complex data structure intended for processing by another part of the system.
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RULE STATUS STM AFTER RULE SUCCEEDS NEW RULES/COMMENTS
CYCLE #1
(READY)ORDER0123456789) initial state
Rule 1 Succeeds (COUNT O)ORDER0123456789) awaits input (M 4)(N 2)
(N 2)(M 4)(COUNT 0) after input
(ORDER0123456789)
Rule 2 Succeeds (NN 2)(N 2)(M 4)(COUNT 0) X, bound to 2
(ORDER0123456789)
Rule 3 Fails
Rule 4 Succeeds (S NN 2)(N 2)(M 4)(S COUNT 0)
(ORDER0123456789)
Rule 5 Succeeds (S NN 2)(N 2)(M 4)(S COUNT 0) X, bound to 0
(ORDER123456789) New Rule 6:
(S X5 0) — (REP(S X3 0){(X; 1)
CYCLE #2
Rule 6 Succeeds (S NN 2)(N 2)(M 4}(COUNT 1) X3 bound to the literal COUNT
(ORDER123456789)
Rule 1 Fails
Rule 2 Fails
Rule 3 Fails
Rule 4 Fails
Rule 5 Succeeds (S NN 2)(N 2)(M 4)(COUNT 1) New Rule 7:
(ORDER23456789) (S X3 1) = (REP(S X3 1)(X; 2))
CYCLE #3
Rule 7 Fails
Rule 6 Fails
Rule 1 Fails
Rule 2 Fails
Ruie 3 Fails
Rule 4 Fails
Rule 5 Succeeds (S NN 2)(N 2)(M 4)(COUNT 1) New Rule 8:
(ORDER3456789) (8 X3 2) —» (REP(S X5 2)(X5 3))
CYCLE #4
Rule 8 Succeeds (NN 3)(N 2)(M 4)(COUNT 1) X5 bound to NN
(ORDER3456789)
Rule 7 Fails
Rule 6 Fails
Rule 1 Fails
Rule 2 Fails
Rule 3 Fails
Rule 4 Succeeds (S NN 3)(N 2)(M 4)(S COUNT 1)
(ORDER3456789)
Rule 5 Succeeds (S NN 3)(N 2)(M 4)(S COUNT 1) New Rule 9:
(ORDER456789) (S X3 3) — (REP(S X; 3)(X3 4))
CYCLE #5
Rule 9 Succeeds (NN 4)(N 2)(M 4)(S COUNT 1)
(ORDER 456 789)
etc. <continued cycling> Rules 10 and 11 generated
Rule 3 Succeeds (NN 6)(N 2)(M 4)(COUNT 4) Bind X, to 4, X, to 6, X; to 2;

(ORDER 67 8 9)

Prints '6 IS THE ANSWER’;
Rule 12 produced;
Terminates.

FIGURE 2-4 Trace of production system shown in Figure 2-3.
Adding 4 and 2.
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precluded from using more complex control structures like iteration or
recursion within the expression itself (although such operations can be
constructed from multiple rules). Finally, as a matching and detection op-
eration, it must only “observe” the state of the data base and not change
it in the operation of testing it.

We can characterize a continuum of possibilities for the side of the
rule to be executed. There might be a single primitive action, a simple
collection of independent actions, a carefully ordered sequence of actions,
or even more complex control structures. We suggest that there are two
related forms of simplicity that are important here. First, each action to be
performed should be one that is a conceptual primitive for the domain.
In the DENDRAL system, for example, it is appropriate to use chemical
bond breaking as the primitive, rather than to describe the process at some
lower level. Second, the complexity of control flow for the execution of
these primitives should be limited—in a pure production system, for ex-
ample, we might be wary of a complex set of actions that is, in effect, a
small program of its own. Again, it should be noted that the system de-
signer may of course follow or disregard these restrictions.

These constraints on form make the dissection and “understanding”
of productions by other parts of the program a more straightforward task,
strongly enhancing the possibility of having the program itself read and/
or modify (rewrite) its own productions. For example, the MYCIN system
makes strong use of the concept of allowing one part of the system to read
the rules being executed by another part. The system does a partial eval-
uation of rule premises. Since a premise is a Boolean combination of pred-
icate functions such as

($AND (SAME CNTXT SITE) (the site of the culture is blood and
(SAME CNTXT GRAM GRAMPOS) the gramstain is grampositive and
(DEF IS CNTXT AIR AEROBIC)) the aerobicity is definitely aerobic)

and since clauses that are unknown cause subproblems that may involve
long computations to be set up, it makes sense to check to see if, based on
what is currently known, the entire premise is sure to fail (e.g., if any clause
of a conjunction is known to be false). We cannot simply EVAL each clause,
since this will trigger a search if the value is still unknown. But if the clause
can be “unpacked” into its proper constituents, it is possible to determine
whether or not the value is known as yet, and if so, what it is. This is done
via a template associated with each predicate function. For example, the
template for SAME is

(SAME CNTXT PARM VALUE)

and it gives the generic type and order of arguments for the function
(much like a simplified procedure declaration). By using this as a guide to
unpack and extract the needed items, we can safely do a partial evaluation
of the rule premise. A similar technique is used to separate the known and
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unknown clauses of a rule for the user’s benefit when the system is ex-
plaining itself (see Chapter 18 for several examples).

Note that part of the system is reading the code being executed by the
other part. Furthermore, note that this reading is guided by information
carried in the rule components themselves. This latter characteristic as-
sures that the capability is unaffected by the addition of new rules or
predicate functions to the system.

This kind of technique limits expressibility, however, since the limited
syntax may not be sufficiently powerful to make expressing each piece of
knowledge an easy task. This in turn both restricts extensibility (adding
something is difficult if it is hard to express it) and makes modification of
the system’s behavior more difficult (e.g., it might not be particularly at-
tractive to implement a desired iteration if doing so requires several rules
rather than a line or two of code).

2.4.3 Rules as Primitive Actions

In a pure PS, the smallest unit of behavior is a rule invocation. At its
simplest, this involves the matching of literals on the LHS, followed by
replacement of those symbols in the data base with the ones found on the
RHS. While the variations can be more complex, it is in some sense a
violation of the spirit of things to have a sequence of actions in the RHS.

Moran (1973b), for example, acknowledges a deviation from the spirit
of production systems in VIS when he groups rules in “procedures” within
which the rules are totally ordered for the purpose of conflict resolution.
He sees several advantages in this departure. It is “natural” for the user (a
builder of psychological models) to write rules as a group working toward
a single goal. This grouping restricts the context of the rules. It also helps
minimize the problem of implicit context: when rules are ordered, a rule
that occurs later in the list may really be applicable only if some of the
conditions checked by earlier rules are untrue. This dependency, referred
to as implicit context, is often not made explicit in the rule, but may be
critical to system performance. The price paid for these advantages is two-
fold: first, extra rules, less directly attributable to psychological processes,
are needed to switch among procedures; second, it violates the basic pro-
duction system tenet that any rule should (in principle) be able to fire at
any time—here only those in the currently active procedure can fire.

To the extent that the pure production system restrictions are met, we
can consider rules as the quanta of intelligent behavior in the system.
Otherwise, as in the VIS system, we must look at larger aggregations of
rules to trace behavior. In doing so, we lose some of the ability to quantify
and measure behavior, as is done, for example, with the PSG system sim-
ulation of the Sternberg task, where response times are attributed to in-
dividual production rules and then compared against actual psychological
data.
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A different sort of deviation is found in the DENDRAL system, and
in a few MYCIN rules. In both, the RHS is effectively a small program,
carrying out complex sequences of actions. In this case, the quanta of
behavior are the individual actions of these programs, and understanding
the system thus requires familiarity with them. By embodying these bits of
behavior in a stylized format, we make it possible for the system to “read”
them to its users (achieved in MYCIN as described above) and hence pro-
vide some explanation of its behavior, at least at this level. This prohibition
against complex behaviors within a rule, however, may force us to imple-
ment what are (conceptually) simple control structures by using the com-
bined etfects of several rules. This of course may make overall behavior
of the system much more opaque (see Section 2.4.5).

2.4.4 Modularity

We can regard the modularity of a program as the degree of separation of
its functional units into isolatable pieces. A program is highly modular if any
functional unit can be changed (added, deleted, or replaced) with no un-
anticipated change to other functional units. Thus program modularity is
inversely related to the strength of coupling between its functional units.

The modularity of programs written as pure production systems arises
from the important fact that the next rule to be invoked is determined
solely by the contents of the data base, and no rule is ever called directly.
Thus the addition (or deletion) of a rule does not require the modification
of any other rule to provide for or delete a call to it. We might demonstrate
this by repeatedly removing rules from a PS: many systems will continue
to display some sort of “reasonable” behavior.” By contrast, adding a pro-
cedure to an ALGOL-like program requires modification of other parts of
the code to insure that the procedure is invoked, while removing an ar-
bitrary procedure from such a program will generally cripple it.

Note that the issue here is more than simply the “undefined function”
error message, which would result from a missing procedure. The problem
would persist even if the compiler or interpreter were altered to treat
undefined functions as no-ops. The issue is a much more fundamental one
concerning organization of knowledge: programs written in procedure-
oriented languages stress the kind of explicit passing of control from one
section of code to another that is characterized by the calling of procedures.

"The number of rules that could be removed without performance degradation (short of
redundancies) is an interesting characteristic that would appear to be correlated with which
of the two common approaches to PS’s is taken. The psychological modeling systems would
apparently degenerate fastest, since they are designed to be minimally competent sets of
rules. Knowledge-based expert systems, on the other hand, tend to embody numerous in-
dependent subproblems in rules and often contain overlapping or even purposefully redun-
dant representations of knowledge. Hence, while losing their competence on selected prob-
lems, it appears they would often function reasonably well, even with several rules removed.
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This is typically done at a selected time and in a particular context, both
carefully chosen by the programmer. If a no-op is substituted for a missing
procedure, the context upon returning will not be what the programmer
expected, and subsequent procedure calls will be executed in increasingly
incorrect environments. Similarly, procedures that have been added must
be called from somewhere in the program, and the location of the call must
be chosen carefully if the effect is to be meaningful.

Production systems, on the other hand, especially in their pure form,
emphasize the decoupling of control flow from the writing of rules. Fach
rule is designed to be, ideally, an independent chunk of knowledge with
its own statement of relevance (either the conditions of the LHS, as in a
data-driven system, or the action of the RHS, as in a goal-directed system).
Thus, while the ALGOL programmer carefully chooses the order of pro-
cedure calls to create a selected sequence of environments, in a production
system it is the environment that chooses the next rule for execution. And
since a rule can only be chosen if its criteria of relevance have been met,
the choice will continue to be a plausible one, and system behavior will
remain “reasonable,” even as rules are successively deleted.

This inherent modularity of pure production systems eases the task
of programming in them. Given some primitive action that the system fails
to perform, it becomes a matter of writing a rule whose LHS matches the
relevant indicators in the data base, and whose RHS performs the action.
Whereas the task is then complete for a pure PS, systems that vary from
this design have the additional task of assuring proper invocation of the
rule (not unlike assuring the proper call of a new procedure). The difficulty
of this varies from trivial in the case of systems with goal-oriented behavior
(like MYCIN) to substantial in systems that use more complex LHS scans
and conflict resolution strategies.

For systems using the goal-oriented approach, rule order is usually
unimportant. Insertion of a new rule is thus simple and can often be totally
automated. This is, of course, a distinct advantage where the rule set is
large and the problems of system complexity are significant. For others
(like PSG and PAS II) rule order can be critical to performance and hence
requires careful attention. This can, however, be viewed as an advantage,
and indeed, Newell (1973) tests different theories of behavior by the simple
expedient of changing the order of rules. The family of Sternberg task
simulators includes a number of production systems that differ only by the
interchange of two rules, yet display very different behavior. Waterman’s
system (Waterman, 1974) accomplishes “adaptation” by the simple heuristic
of placing a new rule immediately before a rule that causes an error.8

80ne specific example of the importance of rule order can be seen in our earlier example of
addition (Figure 2-3). Here Rule 5 assumes that an ordering of the digits exists in STM in
the form (ORDER 0 | 2 ...) and from this can be created the successor function for each
digit. If Rule 5 were placed before Rule 1, the system wouldn’t add at all. In addition,
acquiring the notion of successor in subsequent runs depends entirely on the placement of
the new successor productions before Rule 3, or the effect of this new knowledge would be
masked.
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2.4.5 Visibility of Behavior Flow

Visibility of behavior flow is the ease with which the overall behavior of a
PS can be understood, either by observing the system or by reviewing its
rule base. Even for conceptually simple tasks, the stepwise behavior of a
PS is often rather opaque. The poor visibility of PS behavior compared to
that of the procedural formalism is illustrated by the Waterman integer
addition example outlined in Section 2.4.1. The procedural version of the
iterative loop there is reasonably clear (lines B, C, and E), and an ALGOL-

type
FORI:= 1 UNTILNDO...

would be completely obvious. Yet the PS formalism for the same thing
requires nonintuitive productions (like 1 and 2) and symbols like NN whose
only purpose is to “mask” the condition portion of a rule so it will not be
invoked later [such symbols are termed control elements (Anderson, 1976)].

The requirement for control elements, and much of the opacity of PS
behavior, is a direct result of two factors noted above: the unity of control
and data store, and the reevaluation of the data base at every cycle. Any
attempt to “read” a PS requires keeping in mind the entire contents of the
data base and scanning the entire rule set at every cycle. Control is much
more explicit and localized in procedural languages, so that reading AL-
GOL code is a far easier task.”

The perspective on knowledge representation implied by PS’s also con-
tributes to this opacity. As suggested above, PS’s are appropriate when it is
possible to specify the content of required knowledge without also speci-
fying the way in which it is to be used. Thus, reading a PS does not gen-
erally make clear how it works so much as what it may know, and the
behavior is consequently obscured. The situation is often reversed in pro-
cedural languages: program behavior may be reasonably clear, but the
domain knowledge used is often opaquely embedded in the procedures.
The two methodologies thus emphasize different aspects of knowledge and
program organization.

2.4.6 Machine Readability

Several interesting capabilities arise from making it possible for the system
to examine its own rules. As one example, it becomes possible to implement
automatic consistency checking. This can proceed at several levels. In the
simplest approach we can search for straightforward syntactic problems
such as contradiction (e.g., two rules of the form A & B - C and A & B
— -C) or subsumption (e.g., two rules of the form D & E& F - G and D

“One of the motivations for the interest in structured programming is the attempt to em-
phasize still further the degree of explicitness and localization of control.
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& F - G). A more sophisticated approach, which would require extensive
domain-specific knowledge, might be able to detect “semantic” problems,
such as, for example, a rule of the form A & B — C when it is known from
the meanings of A and B that A —» B. Many other (domain-specific) tests
may also be possible. The point is that by automating the process, extensive
(perhaps exhaustive) checks of newly added productions are possible (and
could perhaps be run in background mode when the system is otherwise
idle).

A second sort of capability (described in the example in Section 2.4.2)
is exemplified by the MYCIN system’s approach to examining its rules.
This is used in several ways (Davis, 1976) and produces both a more effi-
cient control structure and precise explanations of system behavior.

2.4.7 Explanation of Primitive Actions

Production system rules are intended to be modular chunks of knowledge
and to represent primitive actions. Thus explaining primitive acts should
be as simple as stating the corresponding rule—all necessary contextual
information should be included in the rule itself. Achieving such clear
explanations, however, strongly depends on the extent to which the as-
sumptions of modularity and explicit context are met. In the case where
stating a rule does provide a clear explanation, the task of modification of
program behavior becomes easier.

As an example, the MYCIN system often successfully uses rules to
explain its behavior. This form of explanation fails, however, when consid-
erations of system performance or human engineering lead to rules whose
context is obscure. One class of rule, for example, says, in effect, “If A
seems to be true, and B seems to be true, then that’s (more) evidence in
favor of A”!10 It is phrased this way rather than simply “If B seems true,
that’s evidence in favor of A" because B is a very rare condition, and it
appears counterintuitive to ask about it unless A is suspected to begin with.
The first clause of the rule is thus acting as a strategic filter, to insure that
the rule is not even tried unless it has a reasonable chance of succeeding.
System performance has been improved (especially as regards human en-
gineering considerations), at the cost of a somewhat more opaque rule.

2.4.8 Modifiability, Consistency, and Rule Selection

Mechanism
As noted above, the tightly constrained format of rules makes it possible
for the system to examine its own rule base, with the possibility of modi-

fying it in response to requests from the user or to ensure consistency with

WThese are known as self-referencing rules; see Chapter 5.
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respect to newly added rules. While all these are conceivable in a system
using a standard procedural approach, the heavily stylized format of rules,
and the typically simple control structure of the interpreters, makes them
all realizable prospects in a PS.

Finally, the relative complexity of the rule selection mecchanism will
have varying effects on the ability to automate consistency checks, or be-
havior modification and extension. An RHS scan with backward chaining
(l.e., a goal-directed system; see Section 2.5.3) seems to be the easiest to
follow since it mimics part of human reasoning behavior, while an LHS
scan with a complex conflict resolution strategy makes the system generally
more difficult to understand. As a result, predicting and controlling the
effects of changes in, or additions to, the rule base are directly influenced
in either direction by the choice of rule selection mechanism.

2.4.9 Programmability

The answer to “How easy is it to program in this formalism?” is “It’s rea-
sonably difficult.” The experience has been summarized (Moran, 1973a):

Any structure which is added to the system diminishes the explicitness
of rule conditions. . .. Thus rules acquire implicit conditions. This makes
them (superficially) more concise, but at the price of clarity and precision. . . .
Another questionable device in most present production systems (including
mine) is the use of tags, markers, and other cute conventions for communi-
cating between rules. Again, this makes for conciseness, but it obscures the
meaning of what is intended. The consequence of this in my program is that
it is very delicate: one little slip with a tag and it goes off the track. Also, it
is very difficult to alter the program; it takes a lot of time to readjust the
signals.

One source of the difficulties in programming production systems is the
necessity of programming “by side effect.” Another is the difficulty of using
the PS methodology on a problem that cannot be broken down into the
solution of independent subproblems or into the synthesis of a behavior
that is neatly decomposable.

Several techniques have been investigated to deal with this difficulty.
One of them is the use of tags and markers (control elements), referred
to above. We have come to believe that the manner in which they are used,
particularly in psychological modeling systems, can be an indication of how
successfully the problem has been put into PS terms. To demonstrate this,
consider two very different (and somewhat idealized) approaches to writing
a PS. In the first, the programmer writes each rule independently of all
the others, simply attempting to capture in each some chunk of required
knowledge. The creation of each rule is thus a separate task. Only when
all of them have been written are they assembled, the data base initialized,
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and the behavior produced by the entire set of rules noted. As a second
approach, the programmer starts out with a specific behavior that he or
she wants to recreate. The entire rule set is written as a group with this in
mind, and, where necessary, one rule might deposit a symbol like A00124
in STM solely to trigger a second specific rule on the next cycle.

In the first case the control elements would correspond to recognizable
states of the system. As such, they function as indicators of those states
and serve to trigger what is generally a large class of potentially applicable
rules.!! In the second case there is no such correspondence, and often only
a single rule recognizes a given control element. The idea here is to insure
the execution of a specific sequence of rules, often because a desired effect
could not be accomplished in a single rule invocation. Such idiosyncratic
use of control elements is formally equivalent to allowing one rule to call
a second, specific rule and hence is very much out of character for a PS.
To the extent that such use takes place, it appears to us to be suggestive
of a failure of the methodology—perhaps because a PS was ill-suited to
the task to begin with or because the particular decomposition used for
the task was not well chosen.!? Since one fundamental assumption of the
PS methodology as a psychological modeling tool is that states of the system
correspond to what are at least plausible (if not immediately recognizable)
individual “states of mind,” the relative abundance of the two uses of con-
trol elements mentioned above can conceivably be taken as an indication
of how successfully the methodology has been applied.

A second approach to dealing with the difficulty of programming in
PS’s is the use of increasingly complex forms within a single rule. Where
a pure PS might have a single action in its RHS, several psychological
modeling systems (PAS II, VIS) have explored the use of more complex
sequences of actions, including the use of conditional exits from the se-
quence.

Finally, one effort (Rychener, 1975) has investigated the use of PS’s
that are unconstrained by prior restrictions on rule format, use of tags,
etc. The aim here is to employ the methodology as a formalism for expli-
cating knowledge sources, understanding control structures, and examin-
ing the effectiveness of PS’s for attacking the large problems typical of
artificial intelligence. The productions in this system often turn out to have
a relatively simple format, but complex control structures are built via
carefully orchestrated interaction of rules. This is done with several tech-
niques, including explicit reliance on both control elements and certain
characteristics of the data base architecture. For example, iterative loops

This basic technique of “broadcasting” information and allowing individual segments of
the system to determine their relevance has been extended and generalized in systems like
HEARSAYII (Lesser et al., 1974) and BEINGS (Lenat, 1975).

2The possibility remains, of course, that a “natural” interpretation of a control element will
be forthcoming as the model develops, and additional rules that refer to it will be added. In
that case the ease of adding the new rules arises out of the fact that the technique of allowing
one rule to call another was not used.
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are manufactured via explicit use of control elements, and data are (re-
dundantly) reasserted in order to make use of the “recency” ordering on
rules (the rule that mentions the most recently asserted data item is chosen
first; see Section 2.5.3). These techniques have supported the reincarnation
as PS’s of a number of sizable Al programs [e.g., STUDENT (Bobrow,
1968)], but, Bobrow notes, “control tends to be rather inflexible, failing to
take advantage of the openness that seems to be inherent in PS’s.”

This reflects something of a new perspective on the use of PS’s. Pre-
vious efforts have used them as tools for analyzing both the core of knowl-
edge essential to a given task and the manner in which such knowledge is
used. Such efforts relied in part on the austerity of the available control
structure to keep all of the knowledge explicit. The expectation is that each
production will embody a single chunk of knowledge. Even in the work of
Newell (1973), which used PS’s as a medium for expressing different the-
ories in the Sternberg task, an important emphasis is placed on productions
as a model of the detailed control structure of humans. In fact, every aspect
of the system is assumed to have a psychological correlate.

The work reported by Rychener (1975), however, after explicitly de-
tailing the chunks of knowledge required in the word problem domain of
STUDENT, notes a many-to-many mapping between its knowledge chunks
and productions. That work also focuses on complex control regimes that
can be built using PS’s. While still concerned with knowledge extraction
and explication, it views PS’s more as an abstract programming language
and uses them as a vehicle for exploring control structures. While this
approach does offer an interesting perspective on such issues, it should
also be noted that as productions and their interactions grow more com-
plex, many of the advantages associated with traditional PS architecture
may be lost (for example, the loss of openness noted above). The benefits
to be gained are roughly analogous to those of using a higher-level pro-
gramming language: while the finer grain of the process being examined
may become less obvious, the power of the language permits large-scale
tasks to be undertaken and makes it easier to examine phenomena like the
interaction of entire categories of knowledge.

The use of PS’s has thus grown to encompass several different forms,
many of which are far more complex than the pure PS model described
initially.

2. 5 Taxonomy of Production Systems

In this section we suggest four dimensions along which to characterize
PS’s: form, content, control cycle architecture, and system extensibility. For
each dimension we examine related issues and indicate the range as evi-
denced by systems currently (or recently) in operation.
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Form—How Primitive or Complex Should the
Syntax of Each Side Be?

There is a wide variation in the syntax used by PS’s and corresponding
differences in both the matching and detection process and the subsequent
action caused by rule invocation. For matching, in the simplest case only
literals are allowed, and it is a conceptually trivial process (although the
rule and data base may be so large that efficiency becomes a consideration).
Successively more complex approaches allow free variables [Waterman’s
poker player (Waterman, 1970)], syntactic classes (as in some parsing sys-
tems), and increasingly sophisticated capabilities of variable and segment
binding and of pattern specification (PAS II, VIS, LISP70).!3

The content of the data base also influences the question of form. One
interesting example is Anderson’s ACT system (Anderson, 1976), whose
rules have node networks in their LHS’s. The appearance of an additional
piece of network as input results in a “spread of activation” occurring in
parallel through the LHS of each production. The rule that is chosen is
the one whose LHS most closely matches the input and that has the largest
subpiece of network already in its working memory.

As another example, the DENDRAL system uses a literal pattern
match, but its patterns are graphs representing chemical classes. Each class
is defined by a basic chemical structure, referred to as a skeleton. As in the
data base, atoms composing the skeleton are given unique numbers, and
chemical bonds are described by the numbers of the atoms they join (e.g.,
“5 6”). The LHS of a rule is the name of one of these skeletons, and a
side effect of a successful match is the recording of the structural corre-
spondence between atoms in the skeleton and those in the molecule. The
action parts of these rules describe a sequence of actions to perform: break
one or more bonds, saving a molecular fragment, and transfer one or more
hydrogen atoms from one fragment to another. An example of a simple
rule is

ESTROGEN — (BREAK (14 15) (13 17)
(HTRANS +1 +2)

The LHS here is the name of the graph structure that describes the estro-
gen class of molecules, while the RHS indicates the likely locations for bond
breakages and hydrogen transters when such molecules are subjected to
mass spectral bombardment. Note that while both sides of the rule are
relatively complex, they are written in terms that are conceptual primitives
in the domain.

A related issue is illustrated by the rules used by MYCIN, where the
LHS consists of a Boolean combination of standardized predicate func-
tions. Here the testing of a rule for relevance consists of having the stan-

BFor an especially thorough discussion of pattern-matching methods in production systems
as used in VIS, see Moran (19734, pp. 42—45).
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dard LISP evaluator assess the LHS, and all matching and detection are
controlled by the functions themselves. While using functions in LHS’s
provides power that is missing from using a simple pattern match, that
creates the temptation to write one function to do what should be ex-
pressed by several rules. For example, one small task in MYCIN is to de-
duce that certain organisms are present, even though they have not been
recovered from any culture. This is a conceptually complex, multistep op-
eration, which is currently (1975) handled by invocation of a single func-
tion. If one succumbs often to the temptation to write one function rather
than several rules, the result can be a system that may perform the initial
task but that loses a great many of the other advantages of the PS approach.
The problem is that the knowledge embodied in these functions is un-
available to anything else in the system. Whereas rules can be accessed and
their knowledge examined (because of their constrained format), chunks
of ALGOL-like code are not nearly as informative. The availability of a
standardized, well-structured set of operational primitives can help to
avoid the temptation to create new functions unnecessarily.

2.5.2 Content—Which Conceptual Levels of
Knowledge Belong in Rules?

The question here is how large a reasoning step should be embodied in a
single rule, and there seem to be two distinct approaches. Systems designed
for psychological modeling (PAS 11, PSG, etc.) try to measure and compare
tasks and determine required knowledge and skills. As a result, they try to
dissect cognition into its most primitive terms. While there is, of course, a
range of possibilities, from the simple literal replacement found in PSG to
the more sophisticated abilities of PAS 1l to construct new productions,
rules in these systems tend to embody only the most basic conceptual steps.
Grouped at the other end of this spectrum are the task-oriented systems,
such as DENDRAL and MYCIN, which are designed to be competent at
selected real-world problems. Here the conceptual primitives are at a much
higher level, encompassing in a single rule a piece of reasoning that may
be based both on experience and on a highly complex model of the do-
main. For example, the statement “a gram-negative rod in the blood is
likely to be an E. coli” is based in part on knowledge of physiological systems
and in part on clinical experience. Often the reasoning step is sufficiently
large that the rule becomes a significant statement of a fact or principle in
the domain, and, especially where reasoning is not yet highly formalized,
a comprehensive collection of such rules may represent a substantial por-
tion of the knowledge in the field.

An interesting, related point of methodology is the question of what
kinds of knowledge ought to go into rules. Rules expressing knowledge
about the domain are the necessary initial step, but interest has been gen-
erated lately in the question of embodying strategies in rules. We have
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been actively pursuing this in the implementation of meta-rules in the MY-
CIN system (Davis et al.,, 1977). These are “rules about rules,” and they
contain strategies and heuristics. Thus, while the ordinary rules contain
standard object-level knowledge about the medical domain, meta-rules
contain information about rules and embody strategies for selecting po-
tentially useful paths of reasoning. For example, a meta-rule might suggest:

If the patient has had a bowel tumor, then in concluding about or-
ganism identity, rules that mention the gastrointestinal tract are more
likely to be useful.

There is clearly no reason to stop at one level, however—third-order rules
could be used to select from or order the meta-rules, by using information
about how to select a strategy (and hence represent a search through “strat-
egy space”); fourth-order rules would suggest how to select criteria for
choosing a strategy; etc.

This approach appears to be promising for several reasons. First, the
expression of any new level of knowledge in the system can mean an in-
crease in competence. This sort of strategy information, moreover, may
translate rather directly into increased speed (since fewer rules need be
tried) or no degradation in speed even with large increases in the number
of rules. Second, since meta-rules refer to rule content rather than rule
names, they automatically take care of new object-level rules that may be
added to the system. Third, the possibility of expressing this information
in a format that is essentially the same as the standard one means a uniform
expression of many levels of knowledge. This uniformity in turn means
that the advantages that arise out of the embodiment of any knowledge in
a production rule (accessibility and the possibility of automated explana-
tion, modification, and acquisition of rules) should be available for the
higher-order rules as well.

2.5.3 Control Cycle Architecture

The basic control cycle can be broken down into two phases called recog-
nition and action. The recognition phase involves selecting a single rule for
execution and can be further subdivided into selection and conflict resolu-
tion.'* In the selection process, one or more potentially applicable rules are
chosen from the set and passed to the conflict resolution algorithm, which
chooses one of them, There are several approaches to selection, which can
be categorized by their rule scan method. Most systems (e.g., PSG, PAS 1)
use some variation of an LHS scan, in which each LHS is evaluated in
turn, Many stop scanning at the first successful evaluation (e.g., PSG), and

14The range of conflict resolution algorithms in this section was suggested in a talk by Don
Waterman.
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hence conflict resolution becomes a trivial step (although the question then
remains of where to start the scan on the next cycle: to start over at the
first rule or to continue from the current rule).

Some systems, however, collect all rules whose LHS’s evaluate success-
fully. Conflict resolution then requires some criterion for choosing a single
rule from this set (called the conflict set). Several have been suggested,
including:

(i) Rule order—there is a complete ordering of all rules in the system,
and the rule in the conflict set with the highest priority is chosen.

(i1) Data order—elements of the data base are ordered, and that rule is
chosen which matches element(s) in the data base with highest priority.

(iii) Generality order—the most specific rule is chosen.

(iv) Rule precedence—a precedence network (perhaps containing cycles)
determines the hierarchy.

(v) Recency order—either the most recently executed rule or the rule
containing the most recently updated element of the data base is
chosen.

For example, the LISP70 interpreter uses (iii), while DENDRAL uses (iv).

A different approach to the selection process is used in the MYCIN
system. The approach is goal-oriented and uses an RHS scan. The process
is quite similar to the unwinding of consequent theorems in PLANNER
(Hewitt, 1972): given a required subgoal, the system retrieves the (unor-
dered) set of rules whose actions conclude something about that subgoal.
The evaluation of the first LHS is begun, and if any clause in it refers to
a fact not yet in the data base, a generalized version of this fact becomes
the new subgoal, and the process recurs. However, because MYCIN is
designed to work with judgmental knowledge in a domain where collecting
all relevant data and considering all possibilities are very important, in
general, it executes all rules from the conflict set rather than stopping after
the first success.

The meta-rules mentioned above may also be seen as a way of selecting
a subset of the conflict set for execution. There are several advantages to
this. First, the conflict resolution algorithm is stated explicitly in the meta-
rules (rather than implicitly in the system’s interpreter) and in the same
representation as the rest of the rule-based knowledge. Second, since there
can be a set of meta-rules for each subgoal type, MYCIN can specify dis-
tinct, and hence potentially more customized, conflict resolution strategies
for each individual subgoal. Since the backward chaining of rules may also
be viewed as a depth-first search of an AND/OR goal tree,!5 we may view

15An AND/OR goal tree is a reasoning network in which AND’s (conjunctions of LHS con-
ditionals) and OR’s (disjunctions of multiple rules that all allow the same goal/conclusion to
be reached) alternate. This structure is described in detail during the discussion of MYCIN’s
control structure in Chapter 5.
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the search tree as storing at every branch point a collection of specific
heuristics about which path to take. In addition, rules in the system are
inexact, judgmental statements with a model of “approximate implication”
in which the user may specify a measure of how firmly he or she believes
that a given LHS implies its RHS (Shortliffe and Buchanan, 1975). This
admits the possibility of writing numerous, perhaps conflicting heuristics,
whose combined judgment forms the conflict resolution algorithm.

Control cycle architecture affects the rest of the production system in
several ways. Overall etficiency, for example, can be strongly influenced.
The RHS scan in a goal-oriented system insures that only relevant rules
are considered in the conflict set. Since this is often a small subset of the
total, and one that can be computed once and stored for reference, there
is no search necessary at execution time; thus the approach can be quite
efficient. In addition, since this approach seems natural to humans, the
system’s behavior becomes easier to follow.

Among the conflict resolution algorithms mentioned, rule order and
recency order require a minimal amount of checking to determine the rule
with highest priority. Generality order can be efficiently implemented, and
the LISP70 compiler uses it effectively. Data order and rule precedence
require a significant amount of bookkeeping and processing, and hence
may be slower (PSH, a development along the lines of PSG, attacks pre-
cisely this problem).

The relative difficulty of adding a new rule to the system is also de-
termined to a significant degree by the choice of control cycle architecture.
Like PLANNER with its consequent theorems, the goal-oriented approach
makes it possible to simply “throw the rule in the pot” and still be assured
that it will be retrieved properly. The generality-ordering technique also
permits a simple, automatic method for placing the new rule, as do the
data-ordering and recency strategies. In the latter two cases, however, the
primary factor in ordering is external to the rule, and hence, while rules
may be added to the rule set easily, it is somewhat harder to predict and
control their subsequent selection. For both rule order and rule precedence
networks, rule addition may be a substantially more difficult problem that
depends primarily on the complexity of the criteria used to determine the
hierarchy.

2.5.4 System Extensibility

Learning, viewed as augmentation of the system’s rule base, is of concern
both to the information-processing psychologists, who view it as an essential
aspect of human cognition, and to designers of knowledge-based systems,
who acknowledge that building truly expert systems requires an incremen-
tal approach to competence. As yet we have no range or even points of



Taxonomy of Production Systems 51

comparison to offer because of the scarcity of examples. Instead, we sug-
gest some standards by which the ease of augmentation may be judged.!®

Perhaps the most basic question is “How automatic is it?” The ability
to learn is clearly an area of competence by itself, and thus we are really
asking how much of that competence has been captured in the system, and
how much the user has to supply. Some aspects of this competence include:

e If the current system displays evidence of a bug caused by a missing or
incorrect rule, how much of the diagnosing of the bug is handled by the
system, and how much tracing must be done by the user?

¢ Once the bug is uncovered, who fixes it? Must the user modify the code
by hand? . .. tell the system in some command language what to do? . . .
indicate the generic type of the error? Can the user simply point out the
offending rule, or can the system locate and fix the bug itself?

e Can the system indicate whether the new rule will in fact fix the bug or
if it will have side effects or undesired interactions?

o How much must the user know about rule format conventions when
expressing a new (or modified) rule? Must he or she know how to code
it explicitly? . . . know precisely the vocabulary to use? . . . know generally
how to phrase it? Or can the user indicate in some general way the
desired rule and allow the system to make the transformation? Who has
to know the semantics of the domain? For example, can the system detect
impossible conjunctions (A & B, where A — not-B), or trivial disjunctions
(A \/ B, where A — not-B)? Who knows enough about the system’s
idiosyncrasies to suggest optimally fast or powerful ways of expressing
rules?

e How difficult is it to enter strategies?

e How difficult is it to enter control structure information? Where is the
control structure information stored: in aggregations of rules or in
higher-order rules? The former makes augmentation or modification a
difficult problem; the latter makes it somewhat easier, since the infor-
mation is explicit and concentrated in one place. ~

e Can you assure continued consistency of the rule base? Who has to do
the checking?

These are questions that will be important and useful to confront in de-
signing any system intended to do knowledge acquisition, especially any
built around production rules as underlying knowledge representation.

16]¢ should be noted that this discussion is oriented primarily toward an interactive, mixed-
initiative view of learning, in which the human expert teaches the system and answers ques-
tions it may generate. It has also been influenced by our experience in attacking this problem
for the MYCIN system (Davis, 1976). Many other models of the process (e.g., teaching by
selected examples) are of course possible.
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2 .6 Conclusions

In artificial intelligence research, production systems were first used to
embody primitive chunks of information-processing behavior in simulation
programs. Their adaptation to other uses, along with increased experience
with them, has focused attention on their possible utility as a general pro-
gramming mechanism. Production systems permit the representation of
knowledge in a highly uniform and modular way. This may pay off hand-
somely in two areas of investigation: development of programs that can
manipulate their own representations and development of a theory of
loosely coupled systems, both computational and psychological. Production
systems are potentially useful as a flexible modeling tool for many types
of systems; current research efforts are sufficiently diverse to discover the
extent to which this potential may be realized.

Information-processing psychologists continue to be interested in pro-
duction systems. PS’s can be used to study a wide range of tasks (Newell
and Simon, 1972). They constitute a general programming system with
the full power of a Turing machine, but use a homogeneous encoding of
knowledge. To the extent that the methodology is that of a pure production
system, the knowledge embedded is completely explicit and thus aids
experimental verification or falsifiability of theories that use PS’s as a me-
dium of expression. Productions may correspond to verifiable bits of psy-
chological behavior (Moran, 1973a), reflecting the role of postulated hu-
man information-processing structures such as short-term memory. PS’s
are flexible enough to permit a wide range of variation based on reaction
times, adaptation, or other commonly tested psychological variables. Fi-
nally, they provide a method for studying learning and adaptive behavior
(Waterman, 1974).

For those wishing to build knowledge-based expert systems, the homo-
geneous encoding of knowledge offers the possibility of automating parts
of the task of dealing with the growing complexity of such systems. Knowl-
edge in production rules is both accessible and relatively easy to modify. It
can be executed by one part of the system as procedural code and exam-
ined by another part as if it were a declarative expression. Despite the
difficulties of programming PS’s, and their occasionally restrictive syntax,
the fundamental methodology suggests a convenient and appropriate
framework for the task of structuring and specifying large amounts of
knowledge. (See Hayes-Roth et al., 1983, for recent uses of production
systems.) It may thus prove to be of great utility in dealing with the prob-
lems of complexity encountered in the construction of large knowledge
bases.
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The Evolution of MYCIN’s
Rule Form

There is little doubt that the decision to use rules to encode infectious
disease knowledge in the nascent MYCIN system was largely influenced by
our experience using similar techniques in DENDRAL. However, as men-
tioned in Chapter 1, we did experiment with a semantic network repre-
sentation before turning to the production rule model. The impressive
published examples of Carbonell’s SCHOLAR system (Carbonell, 1970a;
1970b), with its ability to carry on a mixed-initiative dialogue regarding
the geography of South America, seemed to us a useful model of the kind
of rich interactive environment that would be needed for a system to advise
physicians. '

Our disenchantment with a pure semantic network representation of
the domain knowledge arose for several reasons as we began to work with
Cohen and Axline, our collaborating experts. First, the knowledge of in-
fectious disease therapy selection was ill-structured and, we found, difficult
to represent using labeled arcs between nodes. Unlike South American
geography, our domain did not have a clear-cut hierarchical organization,
and we found it challenging to transfer a page or two from a medical
textbook into a network of sufficient richness for our purposes. Of partic-
ular importance was our need for a strong inferential mechanism that
would allow our system to reason about complex relationships among di-
verse concepts; there was no precedent for inferences on a semantic net
that went beyond the direct, labeled relationships between nodes.!

Perhaps the greatest problem with a network representation, and the
greatest appeal of production rules, was our gradually recognized need to
deal with small chunks of domain knowledge in interacting with our expert
collaborators. Because they were not used to dissecting their clinical rea-
soning processes, it was totally useless to ask them to “tell us all that you
know.” However, by discussing specific difficult patients, and by encour-

'"The PROSPECTOR system (Duda et al., 1978a; 1978b), which was developed shortly after
MYCIN, uses a network of inferential relations—a so-called inference net—to combine a seman-
tic network with inference rules.
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aging our collaborators to justify their questions or decisions, those of us
who were not expert in the field began to tease out “nuggets” of domain
knowledge—individual inferential facts that the experts identified as per-
tinent for problem solving in the domain. By encoding these facts as in-
dividual production rules, rather than attempting to decompose them into
nodes and links in a semantic network, we found that the experts were
able to examine and critique the rules without difficulty. This transparency
of the knowledge base, coupled with the inherent modularity of knowledge
expressed as rules, allowed us to build a prototype system quickly and
allowed the experts to identify sources of performance problems with rel-
ative ease. They particularly appreciated having the ability to observe the
effects of chained reasoning based on individual rules that they themselves
had provided to us. In current Al terminology, the organization of knowl-
edge was not object-centered but was centered around inferential processes.

Our early prototype rapidly diverged from DENDRAL because we
were driven by different performance goals and different characteristics
of the knowledge in the domain. Of particular importance was the need
to deal with inexact inference; unlike the categorical conclusions in DEN-
DRAL: rules, the actions in MYCIN’s productions were typically conclu-
sions about the state of the world that were not known with certainty. We
soon recognized the need to accumulate evidence regarding alternative
hypotheses as multiple rules lent credence to the conclusions. The need
for a system to measure the weight of evidence of competing hypotheses
was not surprising; it had also characterized conventional statistical ap-
proaches to computer-based medical decision making. Our certainty factor
model, to which we refer frequently throughout this book (and which is
the subject of Part Four), was developed in response to our desire to deal
with uncertainty while attempting to keep knowledge modular and in rules.

The absence of complete certainty in most of our rules meant that we
needed a control structure that would consider a// rules regarding a given
hypothesis and not stop after the first one had succeeded. This need for
exhaustive search was distinctly different from control in DENDRAL,
where the hierarchical ordering of rules was particularly important for
correct prediction and interpretation (see Chapter 2). Because rule order-
ing was not important in MYCIN, the modularity of rules was heightened;
the experts did not need to worry about ordering the rules they gave us
or about other details of control.?

Another important distinction between the reasoning paradigms of
DENDRAL and MYCIN was recognized early. DENDRAL generated
hypotheses regarding plausible chemical structures and used its rule set to

?The arbitrary order of MYCIN’s rules did lead to some suboptimal performance character-
istics, however. In particular, the ordering of questions to the user often seemed unfocused.
It was for this reason that the MAINPROPS (later known as INITIALDATA) feature was
devised (see Chapter 5), and the concept of meta-rules was developed to allow rule selection
and ordering based on strategic knowledge of the domain (see Chapter 28). The development
of prototypes in CENTAUR (Chapter 23) was similarly motivated.
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test these hypotheses and to select the best ones. Thus DENDRALs control
scheme involved forward invocation of rules for the last phase of the plan-
generate-and-test paradigm. On the other hand, it was unrealistic for MY-
CIN to start by generating hypotheses regarding likely organisms or com-
binations of pathogens; there were no reasonable heuristics for pruning
the search space, and there was no single piece of orienting information
similar to the mass spectrum, which provided the planning information to
constrain DENDRAL' hypothesis generator. Thus MYCIN was dependent
on a reasoning model based on evidence gathering, and its rules were used
to guide the process of input data collection. Because we wanted to avoid
problems of natural language understanding, and also did not want to
teach our physician users a specialized input language, we felt it was un-
reasonable to ask the physician to enter some subset of the relevant patient
descriptors and then to have the rules fire in a data-driven fashion. Instead,
we chose a goal-directed control structure that allowed MYCIN to ask the
relevant questions and therefore permitted the physician to respond, in
general, with simple one-word answers. Thus domain characteristics led
to forward-directed use of the generate-and-test paradigm in DENDRAL
and to goal-directed use of the evidence-gathering paradigm in MYCIN.

We were not entirely successful in putting all of the requisite medical
knowledge into rules. Chapter 5 describes the problems encountered in
trying to represent MYCIN’s therapy selection algorithm as rules. Because
therapy selection was initially implemented as LISP code rather than in
rules, MYCIN’s explanation system was at that time unable to justify spe-
cific therapy decisions in the same way it justified its diagnostic decisions.
This situation reflects the inherent tension between procedural and pro-
duction-based representation of this kind of algorithmic knowledge. The
need for further work on the problem was clear. A few years later Clancey
assumed the challenge of rewriting the therapy selection part of MYCIN
so that appropriate explanations could be generated for the user. We were
unable to encode the entire algorithm in rules, however, and instead settled
on a solution reminiscent of the generate-and-test approach used in DEN-
DRAL: rules were used to evaluate therapeutic hypotheses after they had
been proposed (generated) by an algorithm that was designed to support
explanations of its operation. This clever solution, described in Chapter 6,
seemed to provide an optimal mix of procedural and rule-based knowi-
edge.

3, 1 Design Considerations

Many of the decisions that led to MYCIN’s initial design resulted from a
pragmatic response to perceived demands of physicians as computer users.
Our perceptions were largely based on our own intuitions and observations
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about problems that had limited the success of previous computer-based
medical decision-making systems. More recently we have undertaken for-
mal studies of physician attitudes (Chapter 34), and the data that resulted,
coupled with our prior experience building MYCIN, have had a major
impact on our more recent work with ONCOCIN (Chapter 35). These
issues are addressed in detail in Part Eleven.

However, since many of the features and technical decisions that are
reflected in the other chapters in Part Two are based on our early analysis
of design considerations for MYCIN (Shortliffe, 1976), we summarize
those briefly here. We have already alluded to several ways in which MY-
CIN departed from the pure production systems described in Chapter 2.
These are further discussed throughout the book (see especially Chapter
36), but it is important to recognize that the system’s development was
evolutionary. Most such departures resulted from characteristics of the
medical domain, from our perceptions of physicians as potential computer
users, or from unanticipated problems that arose as MYCIN grew in size
and complexity.

We recognized at the outset that educational programs designed for
instruction of medical students had tended to meet with more long-term
success than had clinical consultation programs. A possible explanation,
we felt, was that instructional programs dealt only with hypothetical pa-
tients in an effort to teach diagnostic or therapeutic concepts, whereas
consultation systems were intended to assist physicians with the manage-
ment of real patients in the clinical setting. A program aiding decisions
that can directly affect patient well-being must fulfill certain responsibilities
to physicians if they are to accept the computer and make use of its knowl-
edge. For example, we observed that physicians had tended to reject com-
puter programs designed as decision-making aids unless they were
accessible, easy to use, forgiving of simple typing errors, reliable, and fast
enough to save time. Physicians also seemed to prefer that a program
function as a tool, not as an “all-knowing” machine that analyzes data and
then states its conclusions as dogma without justifying them. We had also
observed that physicians are most apt to need advice from consultation
programs when an unusual diagnostic or therapeutic problem has arisen,
which is often the circumstance when a patient is acutely ill. Time is an
important consideration in such cases, and a physician will probably be
unwilling to experiment with an “unpolished” prototype. In fact, time will
always be an important consideration given the typical daily schedule of a
practicing physician.

With considerations such as these in mind from the start, we defined
the following list of prerequisites for the acceptance of a clinical consul-
tation program (Shortliffe et al., 1974):3

3This analysis was later updated, expanded, and analyzed after we gained more experience
with MYCIN (Shortliffe, 1980).
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1. The program should be wuseful; i.e., it should respond to a well-docu-
mented clinical need and, ideally, should tackle a problem with which
physicians have explicitly requested assistance.

2. The program should be usable; i.e., it should be fast, accessible, easy to
learn, and simple for a novice computer user.

3. The program should be educational when appropriate; i.e., it should allow
physicians to access its knowledge base and must be capable of convey-
ing pertinent information in a form that they can understand and from
which they can learn.

4. The program should be able to explain its advice; i.e., it should provide
the user with enough information about its reasoning so that he or she
can decide whether to follow the recommendation.

5. The program should be able to respond to simple questions; i.e., it should
be possible for the physician to request justifications of specific infer-
ences by posing questions, ideally using natural language.

6. The program should be able to learn new knowledge; i.e., it should be
possible to tell it new facts and have them easily and automatically in-
corporated for future use, or it should be able to learn from experience
as it is used on large numbers of cases.

7. The program’s knowledge should be easily modified; i.e, adding new
knowledge or correcting errors in new knowledge should be straight-
forward, ideally accomplished without having to make explicit changes
to the program (code) itself.

This list of design considerations played a major role in guiding our early
work on MYCIN, and, as we suggested earlier in this chapter, they largely
account for our decision to implement MYCIN as a rule-based system. In
Chapters 4 through 6, and in subsequent discussions of knowledge acqui-
sition (Part Three) and explanation (Part Six), it will become clear how the
production system formalism provided a powerful foundation for an evolv-
ing system intended to satisfy the design goals we have outlined here.

3.2 MYCIN as an Evolutionary System

One of the lessons of the MYCIN research has been the way in which the
pure theory of production systems, as described in Chapter 2, has required
adaptation in response to issues that arose during system development.
Many of these deviations from a pure production system approach with
backward chaining will become clear in the ensuing chapters. For reference
we summarize here some of those deviations, citing the reasons for changes
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that were introduced, even though this anticipates more complete discus-
sions in later chapters.

1. The context tree: We realized the need to allow our rules to make
conclusions about multiple objects and to keep track of the hierarchical
relationships among them. The context tree (described in Chapter 5) was
created to provide a mechanism for representing hierarchical relationships
and for quantifying over multiple objects. For instance, ORGANISM-1 and
ORGANISM-2 are contexts of the same type that are related to cultures
in which they are observed to be growing and that need to be compared,
collected, and reasoned with together at times.

2. Instantiation of contexts: When a new object required attention, we
needed a mechanism for creating it, naming it, and recording its associa-
tions with other contexts in the system. Prototypical contexts, similar in
concept to the “frames” of more recent Al work (Minsky, 1975), provided
a mechanism for creating new objects when they were needed. These are
called context-types to distinguish them from individual contexts. For in-
stance, ORGANISM is a context-type.

3. Development of MAINPROPS: Physicians using the evolving system
began to complain that MYCIN did not ask questions in the order they
were used to. For example, they indicated it was standard practice to discuss
the site, timing, and method of collection for a culture as soon as it was
first mentioned. Thus we created a set of parameters called the MAIN-
PROPS for each prototypical context.* The values of these parameters
were automatically asked for when a context was first created, thereby
providing the kind of focused questioning with which physicians felt most
comfortable. The benefit was in creating a more natural sequence of ques-
tions. The risk was in asking a few more questions than might be logically
necessary for some cases. This was a departure from the pure production
system aproach of asking questions only when the information was needed
for evaluating the premise of a rule.

4. Addition of antecedent rules: The development of MAINPROPS
meant that we knew there were a small number of questions that would
be asked every time a context was created. In a pure backward-chaining
system, rules that had premise conditions that depended only on the values
of parameters on MAINPROPS lists would be invoked when needed so
there was no a priori reason to do anything special with such rules. How-
ever, two situations arose that made us flag such rules as antecedent rules
to be invoked in a data-driven fashion rather than await goal-oriented
invocation. First, there were cases in which an answer to one MAINPROPS

“This name was later changed to INITIALDATA in EMYCIN systems.
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question could uniquely determine (via a definitional antecedent rule) the
value of another subsequent MAINPROPS property for the same context
(e.g., if an organism’s identity was known, its gram stain and morphology
were of course immediately determined). By implementing such rules as
antecedent rules and by checking to see if the value of a MAINPROPS
parameter was known before asking the user, we avoided inappropriate or
unnecessary questions.

The second use of antecedent rules arose when the preview mecha-
nism was implemented (see paragraph 12 below). Because an antecedent
rule could determine that a premise condition of another rule was false,
such rules could be rejected immediately during the preview phase. If
antecedent rules had been saved for backward-chained invocation, how-
ever, the preview mechanism would have failed to reject the rule in ques-
tion. Thus the MONITOR would have inappropriately pursued the first
two or three conditions in the premise of the rule, perhaps at considerable
computational expense, only to discover that the subsequent clause was
clearly false due to an answer of an earlier MAINPROPS question. Thus
antecedent rules offered a considerable enhancement to efficiency in such
cases.

5. Self-referencing rules: As will be discussed in Chapter 5, it became
necessary to write rules in which the same parameter appeared in both the
premise and the action parts. Self-referencing rules of the form A & B &
C — A are a departure from the pure production system approach, and
they required changes to the goal-oriented rule invocation mechanism.
They were introduced for three purposes: default reasoning, screening,
and using information about risks and utilities.

a. Default reasoning: MYCIN makes no inferences except those that are
explicitly stated in rules, as executed under the certainty factor (CF) model
(see Chapter 11) and backward-chaining control. There are no implicit
ELSE clauses in the rules that assign default values to parameters.® When
rules fail to establish a value for a parameter, its value is considered to be
UNKNOWN-—no other defaults are used. One use of the self-referencing
rules is to assign a default value to a parameter explicitly:

IF a value for X is not known (after trying to establish one),
THEN conclude that the value of X is Z.

Thus, reasoning with defaults is done in the rules and can be explained
in the same way as any other conclusions. The control structure had to be
changed, however, to delay executing these rules until all other relevant
rules had been tried.

b. Screening: For purposes of human engineering, we needed a screen-

SExplicit else clauses were defined in the syntax (see Chapter 5) but were eliminated, mostly
for the sake of simplicity.
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ing mechanism to avoid asking about unusual parameters (B and C, above)
unless there is already some other evidence for the hypothesis (A) under
consideration. For example, we did not want MYCIN to use the simple
rule

Pseudomonas-type skin lesions — Pseudomonas

unless there already was evidence for Pseudomonas—otherwise, the pro-
gram would appear to be asking for minute pieces of data inappropriately.

c. Utilities: Self-referencing rules gave us a way to consider the risks
of failing to consider a hypothesis. Once there is evidence for Pseudomonas,
say, being a possible cause of an infection, then a self-referencing rule can
boost the importance of considering it in therapy, based on the high risk
of failing to treat for it.

6. Mapping rules: We soon recognized the need for rules that could
be applied iteratively to a set of contexts (e.g., a rule comparing a current
organism to each bacterium in the set of all previous organisms in the
context tree). Special predicate functions (e.g., THERE-IS, FOR-EACH,
ONE-OF) were therefore written so that a condition in a rule premise could
map iteratively over a set of contexts. This was a partial solution to the
general representation problem of expressing universal and existential
quantification. Only by considering all contexts of a type could we deter-
mine if all or some of them had specified properties. The context tree
allowed easy comparisons within any parent context (e.g., all the organisms
growing in CULTURE-2) but did not allow easy comparison across contexts
(e.g., all organisms growing in all cultures).

7. Tabular representation of knowledge: When large numbers of rules
had been written, each having essentially the same form, we recognized
the efficiency of collapsing them into a single rule that read the values for
its premise conditions and action from a specialized table. (A related con-
cept was implemented in changes that allowed physicians to enter infor-
mation in a more natural way. If they were looking at a patient’s record
for answers to questions, it was more convenient to enter many items at
once into a table of related parameters. There was, however, the attendant
risk of asking for information that would not actually be used in some
cases.) Chapter 5 describes the implementation of this feature.

8. Augmentation of rules: As multiple experts joined to collaborate on
development of the knowledge base, we recognized the need to keep track
of who wrote individual rules. Thus extra properties were added to rules
that allowed us to keep track of authorship, to record literature references
that defended the inference stored in the rule, and to allow recording of
free-form text justification of certain complicated rules for which the nor-
mal rule translation was somewhat cryptic. These extra slots associated with



MYCIN as an Evolutionary System 63

rules gave the latter more the character of frames than of pure produc-
tions.

9. The therapy algorithm: As described in Chapter 5, the final step in
MYCIN’s decision process was largely algorithmic and proved difficult to
encode in rules. Chapter 6 describes our eventual solution, in which we
integrated algorithmic and rule-based approaches in a novel manner.

10. Management of uncertainty: Previous PS’s had not encoded the un-
certainty in rules. Thus MYCIN’s certainty factor model (see Part Four)
was an augmentation mandated by the nature of decision making in this
complex medical domain.

11. Addition of meta-rules: As mentioned in Chapter 2 and described
in Chapter 28, we began to realize that strategies for optimal rule invo-
cation could themselves be encoded in rules. MYCIN’s PS approach was
modified to manage high-level meta-rules that could be invoked via the
usual rule monitor and that would assist in determining optimal problem-
solving strategies.

12. Addition of a preview mechanism: It became clear that it was ineffi-
cient for the rule interpreter to assess the first few conditions in a rule
premise if it was already known that a subsequent condition was false. Thus
a preview mechanism was added to the interpreter so that it first examined
the whole premise to see if there were parameters whose values had pre-
viously been determined. The addition of the preview mechanism made it
important to add antecedent rules, as mentioned above (paragraph 4).

13. The concept of a unity path: Because many MYCIN rules reached
conclusions with less than certainty, it was generally necessary to invoke all
rules that could bear on the value of a parameter under consideration.
This is part of MYCIN’s cautious evidence-gathering strategy in which all
relevant evidence available at the time of a consultation is used. However,
if a rule successfully reaches a conclusion with certainty (i.e., it has CF=1),
then it is not necessary to try alternate rules. Thus the rule monitor was
altered to try first those rules that could reach a conclusion with certainty,
either through a single rule with CF=1 or through a chain of rules, each
with CF=1 (a so-called unity path). When certain rules succeeded, the
alternate rules were ignored, and this prevented inefficiencies in the de-
velopment of the reasoning network and in the generation of questions to
the user.

14. Prevention of circular reasoning: The issue of circular reasoning
does not normally arise in pure production systems but was a serious po-
tential problem for MYCIN. (Self-referencing rules, discussed in para-
graph 5 above, are a special case of the general circular reasoning problem
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involving any number of rules.) Special changes to the rule monitor were
required to prevent this undesirable occurrence (see Chapter 5).

15. The tracing mechanism: As is described in Chapter 5, we made the
decision to determine all possible values of a parameter instead of deter-
mining only the value specified in the premise condition of interest. This
potential inefficiency was tolerated for reasons of user acceptance. We
found that physicians preferred a focused and exhaustive consideration of
one topic at a time, rather than having the system return subsequently to
the subject when another possible value of the same parameter was under
consideration.

16. The ASKFIRST concept: Pure production systems have not gen-
erally distinguished between attributes that the user may already know with
certainty (such as values of laboratory tests) and those that inherently re-
quire inference. In MYCIN this became an important distinction, which
required that each parameter be labeled as an ASKFIRST attribute (orig-
inally named LABDATA as discussed in Chapter 5) or as a parameter that
should first be determined by using rules rather than by asking the user.

17. Procedural conditions associated with parameters: We also discovered
unusual circumstances in which a special test was necessary before MYCIN
could decide whether it was appropriate to ask the user for the value of a
parameter. This was solved through a kind of procedural attachment, i.e.,
an executable piece of conditional code associated with a parameter, which
would allow the rule monitor to decide whether a question to the user was
appropriate. Each parameter thus began to be represented as a frame with
several slots, including some whose values were procedures.

18. Rephrasing prompts: As users became more familiar with MYCIN,
we found that they preferred short, less detailed prompts when the pro-
gram requested information. Thus a “terse” mode was implemented and
could be selected by an experienced user. Similarly, a reprompt mechanism
was developed so that a novice user, puzzled by a question, could be given
a more detailed explanation of what MYCIN needed to know. These fea-
tures were added to an already existing HELP facility, which showed ex-
amples of acceptable answers to questions.

19. Multiple instances of contexts: Some of the questions asked by MY-
CIN are necessary for deciding whether or not to create contexts (rather
than for determining the value of a parameter). Furthermore, optimal
human engineering requires that this kind of question be phrased differ-
ently for the first instance of a context-type than for subsequent instances.
These alternate prompts are discussed in Chapter 5.
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20. HERSTORY List: Another addition to the rule monitor in MYCIN
was a mechanism for keeping track of all rules invoked, failing, succeeding,
etc., and the reasons for these various outcomes. The so-called HERS-
TORY List, or history tree, then provided the basis for MYCIN’s expla-

nations in response to users’ queries.

21. Creation of a Patient Data Table: Finally, we recognized the need to
develop mechanisms for (a) reevaluating cases when more information
became available and (b) assessing the impact of modifications to the knowl-
edge base on a library of cases previously handled well. These goals were
achieved by the development of a Patient Data Table, i.e., a mechanism for
storing and accessing the initializing conditions necessary for full consid-
eration of cases. See Chapter 5 for further discussions of this feature.

3,3 A Word About the Logic of MYCIN

The logic of MYCIN’s reasoning is propositional logic, where the elemen-
tary propositions are fact triples and the primary rule of inference is modus
ponens (A and A D B implies B). It is extended (and somewhat complicated)
in the following respects:

o Certainty factors (CF’s) are attached (or propagated) to all propositions.
e CF’s are associated with all implications.

e Predicates are associated with fact triples to change the way facts stated
in rules are matched against facts in the dynamically constructed case
record. A variety of predicates have been defined (see Section 5.1.5);
some refer to values of attributes (e.g., NOT-SAME, ONE-OF) and some
reference values of CF’s (e.g.,, KNOWN, DEFINITE).

e Limited quantification is allowed over conjunctions of propositions (e.g.,
THERE-IS, FOR-EACH).

e Meta-level reasoning is allowed in order to increase efficiency (e.g., using
meta-rules or looking for a unity path).

MYCIN’s logic is incomplete in the sense that we know there are prop-
ositions that can be expressed in the language but are not provable as
theorems. MYCIN's logic is not inconsistent in itself (we believe), but it is
not immune to inconsistencies introduced into its knowledge base.
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3.4 Overview of Part Two

The remainder of this part consists of three papers that summarize MY-
CIN and its use of production rules. In order to orient the reader to
MYCIN’s overall motivation and design, we first include as Chapter 4 an
introductory paper that provides an overview of the system as of 1978
(approximately the time when development of the medical knowledge base
stopped). Chapter 5 is the original detailed description of MYCIN from
1975. It provides technical information on the system’s representation and
control mechanisms. Chapter 6 is a brief paper from 1977 that discusses
the way in which production rules were adapted to deal with the algo-
rithmic knowledge regarding therapy selection.



The Structure of the
MYCIN System

William van Melle

A number of constraints influenced the design of the MYCIN system. In
order to be useful, the system had to be easy to use and had to provide
consistently reliable advice. It needed to be able to accommodate the large
body of task-specific knowledge required for high performance, a knowl-
edge base that is subject to change over time. The system also had to be
able to use inexact or incomplete information. This applies not only to the
absence of definitive laboratory data, but also to the medical domain itself
(which is characterized by much judgmental knowledge). Finally, to be a
useful interactive system, MYCIN needed to be capable of supplying ex-
planations for its decisions and responding to physicians’ questions, rather
than simply printing orders.

The MYCIN system comprises three major subprograms, as depicted
in Figure 4-1. The Consultation Program is the core of the system; it interacts
with the physician to obtain information about the patient, generating
diagnoses and therapy recommendations. The Explanation Program pro-
vides explanations and justifications for the program’s actions. The Knowl-
edge-Acquisition Program is used by experts to update the system’s knowledge
base.

This chapter is based on an article originally appearing under the title “MYCIN: A knowl-
edge-based consultation program for infectious disease diagnosis” in International Journal of
Man-Machine Studies 10: 313-322 (1978). Copyright © 1979 by Academic Press Inc (London)
Limited. Used with permission.
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Consultation L‘
Pragram
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Explanation
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Acquisition

Program

Infectious Disease

Expert

FIGURE 4-1 Organization of the MYCIN system. Arrows de-
note information flow between modules, knowledge base, and
users.

4, l The Consultation Program

Excerpts from a sample consultation are shown in Figure 4-2. (A complete
annotated typescript is shown in the Appendix.) The doctor’s responses
are in upper-case letters following the double-asterisk prompt. Consider-
able effort has gone into the human engineering aspects of the system, to
make the interaction as smooth as possible. If the user finds a question
unclear, he or she can request a rephrasing with a list of sample responses.
A large dictionary of synonyms allows the user great latitude in choice of
responses, and simple typing or spelling errors are automatically corrected.

4.1.1 Knowledge Organization

Information about the patient and conclusions drawn during the consul-
tation are represented as associative (object-attribute-value) triples. The
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1) Patient's name: (first-last)
** FRED BRAUN

2) Sex: (Questions 1-3 request
M background patient data.)
3) Age:

** 55

4) Are there any cultures for Fred Braun which may be related to
the present illness, and from which organisms have been grown
successfully in the microbiology laboratory?
"y
--------CULTURE-1--------
5) From what site was the specimen for CULTURE-1 taken?
** BLOD
=BLOOD (System corrects typing error.)
6) Please give the date and time when CULTURE-1 was obtained.
(mo/da/yr time)
** JUN 20, 1977
The first organism isolated from the blood culture of 20-JUN-77
(CULTURE-1) will be referred to as:

-------- ORGANISM-1--------
7) Enter the laboratory-reported identity of ORGANISM-1:
“*UNKNOWN (Typically identity is not yet known.)
8) The stain (gram or Ziehl-Neeisen acid-fast) of ORGANISM-1:
** NEG (Preliminary lab resuits give some clues.)
9) Is ORGANISM-1 rod or coccus (etc.):
** ROD
10) What is the form of the individual organisms (e.g. lancet-
shaped for cocci, fusiform for rods, etc.)?
** FUSIFORM

(... more questions follow in order to gather sufficient information to infer the identity
and significance of the infecting organisms . . . )

23) What is the suspected portal of entry of the gramneg rod from the
blood culture of 20-JUN-77 (ORGANISM-1} into this sterile site?
** Gl (6) (User indicates the uncertainty of his response.)
24) Is Fred Braun a burn patient?
* N
25) Is Fred Braun a compromised host (e.g. alcoholic,
sickle-cell-disease, immunosuppressed)?
*N
26) Is Fred Braun febrile?
bl

(... after about 50—60 questions, MYCIN prints the diagnostic hypotheses on
which therapy will be based . ..)

My therapy recommendations will be designed to treat for organisms that are either very likely or, although less
likely, would have a significant effect on therapy selection if they were present. It is important to cover for the
following probable infection(s) and associated organism(s):

INFECTION-1 is BACTEREMIA

<ITEM-1> E.COLI [ORGANISM-1]

<ITEM-2> KLEBSIELLA [ORGANISM-1]

<ITEM-3> ENTEROBACTER [ORGANISM-1]
<ITEM-4> KLEBSIELLA-PNEUMONIAE [ORGANISM-1]

FIGURE 4-2 Excerpts from a MYCIN consultation. (Com-
ments in italics are not part of the actual interaction.)
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(... questions foliow to evaluate possible therapy choices,
and finally MYCIN prints its therapy recommendations . . . )

[REC-1] My preferred therapy recommendation is as follows:
In order to cover for items <1 2 3 4>:
Give: GENTAMICIN (One drug covers 4 possible identities.)
Dose: 119 mg (6.0 ml) g8h IV for 10 days [calculated on basis of
1.7 mg/kg]
Comments: Modify dose in renal failure.

FIGURE 4-2 continued

objects, known as contexts in MYCIN, are such things as individual cultures
taken from the patient, organisms that grew out of them, and drugs the
patient is currently receiving. Various attributes, termed clinical parameters,
characterize these objects. Questions asked during the consultation attempt
to fill in the values for relevant attributes of these objects. To represent the
uncertainty of data or competing hypotheses, attached to each triple is a
certainty factor (CF), a number between —1 and 1 indicating the strength
of the belief in (or a measure of the importance of) that fact. A CF of 1
represents total certainty of the truth of the fact, while a CF of —1 rep-
resents certainty regarding the negation of the fact. While certainty factors
are not conditional probabilities, they are informally based on probability
theory (see Part Four). Some triples (with CF’s) from a typical consultation
might be as follows:

(IDENTITY ORGANISM-1 PSEUDOMONAS 0.8)
(IDENTITY ORGANISM-1 E. COLI 0.15)

(SITE CULTURE-2 THROAT 1.0)

(BURNED PATIENT-298 YES -1.0)

Here ORGANISM-1 is probably Pseudomonas, but there is some evidence
to believe it is E. coli; the site of CULTURE-2 is (without doubt) the throat;
and PATIENT-298 is known not to be a burn patient.

4.1.2 Production Rules

MYCIN reasons about its domain using judgmental knowledge encoded
as production rules. Fach rule has a premise, which is a conjunction of
predicates regarding triples in the knowledge base. If the premise is true,
the conclusion in the action part of the rule is drawn. If the premise is
known with less than certainty, the strength of the conclusion is modified
accordingly.

A typical rule is shown in Figure 4-3. The predicates (such as SAME)
are simple LISP functions operating on associative triples, which match
the declared facts in the premise clause of the rule against the dynamic
data known so far about the patient. $AND, the multi-valued analogue of
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RULE035

PREMISE: ($AND (SAME CNTXT GRAM GRAMNEG)
(SAME CNTXT MORPH ROD)
(SAME CNTXT AIR ANAEROBIC))

ACTION: (CONCLUDE CNTXT IDENTITY BACTEROIDES TALLY .6)

IF: 1) .The gram stain of the organism is gramneg, and
2) The morpholcgy of the organism is rod, and
3) The aerobicity of the organism is anaerobic
THEN: There is suggestive evidence (.6) that the identity
of the organism is bacteroides

FIGURE 4-3 A MYCIN rule, in both its internal (LISP) form
and English translation. The term CNTXT appearing in every
clause is a variable in MYCIN that is bound to the current con-
text, in this case a specific organism (ORGANISM-2), to which
the rule may be applied.

the Boolean AND function, performs a minimization operation on CF’s.
The body of the rule is actually an executable piece of LISP code, and
“evaluating” a rule entails little more than the LISP function EVAL. How-
ever, the highly stylized nature of the rules permits the system to examine
and manipulate them, enabling many of the system’s capabilities discussed
below. One of these is the ability to produce an English translation of the
LISP rule, as shown in the example. This is possible because each of the
predicate functions has associated with it a translation pattern indicating
the logical roles of the function’s arguments,

It is intended that each rule be a single, modular chunk of medical
knowledge. The number of rules in the MYCIN system grew to about 500.

4.1.3 Application of Rules—The Rule Interpreter

The control structure is a goal-directed backward chaining of rules. At any
given time, MYCIN is working to establish the value of some clinical pa-
rameter. To this end, the system retrieves the (precomputed) list of rules
whose conclusions bear on this goal. The rule in Figure 4-3, for example,
would be retrieved in the attempt to establish the identity of an organism.
If, in the course of evaluating the premise of one of these rules, some
other piece of information that is not yet known is needed, MYCIN sets
up a subgoal to find out that information; this in turn causes other rules
to be tried. Questions are asked during the consultation when rules fail to
deduce the necessary information. If the user cannot supply the requested
information, the rule is simply ignored. This control structure results in a
highly focused search through the rule base.
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4.1.4 Advantages of the Rule Methodology

The modularity of rules simplifies the task of updating the knowledge base.
Individual rules can be added, deleted, or modified without drastically
affecting the overall performance of the system. And because each rule is
a coherent chunk of knowledge, it is a convenient unit for explanation
purposes. For example, to explain why the system is asking a question
during the consultation, a first approximation is simply to display the rule
currently under consideration.

The stylized nature of the rules is useful for many operations. While
the syntax of the rules permits the use of any LISP function, there is a
small set of standard predicates that make up the vast majority of the rules.
The system contains information about the use of these predicates in the
form of function templates. For example, the predicate SAME is described
as follows:

function template: (SAME CNTXT PARM VALUE)

sample function call: (SAME CNTXT SITE BLOOD)

The system can use these templates to “read” its own rules. For example,
the template shown here contains the standard tokens CNTXT, PARM,
and VALUE (for context, parameter, and corresponding value), indicating
the components of the associative triple that SAME tests. If the clause
above appears in the premise of a given rule, the system can determine
that the rule needs to know the site of the culture, and that the rule can
only succeed if that site is, in fact, blood. When asked to display rules that
are relevant to blood cultures, MYCIN will be able to choose that rule.
An important function of the templates is to permit MYCIN to pre-
compute automatically (at system generation time) the set of rules that
conclude about a particular parameter; it is this set that the rule monitor
retrieves when the system needs to deduce the value of that parameter.
The system can also read rules to eliminate obviously inappropriate
ones. It is often the case that, of a large set of rules under consideration,
several are provably false by information already known. That is, the in-
formation needed to evaluate one of the clauses in the premise has already
been determined, and that clause is false, thereby making the entire prem-
ise false. By reading the rules before actually invoking them, many can be
immediately discarded, thereby avoiding the deductive work necessary in
evaluating the premise clauses that precede the false one (this is called the
preview mechanism). In some cases this means the system avoids the useless
search of one or more subgoal trees, when the information thereby de-
duced would simply be overridden by the demonstrably false premise.
Another more dramatic case occurs when it is possible, on the basis of
information currently available, to deduce with certainty the value of some
parameter that is needed by a rule. This is the case when there exists a



Explanation Capability 73

chain of one or more rules whose premises are known (or provable, as
above) with certainty and that ultimately conclude the desired value with
certainty. Since each rule in this chain must have a certainty factor of 1.0,
we term such a chain a unity path; and since a value known with certainty
excludes all other potential values, no other rules need be tried. MYCIN
always seeks a unity path before trying a set of rules or asking a question;
typically, this means “commonsense” deductions are made directly, without
asking the user “silly” questions or blindly invoking all the rules pertaining
to the goal. Since there are usually few rules on any potential unity path,
the search tends to be small.

The ability to read rules opens the way to the writing of rules that
manipulate other rules. We term such rules meta-rules (see Part Nine); they
are used to make deductions not about the medical entities of the domain
but about strategies to be used by the system. Whenever the rule inter-
preter is about to invoke a list of rules to establish some goal, it first applies
any meta-rules associated with that goal. These meta-rules can reorder or
prune the rule list to make the search more suitable for the given case.

4.2 Explanation Capability

A major subprogram of MYCIN is a general Question-Answering (QA) Mod-
ule, which answers simple English-language questions concerning the sys-
tem’s decisions in a particular consultation or about the system’s general
knowledge. A limited set of commonly desired explanations is also pro-
vided in a command style during the consultation by the Reasoning Status
Checker. This special module explains the system’s current line of reasoning
and motivation for the questions asked. (A more detailed study of expla-
nation in MYCIN is included in Part Six of this book.) The QA Module is
entered automatically at the end of each consultation and is also available
to the user during the consultation if the need arises. The user is encour-
aged to ask questions about any aspect of MYCIN’s performance.
Because of the relatively unambiguous vocabulary used in the medical
domain, and because of our desire to minimize the delay in answering
questions, we have forgone any complicated parsing techniques in the QA
Module. Rather, we use a simple pattern-matching approach, relying on
the strong implications of certain keywords in the user’s questions. The
words in the translation of a clinical parameter, and values of that param-
eter, are tagged in the system dictionary as implying that parameter. By
suitably weighing the implications of each word in the sentence, the system
determines one or more parameter/value pairs being asked about. Pattern
matching is used to determine the general type of the question, which
indicates what is being asked about those parameter/value pairs. Typical
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** {S ORGANISM-1 A STREPTOCOCCUS?

No. The identity of ORGANISM-1 is e.coli (.74) bacteroides (.7)
klebsietia-pneumoniae (.4) pseudomonas-aeruginosa (.22} enterobacter
(.21) proteus-non-mirabilis (.19) serratia (.03) salmonella (.02)

**WHY DID YOU RULE OUT STREPTOCOCCUS AS A POSSIBILITY FOR ORGANISM-1?
RULE033 could have been used to determine that the identity of

ORGANISM-1 is streptococcus. However, clause 2 of RULEO33 [“the

morphology of the organism is coccus”] was already known to be false

for ORGANISM-1, so the rule was never tried.

** HOW DO YOU KNOW THAT CULTURE-1 WAS FROM A STERILE SOURCE?
I used RULE189 to conclude that this blood culture was taken from a

sterile source. This gave a cumulative CF of (1.0). The last

question asked before the conclusion was made was 7.

** WHAT DOES GU MANIPULATION TELL YOU ABOUT THE IDENTITY OF AN ORGANISM?
The rules listed below use:

whether the patient has had a genito-urinary manipulative procedure
to conclude about:

the identity of the organism

156, 163, 190
Which do you wish to see?
** 156

RULE156
IF: 1) The site of the culture is blood, and

2) The gram stain of the organism is gramneg, and

3) The morphology of the organism is rod, and

4) The portal of entry of the organism is urine, and

5) The patient has not had a genito-urinary manipulative procedure,

and

6) Cystitis is not a problem for which the patient has been treated

THEN: There is suggestive evidence (.6) that the identity of the
organism is e.coli

**1$ BLOOD A STERILE SITE?
Yes. Blood is one of those sites that is normally sterile.

** WHAT ARE THE NONSTERILE SITES?
Those sites that are normally nonsterile are: CERVIX, CUTANEQUS-ULCER, LOCHIA, NOSE, SKIN, STOOL,
THROAT, URETHRA, VAGINA.

** 1S BACTEROIDES AEROBIC?
No, the aerobicity of bacteroides is anaerobic.

FIGURE 4-4 Interaction with the QA Module. The user’s
questions follow the double-asterisk prompt.

questions (see Figure 4-4) seek the value of a certain parameter, how this
value was concluded, and how this parameter was used. Questions about
the value of a given parameter of an object are answered by simply dis-
playing the current hypothesis regarding it. To explain how the value of a
parameter was concluded, MYCIN retrieves the list of rules that were suc-
cessfully applied and prints them, along with the conclusions drawn. Al-
ternatively, if the user supplied the value by answering a previous question,
this is noted. More general questions about how information is used or
concluded are answered by retrieving the relevant rules from the rule base.
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34) Was penicillinase added to this blood culture (CULTURE-1)?
* WHY

[i.e. WHY is it important to determine whether penicillinase was added to
CULTURE-17]

[3.0} This will aid in determining whether ORGANISM-1 is a contaminant.
It has already been established that
[3.1] the site of CULTURE-1 is blood, and
[3.2] the gram stain of ORGANISM-1 is grampos
Therefore, if
[3.3] penicillinase was added to this blood culture

then
there is weakly suggestive evidence (.4) that ORGANISM-1 is a

contaminant [RULE039]
* WHY

[i.e. WHY is it important to determine whether ORGANISM-1 is a
contaminant?]

[4.0] ... In order to determine whether there is significant disease
associated with this occurrence of ORGANISM-1.
It has already been established that
[4.1] this blood culture was taken from a sterile source
Therefore, if
[4.2] ORGANISM-1 is not a contaminant
then
there is strongly suggestive evidence (.9) that there is
significant disease associated with this occurrence of ORGANISM-1

[RULE032]
> WHY

[i.e. WHY is it important to determine whether there is significant
disease associated with this occurrence of ORGANISM-1]

[5.0] . .. In order to determine the organisms which require therapy.
It has already been established that
[5.1] the infection is known, and
[5.2] the identity of ORGANISM-1 is known

Therefore, if
[5.3] there is significant disease associated with this occurrence

of ORGANISM-1

then
it is definite (1.0) that ORGANISM-1 is one of the organisms which

require therapy
[RULE090]

** HOW 5.2
[i.e. HOW was it established that the identity of ORGANISM-1 is known?]
Question 9 was asked, but you weren't sure; so the following was used:

[5.5] RULE084 was used to conclude that the identity of ORGANISM-1 is
streptococcus-group-a (.29).

FIGURE 4-5 Use of the Reasoning Status Checker during the
consultation to explain MYCIN’s line of reasoning.

As shown in Figure 4-5, the Reasoning Status Checker is invoked by
the HOW and WHY commands. At any time during the consultation, when
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the user is asked a question, he or she can delay answering it and instead
ask why the question was asked. Since questions are asked in order to
establish the truth of the premise of some rule, a simple answer to WHY
is “because I'm trying to apply the following rule.” Successive WHY ques-
tions unwind the chain of subgoals, citing the rules that led to the current
rule being tried.

Besides examining the current line of reasoning, the user can also ask
about previous decisions, or about how future decisions might be made,
by giving the HOW command. Explaining how the truth of a certain clause
was established is accomplished as described above for the general QA
Module. To explain how a presently unknown clause might be established,
MYCIN retrieves the set of rules that the rule interpreter would select to
establish that clause and selects the relevant rules from among them by
“reading” the premises for applicability and the conclusions for relevance
to the goal.

4,3 Knowledge Acquisition

The knowledge base is expanded and improved by acquiring new rules,
or modifications to old rules, from experts. Ordinarily, this process involves
having the medical expert supply a piece of medical knowledge in English,
which a system programmer converts into the intended LISP rule. This
mode of operation is suitable when the expert and the skilled programmer
can work together. Ideally, however, the expert should be able to convey
his or her knowledge directly to the system.

Work has been undertaken (see Part Three) to allow experts to update
the rule base directly. A rule-acquisition routine parses an English-lan-
guage rule by methods similar to those used in parsing questions in the
QA Module. Each clause is broken down into one or more object-attribute-
value triples, which are fitted into the slots of the appropriate predicate
function template. This process is further guided by rule models (see Chap-
ter 28), which supply expectations about the structure of rules and the
interrelationships of the clinical parameters.

One mode of acquisition that has received special attention is acquiring
new rules in the context of an error. In this case, the user is trying to
correct a localized deficiency in the rule base; if a new rule is to correct
the program’s faulty behavior, it must at the very least apply to the con-
sultation at hand. In particular, each of the premises must evaluate to
TRUE for the given case. These expectations greatly simplify the task of
the acquisition program, and also aid the expert in formulating new rules.

One difficult aspect of rule acquisition is the actual formulation of
medical knowledge into decision rules. Our desire to keep the rule format
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simple is occasionally at odds with the need to encode the many aspects of
medical decision making. The backward chaining of rules by the deductive
system is also often a stumbling block for experts who are new to the
system. However, they soon learn to structure their knowledge appropri-
ately. In fact, some experts have felt that encoding their knowledge into
rules has helped them formalize their own view of the domain, leading to
greater consistency in their decisions.



Details of the Consultation
System

Edward H. Shortliffe

In this chapter MYCIN’s implementation is presented in considerable de-
tail. Our goals are to explain the data and control structures used by the
program and to describe some of the complex and often unexpected prob-
lems that arose during system implementation. In Chapter 1 the motiva-
tions behind many of MYCIN’s capabilities were mentioned. The reader
is encouraged to bear those design criteria in mind throughout this chap-
ter.

This chapter specifically describes the Consultation System. This sub-
program uses both system knowledge from the corpus of rules and patient
data entered by the physician to generate advice for the user. Furthermore,
the program maintains a dynamic data base, which provides an ongoing
record of the current consultation. As a result, this chapter must discuss
both the nature of the various data structures and how they are used or
maintained by the Consultation System.

Section 5.1 describes the corpus of rules and the associated data struc-
tures. It provides a formal description of the rules used by MYCIN. Our
quantitative truth model is briefly introduced, and the mechanism for rule
evaluation is explained. This section also describes the clinical parameters
with which MYCIN is familiar and which form the basis for the conditional
expressions in the premise of a rule.

In Section 5.2 MYCIN’s goal-oriented control structure is described.
Mechanisms for rule invocation and question selection are explained at
that time. The section also discusses the creation of the dynamic data base,

This chapter is condensed from Chapter 3 of Computer-Based Medical Consultations: MYCIN.
New York: Elsevier/North-Holland, 1976. Copyright © 1976 by Elsevier/North-Holland. All
rights reserved. Used with permission.
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which is the foundation for both the system’s advice and its explanation
capabilities (to be described in Part Six).

Section 5.3 is devoted to an explanation of the program’s context tree,
ie., the network of interrelated organisms, drugs, and cultures that char-
acterize the patient and his or her current clinical condition. The need for
such a data structure is clarified, and the method for propagation (growth)
of the tree is described.

The final tasks in MYCIN’s clinical problem area are the identification
of potentially useful drugs and the selection of the best drug or drugs
from that list. MYCIN’s early mechanism for making these decisions is
discussed in Section 5.4 of this chapter. Later refinements are the subject
of Chapter 6.

Section 5.5 discusses MYCIN’s mechanisms for storing patient data
and for permitting a user to change the answer to a question. As will be
described, these two capabilities are closely interrelated.

In Section 5.6 we briefly mention extensions to the system that were
contemplated when this material was written in 1975. Several of these
capabilities were eventually implemented.

5. 1 System Knowledge

5.1.1 Decision Rules

Automated problem-solving systems use criteria for drawing conclusions
that often support a direct analogy to the rule-based knowledge represen-
tation used by MYCIN. Consider, for example, the conditional probabilities
that underlie Bayesian diagnosis programs. Each probability provides in-
formation that may be stated in an explicit rule format:

P(kle) = X means IF: ¢ is known to be true

THEN: conclude that 4 is true with probability X

It is important to note, therefore, that the concept of rule-based knowledge
is not unique, even for medical decision-making programs.

Representation of the Rules

The 200 rules in the original MYCIN system consisted of a premise, an
action, and sometimes an else clause. Else clauses were later deleted from
the system because they were seldom used, and a general representation
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of inference statements could be achieved without them. Every rule has a
name of the form RULE### where ### represents a three-digit number.

The details of rules and how they are used are discussed throughout
the remainder of this chapter. We therefore offer a formal definition of
rules, which will serve in part as a guide for what is to follow. The rules
are stored as LISP data structures in accordance with the following Backus-
Nauer Form (BNF) description:

<rule> = <premise> <action> | <premise> <action>
<else>
<premise> 1= ($AND <condition> ... <condition>)
<condition> ::= (<funcl> <context> <parameter>) |
(<func2> <context> <parameter> <value>) |
(<special-func> <arguments>) |
($OR <condition> . .. <condition>)
<action> :1= <concpart>
<else> ::= <concpart>
<concpart> ::= <conclusion> | <actfunc> |
(DO-ALL <conclusion> . . . <conclusion>) |
(DO-ALL <actfunc> ... <actfunc>)
<context> ::= see Section 5.1.2
<parameter> ::= see Section 5.1.3
<value> ::= see Section 5.1.4
<funcl> see Section 5.1.5
<func2> see Section 5.1.5

<special-func>
<arguments>
<conclusion>

<actfunc>

see Section 5.1.6
see Section 5.1.6
see Section 5.2.3

see Section 5.4

Thus the premise of a rule consists of a conjunction of conditions, each of
which must hold for the indicated action to be taken. Negations of con-
ditions are handled by individual predicates (<funcl> and <func2>) and
therefore do not require a §NOT function to complement the Boolean
functions $AND and $OR. If the premise of a rule is known to be false,
the conclusion or action indicated by the else clause is taken. If the truth
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of the premise cannot be ascertained or the premise is false but no else
condition exists, the rule is simply ignored.

The premise of a rule is always a conjunction of one or more condi-
tions. Disjunctions of conditions may be represented as multiple rules with
identical action clauses. A condition, however, may itself be a disjunction
of conditions. These conventions are somewhat arbitrary but do provide
sufficient flexibility so that any Boolean expression may be represented by
one or more rules. As is discussed in Section 5.2, multiple rules are effec-
tively ORed together by MYCIN’s control structure.

For example, two-leveled Boolean nestings of conditions are acceptable
as follows:

Legal:

(1] A&B&C—-D

21A& BorC)—-D

(3l AorBorC)& (DorE) » F

Illegal:
4 AorBorC—-D
5] A& Bor (C&D))—»E

Rule [4] is correctly represented by the following three rules:

[6] A—D
[71 B->D
[8] C> D

whereas [5] must be written as:

9] A&C&D-E
[10] A&B—E

Unlike rules that involve strict implication, MYCIN’s rules allow the

strength of an inference to be modified by a certainty factor (CF). A CF is

a number from —1 to +1, the nature of which is described in Section
 5.1.4 and in Chapter 11.

The following three examples are rules from MYCIN that have been
translated into English from their internal LISP representation (Section
5.1.7). They represent the range of rule types available to the system. The
details of their internal representation will be explained as we proceed.
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RULEO037

IF: 1) The identity of the organism is not known with
certainty, and
2) The stain of the organism is gramneg, and
3) The morphology of the organism is rod, and
4) The aerobicity of the organism is aerobic
THEN: There is strongly suggestive evidence (.8) that the
class of the organism is enterobacteriaceae

RULE145

IF: 1) The therapy under consideration is one
of: cephalothin clindamycin erythromycin
lincomycin vancomycin, and
2) Meningitis is an infectious disease diagnosis
for the patient
THEN: It is definite (1) the therapy under consideration
is not a potential therapy for use against the
organism

RULE060

IF: The identity of the organism is bacteroides
THEN: | recommend therapy chosen from among the following drugs:

1 - clindamycin (.99)
2 - chloramphenicol (.99)
3 - erythromycin (.57)
4 - tetracycline (.28)
5 - carbenicillin (.27)

Before we can explain how rules such as these are invoked and eval-
uated, it is necessary to describe further MYCIN’s internal organization.
We shall therefore temporarily digress in order to lay some groundwork
for the description of the evaluation functions in Section 5.1.5.

5.1.2 Categorization of Rules by Context

The Context Tree

Although it is common to describe diagnosis as inference based on attri-
butes of the patient, MYCIN’s decisions must necessarily involve not only
the patient but also the cultures that have been grown, organisms that have
been isolated, and drugs that have been administered. Each of these is
termed a context of the program’s reasoning (see <context> in the BNF
description of rules).!

MYCIN currently (1975) knows about ten different context-types:

The use of the word context should not be confused with its meaning in high-level languages
that permit temporary saving of all information regarding a program’s current status—a
common mechanism for backtracking and parallel-processing implementations.
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CURCULS A current culture from which organisms were isolated

CURDRUGS An antimicrobial agent currently being administered to
a patient

CURORGS An organism isolated from a current culture

OPDRGS An antimicrobial agent administered to the patient
during a recent operative procedure

OPERS An operative procedure the patient has undergone

PERSON The patient

POSSTHER A therapy being considered for recommendation

PRIORCULS A culture obtained in the past

PRIORDRGS An antimicrobial agent administered to the patient in
the past

PRIORORGS An organism isolated from a prior culture

Except for PERSON, each of these context-types may be instantiated more
than once during any given run of the consultation program. Some may
not be created at all if they do not apply to the given patient. However,
each time a context-type is instantiated, it is given a unique name. For
example, CULTURE-1 is the first CURCUL and ORGANISM-1 is the first
CURORG. Subsequent CURCULS or PREORCULS are called CULTURE-
2, CULTURE-3, etc.

The context-types instantiated during a run of the consultation pro-
gram are arranged hierarchically in a data structure termed the context tree.
One such tree is shown in Figure 5-1. The context-type for each instan-
tiated context is shown in parentheses near its name. Thus, to clarify ter-
minology, we note that a node in the context tree is called a context and is
created as an instantiation of a context-type. This sample context tree cor-
responds to a patient from whom two current cultures and one prior cul-
ture were obtained. One organism was isolated from each of the current
cultures, but the patient is being treated (with two drugs) for only one of
the current organisms. Furthermore, two organisms were grown from the
prior culture, but therapy was instituted to combat only one of these. Fi-
nally, the patient has had a recent operative procedure during which he
or she was treated with an antimicrobial agent.

The context tree is useful not only because it gives structure to the
clinical problem (Figure 5-1 already tells us a good deal about PATIENT-
1), but also because we often need to be able to relate one context to
another. For example, in considering the significance of ORGANISM-2,
MYCIN may well want to be able to reference the site of the culture from
which ORGANISM-2 was obtained. Since the patient has had three dif-
ferent cultures, we need an explicit mechanism for recognizing that OR-
GANISM-2 came from CULTURE-2, not from CULTURE-1 or CUL-
TURE-3. The technique for dynamic propagation (i.e., growth) of the
context tree during a consultation is described in Section 5.3.



SAMPLE CONTEXT TREE

PATIENT—1 (PERSON)

OPERATION-1
(OPERS)

CULTURE-1
(CURCUL)

CULTURE-2
(CURCUL)

CULTURE-3
(PRIORCULS)

ORGANISM—1 ORGANISM-2
(CURORG]) (CURORG)

DRUG—4
(OPDRGS)

ORGANISM—-3
(PRIORORGS)

ORGANISM—4
(PRIORORGS)

DRUG-1 DRUG-2 DRUG-3
(CURDRUGS) (CURDRUGS) (CURDRUGS)

FIGURE 5-1 Context tree for a sample patient with two recent positive cultures, an older one, and a recent
significant operative procedure. Nodes in the tree are termed contexts.

¥8
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Interrelationship of Rules and the Tree

The 200 rules currently used by MYCIN? are not explicitly linked in a
decision tree or reasoning network. This feature is in keeping with our
desire to keep system knowledge modular and manipulable. However, rules
are subject to categorization in accordance with the context-types for which
they are most appropriately invoked. For example, some rules deal with
organisms, some with cultures, and still others deal solely with the patient.
MYCIN’s current rule categories are as follows (context-types to which they
may be applied are enclosed in parentheses):

CULRULES Rules that may be applied to any culture
(CURCULS or PRIORCULS)

CURCULRULES Rules that may be applied only to current cultures
(CURCULS)

CURORGRULES Rules that may be applied only to current
organisms (CURORGS)

DRGRULES Rules that may be applied to any antimicrobial
agent that has been administered to combat a
specific organism (CURDRUGS or PRIORDRGS)

OPRULES Rules that may be applied to operative procedures
(OPERS)

ORDERRULES Rules that are used to order the list of possible
therapeutic recommendations (POSSTHER)

ORGRULES Rules that may be applied to any organism
(CURORGS or PRIORORGS)

PATRULES Rules that may be applied to the patient (PERSON)

PDRGRULES Rules that may be applied only to drugs given to
combat prior organisms (PRIORDRGS)

PRCULRULES Rules that may be applied only to prior cultures
(PRIORCULS)

PRORGRULES Rules that may be applied only to organism
isolated from prior cultures (PRIORORGS)

THERULES Rules that store information regarding drugs of

choice (Section 5.4.1)

Every rule in the MYCIN system belongs to one, and only one, of these
categories. Furthermore, selecting the proper category for a newly ac-
quired rule does not present a problem. In fact, category selection can be
automated to a large extent.

Consider a rule such as this:

2Ed. note: This number increased to almost 500 by 1978,
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RULE124

IF: 1) The site of the culture is throat, and
2) The identity of the organism is streptococcus
THEN: There is strongly suggestive evidence (.8) that
the subtype of the organism is not group-D

This is one of MYCIN’s ORGRULES and may thus be applied to either a
CURORGS context or a PRIORORGS context. Referring back to Figure
5-1, suppose RULE124 were applied to ORGANISM-2. The first condition
in the premise refers to the site of the culture from which ORGANISM-2
was isolated (i.e., CULTURE-2) and not to the organism itself (i.e., orga-
nisms do not have sites, but cultures do). The context tree is therefore
important for determining the proper context when a rule refers to an
attribute of a node in the tree other than the context to which the rule is
being explicitly applied. Note that this means that a single rule may refer
to nodes at several levels in the context tree. The rule is categorized simply
on the basis of the lowest context-type (in the tree) that it may reference.
Thus RULE124 is an ORGRULE rather than a CULRULE.

5.1.3 Clinical Parameters

This subsection describes the data types indicated by <parameter> and
<value> in the BNF description of rules. Although we have previously
asserted that all MYCIN’s knowledge is stored in its corpus of rules, the
clinical parameters and their associated properties comprise an important
class of second-level knowledge. We shall first explain the kind of param-
eters used by the system and then describe their representation.

A clinical parameter is a characteristic of one of the contexts in the
context tree, i.e., the name of the patient, the site of a culture, the mor-
phology of an organism, the dose of a drug, etc. A patient’s status would
be completely specified by a context tree in which values were known for
all the clinical parameters characterizing each node in the tree (assuming
the parameters known to MYCIN encompass all those that are clinically
relevant—a dubious assumption at present). In general, this is more in-
formation than is needed, however, 3o one of MYCIN's tasks is to identify
those clinical parameters that need to be considered for the patient about
whom advice is being sought.

The concept of an attribute-object-value triple is common within the
Al field. This associative relationship is a basic data type for the SAIL
language (Feldman et al., 1972) and is the foundation for the property-list
formalism in LISP (McCarthy et al., 1962). Relational predicates in pred-
icate calculus also represent associative triples. The point is that many facts
may be expressed as triples that state that some object has an attribute with
some specified value. Stated in the order <attribute object value>, ex-
amples include:

(COLOR BALL RED)
(OWNS FIREMAN RED-SUSPENDERS)
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(AGE BOB 22)

(FATHER CHILD ‘DADDY")
(GRAMSTAIN ORGANISM GRAM-POSITIVE)
(DOSE DRUG 1.5-GRAMS)

(MAN BOB TRUE)

(WOMAN BOB FALSE)

Note that the last two examples are different from the others in that they
represent a rather different kind of relationship. In fact, several authors
would classify the first six as “relations” and the last two as “predicates,”
using the simpler notation:

MAN (BOB)
-WOMAN (BOB)

Regardless of whether it is written as MAN(BOB) or (MAN BOB TRUE),
this binary predicate statement has rather different characteristics from
the relations that form natural triples. This distinction will become clearer
later (see yes-no parameters below).

MYCIN stores inferences and data using the attribute-object-value
concept. The object is always some context in the context tree, and the
attribute is a clinical parameter appropriate for that context. Information
stored using this mechanism may be retrieved and updated in accordance
with a variety of conventions described throughout this chapter.

The Three Kinds of Clinical Parameters

There are three fundamentally different kinds of clinical parameters. The
simplest variety is single-valued parameters. These are attributes such as the
name of the patient and the identity of the organism. In general, they have
a large number of possible values that are mutually exclusive. As a result,
only one can be the true value, although several may seem likely at any
point during the consultation.

Multi-valued parameters also generally have a large number of possible
values. The difference is that the possible values need not be mutually
exclusive. Thus such attributes as a patient’s drug allergies and a locus of
an infection may have multiple values, each of which is known to be correct.

The third kind of clinical parameter corresponds to the binary pred-
icate discussed above. These are attributes that are either true or false for
the given context. For example, the significance of an organism is either
true or false (yes or no), as is the parameter indicating whether the dose
of a drug is adequate. Attributes of this variety are called yes-no parameters.
They are, in effect, a special kind of single-valued parameter for which
there are only two possible values.

Classification and Representation of the Parameters

The clinical parameters known to MYCIN are categorized in accordance
with the context to which they apply. These categories include:
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PROP-CUL

PROP-DRG

PROP-OP

PROP-ORG

PROP-PT

PROP-THER

Those clinical parameters which are attributes of
cultures (e.g., site of the culture, method of collection)
Those clinical parameters which are attributes of
administered drugs (e.g., name of the drug, duration
of administration)

Those clinical parameters which are attributes of
operative procedures (e.g., the cavity, if any, opened
during the procedure)

Those clinical parameters which are attributes of
organisms (e.g., identity, gram stain, morphology)
Those clinical parameters which are attributes of the
patient (e.g., name, sex, age, allergies, diagnoses)
Those clinical parameters which are attributes of
therapies being considered for recommendation (e.g.,
recommended dosage, prescribing name)

These categories encompass all clinical parameters used by the system.
Note that any of the nodes (contexts) in the context tree for the patient
may be fully characterized by the values of the set of clinical parameters
in one of these categories.

Each of the 65 clinical parameters currently (1975) known to MYCIN
has an associated set of properties that is used during consideration of the
parameter for a given context. Figure 5-2 presents examples of the three
types of clinical parameters, which together demonstrate several of these

properties:

EXPECT

PROMPT

PROMPT1

This property indicates the range of expected
values that the parameter may have.

IF equal to (YN), then the parameter is a yes-no
parameter.

IF equal to (NUMB), then the expected value of
the parameter is a number.

IF equal to (ONE-OF <list>), then the value of
the parameter must be a member of <list>.

IF equal to (ANY), then there is no restriction on
the range of values that the parameter may have.
This property is a sentence used by MYCIN when
it requests the value of the clinical parameter from
the user; if there is an asterisk in the phrase (see
Figure 5-2), it is replaced by the name of the
context about which the question is being asked;
this property is used only for yes-no or single-
valued parameters.

This property is similar to PROMPT but is used if
the clinical parameter is a multi-valued parameter;
in these cases MYCIN only asks the question about
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Yes-No Parameter

FEBRILE: <FEBRILE is an attribute of a patient and is therefore a member of
the list PROP-PT>

EXPECT: (YN)

LOOKAHEAD: (RULEI49 RULE109 RULE045)
PROMPT: (Is * febrile?)

TRANS: (* IS FEBRILE)

Single-Valued Parameter

IDENT: <IDENT is an attribute of an organism and is therefore a member of
the list PROP-ORG>

CONTAINED-IN: (RULE030)

EXPECT: (ONEOF (ORGANISMS))

LABDATA: T

LOOKAHEAD: (RULE00O4 RULEO54 ... RULE168)
PROMPT: (Enter the identity (genus) of *:)
TRANS: (THE IDENTITY OF ¥)

UPDATED-BY: (RULE021 RULEOG3 ... RULE166)

Multi-Valued Parameter

INFECT: <INFECT is an attribute of a patient and is therefore a member of
the list PROP-PT>

EXPECT: (ONEOF (PERITONITIS BRAIN-ABCESS MENINGITIS
BACTEREMIA UPPER-URINARY-TRACT-INFECTION ...
ENDOCARDITIS))

LOOKAHEAD: (RULEI15 RULEI49 ... RULE045)

PROMPT1: (Is there evidence that the patient has a (VALU)?)

TRANS: (AN INFECTIOUS DISEASE DIAGNOSIS FOR ¥)

UPDATED-BY: (RULE157 RULE(O22 ... RULE105)

FIGURE 5-2 Examples of the three types of clinical parame-
ters. As shown, each clinical parameter is characterized by a set
of properties described in the text.

a single one of the possible parameter values; the
value of interest is substituted for (VALU) in the
question.

LABDATA This property is a flag, which is either T or NIL;
if T it indicates that the clinical parameter is a
piece of primitive data, the value of which may be
known with certainty to the user (see Section
5.2.2).

LOOKAHEAD This property is a list of all rules in the system that
reference the clinical parameter in the premise.
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UPDATED-BY This property is a list of all rules in the system in
which the action or else clause permits a
conclusion to be made regarding the value of the
clinical parameter.

CONTAINED-IN This property is a list of all rules in the system in
which the action or else clause references the
clinical parameter but does not cause its value to
be updated.

TRANS This property is used to translate an occurrence of
this parameter into its English representation; the
context of the parameter is substituted for the
asterisk during translation.

DEFAULT This property is used only with clinical parameters
for which EXPECT = (NUMB); it gives the
expected units for numerical answers (days, years,
grams, etc.).

CONDITION This property, when utilized, is an executable LISP
expression that is evaluated before MYCIN
requests the value of the parameter; if the
CONDITION is true, the question is not asked
(e.g., “Don’t ask for an organism’s subtype if its
genus is not known by the user”).

The uses of these properties will be discussed throughout the remain-
der of this chapter. However, a few additional points are relevant here.
First, it should be noted that the order of rules for the properties LOOK-
AHEAD, UPDATED-IN, and CONTAINED-IN is arbitrary and does not
affect the program’s advice. Second, EXPECT and TRANS are the only
properties that must exist for every clinical parameter. Thus, for example,
if there is no PROMPT or PROMPT' stored for a parameter, the system
assumes that it simply cannot ask the user for the value of the parameter.
Finally, note in Figure 5-2 the difference in the TRANS property for yes-
no and non—yes-no parameters. In general, a parameter and its value may
be translated as follows:

THE <attribute> OF <object> IS <value>

However, for a yes-no parameter such as FEBRILE, it is clearly necessary
to translate the parameter in a fashion other than this:

THE FEBRILE OF PATIENT-1 IS YES
Our solution has been to suppress the YES altogether and simply to say:

PATIENT-1 IS FEBRILE
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5.1.4 Certainty Factors

Chapter 11 presents a detailed description of certainty factors and their
theoretical foundation. This section therefore provides only a brief over-
view of the subject. A familiarity with the characteristics of certainty factors
(CFs) s necessary for the discussion of MYCIN during the remainder of
this chapter. '

The value of every clinical parameter is stored by MYCIN along with
an associated certainty factor that reflects the system’s “belief” that the
value 1s correct. This formalism is necessary because, unlike domains in
which objects either have or do not have some attribute, in medical diag-
nosis and treatment there is often uncertainty regarding attributes such as
the significance of the disease, the efficacy of a treatment, or the diagnosis
itself. CF’s are an alternative to conditional probability that has several
advantages in MYCIN’s domain.

A certainty factor is a number between —1 and +1 that reflects the
degree of belief in a hypothesis. Positive CF’s indicate there is evidence
that the hypothesis is valid. The larger the CF, the greater is the belief in
the hypothesis. When CF = 1, the hypothesis is known to be correct. On
the other hand, negative CF’s indicate that the weight of evidence suggests
that the hypothesis is false. The smaller the CF, the greater is the belief
that the hypothesis is invalid. CF = — 1 means that the hypothesis has been
effectively disproven. When CF = 0, there is either no evidence regarding
the hypothesis or the supporting evidence is equally balanced by evidence
suggesting that the hypothesis is not true.

MYCIN'’s hypotheses are statements regarding values of clinical pa-
rameters for the various nodes in the context tree. For example, sample
hypotheses are

h; = The identity of ORGANISM-1 is streptococcus

h, = PATIENT-1 is febrile
h; = The name of PATIENT-1 is John Jones

We use the notation CF[h,E]=X to represent the certainty factor
for the hypothesis h based on evidence E. Thus, if CF[h},E] = .8,
CF[hy,E] = —.3, and CF[h3,E] = + 1, the three sample hypotheses above
may be qualified as follows:

CF(h,,E] = .8 . There is strongly suggestive evidence (.8) that
the identity of ORGANISM-1 is streptococcus

CF[h,E] = —.3 : There is weakly suggestive evidence (.3) that
PATIENT-1 is not febrile

CF[hs,E]l = +1 : ltis definite (1) that the name of PATIENT-1 is
John Jones

Certainty factors are used in two ways. First, as noted, the value of
every clinical parameter is stored with its associated certainty factor. In this
case the evidence E stands for all information currently available to MY-
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CIN. Thus, if the program needs the identity of ORGANISM-1, it may
look in its dynamic data base and find:

IDENT of ORGANISM-1 = ((STREPTOCOCCUS .8))
.

The second use of CF’s is in the statement of decision rules themselves.
In this case the evidence E corresponds to the conditions in the premise
of the rule. Thus

A&B&CSD

is a representation of the statement CF[D,(A & B & C)] = X. For example,
consider the following rule:

IF: 1) The stain of the organism is grampos, and
2) The morphology of the organism is coccus, and
3) The growth conformation of the organism is chains
THEN: There is suggestive evidence (.7) that the
identity of the organism is streptococcus

This rule may also be represented as CF[hy,e] = .7, where h, is the hy-
pothesis that the organism (context of the rule) is a Streptococcus and e is
the evidence that it is a gram-positive coccus growing in chains.

Since diagnosis is, in effect, the problem of selecting a disease from a
list of competing hypotheses, it should be clear that MYCIN may simul-
taneously be considering several hypotheses regarding the value of a clin-
ical parameter. These hypotheses are stored together, along with their CF’s,
for each node in the context tree. We use the notation Val[C,P] to signify
the set of all hypotheses regarding the value of the clinical parameter P
for the context C. Thus, if MYCIN has reason to believe that ORGANISM-
1 may be either a Streptococcus or a Staphylococcus, but Pneumococcus has
been ruled out, its dynamic data base might well show:

Val[ORGANISM-1,IDENT} = ((STREPTOCOCCUS .6)(STAPHYLOCOCCUS .4)
(DIPLOCOCCUS-PNEUMONIAE -1))

It can be shown that the sum of the CF’s for supported hypotheses
regarding a single-valued parameter (i.e., those parameters for which the
hypotheses are mutually exclusive) cannot exceed 1 (Shortliffe and Buch-
anan, 1975). Multi-valued parameters, on the other hand, may have several
hypotheses that are all known to be true, for example:

Val[PATIENT-1,ALLERGY] = ((PENICILLIN 1)(AMPICILLIN 1)
(CARBENICILLIN 1)(METHICILLIN 1))

As soon as a hypothesis regarding a single-valued parameter is proved to
be true, all competing hypotheses are etfectively disproved:

Val[ORGANISM-1,IDENT] = ((STREPTOCOCCUS 1)(STAPHYLOCQCCUS -1)
(DIPLOCOCCUS-PNEUMONIAE -1))
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In Chapter 11 we demonstrate that CF[h,E] = —CF[h,E]. This ob-
servation has important implications for the way MYCIN handles the bi-
nary-valued attributes we call yes-no parameters. Since “yes” is “7no,” it is
not necessary to consider “yes” and “no” as competing hypotheses for the
value of a yes-no parameter (as we do for single-valued parameters). In-
stead, we can always express “no” as “yes” with a reversal in the sign of the
CF. This means that Val[C,P] is always equal to the single value “yes,” along
with its associated CF, when P is a yes-no parameter.

We discuss below MYCIN’s mechanism for adding to the list of hy-
potheses in Val[C,P] as new rules are invoked and executed. However, the
following points should be emphasized here:

1. The strength of the conclusion associated with the execution of a rule
reflects not only the CF assigned to the rule, but also the program’s
degree of belief regarding the validity of the premise.

2. The support of several rules favoring a single hypothesis may be assim-
ilated incrementally on the list Val[C,P] by using the special combining
functions described in Chapter 11.

5.1.5 Functions for the Evaluation of Premise
Conditions

This section describes the evaluation of the individual conditions (see
<condition>, Section 5.1.1) in the premise of rules. Conditions in general
evaluate to true or false (T or NIL). Thus they may at first glance be
considered simple predicates on the values of clinical parameters. However,
since there may be several competing hypotheses on the list Val[C,P], each
associated with its own degree of belief as reflected by the CF, conditional
statements regarding the value of parameters can be quite complex. All
predicates are implemented as LISP functions. The functions that under-
take the required analysis are of three varieties, specified by the designa-
tions <funcl>, <func2>, and <special-func> in the BNF rule descrip-
tion. This section explains the <funcl> and <func2> predicates. The
<special-func> category is deferred until later, however, so that we may
first introduce our specialized knowledge structures.

There are four predicates in the category <funcl>. These functions
do not form conditionals on specific values of a clinical parameter but are
concerned with the more general status of knowledge regarding the attri-
butes in question. For example, KNOWN[ORGANISM-1,IDENT] is an
invocation of the <funcl> predicate KNOWN; it would return true if the
identity of ORGANISM-1 were known, regardless of the value of the clin-
ical parameter IDENT. KNOWN and the other <funcl> predicates may
be formally defined as follows:
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Predicates of the Category <funcl>
Let V=Val[C,P] be the set of all hypotheses regarding the value of the
clinical parameter P for the context C.

Let Mv=Max[V] be the most strongly supported hypothesis in V (i.e, the
hypothesis with the largest CF).

Let CFmv =CF[Mv,E] where E is the total available evidence.

Then, if P is either a single-valued or multi-valued parameter, the four
predicates (functions) may be specified as follows:

Function If Then Else
KNOWN[C,P] CFmv > .2 T NIL
NOTKNOWNIG,P] CFmv = .2 T NIL
DEFINITE[C,P] CFmv = 1 T NIL
NOTDEFINITE(C,P} CFmv < 1 T NIL

In words, these definitions reflect MYCIN’s convention that the value of a
parameter is known if the CF of the most highly supported hypothesis
exceeds .2. The .2 threshold was selected empirically. The implication is
that a positive CF less than .2 reflects so little evidence supporting the
hypothesis that there is virtually no reasonable hypothesis currently known.
The interrelationships among these functions are diagrammed on a CF
number line in Figure 5-3. Regions specified are the range of values for
CFmv over which the function returns T.

As was pointed out in the preceding section, however, yes-no param-
eters are special cases because we know CF[YES,E] = —CF[NO,E]. Since
the values of yes-no parameters are always stored in terms of YES, MYCIN
must recognize that a YES with CF = —.9 is equivalent to a NO with CF
= .9. The definitions of the four <funcl> predicates above do not reflect
this distinction. Therefore, when P is a yes-no parameter, the four func-
tions are specified as follows:

Function If Then Else
KNOWNI[C,P] |CFmv| > .2 T NIL
NOTKNOWNIC,P] |CFmv| = .2 T NIiL
DEFINITE([C,P] |CFmyv| = 1 T NIL
NOTDEFINITE[C,P] |CFmv| < 1 T NIL

Figure 5-4 shows the relationship among these functions for yes-no param-
eters.

There are nine predicates in the category <func2>. Unlike the
<funcl> predicates, these functions control conditional statements re-
garding specific values of the clinical parameter in question. For example,
SAME[ORGANISM-1,IDENT,E.COLI] is an invocation of the <func2>
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FIGURE 5-3 Diagram indicating the range of CF values
over which the <funcl> predicates hold true when applied to
multi-valued or single-valued (i.e., non-yes-no) clinical param-
eters. Vertical lines and parentheses distinguish closed and non-
closed certainty factor ranges, respectively.

predicate SAME; it would return a non-NIL value if the identity of OR-
GANISM-1 were known to be E. coli. SAME and the other <func2> pred-
icates may be formally defined as follows:

Predicates of the Category <func2>

Let V=Val[C,P] be the set of all hypotheses regarding the value of the
clinical parameter P for the context C.

Let I = Intersection[V,LST] be the set of all hypotheses in V that also occur
in the set LST; LST contains the possible values of P for comparison
by the predicate function; it usually contains only a single element; if
no element in LST is also in V, I is simply the empty set.

Let M;=Max[I] be the most strongly confirmed hypothesis in I; thus M; is
NIL if I is the empty set.

Let CFmi = CF[M;,E] where CFmi = 0 if M; is NIL.

Then the <func2> predicates are specified as follows:
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FIGURE 5-4 Diagram indicating the range of CF values over
which the <funcl> predicates hold true when applied to yes-

no clinical parameters.

Function If

SAME[C,PLST] CFmi > .2
THOUGHTNOT[C,PLST] CFmi< —.2
NOTSAME[C,PLST] CFmi=< .2

MIGHTBE[C,PLST] CFmi= —.2
VNOTKNOWNI[C,PLST] [CFmi| = .2
DEFIS[C,PLST] CFmi = +1

DEFNOTI[C,PLST] CFmi = -1
NOTDEFIS[C,PLST] 2<CFmi<1
NOTDEFNOT[C,P,LST] -1 <CFmi< ~-.2

Then

CFmi
—CFmi

L

Else

NIL
NIL
NIL
NIL
NIL
NIL
NIL
NIL
NIL

The names of the functions have been selected to reflect their semantics.
Figure 5-5 shows a graphic representation of each function and also ex-

plicitly states the interrelationships among them.

Note that SAME and THOUGHTNOT are different from all the
other functions in that they return a number (CF) rather than T if the
defining condition holds. This feature permits MYCIN to record the de-
gree to which premise conditions are satisfied. In order to explain this
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I
I
DEFNOT DEFIS
SAME or NOTSAME = THOUGHTNOT or MIGHTBE = T
NOTSAME = VNOTKNOWN or THOUGHTNOT
THOUGHTNOT = NOTDEFNOT or DEFNOT
MIGHTBE = VNOTKNOWN or SAME
SAME = NOTDEFIS or DEFIS

FIGURE 5-5 Diagram indicating the range of CF values over
which the <func2> predicates hold true. The logical relation-
ships of these predicates are summarized below the diagram.

point, we must discuss the $AND function that oversees the evaluation of
the premise of a rule. The reader will recall the BNF description:

<premise> ::= (JAND <condition> . .. <condition>)

$AND is similar to the standard LISP AND function in that it evaluates
its conditional arguments one at a time, returning false (NIL) as soon as a
condition is found to be false, and otherwise returning true (T). The dif-
ference is that JAND expects some of its conditions to return numerical
values rather than simply T or NIL. If an argument condition returns NIL
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(or a number equal to .2 or less), it is considered false and $AND stops
considering subsequent arguments. On the other hand, nonnumeric values
of conditions are interpreted as indicating truth with CF = 1. Thus each
true condition either returns a number or a non-NIL value that is inter-
preted as 1. $AND then maintains a record of the lowest value returned
by any of its arguments. This number, termed TALLY, is a certainty tally,
which indicates MYCIN's degree of belief in the premise (see Combining
Function 2 in Chapter 11). Thus .2 < TALLY = 1, where TALLY = 1 in-
dicates that MYCIN believes the premise to be true with certainty.

Most of the predicates that evaluate conditions in the premise of a rule
return either T or NIL as we have shown. Consider, however, the semantics
of the most commonly used function, SAME, and its analogous function,
THOUGHTNOT. Suppose MYCIN knows:

Val[ORGANISM-1,IDENT] = ((STREPTOCOCCUS .7)(STAPHYLOCOCCUS .3))

Then it seems clear that

SAME[ORGANISM-1,IDENT,STREPTOCOCCUS)

is in some sense “more true” than

SAME[ORGANISM-1,IDENT,STAPHYLOCOCCUS]

even though both hypotheses exceed the threshold CF = .2. If SAME
merely returned T, this distinction would be lost. Thus, for this example:

SAME[ORGANISM-1,IDENT,STREPTOCOCCUS] = .7
SAME[ORGANISM-1,IDENT,STAPHYLOCOCCUS] = .3
whereas KNOWN[ORGANISM-1,IDENT] = T
and NOTDEFIS[ORGANISM-1,IDENT,STREPTOCOCCUS] = T

A similar argument explains why THOUGHTNOT returns a CF rather
than T. It is unclear whether any of the other <func2> predicates should
return a CF rather than T; our present conviction is that the semantics of
those functions do not require relative weightings in the way that SAME
and THOUGHTNOT do.

Consider a brief example, then, of the way in which the premise of a
rule is evaluated by §AND. The following ORGRULE:

IF: 1) The stain of the organism is gramneg, and
2) The morphology of the organism is rod, and
3) The aerobicity of the organism is aerobic
THEN: There is strongly suggestive evidence (.8) that
the class of the organism is enterobacteriaceae

is internally coded in LISP as:

PREMISE: ($AND (SAME CNTXT GRAM GRAMNEG)
(SAME CNTXT MORPH ROD)
(SAME CNTXT AIR AEROBIC))
ACTION: (CONCLUDE CNTXT CLASS ENTEROBACTERIACEAE TALLY .8)
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Suppose this rule has been invoked for consideration of ORGANISM-1;
i.e., the context of the rule (CNTXT) is the node in the context tree termed
ORGANISM-1. Now suppose that MYCIN has the following information
in its data base (we will discuss later how it gets there):

Val[ORGANISM-1,GRAM] = ((GRAMNEG 1.0))

Val[ORGANISM-1,MORPH} = ((ROD .8)(COCCUS .2))
Val[ORGANISM-1,AIR] = ((AEROBIC .6)(FACUL .4))

$AND begins by evaluating SAME[ORGANISM-1,GRAM,GRAMNEG].
The function returns CF = 1.0, so TALLY is-set to 1.0 (see definition of
TALLY in the description of $AND above). Next $AND evaluates the sec-
ond premise condition, SAME[ORGANISM-1,MORPH,ROD], which re-
turns .8. Since the first two conditions both were found to hold, $AND
evaluates SAME[ORGANISM-1,AIR,AEROBIC], which returns .6. Thus
TALLY is set to .6, and $AND returns T. Since the premise is true, MYCIN
may now draw the conclusion indicated in the action portion of the rule.
Note, however, that CONCLUDE has as arguments both .8 (i.e., the CF
for the rule as provided by the expert) and TALLY (i.e., the certainty tally
for the premise). CONCLUDE and the other functions that control infer-
ences are described later.

5.1.6 Static Knowledge Structures

Although all MYCIN’s inferential knowledge is stored in rules, there are
various kinds of static definitional information, which are stored differently
even though they are accessible from rules.

Tabular and List-Based Knowledge

There are three categories of knowledge structures that could be discussed
in this section. However, one of them, MYCIN’s dictionary, is used prin-
cipally for natural language understanding and will therefore not be de-
scribed. The other two data structures are simple lists and knowledge ta-
bles.

Simple lists: Simple lists provide a mechanism for simplifying references
to variables and optimizing knowledge storage by avoiding unnecessary
duplication. Two examples should be sufficient to explain this point.

As was shown earlier, the EXPECT property for the clinical parameter
IDENT is

(ONEOF (ORGANISMS))

ORGANISMS is the name of a linear list containing the names of all bac-
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teria known to MYCIN. There is also a clinical parameter named COV-
ERFOR for which the EXPECT property is

(ONEOF ENTEROBACTERIACEAE (ORGANISMS) G + COCCI C-COCCl)

I'hus, by storing the organisms separately on a list named ORGANISMS,
we avoid having to duplicate the list of names in the EXPECT property of
both IDENT and COVERFOR. Furthermore, using the variable name
rather than internal pointers to the list structure facilitates references to
the list of organisms whenever it is needed.

A second example involves the several rules in the system that make
conclusions based on whether an organism was isolated from a site that is
normally sterile or nonsterile. STERILESITES is the name of a simple list
containing the names of all normally sterile sites known to the system.
There is a similar list named NONSTERILESITES. Thus many rules can
have the condition (SAME CNTXT SITE STERILESITES), and the sites
need not be listed explicitly in each rule.

Knowledge tables: In conjunction with the special functions discussed
in the next subsection, MYCIN’s knowledge tables permit a single rule to
accomplish a task that would otherwise require several rules. A knowledge
table contains a comprehensive record of certain clinical parameters plus
the values they take on under various circumstances. For example, one of
MYCIN’s knowledge tables itemizes the gram stain, morphology, and aero-
bicity for every bacterial genus known to the system. Consider, then, the
task of inferring an organism’s gram stain, morphology, and aerobicity if
its identity is known with certainty. Without the knowledge table, MYCIN
would require several rules of the following form:

IF:  The identity of the organism is definitely W
THEN: 1) Itis definite (1) that the gramstain of the
organism is X, and
2) It is definite (1) that the morphology of the
organism is Y, and
3) It is definite (1) that the aerobicity of the
organism is Z

Instead, MYCIN contains a single rule of the following form:

RULEO030

IF: The identity of the organism is known with certainty

THEN: It is definite (1) that these parameters - GRAM
MORPH AIR - should be transferred from the identity
of the organism to this organism

Thus if ORGANISM-1 is known to be a Streptococcus, MYCIN can use
RULEO30 to access the knowledge table to look up the organism’s gram
stain, morphology, and aerobicity.
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The efficient use of knowledge tables requires the existence of four spe-
cialized functions (the category <special-func> from Section 5.1.1). As
explained below, each function attempts to add members to a list named
GRIDVAL and returns T if at least one element has been found to be
placed in GRIDVAL.

Functions of the Category <special-func>

Let V=Val[C,P] be the set of all hypotheses regarding the value of the
clinical parameter P for the context C.

Let CLST be a list of objects that may be characterized by clinical param-
eters.

Let PLST be a list of clinical parameters.

Then:

Function Value of GRIDVAL

SAME2[C,CLST,PLST] {X| X e CLST & (for all P in PLST)
SAME [C,P,Val[X,P]]}

NOTSAME2[C,CLST,PLST] {X| X e CLST & (for at least one P in
PLST) NOTSAME[C,P, Val[X,P]]}

SAMES[C,P,CLST,P*] {X| X e CLST & SAME[C,P,Val[X,P*]]}

NOTSAME3[C,P,CLST,P*] {X|X e CLST & NOTSAME
[C,P,Val[X,P*]]}

GRID[<object>,<attribute>] {X | X is a value of the <attribute> of
<object>}

GRID is merely a function for looking up information in the specialized
knowledge table.

The use of these functions is best explained by example. Consider the
following verbalization of a rule given us by one of our collaborating ex-
perts:

If you know the portal of entry of the current organism and also
know the pathogenic bacteria normally associated with that site, you
have evidence that the current organism is one of those pathogens
so long as there is no disagreement on the basis of gram stain,
morphology, or aerobicity.

This horrendous sounding rule is coded quite easily using
SAME2[C,CLST,PLST], where C is the current organism, CLST is the list



102

Details of the Consultation System

of pathogenic bacteria normally associated with the portal of entry of C,
and PLST is the set of properties (GRAM MORPH AIR). GRID is used to
set up CLST. The LISP version of the rule is

PREMISE: ($AND (GRID (VAL CNTXT PORTAL) PATH-FLORA)
(SAME2 CNTXT GRIDVAL (QUOTE (GRAM MORPH AIR))))
ACTION: (CONCLIST CNTXT IDENT GRIDVAL .8)

Note that GRID sets up the initial value of GRIDVAL for use by SAMEZ2,
which then redefines GRIDVAL for use in the action clause. This rule is
translated (to somewhat stilted English) as follows:

IF: 1) The list of likely pathogens associated with the

portal of entry of the organism is known, and
2) This current organism and the members you are

considering agree with respect to the following
properties: GRAM MORPH AIR

THEN: There is strongly suggestive evidence (.8) that

each of them is the identity of this current

organism

SAMEZ2 and NOTSAME2 can also be used for comparing the values of
the same clinical parameters for two or more different contexts in the
context tree, for example:

SAMEZ2[ORGANISM-1 (ORGANISM-2 ORGANISM-3) (GRAM MORPH)}

On the other hand, SAME3 and NOTSAMES3 are useful for comparing
different parameters of two or more contexts. Suppose you need a pred-
icate that returns T if the site of a prior organism (ORGANISM-2) is the
same as the portal of entry of the current organism (ORGANISM-1). This
is accomplished by the following:

SAME3[ORGANISM-1 PORTAL (ORGANISM-2) SITE]

5.1.7 Translation of Rules into English

Rules are translated into a subset of English using a set of recursive func-
tions that piece together bits of text. We shall demonstrate the process
using the premise condition (GRID (VAL CNTXT PORTAL) PATH-
FLORA), which is taken from the rule in the preceding section.

The reader will recall that every clinical parameter has a property
named TRANS that is used for translation (Section 5.1.3). In addition,
every function, simple list, or knowledge table that is used by MYCIN’s
rules also has a TRANS property. For our example the following TRANS
properties are relevant:

GRID: (THE (2) ASSOCIATED WITH (1) IS KNOWN)
VAL: (2 1))
PORTAL.: (THE PORTAL OF ENTRY OF *)

PATH-FLORA: (LIST OF LIKELY PATHOGENS)
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The numbers in the translations of functions indicate where the translation
of the corresponding argument should be inserted. Thus the translation
of GRID’s second argument is inserted for the (2) in GRID’s TRANS prop-
erty. The extra parentheses in the TRANS for VAL indicate that the trans-
lation of VAL first argument should be substituted for the asterisk in the
translation of VALs second argument. Since PORTAL is a PROP-ORG,
CNTXT translates as “the organism,” and the translation of (VAL CNTXT
PORTAL) becomes

The portal of entry of the organism

Substituting VALSs translation for the (1) in GRID’s TRANS and PATH-
FLORA's translation for the (2) yields the final translation of the condi-
tional clause:

The list of likely pathogens associated with the portal of entry of the organism is known
Similarly, (GRID (VAL CNTXT CLASS) CLASSMEMBERS)
translates as: The list of members associated with the class of the organism is known

All other portions of rules use essentially this same procedure for
translation. An additional complexity arises, however, if it is necessary to
negate the verbs in action or else clauses when the associated CF is negative.
The translator program must therefore recognize verbs and know how to
negate them when evidence in a premise supports the negation of the
hypothesis that is referenced in the action of the rule.

5.2 Use of the Rules to Give Advice

The discussion in Section 5.1 was limited to the various data structures
used to represent MYCIN’s knowledge. The present section proceeds to
an explanation of how MYCIN uses that knowledge in order to give advice.

5.2.1 MYCIN’s Control Structure

MYCIN'’s rules are directly analogous to the consequent theorems intro-
duced by Hewitt in his PLANNER system (Hewitt, 1972). They permit a
reasoning chain to grow dynamically on the basis of the user’s answers to
questions regarding the patient. This subsection describes that reasoning
network, explaining how it grows and how MYCIN manages to ask ques-
tions only when there is a reason for doing so.
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Consequent Rules and Recursion
MYCIN’s task involves a four-stage decision problem:

1. Decide which organisms, if any, are causing significant disease.
2. Determine the likely identity of the significant organisms.

3. Decide which drugs are potentially useful.

4. Select the best drug or drugs.

Steps 1 and 2 are closely interrelated since determination of an organism’s
significance may well depend on its presumed identity. Furthermore, MY-
CIN must consider the possibility that the patient has an infection with an
organism not specifically mentioned by the user (e.g., an occult abscess
suggested by historical information or subtle physical findings). Finally, if
MYCIN decides that there is no significant infection requiring antimicro-
bial therapy, it should skip Steps 3 and 4, advising the user that no treat-
ment is thought to be necessary. MYCIN's task area therefore can be de-
fined by the following rule:

RULE092

IF: 1) There is an organism which requires therapy, and
2) Consideration has been given to the possible
existence of additional organisms requiring therapy,
even though they have not actually been recovered
from any current cuitures
THEN: Do the following:
1) Compile the list of possible therapies which, based
upon sensitivity data, may be effective against
the organisms requiring treatment, and
2) Determine the best therapy recommendations from the
compiled list
OTHERWISE: Indicate that the patient does not require therapy

This rule is one of MYCIN’s PATRULES (i.e., its context is the patient)
and is known as the goal rule for the system. A consultation session with
MYCIN results from a simple two-step procedure:

1. Create the patient context as the top node in the context tree (see Sec-
tion 5.3 for an explanation of how nodes are added to the tree).

2. Attempt to apply the goal rule to the newly created patient context.

After the second step, the consultation is over. Thus we must explain how
the simple attempt to apply the goal rule to the patient causes a lengthy
consultation with an individualized reasoning chain.

When MYCIN first tries to evaluate the premise of the goal rule, the
first condition requires that it know whether there is an organism that
requires therapy. MYCIN then reasons backwards in a manner that may
be informally paraphrased as follows:



Use of the Rules to Give Advice 105

How do I decide whether there is an organism requiring therapy?
Well, RULE090 tells me that organisms associated with significant
disease require therapy. But I don’t even have any organisms in the
context tree yet, so I'd better ask first if there are any organisms, and
if there are I'll try to apply RULE090 to each of them. However, the
premise of RULEO90 requires that I know whether the organism is
significant. I have a bunch of rules for making this decision
(RULE038 RULE042 RULE0O44 RULE108 RULE122). For example,
RULEO038 tells me that if the organism came from a sterile site it is
probably significant. Unfortunately, I don’t have any rules for infer-
ring the site of a culture, however, so I guess I'll have to ask the user
for this information when I need it . . .

This goal-oriented approach to rule invocation and question selection is
automated via two interrelated procedures, a MONITOR that analyzes
rules and a FINDOUT mechanism that searches for data needed by the
MONITOR.

The MONITOR analyzes the premise of a rule, condition by condition,
as shown in Figure 5-6.> When the value of the clinical parameter refer-
enced in a condition is not yet known to MYCIN, the FINDOUT mecha-
nism is invoked in an attempt to obtain the missing information.
FINDOUT then either derives the necessary information (from other
rules) or asks the user for the data.

FINDOUT has a dual strategy depending on the kind of information
required by the MONITOR. This distinction is demonstrated in Figure
5-7. In general, a piece of data is immediately requested from the user (an
ASK1 question) if it is considered in some sense “primitive,” as are, for
example, most laboratory data. Thus, if the physician knows the identity
of an organism (e.g., from a lab report), we would prefer that the system
request that information directly rather than try to deduce it via decision
rules. However, if the user does not know the identity of the organism,
MYCIN uses its knowledge base in an effort to deduce the range of likely
organisms. Nonlaboratory data are those kinds of information that require
inference even by the clinician, e.g., whether or not an organism is a con-
taminant or whether or not a previously administered drug was effective.
FINDOUT always attempts to deduce such information first, asking the
physician only when MYCIN’s knowledge base of rules is inadequate for
making the inference from the information at hand (an ASK2 question).

We have previously described the representation of clinical parameters
and their associated properties. The need for two of these properties,
LABDATA and UPDATED-BY, should now be clear. The LABDATA flag
for a parameter allows FINDOUT to decide which branch to take through

3As discussed in Section 5.1.5, the MONITOR uses the $AND function to oversee the premise
evaluation.
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FIGURE 5-6 Flow chart describing how the MONITOR ana-
lyzes a rule and decides whether or not it applies in the clinical
situation under consideration. Each condition in the premise of
the rule references some clinical parameter, and all such con-
ditions must be true for the rule to be accepted (Shortliffe et
al., 1975).
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FIGURE 5-7 Flow chart describing the strategy for determin-
ing which questions to ask the physician. The derivation of
values of parameters may require recursive calls to the MON-
ITOR, thus dynamically creating a reasoning chain specific to
the patient under consideration (Shortliffe et al., 1975).

its decision process (Figure 5-7). Thus IDENT is marked as being LAB-
DATA in Figure 5-2.

Recall that the UPDATED-BY property is a list of all rules in the system
that permit an inference to be made regarding the value of the indicated
parameter. Thus UPDATED-BY is precisely the list called Y in Figure
5-7. Every time a new rule is added to MYCIN’s knowledge base, the name
of the rule is added to the UPDATED-BY property of the clinical param-
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eter referenced in its action or else clause. Thus the new rule immediately
becomes available to FINDOUT at times when it may be useful. It is not
necessary to specify explicitly its interrelationships with other rules in the
system.

Note that FINDOUT is accessed from the MONITOR, but the MON-
ITOR may also be accessed from FINDOUT. This recursion allows self-
propagation of a reasoning network appropriate for the patient under
consideration and selects only the necessary questions and rules. The first
rule passed to the MONITOR is always the goal rule. Since the first con-
dition in the premise of this rule references a clinical parameter named
TREATFOR, and since the value of TREATFOR is of course unknown
before any data have been gathered, the MONITOR asks FINDOUT to
trace the value of TREATFOR. This clinical parameter is not LABDATA,
so FINDOUT takes the left-hand pathway in Figure 5-7 and sets Y to the
UPDATED-BY property of TREATFOR, the two-element list (RULE090
RULE149). The MONITOR is then called again with RULE0O90 as the rule
for consideration, and FINDOUT is used to trace the values of clinical
parameters referenced in the premise of RULE090. Note that this process
parallels the informal paraphrase of MYCIN'’s reasoning given above.

It is important to recognize that FINDOUT does not check to see
whether the premise condition is true. Instead, the FINDOUT mechanism
traces the clinical parameter exhaustively and returns its value to the MON-
ITOR, where the conditional expression may then be evaluated.* Hence
FINDOUT is called one time at most for a clinical parameter (in a given
context—see Section 5.3). When FINDOUT returns a value to the MON-
ITOR, it marks the clinical parameter as having been traced. Thus when
the MONITOR reaches the question “HAS ALL NECESSARY INFOR-
MATION BEEN GATHERED TO DECIDE IF THE CONDITION IS
TRUE?” (Figure 5-6), the parameter is immediately passed to FINDOUT
unless it has been previously marked as traced.

Figure 5-8 is a portion of MYCIN’s initial reasoning chain. In Figure
5-8 the clinical parameters being traced are underlined. Thus REGIMEN
is the top goal of the system (i.e., it is the clinical parameter in the action
clause of the goal rule). Below each parameter are the rules (from the
UPDATED-BY property) that may be used for inferring the parameter’s
value. Clinical parameters referenced in the premise of each of these rules
are then listed at the next level in the reasoning network. Rules with mul-
tiple premise conditions have their links numbered in accordance with the
order in which the parameters are traced (by FINDOUT). ASK1 indicates
that a parameter is LABDATA, so its value is automatically asked of the
user when it is needed. ASK2 refers to parameters that are not LABDATA
but for which no inference rules currently exist, e.g., if the dose of a drug
is adequate. One of the goals in the future development of MYCIN'’s knowl-

*The process is slightly different for multi-valued parameters; see Section 5.2.1,
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edge base is to acquire enough rules allowing the values of non-LABDATA
parameters to be inferred so that ASK2 questions need no longer occur.

Note that the reasoning network in Figure 5-8 is drawn to reflect
maximum size. In reality many portions of such a network need not be
considered. For example, RULE042 (one of the UPDATED-BY rules under
SIGNIFICANCE) is rejected if the SITE condition is found to be false by
the MONITOR. When that happens, neither COLLECT nor SIGNUM
needs to be traced by FINDOUT, and those portions of the reasoning
network are not created. Thus the order of conditions within a premise is
highly important. In general, conditions referencing the most common
parameters (i.e., those that appear in the premises of the most rules) are
put first in the premises of new rules to act as an effective screening mech-
anism.

A final comment is necessary regarding the box labeled “REJECT
THE RULE” in Figure 5-6. This step in the MONITOR actually must
check to see if the rule has an else clause. If so, and if the premise is known
to be false, the conclusion indicated by the else clause is drawn. If there is
no else clause, or if the truth status of the premise is uncertain (e.g., the
user has entered UNKNOWN when asked the value of one of the relevant
parameters), the rule is simply ignored without any conclusion having been
reached.

Asking Questions of the User

The conventions for communication between a program and a physician
are a primary factor determining the system’s acceptability. We have there-
fore designed a number of features intended to simplify the interactive
process that occurs when FINDOUT reaches one of the boxes entitled
“ASK USER FOR THE VALUE OF THE PARAMETER” (Figure 5-7).

When MYCIN requests the value of a single-valued or yes-no param-
eter, it uses the PROMPT property of the parameter. The user’s response
is then compared with the EXPECT property of the parameter. If the
answer is one of the expected responses, the program simply continues
through the reasoning network. Otherwise, MYCIN checks the system dic-
tionary to see if the user’s response is a synonym for one of the recognized
answers. If this attempt also fails, MYCIN uses Interlisp spelling-correction
routines (Teitelman, 1974) to see if a simple spelling or typographical error
will account for the unrecognized response. If so, the program makes the
correction, prints its assumption, and proceeds as though the user had
made no error. If none of these mechanisms succeeds, MYCIN tells the
user that the response is not recognized, displays a list of sample responses,
and asks the question again.

Multi-valued parameters are handled somewhat differently. FIND-
OUT recursively traces such parameters in the normal fashion, but when
forced to ask a question of the user, it customizes its question to the con-
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dition being evaluated in the MONITOR. Suppose, for example, the MON-
ITOR were evaluating the condition (SAME CNTXT INFECT MENIN-
GITIS), i.e., “Meningitis is an infectious disease diagnosis for the patient.”
If FINDOUT were to ask the question using the regular PROMPT strategy,
it would request:

What is the infectious disease diagnosis for PATIENT-1?

The problem is that the patient may have several diagnoses, each of which
can be expressed in a variety of ways. If the physician were to respond:

A meningeal inflammation that is probably of infectious origin

MYCIN would be forced to try to recognize that this answer implies men-
ingitis. Our solution has been to customize questions for multi-valued pa-
rameters to reflect the value being checked in the current premise condi-
tion. The PROMPT1 property is used, and questions always expect a yes
or no response:

Is there evidence that the patient has a meningitis?

The advantages of this approach are the resulting ability to avoid natural
language processing during the consultation itself and the posing of ques-
tions that are specific to the patient under consideration.

In addition to the automatic spelling-correction capability described
above, there are a number of options that may be utilized whenever MY-
CIN asks the user a question:

UNKNOWN Used to indicate that the physician does not know
the answer to the question, usually because the data
are unavailable (may be abbreviated U or UNK)

? Used to request a list of sample recognized
responses

?? Used to request a list of all recognized responses

RULE Used to request that MYCIN display the translation

of the current decision rule. FINDOUT simply
translates the rule being considered by the
MONITOR. This feature provides a simple
capability for explaining why the program is asking
the question. However, it cannot explain motivation
beyond the current decision rule.

QA Used to digress temporarily in order to use the
Explanation System. The features of this system are
explained in Chapter 18.

WHY Used to request a detailed explanation of the
question being asked. This feature is much more
conversational than the RULE option above and
permits investigation of the current state of the
entire reasoning chain.
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CHANGE ### Used to change the answer to a previous question.
Whenever MYCIN asks a question, it prints a
number in front of the prompt. Thus CHANGE 4
means “Go back and let me reanswer question 4.”
The complexities involved in this process are
discussed below.

STOP Halts the program without completing the
consultation
HELP Prints this list

5.2.2 Creation of the Dynamic Data Base

The Consultation System maintains an ongoing record of the consultation.
These dynamic data include information entered by the user, inferences
drawn using decision rules, and record-keeping data structures that facil-
itate question answering by the Explanation System (Chapter 18).

Data Acquired from the User

Except for questions related to propagation of the context tree, all queries
from MYCIN to the physician request the value of a specific clinical pa-
rameter for a specific node in the context tree. The FINDOUT mechanism
screens the user’s response, stores it in MYCIN’s dynamic data base, and
returns the value to the MONITOR for evaluation of the conditional state-
ment that generated the question in the first place. The physician’s re-
sponse is stored, of course, so that future rules containing conditions ref-
erencing the same clinical parameter will not cause the question to be asked
a second time.

As has been noted, however, the values of clinical parameters are al-
ways stored along with their associated certainty factors. A physician’s re-
sponse must therefore have a CF associated with it. MYCIN’s convention
is to assume CF = 1 for the response unless the physician explicitly states
otherwise. Thus the following exchange:

7) Staining characteristics of ORGANISM-1 (gram):
**GRAMNEG

results in: Val[ORGANISM-1,GRAM] = ((GRAMNEG 1.0))

If, on the other hand, the user is fairly sure of the answer to a question
but wants to indicate uncertainty, he or she may enter a certainty factor in
parentheses after the response. MYCIN expects the number to be an in-
teger between — 10 and + 10; the program divides the number by 10 to
obtain a CF. Using integers simplifies the user’s response and also discour-
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ages comparisons between the number and a probability measure. Thus
the following exchange:

8) Enter the identity (genus) of ORGANISM-1:
** ENTEROCOCCUS (8)

results in: Val[ORGANISM-1,IDENT] = ((STREPTOCOCCUS-GROUP-D .8))

This example also shows how the dictionary is used to put synonyms into
standardized form for the patient’s data base (i.e., Enterococcus is another
name for a group-D Streptococcus).

A variant of this last example is the user’s option to enter multiple
responses to a question, as long as each is modified by a CF. For example:

13) Did ORGANISM-2 grow in clumps, chains, or pairs?
** CLUMPS (6) CHAINS (3) PAIRS (-8)

results in: Val[ORGANISM-2,CONFORM] = ((CLUMPS .6)(CHAINS .3)(PAIRS -.8))

The CF’s associated with the parameter values are then used for evaluation
of premise conditions as described earlier. Note that the user’s freedom to
modify answers increases the flexibility of MYCIN’s reasoning. Without the
CF option, the user might well have responded UNKNOWN to question
13 above. The demonstrated answer, although uncertain, gives MYCIN
much more information than would have been provided by a response of
UNKNOWN.

Data Inferred by the System

This subsection explains the <conclusion> item from the BNF rule
description, i.e., the functions that are used in action or else clauses when
a premise has shown that an indicated conclusion may be drawn. There
are only three such functions, two of which (CONCLIST and TRANS-
LIST) reference knowledge tables (Section 5.1.6) but are otherwise depen-
dent on the third, a function called CONCLUDE. CONCLUDE takes five
arguments:

CNTXT  The node in the context tree about which the conclusion is
being made

PARAM The clinical parameter whose value is being added to the
dynamic data base

VALUE The inferred value of the clinical parameter

TALLY The certainty tally for the premise of the rule (see Section
5.1.5)
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CF The certainty factor for the rule as judged by the expert
from whom the rule was obtained

The translation of CONCLUDE depends on the size of CF:

|CF| = .8  “There is strongly suggestive evidence that . ..”
4 =|CF|<.8  “There is suggestive evidence that . ..”

|CF| < .4  “There is weakly suggestive evidence that . ..”
Computed CF “There is evidence that...”

Thus the following conclusion:

(CONCLUDE CNTXT IDENT STREPTOCOCCUS TALLY .7)

translates as:

There is suggestive evidence (.7) that the identity of the organism is streptococcus

If, for example, the rule with this action clause were successfully applied
to ORGANISM-1, an organism for which no previous inferences had been
made regarding identity, the result would be:

Val[ORGANISM-1,IDENT] = ((STREPTOCOCCUS X))

where X is the product of .7 and TALLY (see Combining Function 4,
Chapter 11). Thus the strength of the conclusion reflects both the CF for
the rule and the extent to which the premise of the rule is believed to be
true for ORGANISM-1.

Suppose a second rule were now found that contains a premise true
for ORGANISM-1 and that adds additional evidence to the assertion that
the organism is a Streptococcus. This new evidence somehow has to be com-
bined with the CF (=X) that is already stored for the hypothesis that
ORGANISM-1 is a Streptococcus. If Y is the CF calculated for the second
rule (i.e., the product of the TALLY for that rule and the CF assigned to
the rule by the expert), the CF for the hypothesis is updated to Z so that:

Val[ORGANISM-1,IDENT] = (STREPTOCOCCUS 2))

where Combining Function 1 gives Z = X + Y(1 — X). This function is
justified and discussed in detail in Chapter 11.

Similarly, additional rules leading to alternate hypotheses regarding
the identity of ORGANISM-1 may be successfully invoked. The new hy-
potheses, along with their associated CF’s, are simply appended to the list
of hypotheses in Val[ORGANISM-1,IDENT]. Note, of course, that the CF’s
of some hypotheses may be negative, indicating that there is evidence sug-
gesting that the hypothesis is not true. When there is both positive and
negative evidence for a hypothesis, Combining Function 1 must be used
in a modified form.

A final point to note is that values of parameters are stored identically
regardless of whether the information has been inferred or acquired from
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the user. The source of a piece of information is maintained in a separate
record. It is therefore easy to incorporate new rules that infer values of
parameters for which ASK2 questions to the user were once necessary.

Creating an Ongoing Consultation Record

In addition to information provided or inferred regarding nodes in the
context tree, MYCIN’s dynamic data base contains a record of the consul-
tation session. This record provides the basis for answering questions about
the consultation (Chapter 18).

Two general types of records are kept. One type is information about
how values of clinical parameters were obtained. If the value was inferred
using rules, a record of those inferences is stored with the rules themselves.
Thus whenever an action or else clause is executed, MYCIN keeps a record
of the details. The second type of record provides a mechanism for explain-
ing why questions were asked. MYCIN maintains a list of questions, their
identifying numbers, the clinical parameter and context involved, plus the
rule that led to generation of the question. This information is useful when
the user retrospectively requests an explanation for a previous question
(Chapter 18).

5.2.3 Self-Referencing Rules

As new rules were acquired from the collaborating experts, it became ap-
parent that MYCIN would need a small number of rules that departed
from the strict modularity to which we had otherwise been able to adhere.
For example, one expert indicated that he would tend to ask about the
typical Pseudomonas-type skin lesions only if he already had reason to be-
lieve that the organism was a Pseudomonas. If the lesions were then said to
be evident, however, his belief that the organism was a Pseudomonas would
be increased even more. A rule reflecting this fact must somehow imply
an orderedness of rule invocation; i.e., “Don’t try this rule until you have
already traced the identity of the organism by using other rules in the
system.” Our solution has been to reference the clinical parameter early in
the premise of the rule as well as in the action, for example:

RULEO40
IF: 1) The site of the cuiture is blood, and
2) The identity of the organism may be pseudomonas, and
3) The patient has ecthyma gangrenosum skin lesions
THEN: There is strongly suggestive evidence (.8) that the
identity of the organism is pseudomonas

Note that RULE040 is thus a member of both the LOOKAHEAD property
and the UPDATED-BY property for the clinical parameter IDENT. Rules
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having the same parameter in both premise and action are termed self-
referencing rules. The ordered invocation of such rules is accomplished by
a generalized procedure described below.

As discussed in Section 5.2.1, a rule such as RULE040 is originally
invoked because MYCIN is trying to infer the identity of an organism; i.e.,
FINDOUT is asked to trace the parameter IDENT and recursively sends
the UPDATED-BY list for that parameter to the MONITOR. When the
MONITOR reaches RULE040, however, the second premise condition ref-
erences the same clinical parameter currently being traced by FINDOUT.
If the MONITOR merely passed IDENT to FINDOUT again (as called
for by the simplified flow chart in Figure 5-6), FINDOUT would begin
tracing IDENT for a second time, RULE040 would be passed to the MON-
ITOR yet again, and an infinite loop would occur.

The solution to this problem is to let FINDOUT screen the list called
Y in Figure 5-7, i.e., the UPDATED-BY property for the parameter it is
about to trace. Y is partitioned by FINDOUT into regular rules and self-
referencing rules (where the latter category is defined as those rules that
also occur on the LOOKAHEAD list for the clinical parameter). FIND-
OUT passes the first group of rules to the MONITOR in the normal
fashion. After all these rules have been tried, FINDOUT marks the pa-
rameter as having been traced and then passes the self-referencing rules
to the MONITOR. In this way, when the MONITOR considers the second
condition in the premise of RULE0O40, the condition is evaluated without
a call to FINDOUT because the parameter has already been marked as
traced. Thus the truth of the premise of a self-referencing rule is deter-
mined on the basis of the set of non—self-referencing rules, which were
evaluated first. If one of the regular rules permitted MYCIN to conclude
that an organism might be a Pseudomonas, RULE040 might well succeed
when passed to the MONITOR. This mechanism for handling self-refer-
encing rules satisfies the intention of an expert when he or she gives us
decision criteria in self-referencing form.

It should be noted that this approach minimizes the potential for self-
referencing rules to destroy certainty factor commutativity. By holding
these rules until last, we insure that the certainty tally for any of their
premises (see Section 5.1.5) is the same regardless of the order in which
the non—self-referencing rules were executed. If there is more than one
self-referencing rule successfully executed for a given context and param-
eter, however, the order of their invocation may affect the final CF. The
approach we have implemented thus seeks merely to minimize the poten-
tial undesirable effects of self-referencing rules.

5.2.4 Preventing Reasoning Loops
Self-referencing rules are actually a special case of a more general problem.

Reasoning loops involving multiple rules cannot be handled by the mech-
anism described above. The difference is that self-referencing rules are
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intentional parts of MYCIN’s knowledge base whereas reasoning loops are
artifacts that must somehow be avoided.
For the following discussion we introduce the following notation:

[ql Xu>Y

means that decision rule [q] uses clinical parameter X to reach a conclusion
regarding the value of clinical parameter Y. Thus a self-referencing rule
may be represented by:

[a] E:>E

where E is the clinical parameter that is referenced in both the premise
and the action of the rule. Consider now the following set of rules:

[1] A::>B
2] B:>C
[3] C:>D
[4] D:>A

Rule {1], for example, says that under certain unspecified conditions, the
value of A can be used to infer the value of B. Now suppose that the
MONITOR asks FINDOUT to trace the clinical parameter D. Then MY-
CIN’s recursive mechanism would create the following reasoning chain:

(4] [1] (2] (3]
.D > A :>B > C > D

The difference between this looped reasoning chain and a self-referencing
rule is that Rule [4] was provided as a mechanism for deducing the value
of A, not for reinforcing the system’s belief in the value of D. In cases
where the value of A is of primary interest, the use of Rule [4] would be
appropriate.

MYCIN solves this problem by keeping track of all parameters cur-
rently being traced by the FINDOUT mechanism. The MONITOR then
simply ignores a rule if one of the parameters checked in its premise is
already being traced. The result, with the value of D as the goal, is a three-
membered reasoning chain in the case above:

(1] (2] [3]
A:>B > C ::=>D

Rule [4] is rejected because parameter D is already being traced elsewhere
in the current reasoning chain. If the value of A were the main goal,
however, the chain would be



118 Details of the Consultation System’

(2] (3] (4]
B :>C ::>D > A

Note that this simple mechanism allows us to have potential reasoning
loops in the knowledge base but to select only the relevant nonlooping
portions for consideration of a given patient.

A similar problem can occur when a rule permits two conclusions to
be made, each about a different clinical parameter. MYCIN prevents loops
in such circumstances by refusing to permit the same rule to occur twice
in the current reasoning chain.

5.3 Propagation of the Context Tree

The mechanism by which the context tree is customized for a given patient
has not yet been discussed. As described in Section 5.2.2, the consultation
systemn begins simply by creating the patient context and then attempting
to execute the goal rule. All additional nodes in the context tree are thus
added automatically during the unwinding of MYCIN'’s reasoning regard-
ing the premise of the goal rule. This section first explains the data struc-
tures used for creating new nodes. Mechanisms for deciding when new
nodes should be added are then discussed.

5.3.1 Data Structures Used for Sprouting Branches

Section 5.1.2 was devoted to an explanation of the context tree. At that
time we described the different kinds of contexts and explained that each
node in the tree is an instantiation of the appropriate context-type. Each
context-type is characterized by the following properties:

PROMPT1 A sentence used to ask the user whether the first node
of this type should be added to the context tree;
expects a yes-no answer

PROMPT2 A sentence used to ask the user whether subsequent
nodes of this type should be added to the context tree
PROMPT3 Replaces PROMPT1 when it is used. This is a message

to be printed out if MYCIN assumes that there is at
least one node of this type in the tree.

PROPTYPE Indicates the category of clinical parameters (see
Section 5.1.3) that may be used to characterize a
context of this type
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SUBJECT Indicates the categories of rules that may be applied

to a context of this type

SYN Indicates a conversational synonym for referring to a

context of this type. MYCIN uses SYN when filling in
the asterisk of PROMPT properties for clinical
parameters.

TRANS Used for English translations of rules referencing this

type of context

TYPE Indicates what kind of internal name to give a context

of this type

MAINPROPS Lists the clinical parameters, if any, that are to be

automatically traced (by FINDOUT) whenever a
context of this type is created

ASSOCWITH Gives the context-type of nodes in the tree.

immediately above contexts of this type

Two sample context-types are shown in Figure 5-9. The following ob-

servations may help clarify the information given in that figure:

1.

PRIORCULS: Whenever a prior culture is created, it is given the name
CULTURE-# (see TYPE), where # is the next unassigned culture num-
ber. The values of SITE and WHENCUL are immediately traced using
the FINDOUT mechanism (see MAINPROPS). The culture node is put
in the context tree below a node of type PERSON (see ASSOCWITH),
and the new context may be characterized by clinical parameters of the
type PROP-CUL (see PROPTYPE). The prior culture may be the con-
text for either PRCULRULES or CULRULES (see SUBJECT) and is
translated, in questions to the user, as “this (site) culture” (see SYN)
where (site) is replaced by the site of the culture if it is known.
CURORG: Since there is a PROMPT?3 rather than a PROMPT1, MY-
CIN prints out the PROMPT3 message and assumes (without asking)
that there is at least one CURORG for each CURCUL (see AS-
SOCWITH); the other CURORG properties correspond to those de-
scribed above for PRIORCULS.

Whenever MYCIN creates a new context using thesec modcls, it prints

out the name of the new node in the tree, e.g.:

------ ORGANISM-1------

Thus the user is familiar with MYCIN’s internal names for the cultures,
organisms, and drugs under discussion. The node names may then be used
in MYCIN’s questions at times when there may be ambiguity regarding
which node is the current context, e.g.:

Is the patient's illness with the staphylococcus (ORGANISM-2) a hospital-acquired infection?
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PRIORCULS

ASSOCWITH: PERSON

MAINPROPS: (SITE WHENCUL)

PROMPT1: (Were any organisms that were significant (but no longer
require therapeutic attention) isolated within the last
approximately 30 days?)

PROMPT2: (Any other significant earlier cultures from which pathogens
were isolated?)

PROPTYPE: PROP-CUL

SUBJECT: (PRCULRULES CULRULES)

SYN: (SITE (this * culture))

TRANS: (PRIOR CULTURES OF #)

TYPE: CULTURE-

CURORG

ASSOCWITH: CURCUL

MAINPROPS: (IDENT GRAM MORPH SENSITIVS)

PROMPT?2: (Any other organisms isolated from * for which you would like
a therapeutic recommendation?)

PROMPT3: (I will refer to the first offending organism from * as:)

PROPTYPE: PROP-ORG

SUBJECT: (ORGRULES CURORGRULES)

SYN: (IDENT (the *))

TRANS: (CURRENT ORGANISMS OF #)

TYPE: ORGANISM-

FIGURE 5-9 Context trees such as that shown in Figure 5-1
are generated from prototype context-types such as those shown
here. The defining properties are described in the text.

It should also be noted that when PROMPT1 or PROMPT?2 is used to
ask a question, the physician need not be aware that the situation is dif-
ferent from that occurring when FINDOUT asks questions. All the user
options described in Section 5.2.1 operate in the normal fashion.

Finally, the MAINPROPS property (later called INITIALDATA) re-
quires brief explanation. The claim was previously made that clinical pa-
rameters are traced and their values requested by FINDOUT only when
they are needed for evaluation of a rule that has been invoked. Yet we
must now acknowledge that certain LABDATA parameters are automati-
cally traced whenever a node for the context tree is created. The reason
for this departure is an attempt to keep the program acceptable to physi-
cians, Since the order of rules on UPDATED-BY lists is arbitrary, the order
in which questions are asked is somewhat arbitrary as well. We have found
that physicians are annoyed if the “basic” questions are not asked first, as
soon as the context is created. The MAINPROPS convention forces certain
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standard questions early in the characterization of a node in the context
tree. Parameters not on the MAINPROPS list are then traced in an arbi-
trary order that depends on the order in which rules are invoked. Since
the parameters on MAINPROPS lists are important pieces of information
that would uniformly be traced by FINDOUT anyway, the convention we
have implemented forces a standardized ordering of the “basic” questions
without generating useless information.

5.3.2 Explicit Mechanisms for Branching

There are two situations under which MYCIN attempts to add new nodes
to the context tree. The simpler case occurs when rules explicitly reference
contexts that have not yet been created. Suppose, for example, MYCIN is
trying to determine the identity of a current organism and therefore in-
vokes the following CURORGRULE:

IF: 1) The identity of the organism is not known
with certainty, and
2) This current organism and prior organisms of
the patient agree with respect to the foliowing
properties: GRAM MORPH
THEN: There is weakly suggestive evidence that each of
them is a prior organism with the same identity
as this current organism

The second condition in the premise of this rule references other nodes
in the tree, namely nodes of the type PRIORORGS. If no such nodes exist,
the MONITOR asks FINDOUT to trace PRIORORGS in the normal fash-
ion. The difference is that PRIORORGS is not a clinical parameter but a
context-type. FINDOUT therefore uses PROMPT1 of PRIORORGS to ask
the user if there is at least one organism. If so, an instantiation of PRIOR-
ORGS is added to the context tree, and its MAINPROPS are traced.
PROMPT? is then used to see if there are any additional prior organisms,
and the procedure continues until the user indicates there are no more
PRIORORGS that merit discussion. Finally, FINDOUT returns the list of
prior organisms to the MONITOR so that the second condition in the rule
above can be evaluated.

5.3.3 Implicit Mechanisms for Branching

There are two kinds of implicit branching mechanisms. One of these is
closely associated with the example of the preceding section. As shown in
Figure 5-1, a prior organism is associated with a prior culture. But the
explicit reference to prior organisms in the rule above made no mention
of prior cultures. Thus if FINDOUT tries to create a PRIORORGS in
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response to an explicit reference but finds there are no PRIORCULS, the
program knows there is an implied need to ask the user about prior cul-
tures before asking about prior organisms. Since PRIORCULS are asso-
ciated with the patient, and since the patient node already exists in the
context tree, only one level of implicit branching is required in the evalu-
ation of the rule.

The other kind of implicit branching occurs when the MONITOR
attempts to evaluate a rule for which no appropriate context exists. For
example, the first rule invoked in an effort to execute the goal rule is a
CURORGRULE (see RULE090, Figure 5-8). Since no current organism
has been created at the time the MONITOR is passed this CURORGRULE,
MYCIN automatically attempts to create the appropriate nodes and then
to apply the invoked rule to each.

5.4 Selection of Therapy

The preceding discussion concentrated on the premise of MYCIN’s prin-
cipal goal rule (RULE092). This section explains what happens when the
premise is found to be true and the two-step action clause is executed.
Unlike other rules in the system, the goal rule does not lead to a conclusion
(Section 5.2.2) but instead instigates actions. The functions in the action
of the goal rule thus correspond to the <actfunc> class that was introduced
in the BNF description. The first of these functions causes a list of potential
therapies to be created. The second allows the best drug or drugs to be
selected from the list of possibilities.

5.4.1 Creation of the Potential Therapy List

There is a class of decision rules, the THERULES, that are never invoked
by MYCIN’s regular control structure because they do not occur on the
UPDATED-BY list of any clinical parameter. These rules contain sensitivity
information for the various organisms known to the system, for example:

IF:  The identity of the organism Is pseudomonas
THEN: | recommend therapy chosen from among the following drugs:

1 - colistin (.98)
2 - polymyxin (.96)
3 - gentamicin (.96)
4 - carbenicillin (.65)
5 - sulfisoxazole (.64)

The numbers associated with each drug are the probabilities that a Pseu-
domonas isolated at Stanford Hospital will be sensitive (in vitro) to the in-
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dicated drug. The sensitivity data were acquired from Stanford’s micro-
biology laboratory (and could easily be adjusted to reflect changing
resistance patterns at Stanford or the data for some other hospital desiring
a version of MYCIN with local sensitivity information). Rules such as the
one shown here provide the basis for creating a list of potential therapies.
There is one such rule for every kind of organism known to the system.
MYCIN selects drugs only on the basis of the identity of offending
organisms. Thus the program’s first task is to decide, for each current
organism deemed to be significant, which hypotheses regarding the or-
ganism’s identity (IDENT) are sufficiently likely that they must be consid-
ered in choosing therapy. MYCIN uses the CF’s of the various hypotheses
in order to select the most likely identities. Each identity is then given an
item number (see below) and the process is repeated for each significant
current organism. The Set of Indications for therapy is then printed out,

e.g.:

My therapy recommendation will be based on the following possible
identities of the organism(s) that seem to be significant:

<ltem 1> The identity of ORGANISM-1 may be
STREPTOCOCCUS-GROUP-D

<Item 2> The identity of ORGANISM-1 may be
STREPTOCOCCUS-ALPHA

<ltem 3> The identity of ORGANISM-2 is PSEUDOMONAS

Each item in this list of therapy indications corresponds to one of the
THERULES. Thus MYCIN retrieves the list of potential therapies for each
indication from the associated THERULE. The default (in vitro) statistical
data are also retrieved. MYCIN then replaces the default sensitivity data
with real data about those of the patient’s organisms, if any, for which
actual sensitivity information is available from the laboratory. Furthermore,
if MYCIN has inferred sensitivity information from the in vivo perfor-
mance of a drug that has already been administered to the patient, this
information also replaces the default sensitivity data. Thus the compiled
list of potential therapies is actually several lists, one for each item in the
Set of Indications. Each list contains the names of drugs and, in addition,
the associated numbers representing MYCIN’s judgment regarding the
organism’s sensitivity to each of the drugs.

5.4.2 Selecting the Preferred Drug from the List

When MYCIN recommends therapy, it tries to suggest a drug for each of
the items in the Set of Indications. Thus the problem reduces to selecting
the best drug from the therapy list associated with each item. Clearly, the
probability that an organism will be sensitive to a drug is an important
factor in this selection process. However, there are several other consid-
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erations. MYCIN'’s strategy is to select the best drug on the basis of sensi-
tivity information but then to consider contraindications for that drug.
Only if a drug survives this second screening step is it actually recom-
mended. Furthermore, MYCIN also looks for ways to minimize the num-
ber of drugs recommended and thus seeks therapies that cover for more
than one of the items in the Set of Indications. The selection/screening
process is described in the following two subsections.

Choosing the Apparent First-Choice Drug

The procedure used for selecting the apparent first-choice drug is a com-
plex algorithm that is somewhat arbitrary and is thus currently (1974)
under revision. This section describes the procedure in somewhat general
terms since the actual LISP functions and data structures are not partic-
ularly enlightening.

There are three initial considerations used in selecting the best therapy
for a given item:

1. the probability that the organism is sensitive to the drug;
2. whether the drug is already being administered;

3. the relative efficacy of drugs that are otherwise equally supported by
the first two criteria.

As is the case with human consultants, MYCIN does not insist on a
change in therapy if the physician has already begun a drug that may work,
even if that drug would not otherwise be MYCIN’s first choice. Drugs with
sensitivity numbers within .05 of one another are considered to be almost
identical on the basis of the first criterion. Thus the rule in the previous
section, for example, indicates no clear preference among colistin, poly-
myxin, and gentamicin® for Pseudomonas infections (if default sensitivity
information from the rule is used). However, our collaborating experts
have ranked the relative efficacy of antimicrobials on a scale from 1 to 10.
The number reflects such factors as whether the drug is bacteriostatic or
bacteriocidal or its tendency to cause allergic sensitization. Since genta-
micin has a higher relative efficacy than either colistin or polymyxin, it is
the first drug considered for Pseudomonas infections (unless known sensi-
tivity information or previous drug experience indicates that an alternate
choice is preferable).

Once MYCIN has selected the apparent best drug for each item in the
Set of Indications, it checks to see if one of the drugs is also useful for one
or more of the other indications. For example, if the first-choice drug for

SEd. note: Amikacin and tobramycin were not yet available in 1974 when this rule was written.
The knowledge base was later updated with the new drug information.
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Item 1 is the second-choice drug for Item 2 and if the second-choice drug
for Item 2 is almost as strongly supported as the first-choice drug, Item
I's first-choice drug also becomes Item 2’s first-choice drug. This strategy
permits MYCIN to attempt to minimize the number of drugs to be rec-
ommended.

A similar strategy is used to avoid giving two drugs of the same drug
class. For example, MYCIN knows that if the first choice for one item is
penicillin and the first choice for another is ampicillin, then the ampicillin
may be given for both indications (because ampicillin covers essentially all
organisms sensitive to penicillin).

In the ideal case MYCIN will find a single drug that effectively covers
for all the items in the Set of Indications. But even if each item remains
associated with a different drug, a screening stage to look for contraindi-
cations is required. This rule-based process is described in the next sub-
section. It should be stressed, however, that the manipulation of drug lists
described above is algorithmic; i.e., it is coded in LISP functions that are
called from the action clause of the goal rule. There is considerable “knowl-
edge” in this process. Since rule-based knowledge provides the foundation
of MYCIN’s ability to explain its decisions, it would be desirable eventually
to remove this therapy selection method from functions and place it in
decision rules.®

Rule-Based Screening for Contraindications

Unlike the complex list manipulations described in the preceding subsec-
tion, criteria for ruling out drugs under consideration may be effectively
placed in rules. The rules in MYCIN for this purpose are termed OR-
DERRULES. A sample rule of this type is:

IF: 1) The therapy under consideration is tetracycline, and
2) The age (in years) of the patient is less than 13
THEN: There is strongly suggestive evidence (.8) that
tetracycline is not a potentiai therapy for use
against the organism

In order to use MONITOR and FINDOUT with such rules, we must con-
struct appropriate nodes in the context tree and must be able to charac-
terize them with clinical parameters. The context-type used for this
purpose is termed POSSTHER and the parameters are classified as PROP-
THER. Thus when MYCIN has selected the apparent best drugs for the
items in the Set of Indications, it creates a context corresponding to each
of these drugs. POSSTHER contexts occur below CURORGS in the context
tree. FINDOUT is then called to trace the relevant clinical parameter,

SEd. note: See the next chapter for a discussion of how this was later accomplished.
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which collects contraindication information (i.e., this becomes a new goal
statement), and the normal recursive mechanism through the MONITOR
insures that the proper ORDERRULLES are invoked.

ORDERRULES allow a great deal of drug-specific knowledge to be
stored. For example, the rule above insures that tetracycline is ruled out
in youngsters who still have developing bone and teeth.” Similar rules tell
MYCIN never to give streptomycin or carbenicillin alone, not to give sul-
fonamides except in urinary tract infections, and not to give cephalothin,
clindamycin, lincomycin, vancomycin, cefazolin, or erythromycin if the pa-
tient has meningitis. Other ORDERRULES allow MYCIN to consider the
patient’s drug allergies, dosage modifications, or ecological considerations
(e.g., save gentamicin for Pseudomonas, Serratia, and Hafnia unless the pa-
tient is so sick that you cannot risk using a different aminoglycoside while
awaiting lab sensitivity data). Finally, there are rules that suggest appro-
priate combination therapies (e.g., add carbenicillin to gentamicin for
known Pseudomonas infections). In considering such rules MYCIN often is
forced to ask questions that never arose during the initial portion of the
consultation. Thus the physician is asked additional questions during the
period after MYCIN has displayed the items in the Set of Indications but
before any therapy is actually recommended.

After the presumed first-choice drugs have been exposed to the OR-
DERRULE screening process, MYCIN checks to see whether any of the
drugs is now contraindicated. If so, the drug-ranking process is repeated.
New first-choice drugs are then subjected to the ORDERRULES. The pro-
cess continues until all the first-choice drugs have been instantiated as
POSSTHERS. These then become the system’s recommendations. Note
that this strategy may result in the recommendation of drugs that are only
mildly contraindicated so long as they are otherwise strongly favored. The
therapy recommendation itself takes the following form:

My preferred therapy recommendation is as follows:
In order to cover for ltems <1> <2> <3>;
Give the following in combination:

1. PENICILLIN
Dose: 285,000 UNITS/KG/DAY - IV

2. GENTAMICIN
Dose: 1.7 MG/KG Q8H - IV OR IM
Comments: MODIFY DOSE IN RENAL FAILURE

The user may also ask for second, third, and subsequent therapy recom-
mendations until MYCIN is able to suggest no reasonable alternatives. The
mechanism for these iterations is merely a repeat of the processes described
above but with recommended drugs removed from consideration.

7Ed. note: This rule ignores any statement of the mechanism whereby its conclusion follows
from its premise. The lack of underlying “support” knowledge accounts for changes intro-
duced in GUIDON when MYCIN’s rules were used for education. See Part Eight for further
discussion of this point.
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5. 5 Mechanisms for Storage of Patient Data

5.5.1

Changing Answers to Questions

If a physician decides he or she wants to change a response to a question
that has already been answered, MYCIN must do more than merely re-
display the prompt, accept the user’s new answer, and make the appro-
priate change to the value of the clinical parameter in question. In general,
the question was originally asked because the premise of a decision rule
referenced the clinical parameter. Thus the original response affected the
evaluation of at least one rule, and subsequent pathways in the reasoning
network may have been affected as well. It is therefore necessary for MY-
CIN somehow to return to the state it was in at the time the question was
originally asked. Its subsequent actions can then be determined by the
corrected user response.

Reversing all decisions made since a question was asked is a complex
problem, however. The most difficult task is to determine what portions
of a parameter’s cumulative CF preceded or followed the question requir-
ing alteration. In fact, the extra data structures needed to permit this kind
of backing up are so large and complicated, and would be used so seldom,
that it seems preferable simply to restart the consultation from the begin-
ning when the user wants to change one of his or her answers.

Restarting is of course also less than optimal, particularly if it requires
that the physician reenter the answers to questions that were correct the
first time around. Our desire to make the program acceptable to physicians
required that we devise some mechanism for changing answers, but re-
starting from scratch also had obvious drawbacks regarding user accep-
tance of the system. We therefore needed a mechanism for restarting MY-
CIN’s reasoning process but avoiding questions that had already been
answered correctly. When FINDOUT asks questions, it therefore uses the
following three-step algorithm:

1. Before asking the question, check to see if the answer is already stored
(in the Patient Data Table—see Step 3 below); if the answer is there, use
that value rather than asking the user; otherwise go to Step 2.

2. Ask the question using PROMPT or PROMPT1 as usual.

3. Store the user’s response in the dynamic record of facts about the pa-
tient, called the Patient Data Table, under the appropriate clinical pa-
rameter and context.

The Patient Data Table, then, is a growing record of the user’s responses
to questions from MYCIN. It is entirely separate from the dynamic data
record that is explicitly associated with the nodes in the context tree. Note
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that the Patient Data Table contains only the text responses of the user—
there is no CF information (unless included in the user’s response), nor
are there data derived from MYCIN’s rule-based inferences.

The Patient Data Table and the FINDOUT algorithm make the task
of changing answers much simpler. The technique MYCIN uses is the
following:

a. Whenever the user wants to change the answer to a previous question,
he or she enters CHANGE <numbers>, where <numbers> is a list of
the questions whose answers need correction.

b. MYCIN looks up the indicated question numbers in its question record.

¢. The user’s responses to the indicated questions are removed from the
current Patient Data Table.

d. MYCIN reinitializes the system, erasing the entire context tree, includ-
ing all associated parameters; however it leaves the Patient Data Table
intact except for the responses deleted in (c). '

e. MYCIN restarts the consultation from the beginning.

This simple mechanism results in a restarting of the Consultation System
but does not require that the user enter correct answers a second time.
Since the Patient Data Table is saved, Step 1 of the FINDOUT algorithm
above will find all the user’s responses until the first question requiring
alteration is reached. Thus the first question asked the user after he or she
gives the CHANGE command is, in fact, the earliest of the questions he
or she wants to change. There may be a substantial pause after the
CHANGE command while MYCIN reasons through the network to the
first question requiring alteration, but a pause is to be preferred over a
mechanism requiring reentry of all answers. The implemented technique
is entirely general because answers to questions regarding context tree
propagation are also stored in the Patient Data Table.

5.5.2 Remembering Patients for Future Reference

When a consultation is complete, the Patient Data Table contains all re-
sponses necessary for generating a complete consultation for that patient.
It is therefore straightforward to store the Patient Data Table (on disk or
tape) so that it may be reloaded in the future. FINDOUT will automatically
read responses from the table, rather than ask the user, so a consultation
may be run several times on the basis of only a single interactive session.

There are two reasons for storing Patient Data Tables for future ref-
erence. One is their usefulness in evaluating changes to MYCIN’s knowl-
edge base. The other is the resulting ability 10 reevaluate patients once new
clinical information becomes available.
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Evaluating New Rules

New rules may have a large effect on the way a given patient case is handled
by MYCIN. For example, a single rule may reference a clinical parameter
not previously sought or may lead to an entirely new chain in the reasoning
network. It is therefore useful to reload Patient Data Tables and run a new
version of MYCIN on old patient cases. A few new questions may be asked
(because their responses are not stored in the Patient Data Table). Conclu-
sions regarding organism identities may then be observed, as may the pro-
gram’s therapeutic recommendations. Any changes from the decisions
reached during the original run (i.e., when the Patient Data Table was
created) must be explained. When a new version of MYCIN evaluates
several old Patient Data Tables in this manner, aberrant side effects of new
rules may be found. Thus a library of stored patient cases provides a useful
mechanism for screening new rules before they become an integral part
of MYCIN’s knowledge base.

Reevaluating Patient Cases

The second use for stored Patient Data Tables is the reevaluation of patient
data once additional laboratory or clinical information becomes available.
If a user answers several questions with UNKNOWN during the initial
consultation session, MYCIN’s advice will of course be based on less than
complete information. After storing the Patient Data Table, however, the
physician may return for another consultation in a day or so once he or
she has more specific information. MYCIN can use the previous Patient
Data Table for responses to questions whose answers are still up to date.
The user therefore needs to answer only those questions that reference
new information. A mechanism for the physician to indicate directly what
new data are available has not yet been automated, however.®

A related capability to be implemented before MYCIN becomes avail-
able in the clinical setting is a SAVE command.® If a physician must leave
the computer terminal midway through a consultation, this option will save
the current Patient Data Table on the disk. When the physician returns to
complete the consultation, he or she will reload the patient record and the
session will continue from the point at which the SAVE command was
entered.

It should be stressed that saving the current Patient Data Table is not
the same as saving the current state of MYCIN’s reasoning. Thus, as we
have stated above, changes to MYCIN'’s rule corpus may result in different
advice from the same Patient Data Table.

8Ed. note: A RESTART option was subsequently developed to permit reassessment of cases
over time.

9Ed. note: This option was also subsequently implemented.
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5.6 Suggested Improvements to the System

This section summarizes some ideas for improvement of the consultation
program described in this chapter. Each of the topics mentioned is the
subject of current (1974) efforts by one or more of the researchers asso-
ciated with the MYCIN project.

5.6.1 Dynamic Ordering of Rules

The order in which rules are invoked by the MONITOR is currently con-
trolled solely by their order on the UPDATED-BY property of the clinical
parameter being traced.!® The order of rules on the UPDATED-BY prop-
erty is also arbitrary, tending to reflect nothing more than the order in
which rules were acquired. Since FINDOUT sends all rules on such lists
to the MONITOR and since our certainty factor combining function is
commutative, the order of rules is unimportant.

Some rules are much more useful than others in tracing the value of
a clinical parameter. For example, a rule with a six-condition premise that
infers the value of a parameter with a low CF requires a great deal of work
(as many as six calls to FINDOUT) with very little gain. On the other hand,
a rule with a large CF and only one or two premise conditions may easily
provide strong evidence regarding the value of the parameter in question.
It may therefore be wise for FINDOUT to order the rules in the UP-
DATED-BY list on the basis of both information content (CF) and the work
necessary to evaluate the premise. Then if the first few rules are success-
fully executed by the MONITOR, the CF associated with one of the values
of the clinical parameter may be so large that invocation of subsequent
rules will require more computational effort than they are worth. If FIN-
DOUT therefore ignores such rules (i.e., does not bother to pass them to
the MONITOR), considerable time savings may result. Furthermore, entire
reasoning chains will in some cases be avoided, and the number of ques-
tions asked the user could accordingly be decreased.!!

5.6.2 Dynamic Ordering of Conditions Within Rules

The MONITOR diagram in Figure 5-6 reveals that conditions are evalu-
ated strictly in the order in which they occur within the premise of the
rule. The order of conditions is therefore important, and the most com-

10An exception to this point is the self-referencing rules—see Section 5.2.3.
p p g

YEd. note: Many of these ideas were later implemented and are briefly mentioned in Chapter
4. For example, meta-rules provided a mechanism for encoding strategies to help select the
most pertinent rules in a set, and the concept of a unity path was implemented to favor chains
of rules that reached conclusions with certainty at each step in the chain.
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monly referenced clinical parameters should be placed earliest in the prem-
ise.

Suppose, however, that in a given consultation the clinical parameter
referenced in the fourth condition of a rule has already been traced by
FINDOUT because it was referenced in some other rule that the MONI-
TOR has already evaluated. As currently designed, MYCIN checks the first
three conditions first, even if the fourth condition is already known to be
false. Since the first three conditions may well require calls to FINDOUT,
the rule may generate unnecessary questions and expand useless reasoning
chains.

The solution to this problem would be to redesign the MONITOR so
that it reorders the premise conditions, first evaluating those that reference
clinical parameters that have already been traced by FINDOUT. In this
way a rule will not cause new questions or additions to the reasoning net-
work if any of its conditions are known to be false at the outset.'?

5.6.3 Prescreening of Rules

An alternate approach to the problem described in the preceding section
would be for FINDOUT to judge the implications of every parameter it
traces. Once the value has been determined by the normal mechanism,
FINDOUT could use the LOOKAHEAD list for the clinical parameter in
order to identify all rules referencing the parameter in their premise con-
ditions. FINDOUT could then evaluate the relevant conditions and mark
the rule as failing if the condition turns out to be false. Then, whenever
the MONITOR begins to evaluate rules that are invoked by the normal
recursive mechanism, it will check to see if the rule has previously been
marked as false by FINDOUT. If so, the rule could be quickly ruled out
without needing to consider the problem of reordering the premise con-
ditions.

At first glance, the dynamic reordering of premise conditions appears
to be a better solution than the one just described. The problem with rule
prescreening is that it requires consideration of all rules on the parameter’s
LOOKAHEAD list, some of which may never actually be invoked during
the consultation.'3

5.6.4 Placing All Knowledge in Rules

Although most of MYCIN'’s knowledge is placed in decision rules, we have
pointed out several examples of knowledge that is not rule-based. The
simple lists and knowledge tables may be justified on the basis of efficiency,

12£d. note: The preview mechanism in MYCIN was eventually implemented to deal with this
issue.
13Ed. note: It was for this reason that the idea outlined here was never implemented.
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especially since those knowledge structures may be directly accessed by
rules,

However, the algorithmic mechanisms for therapy selection are some-
what more bothersome. Although we have managed to put many drug-
related decision criteria in the ORDERRULES, the mechanisms for cre-
ating the potential therapy lists and for choosing the apparent first-choice
drug are programmed explicitly in a series of relatively complex LISP
functions. Since MYCIN’s ability to explain itself is based on rule retrieval,
the system cannot give good descriptions of these drug selection proce-
dures. It is therefore desirable to place more of the drug selection knowl-
edge in rules.

Such efforts should provide a useful basis for evaluating the power of
our rule-based formalism. 1f the goal-oriented control structure we have
developed is truly general, one would hope that algorithmic approaches
to the construction and ordering of lists could also be placed in decision
rule format. We therefore intend to experiment with ways for incorporat-
ing the remainder of MYCIN’s knowledge into decision rules that are in-
voked by the standard MONITOR/FINDOUT process.'*

5.6.5 The Need for a Context Graph

The context tree used by MYCIN is the source of one of the system’s
primary problems in attempting to simulate the consultation process. Every
node in the context tree leads to the uppermost patient node by a single
pathway. In reality, however, drugs, patients, organisms, and cultures are
not interrelated in this highly structured fashion. For example, drugs are
often given to cover for more than one organism. The context tree does
not permit a single CURDRUG or PRIORDRUG to be associated with
more than a single organism. What we need, therefore, is a network of
contexts in the form of a graph rather than a pure tree. The reasons why
MYCIN currently needs a tree-structured context network are explained
in Section 5.1.2. We have come to recognize that a context graph capability
is an important extension of the current system, however, and this will be
the subject of future design modifications.!> When implemented, for ex-
ample, it will permit a physician to discuss a prior drug only once, even
though it may have been given to cover for several prior organisms.

1Ed. note: Rule-based encoding of the therapy selection algorithm was eventually undertaken
and is described in the next chapter.

*Ed. note: This problem was never adequately solved and remains a limitation of the EMYCIN
architecture (Part Five). A partial solution was achieved when predicate functions were de-
veloped that allowed a specific rule to be applied to all contexts of a given type and to draw
inferences in one part of the context tree based on findings elsewhere in the context tree.
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William J. Clancey

A program that is designed to provide sophisticated expert advice must
cope with the needs of naive users who may find the advice puzzling or
difficult to accept. This chapter describes additions to MYCIN that provide
for explanations of its therapy decisions, the lack of which was a shortcom-
ing of the original therapy recommendation code described in Section 5.4
of Chapter 5. It deals with an optimization problem that seeks to provide
“coverage” for organisms while minimizing the number of drugs pre-
scribed. There are many factors to consider, such as prior therapies and
drug sensitivities, and a person often finds it hard to juggle all of the
constraints at once. When the optimal solution is provided by a computer
program, its correctness may not be immediately obvious to the user. This
motivates our desire to provide an explanation capability to justify the
program’s results.

The explanation capability derives from two basic programming con-
siderations. First, we have used heuristics that capture what expert physi-
cians consider to be good medical practice. Thus, while the program is not
designed to mimic the step-by-step problem-solving behavior of a physi-
cian, its chief decision criteria have been provided by expert physicians. it
is accordingly plausible that the criteria will make sense to other physicians.

The second consideration is that the program must maintain records
of decisions that were made. These are used for explaining what occurred

This chapter is an expanded version of a paper originally appearing in Proceedings of the [JCAI
1977. Used by permission of International Joint Conferences on Artificial Intelligence, Inc.;
copies of the Proceedings are available from William Kaufmann, Inc., 95 First Street, Los
Altos, CA 94022.
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during the optimization process and why the output was not different.
While the maintenance of records for explanation purposes is not new
(e.g., see Winograd, 1972; Bobrow and Brown, 1975; Scragg, 1975a;
1975b), the means that we use to retrieve them are novel, namely a state
transition representation of the algorithm. Our work demonstrates that a
cleanly structured algorithm can provide both sophisticated performance
and a simple, useful explanation capability.

6. 1 The Problem

The main problem of the therapy selector is to prescribe the best drug for
each organism thought to be a likely cause of the infection, while mini-
mizing the total number of drugs. These two constraints often conflict: the
best prescription for, say, four items may require four different drugs,
although for any patient usually no more than two drugs need to be given
(or should be, for reasons of drug interaction, toxic side effects, cost, etc.).

The original therapy program lacked a general scheme for relating
the local constraints (best drug for each item) to the global constraint (few-
est possible number of drugs). As we began to investigate the complexities
of therapy selection, it became necessary to patch the program to deal with
the special cases we encountered. Before long we were losing track of how
any given change would affect the program’s output. We found it increas-
ingly difficult to keep records during the program execution for later use
in the explanation system; indeed, the logic of the program was too con-
fusing to explain easily. We decided to start over, aiming for a more struc-
tured algorithm that would provide sophisticated therapy, and by its very
organization would provide simple explanations for a naive user. The ques-
tion was this: what organization could balance these two, sometimes con-
tradictory, goals?

Because we wanted to formulate judgments that could be provided by
physicians and would appear familiar o them, we decided not to use math-
ematical methods such as evaluation polynomials or Bayesian analysis. On
the other hand, MYCIN’s inferential rule representation seemed to be
inadequate because of the general algorithmic nature of the problem (i.e.,
iteration and complex data structures). We turned our attention to sepa-
rating out the optimization criteria of therapy selection from control in-
formation (specifications for iteratively applying the heuristics). As is dis-
cussed below, the key improvement was to encode canonically the
optimization performed by the inner loop of the algorithm.
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6.2 Our Solution

6.2.1

Local and Global Criteria

We found that viewing the optimization problem in terms of local and
global criteria provides a fruitful means for structuring the problem. Local
criteria are the item-specific factors, such as sensitivity of the organism to
preferred drugs, toxicity of drugs, the desire to “reserve” drugs for more
serious diseases, and the desire to continue current therapy if possible.
Global criteria deal with the entire recommendation; we wished to mini-
mize the number of drugs, prescribing only two drugs if possible to cover
for all of the most likely organisms.! In addition, there were a few patient
factors to consider, such as allergies to antibiotics.

Besides providing for optimal therapy, we wished to provide for an
explanation capability that would list simple descriptions of the therapy
selection heuristics used by the algorithm, as well as reasons for not making
a different recommendation.

$ PLAN » GENERATE $ TEST » QUTPUT
(local factors) (gtobai) (global)
$ RANK $» PROPOSE weemeese—p APPROVE ~=——seae—epr PRESCRIBE

FIGURE 6-1 Therapy selection viewed as a plan-generate-
and-test process.

After clearly stating these design goals, we needed an implementation
scheme that would bring about the optimization. The key to our solution
was the use of a generate-and-test control structure for separately apply-
ing the local and global factors. Figure 6-1 shows the steps of the plan-
generate-and-test method and, below them, the corresponding steps of
our algorithm. Briefly, the steps are

1. plan by ranking the drugs—the local factors are considered here;

"Here we realized that we could group the items into those that should definitely be treated
(“most likely”) and those that could be left out when three or more drugs would be necessary.
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Number of drugs of each rank:

Instruction forst second third
1 1 0 0
2 2 0 0
3 1 1 0
4 1 0 1

FIGURE 6-2 Instructions for the therapy proposer.

2. propose a recommendation and test it, thus dealing with the global
factors; and

3. make a final recommendation.

The following sections consider these steps in more detail.

6.2.2 Plan

We start with an initial list of drugs to which each organism is sensitive
and sort it by applying production rules for ranking. These reranking rules
are applied independently for every organism to be treated. The chief
purpose of this sorting process is to incorporate drug sensitivity informa-
tion for the organisms growing in cultures taken from the patient.? Thus
we arrive at a patient-specific list of drugs for each organism, reranked
and grouped into first, second, and third ranks of choices.

Because this sorting process is a consideration specific to each orga-
nism, we refer to it as a local criterion of optimal therapy. We call it (loosely)
a planning step because it makes preparations for later steps.

6.2.3 Generate

The second step of the algorithm is to take the ordered drug lists and
generate possible recommendations. This is done by a proposer that selects
subsets of drugs (a recommendation) from the collection of drugs for all
of the organisms to be treated. Selection is directed by a fixed, ordered set
of instructions that specify how many drugs to select from each preference
group. The first few instructions are listed in Figure 6-2. For example, the

2A typical rule might be “If the organism growing {rom the culture appears to be resistant
to the drug, then classify the drug as a third choice.”
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third instruction tells the proposer to select a drug from each of the first
and second ranks. Instructions for one- and two-drug recommendations
are taken from a static list; those for recommendations containing three
or more drugs are generated from a simple pattern.

It should be clear that the ordering of the instructions ensures that
two of the global criteria will be satisfied: prescribing one or two drugs if
possible, and selecting the best possible drug(s) for each organism. An
instruction therefore serves as a canonical description of a recommenda-
tion. Consequently, we can “reduce” alternate subsets of drugs to this form
(the number of drugs of each rank) and compare them.

6.24 Test

Since all of the drugs for all of the organisms were grouped together for
use by the proposer, it is quite possible that a proposed recommendation
will not cover all of the most likely organisms. For example, the proposal
might have two drugs that are in the first rank for one item but are second
or third for other items, or are not even on their lists. Thus the first step
of testing is to make sure that all of the most likely items are covered.

The second test ensures that each drug is in a unique drug class. For
example, a proposal having both gentamicin and streptomycin would be
rejected because these two drugs are aminoglycosides and therefore cause
a “redundant” effect.

The last test is for patient-specific contraindications. These rules take
into account allergies, age of the patient, pregnancy, etc. These rules are
relatively expensive to apply, so they are done last, rather than applying
them to each possible drug in the plan step. With this test we have dealt
with the last global criterion of therapy selection. The first proposal that
satisfies these three tests becomes the therapy advice. The details of drug
prescription will not be considered further here; it consists primarily of
algorithmic dosage calculation and adjustment in the case of renal failure.

6.2.5 Performance

We have found that the algorithm described above is manageable and
performs well. It is straightforward to add new rules for ranking the drugs
and for testing the proposals. The canonical instructions are relatively
fixed, but it would not be difficult, for example, to provide infection-spe-
cific instruction sets. The program has made acceptable recommendations
for a library of more than 100 meningitis patients.
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6.3 The Explanation Capability

We will now consider how the structure of the algorithm is exploited to
produce simple explanations. A sample question about therapy selection
is shown in Figure 6-3. The medical decisions that were applied to the
drug chloramphenicol are listed as a logical sequence of reasons, which is
produced by retrieving and printing traces that were left behind by the
program. The trace retrieval program is termed CHRONICLER because
its explanations consist of a chronicle of decision events.

* WHY DID YOU GIVE CHLORAMPHENICOL FOR E.COLI IN REC-1?
CHLORAMPHENICOL was prescribed for ITEM-2 in RECOMMENDATION-1:

Since
-- CHLORAMPHENICOL is a treatment of choice for e.coli in meningitis
-- ITEM-2 is sensitive to CHLORAMPHENICOL
-- there were no contraindications for it

CHLORAMPHENICOL was prescribed because it was part of the
recommendation that covers for all of the items, using the fewest number
of drugs.

FIGURE 6-3 A question concerning why a drug was pre-
scribed. (User’s input follows the double asterisks.)

Figure 6-4 shows the general organization of the Explanation System.
The traces (discussed below) constitute a dynamic event history. A chronicle
of events is printed by using a process transition diagram to selectively
retrieve the relevant traces.

Figure 6-5 shows the kind of transition diagram we use to represent
the steps of therapy selection. The states roughly correspond to the gen-
erate and test steps shown in Figure 6-1. The arrows are labeled as positive
(pos) and negative (neg) criteria (i.e., criteria that support or oppose the
recommendation of a given drug). These correspond to the medical strat-
egies, e.g., “The drug is on the treatment-of-choice list for the organism
(the initial list) and so was considered to cover for the organism.” If a drug
is prescribed, there must be a sequence of positive criteria leading from
the first state to the output state. These are the reasons offered the user
as an explanation for prescribing the drug. To make the explanation
clearer, the states are reordered into three groups (planning criteria, testing
criteria, and generate and output criteria) to conform to the following
general scheme:

Since
--<plan criteria>
--<test criteria>
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(dynamic)
MYCIN o
TRACES
PROGRAM Refé?{ds
behind
Event
History
(static)
PROCESS
TRANSITION »| CHRONICLER
Event
DIAGRAM Structure
Answer to
Question
USER

FIGURE 6-4 Organization of the Explanation System.

(therefore)
<generate and output criteria>

On the other hand, if a drug is not prescribed, there must be a negative
criterion to explain why it dropped out of contention if it was on the initial
list. Failure to prescribe can be caused by either failure to consider the

pos pos

criteria criteria
STATE-1  =————— STATE-2 ————P STATE-3 ‘&< ——=Pp STATE-N
initalize
. {goal}
neg criteria neg criteria '
STATE-2 STATE-3
{tinal} {final}

FIGURE 6-5 The state transition diagram.
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** WHY DIDN'T YOU SUGGEST PENICILLIN IN REC-1 FOR STAPH-COAG +?
PENICILLIN was not prescribed for ITEM-1 in RECOMMENDATION-1:

PENICILLIN was discounted for ITEM-1 because it is NOT DEFINITE that the item is sensitive to this drug.
There are other potential therapies under consideration which are much more desirable, viz., current therapies
or drugs to which the item is definitely sensitive.

Would you like to see some details? ** YES

The drugs to which the staphylococcus-coag-pos is sensitive are: cephalothin (1.0) vancomycin (1.0)
gentamycin (1.0) tobramycin (1.0) erythromycin-and-tetracycline (1.0) chioramphenicol-and-erythromycin (1.0)
[RULE098 RULEA445]

Would you like to know about the history of PENICILLIN in the decision
process up to this point? ** YES

-- PENICILLIN is a treatment of choice for staphylococcus-coag-pos in meningitis. But as explained above,
PENICILLIN was discounted.

FIGURE 6-6 Question concerning why a drug was not pre-
scribed.

drug (plan) or failure of a test. A third possibility is that the drug wasn’t
part of an acceptable recommendation, but was otherwise a plausible choice
(when considered alone). In this case, the drug needs to be considered in
the context of a full recommendation for the patient. (See Figure 6-9 for
an example.)

Figure 6-6 shows an example of a question concerning why a drug was
not prescribed. In response to a question of this type, the negative criterion
is printed and the user is offered an opportunity to see the positive deci-
sions accrued up to this point. In this example we see that penicillin was
not prescribed because it is not definite that the item is sensitive to this
drug. That is the negative criterion. The fact that penicillin was a potential
treatment of choice permitted its transition to the reranking step.* This is
shown in Figure 6-7. When MYCIN’s rules (as opposed to Interlisp code)
are used to make a transition decision, we can provide further details, as
shown in Figure 6-6.

For questions involving two drugs, e.g., “Why did you prescribe chlor-
amphenicol instead of penicillin for Item-1?”, CHRONICLER is invoked
to explain why the rejected drug was not given. Then the user is offered
the opportunity to see why the other drug was given.

To summarize, MYCIN leaves behind traces that record the application

3Events are recorded as properties of the drugs they involve. The trace includes other contexts
such as the item being considered. To deal with iteration, events are of two types: enduring
and pass-specific. Enduring events represent decisions that, once made, are never reconsidered,
e.g., the initial ranking of drugs for each organism. Pass-specific events may not figure in the
final result; they may indicate computation that failed to produce a solution, e.g., proposing
a drug as part of a specific recommendation. Thus traces are accessed by drug name and the
context of the computation, including which pass of the generate-and-test process produced
the final solution.

1Penicillin is given for staph-coag+ only if the organism is known to be sensitive to that agent.
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"treatment of choice”
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FIGURE 6-7 Trace history for the question shown in Figure
6-6.

of the positive and negative criteria. The Explanation System uses a state
transition diagram that represents the steps of the algorithm to retrieve
the relevant traces in a logical order.

It is interesting to note that CHRONICLER is described well by Bob-
row and Brown’s synthesis, contingent knowledge, and analysis (SCA) par-
adigm for understanding systems (Bobrow and Brown, 1975). Contingent
knowledge is a record of program-synthesized observations for later use
by an analysis program to answer questions or comment on the observed
system. In CHRONICLER the traces and transition diagram constitute the
contingent knowledge structure. Synthesis (abstraction of results) is per-
formed by the therapy selector as it classifies the drugs in the various
decision steps and records its “observations” in traces. Analysis is per-
formed by CHRONICLER as it “reads” the traces, interpreting them in
terms of the state transition diagram. The meteorology question-answering
system described by Brown et al. (1973) uses a similar knowledge repre-
sentation.

6.4 Comparing Alternative Recommendations

The therapy program will print alternative recommendations if asked to
do so. This is done by eliminating drugs from contention and rerunning
the algorithm. Figure 6-8 shows an example of an alternative recommen-
dation and a comparison of this alternative to the algorithm’s first choice.
The comparison is made by simply reducing the recommendations to can-
onical form and then determining their relative ranking in the list of in-
structions. A recommendation is better than another when it reduces to a
better instruction, i.e., when the preference description of its drugs appears
earlier in the fixed list of instructions. It is also possible that the comparison
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Do you wish to see the next choice therapy?
** YES
Which, if any, of the above drugs do you wish eliminated from

consideration?
**CHLORAMPHENICOL

{REC-2] Next best therapy recommendation:
In order to cover for items <2 3 4>
Give: GENTAMICIN

in order to cover for item <1>:
Give: METHICILLIN

RECOMMENDATION-2 is substantially inferior to RECOMMENDATION-1 (because
it requires more drugs or drugs that are not as good).

Would you like to see details of this comparison?
** YES

Looking at the coverage of the ‘most likely' items, we see that:

RECOMMENDATION-1 consists of 1 first choice drug
(CHLORAMPHENICOL for ITEM-2 and ITEM-3) and 1 second choice drug
(GENTAMICIN for ITEM-3 and ITEM-1)

RECOMMENDATION-2 consists of 1 first choice drug (METHICILLIN
for ITEM-1) and 1 third choice drug (GENTAMICIN for ITEM-2 and
ITEM-3)

Do you wish to see the next choice therapy?
* NO

FIGURE 6-8 Comparing alternative recommendations.

will be a “close call,” because one of the recommendations might use better
drugs for the most likely organisms but cover for fewer of the less likely
organisms. Again, it is the ability to encode output canonically that gives
us the ability to make such a direct comparison of alternatives.

6. 5 Evaluating a User’s Choice of Therapy

The comparison described above is useful to a physician who prefers to
give therapy other than MYCIN’s first choice and wishes to know if the
program truly considers it to be suboptimal therapy. However, it is tedious
for the user to request all possible alternatives to be printed, so we offer
the user the opportunity to enter his or her own choice of drugs for the
organisms that require therapy (Figure 6-9).

Fach drug the user suggests for an item is first formed into a standard
internal question for CHRONICLER: “Why wasn’t <drug> prescribed for
<item>?" If there is a negative criterion about this drug for this item in
the event history, it is printed and the user is given the option of selecting
another drug.
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** WHY DIDN'T YOU GIVE AMPICILLIN-AND-GENTAMICIN FOR E.COL! IN REC-1?

AMPICILLIN-AND-GENTAMICIN was not prescribed for ITEM-2 in
RECOMMENDATION-1:

AMPICILLIN-AND-GENTAMICIN is a plausible choice for e.coli in
meningitis, and was not explicitly rejected for use against ITEM-2 in
RECOMMENDATION-1. However, the best therapy did not include
AMPICILLIN-AND-GENTAMICIN.

If you would like to suggest therapy which includes
AMPICILLIN-AND-GENTAMICIN, your regimen will be compared to MYCIN's.
Would you like to do this? ** YES

For each item in turn, enter the drug you would have prescribed in
RECOMMENDATION-1.

In order to minimize the number of drugs in your recommendation, you may
not want to prescribe therapy for every item. ltems which represent the
most likely organisms are indicated with a plus sign (+).

+ ITEM-1 -- the staphylococcus-coag-pos ** GENTAMICIN
+ ITEM-2 -- the e.coli ** AMPICILLIN GENTAMICIN

+ ITEM-3 -- the kiebsiella-pneumoniae ** GENTAMICIN

+ ITEM-4 -- the pseudomonas-aeruginose **

[Checking for contraindications . . .]
[Considering AMPICILLIN-AND-GENTAMICIN for use against INFECTION-1 . . ]
[No contraindications found . . .]

[Now comparing your prescription to MYCIN's . . ]

Perhaps you did not realize that one of the drugs you prescribed,
GENTAMICIN, will cover for ITEM-4, an item for which you did not
prescribe therapy. | have changed your prescription accordingly.

ORGANISMS Your regimen MYCIN’s regimen
Drug -- Choice Drug -- Choice
“most likely”
ITEM-3 GENTAMICIN -- 3rd CHLORAMPHENICOL-AND-
GENTAMICIN -- 1st
ITEM-2 AMPICILLIN-AND- CHLORAMPHENICOL -- 1st
GENTAMICIN -~ 1st
ITEM-1 GENTAMICIN -- 2nd GENTAMICIN -- 2nd
“less likely"
ITEM-4 GENTAMICIN -- 2nd GENTAMICIN -- 2nd

(The desirability of a drug is defined to be its lowest ranking for the
items it covers.)

Both prescriptions include fewer than 3 drugs, so we must look at how
highly ranked each prescription is for the most likely organism(s).

Your prescription of 1 first choice drug (AMPICILLIN for ITEM-2) and 1
third choice drug (GENTAMICIN for ITEM-3) is not as good as MYCIN's
prescription of 1 first choice drug (CHLORAMPHENICOL for ITEM-2 and
Item-3) and 1 second choice drug (GENTAMICIN for ITEM-1).

[You may refer to your regimen as RECOMMENDATION-2 in later questions.}

FIGURE 6-9 Evaluating a user’s choice of therapy.
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Once the user has supplied a set of drugs to cover for all of the most
likely organisms, his or her proposal is tested for the criteria of drug class
uniqueness and patient-specific factors (described in Section 6.2.4). If the
proposal is approved, this recommendation is compared to the program’s
choice of therapy, just as the program compares its alternatives to its own
first-choice recommendation.? It is also possible to directly invoke the ther-
apy comparison routine.

6.6 Some Unsolved Problems

There are a number of improvements that could be made to this system.
Among the most important to potential users is a more flexible question
format. In our experience physicians tend to address short, unspecific
questions to the program, e.g., “Why ampicillin?” or “What happened to
E. coli?” Processing these questions will require a fairly sophisticated pre-
processor that can help the user define such a question more precisely, or
at least make some plausible assumptions.

Second, we anticipate the need to explain the heuristics, which now
are describable only in a template form.® A user might like to know what
a “drug sensitivity” is or why a heuristic was not used. Providing simple,
fixed-text definitions is easy, but discussing a particular heuristic to the
extent of explaining why it was not applicable is well beyond the capabilities
of this Explanation System. One possible solution is to represent the heu-
ristics internally in a rulelike form with a set of preconditions in program-
readable predicates, like MYCIN’s rules. We could then say, for example,
that a drug was lowered in rank because its sensitivity was “intermediate,”
even though it was a current therapy (which would otherwise be reason
for continuing to prescribe it). Thus we would be splitting a medical cri-
terion into its logical components. Moreover, human explanations some-
times include hypothetical relations that have important instructional ben-
efit, e.g., “If all of the drugs had been intermediate, then this current
therapy would have been given preference.” In general, paraphrasing ex-
planations, explaining why an event failed to take place, and relating de-
cisions are difficult because they require some representation of what the
heuristics mean. Providing a handle on these underlying concepts is a far
cry from a system that can only fill in templates.

Third, it is important to justify the medical heuristics and initial pref-

*The explanations at this point are more pedagogical than those supplied when the program
compares its own alternatives. It seems desirable to phrase comparisons as positively as pos-
sible to avoid irritating the user,

6That is, each medical heuristic has a string with blanks associated with it, e.g., <drug> “was
discounted for” <item> “because it was not definite that the item was sensitive to this drug.”
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erence ranks for drugs. We now provide text annotations that include ref-
erences and comments about shortcomings and intent.

Finally, we could further develop the tutorial aspects of the Explana-
tion System. Rather than passively answering questions, the Explanation
System might endeavor to teach the user about the overall structure and
philosophy of the program (upon request!). For example, a user might
appreciate the optimality of the results better if he or she understood the
separation of factors into local and global considerations. Besides explain-
ing the results of a particular run, an Explanation System might charac-
terize individual decisions in the context of the program’s overall design.
Parts Six and Eight discuss the issues of explanation and education in more
detail.

6.7 Conclusions

We have developed a system that prescribes optimal therapy and is able to
provide simple, useful explanations. The system is based on a number of
design ideas that are summarized as follows:

1. separate the local and global optimality criteria;

2. apply these criteria in comprehensible steps—a generate-and-test con-
trol structure was found to be suitable;

3. justify selected therapies by using canonical descriptions that
a. juggle several global criteria at once, and
b. permit direct comparison of alternatives; and

4. exploit the simple control structure by using a state transition diagram
to order retrieval of traces.

In addition, the Explanation System has benefited from a few simplifying
factors:

1. There are relatively few traces (fewer than 50 drugs to keep track of
and fewer than 25 strategies that might be applied).

2. There is a single basic question: Why was (or was not) a particular drug
prescribed for a particular organism?

While this therapy selection algorithm may appear straightforward, it
is the product of trying to codify an unstructured list of factors presented
by physicians. The medical experts did not order these considerations and
were not sure how conflicting constraints should be resolved. The frame-
work we imposed, namely, invoking optimality criteria locally and globally
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within a generate-and-test control structure and describing output can-
onically, provided a language that enabled us to codify the physicians’ judg-
ments, thereby significantly improving the performance and manageability
of the program.

Moreover, this well-structured design enables us to print simple ex-
planations of the program’s decisions and to compare alternative solutions,
We have provided this facility because we want the program to be used
intelligently. If a user is confused or disagrees with the optimality criteria,
we expect him or her to feel free to reject the results. The explanation
system we have provided is intended to encourage thoughtful use of the
therapy selection program.



PART THREE

Building a Knowledge
Base



Knowledge Engineering

From early experience building the DENDRAL system, it was obvious to
us that putting domain-specific knowledge into a program was a bottleneck
in building knowledge-based systems (Buchanan et al., 1970). In other 