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Foreword 

The last seven years have seen the field of artificial intelligence (AI) trans­
formed. This transformation is not simple, nor has it yet run its course. 
The transformation has been generated by the emergence of expert systems. 
Whatever exactly these are or turn out to be, they first arose during the 
1970s, with a triple claim: to be AI systems that used large bodies of heu­
ristic knowledge, to be AI systems that could be applied, and to be the 
wave of the future. The exact status of these claims (or even whether my 
statement of them is anywhere close to the mark) is not important. The 
thrust of these systems was strong en.ough and the surface evidence im­
pressive enough to initiate the transformation. This transformation has at 
least two components. One comes from the resulting societal interest in 
AI, expressed in the widespread entrepreneurial efforts to capitalize on 
AI research and in the Japanese Fifth-Generation plans with their subse­
quent worldwide ripples. The other component comes from the need to 
redraw the intellectual map of AI to assimilate this new class of systems­
to declare it a coherent subarea, or to fragment it into intellectual subparts 
that fit the existing map, or whatever. 

A side note is important. Even if the evidence from politics is not 
persuasive, science has surely taught us that more than one revolution can 
go on simultaneously. Taken as a whole, science is currently running at 
least a score of revolutions-not a small number. AI is being transformed 
by more than expert systems. In particular, robotics, under the press of 
industrial productivity, is producing a revolution in AI in its own right. 
Although progressing somewhat more slowly than expert systems at the 
moment, robotics in the end will produce an effect at least as large, not 
just on the applied side, but on the intellectual structure of the field as 
well. Even more, both AI and robotics are to some degree parts of an 
overarching revolution in microelectronics. In any event, to focus on one 
revolution, namely expert systems, as I will do here for good reason, is not 
to deny the importance of the others. 

The book at whose threshold this foreword stands has (also) a triple 
claim on the attention of someone interested in expert systems and Al. 
First, it provides a detailed look at a particular expert system, MYCIN. 
Second, it is of historical interest, for this is not just any old expert system, 
but the granddaddy of them all-the one that launched the field. Third, 
it is an attempt to advance the science of AI, not just to report on a system 
or project. Each of these deserves a moment's comment, for those readers 
who will tarry at a foreword before getting on with the real story. 

MYCIN as Example It is sometimes noted that the term expert system 
is a pun. It designates a system that is expert in some existing human art, 

xi 
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and thus that operates at human scale-not on some trifling, though per­
haps illustrative task, not on some toy task, to use the somewhat pejorative 
term popular in the field. But it also designates a system that plays the role 
of a consultant, i.e., an expert who gives advice to someone who has a task. 
Such a dual picture cannot last long. The population of so-called expert 
systems is rapidly becoming mongrelized to include any system that is ap­
plied, has some vague connection with AI systems and has pretentions of 
success. Such is the fate of terms that attain (if only briefly) a positive halo, 
when advantage lies in shoehorning a system under its protective and pro­
ductive cover. 

MYCIN provides a pure case of the original pun. It is expert in an 
existing art of human scale (diagnosing bacterial infections and prescribing 
treatment for them) and it operates as a consultant (a physician describes 
a patient to MYCIN and the latter then returns advice to the physician). 
The considerations that came to the fore because of the consultant mode­
in particular, explanation to the user-play a strong role throughout all of 
the work. Indeed, MYCIN makes explicit most of the issues with which 
any group who would engineer an expert system must deal. It also lays 
out some of the solutions, making clear their adequacies and inadequacies. 
Because the MYCIN story is essentially complete by now and the book tells 
it all, the record of initial work and response gives a perspective on the 
development of a system over time. This adds substantially to the time­
sliced picture that constitutes the typical system description. It is a good 
case to study, even though, if we learn our lessons from it and the other 
early expert systems, we will not have to recapitulate exactly this history 
again. 

One striking feature of the MYCIN story, as told in this book, is its 
eclecticism. Those outside a system's project tend to build brief, trenchant 
descriptions of a system. MYCIN is an example of approach X leading to 
a system of type Y. Designers themselves often characterize their own sys­
tems in such abbreviated terms, seeking to make particular properties 
stand out. And, of course, critics do also, although the properties they 
choose to highlight are not usually the same ones. Indeed, I myself use 
such simplified views in this very foreword. But if this book makes anything 
clear, it is that the MYCIN gang (as they called themselves) continually 
explored, often with experimental variants, the full range of ideas in the 
AI armamentarium. We would undoubtedly see that this is true of many 
projects if we were to follow their histories carefully. However, it seems to 
have been particularly true of the effort described here. 

MYCIN as History MYCIN comes out of the Stanford Heuristic Pro­
gramming Project (HPP), the laboratory that without doubt has had the 
most impact in setting the expert-system transformation in motion and 
determining its initial character. I said that MYCIN is the granddaddy of 
expert systems. I do not think it is so viewed in HPP. They prefer to talk 
about DENDRAL, the system for identifying chemical structures from 
mass spectrograms (Lindsay, Buchanan, Feigenbaum, and Lederberg, 
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1980), as the original expert system (Feigenbaum, 1977). True, DENDRAL 
was the original system built by the group that became HPP, and its origins 
go back into the mid- l 960s. Also true is that many basic design decisions 
that contributed to MYCIN came from lessons learned in DENDRAL. For 
instance, the basic production-system representation had been tried out in 
DENDRAL for modeling the mass spectrometer, and it proved highly ser­
viceable, as seen in all the work on Meta-DENDRAL, which learned pro­
duction rules. And certainly true, as well, is that the explicit focus on the 
role of expertise in AI systems predates MYCIN by a long stretch. I trace 
the focus back to Joel Moses's dissertation at M.l.T. in symbolic integration 
(Moses, 1967), which led to the MACSYMA project on symbolic mathe­
matics (Mathlab Group, 1977), a system often included in the roster of 
early expert systems. 

Even so, there are grounds for taking DENDRAL and MACSYMA as 
precursors. DENDRAL has strong links to classical problem-solving pro­
grams, with a heuristically shaped combinatorial search in a space of all 
isomers at its heart and a representation (the chemical valence model) that 
provided the clean space within which to search. DENDRAL started out 
as an investigation into scientific induction (on real tasks, to be sure) and 
only ended up becoming an expert system when that view gradually 
emerged. MYCIN, on the other hand, was a~ure rule-based system that 
worked in an area unsupported by a clean, scientifically powerful repre­
sentation. Its search was limited enough (being nongenerative in an im­
portant sense) to be relegated to the background; thus MYCIN could be 
viewed purely as a body of knowledge. MYCIN embodied all the features 
that have (it must be admitted) become the cliches of what expert systems 
are. MACSYMA also wears the mantle of original expert system somewhat 
awkwardly. It has never been an AI system in any central way. It has been 
regarded by those who created it, and now nurture it, as not belonging to 
the world of AI at all, but rather to the world of symbolic mathematics. 
Only its roots lie in AI-though they certainly include the attitude that 
computer systems should embody as much expertise as possible (which 
may or may not imply a large amount of knowledge). 

My position here is as an outsider, for I did not witness the day-to-day 
development of MYCIN in the research environment within which (in the 
early 1970s) DENDRAL was the reigning success and paradigm. But I still 
like my view that MYCIN is the original expert system that made it evident 
to all the rest of the world that a new niche had opened up. Indeed, an 
outsider's view may have a validity of its own. It is, at least, certain that in 
the efflorescence of medical diagnostic expert systems in the 1970s (CAS­
NET, INTERNIST, and the Digitalis Therapy Advisor; see Szolovits, 
1982), MYCIN epitomized the new path that had been created. Thus, 
gathering together the full record of this system and the internal history 
of its development serves to record an important event in the history of 
Al. 

MYCIN as Science The first words of this foreword put forth the 
image of a development within AI of uncertain character, one that needed 
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to be assimilated. Whatever effects are being generated on the social or­
ganization of the field by the development of an applied wing of AI, the 
more important requirement for assimilation, as far as I am concerned, 
comes from the scientific side. Certainly, there is nothing very natural about 
expert systems as a category, although the term is useful for the cluster of 
systems that is causing the transformation. 

AI is both an empirical discipline and an engineering discipline. This 
has many consequences for its course as a science. It progresses by building 
systems and demonstrating their performance. From a scientific point of 
view, these systems are the data points out of which a cumulative body of 
knowledge is to develop. However, an AI system is a complex join of many 
mechanisms, some new, most familiar. Of necessity, on the edge of the art, 
systems are messy and inelegant joins-that's the nature of frontiers. It is 
difficult to extract from these data points the scientific increments that 
should be added to the cumulation. Thus, AI is case-study science with a 
vengeance. But if that were not enough of a problem, the payoff structure 
of AI permits the extraction to be put off, even to be avoided permanently. 
If a system performs well and breaks new ground-which can often be 
verified by global output measures and direct qualitative assessment-then 
it has justified its construction. Global conclusions, packaged as the dis­
cursive views of its designers, are often the only increments to be added 
to the cumulated scientific base. 

Of course, such a judgment is too harsh by half. The system itself 
constitutes a body of engineering know-how. Through direct study and 
emulation, the next generation of similar systems benefits. However, the 
entire history of science shows no alternative to the formation of explicit 
theories, with their rounds of testing and modification, as the path to gen­
uine understanding and control of any domain, whether natural or tech­
nological. In the present state of Al, it is all too easy to move on to the 
next system without devoting sufficient energies to trying to understand 
what has already been wrought and to doing so in a way that adds to the 
explicit body of science. An explosive development, such as that of expert 
systems, is just the place where engineering progress can be expected to 
occur pell-mell, with little attention to obtaining other than global scientific 
lessons. 

This situation is not to be condemned out of hand, but accepted as a 
basic condition of our field. For the difficulties mentioned above stem from 
the sources that generate our progress. Informal and experiential tech­
niques work well because programmed systems are so open to direct in­
spection and assessment, and because the loop to incremental change and 
improvement is so short, with interactive creation and modification. AI, 
like any other scientific field, must find its own particular way to science, 
building on its own structure and strengths. But the field is young, and 
that way is not yet clear. We must continue to struggle to find out how to 

extract scientific knowledge from our data points. The situation is hardly 
unappreciated, and many people in the field are trying their hands at 
varying approaches, from formal theory to more controlled system exper-
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imentation. There has been exhortation as well. Indeed, I seem to have 
done my share of exhortation, especially with respect to expert systems. 
The editors of the present volume, in inviting me to provide a foreword 
to it, explicitly noted that the book was (in small part) an attempt to meet 
the calls I had made for more science from our expert-systems experi­
ments. And recently, Harry Pople asserted that his attempt at articulating 
the task domain of medical diagnosis for INTERNIST was (again, in small 
part) a response to exhortation (he called it criticism) of mine (Pople, 1982). 
I am not totally comfortable with the role of exhorter-I prefer to be in 
the trenches. However, if comments of mine have helped move anyone to 
devote energy to extracting the science from our growing experience with 
expert systems, I can only rejoice. 

The third claim of this book, then, is to extract and document the 
scientific lessons from the experience with MYCIN. This extraction and 
documentation occurs at two levels. First, there has been a very substantial 
exploration in the last decade of many of the questions that were raised 
by MYCIN. Indeed, there are some 26 contributors to this book, even 
though the number of people devoted to MYCIN proper at any one time 
was never very large. Rather, the large number of contributors reflects the 
large number of follow-on and alternative-path studies that have been un­
dertaken. This book documents this work. It does so by collecting the 
papers and reports of the original researchers that did the work, but the 
present editors have made substantial revisions to smooth the whole into 
a coherent story. This story lays to rest the simplified view that MYCIN 
was a single system that was designed, built, demonstrated and refined; or 
even that it was only a two-stage affair-MYCIN, the original task-specific 
system, followed by a single stage of generalization into EMYCIN, a kernel 
system that could be used in other tasks. The network of studies was much 
more ramified, and the approaches considered were more diverse. 

The step to EMYCIN does have general significance. It represents a 
major way we have found of distilling our knowledge and making it avail­
able to the future. It is used rather widely; for example, the system called 
EXPERT (Kulikowski and Weiss, 1982) bears the same relation to the CAS­
NET system as EMYCIN does to MYCIN. It is of a piece with the strategy 
of building special-purpose problem-oriented programming languages to 
capture a body of experience about how to solve a class of problems, a 
strategy common throughout computer science. The interesting aspect of 
this step, from the perspective of this foreword, is its attempt to capitalize 
on the strong procedural aspects of the field. The scientific abstraction is 
embodied in the streamlined and clean structure of the kernel system (or 
programming language). The scientific advance is communicated by direct 
study of the new artifact and, importantly, by its use. Such kernel systems 
still leave much to be desired as a vehicle for science. For example, evalu­
ation still consists in global discussion of features and direct experience, 
and assessment of its use. (Witness the difficulty that computer science has 
in assessing programming languages, an entirely analogous situation.) Still, 
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the strategy represented by EMYCIN is an important and novel response 
by AI to producing science. 

The second level at which this book addresses the question of science 
is in surveying the entire enterprise and attempting to draw the major 
lessons (see especially the last chapter). Here the editors have faced a hard 
task. Of necessity, they have had to deal with all the complexity of a case 
study (more properly, of a collection of them). Thus, they have had to 
settle for reflecting on the enterprise and its various products and expe­
riences, and to encapsulate these in what I referred to above as qualitative 
discussion. But they have a long perspective available to them, and there 
is a lot of substance in the individual studies. Thus, the lessons that they 
draw are indeed a contribution to our understanding of expert systems. 

In sum, for all these reasons I've enumerated, I commend to you a 
volume that is an important addition to the literature on AI expert systems. 
It is noteworthy that the Stanford Heuristic Programming Project previ­
ously produced an analogous book describing the DENDRAL effort and 
summarizing their experience with it (Lindsay, Buchanan, Feigenbaum and 
Lederberg, 1980). Thus, HPP has done its bit twice. It is well ahead of 
many of the rest of us in providing valuable increments to the accumulation 
of knowledge about expert systems. 

Pittsburgh, Pennsylvania 
March 1984 
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Preface 

Artificial intelligence, or Al, is largely an experimental science-at least as 
much progress has been made by building and analyzing programs as by 
examining theoretical questions. MYCIN is one of several well-known pro­
grams that embody some intelligence and provide data on the extent to 
which intelligent behavior can be programmed. As with other AI pro­
grams, its development was slow and not always in a forward direction. 
But we feel we learned some useful lessons in the course of nearly a decade 
of work on MYCIN and related programs. 

In this book we share the results of many experiments performed in 
that time, and we try to paint a coherent picture of the work. The book is 
intended to be a critical analysis of several pieces of related research, per­
formed by a large number of scientists. We believe that the whole field of 
AI will benefit from such attempts to take a detailed retrospective look at 
experiments, for in this way the scientific foundations of the field will 
gradually be defined. It is for all these reasons that we have prepared this 
analysis of the MYCIN experiments. 

The MYCIN project is one of the clearest representatives of the experi­
mental side of Al. It was begun in the spring of 1972 with a set of discus­
sions among medical school and computer science researchers interested 
in applying more intelligence to computer programs that interpret medical 
data. Shortliffe's Ph.D. dissertation in 1974 discussed the problem and the 
MYCIN program that implemented a solution. In itself, the 1974 version 
of MYCIN represents an experiment. We were testing the hypothesis, ad­
vanced in previous work at Stanford, that a rule-based formalism was suf­
ficient for the high performance, flexibility, and understandability that we 
demanded in an expert consultation system. The positive answer to this 
question is one of the best-known lessons in the history of Al. 

In addition to, or rather because of, the original MYCIN program and 
the medical knowledge base that was accumulated for that work, many 
derivative projects explored variations on the original design. EMYCIN 1 

is among the best known of these, but there are several others. In this book 
we discuss many of the experiments that evolved in the period from 1972 

1We use the name EMYCIN for the system that evolved from MYCIN as a framework for 
building and running new expert systems. The name stands for "essential MYCIN," that is, 
MYCI N's framework without its medical knowledge base. We have been reminded that E­
MYCI N is the name of a drug that Upjohn Corp. has trademarked. The two names should 
not be confused: EMYCIN should not be ingested, nor should E-MYCIN be loaded into a 
computer. 

xvii 
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to 1982 based on the 1972-1974 design effort. We have chosen those 
pieces of work that, at least in retrospect, can be seen as posing dear 
questions and producing clear results, most of which were documented in 
the AI or medical literature and in technical reports. 

We are taking a retrospective view, so as to restate questions and rein­
terpret results in a more meaningful way than that in which they were 
originally documented. Among other things, we now present these pieces 
of work as a collected whole, whereas they were not originally written as 
such. Each paper is heavily edited-new sections have been added to put 
the work in context, old sections have been deleted to avoid redundancies 
and "red herrings," and the entire text has been reworked to fit each paper 
into the unified picture. Each part begins with an overview chapter posing 
the central question of the section, discussing the implications of the ques­
tion in its historical context, and providing a current framework for inter­
preting the results. Some entirely new papers were prepared specifically 
for this book. In addition, we are including several papers and technical 
reports that have previously been difficult to find and will therefore be 
generally available for the first time. 

The last chapter is entirely new and could not have been written until 
the experiments were performed. It presents a set of conclusions that we 
have drawn from the experimental results. In a sense, the rest of the book 
discusses the data that support these conclusions. We believe this book is 
unique in its attempt to synthesize l 0 years of work in order to demonstrate 
scientific foundations and the way in which AI research evolves as key 
issues emerge. 
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In the early stages of the development of any science different men 
confronting the same range of phenomena, but not usually all the same 
particular phenomena, describe and interpret them in different ways. What is 
surprising, and perhaps also unique in its degree to the fields we call science, is 
that such initial divergences should ever largely disappear. 

T. S. Kuhn, The Structure of 
Scientific Revolutions (International 
Encyclopedia of Unified Science, 
vol. II, no. 2). Chicago: 
University of Chicago Press, 1962. 

The philosopher's treatment of a question is like the treatment of an illness. 

L. Wittgenstein, Philosophical 
Investigations, para. 255 (trans. 
G. E. M. Anscombe). New York: 
Macmillan, l 953. 

Every one then who hears these words of mine and does them will be like a 
wise man who built his house upon the rock; and the rain fell, and the floods 
came, and the winds blew and beat upon that house, but it did not fall, because 
it had been founded on the rock. And every one who hears these words of mine 
and does not do them will be like a foolish man who built his house upon the 
sand; and the rain fell, and the floods came, and the winds blew and beat against 
that house, and it fell; and great was the fall of it. 

Matthew 7:24-27 
(Revised Standard Version) 



PART ONE 

Background 



1 
The Context of the MYCIN 
Experiments 

Artificial Intelligence (AI) is that branch of computer science dealing with 
symbolic, nonalgorithmic methods of problem solving. Several aspects of 
this statement are important for understanding MYCIN and the issues 
discussed in this book. First, most uses of computers over the last 40 years 
have been in numerical or data-processing applications, but most of a per­
son's knowledge of a subject like medicine is not mathematical or quanti­
tative. It is symbolic knowledge, and it is used in a variety of ways in prob­
lem solving. Also, the problem-solving methods themselves are usually not 
mathematical or data-processing procedures but qualitative reasoning tech­
niques that relate items through judgmental rules, or heuristics, as well as 
through theoretical laws and definitions. An algorithm is a procedure that 
is guaranteed either to find the correct solution to a problem in a finite 
time or to tell you there is no solution. For example, an algorithm for 
opening a safe with three dials is to set the dials on every combination of 
numbers and try the lock after each one. Heuristic methods, on the other 
hand, are not guaranteed to work, but will often find solutions in much 
shorter times than will exhaustive trial and error or other algorithms. For 
the example of the safe, one heuristic is to listen for tumblers to drop into 
place. Few problems in medicine have algorithmic solutions that are both 
practical and valid. Physicians are forced to reason about an illness using 
judgmental rules and empirical associations along with definitive truths of 
physiology. 

MYCIN is an expert system (Duda and Shortliffe, 1983). By that we 
mean that it is an AI program designed (a) to provide expert-level solutions 
to complex problems, (b) to be understandable, and (c) to be flexible 
enough to accommodate new knowledge easily. Because we have designed 
MYCIN to provide advice through a consultative dialogue, we sometimes 
refer to it as a consultation system. 

There are two main parts to an expert system like MYCIN: a knowl­
edge base and an inference mechanism, or engine (Figure 1-1). In addition, 
there are often subprograms designed to facilitate interaction with users, 

3 
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FIGURE 1-1 Major parts of an expert system. Arrows indicate 
information flow. 

to help build a knowledge base, to explain a line of reasoning, and so forth. 
The knowledge base is the program's store of facts and associations it 

"knows" about a subject area such as medicine. A critical design decision 
is how such knowledge is to be represented within the program. There are 
many choices, in general. For MYCIN, we chose to represent knowledge 
mostly as conditional statements, or rules, of the following form: 

IF: There is evidence that A and B are true, 

THEN: Conclude there is evidence that C is true. 

This form is often abbreviated to one of the following: 

If A and B, then C 

A&B->C 

We refer to the antecedent of a rule as the premise or left-hand side (LHS) 
and to the consequent as the action or right-hand side (RHS). 

The inference mechanism can take many forms. We often speak of 
the control structure or control of inference to reflect the fact that there 
are different controlling strategies for the system. For example, a set of 
rules may be chained together, as in this example: 

If A, then B 

If B, then C 

A 

:.C 

(Rule 1) 

(Rule 2) 

(Data) 

(Conclusion) 
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This is sometimes called forward chaining, or data-directed inference, be­
cause the data that are known (in this case A) drive the inferences from 
left to right in rules, with rules chaining together to deduce a conclusion 
(C). 

MYCIN primarily uses backward chaining, or a goal-directed control 
strategy. The deductive validity of the argument is established in the same 
way, but the system's behavior is quite different. In goal-directed reasoning 
a system starts with a statement of the goal to achieve and works "back­
ward" through inference rules, i.e., from right to left, to find the data that 
establish that goal, for example: 

Find out about C 

If B, then C 

If A, then B 

:.If A, then C 

Question: Is A true? 

(Goal) 

(Rule 1) 

(Rule 2) 

(Implicit rule) 

(Data) 

Since there are many rule chains and many pieces of data about which the 
system needs to inquire, we sometimes say that MYCIN is an evidence­
gathering program. 

The whole expert system is used to perform a task, in MYCIN's case 
to provide diagnostic and therapeutic advice about a patient with an in­
fection as described in Section 1.2. We sometimes refer to the whole system, 
shown in Figure 1-1, as the performance system to contrast it with other 
subsystems not so directly related to giving advice. MYCIN contains an 
explanation subsystem, for example, which explains the reasoning of the 
performance system (see Part Six). 

Several of the chapters in this book deal with the problems of con­
structing a performance system in the first place. We have experimented 
with different kinds of software tools that aid in the construction of a new 
system, mostly by helping with the formulation and understanding of a 
new knowledge base. We refer to the process of mapping an expert's knowl­
edge into a program's knowledge base as knowledge engineering. 1 The in­
tended users of these kinds of tools are either (a) the so-called knowledge 
engineers who help an expert formulate and represent domain-specific 
knowledge for the performance system or (b) the experts themselves. Al-

1The term knowledge engineering was, to the best of our knowledge, coined by Edward Fei­
genbaum after Donald Michie's phrase epistemological engineering. Like the phrases expert system 
and knowledge-based system, however, it did not come into general use until about 1975. For 
more discussion of expert systems, see Buchanan and Duda (1983). 
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though either group might also run the performance system to test it, 
neither overlaps with the intended routine users of the performance sys­
tem. Our model is that engineers help experts build a system that others 
later use to get advice. Elaborating on the previous diagrams, we show this 
model in Figure 1-2. 

Choice of Programming Language 

LISP has been the programming language of choice for AI programs for 
nearly two decades (McCarthy et al., 1962). It is a symbol manipulation 
language of extreme flexibility based on a small number of simple con­
structs.2 We are often asked why we chose LISP for work on MYCIN, so 
a brief answer is included here. Above all, we needed a language and 
programming environment that would allow rapid modification and test­
ing and in which it was easy and natural to separate medical rules in the 
knowledge base from the inference procedures that use the rules. LISP is 
an interpretive language and thus does not require that programs be re­
compiled after they have been modified in order to test them. Moreover, 
LISP removes the distinction between programs and data and thus allows 
us to use rules as parts of the program and to examine and edit them as data 
structures. The editing and debugging facilities of Interlisp also aided our 
research greatly. 

Successful AI programs have been written in many languages. Until 
recently LISP was considered to be too slow and too large for important 
applications. Thus there were reasons to consider other languages. But for 
a research effort, such as this one, we were much more concerned with 
saving days during program development than with saving seconds at run 
time. We needed the flexibility that LISP offered. When Interlisp became 
available, we began using it because it promised still more convenience 
than other versions. Now that additional tools, such as EMYCIN, have been 
built on top of Interlisp, more savings can be realized by building new 
systems using those tools (when appropriate) than by building from the 
base-level LISP system. At the time we began work on MYCIN, however, 
we had no choice. 

I . I Historical Perspective on MYCIN 

As best as we can tell, production rules were brought into artificial intel­
ligence (AI) by Allen Newell, who had seen their power and simplicity 
demonstrated in Robert Floyd's work on formal languages and compilers 

2See Winston and Horn ( 1981 ), Charniak et al. ( 1980), and Allen (1978) for more information 
about the language itself. 
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(Floyd, 1961) at Carnegie-Mellon University. Newell saw ih production 
systems an elegant formalism for psychological modeling, a theme still 
pursued at Carnegie-Mellon University and elsewhere. Through conver­
sations between Newell and himself at Stanford in the 1960s (see Newell, 
1966), Edward Feigenbaum began advocating the use of production rules 
to encode domain-specific knowledge in DENDRAL. Don Waterman 
picked up on the suggestion, but decided to work with rules and heuristics 
of the game of poker (Waterman, 1970) rather than of mass spectrometry. 
His success, and Feigenbaum's continued advocacy, led to recoding much 
of DENDRAL's knowledge into rules (Lindsay et al., 1980). 

The DENDRAL program was the first AI program to emphasize the 
power of specialized knowledge over generalized problem-solving methods 
(see Feigenbaum et al., 1971). It was started in the mid-l960s by Joshua 
Lederberg and Feigenbaum as an investigation of the use of AI techniques 
for hypothesis formation. It constructed explanations of empirical data in 
organic chemistry, specifically, explanations of analytic data about the mo­
lecular structure of an unknown organic chemical compound.3 By the mid-
1970s there were several large programs, collectively called DENDRAL, 
which interacted to help organic chemists elucidate molecular structures. 
The programs are knowledge-intensive; that is, they require very special­
ized knowledge of chemistry in order to produce plausible explanations of 
the data. Thus a major concern in research on DENDRAL was how to 
represent specialized knowledge of a domain like chemistry so that a com­
puter program could use it for complex problem solving. 

MYCIN was an outgrowth of DENDRAL in the sense that many of 
the lessons learned in the construction of DENDRAL were used in the 
design and implementation of MYCIN. Foremost among these was the 
newfound power of production rules, as discussed in Chapter 2. The senior 
members of the DENDRAL team, Lederberg and Feigenbaum, had con­
vinced themselves and Bruce Buchanan that the AI ideas that made DEN­
DRAL work could be applied to a problem of medical import. At about 
that time, Edward Shortliffe had just discovered AI as a medical student 
enrolled in a Computer Science Department course entitled "Models of 
Thought Processes," taught at the time by Jerome Feldman. Also, Stanley 
Cohen, then Chief of Clinical Pharmacology at the Stanford University 
Medical School, had been working on a medical computing project, the 
MEDIPHOR drug interaction warning system (Cohen et al., 1974). He had 
sought Buchanan's involvement and had also just accepted Shortliffe as a 
research assistant on the project. In addition, the late George Forsythe, 
then Chairman of the Computer Science Department, was strongly sup­
portive of this kind of interdisciplinary research project and encouraged 

3Even more specifically, the data about the unknown compound were data from a mass 
spectrometer, an instrument that bombards a small sample of a compound with high-energy 
electrons and produces data on the resulting fragments. 



Historical Perspective on MYCIN 9 

Shortliffe in his efforts to obtain formal training in the field. Thus the 
scene was set for a collaborative effort involving Cohen, Buchanan, and 
Shortliffe-an effort that ultimately grew into Shortliffe's dissertation. 

After six months of collaborative effort on MEDIPHOR, our discus­
sions began to focus on a computer program that would monitor physi­
cians' prescriptions for antibiotics and generate warnings on inappropriate 
prescriptions in the same way that MEDIPHOR produced warnings re­
garding potential drug-drug interactions. Such a program would have 
needed to access data bases on three Stanford computers: the pharmacy, 
clinical laboratory, and bacteriology systems. It would also have required 
considerable knowledge about the general and specific conditions that 
make one antibiotic, or combination of antibiotics, a better choice than 
another. Cohen interested Thomas Merigan, Chief of the Infectious Dis­
ease Division at Stanford, in lending both his expertise and that of Stanton 
Axline, a physician in his division. In discussing this new kind of monitor­
ing system, however, we quickly realized that it would require much more 
medical knowledge than had been the case for MEDIPHOR. Before a 
system could monitor for inappropriate therapeutic decisions, it would 
need to be an "expert" in the field of antimicrobial selection. Thus, with 
minor modifications for direct data entry from a terminal rather than from 
patient data bases, a monitoring system could be modified to provide con­
sultations to physicians. Another appeal of focusing on an interactive sys­
tem was that it provided us with a short-term means to avoid the difficulty 
of linking three computers together to provide data to a monitoring sys­
tem. Thus our concept of a computer-based consultant was born, and we 
began to model MYCIN after infectious disease consultants. This model 
also conformed with Cohen's strong belief that a computer-based aid for 
medical decision making should suggest therapy as well as diagnosis. 

Shortliffe synthesized medical knowledge from Cohen and Axline and 
AI ideas from Buchanan and Cordell Green. Green suggested using In­
terlisp (then known as BBN-LISP), which was running at SRI International 
(then Stanford Research Institute) but was not yet available at the univer­
sity. Conversations with him also led to the idea of using Carbonell's pro­
gram, SCHOLAR (Carbonell, 1970a), as a model for MYCIN. SCHOLAR 
represented facts about the geography of South America in a large se­
mantic network and answered questions by making inferences over the 
net. However, this model was not well enough developed for us to see how 
a long dialogue with a physician could be focused on one line of reasoning 
at a time. We also found it difficult to construct semantic networks for the 
ill-structured knowledge of infectious disease. We turned instead to a rule­
based approach that Cohen and Axline found easier to understand, par­
ticularly because chained rules led to lines of reasoning that they could 
understand and critique. 

One important reason for the success of our early efforts was Short­
liffe's ability to provide quickly a working prototype program that would 
show Cohen and Axline the consequences of the rules they had stated at 
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each meeting. The modularity of the rules was an important benefit in 
providing rapid feedback on changes. Focusing early on a working pro­
gram not only kept the experts interested but also allowed us to design the 
emerging program in response to real problems instead of trying to imag­
ine the shape of the problems entirely in advance of their manifestations 
in context. 

Green recommended hiring Carli Scott as our first full-time employee, 
and the MYCIN research began to take shape as a coordinated project. 
Axline subsequently enlisted help from infectious disease fellows to com­
plement the expertise of Cohen's clinical pharmacology fellow. Graduate 
students from the Computer Science Department were also attracted to 
the work, partly because of its social relevance and partly because it was 
new and exciting. Randall Davis, for example, had been working on vision 
understanding at the Stanford AI Lab and had been accepted for medical 
school when he heard about MYCIN and decided to invest his research 
talents with us. 

In our first grant application (October, 1973), we described the goals 
of the project. 

For the past year and a half the Divisions of Clinical Pharmacology and 
Infectious Disease plus members of the Department of Computer Science 
have collaborated on initial development of a computer-based system (termed 
MYCIN) that will be capable of using both clinical data and judgmental de­
cisions regarding infectious disease therapy. The proposed research involves 
development and acceptable implementation of the following: 

A. CONSULTATION PROGRAM. The centra.l component of the MY­
CIN system is an interactive computer program to provide physicians with 
consultative advice regarding an appropriate choice of antimicrobial therapy 
as determined from data available from the microbiology and clinical chem­
istry laboratories and from direct clinical observations entered by the physi­
cian in response to computer-generated questions; 

B. INTERACTIVE EXPLANATION CAPABILITIES. Another impor­
tant component of the system permits the consultation program to explain 
its knowledge of infectious disease therapy and to justify specific therapeutic 
recommendations; 

C. COMPUTER ACQUISITION OF JUDGMENTAL KNOWLEDGE. 
The third aspect of this work seeks to permit experts in the field of infectious 
disease therapy to teach the MYCIN system the therapeutic decision rules 
that they find useful in their clinical practice. 

The submission of our initial grant application encouraged us to choose a 
name for the project on which we had already been working for two years. 
After failing to find a suitable acronym, we selected the name MYCIN at 
Axline's suggestion. This name is simply the common suffix associated with 
many antimicrobial agents. 

Although we were aiming at a program that would help physicians, 
we also realized that there were many computer science problems with 
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DART 

which we had to grapple. No other AI program, including DENDRAL, 
had been built using so much domain-specific knowledge so clearly sepa­
rated from the inference procedures. 

A schematic review of the history of the work on MYCIN and related 
projects is shown in Figure 1-3. MYCIN was one of several projects in the 
Stanford Heuristic Programming Project (HPP); others were DENDRAL, 
CONGEN, Meta-DENDRAL, and SU/X.4 There was much interaction 

·1Later renamed I-IASP/SIAP (Nii and Feigenbaum, 1978; Nii et al., 1982). 
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among the individuals working in HPP that is not shown in this simplified 
diagram, of course. Within the MYCIN project individuals were working 
on several nearly sepa,rable subprojects, some of which are shown: Ques­
tion Answering (QA), Inference (including certainty factors, or CF's, and 
the therapy recommendation code), Explanation, Evaluation, and Knowl­
edge Acquisition. These subprojects formed the basis of several of the 
experiments reported in this volume. All were well-focused projects since 
we were undertaking them partly to improve the knowledge base and the 
performance of MYCIN. Figure 1-3 shows roughly the chronology of 
work; however, in the organization of this book chronology is not empha­
sized. 

Ancient History 

Jaynes ( 1976) refers to a collection of 20,000-30,000 Babylonian tablets, 
about 20% of which contain sets of production rules ("omens") for gov­
erning everyday affairs. 5 These were already written and catalogued by 
about 650 B.c. He describes the form of each entry as "an if-clause or 
protasis followed by a then-clause or apodosis." For example, 

"If a horse enters a man's house and bites either an ass or a man, 
the owner of the house will die and his household will be scattered." 

"If a man unwittingly treads on a lizard and kills it, 
he will prevail over his adversary." 

Included in these are medical rules, correlating symptoms with prog­
noses. According to one of Jaynes' sources (Wilson, 1956; 1962), these 
tablets of scientific teachings were catalogued by subject matter around 700 
B.c. Among the left-hand sides quoted from the medical tablets are the 
following (Wilson, 1956): 

"If, after a day's illness, he begins to suffer from headache ... " 

"If, at the onset of his illness, he had prickly heat ... " 

"If he is hot (in one place) and cold (in another) ... " 

"If the affected area is clammy with sweat ... " 

Each clause is catalogued as appearing in 60-150 entries on the tablets. 
One right-hand side for the medical rules cited by Wilson is the following: 

" ... he will die suddenly." 

5We are indebted to James Bennett for pointing out this reference. 
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Thus we see that large collections of simple rules were used for medical 
diagnosis long before MYCIN and that some thought had been given to 
the organization of the knowledge base.6 

MYCIN's Task Domain-Antimicrobial 
Selection 

Because a basic understanding of MYCIN's task domain is important for 
understanding much of what follows, we include here a brief description 
of infectious disease diagnosis and therapy. 7 

1.2.1 The Nature of the Decision Problem 

An antimicrobial agent is any drug designed to kill bacteria or to arrest 
their growth. Thus the selection of antimicrobial therapy refers to the 
problem of choosing an agent (or combination of agents) for use in treating 
a patient with a bacterial infection. The terms antimicrobial and antibiotic 
are often used interchangeably, even though the latter actually refers to 
any one of a number of drugs that are isolated as naturally occurring 
products of bacteria or fungi. Thus the well-known penicillin mold is the 
source of an antibiotic, penicillin, that is used as an antimicrobial. Some 
antibiotics are too toxic for use in treating infectious diseases but are still 
used in research laboratories (e.g., dactinomycin) or in cancer chemother­
apy (e.g., daunomycin). Furthermore, some antimicrobials (such as the sul­
fonamides) are synthetic drugs and are therefore not antibiotics. There 
are also semisynthetic antibiotics (e.g., methicillin) that are produced in 
chemical laboratories by manipulating a naturally occurring antibiotic mol­
ecule. In writing about MYCIN we have tended not to rely on this formal 
distinction between antimicrobial and antibiotic and have used the terms 
as though they were synonymous. 

Antimicrobial selection would be a trivial problem if there were a single 
nontoxic agent effective against all bacteria capable of causing human dis­
ease. However, drugs that are highly useful against certain organisms are 
often not the most effective against others. The identity (genus) of the 
organism causing an infection is therefore an important clue for deciding 

6The fact that the rules on the tablets were themselves indexed by premise clauses would 
suggest that they were used in data-directed fashion. Yet the global organization of rules on 
tablets was by subject matter, so that medical rules were together, house-building rules to­
gether, and so on. This "big switch" organization of the knowledge base is an early instance 
of using rule groups to focus the attention of the problem solver, a pressing problem, espe­
cially in large, data-directed systems such as the Babylonian omens. 
7This section is based on a similar discussion by Shortliffe (1974). 
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what drugs are apt to be beneficial for the patient. Initially, MYCIN did 
not consider infections caused by viruses or pathogenic fungi, but since 
these other kinds of organisms are particularly significant as causes of 
meningitis, they were later added when we began to work with that do­
main. 

Selection of therapy is a four-part decision process. First, the physician 
must decide whether or not the patient has a significant infection requiring 
treatment. If there is significant disease, the organism must be identified 
or the range of possible identities must be inferred. The third step is to 
select a set of drugs that may be appropriate. Finally, the most appropriate 
drug or combination of drugs must be selected from the list of possibilities. 
Each step in this decision process is described below. 

Is the Infection Significant? 

The human body is normally populated by a wide variety of bacteria. 
Organisms can invariably be cultured from samples taken from a patient's 
skin, throat, or stool. These normal flora are not associated with disease in 
most patients and are, in fact, often important to the body's homeostatic 
balance. The isolation of bacteria from a patient is therefore not presump­
tive evidence of significant infectious disease. 

Another complication is the possibility that samples obtained from 
normally sterile sites (such as the blood, cerebrospinal fluid, or urinary 
tract) will be contaminated with external organisms either during the col­
lection process itself or in the microbiology laboratory where the cultures 
are grown. It is therefore often wise to obtain several samples and to see 
how many contain organisms that may be associated with significant dis­
ease. 

Because the patient does have a normal bacterial flora and contami­
nation of cultures may occur, determination of the significance of an in­
fection is usually based on clinical criteria. Does the patient have a fever? 
Is he or she coughing up sputum filled with bacteria? Does the patient 
have skin or blood findings suggestive of serious infection? Is his or her 
chest x-ray normal? Does the patient have pain or inflammation? These 
and similar questions allow the physician to judge the seriousness of the 
patient's condition and often demonstrate why the possibility of infection 
was considered in the first place. 

What Is the Organism's Identity? 

There are several laboratory tests that allow an organism to be identified. 
The physician first obtains a sample from the site of suspected infection 
(e.g., a blood sample, an aspirate from an abscess, a throat swabbing, or a 
urine specimen) and sends it to the microbiology laboratory for culture. 
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There the technicians first attempt to grow organisms from the sample on 
an appropriate nutritional medium. Early evidence of growth may allow 
them to report the morphological and staining characteristics of the or­
ganism. However, complete testing of the organism to determine a definite 
identity usually requires 24-48 hours or more. 

The problem with this identification process is that the patient may be 
so ill at the time when the culture is first obtained that the physician cannot 
wait two days before beginning antimicrobial therapy. Early data regarding 
the organism's staining characteristics, morphology, growth conformation, 
and ability to grow with or without oxygen may therefore become crucially 
important for narrowing down the range of possible identities. Further­
more, historical information about the patient and details regarding his or 
her clinical status may provide additional useful clues as to the organism's 
identity. 

What Are the Potentially Useful Drugs? 

Even once the identity of an organism is known with certainty, its range 
of antimicrobial sensitivities may be unknown. For example, although a 
Pseudomonas is usually sensitive to gentamicin, an increasing number of 
gentamicin-resistant Pseudomonae are being isolated. For this reason the 
microbiology technicians will often run in vitro sensitivity tests on an or­
ganism they are growing, exposing the bacterium to several commonly 
used antimicrobial agents. This sensitivity information is reported to the 
physician so that he or she will know those drugs that are likely to be 
effective in vivo (i.e., in the patient). 

Sensitivity data do not become available until one or two days ?fter 
the culture is obtained, however. The physician must therefore often select 
a drug on the basis of the list of possible identities plus the antimicrobial 
agents that are statistically likely to be effective against each of the ident­
ities. These statistical data are available from many hospital laboratories 
(e.g., 82% of E. coli isolated at Stanford Hospital are sensitive in vitro to 
gentamicin), although, in practice, physicians seldom use the probabilistic 
information except in a rather intuitive sense (e.g., "Most of the E. coli 
infections I have treated recently have responded to gentamicin."). 

Which Drug Is Best for This Patient? 

Once a list of drugs that may be useful has been considered, the best 
regimen is selected on the basis of a variety of factors. These include the 
likelihood that the drug will be effective against the organism, as well as a 
number of clinical considerations. For example, it is important to know 
whether or not the patient has any drug allergies and whether or not the 
drug is contraindicated because of age, sex, or kidney status. If the patient 
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has meningitis or brain involvement, whether or not the drug crosses the 
blood-brain barrier is an important question. Since some drugs can be 
given only orally, intravenously (IV), or intramuscularly (IM), the desired 
route of administration may become an important consideration. The se­
verity of the patient's disease may also be important, particularly for those 
drugs whose use is restricted on ecological grounds or which are particu­
larly likely to cause toxic complications. Furthermore, as the patient's clin­
ical status varies over time and more definitive information becomes avail­
able from the microbiology laboratory, it may be wise to change the drug 
of choice or to modify the recommended dosage. 

1.2.2 Evidence That Assistance Is Needed 

The "antimicrobial revolution" began with the introduction of the sulfon­
amides in the 1930s and penicillin in 1943. The beneficial effects that these 
and subsequent drugs have had on humanity cannot be overstated. How­
ever, as early as the 1950s it became clear that antibiotics were being mis­
used. A study of office practice involving 87 general practitioners (Peterson 
et al., 1956) revealed that antibiotics were given indiscriminately to all pa­
tients with upper respiratory infections by 67% of the physicians, while 
only 33% ever tried to separate viral from bacterial etiologies. Despite 
attempts to educate physicians regarding this kind of inappropriate ther­
apy, similar data have continued to be reported (Kunin, 1973). 

At the time we began work on MYCIN, antibiotic misuse was receiving 
wide attention (Scheckler and Bennett, 1970; Roberts and Visconti, 1972; 
Kunin, 1973; Simmons and Stolley, 1974; Carden, 1974). The studies 
showed that very few physicians go through the methodical decision pro­
cess that was described above. In the outpatient environment antibiotics 
are often prescribed without the physician's having identified or even cul­
tured the offending organism (Kunin, 1973). In 1972 the FDA certified 
enough (2,400,000 kg) of the commonly used antibiotics to treat two ill­
nesses of average duration in every man, woman, and child in the country. 
Yet it has been estimated that the average person has an illness requiring 
antibiotic treatment no more often than once every five to ten years (Kunin, 
1973). Part of the reason for such overprescribing is the patient's demand 
for some kind of prescription with every office visit (Muller, 1972). It is 
difficult for many physicians to resist such demands; thus improved public 
education is one step toward lessening the problem. 

However, antibiotic use is widespread among hospitalized patients as 
well. Studies have shown that, on any given day, one-third of the patients 
in a general hospital are receiving at least one systemic antimicrobial agent 
(Roberts and Visconti, 1972; Scheckler and Bennett, 1970; Resztak and 
Williams, 1972). The monetary cost to both patients and hospitals is enor­
mous (Reimann and D'ambola, 1966; Kunin, 1973). Simmons and Stolley 
( 1974) have summarized the issues as follows: 
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1. Has the wide use of antibiotics led to the emergence of new resistant 
bacterial strains? 

2. Has the ecology of "natural" or "hospital" bacterial flora been shifted 
because of antibiotic use? 

3. Have nosocomial (i.e., hospital-acquired) infections changed in inci­
dence or severity due to antibiotic use? 

4. What are the trends of antibiotic use? 

5. Are antibiotics properly used in practice? 

• Is there evidence that prophylactic use of antibiotics is harmful, and 
how common is it? 

• Are antibiotics often prescribed without prior bacterial culture? 

• When cultures are taken, is the appropriate antibiotic usually pre­
scribed and correctly used? 

6. Is the increasingly more frequent use of antibiotics presenting the med­
ical community and the public with a new set of hazards that should be 
approached by some new administrative or educational measures? 

Having stated the issues, these authors proceed to cite evidence that in­
dicates that each of these questions has frightening answers-that the ef­
fects of antibiotic misuse are so far-reaching that the consequences may 
often be worse than the disease (real or imagined) being treated! 

Our principal concern has been with the fifth question: are physicians 
rational in their prescribing habits and, if not, why not? Roberts and Vis­
conti examined these issues in 1,035 patients consecutively admitted to a 
500-bed community hospital (Roberts and Visconti, 1972). Of 340 patients 
receiving systemic antimicrobials, only 35% were treated for infection. The 
rest received either prophylactic therapy (55%) or treatment for symptoms 
without verified infection (10%). A panel of expert physicians and phar­
macists evaluated these therapeutic decisions, and only 13% were judged 
to be rational, while 66% were assessed as clearly irrational. The remainder 
were said to be questionable. 

Of particular interest were the reasons why therapy was judged to be 
irrational in those patients for whom some kind of antimicrobial therapy 
was warranted. This group consisted of 112 patients, or 50.2% of the 223 
patients who were treated irrationally. It is instructive to list the reasons 
that were cited, along with the percentages indicating how many of the 
112 patients were involved: 

Antimicrobial contraindicated in patient 
Patient allergic 
Inappropriate sequence of antimicrobials 
Inappropriate combination of antimicrobials 
Inappropriate antimicrobial used to treat condition 
Inappropriate dose 

7.1% 
2.7 

26.8 
24.1 
62.5 
18.7 
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Inappropriate duration of therapy 9.8 
Inappropriate route 3.6 
Culture and sensitivity needed 17 .0 
Culture and sensitivity indicate wrong antibiotic being used 16.1 

The percentages add up to more than 100% because a given therapy may 
have been judged inappropriate for more than one reason. Thus 62.5% 
of the 112 patients who required antimicrobial therapy but were treated 
irrationally were given a drug that was inappropriate for their clinical con­
dition. This observation reflects the need for improved therapy selection 
for patients requiring therapy-precisely the decision task that MYCIN 
was designed to assist. 

Once a need for improved continuing medical education in antimi­
crobial selection was recognized, there were several valid ways to respond. 
One was to offer appropriate post-graduate courses for physicians. An­
other was to introduce surveillance systems for the monitoring and ap­
proval of antibiotic prescriptions within hospitals (Edwards, 1968; Kunin, 
1973). In addition, physicians were encouraged to seek consultations with 
infectious disease experts when they were uncertain how best to proceed 
with the treatment of a bacterial infection. Finally, we concluded that an 
automated consultation system that could substitute for infectious disease 
experts when they are unavailable or inaccessible could provide a valuable 
partial solution to the therapy selection problem. MYCIN was conceived 
and developed in an atterr,pt to fill that need. 

1.3 Organization of the Book 

This volume is organized into twelve parts of two to four chapters, each 
highlighting a fundamental theme in the development and evolution of 
MYCIN. This introductory part closes with a classic review paper that 
outlines the production rule methodology. 

The design and implementation of MYCIN are discussed in Part Two. 
Shortliffe's thesis was the beginning, but the original system he developed 
was modified as required. 

In Part Three we focus on the problems of building a knowledge base 
and on knowledge acquisition in general. TEIRESIAS, the program result­
ing from Randy Davis' dissertation research, is described. 

In Part Four we address the problems of reasoning under uncertainty. 
The certainty factor model, one answer to the question of how to propagate 
uncertainty in an inference mechanism, forms the basis of this part. 

Part Five discusses the generality of the MYCIN formalism. The EMY­
CIN system, written largely by William van Melle as part of his dissertation 
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work, is a strongly positive answer to the question of whether MYCIN could 
be generalized. 

Work on explanation is reviewed in Part Six. Explanation was a major 
design requirement from the start, and many persons contributed to MY­
CIN's explanation capabilities. 

In Part Seven we discuss some of the experimentation we were doing 
with alternative representations. Jan Aikins' thesis work on CENTAUR 
examined the advantages of combining frames and production rules. Larry 
Fagan's work on VM examined the augmentations to a production rule 
system that are needed to reason effectively with data monitored over time. 

As an outgrowth of the explanation work, we came to believe that 
MYCIN had some pedagogical value to students trying to learn about 
infectious disease diagnosis and therapy. William Clancey took this idea 
one step further in his research on the GUIDON system, described in Part 
Eight. GUIDON is an intelligent tutor that we initially believed could tutor 
students about the contents of any knowledge base for an EMYCIN system. 
There is now strong evidence that this hypothesis was false because more 
knowledge is needed for tutoring than for advising. 

In Part Nine we discuss the concept of meta-level knowledge, some of 
which we found to be necessary for intelligent tutoring. We first examined 
rules of strategy and control, called meta-rules, in the context of the TEI­
RESIAS program. One working hypothesis was that meta-rules could be 
encoded as production rules similar to those at the object level (medical 
rules) and that the same inference and explanation routines could work 
with them as well. 

From the start of the project, we had been concerned about perfor­
mance evaluation, as described in Part Ten. We undertook three different 
evaluation experiments, each simpler and more realistic but somewhat 
more limited than the last. 

Another primary design consideration was human engineering, the 
subject of Part Eleven. We knew that a useful system had to be well enough 
engineered to make people want to use it; high performance alone was 
not sufficient. The chapters in this part discuss experiments with both 
natural language interfaces and customized hardware and system archi­
tectures. 

Finally, in Part Twelve, we attempt to summarize the lessons about 
rule-based expert systems that we have learned in nearly a decade of re­
search on the programs named in Figure 1-3. We believe that AI is largely 
an experimental science in which ideas are tested in working programs. 
Although there are many experiments we neglected to perform, we believe 
the descriptions of several that we did undertake will allow others to build 
on our experience and to compare their results with ours. 



2 
The Origin of Rule-Based 
Systems in AI 

Randall Davis and Jonathan J. King 

Since production systems (PS's) were first proposed by Post (1943) as a 
general computational mechanism, the methodology has seen a great deal 
of development and has been applied to a diverse collection of problems. 
Despite the wide scope of goals and perspectives demonstrated by the 
various systems, there appear to be many recurrent themes. We present 
an analysis and overview of those themes, as well as a conceptual frame­
work by which many of the seemingly disparate efforts can be viewed, both 
in relation to each other and to other methodologies. Accordingly, we use 
the term production system in a broad sense and show how most systems that 
have used the term can be fit into the framework. The comparison to other 
methodologies is intended to provide a view of PS characteristics in a 
broader context, with primary reference to procedurally based techniques, 
but also with reference to more recent developments in programming and 
the organization of data and knowledge bases. 

This chapter begins by offering a review of the essential structure and 
function of a PS, presenting a picture of a "pure" PS to provide a basis for 
subsequent elaborations. Current views of PS's fall into two distinct classes, 
and we shall demonstrate that this dichotomy may explain much of the 
existing variation in goals and methods. This is followed by some specu­
lations on the nature of appropriate and inappropriate problem domains 
for PS's-i.e., what is it about a problem that makes the PS methodology 
appropriate, and how do these factors arise out of the system's basic struc­
ture and function? Next, we review characteristics common to all systems, 
explaining how they contribute to the basic character and noting their 

This chapter is based on an article taken with permission from Machine Intelligence 8: Machine 
Representations of Knowledge, edited by E. W. Elcock and D. Michie, published in 1977 by Ellis 
Horwood Ltd., Chichester, England. 
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interrelationships. Finally, we present a taxonomy for PS's, selecting four 
dimensions of characterization and indicating the range of possibilities 
suggested by recent efforts. 

Two points of methodology should be noted. First, we make frequent 
reference to what is "typically" found, and what is "in the spirit of things." 
Since there is really no one formal design for PS's and recent implemen­
tations have explored variations on virtually every aspect, their use becomes 
more an issue of a programming style than of anything else. It is difficult 
to exclude designs or methods on formal grounds, and we refer instead 
to an informal but well-established style of approach. A second, related 
point is important to keep in mind as we compare the capabilities of PS's 
with those of other approaches. Since it is possible to imagine coding any 
given Turing machine in either procedural or PS terms [see Anderson, 
(1976) for a formal proof of the latter], in the formal sense their compu­
tational power is equivalent. This suggests that, given sufficient effort, they 
are ultimately capable of solving the same problems. The issues we wish 
to examine are not, however, questions of absolute computational power 
but of the impact of a particular methodology on program structure, as 
well as of the relative ease or difficulty with which certain capabilities can 
be achieved. 

2. I "Pure" Production Systems 

A production system may be viewed as consisting of three basic compo­
nents: a set of rules, a data base, and an interpreter for the rules. In the 
simplest design a rule is an ordered pair of symbol strings, with a left-hand 
side and a right-hand side (LHS and RHS). The rule set has a predeter­
mined, total ordering, and the data base is simply a collection of symbols. 
The interpreter in this simple design operates by scanning the LHS of 
each rule until one is found that can be successfully matched against the 
data base. At that point the symbols matched in the data base are replaced 
with those found in the RHS of the rule and scanning either continues 
with the next rule or begins again with the first. A rule can also be viewed 
as a simple conditional statement, and the invocation of rules as a sequence 
of actions chained by modus ponens. 

2.1.1 Rules 

More generally, one side of a rule is evaluated with reference to the data 
base, and if this succeeds (i.e., evaluates to TRUE in some sense), the action 
specified by the other side is performed. Note that evaluate is typically taken 
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to mean a passive operation of "perception," or "an operation involving 
only matching and detection" (Newell and Simon, 1972), while the action 
is generally one or more conceptually primitive operations (although more 
complex constructs are also being examined; see Section 2.4.9). As noted, 
the simplest evaluation is a matching of literals, and the simplest action, a 
replacement. 

Note that we do not specify which side is to be matched, since either 
is possible. For example, given a grammar written in production rule 
form, 1 

S~ABA 

A ~A1 
A~ 1 
B ~BO 
B~o 

matching the LHS on a data base that consists of the start symbol S gives 
a generator for strings in the language. Matching on the RHS of the same 
set of rules gives a recognizer for the language. We can also vary the 
methodology slightly to obtain a top-down recognizer by interpreting ele­
ments of the LHS as goals to be obtained by the successful matching of 
elements from the RHS. In this case the rules "unwind." Thus we can use 
the same set of rules in several ways. Note, however, that in doing so we 
obtain quite different systems, with characteristically different control 
structures and behavior. 

The organization and accessing of the rule set is also an important 
issue. The simplest scheme is the fixed, total ordering already mentioned, 
but elaborations quickly grow more complex. The term conflict resolution 
has been used to describe the process of selecting a rule. These issues of 
rule evaluation and organization are explored in more detail below. 

2.1.2 Data Base 

In the simplest production system the data base is simply a collection of 
symbols intended to reflect the state of the world, but the interpretation 
of those symbols depends in large part on the nature of the application. 
For those systems intended to explore symbol-processing aspects of human 
cognition, the data base is interpreted as modeling the contents of some 
memory mechanism (typically short-term memory, STM), with each symbol 
representing some "chunk" of knowledge; hence its total length (typically 
around seven elements) and organization (linear, hierarchical, etc.) are im-

10ne class of production systems we will not address at any length is that of grammars for 
formal languages. While the intellectual roots are similar (Floyd, 1961; Evans, 1964), their 
use has evolved a distinctly different flavor. In particular, their nondeterminism is an impor­
tant factor that provides a different perspective on control and renders the question of rule 
selection a moot point. 
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portant theoretical issues. Typical contents of STM for psychological 
models are those of PSG (Newell, 1973), where STM might contain purely 
content-free symbols such as: 

QQ 
(EE FF) 

TT 

or of VIS (Moran, l 973a), where STM contains symbols representing di­
rections on a visualized map: 

(NEW C-1 CORNER WEST L-1 NORTH L-2) 
(L-2 LINE EAST P-2 P-1) 
(HEAR NORTH EAST % END) 

For systems intended to be knowledge-based experts, the data base 
contains facts and assertions about the world, is typically of arbitrary size, 
and has no a priori constraints on the complexity of organization. For ex­
ample, the MYCIN system uses a collection of quadruples, consisting of 
an associative triple and a certainty factor (CF), which indicates (on a scale 
from - 1 to 1) how strongly the fact has been confirmed (CF > 0) or 
disconfirmed (CF < 0): 

(IDENTITY ORGANISM-1 E.COLI .8) 
(SITE CULTURE-2 BLOOD 1.0) 
(SENSITIVE ORGANISM-1 PENICILLIN -1.0) 

As another example, in the DENDRAL system (Feigenbaum et al., 1971; 
Lindsay et al., 1980) the data base contains complex graph structures that 
represent molecules and molecular fragments. 

A third style of organization for the data base is the "token stream" 
approach used, for example, in LISP70 (Tesler et al., 1973). Here the data 
base is a linear stream of tokens, accessible only in sequence. Each pro­
duction in turn is matched against the beginning of the stream (i.e., if the 
first character of a production and the first character of the stream differ, 
the whole match fails), and if the rule is invoked, it may act to add, delete, 
or modify characters in the matched segment. The anchoring of the match 
at the first token offers the possibility of great efficiency in rule selection 
since the productions can be "compiled" into a decision tree that keys off 
sequential tokens from the stream. A very simple example is shown in 
Figure 2-1. 

Whatever the organization of the data base, one important character­
istic that should be noted is that it is the sole storage medium for all state 
variables of the system. In particular, unlike procedurally oriented lan­
guages, PS's do not provide for separate storage of control state informa­
tion-there is no separate program counter, pushdown stack, etc.-and all 
information to be recorded must go into the single data base. We refer to 
this as unity of data and control store and examine some of its implications 
below. This store is, moreover, universally accessible to every rule in the 
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production set decision tree 

ABC - XV 

ACF - WZ 

BBA - XZ 

ACD - WY 

FIGURE 2-1 Production rule and decision tree representa­
tions of a simple system that replaces sequences of three sym· 
bols in the data base with sequences of two others. 

} 1st char 

} 2nd char 

} 3rd char 

system, so that anything put there is potentially detectable by any rule. We 
shall see that both of these points have significant consequences for the 
use of the data base as a communication channel. 

2.1.3 Interpreter 

The interpreter is the source of much of the variation found among dif­
ferent systems, but it may be seen in the simplest terms as a select-execute 
loop in which one rule applicable to the current state of the data base is 
chosen and then executed. Its action results in a modified data base, and 
the select phase begins again. Given that the selection is often a process of 
choosing the first rule that matches the current data base, it is clear why 
this cycle is often referred to as a recognize-act, or situation-action, loop. The 
range of variations on this theme is explored in Section 2.5.3 on control 
cycle architecture. 

This alternation between selection and execution is an essential ele­
ment of PS architecture, which is responsible for one of its most funda­
mental characteristics. By choosing each new rule for execution on the 
basis of the total contents of the data base, we are effectively performing 
a complete reevaluation of the control state of the system at every cycle. 
This is distinctly different from procedurally oriented approaches in which 
control flow is typically the decision of the process currently executing and 
is commonly dependent on only a small fraction of the total number of 
state variables. PS's are thus sensitive to any change in the entire environ­
ment, and potentially responsive to such changes within the scope of a 
single execution cycle. The price of such responsiveness is, of course, the 
computation time required for the reevaluation. 

An example of one execution of the recognize-act loop for a greatly 
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simplified version of Newell's PSG system will illustrate some of the fore­
going notions. The production system, called PS.ONE, is assumed for this 
example to contain two productions, PD 1 and PD2 . We indicate this as 
follows: 

PS.ONE: (PD, PD2) 

PD1 : (DD AND (EE) ~ BB) 

PD2 : (XX ~ CC DD) 

PD 1 says that if the symbol DD and some expression beginning with EE, 
i.e., (EE ... ), is found in STM, then insert the symbol BB at the front of 
STM. PD2 says that if the symbol XX is found in STM, then first insert 
the symbol CC, then the symbol DD, at the front of STM. 

The initial contents of STM are 

STM: (QQ (EE FF) RR XX SS) 

This STM is assumed to have a fixed maximum capacity of five elements. 
As new elements are inserted at the front (left) of STM, therefore, other 
elements will be lost (forgotten) off the right end. In addition, elements 
accessed when matching the condition of a rule are refreshed (pulled to the 
front of STM) rather than replaced. 

The production system scans the productions in order: PD" then PD2. 

Only PD2 matches, so it is evoked. The contents of STM after this step are 

STM: (DD CC XX QQ (EE FF) ) 

PD 1 will match during the next cycle to yield 

STM: (BB DD (EE FF) CC XX) 

completing two cycles of the system. 

2.2 Two Views of Production Systems 

Prior work has suggested that there are two major views of PS's, charac­
terized on one hand by psychological modeling efforts (PSG, PAS II, VIS, 
etc.) and on the other by performance-oriented, knowledge-based expert 
systems (e.g., MYCIN, DENDRAL). These distinct efforts have arrived at 
similar methodologies while pursuing differing goals. 

The psychological modeling efforts are aimed at creating a program 
that embodies a theory of human performance of simple tasks. From the 
performance record of experimental human subjects, the modeler for­
mulates the minimally competent set of production rules that is able to 
reproduce the behavior. Note that "behavior" here is meant to include all 
aspects of human performance (mistakes, the effects of forgetting, etc.), 
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including all shortcomings or successes that may arise out of (and hence 
may be clues to) the "architecture" of human cognitive systems.2 

An example of this approach is the PSG system, from which we con­
structed the example above. This system has been used to test a number 
of theories to explain the results of the Sternberg memory-scanning tasks 
(Newell, 1973), with each set of productions representing a different theory 
of how the human sul~ject retains and recalls the information given to him 
or her during the psychological task. Here the subject first memorizes a 
small subset of a class of familiar symbols (e.g., digits) and then attempts 
to respond to a symbol Hashed on a screen by indicating whether or not it 
was in the initial set. His or her response times are noted. 

The task was first simulated with a simple production system that per­
formed correctly but did not account for timing variations (which were 
due to list length and other factors). Refinements were then developed to 
incorporate new hypotheses about how the symbols were brought into 
memory, and eventually a good simulation was built around a small num­
ber of productions. Newell has reported (Newell, 1973) that use of a PS 
methodology led in this case to the novel hypothesis that certain timing 
effects are caused by a decoding process rather than by a search process. 
The experiment also clearly illustrated the possible tradeoffs in speed and 
accuracy between differing processing strategies. Thus the PS model was 
an effective vehicle for the expression and evaluation of theories of be­
havior. 

The performance-oriented expert systems, on the other hand, start 
with productions as a representation of knowledge about a task or domain 
and attempt to build a program that displays competent behavior in that 
domain. These efforts are not concerned with similarities between the re­
sulting systems and human performance (except insofar as the latter may 
provide a possible hint about ways to structure the domain or to approach 
the problem or may act as a yardstick for success, since few Al programs 
approach human levels of competence). They are intended simply to per­
form the task without errors of any sort, humanlike or otherwise. This 
approach is characterized by the DENDRAL system, in which much of the 
development has involved embedding a chemist's knowledge about mass 
spectrometry into rules usable by the program, without attempting to 
model the chemist's thinking. The program's knowledge is extended by 
adding rules that apply to new classes of chemical compounds. Similarly, 
much of the work on the MYCIN system has involved crystallizing informal 
knowledge of clinical medicine in a set of production rules. 

Despite the difference in emphasis, researchers in both fields have 

~For example, the critical evaluation of EPAM must ultimately depend not on the interest it 
may have as a learning machine, but on its ability to explain and predict phenomena of verbal 
learning (Feigenbaum, 1963). These phenomena include stimulus and response generaliza­
tion, oscillation, retroactive inhibition, and forgetting-all of which are "mistakes" for a system 
intended for high performance but are important in a system meant to model human learning 
behavior. 
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been drawn to PS's as a methodology. For the psychological modelers, 
production rules offer a clear, formal, and powerful way of expressing 
basic symbol-processing acts that form the primitives of information-pro­
cessing psychology (cf. Newell and Simon, 1972). For the designer of 
knowledge-based systems, production rules offer a representation of 
knowledge that can be accessed and modified with relative ease, making it 
quite useful for systems designed for incremental approaches to compe­
tence. For example, much of the MYCIN system's capability for explaining 
its actions is based on the representation of knowledge as individual pro­
duction rules. This makes the knowledge far more accessible to the pro­
gram itself than it might be if it were embodied in the form of ALGOL­
like procedures. As in DENDRAL, the modification and upgrading of the 
system occur via incremental modification of, or addition to, the rule set. 

Note that we are suggesting that it is possible to view a great deal of 
the work on PS's in terms of a unifying formalism. The intent is to offer 
a conceptual structure that can help organize what may appear to be a 
disparate collection of efforts. The presence of such a formalism should 
not, however, obscure the significant differences that arise from the various 
perspectives. For example, the decision to use RHS-driven rules in a goal­
directed fashion implies a control structure that is simple and direct but 
relatively inflexible. This offers a very different programming tool than 
the LHS-driven systems do. The latter are capable of much more complex 
control structures, giving them capabilities much closer to those of a com­
plete programming language. Recent efforts have begun to explore the 
issues of more complex, higher-level control within the PS methodology 
(see Section 2.4.9). 

Production systems are seen by some as more than a convenient par­
adigm for approaching psychological modeling-rather as a methodology 
whose power arises out of its close similarity to fundamental mechanisms 
of human cognition. Newell and Simon (1972, pp. 803-804, 806) have 
argued that human problem-solving behavior can be modeled easily and 
successfully by a production system because it in fact is being generated 
by one: 

We confess to a strong premonition that the actual organization of hu­
man programs closely resembles the production system organization .... We 
cannot yet prove the correctness of this judgment, and we suspect that the 
ultimate verification may depend on this organization's proving relatively 
satisfactory in many different small ways, no one of them decisive. 

In summary, we do not think a conclusive case can be made yet for 
production systems as the appropriate form of [human] program organiza­
tion. Many of the arguments ... raise difficulties. Nevertheless, our judgment 
stands that we should choose production systems as the preferred language 
for expressing programs and program organization. 

Observations such as this have led to speculation that the interest in pro-
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duction systems on the part of those building high-performance knowl­
edge-based systems is more than a coincidence. Some suggest that this is 
occurring because current research is (re)discovering what has been 
learned by naturally intelligent systems through evolution-that structur­
ing knowledge in a production system format is an effective approach to 
the organization, retrieval, and use of very large amounts of knowledge. 

The success of some rule-based AI systems does lend weight to this 
argument, and the PS methodology is clearly powerful. But whether or 
not this is a result of its equivalence to human cognitive processes and 
whether or not this implies that artificially intelligent systems ought to be 
similarly structured are still open questions, in our opinion. 

2.3 Appropriate and Inappropriate Domains 

Program designers have found that PS's easily model problems in some 
domains but are awkward for others. Let us briefty investigate why this 
may be so, and relate it to the basic structure anq function of a PS. 

We can imagine two very different classes of problems-the first is best 
viewed and understood as consisting of many independent states, while 
the second seems best understood via a concise, unified theory, perhaps 
embodied in a single law. Examples of the former include some views of 
perceptual psychology or clinical medicine, in which there are many states 
relative to the number of actions (this may be clue either to our lack of a 
cohesive theory or to the basic complexity of the system being modeled). 
Examples of the latter include well-established areas of physics and math­
ematics, in which a few basic tenets serve to embody much of the required 
knowledge, and in which the discovery of unifying principles has empha­
sized the similarities in seemingly different states. This first distinction 
appears to be one important factor in distinguishing appropriate from 
inappropriate domains. 

A second distinction concerns the complexity of control flow. At two 
extremes, we can imagine two processes, one of which is a set of indepen­
dent actions and the other of which is a complex collection of multiple, 
parallel processes involving several dependent subprocesses. 

A third distinction concerns the extent to which the knowledge to be 
embedded in a system can be separated from the manner in which it is to 

be used [also known as the controversy between declarative and procedural 
representations; see Winograd (1975) for an extensive discussion]. As one 
example, we can imagine simply stating facts, perhaps in a language like 
predicate calculus, without assuming how those facts will be employed. 
Alternatively, we could write procedural descriptions of how to accomplish 
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a stated goal. Here the use of the knowledge is for the most part prede­
termined during the process of embodying it in this representation. 

In all three of these distinctions, a PS is well-suited to the first descrip­
tion and ill-suited to the latter. The existence of multiple, nontrivially dif­
ferent, independent states is an indication of the feasibility of writing mul­
tiple, nontrivial, modular rules. A process composed of a set of 
independent actions requires only limited communication between the ac­
tions, and, as we shall see, this is an important characteristic of PS's. The 
ability to state what knowledge ought to be in the system without also 
describing its use greatly improves the ease with which a PS can be written 
(see Section 2.4.9). 

For the second class of problems (unified theory, complex control flow, 
predetermined use for the knowledge), the economy of the relevant basic 
theory makes for either trivial rules or multiple, almost redundant, rules. 
In addition, a complex looping and branching process requires explicit 
communication between actions, in which one action explicitly invokes the 
next, while interacting subgoals require a similarly advanced communica­
tion process to avoid conflict. Such communication is not easily supplied 
in a PS-based system. The same difficulty also makes it hard to specify in 
advance exactly how a given fact should be used. 

It seems also to be the nature of production systems to focus upon the 
variations within a domain rather than upon the common threads that link 
different facts or operations. Thus, for example, the process of addition 
is naturally expressed via productions as n2 rewrite operations involving 
two symbols (the digits being added). The fact that addition is commuta­
tive, or rather that there is a property of "commutativity" shared by all 
operations that we consider to be addition, is a rather awkward one to 
express in production system terms. This same characteristic may, con­
versely, be viewed as a capability for focusing on and handling significant 
amounts of detail. Thus, where the emphasis of a task is on recognition of 
large numbers of distinct states, PS's provide a significant advantage. In a 
procedurally oriented approach, it is both difficult to organize and trou­
blesome to update the repeated checking of large numbers of state vari­
ables and the corresponding transfers of control. The task is far easier in 
PS terms, where each rule can be viewed as a "demon" awaiting the oc­
currence of a specific state. 3 

The potential sensitivity and responsiveness of PS's, which arise from 
their continual reevaluation of the control state, has also been referred to 
as the openness of rule-based systems. It is characterized by the principle 
that "any rule can fire at any time," which emphasizes the fact that at any 
point in the computation any rule could be the next to be selected, de­
pending only on the state of the data base at the end of the current cycle. 
Compare this to the normal situation in a procedurally oriented language, 

:1111 the case of one PS (DENDRAL) the initial, procedural approach proved sufficiently 
inHexible that the entire system was rewritten in production rule terms (Lindsay et al., 1980). 
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where such a principle is manifestly untrue: it is simply not typically the 
case that, depending on the contents of that data base, any procedure in 
the entire program could potentially be the next to be invoked. 

We do not mean to imply that both approaches couldn't perform in 
both domains, but that there are tasks for which one of them would prove 
awkward and the resulting system unenlightening. Such tasks are far more 
elegantly accomplished in only one of the two methodologies. The main 
point is that we can, to some extent, formalize our intuitive notion of which 
approach seems more appropriate by considering two essential character­
istics of any PS: its set of multiple, independent rules and its limited, in­
direct channel of interaction via the data base. 

2 .4 Production System Characteristics 

Despite the range of variation in methodologies, there appear to be many 
characteristics common to almost all PS's. It is the presence of these and 
their interactions that contribute to the "nature" of a PS, its capabilities, 
deficiencies, and characteristic behavior. 

The network of Figure 2-2 is a summary of features and relationships. 
Each box represents some feature, capability, or parameter of interest, with 
arrows labeled with + 's and - 's suggesting the interactions between them. 
This rough scale of facilitation and inhibition is naturally very crude, but 
does indicate the interactions as we see them. Figure 2-2 contains at least 
three conceptually distinct sorts of factors: (a) those fundamental charac­
teristics of the basic PS scheme (e.g., indirect, limited channel, constrained 
format); {b) secondary effects (e.g., automated modifiability of behavior); 
and (c) performance parameters of implementation (e.g., visibility of be­
havior flow, extensibility), which are helpful in characterizing PS strengths 
and weaknesses. 

2.4.1 Indirect, Limited Channel of Interaction 

Perhaps the most fundamental and significant characteristic of PS's is their 
restriction on the interactions between rules. In the simplest model, a pure 
PS, we have a completely ordered set of rules, with no interaction channel 
other than the data base. The total effect of any rule is determined by its 
modifications to the data base, and hence subsequent rules must "read" 
there any traces the system may leave behind. Winograd (1975, p. 194) 
characterizes this feature in discussing global modularity in programming: 
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FIGURE 2·2 Basic features and relationships of a production 
system. Links labeled with a + indicate a facilitating relation· 
ship, while those labeled with a - indicate an inhibiting rela­
tionship. 

+ 

We can view production systems as a programming language in which 
all interaction is forced through a very narrow channel. ... The temporal 
interaction [of individual productions] is completely determined by the data 
in this STM, and a uniform ordering regime for deciding which productions 
will be activated in cases where more than one might apply .... Of course it 
is possible to use the STM to pass arbitrarily complex messages which embody 
any degree of interaction we want. But the spirit of the venture is very much 
opposed to this, and the formalism is interesting to the degree that complex 
processes can be described without resort to such kludgery, maintaining the 
clear modularity between the pieces of knowledge and the global process 
which uses them. 

+ 

While this characterization is clearly true for a pure PS, with its limitations 
on the size of STM, we can generalize on it slightly to deal with a broader 
class of systems. First, in the more general case, the channel is not so much 
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narrow as indirect and unique. Second, the kludgery4 arises not from arbi­
trarily complex messages but from specially crafted messages, which force 
highly specific, carefully chosen interactions. 

With reference to the first point, one of the most fundamental char­
acteristics of the pure PS organization is that rules must interact indirectly 
through a single channel. Indirection implies that all interaction must oc­
cur by the effect of modifications written in the data base; uniqueness of 
the channel implies that these modifications are accessible to every one of 
the rules. Thus, to produce a system with a specified behavior, one must 
not think in the usual terms of having one section of code call another 
explicitly, but rather use an indirect approach in which each piece of code 
(i.e., each rule) leaves behind the proper traces to trigger the next relevant 
piece. The uniform access to the channel, along with the openness of PS's, 
implies that those traces must be constructed in the light of a potential 
response from any rule in the system. 

With reference to Winograd's second point, in many systems the action 
of a single rule may, quite legitimately, result in the addition of very com­
plex structures to the data base (e.g., DENDRAL; see Section 2.5). Yet 
another rule in the same system may deposit just one carefully selected 
symbol, chosen solely because it will serve as an unmistakable symbol for 
precisely one other (carefully preselected) rule. Choosing the symbol care­
fully provides a way of sending what becomes a private message through 
a public channel; the continual reevaluation of the control state assures 
that the message can take immediate effect. The result is that one rule has 
effectively called another, procedure style, and this is the variety of kludg­
ery that is contrary to the style of knowledge organization typically asso­
ciated with a PS. It is the premeditated nature of such message passing 
(typically in an attempt to "produce a system with specified behavior") that 
is the primary violation of the "spirit" of PS methodology. 

The primary effect of this indirect, limited interaction is the devel­
opment of a system that is strongly modular, since no rule is ever called 
directly. The indirect, limited interaction is also, however, the most signif­
icant factor that makes the behavior of a PS more difficult to analyze. This 
results because, even for very simple tasks, overall behavior of a PS may 
not be at all evident from a simple review of its rules. 

lo illustrate many of these issues, consider the algorithm for addition 
of positive, single-digit integers used by Waterman (197 4) with his PAS II 
production system interpreter. First, the procedural version of the algo­
rithm, in which transfer of control is direct and simple: 

add(m,n) .. 
A] count~O; nn~n; 

BJ L,: if count = m then return(nn); 

4Kludge is a term drawn from the vernacular of computer programmers. It refers to a "patch" 
or "trick" in a program or system that deals with a potential problem, usually in an inelegant 
or nongeneralized way. Thus kludgery refers to the use of kludges. 
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count~successor(count); 

nn~successor(nn); 

go(L1); 

Compare this with the set of productions for the same task in Figure 2-3. 
The S in Rules 2, 3, and 5 indicates the successor function. After initiali­
zation (Rules I and 2), the system loops around Rules 4 and 5 producing 
the successor rules it needs (Rule 5) and then incrementing NN by 1 for 
M iterations. In this loop, intermediate calculations (the results of successor 
function computations) are saved via (PROD) in Rule 5, and the final an­
swer is saved by (PROD) in Rule 3. Thus, as shown in Figure 2-4, after 
computing 4 + 2 the rule set will contain seven additional rules; it is 
recording its intermediate and final results by writing new productions and 
in the future will have these answers available in a single step. Note that 
the set of productions therefore is memory (and in fact long-term memory, 
or LTM, since productions are never lost from the set). The two are not 
precisely analogous, since the procedural version does simple addition, 
while the production set both adds and "learns." As noted by Waterman 
(1974), the production rule version does not assume the existence of a 
successor function. Instead Rule 5 writes new productions that give the 
successor for specific integers. Rule 3 builds what amounts to an addition 
table, writing a new production for each example that the system is given. 
Placing these new rules at the front of the rule set (i.e., before Rule 1) 
means that the addition table and successor function table will always be 
consulted before a computation is attempted, and the answer obtained in 
one step if possible. Without these extra steps, and with a successor func­
tion, the production rule set could be smaller and hence slightly less com­
plex. 

Waterman also points out some direct correspondences between the 
production rules in Figure 2-3 and the statements in the procedure above. 
For example, Rules 1 and 2 accomplish the initialization of line A, Rule 3 
corresponds to line B, and Rule 4 to lines C and D. There is no production 
equivalent to the "goto" of line E because the production system execution 
cycle takes care of that implicitly. On the other hand, note that in the 
procedure there is no question whatsoever that the initialization step 
nn +- n is the second statement of "add" and that it is to be executed just 
once, at the beginning of the procedure. In the productions, the same 
action is predicated on an unintuitive condition of the STM (essentially it 
says that if the value of N is known, but NN has never been referenced or 
incremented, then initialize NN to the value that N has at that time). This 
degree of explicitness is necessary because the production system has no 
notion that the initialization step has already been performed in the given 
ordering of statements, so the system must check the conditions each time 
it goes through a new cycle. 

Thus procedural languages are oriented toward the explicit handling 
of control flow and stress the importance of its influence on the funda­
mental organization of the program (as, for example, in recent develop-
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Production Rules: 

Condition (LHS) 
11 (READY) (ORDER X,) 

21 (N X1) -(NN) -(S NN) 

31 (COUNT X,) (M X1) (NN X2) (N X3) 

41 (COUNT) (NN) 

51 (ORDER X, X2) 

Initial STM: 

Action (RHS) 
~ (REP (READY) (COUNT X,)) 

(ATTEND) 

~ (DEP (NN X1)) 

~ (SAY X2 IS THE ANSWER) 
(COND (M X,) (N X3)) 

(ACTION (STOP)) 
(ACTION (SAY X2 IS THE ANSWER)) 
(PROD) 
(STOP) 

~ (REP (COUNT) (S COUNT)) 
(REP (NN) (S NN)) 

~ (REP (X, X2) (X2)) 

(COND (S X3 X1)) 

(ACTION (REP (S X3 X,) (X3 X2))) 

(PROD) 

(READY) (ORDER 0 1 2 3 4 5 6 7 8 9) 

Notation: 

• The X 1's in the condition are variables in the pattern match; all other symbols 
are literals. An X 1 appearing only in the action is also taken as a literal. Thus if 
Rule 5 is matched with X 1 =4 and X2 = 5, as its second action it would deposit 
(COND (S X3 4)) in STM. These variables are local to each rule; that is, their 
previous bindings are disregarded. 

• All elements of the LHS must be matched for a match to succeed. 

• A hyphen indicates the ANDNOT operation. 

• An expression enclosed in parentheses and starting with a literal [e.g., (COUNT) 
in Rule 4] will match any expression in STM that starts with the same literal 
[e.g., (COUNT 2)]. The expression (ORDER X 1 X2) will match (ORDER 0 1 2 
3 ... 9) and bind X1 =0 and X2 = 1. 

• REP stands for REPiace, so that, for example, the RHS of Rule 1 will replace 
the expression (READY) in the data base with the expression (COUNT Xi) 
[where the variable X 1 stands for the element matched by the X 1 in (ORDER 
X1)]. 

• DEP stands for DEPosit symbols at front of STM. 

• ATTEND means wait for input from computer terminal. For this example, typ­
ing (M 4)(N 2) will have the system ad<l 4 and 2. 

• SAY means output to terminal. 

FIGURE 2-3 A production system for the addition of two sin· 
gle-digit integers [after Waterman (1974), simplified slightly]. 
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• (COND ... ) is shorthand for (DEP (COND ... )). 

• (ACTION ... ) is shorthand for (DEP (ACTION ... )). 

• PROD means gather all items in the STM of the form (COND ... ) and put them 
together into an LHS, gather all items of the form (ACTION ... ) and put them 
together into an RHS, and remove all these expressions from the STM. Form a 
production from the resulting LHS and RHS, and add it to the front of the set 
of productions (i.e., before Rule I). 

FIGURE 2-3 continued 

ments in structured programming). PS's, on the other hand, emphasize 
the statement of independent chunks of knowledge from a domain and 
make control flow a secondary issue. Given the limited form of commu­
nication available in PS's, it is more difficult to express concepts that require 
structures larger than a single rule. Thus, where the emphasis is on global 
behavior of a system rather than on the expression of small chunks of 
knowledge, PS's are, in general, less transparent than equivalent procedural 
routines. 

2.4.2 Constrained Format 

While there are wide variations in the format permitted by various PS's, in 
any given system the syntax is traditionally quite restrictive and generally 
follows the conventions accepted for PS's. 5 Most commonly this means, 
first, that the side of the rule to be matched should be a simple predicate 
built out of a Boolean combination of computationally primitive opera­
tions; these involve (as noted above) only matching and detection. Second, 
it means the side of the rule to be executed should perform conceptually 
simple operations on the data base. In many of the systems oriented toward 
psychological modeling, the side to be matched consists of a set of literals 
or simple patterns, with the understanding that the set is to be taken as a 
conjunction, so that the predicate is an implicit one regarding the success 
or failure of matching all of the elements. Similarly, the side to be executed 
performs a simple symbol replacement or rearrangement. 

Whatever the format, though, the conventions noted lead to clear re­
strictions for a pure production system. First, as a predicate, the matching 
side of a rule should return only some indication of the success or failure 
of the match.6 Second, as a simple expression, the matching operation is 

5 Note, however, that the tradition arises out of a commonly followed convention rather than 
any essential characteristic of a PS. 
6 While binding individual variables or segments in the process of pattern matching is quite 
often used, it would be considered inappropriate to have the matching process produce a 
complex data structure intended for processing by another part of the system. 
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RULE STATUS STM AFTER RULE SUCCEEDS NEW RULES/COMMENTS 

CYCLE #1 ---
(READY)(ORDER 0 1 2 3 4 5 6 7 8 9) initial state 

Rule 1 Succeeds (COUNT O)(ORDER 0 1 2 3 4 5 6 7 8 9) awaits input (M 4)(N 2) 
(N 2)(M 4)(COUNT 0) after input 
(ORDER O 1 2 3 4 5 6 7 8 9) 

Rufe 2 Succeeds (NN 2)(N 2)(M 4)(COUNT 0) X1 bound to 2 
(ORDER 0 1 2 3 4 5 6 7 8 9) 

Rule 3 Fails 
Rule 4 Succeeds (S NN 2)(N 2)(M 4)(S COUNT 0) 

(ORDER 0 1 2 3 4 5 6 7 8 9) 
Rule 5 Succeeds (S NN 2)(N 2)(M 4)(S COUNT 0) X, bound to O 

(ORDER 1 2 3 4 5 6 7 8 9) New Rule 6: 
(S X3 0) ~ (REP(S X3 O)(X3 1) 

CYCLE #2 ---
Rule 6 Succeeds (S NN 2)(N 2)(M 4)(COUNT 1) X3 bound to the literal COUNT 

(ORDER 1 2 3 4 5 6 7 8 9) 
Rule 1 Fails 
Rule 2 Fails 
Rule 3 Fails 
Rule 4 Fails 
Rule 5 Succeeds (S NN 2)(N 2)(M 4)(COUNT 1) New Rule 7: 

(ORDER 2 3 4 5 6 7 8 9) (S X3 1) ~ (REP(S X3 1)(X3 2)) 

CYCLE #3 ---
Rule 7 Fails 
Rule 6 Fails 
Rule 1 Fails 
Rule 2 Fails 
Rule3 Fails 
Rule 4 Fails 
Rule 5 Succeeds (S NN 2)(N 2)(M 4)(COUNT 1) New Rule 8: 

(ORDER 3 4 5 6 7 8 9) (S X3 2) ~ (REP(S X3 2)(X3 3)) 

CYCLE #4 ---
Rule 8 Succeeds (NN 3)(N 2)(M 4)(COUNT 1) X3 bound to NN 

(ORDER 3 4 5 6 7 8 9) 
Rule 7 Fails 
Rule 6 Fails 
Rule 1 Fails 
Rule 2 Fails 
Rule 3 Fails 
Rule4 Succeeds (S NN 3)(N 2)(M 4)(S COUNT 1) 

(ORDER 3 4 5 6 7 8 9) 
Rule 5 Succeeds (S NN 3)(N 2)(M 4)(S COUNT 1) New Rule 9: 

(ORDER 4 5 6 7 8 9) (S X3 3) ~ (REP(S X3 3)(X3 4)) 

CYCLE #5 ---
Rule 9 Succeeds (NN 4)(N 2)(M 4)(S COUNT 1) 

(ORDER 4 5 6 7 8 9) 

etc. <continued cycling> Rules 1 0 and 11 generated 

Rule3 Succeeds (NN 6)(N 2)(M 4)(COUNT 4) Bind X, to 4, X2 to 6, X3 to 2; 
(ORDER 6 7 8 9) Prints '6 IS THE ANSWER'; 

Rule 12 produced; 
Terminates. 

FIGURE 2·4 Trace of production system shown in Figure 2-3. 
Adding 4 and 2. 
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precluded from using more complex control structures like iteration or 
recursion within the expression itself (although such operations can be 
constructed from multiple rules). Finally, as a matching and detection op­
eration, it must only "observe" the state of the data base and not change 
it in the operation of testing it. 

We can characterize a continuum of possibilities for the side of the 
rule to be executed. There might be a single primitive action, a simple 
collection of independent actions, a carefully ordered sequence of actions, 
or even more complex control structures. We suggest that there are two 
related forms of simplicity that are important here. First, each action to be 
performed should be one that is a conceptual primitive for the domain. 
In the DENDRAL system, for example, it is appropriate to use chemical 
bond breaking as the primitive, rather than to describe the process at some 
lower level. Second, the complexity of control flow for the execution of 
these primitives should be limited-in a pure production system, for ex­
ample, we might be wary of a complex set of actions that is, in effect, a 
small program of its own. Again, it should be noted that the system de­
signer may of course follow or disregard these restrictions. 

These constraints on form make the dissection and "understanding" 
of productions by other parts of the program a more straightforward task, 
strongly enhancing the possibility of having the program itself read and/ 
or modify (rewrite) its own productions. For example, the MYCIN system 
makes strong use of the concept of allowing one part of the system to read 
the rules being executed by another part. The system does a partial eval­
uation of rule premises. Since a premise is a Boolean combination of pred­
icate functions such as 

($AND (SAME CNTXT SITE) 
(SAME CNTXT GRAM GRAMPOS) 
(DEF IS CNTXT AIR AEROBIC)) 

(the site of the culture is blood and 
the gramstain is grampositive and 
the aerobicity is definitely aerobic) 

and since clauses that are unknown cause subproblems that may involve 
long computations to be set up, it makes sense to check to see if, based on 
what is currently known, the entire premise is sure to fail (e.g., if any clause 
of a conjunction is known to be false). We cannot simply EVAL each clause, 
since this will trigger a search if the value is still unknown. But if the clause 
can be "unpacked" into its proper constituents, it is possible to determine 
whether or not the value is known as yet, and if so, what it is. This is done 
via a template associated with each predicate function. For example, the 
template for SAME is 

(SAME CNTXT PARM VALUE) 

and it gives the generic type and order of arguments for the function 
(much like a simplified procedure declaration). By using this as a guide to 
unpack and extract the needed items, we can safely do a partial evaluation 
of the rule premise. A similar technique is used to separate the known and 
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unknown clauses of a rule for the user's benefit when the system is ex­
plaining itself (see Chapter 18 for several examples). 

Note that part of the system is reading the code being executed by the 
other part. Furthermore, note that this reading is guided by information 
carried in the rule components themselves. This latter characteristic as­
sures that the capability is unaffected by the addition of new rules or 
predicate functions to the system. 

This kind of technique limits expressibility, however, since the limited 
syntax may not be sufficiently powerful to make expressing each piece of 
knowledge an easy task. This in turn both restricts extensibility (adding 
something is difficult if it is hard to express it) and makes modification of 
the system's behavior more difficult (e.g., it might not be particularly at­
tractive to implement a desired iteration if doing so requires several rules 
rather than a line or two of code). 

2.4.3 Rules as Primitive Actions 

In a pure PS, the smallest unit of behavior is a rule invocation. At its 
simplest, this involves the matching of literals on the LHS, followed by 
replacement of those symbols in the data base with the ones found on the 
RHS. While the variations can be more complex, it is in some sense a 
violation of the spirit of things to have a sequence of actions in the RHS. 

Moran ( l 973b), for example, acknowledges a deviation from the spirit 
of production systems in VIS when he groups rules in "procedures" within 
which the rules are totally ordered for the purpose of conflict resolution. 
He sees several advantages in this departure. It is "natural" for the user (a 
builder of psychological models) to write rules as a group working toward 
a single goal. This grouping restricts the context of the rules. It also helps 
minimize the problem of implicit context: when rules are ordered, a rule 
that occurs later in the list may really be applicable only if some of the 
conditions checked by earlier rules are untrue. This dependency, referred 
to as implicit context, is often not made explicit in the rule, but may be 
critical to system performance. The price paid for these advantages is two­
fold: first, extra rules, less directly attributable to psychological processes, 
are needed to switch among procedures; second, it violates the basic pro­
duction system tenet that any rule should (in principle) be able to fire at 
any time-here only those in the currently active procedure can fire. 

To the extent that the pure production system restrictions are met, we 
can consider rules as the quanta of intelligent behavior in the system. 
Otherwise, as in the VIS system, we must look at larger aggregations of 
rules to trace behavior. In doing so, we lose some of the ability to quantify 
and measure behavior, as is done, for example, with the PSG system sim­
ulation of the Sternberg task, where response times are attributed to in­
dividual production rules and then compared against actual psychological 
data. 
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A different sort of deviation is found in the DENDRAL system, and 
in a few MYCIN rules. In both, the RHS is effectively a small program, 
carrying out complex sequences of actions. In this case, the quanta of 
behavior are the individual actions of these programs, and understanding 
the system thus requires familiarity with them. By embodying these bits of 
behavior in a stylized format, we make it possible for the system to "read" 
them to its users (achieved in MYCIN as described above) and hence pro­
vide some explanation of its behavior, at least at this level. This prohibition 
against complex behaviors within a rule, however, may force us to imple­
ment what are (conceptually) simple control structures by using the com­
bined effects of several rules. This of course may make overall behavior 
of the system much more opaque (see Section 2.4.5). 

2.4.4 Modularity 

We can regard the modularity of a program as the degree of separation of 
its functional units into isolatable pieces. A program is highly modular if any 
functional unit can be changed (added, deleted, or replaced) with no un­
anticipated change to other functional units. Thus program modularity is 
inversely related to the strength of coupling between its functional units. 

The modularity of programs written as pure production systems arises 
from the important fact that the next rule to be invoked is determined 
solely by the contents of the data base, and no rule is ever called directly. 
Thus the addition (or deletion) of a rule does not require the modification 
of any other rule to provide for or delete a call to it. We might demonstrate 
this by repeatedly removing rules from a PS: many systems will continue 
to display some sort of "reasonable" behavior.7 By contrast, adding a pro­
cedure to an ALGOL-like program requires modification of other parts of 
the code to insure that the procedure is invoked, while removing an ar­
bitrary procedure from such a program will generally cripple it. 

Note that the issue here is more than simply the "undefined function" 
error message, which would result from a missing procedure. The problem 
would persist even if the compiler or interpreter were altered to treat 
undefined functions as no-ops. The issue is a much more fundamental one 
concerning organization of knowledge: programs written in procedure­
oriented languages stress the kind of explicit passing of control from one 
section of code to another that is characterized by the calling of procedures. 

7The number of rules that could be removed without performance degradation (short of 
redundancies) is an interesting characteristic that would appear to be correlated with which 
of the two common approaches to PS's is taken. The psychological modeling systems would 
apparently degenerate fastest, since they are designed to be minimally competent sets of 
rules. Knowledge-based expert systems, on the other hand, tend to embody numerous in­
dependent subproblems in rules and often contain overlapping or even purposefully redun­
dant representations of knowledge. Hence, while losing their competence on selected prob­
lems, it appears they would often function reasonably well, even with several rules removed. 
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This is typically done at a selected time and in a particular context, both 
carefully chosen by the programmer. If a no-op is substituted for a missing 
procedure, the context upon returning will not be what the programmer 
expected, and subsequent procedure calls will be executed in increasingly 
incorrect environments. Similarly, procedures that have been added must 
be called from somewhere in the program, and the location of the call must 
be chosen carefully if the effect is to be meaningful. 

Production systems, on the other hand, especially in their pure form, 
emphasize the decoupling of control flow from the writing of rules. Each 
rule is designed to be, ideally, an independent chunk of knowledge with 
its own statement of relevance (either the conditions of the LHS, as in a 
data-driven system, or the action of the RHS, as in a goal-directed system). 
Thus, while the ALGOL programmer carefully chooses the order of pro­
cedure calls to create a selected sequence of environments, in a production 
system it is the environment that chooses the next rule for execution. And 
since a rule can only be chosen if its criteria of relevance have been met, 
the choice will continue to be a plausible one, and system behavior will 
remain "reasonable," even as rules are successively deleted. 

This inherent modularity of pure production systems eases the task 
of programming in them. Given some primitive action that the system fails 
to perform, it becomes a matter of writing a rule whose LHS matches the 
relevant indicators in the data base, and whose RHS performs the action. 
Whereas the task is then complete for a pure PS, systems that vary from 
this design have the additional task of assuring proper invocation of the 
rule (not unlike assuring the proper call of a new procedure). The difficulty 
of this varies from trivial in the case of systems with goal-oriented behavior 
(like MYCIN) to substantial in systems that use more complex LHS scans 
and conflict resolution strategies. 

For systems using the goal-oriented approach, rule order is usually 
unimportant. Insertion of a new rule is thus simple and can often be totally 
automated. This is, of course, a distinct advantage where the rule set is 
large and the problems of system complexity are significant. For others 
(like PSG and PAS II) rule order can be critical to performance and hence 
requires careful attention. This can, however, be viewed as an advantage, 
and indeed, Newell ( 1973) tests different theories of behavior by the simple 
expedient of changing the order of rules. The family of Sternberg task 
simulators includes a number of production systems that differ only by the 
interchange of two rules, yet display very different behavior. Waterman's 
system (Waterman, 1974) accomplishes "adaptation" by the simple heuristic 
of placing a new rule immediately before a rule that causes an error. 8 

80ne specific example of the importance of rule order can be seen in our earlier example of 
addition (Figure 2-3). Here Rule 5 assumes that an ordering of the digits exists in STM in 
the form (ORDER 0 I 2 ... ) and from this can be created the successor function for each 
digit. If Rule 5 were placed before Rule I, the system wouldn't add at all. In addition, 
acquiring the notion of successor in subsequent runs depends entirely on the placement of 
the new successor productions before Rule 3, or the effect of this new knowledge would be 
masked. 
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2.4.5 Visibility of Behavior Flow 

Visibility of behavior flow is the ease with which the overall behavior of a 
PS can be understood, either by observing the system or by reviewing its 
rule base. Even for conceptually simple tasks, the stepwise behavior of a 
PS is often rather opaque. The poor visibility of PS behavior compared to 
that of the procedural formalism is illustrated by the Waterman integer 
addition example outlined in Section 2.4. l. The procedural version of the 
iterative loop there is reasonably clear (lines B, C, and E), and an ALGOL­
type 

FOR I : = 1 UNTIL N DO ... 

would be completely obvious. Yet the PS formalism for the same thing 
requires nonintuitive productions (like 1 and 2) and symbols like NN whose 
only purpose is to "mask" the condition portion of a rule so it will not be 
invoked later [such symbols are termed control elements (A'nderson, 1976)). 

The requirement for control elements, and much of the opacity of PS 
behavior, is a direct result of two factors noted above: the unity of control 
and data store, and the reevaluation of the data base at every cycle. Any 
attempt to "read" a PS requires keeping in mind the entire contents of the 
data base and scanning the entire rule set at every cycle. Control is much 
more explicit and localized in procedural languages, so that reading AL­
GOL code is a far easier task.9 

The perspective on knowledge representation implied by PS's also con­
tributes to this opacity. As suggested above, PS's are appropriate when it is 
possible to specify the content of required knowledge without also speci­
fying the way in which it is to be used. Thus, reading a PS does not gen­
erally make clear how it works so much as what it may know, and the 
behavior is consequently obscured. The situation is often Feversed in pro­
cedural languages: program behavior may be reasonably clear, but the 
domain knowledge used is often opaquely embedded in the procedures. 
The two methodologies thus emphasize different aspects of knowledge and 
program organization. 

2.4.6 Machine Readability 

Several interesting capabilities arise from making it possible for the system 
to examine its own rules. As one example, it becomes possible to implement 
automatic consistency checking. This can proceed at several levels. In the 
simplest approach we can search for straightforward syntactic problems 
such as contradiction (e.g., two rules of the form A & B ---> C and A & B 
---> -C) or subsumption (e.g., two rules of the form D & E & F---> G and D 

90ne of the motivations for the interest in structured programming is the attempt to em­
phasize still further the degree of explicitness and localization of control. 
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& F --> G). A more sophisticated approach, which would require extensive 
domain-specific knowledge, might be able to detect "semantic" problems, 
such as, for example, a rule of the form A & B ---+ C when it is known from 
the meanings of A and B that A --> B. Many other (domain-specific) tests 
may also be possible. The point is that by automating the process, extensive 
(perhaps exhaustive) checks of newly added productions are possible (and 
could perhaps be run in background mode when the system is otherwise 
idle). 

A second sort of capability (described in the example in Section 2.4.2) 
is exemplified by the MYCIN system's approach to examining its rules. 
This is used in several ways (Davis, 1976) and produces both a more effi­
cient control structure and precise explanations of system behavior. 

2.4. 7 Explanation of Primitive Actions 

Production system rules are intended to be modular chunks of knowledge 
and to represent primitive actions. Thus explaining primitive acts should 
be as simple as stating the corresponding rule-all necessary contextual 
information should be included in the rule itself. Achieving such clear 
explanations, however, strongly depends on the extent to which the as­
sumptions of modularity and explicit context are met. In the case where 
stating a rule does provide a clear explanation, the task of modification of 
program behavior becomes easier. 

As an example, the MYCIN system often successfully uses rules to 
explain its behavior. This form of explanation fails, however, when consid­
erations of system performance or human engineering lead to rules whose 
context is obscure. One class of rule, for example, says, in effect, "If A 
seems to be true, and B seems to be true, then that's (more) evidence in 
favor of A." 10 It is phrased this way rather than simply "If B seems true, 
that's evidence in favor of A," because B is a very rare condition, and it 
appears counterintuitive to ask about it unless A is suspected to begin with. 
The first clause of the rule is thus acting as a strategic filter, to insure that 
the rule is not even tried unless it has a reasonable chance of succeeding. 
System performance has been improved (especially as regards human en­
gineering considerations), at the cost of a somewhat more opaque rule. 

2.4.8 Modifiability, Consistency, and Rule Selection 
Mechanism 

As noted above, the tightly constrained format of rules makes it possible 
for the system to examine its own rule base, with the possibility of modi­
fying it in response to requests from the user or to ensure consistency with 

10These are known as self-referencing rules; see Chapter 5. 
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respect to newly added rules. While all these are conceivable in a system 
using a standard procedural approach, the heavily stylized format of rules, 
and the typically simple control structure of the interpreters, makes them 
all realizable prospects in a PS. 

Finally, the relative complexity of the rule selection mechanism will 
have varying effects on the ability to automate consistency checks, or be­
havior modification and extension. An RHS scan with backward chaining 
(i.e., a goal-directed system; see Section 2.5.3) seems to be the easiest to 
follow since it mimics part of human reasoning behavior, while an LHS 
scan with a complex conflict resolution strategy makes the system generally 
more difficult to understand. As a result, predicting and controlling the 
effects of changes in, or additions to, the rule base are directly influenced 
in either direction by the choice of rule selection mechanism. 

2.4.9 Programmability 

The answer to "How easy is it to program in this formalism?" is "It's rea­
sonably difficult." The experience has been summarized (Moran, l 973a): 

Any structure which is added to the system diminishes the explicitness 
of rule conditions .... Thus rules acquire implicit conditions. This makes 
them (superficially) more concise, but at the price of clarity and precision .... 
Another questionable device in most present production systems (including 
mine) is the use of tags, markers, and other cute conventions for communi­
cating between rules. Again, this makes for conciseness, but it obscures the 
meaning of what is intended. The consequence of this in my program is that 
it is very delicate: one little slip with a tag and it goes off the track. Also, it 
is very difficult to alter the program; it takes a lot of time to readjust the 
signals. 

One source of the difficulties in programming production systems is the 
necessity of programming "by side effect." Another is the difficulty of using 
the PS methodology on a problem that cannot be broken down into the 
solution of independent subproblems or into the synthesis of a behavior 
that is neatly decomposable. 

Several techniques have been investigated to deal with this difficulty. 
One of them is the use of tags and markers (control elements), referred 
to above. We have come to believe that the manner in which they are used, 
particularly in psychological modeling systems, can be an indication of how 
successfully the problem has been put into PS terms. To demonstrate this, 
consider two very different (and somewhat idealized) approaches to writing 
a PS. In the first, the programmer writes each rule independently of all 
the others, simply attempting to capture in each some chunk of required 
knowledge. The creation of each rule is thus a separate task. Only when 
all of them have been written are they assembled, the data base initialized, 
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and the behavior produced by the entire set of rules noted. As a second 
approach, the programmer starts out with a specific behavior that he or 
she wants to recreate. The entire rule set is written as a group with this in 
mind, and, where necessary, one rule might deposit a symbol like A00124 
in STM solely to trigger a second specific rule on the next cycle. 

In the first case the control elements would correspond to recognizable 
states of the system. As such, they function as indicators of those states 
and serve to trigger what is generally a large class of potentially applicable 
rules. 11 In the second case there is no such correspondence, and often only 
a single rule recognizes a given control element. The idea here is to insure 
the execution of a specific sequence of rules, often because a desired effect 
could not be accomplished in a single rule invocation. Such idiosyncratic 
use of control elements is formally equivalent to allowing one rule to call 
a second, specific rule and hence is very much out of character for a PS. 
To the extent that such use takes place, it appears to us to be suggestive 
of a failure of the methodology-perhaps because a PS was ill-suited to 
the task to begin with or because the particular decomposition used for 
the task was not well chosen. 12 Since one fundamental assumption of the 
PS methodology as a psychological modeling tool is that states of the system 
correspond to what are at least plausible (if not immediately recognizable) 
individual "states of mind," the relative abundance of the two uses of con­
trol elements mentioned above can conceivably be taken as an indication 
of how successfully the methodology has been applied. 

A second approach to dealing with the difficulty of programming in 
PS's is the use of increasingly complex forms within a single rule. Where 
a pure PS might have a single action in its RHS, several psychological 
modeling systems (PAS II, VIS) have explored the use of more complex 
sequences of actions, including the use of conditional exits from the se­
quence. 

Finally, one effort (Rychener, 1975) has investigated the use of PS's 
that are unconstrained by prior restrictions on rule format, use of tags, 
etc. The aim here is to employ the methodology as a formalism for expli­
cating knowledge sources, understanding control structures, and examin­
ing the effectiveness of PS's for attacking the large problems typical of 
artificial intelligence. The productions in this system often turn out to have 
a relatively simple format, but complex control structures are built via 
carefully orchestrated interaction of rules. This is done with several tech­
niques, including explicit reliance on both control elements and certain 
characteristics of the data base architecture. For example, iterative loops 

11 This basic technique of "broadcasting" information and allowing individual segments of 
the system to determine their relevance has been extended and generalized in systems like 
HEARSAYII (Lesser et al., 1974) and BEINGS (Lenat, 1975). 
12The possibility remains, of course, that a "natural" interpretation of a control element will 
be forthcoming as the model develops, and additional rules that refer to it will be added. In 
that case the ease of adding the new rules arises out of the fact that the technique of allowing 
one rule to call another was not used. 
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are manufactured via explicit use of control elements, and data are (re­
dundantly) reasserted in order to make use of the "recency" ordering on 
rules (the rule that mentions the most recently asserted data item is chosen 
first; see Section 2.5.3). These techniques have supported the reincarnation 
as PS's of a number of sizable AI programs [e.g., STUDENT (Bobrow, 
1968)], but, Bobrow notes, "control tends to be rather inflexible, failing to 
take advantage of the openness that seems to be inherent in PS's." 

This reflects something of a new perspective on the use of PS's. Pre­
vious efforts have used them as tools for analyzing both the core of knowl­
edge essential to a given task and the manner in which such knowledge is 
used. Such efforts relied in part on the austerity of the available control 
structure to keep all of the knowledge explicit. The expectation is that each 
production will embody a single chunk of knowledge. Even in the work of 
Newell (1973), which used PS's as a medium for expressing different the­
ories in the Sternberg task, an important emphasis is placed on productions 
as a model of the detailed control structure of humans. In fact, every aspect 
of the system is assumed to have a psychological correlate. 

The work reported by Rychener ( 1975), however, after explicitly de­
tailing the chunks of knowledge required in the word problem domain of 
STUDENT, notes a many-to-many mapping between its knowledge chunks 
and productions. That work also focuses on complex control regimes that 
can be built using PS's. While still concerned with knowledge extraction 
and explication, it views PS's more as an abstract programming language 
and uses them as a vehicle for exploring control structures. While this 
approach does offer an interesting perspective on such issues, it should 
also be noted that as productions and their interactions grow more com­
plex, many of the advantages associated with traditional PS architecture 
may be lost (for example, the loss of openness noted above). The benefits 
to be gained are roughly analogous to those of using a higher-level pro­
gramming language: while the finer grain of the process being examined 
may become less obvious, the power of the language permits large-scale 
tasks to be undertaken and makes it easier to examine phenomena like the 
interaction of entire categories of knowledge. 

The use of PS's has thus grown to encompass several different forms, 
many of which are far more complex than the pure PS model described 
initially. 

2.5 Taxonomy of Production Systems 

In this section we suggest four dimensions along which to characterize 
PS's: form, content, control cycle architecture, and system extensibility. For 
each dimension we examine related issues and indicate the range as evi­
denced by systems currently (or recently) in operation. 
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2.5.1 Form-How Primitive or Complex Should the 
Syntax of Each Side Be? 

There is a wide variation in the syntax used by PS's and corresponding 
differences in both the matching and detection process and the subsequent 
action caused by rule invocation. For matching, in the simplest case only 
literals are allowed, and it is a conceptually trivial process (although the 
rule and data base may be so large that efficiency becomes a consideration). 
Successively more complex approaches allow free variables [Waterman's 
poker player (Waterman, 1970)], syntactic classes (as in some parsing sys­
tems), and increasingly sophisticated capabilities of variable and segment 
binding and of pattern specification (PAS II, VIS, LISP70). 13 

The content of the data base also influences the question of form. One 
interesting example is Anderson's ACT system (Anderson, 1976), whose 
rules have node networks in their LHS's. The appearance of an additional 
piece of network as input results in a "spread of activation" occurring in 
parallel through the LHS of each production. The rule that is chosen is 
the one whose LHS most closely matches the input and that has the largest 
subpiece of network already in its working memory. 

As another example, the DENDRAL system uses a literal pattern 
match, but its patterns are graphs representing chemical classes. Each class 
is defined by a basic chemical structure, referred to as a skeleton. As in the 
data base, atoms composing the skeleton are given unique numbers, and 
chemical bonds are described by the numbers of the atoms they join (e.g., 
"5 6"). The LHS of a rule is the name of one of these skeletons, and a 
side effect of a successful match is the recording of the structural corre­
spondence between atoms in the skeleton and those in the molecule. The 
action parts of these rules describe a sequence of actions to perform: break 
one or more bonds, saving a molecular fragment, and transfer one or more 
hydrogen atoms from one fragment to another. An example of a simple 
rule is 

ESTROGEN ~ (BREAK (14 15) (13 17)) 
(HTRANS + 1 + 2) 

The LHS here is the name of the graph structure that describes the estro­
gen class of molecules, while the RHS indicates the likely locations for bond 
breakages and hydrogen transfers when such molecules are subjected to 
mass spectral bombardment. Note that while both sides of the rule are 
relatively complex, they are written in terms that are conceptual primitives 
in the domain. 

A related issue is illustrated by the rules used by MYCIN, where the 
LHS consists of a Boolean combination of standardized predicate func­
tions. Here the testing of a rule for relevance consists of having the stan-

13For an especially thorough discussion of pattern-matching methods in production systems 
as used in VIS, see Moran (1973a, pp. 42-45). 
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<lard LISP evaluator assess the LHS, and all matching and detection are 
controlled by the functions themselves. While using functions in LHS's 
provides power that is missing from using a simple pattern match, that 
creates the temptation to write one function to do what should be ex­
pressed by several rules. For example, one small task in MYCIN is to de­
duce that certain organisms are present, even though they have not been 
recovered from any culture. This is a conceptually complex, multistep op­
eration, which is currently ( 197 5) handled by invocation of a single func­
tion. If one succumbs often to the temptation to write one function rather 
than several rules, the result can be a system that may perform the initial 
task but that loses a great many of the other advantages of the PS approach. 
The problem is that the knowledge embodied in these functions is un­
available to anything else in the system. Whereas rules can be accessed and 
their knowledge examined (because of their constrained format), chunks 
of ALGOL-like code are not nearly as informative. The availability of a 
standardized, well-structured set of operational primitives can help to 
avoid the temptation to create new functions unnecessarily. 

2.5.2 Content-Which Conceptual Levels of 
Knowledge Belong in Rules? 

The question here is how large a reasoning step should be embodied in a 
single rule, and there seem to be two distinct approaches. Systems designed 
for psychological modeling (PAS II, PSG, etc.) try to measure and compare 
tasks and determine required knowledge and skills. As a result, they try to 
dissect cognition into its most primitive terms. While there is, of course, a 
range of possibilities, from the simple literal replacement found in PSG to 
the more sophisticated abilities of PAS II to construct new productions, 
rules in these systems tend to embody only the most basic conceptual steps. 
Grouped at the other end of this spectrum are the task-oriented systems, 
such as DENDRAL and MYCIN, which are designed to be competent at 
selected real-world problems. Here the conceptual primitives are at a much 
higher level, encompassing in a single rule a piece of reasoning that may 
be based both on experience and on a highly complex model of the do­
main. For example, the statement "a gram-negative rod in the blood is 
likely to be an E.coli" is based in part on knowledge of physiological systems 
and in part on clinical experience. Often the reasoning step is sufficiently 
large that the rule becomes a significant statement of a fact or principle in 
the domain, and, especially where reasoning is not yet highly formalized, 
a comprehensive collection of such rules may represent a substantial por­
tion of the knowledge in the field. 

An interesting, related point of methodology is the question of what 
kinds of knowledge ought to go into rules. Rules expressing knowledge 
about the domain are the necessary initial step, but interest has been gen­
erated lately in the question of embodying strategies in rules. We have 
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been actively pursuing this in the implementation of meta-rules in the MY­
CIN system (Davis et al., 1977). These are "rules about rules," and they 
contain strategies and heuristics. Thus, while the ordinary rules contain 
standard object-level knowledge about the medical domain, meta-rules 
contain information about rules and embody strategies for selecting po­
tentially useful paths of reasoning. For example, a meta-rule might suggest: 

If the patient has had a bowel tumor, then in concluding about or­
ganism identity, rules that mention the gastrointestinal tract are more 
likely to be useful. 

There is clearly no reason to stop at one level, however-third-order rules 
could be used to select from or order the meta-rules, by using information 
about how to select a strategy (and hence represent a search through "strat­
egy space"); fourth-order rules would suggest how to select criteria for 
choosing a strategy; etc. 

This approach appears to be promising for several reasons. First, the 
expression of any new level of knowledge in the system can mean an in­
crease in competence. This sort of strategy information, moreover, may 
translate rather directly into increased speed (since fewer rules need be 
tried) or no degradation in speed even with large increases in the number 
of rules. Second, since meta-rules refer to rule content rather than rule 
names, they automatically take care of new object-level rules that may be 
added to the system. Third, the possibility of expressing this information 
in a format that is essentially the same as the standard one means a uniform 
expression of many levels of knowledge. This uniformity in turn means 
that the advantages that arise out of the embodiment of any knowledge in 
a production rule (accessibility and the possibility of automated explana­
tion, modification, and acquisition of rules) should be available for the 
higher-order rules as well. 

2.5.3 Control Cycle Architecture 

The basic control cycle can be broken down into two phases called recog­
nition and action. The recognition phase involves selecting a single rule for 
execution and can be further subdivided into selection and conflict resolu­
tion.14 In the selection process, one or more potentially applicable rules are 
chosen from the set and passed to the conflict resolution algorithm, which 
chooses one of them. There are several approaches to selection, which can 
be categorized by their rule scan method. Most systems (e.g., PSG, PAS II) 
use some variation of an LHS scan, in which each LHS is evaluated in 
turn. Many stop scanning at the first successful evaluation (e.g., PSG), and 

14The range of conflict resolution algorithms in this section was suggested in a talk by Don 
Waterman. 
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hence conflict resolution becomes a trivial step (although the question then 
remains of where to start the scan on the next cycle: to start over at the 
first rule or to continue from the current rule). 

Some systems, however, collect all rules whose LHS's evaluate success­
fully. Conflict resolution then requires some criterion for choosing a single 
rule from this set (called the conflict set). Several have been suggested, 
including: 

(i) Rule order-there is a complete ordering of all rules in the system, 
and the rule in the conflict set with the highest priority is chosen. 

(ii) Data order-elements of the data base are ordered, and that rule is 
chosen which matches element(s) in the data base with highest priority. 

(iii) Generality order-the most specific rule is chosen. 

(iv) Rule precedence-a precedence network (perhaps containing cycles) 
determines the hierarchy. 

(v) Recency order-either the most recently executed rule or the rule 
containing the most recently updated element of the data base is 
chosen. 

For example, the LISP70 interpreter uses (iii), while DENDRAL uses (iv). 
A different approach to the selection process is used in the MYCIN 

system. The approach is goal-oriented and uses an RHS scan. The process 
is quite similar to the unwinding of consequent theorems in PLANNER 
(Hewitt, 1972): given a required subgoal, the system retrieves the (unor­
dered) set of rules whose actions conclude something about that subgoal. 
The evaluation of the first LHS is begun, and if any clause in it refers to 
a fact not yet in the data base, a generalized version of this fact becomes 
the new subgoal, and the process recurs. However, because MYCIN is 
designed to work with judgmental knowledge in a domain where collecting 
all relevant data and considering all possibilities are very important, in 
general, it executes all rules from the conflict set rather than stopping after 
the first success. 

The meta-rules mentioned above may also be seen as a way of selecting 
a subset of the conflict set for execution. There are several advantages to 
this. First, the conflict resolution algorithm is stated explicitly in the meta­
rules (rather than implicitly in the system's interpreter) and in the same 
representation as the rest of the rule-based knowledge. Second, since there 
can be a set of meta-rules for each subgoal type, MYCIN can specify dis­
tinct, and hence potentially more customized, conflict resolution strategies 
for each individual subgoal. Since the backward chaining of rules may also 
be viewed as a depth-first search of an AND/OR goal tree, 15 we may view 

15An AND/OR goal tree is a reasoning network in which AND's (conjunctions of LHS con­
ditionals) and OR's (disjunctions of multiple rules that all allow the same goal/conclusion to 
be reached) alternate. This structure is described in detail during the discussion of MYCIN's 
control structure in Chapter 5. 
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the search tree as storing at every branch point a collection of specific 
heuristics about which path to take. In addition, rules in the system are 
inexact, judgmental statements with a model of "approximate implication" 
in which the user may specify a measure of how firmly he or she believes 
that a given LHS implies its RHS (Shortliffe and Buchanan, 1975). This 
admits the possibility of writing numerous, perhaps conflicting heuristics, 
whose combined judgment forms the conflict resolution algorithm. 

Control cycle architecture affects the rest of the production system in 
several ways. Overall efficiency, for example, can be strongly influenced. 
The RHS scan in a goal-oriented system insures that only relevant rules 
are considered in the conflict set. Since this is often a small subset of the 
total, and one that can be computed once and stored for reference, there 
is no search necessary at execution time; thus the approach can be quite 
efficient. In addition, since this approach seems natural to humans, the 
system's behavior becomes easier to follow. 

Among the conflict resolution algorithms mentioned, rule order and 
recency order require a minimal amount of checking to determine the rule 
with highest priority. Generality order can be efficiently implemented, and 
the LISP70 compiler uses it effectively. Data order and rule precedence 
require a significant amount of bookkeeping and processing, and hence 
may be slower (PSH, a development along the lines of PSG, attacks pre­
cisely this problem). 

The relative difficulty of adding a new rule to the system is also de­
termined to a significant degree by the choice of control cycle architecture. 
Like PLANNER with its consequent theorems, the goal-oriented approach 
makes it possible to simply "throw the rule in the pot" and still be assured 
that it will be retrieved properly. The generality-ordering technique also 
permits a simple, automatic method for placing the new rule, as do the 
data-ordering and recency strategies. In the latter two cases, however, the 
primary factor in ordering is external to the rule, and hence, while rules 
may be added to the rule set easily, it is somewhat harder to predict and 
control their subsequent selection. For both rule order and rule precedence 
networks, rule addition may be a substantially more difficult problem that 
depends primarily on the complexity of the criteria used to determine the 
hierarchy. 

2.5.4 System Extensibility 

Learning, viewed as augmentation of the system's rule base, is of concern 
both to the information-processing psychologists, who view it as an essential 
aspect of human cognition, and to designers of knowledge-based systems, 
who acknowledge that building truly expert systems requires an incremen­
tal approach to competence. As yet we have no range or even points of 
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comparison to offer because of the scarcity of examples. Instead, we sug­
gest some standards by which the ease of augmentation may be judged. 16 

Perhaps the most basic question is "How automatic is it?" The ability 
to learn is clearly an area of competence by itself, and thus we are really 
asking how much of that competence has been captured in the system, and 
how much the user has to supply. Some aspects of this competence include: 

• If the current system displays evidence of a bug caused by a missing or 
incorrect rule, how much of the diagnosing of the bug is handled by the 
system, and how much tracing must be done by the user? 

• Once the bug is uncovered, who fixes it? Must the user modify the code 
by hand? ... tell the system in some command language what to do? ... 
indicate the generic type of the error? Can the user simply point out the 
offending rule, or can the system locate and fix the bug itself? 

• Can the system indicate whether the new rule will in fact fix the bug or 
if it will have side effects or undesired interactions? 

• How much must the user know about rule format conventions when 
expressing a new (or modified) rule? Must he or she know how to code 
it explicitly? ... know precisely the vocabulary to use? ... know generally 
how to phrase it? Or can the user indicate in some general way the 
desired rule and allow the system to make the transformation? Who has 
to know the semantics of the domain? For example, can the system detect 
impossible conjunctions (A & B, where A---> not-B), or trivial disjunctions 
(A V B, where A ---> not-B)? Who knows enough about the system's 
idiosyncrasies to suggest optimally fast or powerful ways of expressing 
rules? 

• How difficult is it to enter strategies? 

• How difficult is it to enter control structure information? Where is the 
control structure information stored: in aggregations of rules or in 
higher-order rules? The former makes augmentation or modification a 
difficult problem; the latter makes it somewhat easier, since the infor­
mation is explicit and concentrated in one place. -

• Can you assure continued consistency of the rule base? Who has to do 
the checking? 

These are questions that will be important and useful to confront in de­
signing any system intended to do knowledge acquisition, especially any 
built around production rules as underlying knowledge representation. 

16It should be noted that this discussion is oriented primarily toward an interactive, mixed­
initiative view of learning, in which the human expert teaches the system and answers ques­
tions it may generate. It has also been influenced by our experience in attacking this problem 
for the MYCIN system (Davis, 1976). Many other models of the process (e.g., teaching by 
selected examples) are of course possible. 
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2 6 Conclusions • 

In artificial intelligence research, production systems were first used to 
embody primitive chunks of information-processing behavior in simulation 
programs. Their adaptation to other uses, along with increased experience 
with them, has focused attention on their possible utility as a general pro­
gramming mechanism. Production systems permit the representation of 
knowledge in a highly uniform and modular way. This may pay off hand­
somely in two areas of investigation: development of programs that can 
manipulate their own representations and development of a theory of 
loosely coupled systems, both computational and psychological. Production 
systems are potentially useful as a flexible modeling tool for many types 
of systems; current research efforts are sufficiently diverse to discover the 
extent to which this potential may be realized. 

Information-processing psychologists continue to be interested in pro­
duction systems. PS's can be used to study a wide range of tasks (Newell 
and Simon, 1972). They constitute a general programming system with 
the full power of a Turing machine, but use a homogeneous encoding of 
knowledge. To the extent that the methodology is that of a pure production 
system, the knowledge embedded is completely explicit and thus aids 
experimental verification or falsifiability of theories that use PS's as a me­
dium of expression. Productions may correspond to verifiable bits of psy­
chological behavior (Moran, 1973a), reflecting the role of postulated hu­
man information-processing structures such as short-term memory. PS's 
are flexible enough to permit a wide range of variation based on reaction 
times, adaptation, or other commonly tested psychological variables. Fi­
nally, they provide a method for studying learning and adaptive behavior 
(Waterman, 1974). 

For those wishing to build knowledge-based expert systems, the homo­
geneous encoding of knowledge offers the possibility of automating parts 
of the task of dealing with the growing complexity of such systems. Knowl­
edge in production rules is both accessible and relatively easy to modify. It 
can be executed by one part of the system as procedural code and exam­
ined by another part as if it were a declarative expression. Despite the 
difficulties of programming PS's, and their occasionally restrictive syntax, 
the fundamental methodology suggests a convenient and appropriate 
framework for the task of structuring and specifying large amounts of 
knowledge. (See Hayes-Roth et al., 1983, for recent uses of production 
systems.) It may thus prove to be of great utility in dealing with the prob­
lems of complexity encountered in the construction of large knowledge 
bases. 



PART TWO 

Using Rules 



3 
The Evolution of MYCIN's 
Rule Form 

There is little doubt that the decision to use rules to encode infectious 
disease knowledge in the nascent MYCIN system was largely influenced by 
our experience using similar techniques in DENDRAL. However, as men­
tioned in Chapter l, we did experiment with a semantic network repre­
sentation before turning to the production rule model. The impressive 
published examples of Carbonell's SCHOLAR system (Carbonell, I 970a; 
I 970b), with its ability to carry on a mixed-initiative dialogue regarding 
the geography of South America, seemed to us a useful model of the kind 
of rich interactive environment that would be needed for a system to advise 
physicians. 

Our disenchantment with a pure semantic network representation of 
the domain knowledge arose for several reasons as we began to work with 
Cohen and Axline, our collaborating experts. First, the knowledge of in­
fectious disease therapy selection was ill-structured and, we found, difficult 
to represent using labeled arcs between nodes. Unlike South American 
geography, our domain did not have a clear-cut hierarchical organization, 
and we found it challenging to transfer a page or two from a medical 
textbook into a network of sufficient richness for our purposes. Of partic­
ular importance was our need for a strong inferential mechanism that 
would allow our system to reason about complex relationships among di­
verse concepts; there was no precedent for inferences on a semantic net 
that went beyond the direct, labeled relationships between nodes. 1 

Perhaps the greatest problem with a network representation, and the 
greatest appeal of production rules, was our gradually recognized need to 
deal with small chunks of domain knowledge in interacting with our expert 
collaborators. Because they were not used to dissecting their clinical rea­
soning processes, it was totally useless to ask them to "tell us all that you 
know." However, by discussing specific difficult patients, and by encour-

1The PROSPECTOR system (Duda et al., l 978a; l 978b), which was developed shortly after 
MYCIN, uses a network of inferential relations-a so-called inference net-to combine a seman­
tic network with inference rules. 

55 
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aging our collaborators to justify their questions or decisions, those of us 
who were not expert in the field began to tease out "nuggets" of domain 
knowledge-individual inferential facts that the experts identified as per­
tinent for problem solving in the domain. By encoding these facts as in­
dividual production rules, rather than attempting to decompose them into 
nodes and links in a semantic network, we found that the experts were 
able to examine and critique the rules without difficulty. This transparency 
of the knowledge base, coupled with the inherent modularity of knowledge 
expressed as rules, allowed us to build a prototype system quickly and 
allowed the experts to identify sources of performance problems with rel­
ative ease. They particularly appreciated having the ability to observe the 
effects of chained reasoning based on individual rules that they themselves 
had provided to us. In current AI terminology, the organization of knowl­
edge was not object-centered but was centered around inferential processes. 

Our early prototype rapidly diverged from DENDRAL because we 
were driven by different performance goals and different characteristics 
of the knowledge in the domain. Of particular importance was the need 
to deal with inexact inference; unlike the categorical conclusions in DEN­
DRAL's rules, the actions in MYCIN's productions were typically conclu­
sions about the state of the world that were not known with certainty. We 
soon recognized the need to accumulate evidence regarding alternative 
hypotheses as multiple rules lent credence to the conclusions. The need 
for a system to measure the weight of evidence of competing hypotheses 
was not surprising; it had also characterized conventional statistical ap­
proaches to computer-based medical decision making. Our certainty factor 
model, to which we refer frequently throughout this book (and which is 
the subject of Part Four), was developed in response to our desire to deal 
with uncertainty while attempting to keep knowledge modular and in rules. 

The absence of complete certainty in most of our rules meant that we 
needed a control structure that would consider all rules regarding a given 
hypothesis and not stop after the first one had succeeded. This need for 
exhaustive search was distinctly different from control in DENDRAL, 
where the hierarchical ordering of rules was particularly important for 
correct prediction and interpretation (see Chapter 2). Because rule order­
ing was not important in MYCIN, the modularity of rules was heightened; 
the experts did not need to worry about ordering the rules they gave us 
or about other details of control. 2 

Another important distinction between the reasoning paradigms of 
DENDRAL and MYCIN was recognized early. DENDRAL generated 
hypotheses regarding plausible chemical structures and used its rule set to 

2The arbitrary order of MYCIN's rules did lead to some suboptimal performance character­
istics, however. In particular, the ordering of questions to the user often seemed unfocused. 
It was for this reason that the MAINPROPS (later known as INITIALDATA) feature was 
devised (see Chapter 5), and the concept of meta-mies was developed to allow rule selection 
and ordering based on strategic knowledge of the domain (see Chapter 28). The development 
of prototypes in CENTAUR (Chapter 23) was similarly motivated. 
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test these hypotheses and to select the best ones. Thus DENDRAL's control 
scheme involved forward invocation of rules for the last phase of the plan­
generate-and-test paradigm. On the other hand, it was unrealistic for MY­
CIN to start by generating hypotheses regarding likely organisms or com­
binations of pathogens; there were no reasonable heuristics for pruning 
the search space, and there was no single piece of orienting information 
similar to the mass spectrum, which provided the planning information to 
constrain DENDRAL's hypothesis generator. Thus MYCIN was dependent 
on a reasoning model based on evidence gathering, and its rules were used 
to guide the process of input data collection. Because we wanted to avoid 
problems of natural language understanding, and also did not want to 
teach our physician users a specialized input language, we felt it was un­
reasonable to ask the physician to enter some subset of the relevant patient 
descriptors and then to have the rules fire in a data-driven fashion. Instead, 
we chose a goal-directed control structure that allowed MYCIN to ask the 
relevant questions and therefore permitted the physician to respond, in 
general, with simple one-word answers. Thus domain characteristics led 
to forward-directed use of the generate-and-test paradigm in DENDRAL 
and to goal-directed use of the evidence-gathering paradigm in MYCIN. 

We were not entirely successful in putting all of the requisite medical 
knowledge into rules. Chapter 5 describes the problems encountered in 
trying to represent MYCIN's therapy selection algorithm as rules. Because 
therapy selection was initially implemented as LISP code rather than in 
rules, MYCIN's explanation system was at that time unable to justify spe­
cific therapy decisions in the same way it justified its diagnostic decisions. 
This situation reflects the inherent tension between procedural and pro­
duction-based representation of this kind of algorithmic knowledge. The 
need for further work on the problem was clear. A few years later Clancey 
assumed the challenge of rewriting the therapy selection part of MYCIN 
so that appropriate explanations could be generated for the user. We were 
unable to encode the entire algorithm in rules, however, and instead settled 
on a solution reminiscent of the generate-and-test approach used in DEN­
DRAL: rules were used to evaluate therapeutic hypotheses after they had 
been proposed (generated) by an algorithm that was designed to support 
explanations of its operation. This clever solution, described in Chapter 6, 
seemed to provide an optimal mix of procedural and rule-based knowl­
edge. 

3 .1 Design Considerations 

Many of the decisions that led to MYCIN's initial design resulted from a 
pragmatic response to perceived demands of physicians as computer users. 
Our perceptions were largely based on our own intuitions and observations 
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about problems that had limited the success of previous computer-based 
medical decision-making systems. More recently we have undertaken for­
mal studies of physician attitudes (Chapter 34), and the data that resulted, 
coupled with our prior experience building MYCIN, have had a major 
impact on our more recent work with ONCOCIN (Chapter 35). These 
issues are addressed in detail in Part Eleven. 

However, since many of the features and technical decisions that are 
reflected in the other chapters in Part Two are based on our early analysis 
of design considerations for MYCIN (Shortliffe, 1976), we summarize 
those briefly here. We have already alluded to several ways in which MY­
CIN departed from the pure production systems described in Chapter 2. 
These are further discussed throughout the book (see especially Chapter 
36), but it is important to recognize that the system's development was 
evolutionary. Most such departures resulted from characteristics of the 
medical domain, from our perceptions of physicians as potential computer 
users, or from unanticipated problems that arose as MYCIN grew in size 
and complexity. 

We recognized at the outset that educational programs designed for 
instruction of medical students had tended to meet with more long-term 
success than had clinical consultation programs. A possible explanation, 
we felt, was that instructional programs dealt only with hypothetical pa­
tients in an effort to teach diagnostic or therapeutic concepts, whereas 
consultation systems were intended to assist physicians with the manage­
ment of real patients in the clinical setting. A program aiding decisions 
that can directly affect patient well-being must fulfill certain responsibilities 
to physicians if they are to accept the computer and make use of its knowl­
edge. For example, we observed that physicians had tended to reject com­
puter programs designed as decision-making aids unless they were 
accessible, easy to use, forgiving of simple typing errors,- reliable, and fast 
enough to save time. Physicians also seemed to prefer that a program 
function as a tool, not as an "all-knowing" machine that analyzes data and 
then states its conclusions as dogma without justifying them. We had also 
observed that physicians are most apt to need advice from consultation 
programs when an unusual diagnostic or therapeutic problem has arisen, 
which is often the circumstance when a patient is acutely ill. Time is an 
important consideration in such cases, and a physician will probably be 
unwilling to experiment with an "unpolished" prototype. In fact, time will 
always be an important consideration given the typical daily schedule of a 
practicing physician. 

With considerations such as these in mind from the start, we defined 
the following list of prerequisites for the acceptance of a clinical consul­
tation program (Shortliffe et al., 1974):3 

3This analysis was later updated, expanded, and analyzed after we gained more experience 
with MYCIN (Shortliffe, 1980). 
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l. The program should be useful; i.e., it should respond to a well-docu­
mented clinical need and, ideally, should tackle a problem with which 
physicians have explicitly requested assistance. 

2. The program should be usable; i.e., it should be fast, accessible, easy to 
learn, and simple for a novice computer user. 

3. The program should be educational when appropriate; i.e., it should allow 
physicians to access its knowledge base and must be capable of convey­
ing pertinent information in a form that they can understand and from 
which they can learn. 

4. The program should be able to explain its advice; i.e., it should provide 
the user with enough information about its reasoning so that he or she 
can decide whether to follow the recommendation. 

5. The program should be able to respond to simple questions; i.e., it should 
be possible for the physician to request justifications of specific infer­
ences by posing questions, ideally using natural language. 

6. The program should be able to learn new knowledge; i.e., it should be 
possible to tell it new facts and have them easily and automatically in­
corporated for future use, or it should be able to learn from experience 
as it is used on large numbers of cases. 

7. The program's knowledge should be easily modified; i.e, adding new 
knowledge or correcting errors in new knowledge should be straight­
forward, ideally accomplished without having to make explicit changes 
to the program (code) itself. 

This list of design considerations played a major role in guiding our early 
work on MYCIN, and, as we suggested earlier in this chapter, they largely 
account for our decision to implement MYCIN as a rule-based system. In 
Chapters 4 through 6, and in subsequent discussions of knowledge acqui­
sition (Part Three) and explanation (Part Six), it will ber:ome clear how the 
production system formalism provided a powerful foundation for an evolv­
ing system intended to satisfy the design goals we have outlined here. 

3.2 MYCIN as an Evolutionary System 

One of the lessons of the MYCIN research has been the way in which the 
pure theory of production systems, as described in Chapter 2, has required 
adaptation in response to issues that arose during system development. 
Many of these deviations from a pure production system approach with 
backward chaining will become clear in the ensuing chapters. For reference 
we summarize here some of those deviations, citing the reasons for changes 
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that were introduced, even though this anticipates more complete discus­
sions in later chapters. 

1. The context tree: We realized the need to allow our rules to make 
conclusions about multiple objects and to keep track of the hierarchical 
relationships among them. The context tree (described in Chapter 5) was 
created to provide a mechanism for representing hierarchical relationships 
and for quantifying over multiple objects. For instance, ORGANISM-I and 
ORGANISM-2 are contexts of the same type that are related to cultures 
in which they are observed to be growing and that need to be compared, 
collected, and reasoned with together at times. 

2. Instantiation of contexts: When a new object required attention, we 
needed a mechanism for creating it, naming it, and recording its associa­
tions with other contexts in the system. Prototypical contexts, similar in 
concept to the "frames" of more recent AI work (Minsky, 1975), provided 
a mechanism for creating new objects when they were needed. These are 
called context-types to distinguish them from individual contexts. For in­
stance, ORGANISM is a context-type. 

3. Development of MAINPROPS: Physicians using the evolving system 
began to complain that MYCIN did not ask questions in the order they 
were used to. For example, they indicated it was standard practice to discuss 
the site, timing, and method of collection for a culture as soon as it was 
first mentioned. Thus we created a set of parameters called the MAIN­
PROPS for each prototypical context. 4 The values of these parameters 
were automatically asked for when a context was first created, thereby 
providing the kind of focused questioning with which physicians felt most 
comfortable. The benefit was in creating a more natural sequence of ques­
tions. The risk was in asking a few more questions than might be logically 
necessary for some cases. This was a departure from the pure production 
system aproach of asking questions only when the information was needed 
for evaluating the premise of a rule. 

4. Addition of antecedent rules: The development of MAINPROPS 
meant that we knew there were a small number of questions that would 
be asked every time a context was created. In a pure backward-chaining 
system, rules that had premise conditions that depended only on the values 
of parameters on MAINPROPS lists would be invoked when needed so 
there was no a priori reason to do anything special with such rules. How­
ever, two situations arose that made us flag such rules as antecedent rules 
to be invoked in a data-driven fashion rather than await goal-oriented 
invocation. First, there were cases in which an answer to one MAINPROPS 

4This name was later changed to INITIALDATA in EMYCIN systems. 
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question could uniquely determine (via a definitional antecedent rule) the 
value of another subsequent MAINPROPS property for the same context 
(e.g., if an organism's identity was known, its gram stain and morphology 
were of course immediately determined). By implementing such rules as 
antecedent rules and by checking to see if the value of a MAINPROPS 
parameter was known before asking the user, we avoided inappropriate or 
unnecessary questions. 

The second use of antecedent rules arose when the preview mecha­
nism was implemented (see paragraph 12 below). Because an antecedent 
rule could determine that a premise condition of another rule was false, 
such rules could be rejected immediately during the preview phase. If 
antecedent rules had been saved for backward-chained invocation, how­
ever, the preview mechanism would have failed to reject the rule in ques­
tion. Thus the MONITOR would have inappropriately pursued the first 
two or three conditions in the premise of the rule, perhaps at considerable 
computational expense, only to discover that the subsequent clause was 
clearly false due to an answer of an earlier MAINPROPS question. Thus 
antecedent rules offered a considerable enhancement to efficiency in such 
cases. 

5. Self-referencing rules: As will be discussed in Chapter 5, it became 
necessary to write rules in which the same parameter appeared in both the 
premise and the action parts. Self-referencing rules of the form A & B & 
C --+ A are a departure from the pure production system approach, and 
they required changes to the goal-oriented rule invocation mechanism. 
They were introduced for three purposes: default reasoning, screening, 
and using information about risks and utilities. 

a. Default reasoning: MYCIN makes no inferences except those that are 
explicitly stated in rules, as executed under the certainty factor (CF) model 
(see Chapter 11) and backward-chaining control. There are no implicit 
ELSE clauses in the rules that assign default values to parameters. 5 When 
rules fail to establish a value for a parameter, its value is considered to be 
UNKNOWN-no other defaults are used. One use of the self-referencing 
rules is to assign a default value to a parameter explicitly: 

IF a value for X is not known (after trying to establish one), 
THEN conclude that the value of X is Z. 

Thus, reasoning with defaults is done in the rules and can be explained 
in the same way as any other conclusions. The control structure had to be 
changed, however, to delay executing these rules until all other relevant 
rules had been tried. 

b. Screening: For purposes of human engineering, we needed a screen-

5Explicit else clauses were defined in the syntax (see Chapter 5) but were eliminated, mostly 
for the sake of simplicity. 
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ing mechanism to avoid asking about unusual parameters (B and C, above) 
unless there is already some other evidence for the hypothesis (A) under 
consideration. For example, we did not want MYCIN to use the simple 
rule 

Pseudomonas-type skin lesions ---> Pseudomonas 

unless there already was evidence for Pseudomonas-otherwise, the pro­
gram would appear to be asking for minute pieces of data inappropriately. 

c. Utilities: Self-referencing rules gave us a way to consider the risks 
of failing to consider a hypothesis. Once there is evidence for Pseudomonas, 
say, being a possible cause of an infection, then a self-referencing rule can 
boost the importance of considering it in therapy, based on the high risk 
of failing to treat for it. 

6. Mapping rules: We soon recognized the need for rules that could 
be applied iteratively to a set of contexts (e.g., a rule comparing a current 
organism to each bacterium in the set of all previous organisms in the 
context tree). Special predicate functions (e.g., THERE-IS, FOR-EACH, 
ONE-OF) were therefore written so that a condition in a rule premise could 
map iteratively over a set of contexts. This was a partial solution to the 
general representation problem of expressing universal and existential 
quantification. Only by considering all contexts of a type could we deter­
mine if all or some of them had specified properties. The context tree 
allowed easy comparisons within any parent context (e.g., all the organisms 
growing in CULTURE-2) but did not allow easy comparison across contexts 
(e.g., all organisms growing in all cultures). 

7. Tabular representation of knowledge: When large numbers of rules 
had been written, each having essentially the same form, we recognized 
the efficiency of collapsing them into a single rule that read the values for 
its premise conditions and action from a specialized table. (A related con­
cept was implemented in changes that allowed physicians to enter infor­
mation in a more natural way. If they were looking at a patient's record 
for answers to questions, it was more convenient to enter many items at 
once into a table of related parameters. There was, however, the attendant 
risk of asking for information that would not actually be used in some 
cases.) Chapter 5 describes the implementation of this feature. 

8. Augmentation of rules: As multiple experts joined to collaborate on 
development of the knowledge base, we recognized the need to keep track 
of who wrote individual rules. Thus extra properties were added to rules 
that allowed us to keep track of authorship, to record literature references 
that defended the inference stored in the rule, and to allow recording of 
free-form text justification of certain complicated rules for which the nor­
mal rule translation was somewhat cryptic. These extra slots associated with 
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rules gave the latter more the character of frames than of pure produc­
tions. 

9. The therapy algorithm: As described in Chapter 5, the final step in 
MYCIN's decision process was largely algorithmic and proved difficult to 

encode in rules. Chapter 6 describes our eventual solution, in which we 
integrated algorithmic and rule-based approaches in a novel manner. 

I 0. Management of uncertainty: Previous PS's had not encoded the un­
certainty in rules. Thus MYCIN's certainty factor model (see Part Four) 
was an augmentation mandated by the nature of decision making in this 
complex medical domain. 

11. Addition of meta-rules: As mentioned in Chapter 2 and described 
in Chapter 28, we began to realize that strategies for optimal rule invo­
cation could themselves be encoded in rules. MYCIN's PS approach was 
modified to manage high-level meta-rules that could be invoked via the 
usual rule monitor and that would assist in determining optimal problem­
solving strategies. 

12. Addition of a preview mechanism: It became clear that it was ineffi­
cient for the rule interpreter to assess the first few conditions in a rule 
premise if it was already known that a subsequent condition was false. Thus 
a preview mechanism was added to the interpreter so that it first examined 
the whole premise to see if there were parameters whose values had pre­
viously been determined. The addition of the preview mechanism made it 
important to add antecedent rules, as mentioned above (paragraph 4). 

13. The concept of a unity path: Because many MYCIN rules reached 
conclusions with less than certainty, it was generally necessary to invoke all 
rules that could bear on the value of a parameter under consideration. 
This is part of MYCIN's cautious evidence-gathering strategy in which all 
relevant evidence available at the time of a consultation is used. However, 
if a rule successfully reaches a conclusion with certainty (i.e., it has CF= 1), 
then it is not necessary to try alternate rules. Thus the rule monitor was 
altered to try first those rules that could reach a conclusion with certainty, 
either through a single rule with CF= I or through a chain of rules, each 
with CF= I (a so-called unity path). When certain rules succeeded, the 
alternate rules were ignored, and this prevented inefficiencies in the de­
velopment of the reasoning network and in the generation of questions to 
the user. 

14. Prevention of circular reasoning: The issue of circular reasoning 
does not normally arise in pure production systems but was a serious po­
tential problem for MYCIN. (Self-referencing rules, discussed in para­
graph 5 above, are a special case of the general circular reasoning problem 



64 The Evolution of MYCIN's Rule Form 

involving any number of rules.) Special changes to the rule monitor were 
required to prevent this undesirable occurrence (see Chapter 5). 

15. The tracing mechanism: As is described in Chapter 5, we made the 
decision to determine all possible values of a parameter instead of deter­
mining only the value specified in the premise condition of interest. This 
potential inefficiency was tolerated for reasons of user acceptance. We 
found that physicians preferred a focused and exhaustive consideration of 
one topic at a time, rather than having the system return subsequently to 
the subject when another possible value of the same parameter was under 
consideration. 

16. The ASKFJRST concept: Pure production systems have not gen­
erally distinguished between attributes that the user may already know with 
certainty (such as values of laboratory tests) and those that inherently re­
quire inference. In MYCIN this became an important distinction, which 
required that each parameter be labeled as an ASKFIRST attribute (orig­
inally named LABDATA as discussed in Chapter 5) or as a parameter that 
should first be determined by using rules rather than by asking the user. 

17. Procedural conditions associated with parameters: We also discovered 
unusual circumstances in which a special test was necessary before MYCIN 
could decide whether it was appropriate to ask the user for the value of a 
parameter. This was solved through a kind of procedural attachment, i.e., 
an executable piece of conditional code associated with a parameter, which 
would allow the rule monitor to decide whether a question to the user was 
appropriate. Each parameter thus began to be represented as a frame with 
several slots, including some whose values were procedures. 

18. Rephrasing prompts: As users became more familiar with MYCIN, 
we found that they preferred short, less detailed prompts when the pro­
gram requested information. Thus a "terse" mode was implemented and 
could be selected by an experienced user. Similarly, a reprompt mechanism 
was developed so that a novice user, puzzled by a question, could be given 
a more detailed explanation of what MYCIN needed to know. These fea­
tures were added to an already existing HELP facility, which showed ex­
amples of acceptable answers to questions. 

19. Multiple instances of contexts: Some of the questions asked by MY­
CIN are necessary for deciding whether or not to create contexts (rather 
than for determining the value of a parameter). Furthermore, optimal 
human engineering requires that this kind of question be phrased differ­
ently for the first instance of a context-type than for subsequent instances. 
These alternate prompts are discussed in Chapter 5. 
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20. HERSTORY List: Another addition to the rule monitor in MYCIN 
was a mechanism for keeping track of all rules invoked, failing, succeeding, 
etc., and the reasons for these various outcomes. The so-called HERS­
TORY List, or history tree, then provided the basis for MYCIN's expla­
nations in response to users' queries. 

21. Creation of a Patient Data Table: Finally, we recognized the need to 
develop mechanisms for (a) reevaluating cases when more information 
became available and (b) assessing the impact of modifications to the knowl­
edge base on a library of cases previously handled well. These goals were 
achieved by the development of a Patient Data Table, i.e., a mechanism for 
storing and accessing the initializing conditions necessary for full consid­
eration of cases. See Chapter 5 for further discussions of this feature. 

3.3 A Word About the Logic of MYCIN 

The logic of MYCIN's reasoning is propositional logic, where the elemen­
tary propositions are fact triples and the primary rule of inference is modus 
ponens (A and A::> B implies B). It is extended (and somewhat complicated) 
in the following respects: 

• Certainty factors (CF's) are attached (or propagated) to all propositions. 

• CF's are associated with all implications. 

• Predicates are associated with fact triples to change the way facts stated 
in rules are matched against facts in the dynamically constructed case 
record. A variety of predicates have been defined (see Section 5.1.5); 
some refer to values of attributes (e.g., NOT-SAME, ONE-OF) and some 
reference values of CF's (e.g., KNOWN, DEFINITE). 

• Limited quantification is allowed over conjunctions of propositions (e.g., 
THERE-IS, FOR-EACH). 

• Meta-level reasoning is allowed in order to increase efficiency (e.g., using 
meta-rules or looking for a unity path). 

MYCIN's logic is incomplete in the sense that we know there are prop­
ositions that can be expressed in the language but are not provable as 
theorems. MYCIN's logic is not inconsistent in itself (we believe), but it is 
not immune to inconsistencies introduced into its knowledge base. 
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3 4 Overview of Part Two • 

The remainder of this part consists of three papers that summarize MY­
CIN and its use of production rules. In order to orient the reader to 
MYCIN's overall motivation and design, we first include as Chapter 4 an 
introductory paper that provides an overview of the system as of 1978 
(approximately the time when development of the medical knowledge base 
stopped). Chapter 5 is the original detailed description of MYCIN from 
1975. It provides technical information on the system's representation and 
control mechanisms. Chapter 6 is a brief paper from 1977 that discusses 
the way in which production rules were adapted to deal with the algo­
rithmic knowledge regarding therapy selection. 



4 
The Structure of the 
MYCIN System 

William van Melle 

A number of constraints influenced the design of the MYCIN system. In 
order to be useful, the system had to be easy to use and had to provide 
consistently reliable advice. It needed to be able to accommodate the large 
body of task-specific knowledge required for high performance, a knowl­
edge base that is subject to change over time. The system also had to be 
able to use inexact or incomplete information. This applies not only to the 
absence of definitive laboratory data, but also to the medical domain itself 
(which is characterized by much judgmental knowledge). Finally, to be a 
useful interactive system, MYCIN needed to be capable of supplying ex­
planations for its decisions and responding to physicians' questions, rather 
than simply printing orders. 

The MYCIN system comprises three major subprograms, as depicted 
in Figure 4-1. The Consultation Program is the core of the system; it interacts 
with the physician to obtain information about the patient, generating 
diagnoses and therapy recommendations. The Expwnation Program pro­
vides explanations and justifications for the program's actions. The Knowl­
edge-Acquisition Program is used by experts to update the system's knowledge 
base. 

This chapter is based on an article originally appearing under the title "MYCIN: A knowl­
edge-based consultation program for infectious disease diagnosis" in International journal of 
Man-Machine Studies I 0: 313-322 (I 978). Copyright © I 979 by Academic Press Inc (London) 
Limited. Used with permission. 
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FIGURE 4-1 Organization of the MYCIN system. Arrows de­
note information flow between modules, knowledge base, and 
users. 

4.1 The Consultation Program 

Excerpts from a sample consultation are shown in Figure 4-2. (A complete 
annotated typescript is shown in the Appendix.) The doctor's responses 
are in upper-case letters following the double-asterisk prompt. Consider­
able effort has gone into the human engineering aspects of the system, to 
make the interaction as smooth as possible. If the user finds a question 
unclear, he or she can request a rephrasing with a list of sample responses. 
A large dictionary of synonyms allows the user great latitude in choice of 
responses, and simple typing or spelling errors are automatically corrected. 

4.1.1 Knowledge Organization 

Information about the patient and conclusions drawn during the consul­
tation are represented as associative (object-attribute-value) triples. The 



1) Patient's name: (first-last) 
**FRED BRAUN 
2) Sex: 
**M 
3) Age: 
.. 55 
4) Are there any cultures for Fred Braun which may be related to 

the present illness, and from which organisms have been grown 
successfully in the microbiology laboratory? 

**Y 

--------CULTURE-1--------
5) From what site was the specimen for CULTURE-1 taken? 
**BLOD 
=BLOOD 
6) Please give the date and time when CULTURE-1 was obtained. 

(mo/da/yr time) 
**JUN 20, 1977 
The first organism isolated from the blood culture of 20-JUN-77 
(CULTURE-1) will be referred to as: 

--------ORGANISM-1--------
7) Enter the laboratory-reported identity of ORGANISM-1: 
**UNKNOWN 
8) The stain (gram or Ziehl-Neelsen acid-fast) of ORGANISM-1: 
**NEG 
9) Is ORGANISM-1 rod or coccus (etc.): 
**ROD 
10) What is the form of the individual organisms (e.g. lancet­

shaped for cocci, fusiform for rods, etc.)? 
**FUSIFORM 
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(Questions 1-3 request 
background patient data.) 

(System corrects typing error.) 

(Typically identity is not yet known.) 

(Preliminary lab results give some clues.) 

( ... more questions follow in order to gather sufficient information to infer the identity 
and significance of the infecting organisms ... ) 

23) What is the suspected portal of entry of the gramneg rod from the 
blood culture of 20-JUN-77 (ORGANISM-1) into this sterile site? 

** GI (6) (User indicates the uncertainty of his response.) 
24) Is Fred Braun a burn patient? 
**N 
25) Is Fred Braun a compromised host (e.g. alcoholic, 

sickle-cell-disease, immunosuppressed)? 
**N 
26) Is Fred Braun febrile? 
**Y 

( ... after about 50-60 questions, MYCIN prints the diagnostic hypotheses on 
which therapy will be based ... ) 

My therapy recommendations will be designed to treat for organisms that are either very likely or, although less 
likely, would have a significant effect on therapy selection if they were present. It is important to cover for the 
following probable infection(s) and associated organism(s): 

INFECTION-1 is BACTEREMIA 

<ITEM-1> E.COLI [ORGANISM-1] 
<ITEM-2> KLEBSIELLA [ORGANISM-1] 
<ITEM-3> ENTEROBACTER [ORGANISM-1] 
<ITEM-4> KLEBSIELLA-PNEUMONIAE [ORGANISM-1] 

FIGURE 4-2 Excerpts from a MYCIN consultation. (Com­
ments in italics are not part of the actual interaction.) 
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( ... questions follow to evaluate possible therapy choices, 
and finally MYCIN prints its therapy recommendations ... J 

(REC-1] My preferred therapy recommendation 1s as follows: 
In order to cover for items <1 2 3 4>: 

Give: GENTAMICIN 
Dose: 119 mg (6.0 ml) q8h IV for 1 o days [calculated on basis of 

1.7 mg/kg] 
Comments: Modify dose in renal failure. 

(One drug covers 4 possible identities.) 

FIGURE 4-2 continued 

objects, known as contexts in MYCIN, are such things as individual cultures 
taken from the patient, organisms that grew out of them, and drugs the 
patient is currently receiving. Various attributes, termed clinical parameters, 
characterize these objects. Questions asked during the consultation attempt 
to fill in the values for relevant attributes of these objects. To represent the 
uncertainty of data or competing hypotheses, attached to each triple is a 
certainty factor (CF), a number between - I and I indicating the strength 
of the belief in (or a measure of the importance of) that fact. A CF of 1 
represents total certainty of the truth of the fact, while a CF of - I rep­
resents certainty regarding the negation of the fact. While certainty factors 
are not conditional probabilities, they are informally based on probability 
theory (see Part Four). Some triples (with CF's) from a typical consultation 
might be as follows: 

(IDENTITY ORGANISM-1 PSEUDOMONAS 0.8) 
(IDENTITY ORGANISM-1 E. COLI 0. 15) 
(SITE CULTURE-2 THROAT 1.0) 
(BURNED PATIENT-298 YES -1.0) 

Here ORGANISM-I is probably Pseudomonas, but there is some evidence 
to believe it is E. coli; the site of CULTURE-2 is (without doubt) the throat; 
and PATIENT-298 is known not to be a burn patient. 

4.1.2 Production Rules 

MYCIN reasons about its domain using judgmental knowledge encoded 
as production rules. Each rule has a premise, which is a conjunction of 
predicates regarding triples in the knowledge base. If the premise is true, 
the conclusion in the action part of the rule is drawn. If the premise is 
known with less than certainty, the strength of the conclusion is modified 
accordingly. 

A typical rule is shown in Figure 4-3. The predicates (such as SAME) 
are simple LISP functions operating on associative triples, which match 
the declared facts in the premise clause of the rule against the dynamic 
data known so far about the patient. $AND, the multi-valued analogue of 
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RULE035 

PREMISE: ($AND (SAME CNTXT GRAM GRAMNEG) 
(SAME CNTXT MORPH ROD) 
(SAME CNTXT AIR ANAEROBIC)) 

ACTION: (CONCLUDE CNTXT IDENTITY BACTEROIDES TALLY .6) 

IF: 1) .The gram stain of the organism is gramneg, and 
2) The morphology of the organism is rod, and 
3) The aerobicity of the organism is anaerobic 

THEN: There is suggestive evidence (.6) that the identity 
of the organism is bacteroides 

FIGURE 4-3 A MYCIN rule, in both its internal (LISP) form 
and English translation. The term CNTXT appearing in every 
clause is a variable in MYCIN that is bound to the current con­
text, in this case a specific organism (ORGANISM-2), to which 
the rule may be applied. 

the Boolean AND function, performs a minimization operation on CF's. 
The body of the rule is actually an executable piece of LISP code, and 
"evaluating" a rule entails little more than the LISP function EVAL. How­
ever, the highly stylized nature of the rules permits the system to examine 
and manipulate them, enabling many of the system's capabilities discussed 
below. One of these is the ability to produce an English translation of the 
LISP rule, as shown in the example. This is possible because each of the 
predicate functions has associated with it a translation pattern indicating 
the logical roles of the function's arguments. 

It is in.tended that each rule be a single, modular chunk of medical 
knowledge. The number of rules in the MYCIN system grew to about 500. 

4.1.3 Application of Rules-The Rule Interpreter 

The control structure is a goal-directed backward chaining of rules. At any 
given time, MYCIN is working to establish the value of some clinical pa­
rameter. To this end, the system retrieves the (precomputed) list of rules 
whose conclusions bear on this goal. The rule in Figure 4-3, for example, 
would be retrieved in the attempt to establish the identity of an organism. 
If, in the course of evaluating the premise of one of these rules, some 
other piece of information that is not yet known is needed, MYCIN sets 
up a subgoal to find out that information; this in turn causes other rules 
to be tried. Questions are asked during the consultation when rules fail to 
deduce the necessary information. If the user cannot supply the requested 
information, the rule is simply ignored. This control structure results in a 
highly focused search through the rule base. 
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4.1.4 Advantages of the Rule Methodology 

The modularity of rules simplifies the task of updating the knowledge base. 
Individual rules can be added, deleted, or modified without drastically 
affecting the overall performance of the system. And because each rule is 
a coherent chunk of knowledge, it is a convenient unit for explanation 
purposes. For example, to explain why the system is asking a question 
duri~g the consultation, a first approximation is simply to display the rule 
currently under consideration. 

The stylized nature of the rules is useful for many operations. While 
the syntax of the rules permits the use of any LISP function, there is a 
small set of standard predicates that make up the vast majority of the rules. 
The system contains information about the use of these predicates in the 
form of function templates. For example, the predicate SAME is described 
as follows: 

function template: 

sample function call: 

(SAME CNTXT PARM VALUE) 

(SAME CNTXT SITE BLOOD) 

The system can use these templates to "read" its own rules. For example, 
the template shown here contains the standard tokens CNTXT, PARM, 
and VALUE (for context, parameter, and corresponding value), indicating 
the components of the associative triple that SAME tests. If the clause 
above appears in the premise of a given rule, the system can determine 
that the rule needs to know the site of the culture, and that the rule can 
only succeed if that site is, in fact, blood. When asked to display rules that 
are relevant to blood cultures, MYCIN will be able to choose that rule. 

An important function of the templates is to permit MYCIN to pre­
compute automatically (at system generation time) the set of rules that 
conclude about a particular parameter; it is this set that the rule monitor 
retrieves when the system needs to deduce the value of that parameter. 

The system can also read rules to eliminate obviously inappropriate 
ones. It is often the case that, of a large set of rules under consideration, 
several are provably false by information already known. That is, the in­
formation needed to evaluate one of the clauses in the premise has already 
been determined, and that clause is false, thereby making the entire prem­
ise false. By reading the rules before actually invoking them, many can be 
immediately discarded, thereby avoiding the deductive work necessary in 
evaluating the premise clauses that precede the false one (this is called the 
preview mechanism). In some cases this means the system avoids the useless 
search of one or more subgoal trees, when the information thereby de­
duced would simply be overridden by the demonstrably false premise. 

Another more dramatic case occurs when it is possible, on the basis of 
information currently available, to deduce with certainty the value of some 
parameter that is needed by a rule. This is the case when there exists a 
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chain of one or more rules whose premises are known (or provable, as 
above) with certainty and that ultimately conclude the desired value with 
certainty. Since each rule in this chain must have a certainty factor of 1.0, 
we term such a chain a unity path; and since a value known with certainty 
excludes all other potential values, no other rules need be tried. MYCIN 
always seeks a unity path before trying a set of rules or asking a question; 
typically, this means "commonsense" deductions are made directly, without 
asking the user "silly" questions or blindly invoking all the rules pertaining 
to the goal. Since there are usually few rules on any potential unity path, 
the search tends to be small. 

The ability to read rules opens the way to the writing of rules that 
manipulate other rules. We term such rules meta-rules (see Part Nine); they 
are used to make deductions not about the medical entities of the domain 
but about strategies to be used by the system. Whenever the rule inter­
preter is about to invoke a list of rules to establish some goal, it first applies 
any meta-rules associated with that goal. These meta-rules can reorder or 
prune the rule list to make the search more suitable for the given case. 

4.2 Explanation Capability 

A major subprogram of MYCIN is a general Question-Answering (QA) Mod­
ule, which answers simple English-language questions concerning the sys­
tem's decisions in a particular consultation or about the system's general 
knowledge. A limited set of commonly desired explanations is also pro­
vided in a command style during the consultation by the Reasoning Status 
Checker. This special module explains the system's current line of reasoning 
and motivation for the questions asked. (A more detailed study of expla­
nation in MYCIN is included in Part Six of this book.) The QA Module is 
entered automatically at the end of each consultation and is also available 
to the user during the consultation if the need arises. The user is encour­
aged to ask questions about any aspect of MYCIN's performance. 

Because of the relatively unambiguous vocabulary used in the medical 
domain, and because of our desire to minimize the delay in answering 
questions, we have forgone any complicated parsing techniques in the QA 
Module. Rather, we use a simple pattern-matching approach, relying on 
the strong implications of certain keywords in the user's questions. The 
words in the translation of a clinical parameter, and values of that param­
eter, are tagged in the system dictionary as implying that parameter. By 
suitably weighing the implications of each word in the sentence, the system 
determines one or more parameter/value pairs being asked about. Pattern 
matching is used to determine the general type of the question, which 
indicates what is being asked about those parameter/value pairs. Typical 
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•• IS ORGANISM-1 A STREPTOCOCCUS? 
No. The identity of ORGANISM-1 is e.coli (.74) bacteroides (.7) 

klebsiella-pneumoniae (.4) pseudomonas-aeruginosa (.22) enterobacter 
(.21) proteus-non-mirabilis (.19) serratia (.03) salmonella (.02) 

**WHY DID YOU RULE OUT STREPTOCOCCUS AS A POSSIBILITY FOR ORGANISM-1? 
RULE033 could have been used to determine that the identity of 

ORGANISM-1 is streptococcus. However, clause 2 of RULE033 ["the 
morphology of the organism is coccus"] was already known to be false 
for ORGANISM-1, so the rule was never tried. 

** HOW DO YOU KNOW THAT CULTURE-1 WAS FROM A STERILE SOURCE? 
I used RULE189 to conclude that this blood culture was taken from a 

sterile source. This gave a cumulative CF of (1.0). The last 
question asked before the conclusion was made was 7. 

** WHAT DOES GU MANIPULATION TELL YOU ABOUT THE IDENTITY OF AN ORGANISM? 
The rules listed below use: 

whether the patient has had a genito-urinary manipulative procedure 
to conclude about: 

the identity of the organism 

156, 163, 190 
Which do you wish to see? 

** 156 

RULE156 
IF: 1) The site of the culture is blood, and 

2) The gram stain of the organism is gramneg, and 
3) The morphology of the organism is rod, and 
4) The portal of entry of the organism is urine, and 
5) The patient has not had a genito-urinary manipulative procedure, 

and 
6) Cystitis is not a problem for which the patient has been treated 

THEN: There is suggestive evidence (.6) that the identity of the 
organism is e.coli 

** IS BLOOD A STERILE SITE? 
Yes. Blood is one of those sites that is normally sterile. 

** WHAT ARE THE NONSTERILE SITES? 
Those sites that are normally nonsterile are: CERVIX, CUTANEOUS-ULCER, LOCHIA, NOSE, SKIN, STOOL, 

THROAT, URETHRA, VAGINA. 

** IS BACTEROIDES AEROBIC? 
No, the aerobicity of bacteroides is anaerobic. 

FIGURE 4-4 Interaction with the QA Module. The user's 
questions follow the double-asterisk prompt. 

questions (see Figure 4-4) seek the value of a certain parameter, how this 
value was concluded, and how this parameter was used. Questions about 
the value of a given parameter of an object are answered by simply dis­
playing the current hypothesis regarding it. To explain how the value of a 
parameter was concluded, MYCIN retrieves the list of rules that were suc­
cessfully applied and prints them, along with the conclusions drawn. Al­
ternatively, if the user supplied the value by answering a previous question, 
this is noted. More general questions about how information is used or 
concluded are answered by retrieving the relevant rules from the rule base. 
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34) Was penicillinase added to this blood culture (CULTURE-1)? 
••WHY 

[i.e. WHY is it important to determine whether penicillinase was added to 
CULTURE-1?] 

[3.0] This will aid in determining whether ORGANISM-1 is a contaminant. 
It has already been established that 

[3.1] the site of CULTURE-1 is blood, and 
[3.2] the gram stain of ORGANISM-1 is grampos 

Therefore, if 
[3.3] penicillinase was added to this blood culture 

then 
there is weakly suggestive evidence (.4) that ORGANISM-1 is a 

contaminant [RULE039] 

••WHY 

[i.e. WHY is it important to determine whether ORGANISM-1 is a 
contaminant?] 

[4.0] ... In order to determine whether there is significant disease 
associated with this occurrence of ORGANISM-1. 
It has already been established that 

[4.1] this blood culture was taken from a sterile source 
Therefore, if 

[4.2] ORGANISM-1 is not a contaminant 
then 

there is strongly suggestive evidence (.9) that there is 
significant disease associated with this occurrence of ORGANISM-1 

[RULE032] 

••WHY 

[i.e. WHY is it important to determine whether there is significant 
disease associated with this occurrence of ORGANISM-1] 

(5.0] ... In order to determine the organisms which require therapy. 
It has already been established that 

(5.1] the infection is known, and 
[5.2] the identity of ORGANISM-1 is known 

Therefore, if 
[5.3] there is significant disease associated with this occurrence 
of ORGANISM-1 

then 
it is definite (1.0) that ORGANISM-1 is one of the organisms which 
require therapy 

[RULE090] 

••HOW 5.2 

[i.e. HOW was it established that the identity of ORGANISM-1 is known?] 

Question 9 was asked, but you weren't sure; so the following was used: 

[5.5] RULE084 was used to conclude that the identity of ORGANISM-1 is 
streptococcus-group-a (.29). 

FIGURE 4-5 Use of the Reasoning Status Checker during the 
consultation to explain MYCIN's line of reasoning. 

As shown in Figure 4-5, the Reasoning Status Checker is invoked by 
the HOW and WHY commands. At any time during the consultation, when 
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the user is asked a question, he or she can delay answering it and instead 
ask why the question was asked. Since questions are asked in order to 
establish the truth of the premise of some rule, a simple answer to WHY 
is "because I'm trying to apply the following rule." Successive WHY ques­
tions unwind the chain of subgoals, citing the rules that led to the current 
rule being tried. 

Besides examining the current line of reasoning, the user can also ask 
about previous decisions, or about how future decisions might be made, 
by giving the HOW command. Explaining how the truth of a certain clause 
was established is accomplished as described above for the general QA 
Module. To explain how a presently unknown clause might be established, 
MYCIN retrieves the set of rules that the rule interpreter would select to 
establish that clause and selects the relevant rules from among them by 
"reading" the premises for applicability and the conclusions for relevance 
to the goal. 

4.3 Knowledge Acquisition 

The knowledge base is expanded and improved by acquiring new rules, 
or modifications to old rules, from experts. Ordinarily, this process involves 
having the medical expert supply a piece of medical knowledge in English, 
which a system programmer converts into the intended LISP rule. This 
mode of operation is suitable when the expert and the skilled programmer 
can work together. Ideally, however, the expert should be able to convey 
his or her knowledge directly to the system. 

Work has been undertaken (see Part Three) to allow experts to update 
the rule base directly. A rule-acquisition routine parses an English-lan­
guage rule by methods similar to those used in parsing questions in the 
QA Module. Each clause is broken down into one or more object-attribute­
value triples, which are fitted into the slots of the appropriate predicate 
function template. This process is further guided by rule models (see Chap­
ter 28), which supply expectations about the structure of rules and the 
interrelationships of the clinical parameters. 

One mode of acquisition that has received special attention is acquiring 
new rules in the context of an error. In this case, the user is trying to 
correct a localized deficiency in the rule base; if a new rule is to correct 
the program's faulty behavior, it must at the very least apply to the con­
sultation at hand. In particular, each of the premises must evaluate to 
TRUE for the given case. These expectations greatly simplify the task of 
the acquisition program, and also aid the expert in formulating new rules. 

One difficult aspect of rule acquisition is the actual formulation of 
medical knowledge into decision rules. Our desire to keep the rule format 
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simple is occasionally at odds with the need to encode the many aspects of 
medical decision making. The backward chaining of rules by the deductive 
system is also often a st.umbling block for experts who are new to the 
system. However, they soon learn to structure their knowledge appropri­
ately. In fact, some experts have felt that encoding their knowledge into 
rules has helped them formalize their own view of the domain, leading to 
greater consistency in their decisions. 



5 
Details of the Consultation 
System 

Edward H. Shortliffe 

In this chapter MYCIN's implementation is presented in considerable de­
tail. Our goals are to explain the data and control structures used by the 
program and to describe some of the complex and often unexpected prob­
lems that arose during system implementation. In Chapter 1 the motiva­
tions behind many of MYCIN's capabilities were mentioned. The reader 
is encouraged to bear those design criteria in mind throughout this chap­
ter. 

This chapter specifically describes the Consultation System. This sub­
program uses both system knowledge from the corpus of rules and patient 
data entered by the physician to generate advice for the user. Furthermore, 
the program maintains a dynamic data base, which provides an ongoing 
record of the current consultation. As a result, this chapter must discuss 
both the nature of the various data structures and how they are used or 
maintained by the Consultation System. 

Section 5.1 describes the corpus of rules and the associated data struc­
tures. It provides a formal description of the rules used by MYCIN. Our 
quantitative truth model is briefly introduced, and the mechanism for rule 
evaluation is explained. This section also describes the clinical parameters 
with which MYCIN is familiar and which form the basis for the conditional 
expressions in the premise of a rule. 

In Section 5.2 MYCIN's goal-oriented control structure is described. 
Mechanisms for rule invocation and question selection are explained at 
that time. The section also discusses the creation of the dynamic data base, 

This chapter is condensed from Chapter 3 of Computer-Based Medical Consultations: MYCIN. 
New York: Elsevier/North-Holland, 1976. Copyright© 1976 by Elsevier/North-Holland. All 
rights reserved. Used with permission. 

78 



System Knowledge 79 

which is the foundation for both the system's advice and its explanation 
capabilities (to be described in Part Six). 

Section 5.3 is devoted to an explanation of the program's context tree, 
i.e., the network of interrelated organisms, drugs, and cultures that char­
acterize the patient and his or her current clinical condition. The need for 
such a data structure is clarified, and the method for propagation (growth) 
of the tree is described. 

The final tasks in MYCIN's clinical problem area are the identification 
of potentially useful drugs and the selection of the best drug or drugs 
from that list. MYCIN's early mechanism for making these decisions is 
discussed in Section 5.4 of this chapter. Later refinements are the subject 
of Chapter 6. 

Section 5.5 discusses MYCIN's mechanisms for storing patient data 
and for permitting a user to change the answer to a question. As will be 
described, these two capabilities are closely interrelated. 

In Section 5.6 we briefly mention extensions to the system that were 
contemplated when this material was written in 1975. Several of these 
capabilities were eventually implemented. 

5 .1 System Knowledge 

5.1.1 Decision Rules 

Automated problem-solving systems use criteria for drawing conclusions 
that often support a direct analogy to the rule-based knowledge represen­
tation used by MYCIN. Consider, for example, the conditional probabilities 
that underlie Bayesian diagnosis programs. Each probability provides in­
formation that may be stated in an explicit rule format: 

P(hie) = X means 
IF: e is known to be true 
THEN: conclude that h is true with probability X 

It is important to note, therefore, that the concept of rule-based knowledge 
is not unique, even for medical decision-making programs. 

Representation of the Rules 

The 200 rules in the original MYCIN system consisted of a premise, an 
action, and sometimes an else clause. Else clauses were later deleted from 
the system because they were seldom used, and a general representation 
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of inference statements could be achieved without them. Every rule has a 
name of the form RULE### where### represents a three-digit number. 

The details of rules and how they are used are discussed throughout 
the remainder of this chapter. We therefore offer a formal definition of 
rules, which will serve in part as a guide for what is to follow. The rules 
are stored as LISP data structures in accordance with the following Backus­
N auer Form (BNF) description: 

<rule> .. - <premise> <action> <premise> <action> 
<else> 

<premise> .. - ($AND <condition> ... <condition>) 

<condition> .. - (<funcl> <context> <parameter>) I 
(<func2> <context> <parameter> <value>) I 
(<special-func> <arguments>) I 
($OR <condition> ... <condition>) 

<action> .. - <concpart> 

<else> .. - <concpart> 

<concpart> .. - <conclusion> I <actfunc> I 
(DO-ALL <conclusion> ... <conclusion>) I 
(DO-ALL <actfunc> ... <actfunc>) 

<context> .. - see Section 5.1.2 

<parameter> .. - see Section 5.1.3 

<value> .. - see Section 5.1.4 

<funcl> .. - see Section 5.1.5 

<func2> .. - see Section 5.1.5 

<special-func> .. - see Section 5.1.6 

<arguments> .. - see Section 5.1.6 

<conclusion> .. - see Section 5.2.3 

<actfunc> .. - see Section 5.4 

Thus the premise of a rule consists of a conjunction of conditions, each of 
which must hold for the indicated action to be taken. Negations of con­
ditions are handled by individual predicates (<funcl> and <func2>) and 
therefore do not require a $NOT function to complement the Boolean 
functions $AND and $OR. If the premise of a rule is known to be false, 
the conclusion or action indicated by the else clause is taken. If the truth 
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of the premise cannot be ascertained or the premise is false but no else 
condition exists, the rule is simply ignored. 

The premise of a rule is always a conjunction of one or more condi­
tions. Disjunctions of conditions may be represented as multiple rules with 
identical action clauses. A condition, however, may itself be a disjunction 
of conditions. These conventions are somewhat arbitrary but do provide 
sufficient flexibility so that any Boolean expression may be represented by 
one or more rules. As is discussed in Section 5.2, multiple rules are effec­
tively ORed together by MYCIN's control structure. 

For example, two-leveled Boolean nestings of conditions are acceptable 
as follows: 

Legal: 

[l] A & B & C---> D 

[2] A & (B or C) ---> D 

[3] (A or B or C) & (D or E) ---> F 

Illegal: 

[4] A or B or C---> D 

[5] A & (B or (C & D)) ---> E 

Rule [4] is correctly represented by the following three rules: 

whereas [5] must be written as: 

[6] A-> D 

[7] B---> D 

[8] C---> D 

[9] A & C & D---> E 

[10] A & B---> E 

Unlike rules that involve strict implication, MYCIN's rules allow the 
strength of an inference to be modified by a certainty factor (CF). A CF is 
a number from - 1 to + 1, the nature of which is described in Section 
5.1.4 and in Chapter 11. 

The following three examples are rules from MYCIN that have been 
translated into English from their internal LISP representation (Section 
5.1. 7). They represent the range of rule types available to the system. The 
details of their internal representation will be explained as we proceed. 
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RULE037 

IF: 1) The identity of the organism is not known with 
certainty, and 

2) The stain of the organism is gramneg, and 
3) The morphology of the organism is rod, and 
4) The aerobicity of the organism is aerobic 

THEN: There is strongly suggestive evidence (.8) that the 
class of the organism is enterobacteriaceae 

RULE145 

IF: 1) The therapy under consideration is one 
of: cephalothin clindamycin erythromycin 
lincomycin vancomycin, and 

2) Meningitis is an infectious disease diagnosis 
for the patient 

THEN: It is definite (1) the therapy under consideration 
is not a potential therapy for use against the 
organism 

RULE060 

IF: The identity of the organism is bacteroides 
THEN: I recommend therapy chosen from among the following drugs: 

1 - clindamycin (.99) 
2 - chloramphenicol (.99) 
3 - erythromycin (.57) 
4 - tetracycline (.28) 
5 - carbenicillin (.27) 

Before we can explain how rules such as these are invoked and eval­
uated, it is necessary to describe further MYCIN's internal organization. 
We shall therefore temporarily digress in order to lay some groundwork 
for the description of the evaluation functions in Section 5.1.5. 

5.1.2 Categorization of Rules by Context 

The Context Tree 

Although it is common to describe diagnosis as inference based on attri­
butes of the patient, MYCIN's decisions must necessarily involve not only 
the patient but also the cultures that have been grown, organisms that have 
been isolated, and drugs that have been administered. Each of these is 
termed a context of the program's reasoning (see <context> in the BNF 
description of rules). 1 

MYCIN currently (1975) knows about ten different context-types: 

1The use of the word context should not be confused with its meaning in high-level languages 
that permit temporary saving of all information regarding a program's current status-a 
common mechanism for backtracking and parallel-processing implementations. 



CURCULS 
CURD RUGS 

CURORGS 
OPDRGS 

OPERS 
PERSON 
POSSTHER 
PRIORCULS 
PRIORDRGS 

PRIORORGS 
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A current culture from which organisms were isolated 
An antimicrobial agent currently being administered to 
a patient 
An organism isolated from a current culture 
An antimicrobial agent administered to the patient 
during a recent operative procedure 
An operative procedure the patient has undergone 
The patient 
A therapy being considered for recommendation 
A culture obtained in the past 
An antimicrobial agent administered to the patient in 
the past 
An organism isolated from a prior culture 

Except for PERSON, each of these context-types may be instantiated more 
than once during any given run of the consultation program. Some may 
not be created at all if they do not apply to the given patient. However, 
each time a context-type is instantiated, it is given a unique name. For 
example, CULTURE-I is the first CURCUL and ORGANISM-I is the first 
CURORG. Subsequent CURCULS or PRIORCULS are called CULTURE-
2, CULTURE-3, etc. 

The context-types instantiated during a run of the consultation pro­
gram are arranged hierarchically in a data structure termed the context tree. 
One such tree is shown in Figure 5-1. The context-type for each instan­
tiated context is shown in parentheses near its name. Thus, to clarify ter­
minology, we note that a node in the context tree is called a context and is 
created as an instantiation of a context-type. This sample context tree cor­
responds to a patient from whom two current cultures and one prior cul­
ture were obtained. One organism was isolated from each of the current 
cultures, but the patient is being treated (with two drugs) for only one of 
the current organisms. Furthermore, two organisms were grown from the 
prior culture, but therapy was instituted to combat only one of these. Fi­
nally, the patient has had a recent operative procedure during which he 
or she was treated with an antimicrobial agent. 

The context tree is useful not only because it gives structure to the 
clinical problem (Figure 5-1 already tells us a good deal about PATIENT­
! ), but also because we often need to be able to relate one context to 
another. For example, in considering the significance of ORGANISM-2, 
MYCIN may well want to be able to reference the site of the culture from 
which ORGANISM-2 was obtained. Since the patient has had three dif­
ferent cultures, we need an explicit mechanism for recognizing that OR­
GANISM-2 came from CULTURE-2, not from CULTURE-I or CUL­
TURE-3. The technique for dynamic propagation (i.e., growth) of the 
context tree during a consultation is described in Section 5.3. 



ORGANISM-1 
(CURORG) 

DRUG-1 
(CUR DRUGS) 

SAMPLE CONTEXT TREE 

PATIENT-1 (PERSON) 

ORGANISM-3 
(PRIORORGS) 

DRUG-2 
(CUR DRUGS) 

ORGANISM-4 
(PRIORORGS) 

DRUG-3 
(CURDRUGS) 

OPERATION-1 
(OPE RS) 

DRUG-4 
(OPDRGS) 

FIGURE 5-1 Context tree for a sample patient with two recent positive cultures, an older one, and a recent 
significant operative procedure. Nodes in the tree are termed contexts. 

QC ... 
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Interrelationship of Rules and the Tree 

The 200 rules currently used by MYCIN2 are not explicitly linked in a 
decision tree or reasoning network. This feature is in keeping with our 
desire to keep system knowledge modular and manipulable. However, rules 
are subject to categorization in accordance with the context-types for which 
they are most appropriately invoked. For example, some rules deal with 
organisms, some with cultures, and still others deal solely with the patient. 
MYCIN's current rule categories are as follows (context-types to which they 
may be applied are enclosed in parentheses): 

CULRULES 

CURCULRULES 

CURORGRULES 

DRGRULES 

OPRULES 

ORDERRULES 

ORGRULES 

PATRULES 
PDRGRULES 

PRCULRULES 

PRORGRULES 

THERULES 

Rules that may be applied to any culture 
(CURCULS or PRIORCULS) 
Rules that may be applied only to current cultures 
(CURCULS) 
Rules that may be applied only to current 
organisms (CURORGS) 
Rules that may be applied to any antimicrobial 
agent that has been administered to combat a 
specific organism (CURDRUGS or PRIORDRGS) 
Rules that may be applied to operative procedures 
(OPERS) 
Rules that are used to order the list of possible 
therapeutic recommendations (POSSTHER) 
Rules that may be applied to any organism 
(CURORGS or PRIORORGS) 
Rules that may be applied to the patient (PERSON) 
Rules that may be applied only to drugs given to 
combat prior organisms (PRIORDRGS) 
Rules that may be applied only to prior cultures 
(PRIORCULS) 
Rules that may be applied only to organism 
isolated from prior cultures (PRIORORGS) 
Rules that store information regarding drugs of 
choice (Section 5.4.1) 

Every rule in the MYCIN system belongs to one, and only one, of these 
categories. Furthermore, selecting the proper category for a newly ac­
quired rule does not present a problem. In fact, category selection can be 
automated to a large extent. 

Consider a rule such as this: 

2Ed. note: This number increased to almost 500 by 1978. 
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RULE124 

IF: 1) The site of the culture is throat, and 
2) The identity of the organism is streptococcus 

THEN: There is strongly suggestive evidence (.8) that 
the subtype of the organism is not group-D 

This is one of MYCIN's ORGRULES and may thus be applied to either a 
CURORGS context or a PRIORORGS context. Referring back to Figure 
5-1, suppose RULE124 were applied to ORGANISM-2. The first condition 
in the premise refers to the site of the culture from which ORGANISM-2 
was isolated (i.e., CULTURE-2) and not to the organism itself (i.e., orga­
nisms do not have sites, but cultures do). The context tree is therefore 
important for determining the proper context when a rule refers to an 
attribute of a node in the tree other than the context to which the rule is 
being explicitly applied. Note that this means that a single rule may refer 
to nodes at several levels in the context tree. The rule is categorized simply 
on the basis of the lowest context-type (in the tree) that it may reference. 
Thus RULE124 is an ORGRULE rather than a CULRULE. 

5.1.3 Clinical Parameters 

This subsection describes the data types indicated by <parameter> and 
<value> in the BNF description of rules. Although we have previously 
asserted that all MYCIN's knowledge is stored in its corpus of rules, the 
clinical parameters and their associated properties comprise an important 
class of second-level knowledge. We shall first explain the kind of param­
eters used by the system and then describe their representation. 

A clinical parameter is a characteristic of one of the contexts in the 
context tree, i.e., the name of the patient, the site of a culture, the mor­
phology of an organism, the dose of a drug, etc. A patient's status would 
be completely specified by a context tree in which values were known for 
all the clinical parameters characterizing each node in the tree (assuming 
the parameters known to MYCIN encompass all those that are clinically 
relevant-a dubious assumption at present). In general, this is more in­
formation than is needed, however, ~ one of MYCIN's tasks is to identify 
those clinical parameters that need to be considered for the patient about 
whom advice is being sought. 

The concept of an attribute-object-value triple is common within the 
AI field. This associative relationship is a basic data type for the SAIL 
language (Feldman et al., 1972) and is the foundation for the property-list 
formalism in LISP (McCarthy et al., 1962). Relational predicates in pred­
icate calculus also represent associative triples. The point is that many facts 
may be expressed as triples that state that some object has an attribute with 
some specified value. Stated in the order <attribute object value>, ex­
amples include: 

(COLOR BALL RED) 
{OWNS FIREMAN RED-SUSPENDERS) 
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(AGE BOB 22) 
(FATHER CHILD 'DADDY') 

(GRAMSTAIN ORGANISM GRAM-POSITIVE) 
(DOSE DRUG 1.5-GRAMS) 

(MAN BOB TRUE) 
(WOMAN BOB FALSE) 

Note that the last two examples are different from the others in that they 
represent a rather different kind of relationship. In fact, several authors 
would classify the first six as "relations" and the last two as "predicates," 
using the simpler notation: 

MAN (BOB) 
-WOMAN (BOB) 

Regardless of whether it is written as MAN(BOB) or (MAN BOB TRUE), 
this binary predicate statement has rather different characteristics from 
the relations that form natural triples. This distinction will become clearer 
later (see yes-no parameters below). 

MYCIN stores inferences and data using the attribute-object-value 
concept. The object is always some context in the context tree, and the 
attribute is a clinical parameter appropriate for that context. Information 
stored using this mechanism may be retrieved and updated in accordance 
with a variety of conventions described throughout this chapter. 

The Three Kinds of Clinical Parameters 

There are three fundamentally different kinds of clinical parameters. The 
simplest variety is single-valued parameters. These are attributes such as the 
name of the patient and the identity of the organism. In general, they have 
a large number of possible values that are mutually exclusive. As a result, 
only one can be the true value, although several may seem likely at any 
point during the consultation. 

Multi-valued parameters also generally have a large number of possible 
values. The difference is that the possible values need not be mutually 
exclusive. Thus such attributes as a patient's drug allergies and a locus of 
an infection may have multiple values, each of which is known to be correct. 

The third kind of clinical parameter corresponds to the binary pred­
icate discussed above. These are attributes that are either true or false for 
the given context. For example, the significance of an organism is either 
true or false (yes or no), as is the parameter indicating whether the dose 
of a drug is adequate. Attributes of this variety are called yes-no parameters. 
They are, in effect, a special kind of single-valued parameter for which 
there are only two possible values. 

Classification and Representation of the Parameters 

The clinical parameters known to MYCIN are categorized in accordance 
with the context to which they apply. These categories include: 
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PROP-CUL 

PROP-DRG 

PROP-OP 

PROP-ORG 

PROP-PT 

PROP-THER 

Those clinical parameters which are attributes of 
cultures (e.g., site of the culture, method of collection) 
Those clinical parameters which are attributes of 
administered drugs (e.g., name of the drug, duration 
of administration) 
Those clinical parameters which are attributes of 
operative procedures (e.g., the cavity, if any, opened 
during the procedure) 
Those clinical parameters which are attributes of 
organisms (e.g., identity, gram stain, morphology) 
Those clinical parameters which are attributes of the 
patient (e.g., name, sex, age, allergies, diagnoses) 
Those clinical parameters which are attributes of 
therapies being considered for recommendation (e.g., 
recommended dosage, prescribing name) 

These categories encompass all clinical parameters used by the system. 
Note that any of the nodes (contexts) in the context tree for the patient 
may be fully characterized by the values of the set of clinical parameters 
in one of these categories. 

Each of the 65 clinical parameters currently (1975) known to MYCIN 
has an associated set of properties that is used during consideration of the 
parameter for a given context. Figure 5-2 presents examples of the three 
types of clinical parameters, which together demonstrate several of these 
properties: 

EXPECT 

PROMPT 

PROMPT! 

This property indicates the range of expected 
values that the parameter may have. 
IF equal to (YN), then the parameter is a yes-no 
parameter. 
IF equal to (NUMB), then the expected value of 
the parameter is a number. 
IF equal to (ONE-OF <list>), then the value of 
the parameter must be a member of <list>. 
IF equal to (ANY), then there is no restriction on 
the range of values that the parameter may have. 
This property is a sentence used by MYCIN when 
it requests the value of the clinical parameter from 
the user; if there is an asterisk in the phrase (see 
Figure 5-2), it is replaced by the name of the 
context about which the question is being asked; 
this property is used only for yes-no or single­
valued parameters. 
This property is similar to PROMPT but is used if 
the clinical parameter is a multi-valued parameter; 
in these cases MYCIN only asks the question about 
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Yes-No Parameter 
FEBRILE: <FEBRILE is an attribute of a patient and is therefore a member of 

the list PROP-PT> 

EXPECT: (YN) 
LOOKAHEAD: (RULE149 RULE109 RULE045) 
PROMPT: (Is * febrile?) 
TRANS: (* IS FEBRILE) 

Single-Valued Parameter 
IDENT: <IDENT is an attribute of an organism and is therefore a member of 

the list PROP-ORG> 

CONTAINED-IN: (RULE030) 
EXPECT: (ONEOF (ORGANISMS)) 
LABDATA: T 
LOOKAHEAD: (RULE004 RULE054 ... RULEI68) 
PROMPT: (Enter the identity (genus) of*:) 
TRANS: (THE IDENTITY OF *) 
UPDATED-BY: (RULE02l RULE003 ... RULE166) 

Multi-Valued Parameter 
INFECT: <INFECT is an attribute of a patient and is therefore a member of 

the list PROP-PT> 

EXPECT: (ONEOF (PERITONITIS BRAIN-ABCESS MENINGITIS 
BACTEREMIA UPPER-URINARY-TRACT-INFECTION ... 
ENDOCARDITIS)) 

LOOKAHEAD: (RULE I 15 RULE149 ... RULE045) 
PROMPT I: (Is there evidence that the patient has a (VALU)?) 
TRANS: (AN INFECTIOUS DISEASE DIAGNOSIS FOR *) 
UPDATED-BY: (RULEI57 RULE022 ... RULEI05) 

FIGURE 5-2 Examples of the three types of clinical parame­
ters. As shown, each clinical parameter is characterized by a set 
of properties described in the text. 

LABDATA 

LOOKAHEAD 

a single one of the possible parameter values; the 
value of interest is substituted for (VALU) in the 
question. 
This property is a flag, which is either T or NIL; 
if T it indicates that the clinical parameter is a 
piece of primitive data, the value of which may be 
known with certainty to the user (see Section 
5.2.2). 
This property is a list of all rules in the system that 
reference the clinical parameter in the premise. 
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UPDATED-BY 

CONTAINED-IN 

TRANS 

DEFAULT 

CONDITION 

This property is a list of all rules in the system in 
which the action or else clause permits a 
conclusion to be made regarding the value of the 
clinical parameter. 
This property is a list of all rules in the system in 
which the action or else clause references the 
clinical parameter but does not cause its value to 
be updated. 
This property is used to translate an occurrence of 
this parameter into its English representation; the 
context of the parameter is substituted for the 
asterisk during translation. 
This property is used only with clinical parameters 
for which EXPECT = (NUMB); it gives the 
expected units for numerical answers (days, years, 
grams, etc.). 
This property, when utilized, is an executable LISP 
expression that is evaluated before MYCIN 
requests the value of the parameter; if the 
CONDITION is true, the question is not asked 
(e.g., "Don't ask for an organism's subtype if its 
genus is not known by the user"). 

The uses of these properties will be discussed throughout the remain­
der of this chapter. However, a few additional points are relevant here. 
First, it should be noted that the order of rules for the properties LOOK­
AHEAD, UPDATED-IN, and CONTAINED-IN is arbitrary and does not 
affect the program's advice. Second, EXPECT and TRANS are the only 
properties that must exist for every clinical parameter. Thus, for example, 
if there is no PROMPT or PROMPT! stored for a parameter, the system 
assumes that it simply cannot ask the user for the value of the parameter. 
Finally, note in Figure 5-2 the difference in the TRANS property for yes­
no and non-yes-no parameters. In general, a parameter and its value may 
be translated as follows: 

THE <attribute> OF <o~ject> IS <value> 

However, for a yes-no parameter such as FEBRILE, it is clearly necessary 
to translate the parameter in a fashion other than this: 

THE FEBRILE OF PATIENT-I IS YES 

Our solution has been to suppress the YES altogether and simply to say: 

PATIENT- I IS FEBRILE 
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5.1.4 Certainty Factors 

Chapter 11 presents a detailed description of certainty factors and their 
theoretical foundation. This section therefore provides only a brief over­
view of the subject. A familiarity with the characteristics of certainty factors 
(CF's) is necessary for the discussion of MYCIN during the remainder of 
this chapter. 

The value of every clinical parameter is stored by MYCIN along with 
an associated certainty factor that reflects the system's "belief" that the 
value is correct. This formalism is necessary because, unlike domains in 
which objects either have or do not have some attribute, in medical diag­
nosis and treatment there is often uncertainty regarding attributes such as 
the significance of the disease, the efficacy of a treatment, or the diagnosis 
itself. CF's are an alternative to conditional probability that has several 
advantages in MYCIN's domain. 

A certainty factor is a number between - 1 and + 1 that reflects the 
degree of belief in a hypothesis. Positive CF's indicate there is evidence 
that the hypothesis is valid. The larger the CF, the greater is the belief in 
the hypothesis. When CF = 1, the hypothesis is known to be correct. On 
the other hand, negative CF's indicate that the weight of evidence suggests 
that the hypothesis is false. The smaller the CF, the greater is the belief 
that the hypothesis is invalid. CF = - 1 means that the hypothesis has been 
effectively disproven. When CF = 0, there is either no evidence regarding 
the hypothesis or the supporting evidence is equally balanced by evidence 
suggesting that the hypothesis is not true. 

MYCIN's hypotheses are statements regarding values of clinical pa­
rameters for the various nodes in the context tree. For example, sample 
hypotheses are 

h1 = The identity of ORGANISM-1 is streptococcus 
h2 = PATIENT-1 is febrile 
h3 = The name of PATIENT-1 is John Jones 

We use the notation CF[h,E] = X to represent the certainty factor 
for the hypothesis h based on evidence E. Thus, if CF[h 1,E] = .8, 
CF[h2,E] = - .3, and CF[h3,E] + 1, the three sample hypotheses above 
may be qualified as follows: 

CF[h,,E] = .8 

CF[h3 ,E] = + 1 

There is strongly suggestive evidence ( .8) that 
the identity of ORGANISM-1 is streptococcus 

There is weakly suggestive evidence (.3) that 
PATIENT-1 is not febrile 

It is definite (1) that the name of PATIENT-1 is 
John Jones 

Certainty factors are used in two ways. First, as noted, the value of 
every clinical parameter is stored with its associated certainty factor. In this 
case the evidence E stands for all information currently available to MY-
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CIN. Thus, if the program needs the identity of ORGANISM-I, it may 
look in its dynamic data base and find: 

IDENT of ORGANISM-1 = ((STREPTOCOCCUS .8)) 

• 
The second use of CF's is in the statement of decision rules themselves. 

In this case the evidence E corresponds to the conditions in the premise 
of the rule. Thus 

x 
A&B&C-->D 

is a representation of the statement CF[D,(A & B & C)] 
consider the following rule: 

IF: 1) The stain of the organism is grampos, and 
2) The morphology of the organism is coccus, and 
3) The growth conformation of the organism is chains 

THEN: There is suggestive evidence (.7) that the 
identity of the organism is streptococcus 

X. For example, 

This rule may also be represented as CF[h i.e] = . 7, where h 1 is the hy­
pothesis that the organism (context of the rule) is a Streptococcus and e is 
the evidence that it is a gram-positive coccus growing in chains. 

Since diagnosis is, in effect, the problem of selecting a disease from a 
list of competing hypotheses, it should be clear that MYCIN may simul­
taneously be considering several hypotheses regarding the value of a clin­
ical parameter. These hypotheses are stored together, along with their CF's, 
for each node in the context tree. We use the notation Val[C,P] to signify 
the set of all hypotheses regarding the value of the clinical parameter P 
for the context C. Thus, if MYCIN has reason to believe that ORGANISM­
! may be either a Streptococcus or a Staphylococcus, but Pneumococcus has 
been ruled out, its dynamic data base might well show: 

Val[ORGANISM-1,IDENT] = ((STREPTOCOCCUS .6)(STAPHYLOCOCCUS .4) 
(DIPLOCOCCUS-PNEUMONIAE -1)) 

It can be shown that the sum of the CF's for supported hypotheses 
regarding a single-valued parameter (i.e., those parameters for which the 
hypotheses are mutually exclusive) cannot exceed 1 (Shortliffe and Buch­
anan, 1975). Multi-valued parameters, on the other hand, may have several 
hypotheses that are all known to be true, for example: 

Val[PATIENT-1,ALLERGY] = ((PENICILLIN 1 )(AMPICILLIN 1) 
(CARBENICILLIN 1)(METHICILLIN 1)) 

As soon as a hypothesis regarding a single-valued parameter is proved to 
be true, all competing hypotheses are effectively disproved: 

Val[ORGANISM-1,IDENT] =((STREPTOCOCCUS 1)(STAPHYLOCOCCUS-1) 
(DIPLOCOCCUS-PNEUMONIAE -1)) 
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In Chapter 11 we demonstrate that CF[h,E] = - CF["1h,E]. This ob­
servation has important implications for the way MYCIN handles the bi­
nary-valued attributes we call yes-no parameters. Since "yes" is "1no," it is 
not necessary to consider "yes" and "no" as competing hypotheses for the 
value of a yes-no parameter (as we do for single-valued parameters). In­
stead, we can always express "no" as "yes" with a reversal in the sign of the 
CF. This means that Val[C,P] is always equal to the single value "yes," along 
with its associated CF, when Pis a yes-no parameter. 

We discuss below MYCIN's mechanism for adding to the list of hy­
potheses in Val[C,P] as new rules are invoked and executed. However, the 
following points should be emphasized here: 

1. The strength of the conclusion associated with the execution of a rule 
reflects not only the CF assigned to the rule, but also the program's 
degree of belief regarding the validity of the premise. 

2. The support of several rules favoring a single hypothesis may be assim­
ilated incrementally on the list Val[C,P] by using the special combining 
functions described in Chapter 11. 

5.1.5 Functions for the Evaluation of Premise 
Conditions 

This section describes the evaluation of the individual conditions (see 
<condition>, Section 5.1. l) in the premise of rules. Conditions in general 
evaluate to true or false (T or NIL). Thus they may at first glance be 
considered simple predicates on the values of clinical parameters. However, 
since there may be several competing hypotheses on the list Val[C,P], each 
associated with its own degree of belief as reflected by the CF, conditional 
statements regarding the value of parameters can be quite complex. All 
predicates are implemented as LISP functions. The functions that under­
take the required analysis are of three varieties, specified by the designa­
tions <fund>, <func2>, and <special-func> in the BNF rule descrip­
tion. This section explains the <fund> and <func2> predicates. The 
<special-func> category is deferred until later, however, so that we may 
first introduce our specialized knowledge structures. 

There are four predicates in the category <func I>. These functions 
do not form conditionals on specific values of a clinical parameter but are 
concerned with the more general status of knowledge regarding the attri­
butes in question. For example, KNOWN[ORGANISM-1,IDENT] is an 
invocation of the <fund> predicate KNOWN; it would return true if the 
identity of ORGANISM-I were known, regardless of the value of the clin­
ical parameter IDENT. KNOWN and the other <fund> predicates may 
be formally defined as follows: 



94 Details of the Consultation System 

Predicates of the Category <funcl > 
Let V = Val[C,P] be the set of all hypotheses regarding the value of the 

clinical parameter P for the context C. 
Let Mv = Max[V] be the most strongly supported hypothesis in V (i.e., the 

hypothesis with the largest CF). 
Let CFmv = CF[Mv,E] where Eis the total available evidence. 

Then, if P is either a single-valued or multi-valued parameter, the four 
predicates (functions) may be specified as follows: 

Function If Then Else 

KNOWN[C,P] CFmv > .2 T NIL 
NOTKNOWN[C,P] CFmv :S .2 T NIL 

DEFINITE[C,P] CFmv = 1 T NIL 
NOTDEFINITE[C,P] CFmv < 1 T NIL 

In words, these definitions reflect MYCIN's convention that the value of a 
parameter is known if the CF of the most highly supported hypothesis 
exceeds .2. The .2 threshold was selected empirically. The implication is 
that a positive CF less than .2 reflects so little evidence supporting the 
hypothesis that there is virtually no reasonable hypothesis currently known. 
The interrelationships among these functions are diagrammed on a CF 
number line in Figure 5-3. Regions specified are the range of values for 
CFmv over which the function returns T. 

As was pointed out in the preceding section, however, yes-no param­
eters are special cases because we know CF[YES,E] = - CF[NO,E]. Since 
the values of yes-no parameters are always stored in terms of YES, MYCIN 
must recognize that a YES with CF = - .9 is equivalent to a NO with CF 
= .9. The definitions of the four <funcl> predicates above do not reflect 
this distinction. Therefore, when P is a yes-no parameter, the four func­
tions are specified as follows: 

Function If Then Else 

KNOWN[C,P] ICFmvl > .2 T NIL 
NOTKNOWN[C,P] ICFmvl :S .2 T NIL 

DEFINITE[C,P] ICFmvl = 1 T NIL 
NOTDEFINITE[C,P] ICFmvl < 1 T NIL 

Figure 5-4 shows the relationship among these functions for yes-no param­
eters. 

There are nine predicates in the category <func2>. Unlike the 
<funcl > predicates, these functions control conditional statements re­
garding specific values of the clinical parameter in question. For example, 
SAME[ORGANISM-1,IDENT,E.COLI] is an invocation of the <func2> 
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NOTKNOWN~-----1~~1 

<---- KNOWN___, 

NOTDEFINITE ---------..... 

-.2 0 .2 +1 

t 
DEFINITE 

FIGURE 5-3 Diagram indicating the range of CF values 
over which the <funcl> predicates hold true when applied to 
multi-valued or single-valued (i.e., non-yes-no) clinical param­
eters. Vertical lines and parentheses distinguish closed and non­
closed certainty factor ranges, respectively. 

predicate SAME; it would return a non-NIL value if the identity of OR­
GANISM-I were known to be E.coli. SAME and the other <func2> pred­
icates may be formally defined as follows: 

Predicates of the Category <func2> 

Let V = Val[C,P] be the set of all hypotheses regarding the value of the 
clinical parameter P for the context C. 

Let I= Intersection[V,LST] be the set of all hypotheses in V that also occur 
in the set LST; LST contains the possible values of P for comparison 
by the predicate function; it usually contains only a single element; if 
no element in LST is also in V, I is simply the empty set. 

Let Mi= Max[ I] be the most strongly confirmed hypothesis in I; thus Mi is 
NIL if I is the empty set. 

Let CFmi = CF[Mi,EJ where CFmi = 0 if Mi is NIL. 

Then the <func2> predicates are specified as follows: 
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I I 
t t 
DEFINITE DEFINITE 

FIGURE 5-4 Diagram indicating the range of CF values over 
which the <funcl > predicates hold true when applied to yes­
no clinical parameters. 

Function If Then 

SAME[C,P,LST] CFmi > .2 CF mi 
THOUGHTNOT[C,P,LST] CFmi < -.2 -CFmi 

NOTSAME[C,P,LST] CFmi ~ .2 T 
MIGHTBE[C,P,LST] CFmi ;:=: -.2 T 

VNOTKNOWN[C,P,LST] !CFmil s: .2 T 
DEFIS[C,P,LST] CFmi =+I T 

DEFNOT[C,P,LST] CFmi = -1 T 
NOTDEFIS[C,P,LST] .2 < CFmi < l T 

NOTDEFNOT[C,P,LST] - l < CFmi < - .2 T 

Else 

NIL 
NIL 
NIL 
NIL 
NIL 
NIL 
NIL 
NIL 
NIL 

The names of the functions have been selected to reflect their semantics. 
Figure 5-5 shows a graphic representation of each function and also ex­
plicitly states the interrelationships among them. 

Note that SAME and THOUGHTNOT are different from all the 
other functions in that they return a number (CF) rather than T if the 
defining condition holds. This feature permits MYCIN to record the de­
gree to which premise conditions are satisfied. In order to explain this 



System Knowledge 97 

( r-- THOUGHTNOT----. ) 

VNOTKNOWN 

SAME ----+f 
1~ ·I 

1~ NOTS AME ·I 
1~ MIGHTBE -----~•I 

+- NOTDEFNOT -+ ) ( +--- NOTDEFIS --+ 
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DEFNOT DEFIS 

SAME or NOTSAME = THOUGHTNOTor MIGHTBE = T 
NOTSAME = VNOTKNOWN or THOUGHTNOT 

THOUGHTNOT = NOTDEFNOTor DEFNOT 
MIGHTBE = VNOTl<NOWN or SAME 

SAME = NOTDEFIS or DEFIS 

FIGURE 5-5 Diagram indicating the range of CF values over 
which the <func2> predicates hold true. The logical relation­
ships of these predicates are summarized below the diagram. 

point, we must discuss the $AND function that oversees the evaluation of 
the premise of a rule. The reader will recall the BNF description: 

<premise> : : = ($AND <condition> ... <condition>) 

$AND is similar to the standard LISP AND function in that it evaluates 
its conditional arguments one at a time, returning false (NIL) as soon as a 
condition is found to be false, and otherwise returning true (T). The dif­
ference is that $AND expects some of its conditions to return numerical 
values rather than simply Tor NIL. If an argument condition returns NIL 
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(or a number equal to .2 or less), it is considered false and $AND stops 
considering subsequent arguments. On the other hand, nonnumeric values 
of conditions are interpreted as indicating truth with CF = 1. Thus each 
true condition either returns a number or a non-NIL value that is inter­
preted as 1. $AND then maintains a record of the lowest value returned 
by any of its arguments. This number, termed TALLY, is a certainty tally, 
which indicates MYCIN's degree of belief in the premise (see Combining 
Function 2 in Chapter 11). Thus .2 <TALLY~ 1, where TALLY = 1 in­
dicates that MYCIN believes the premise to be true with certainty. 

Most of the predicates that evaluate conditions in the premise of a rule 
return either Tor NIL as we have shown. Consider, however, the semantics 
of the most commonly used function, SAME, and its analogous function, 
THOUGHTNOT. Suppose MYCIN knows: 

Val[ORGANISM-1,IDENT] = ((STREPTOCOCCUS .7)(STAPHYLOCOCCUS .3)) 

Then it seems clear that 

SAME[ORGANISM-1,IDENT,STREPTOCOCCUS] 

is in some sense "more true" than 

SAME[ORGANISM-1,IDENT,STAPHYLOCOCCUS] 

even though both hypotheses exceed the threshold CF = .2. If SAME 
merely returned T, this distinction would be lost. Thus, fur this example: 

whereas 
and 

SAME[ORGANISM-1,IDENT,STREPTOCOCCUS] = .7 
SAME[ORGANISM-1,IDENT,STAPHYLOCOCCUS] = .3 
KNOWN[ORGANISM-1,IDENT] = T 
NOTDEFIS[ORGANISM-1,IDENT,STREPTOCOCCUS] = T 

A similar argument explains why THOUGHTNOT returns a CF rather 
than T. It is unclear whether any of the other <func2> predicates should 
return a CF rather than T; our present conviction is that the semantics of 
those functions do not require relative weightings in the way that SAME 
and THOUGHTNOT do. 

Consider a brief example, then, of the way in which the premise of a 
rule is evaluated by $AND. The following ORGRULE: 

IF: 1) The stain of the organism is gramneg, and 
2) The morphology of the organism is rod, and 
3) The aerobicity of the organism is aerobic 

THEN: There is strongly suggestive evidence (.B) that 
the class of the organism is enterobacteriaceae 

is internally coded in LISP as: 

PREMISE: ($AND (SAME CNTXT GRAM GRAMNEG) 
(SAME CNTXT MORPH ROD) 
(SAME CNTXT AIR AEROBIC)) 

ACTION: (CONCLUDE CNTXT CLASS ENTEROBACTERIACEAE TALLY .B) 
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Suppose this rule has been invoked for consideration of ORGANISM-I; 
i.e., the context of the rule (CNTXT) is the node in the context tree termed 
ORGANISM-I. Now suppose that MYCIN has the following information 
in its data base (we will discuss later how it gets there): 

Val[ORGANISM-1,GRAM] = ((GRAMNEG 1.0)) 
Val[ORGANISM-1,MORPH] =((ROD .B)(COCCUS .2)) 
Val[ORGANISM-1,AIR] = ((AEROBIC .6)(FACUL .4)) 

$AND begins by evaluating SAME[ORGANISM-1,GRAM,GRAMNEG]. 
The function returns CF = 1.0, so TALLY is set to 1.0 (see definition of 
TALLY in the description of $AND above). Next $AND evaluates the sec­
ond premise condition, SAME[ORGANISM-1,MORPH,ROD], which re­
turns .8. Since the first two conditions both were found to hold, $AND 
evaluates SAME[ORGANISM-1,AIR,AEROBIC], which returns .6. Thus 
TALLY is set to .6, and $AND returns T. Since the premise is true, MYCIN 
may now draw the conclusion indicated in the action portion of the rule. 
Note, however, that CONCLUDE has as arguments both .8 (i.e., the CF 
for the rule as provided by the expert) and TALLY (i.e., the certainty tally 
for the premise). CONCLUDE and the other functions that control infer­
ences are described later. 

5.1.6 Static Knowledge Structures 

Although all MYCIN's inferential knowledge is stored in rules, there are 
various kinds of static definitional information, which are stored differently 
even though they are accessible from rules. 

Tabular and List-Based Knowledge 

There are three categories of knowledge structures that could be discussed 
in this section. However, one of them, MYCIN's dictionary, is used prin­
cipally for natural language understanding and will therefore not be de­
scribed. The other two data structures are simple lists and knowledge ta­
bles. 

Simple lists: Simple lists provide a mechanism for simplifying references 
to variables and optimizing knowledge storage by avoiding unnecessary 
duplication. Two examples should be sufficient to explain this point. 

As was shown earlier, the EXPECT property for the clinical parameter 
IDENT is 

(ONEOF (ORGANISMS)) 

ORGAN ISMS is the name of a linear list containing the names of all bac-
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teria known to MYCIN. There is also a clinical parameter named COV­
ERFOR for which the EXPECT property is 

(ONEOF ENTEROBACTERIACEAE (ORGANISMS) G +COCCI C-COCCI) 

fhus, by storing the organisms separately on a list named ORGANISMS, 
we avoid having to duplicate the list of names in the EXPECT property of 
both !DENT and COVERFOR. Furthermore, using the variable name 
rather than internal pointers to the list structure facilitates references to 
the list of organisms whenever it is needed. 

A second example involves the several rules in the system that make 
conclusions based on whether an organism was isolated from a site that is 
normally sterile or nonsterile. STERILESITES is the name of a simple list 
containing the names of all normally sterile sites known to the system. 
There is a similar list named NONSTERILESITES. Thus many rules can 
have the condition (SAME CNTXT SITE STERILESITES}, and the sites 
need not be listed explicitly in each rule. 

Knowledge tables: In conjunction with the special functions discussed 
in the next subsection, MYCIN's knowledge tables permit a single rule to 
accomplish a task that would otherwise require several rules. A knowledge 
table contains a comprehensive record of certain clinical parameters plus 
the values they take on under various circumstances. For example, one of 
MYCIN's knowledge tables itemizes the gram stain, morphology, and aero­
bicity for every bacterial genus known to the system. Consider, then, the 
task of inferring an organism's gram stain, morphology, and aerobicity if 
its identity is known with certainty. Without the knowledge table, MYCIN 
would require several rules of the following form: 

IF: The identity of the organism is definitely W 
THEN: 1) It is definite (1) that the gramstain of the 

organism is X, and 
2) It is definite (1) that the morphology of the 

organism is Y, and 
3) It is definite (1) that the aerobicity of the 

organism is Z 

Instead, MYCIN contains a single rule of the following form: 

RULE030 

IF: The identity of the organism is known with certainty 
THEN: It is definite (1) that these parameters - GRAM 

MORPH AIR - should be transferred from the identity 
of the organism to this organism 

Thus if ORGANISM-I is known to be a Streptococcus, MYCIN can use 
RULE030 to access the knowledge table to look up the organism's gram 
stain, morphology, and aerobicity. 
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Specialized Functions 

The efficient use of knowledge tables requires the existence of four spe­
cialized functions (the category <special-func> from Section 5.1.1 ). As 
explained below, each function attempts to add members to a list named 
GRIDVAL and returns T if at least one element has been found to be 
placed in GRIDVAL. 

Functions of the Category <specialjunc> 

Let V = Val[C,P] be the set of all hypotheses regarding the value of the 
clinical parameter P for the context C. 

Let CLST be a list of objects that may be characterized by clinical param­
eters. 

Let PLST be a list of clinical parameters. 

Then: 

Function 

SAME2[C,CLST,PLST] 

NOTSAME2[C,CLST,PLST] 

SAME3[C,P,CLST,P*] 

NOTSAME3[C,P,CLST,P*] 

GRID[ <object>, <attribute>] 

Value of GRIDVAL 

{X I X E CLST & (for all P in PLST) 
SAME [C,P,Val[X,P]]} 

{XI XE CLST & (for at least one Pin 
PLST) NOTSAME[C,P,Val[X,P)]} 

{XIX E CLST & SAME[C,P,Val[X,P*]]} 

{X I x E CLST & NOTSAME 
[C,P, Val[X,P*]]} 

{X I X is a value of the <attribute> of 
<qbject>} 

GRID is merely a function for looking up information in the specialized 
knowledge table. 

The use of these functions is best explained by example. Consider the 
following verbalization of a rule given us by one of our collaborating ex­
perts: 

If you know the portal of entry of the current organism and also 
know the pathogenic bacteria normally associated with that site, you 
have evidence that the current organism is one of those pathogens 
so long as there is no disagreement on the basis of gram stain, 
morphology, or aerobicity. 

This horrendous sounding rule is coded quite easily using 
SAME2[C,CLST,PLST], where C is the current organism, CLST is the list 
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of pathogenic bacteria normally associated with the portal of entry of C, 
and PLST is the set of properties (GRAM MORPH AIR). GRID is used to 
set up CLST. The LISP version of the rule is 

PREMISE: ($AND (GRID (VAL CNTXT PORTAL) PATH-FLORA) 
(SAME2 CNTXT GRIDVAL (QUOTE (GRAM MORPH AIR)))) 

ACTION: (CONCLIST CNTXT IDENT GRIDVAL .8) 

Note that GRID sets up the initial value of GRID VAL for use by SAME2, 
which then redefines GRIDVAL for use in the action clause. This rule is 
translated (to somewhat stilted English) as follows: 

IF: 1) The list of likely pathogens associated with the 
portal of entry of the organism is known, and 

2) This current organism and the members you are 
considering agree with respect to the following 
properties: GRAM MORPH AIR 

THEN: There is strongly suggestive evidence (.8) that 
each of them is the identity of this current 
organism 

SAME2 and NOTSAME2 can also be used for comparing the values of 
the same clinical parameters for two or more different contexts in the 
context tree, for example: 

SAME2[0RGANISM-1 (ORGANISM-2 ORGANISM-3) (GRAM MORPH)] 

On the other hand, SAME3 and NOTSAME3 are useful for comparing 
different parameters of two or more contexts. Suppose you need a pred­
icate that returns T if the site of a prior organism (ORGANISM-2) is the 
same as the portal of entry of the current organism (ORGANISM-1). This 
is accomplished by the following: 

SAME3[0RGANISM-1 PORTAL (ORGANISM-2) SITE] 

5.1. 7 Translation of Rules into English 

Rules are translated into a subset of English using a set of recursive func­
tions that piece together bits of text. We shall demonstrate the process 
using the premise condition (GRID (VAL CNTXT PORTAL) PATH­
FLORA), which is taken from the rule in the preceding section. 

The reader will recall that every clinical parameter has a property 
named TRANS that is used for translation (Section 5.1.3). In addition, 
every function, simple list, or knowledge table that is used by MYCIN's 
rules also has a TRANS property. For our example the following TRANS 
properties are relevant: 

GRID: 
VAL: 
PORTAL: 
PATH-FLORA: 

(THE (2) ASSOCIATED WITH (1) IS KNOWN) 
(((2 1))) 
(THE PORTAL OF ENTRY OF ') 
(LIST OF LIKELY PATHOGENS) 
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The numbers in the translations of functions indicate where the translation 
of the corresponding argument should be inserted. Thus the translation 
of GRID's second argument is inserted for the (2) in GRID's TRANS prop­
erty. The extra parentheses in the TRANS for VAL indicate that the trans­
lation of VAL's first argument should be substituted for the asterisk in the 
translation of VAL's second argument. Since PORTAL is a PROP-ORG, 
CNTXT translates as "the organism," and the translation of (VAL CNTXT 
PORTAL) becomes 

The portal of entry of the organism 

Substituting VAL's translation for the (1) in GRID's TRANS and PATH­
FLORA's translation for the (2) yields the final translation of the condi­
tional clause: 

The list of likely pathogens associated with the portal of entry of the organism is known 

Similarly, (GRID (VAL CNTXT CLASS) CLASSMEMBERS) 

translates as: The list of members associated with the class of the organism is known 

All other portions of rules use essentially this same procedure for 
translation. An additional complexity arises, however, if it is necessary to 
negate the verbs in action or else clauses when the associated CF is negative. 
The translator program must therefore recognize verbs and know how to 
negate them when evidence in a premise supports the negation of the 
hypothesis that is referenced in the action of the rule. 

5 2 Use of the Rules to Give Advice • 

The discussion in Section 5.1 was limited to the various data structures 
used to represent MYCIN's knowledge. The present section proceeds to 
an explanation of how MYCIN uses that knowledge in order to give advice. 

5.2.1 MYCIN's Control Structure 

MYCIN's rules are directly analogous to the consequent theorems intro­
duced by Hewitt in his PLANNER system (Hewitt, 1972). They permit a 
reasoning chain to grow dynamically on the basis of the user's answers to 
questions regarding the patient. This subsection describes that reasoning 
network, explaining how it grows and how MYCIN manages to ask ques­
tions only when there is a reason for doing so. 
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Consequent Rules and Recursion 

MYCIN's task involves a four-stage decision problem: 

1. Decide which organisms, if any, are causing significant disease. 

2. Determine the likely identity of the significant organisms. 

3. Decide which drugs are potentially useful. 

4. Select the best drug or drugs. 

Steps 1 and 2 are closely interrelated since determination of an organism's 
significance may well depend on its presumed identity. Furthermore, MY­
CIN must consider the possibility that the patient has an infection with an 
organism not specifically mentioned by the user (e.g., an occult abscess 
suggested by historical information or subtle physical findings). Finally, if 
MYCIN decides that there is no significant infection requiring antimicro­
bial therapy, it should skip Steps 3 and 4, advising the user that no treat­
ment is thought to be necessary. MYCIN's task area therefore can be de­
fined by the following rule: 

RULE092 

IF: 1) There is an organism which requires therapy, and 
2) Consideration has been given to the possible 

existence of additional organisms requiring therapy, 
even though they have not actually been recovered 
from any current cultures 

THEN: Do the following: 
1) Compile the list of possible therapies which, based 

upon sensitivity data, may be effective against 
the organisms requiring treatment, and 

2) Determine the best therapy recommendations from the 
compiled list 

OTHERWISE: Indicate that the patient does not require therapy 

This rule is one of MYCIN's PATRULES (i.e., its context is the patient) 
and is known as the goal rule for the system. A consultation session with 
MYCIN results from a simple two-step procedure: 

1. Create the patient context as the top node in the context tree (see Sec­
tion 5.3 for an explanation of how nodes are added to the tree). 

2. Attempt to apply the goal rule to the newly created patient context. 

After the second step, the consultation is over. Thus we must explain how 
the simple attempt to apply the goal rule to the patient causes a lengthy 
consultation with an individualized reasoning chain. 

When MYCIN first tries to evaluate the premise of the goal rule, the 
first condition requires that it know whether there is an organism that 
requires therapy. MYCIN then reasons backwards in a manner that may 
be informally paraphrased as follows: 
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How do I decide whether there is an organism requiring therapy? 
Well, RULE090 tells me that organisms associated with significant 
disease require therapy. But I don't even have any organisms in the 
context tree yet, so I'd better ask first if there are any organisms, and 
if there are I'll try to apply RULE090 to each of them. However, the 
premise of RULE090 requires that I know whether the organism is 
significant. I have a bunch of rules for making this decision 
(RULE038 RULE042 RULE044 RULE108 RULE122). For example, 
RULE038 tells me that if the organism came from a sterile site it is 
probably significant. Unfortunately, I don't have any rules for infer­
ring the site of a culture, however, so I guess I'll have to ask the user 
for this information when I need it ... 

This goal-oriented approach to rule invocation and question selection is 
automated via two interrelated procedures, a MONITOR that analyzes 
rules and a FINDOUT mechanism that searches for data needed by the 
MONITOR. 

The MONITOR analyzes the premise of a rule, condition by condition, 
as shown in Figure 5-6. 3 When the value of the clinical parameter refer­
enced in a condition is not yet known to MYCIN, the FINDOUT mecha­
nism is invoked in an attempt to obtain the missing information. 
FINDOUT then either derives the necessary information (from other 
rules) or asks the user for the data. 

FINDOUT has a dual strategy depending on the kind of information 
required by the MONITOR. This distinction is demonstrated in Figure 
5-7. In general, a piece of data is immediately requested from the user (an 
ASKl question) if it is considered in some sense "primitive," as are, for 
example, most laboratory data. Thus, if the physician knows the identity 
of an organism (e.g., from a lab report), we would prefer that the system 
request that information directly rather than try to deduce it via decision 
rules. However, if the user does not know the identity of the organism, 
MYCIN uses its knowledge base in an effort to deduce the range of likely 
organisms. Nonlaboratory data are those kinds of information that require 
inference even by the clinician, e.g., whether or not an organism is a con­
taminant or whether or not a previously administered drug was effective. 
FINDOUT always attempts to deduce such information first, asking the 
physician only when MYCIN's knowledge base of rules is inadequate for 
making the inference from the information at hand (an ASK2 question). 

We have previously described the representation of clinical parameters 
and their associated properties. The need for two of these properties, 
LABDATA and UPDATED-BY, should now be clear. The LABDATA flag 
for a parameter allows FINDOUT to decide which branch to take through 

3 As discussed in Section 5.1.5, the MONITOR uses the $AND function to oversee the premise 
evaluation. 
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THE MONITOR FOR RULES 
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OF THE CURRENT 
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FIGURE 5-6 Flow chart describing how the MONITOR ana­
lyzes a rule and decides whether or not it applies in the clinical 
situation under consideration. Each condition in the premise of 
the rule references some clinical parameter, and all such con­
ditions must be true for the rule to be accepted (Shortliffe et 
al., 1975). 
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yes 

ASK USER FOR THE VALUE 
OF THE PARAMETER 

RETURN 

RETURN 
RETRIEVE Y = LIST OF RULES 
WHICH MAY AID IN DEDUCING 

THE VALUE OF THE PARAMETER 

APPLY MONITOR TO EACH RULE 
IN THE LIST Y 

RETURN 

FIGURE 5-7 Flow chart describing the strategy for determin­
ing which questions to ask the physician. The derivation of 
values of parameters may require recursive calls to the MON­
ITOR, thus dynamically creating a reasoning chain specific to 
the patient under consideration (Shortliffe et al., 1975). 

its decision process (Figure 5-7). Thus ID ENT is marked as being LAB­
DATA in Figure 5-2. 

Recall that the UPDATED-BY property is a list of all rules in the system 
that permit an inference to be made regarding the value of the indicated 
parameter. Thus UPDATED-BY is precisely the list called Y in Figure 
5-7. Every time a new rule is added to MYCIN's knowledge base, the name 
of the rule is added to the UPDATED-BY property of the clinical param-



108 Details of the Consultation System 

eter referenced in its action or else clause. Thus the new rule immediately 
becomes available to FINDOUT at times when it may be useful. It is not 
necessary to specify explicitly its interrelationships with other rules in the 
system. 

Note that FINDOUT is accessed from the MONITOR, but the MON­
ITOR may also be accessed from FINDOUT. This recursion allows self­
propagation of a reasoning network appropriate for the patient under 
consideration and selects only the necessary questions and rules. The first 
rule passed to the MONITOR is always the goal rule. Since the first con­
dition in the premise of this rule references a clinical parameter named 
TREATFOR, and since the value of TREATFOR is of course unknown 
before any data have been gathered, the MONITOR asks FINDOUT to 
trace the value of TREATFOR. This clinical parameter is not LABDATA, 
so FINDOUT takes the left-hand pathway in Figure 5-7 and sets Y to the 
UPDATED-BY property of TREATFOR, the two-element list (RULE090 
RULE149). The MONITOR is then called again with RULE090 as the rule 
for consideration, and FINDOUT is used to trace the values of clinical 
parameters referenced in the premise of RULE090. Note that this process 
parallels the informal paraphrase of MYCIN's reasoning given above. 

It is important to recognize that FINDOUT does not check to see 
whether the premise condition is true. Instead, the FINDOUT mechanism 
traces the clinical parameter exhaustively and returns its value to the MON­
ITOR, where the conditional expression may then be evaluated.4 Hence 
FINDOUT is called one time at most for a clinical parameter (in a given 
context-see Section 5.3). When FINDOUT returns a value to the MON­
ITOR, it marks the clinical parameter as having been traced. Thus when 
the MONITOR reaches the question "HAS ALL NECESSARY INFOR­
MATION BEEN GATHERED TO DECIDE IF THE CONDITION IS 
TRUE?" (Figure 5-6), the parameter is immediately passed to FINDOUT 
unless it has been previously marked as traced. 

Figure 5-8 is a portion of MYCIN's initial reasoning chain. In Figure 
5-8 the clinical parameters being traced are underlined. Thus REGIMEN 
is the top goal of the system (i.e., it is the clinical parameter in the action 
clause of the goal rule). Below each parameter are the rules (from the 
UPDATED-BY property) that may be used for inferring the parameter's 
value. Clinical parameters referenced in the premise of each of these rules 
are then listed at the next level in the reasoning network. Rules with mul­
tiple premise conditions have their links numbered in accordance with the 
order in which the parameters are traced (by FINDOUT). ASKI indicates 
that a parameter is LABDATA, so its value is automatically asked of the 
user when it is needed. ASK2 refers to parameters that are not LABDATA 
but for which no inference rules currently exist, e.g., if the dose of a drug 
is adequate. One of the goals in the future development of MYCIN's knowl-

4The process is slightly different for multi-valued parameters; see Section 5.2.1. 
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edge base is to acquire enough rules allowing the values of non-LABDATA 
parameters to be inferred so that ASK2 questions need no longer occur. 

Note that the reasoning network in Figure 5-8 is drawn to reflect 
maximum size. In reality many portions of such a network need not be 
considered. For example, RULE042 (one of the UPDATED-BY rules under 
SIGNIFICANCE) is rejected if the SITE condition is found to be false by 
the MONITOR. When that happens, neither COLLECT nor SIGNUM 
needs to be traced by FINDOUT, and those portions of the reasoning 
network are not created. Thus the order of conditions within a premise is 
highly important. In general, conditions referencing the most common 
parameters (i.e., those that appear in the premises of the most rules) are 
put first in the premises of new rules to act as an effective screening mech­
anism. 

A final comment is necessary regarding the box labeled "REJECT 
THE RULE" in Figure 5-6. This step in the MONITOR actually must 
check to see if the rule has an else clause. If so, and if the premise is known 
to be false, the conclusion indicated by the else clause is drawn. If there is 
no else clause, or if the truth status of the premise is uncertain (e.g., the 
user has entered UNKNOWN when asked the value of one of the relevant 
parameters), the rule is simply ignored without any conclusion having been 
reached. 

Asking Questions of the User 

The conventions for communication between a program and a physician 
are a primary factor determining the system's acceptability. We have there­
fore designed a number of features intended to simplify the interactive 
process that occurs when FINDOUT reaches one of the boxes entitled 
"ASK USER FOR THE VALUE OF THE PARAMETER" (Figure 5-7). 

When MYCIN requests the value of a single-valued or yes-no param­
eter, it uses the PROMPT property of the parameter. The user's response 
is then compared with the EXPECT property of the parameter. If the 
answer is one of the expected responses, the program simply continues 
through the reasoning network. Otherwise, MYCIN checks the system dic­
tionary to see if the user's response is a synonym for one of the recognized 
answers. If this attempt also fails, MYCIN uses Interlisp spelling-correction 
routines (Teitelman, 1974) to see if a simple spelling or typographical error 
will account for the unrecognized response. If so, the program makes the 
correction, prints its assumption, and proceeds as though the user had 
made no error. If none of these mechanisms succeeds, MYCIN tells the 
user that the response is not recognized, displays a list of sample responses, 
and asks the question again. 

Multi-valued parameters are handled somewhat differently. FIND­
OUT recursively traces such parameters in the normal fashion, but when 
forced to ask a question of the user, it customizes its question to the con-
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dition being evaluated in the MONITOR. Suppose, for example, the MON­
ITOR were evaluating the condition (SAME CNTXT INFECT MENIN­
GITIS), i.e., "Meningitis is an infectious disease diagnosis for the patient." 
If FINDOUT were to ask the question using the regular PROMPT strategy, 
it would request: 

What is the infectious disease diagnosis for PATIENT-1? 

The problem is that the patient may have several diagnoses, each of which 
can be expressed in a variety of ways. If the physician were to respond: 

A meningeal inflammation that is probably of infectious origin 

MYCIN would be forced to try to recognize that this answer implies men­
ingitis. Our solution has been to customize questions for multi-valued pa­
rameters to reflect the value being checked in the current premise condi­
tion. The PROMPT! property is used, and questions always expect a yes 
or no response: 

Is there evidence that the patient has a meningitis? 

The advantages of this approach are the resulting ability to avoid natural 
language processing during the consultation itself and the posing of ques­
tions that are specific to the patient under consideration. 

In addition to the automatic spelling-correction capability described 
above, there are a number of options that may be utilized whenever MY­
CIN asks the user a question: 

UNKNOWN 

? 

?? 
RULE 

QA 

WHY 

Used to indicate that the physician does not know 
the answer to the question, usually because the data 
are unavailable (may be abbreviated U or UNK) 
Used to request a list of sample recognized 
responses 
Used to request a list of all recognized responses 
Used to request that MYCIN display the translation 
of the current decision rule. FINDOUT simply 
translates the rule being considered by the 
MONITOR. This feature provides a simple 
capability for explaining why the program is asking 
the question. However, it cannot explain motivation 
beyond the current decisiqn rule. 
Used to digress temporarily in order to use the 
Explanation System. The features of this system are 
explained in Chapter 18. 
Used to request a detailed explanation of the 
question being asked. This feature is much more 
conversational than the RULE option above and 
permits investigation of the current state of the 
entire reasoning chain. 
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CHANGE### 

STOP 

HELP 

Used to change the answer to a previous question. 
Whenever MYCIN asks a question, it prints a 
number in front of the prompt. Thus CHANGE 4 
means "Go back and let me reanswer question 4." 
The complexities involved in this process are 
discussed below. 
Halts the program without completing the 
consultation 
Prints this list 

5.2.2 Creation of the Dynamic Data Base 

The Consultation System maintains an ongoing record of the consultation. 
These dynamic data include information entered by the user, inferences 
drawn using decision rules, and record-keeping data structures that facil­
itate question answering by the Explanation System (Chapter 18). 

Data Acquired from the User 

Except for questions related to propagation of the context tree, all queries 
from MYCIN to the physician request the value of a specific clinical pa­
rameter for a specific node in the context tree. The FINDOUT mechanism 
screens the user's response, stores it in MYCIN's dynamic data base, and 
returns the value to the MONITOR for evaluation of the conditional state­
ment that generated the question in the first place. The physician's re­
sponse is stored, of course, so that future rules containing conditions ref­
erencing the same clinical parameter will not cause the question to be asked 
a second time. 

As has been noted, however, the values of clinical parameters are al­
ways stored along with their associated certainty factors. A physician's re­
sponse must therefore have a CF associated with it. MYCIN's convention 
is to assume CF = 1 for the response unless the physician explicitly states 
otherwise. Thus the following exchange: 

results in: 

7) Staining characteristics of ORGANISM-1 (gram): 
*'GRAM NEG 

Val[ORGANISM-1,GRAM) = ((GRAMNEG 1.0)) 

If, on the other hand, the user is fairly sure of the answer to a question 
but wants to indicate uncertainty, he or she may enter a certainty factor in 
parentheses after the response. MYCIN expects the number to be an in­
teger between - 10 and + 10; the program divides the number by 10 to 
obtain a CF. Using integers simplifies the user's response and also discour-
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ages comparisons between the number and a probability measure. Thus 
the following exchange: 

results in: 

8) Enter the identity (genus) of ORGANISM-1: 
** ENTEROCOCCUS (8) 

Val[ORGANISM-1,IDENT] = ((STREPTOCOCCUS-GROUP-D .8)) 

This example also shows how the dictionary is used to put synonyms into 
standardized form for the patient's data base (i.e., Enterococcus is another 
name for a group-D Streptococcus). 

A variant of this last example is the· user's option to enter multiple 
responses to a question, as long as each is modified by a CF. For example: 

results in: 

13) Did ORGANISM-2 grow in clumps, chains, or pairs? 
** CLUMPS (6) CHAINS (3) PAIRS (-8) 

Val[ORGANISM-2,CONFORM] = ((CLUMPS .6)(CHAINS .3)(PAIRS -.8)) 

The CF's associated with the parameter values are then used for evaluation 
of premise conditions as described earlier. Note that the user's freedom to 
modify answers increases the flexibility of MYCIN's reasoning. Without the 
CF option, the user might well have responded UNKNOWN to question 
13 above. The demonstrated answer, although uncertain, gives MYCIN 
much more information than would have been provided by a response of 
UNKNOWN. 

Data Inferred by the System 

This subsection explains the <conclusion> item from the BNF rule 
description, i.e., the functions that are used in action or else clauses when 
a premise has shown that an indicated conclusion may be drawn. There 
are only three such functions, two of which (CONCLIST and TRANS­
LIST) reference knowledge tables (Section 5.1.6) but are otherwise depen­
dent on the third, a function called CONCLUDE. CONCLUDE takes five 
arguments: 

CNTXT 

PA RAM 

VALVE 
TALLY 

The node in the context tree about which the conclusion is 
being made 
The clinical parameter whose value is being added to the 
dynamic data base 
The inferred value of the clinical parameter 
The certainty tally for the premise of the rule (see Section 
5.1.5) 
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CF The certainty factor for the rule as judged by the expert 
from whom the rule was obtained 

The translation of CONCLUDE depends on the size of CF: 

ICFI;::: .8 
.4 ::5 !CF! < .8 

ICFI < .4 
Computed CF 

"There is strongly suggestive evidence that ... " 
"There is suggestive evidence that ... " 
"There is weakly suggestive evidence that ... " 
"There is evidence that ... " 

Thus the following conclusion: 

(CONCLUDE CNTXT IDENT STREPTOCOCCUS TALLY .7) 

translates as: 

There is suggestive evidence (.7) that the identity of the organism is streptococcus 

If, for example, the rule with this action clause were successfully applied 
to ORGANISM-I, an organism for which no previous inferences had been 
made regarding identity, the result would be: 

Val[ORGANISM-1,IDENn =((STREPTOCOCCUS X)) 

where X is the product of .7 and TALLY (see Combining Function 4, 
Chapter I I). Thus the strength of the conclusion reflects both the CF for 
the rule and the extent to which the premise of the rule is believed to be 
true for ORGANISM-I. 

Suppose a second rule were now found that contains a premise true 
for ORGANISM-I and that adds additional evidence to the assertion that 
the organism is a Streptococcus. This new evidence somehow has to be com­
bined with the CF ( = X) that is already stored for the hypothesis that 
ORGANISM- I is a Streptococcus. If Y is the CF calculated for the second 
rule (i.e., the product of the TALLY for that rule and th~ CF assigned to 
the rule by the expert), the CF for the hypothesis is updated to Z so that: 

Val[ORGANISM-1,IDENn = ((STREPTOCOCCUS Z)) 

where Combining Function I gives Z = X + Y(l - X). This function is 
justified and discussed in detail in Chapter 11. 

Similarly, additional rules leading to alternate hypotheses regarding 
the identity of ORGANISM-I may be successfully invoked. The new hy­
potheses, along with their associated CF's, are simply appended to the list 
of hypotheses in Val[ORGANISM-1,IDENT]. Note, of course, that the CF's 
of some hypotheses may be negative, indicating that there is evidence sug­
gesting that the hypothesis is not true. When there is both positive and 
negative evidence for a hypothesis, Combining Function 1 must be used 
in a modified form. 

A final point to note is that values of parameters are stored identically 
regardless of whether the information has been inferred or acquired from 
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the user. The source of a piece of information is maintained in a separate 
record. It is therefore easy to incorporate new rules that infer values of 
parameters for which ASK2 questions to the user were once necessary. 

Creating an Ongoing Consultation Record 

In addition to information provided or inferred regarding nodes in the 
context tree, MYCIN's dynamic data base contains a record of the consul­
tation session. This record provides the basis for answering questions about 
the consultation (Chapter 18). 

Two general types of records are kept. One type is information about 
how values of clinical parameters were obtained. If the value was inferred 
using rules, a record of those inferences is stored with the rules themselves. 
Thus whenever an action or else clause is executed, MYCIN keeps a record 
of the details. The second type of record provides a mechanism for explain­
ing why questions were asked. MYCIN maintains a list of questions, their 
identifying numbers, the clinical parameter and context involved, plus the 
rule that led to generation of the question. This information is useful when 
the user retrospectively requests an explanation for a previous question 
(Chapter 18). 

5.2.3 Self-Referencing Rules 

As new rules were acquired from the collaborating experts, it became ap­
parent that MYCIN would need a small number of rules that departed 
from the strict modularity to which we had otherwise been able to adhere. 
For example, one expert indicated that he would tend to ask about the 
typical Pseudomonas-type skin lesions only if he already had reason to be­
lieve that the organism was a Pseudomonas. If the lesions were then said to 
be evident, however, his belief that the organism was a Pseudomonas would 
be increased even more. A rule reflecting this fact must somehow imply 
an orderedness of rule invocation; i.e., "Don't try this rule until you have 
already traced the identity of the organism by using other rules in the 
system." Our solution has been to reference the clinical parameter early in 
the premise of the rule as well as in the action, for example: 

RULE040 

IF: 1) The site of the culture is blood, and 
2) The identity of the organism may be pseudomonas, and 
3) The patient has ecthyma gangrenosum skin lesions 

THEN: There is strongly suggestive evidence (.8) that the 
identity of the organism is pseudomonas 

Note that RULE040 is thus a member of both the LOOKAHEAD property 
and the UPDATED-BY property for the clinical parameter IDENT. Rules 
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having the same parameter in both premise and action are termed self 
referencing rules. The ordered invocation of such rules is accomplished by 
a generalized procedure described below. 

As discussed in Section 5.2.1, a rule such as RULE040 is originally 
invoked because MYCIN is trying to infer the identity of an organism; i.e., 
FINDOUT is asked to trace the parameter IDENT and recursively sends 
the UPDATED-BY list for that parameter to the MONITOR. When the 
MONITOR reaches RULE040, however, the second premise condition ref­
erences the same clinical parameter currently being traced by FINDOUT. 
If the MONITOR merely passed IDENT to FINDOUT again (as called 
for by the simplified flow chart in Figure 5-6), FINDOUT would begin 
tracing IDENT for a second time, RULE040 would be passed to the MON­
ITOR yet again, and an infinite loop would occur. 

The solution to this problem is to let FINDOUT screen the list called 
Y in Figure 5-7, i.e., the UPDATED-BY property for the parameter it is 
about to trace. Y is partitioned by FINDOUT into regular rules and self­
referencing rules (where the latter category is defined as those rules that 
also occur on the LOOKAHEAD list for the clinical parameter). FIND­
OUT passes the first group of rules to the MONITOR in the normal 
fashion. After all these rules have been tried, FINDOUT marks the pa­
rameter as having been traced and then passes the self-referencing rules 
to the MONITOR. In this way, when the MONITOR considers the second 
condition in the premise of RULE040, the condition is evaluated without 
a call to FINDOUT because the parameter has already been marked as 
traced. Thus the truth of the premise of a self-referencing rule is deter­
mined on the basis of the set of non-self-referencing rules, which were 
evaluated first. If one of the regular rules permitted MYCIN to conclude 
that an organism might be a Pseudomonas, RULE040 might well succeed 
when passed to the MONITOR. This mechanism for handling self-refer­
encing rules satisfies the intention of an expert when he or she gives us 
decision criteria in self-referencing form. 

It should be noted that this approach minimizes the potential for self­
referencing rules to destroy certainty factor commutativity. By holding 
these rules until last, we insure that the certainty tally for any of their 
premises (see Section 5.1.5) is the same regardless of the order in which 
the non-self-referencing rules were executed. If there is more than one 
self-referencing rule successfully executed for a given context and param­
eter, however, the order of their invocation may affect the final CF. The 
approach we have implemented thus seeks merely to minimize the poten­
tial undesirable effects of self-referencing rules. 

5.2.4 Preventing Reasoning Loops 

Self-referencing rules are actually a special case of a more general problem. 
Reasoning loops involving multiple rules cannot be handled by the mech­
anism described above. The difference is that self-referencing rules are 
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intentional parts of MYCIN's knowledge base whereas reasoning loops are 
artifacts that must somehow be avoided. 

For the following discussion we introduce the following notation: 

[q] x ::> y 

means that decision rule [q] uses clinical parameter X to reach a conclusion 
regarding the value of clinical parameter Y. Thus a self-referencing rule 
may be represented by: 

[a] E ::> E 

where E is the clinical parameter that is referenced in both the premise 
and the action of the rule. Consider now the following set of rules: 

[l] A::>B 

[2] B ::>C 

[3] C::>D 

[4] D::>A 

Rule [ 1 ], for example, says that under certain unspecified conditions, the 
value of A can be used to infer the value of B. Now suppose that the 
MONITOR asks FINDOUT to trace the clinical parameter D. Then MY­
CIN's recursive mechanism would create the following reasoning chain: 

[4] [l] [2] [3] 
... D : : > A : :> B : :> C : :> D 

The difference between this looped reasoning chain and a self-referencing 
rule is that Rule [4] was provided as a mechanism for deducing the value 
of A, not for reinforcing the system's belief in the value of D. In cases 
where the value of A is of primary interest, the use of Rule [4] would be 
appropriate. 

MYCIN solves this problem by keeping track of all parameters cur­
rently being traced by the FINDOUT mechanism. The MONITOR then 
simply ignores a rule if one of the parameters checked in its premise is 
already being traced. The result, with the value of D as the goal, is a three­
membered reasoning chain in the case above: 

[l] [2] [3] 
A ::> B ::> C ::> D 

Rule [4] is rejected because parameter Dis already being traced elsewhere 
in the current reasoning chain. If the value of A were the main goal, 
however, the chain would be 
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[2] [3] [4] 
B ::> C ::> D ::> A 

Note that this simple mechanism allows us to have potential reasoning 
loops in the knowledge base but to select only the relevant nonlooping 
portions for consideration of a given patient. 

A similar problem can occur when a rule permits two conclusions to 
be made, each about a different clinical parameter. MYCIN prevents loops 
in such circumstances by refusing to permit the same rule to occur twice 
in the current reasoning chain. 

5.3 Propagation of the Context Tree 

The mechanism by which the context tree is customized for a given patient 
has not yet been discussed. As described in Section 5.2.2, the consultation 
system begins simply by creating the patient context and then attempting 
to execute the goal rule. All additional nodes in the context tree are thus 
added automatically during the unwinding of MYCIN's reasoning regard­
ing the premise of the goal rule. This section first explains the data struc­
tures used for creating new nodes. Mechanisms for deciding when new 
nodes should be added are then discussed. 

5.3.1 Data Structures Used for Sprouting Branches 

Section 5.1.2 was devoted to an explanation of the context tree. At that 
time we described the different kinds of contexts and explained that each 
node in the tree is an instantiation of the appropriate context-type. Each 
context-type is characterized by the following properties: 

PROMPT I 

PROMPT2 

PROMPT3 

PROPTYPE 

A sentence used to ask the user whether the first node 
of this type should be added to the context tree; 
expects a yes-no answer 
A sentence used to ask the user whether subsequent 
nodes of this type should be added to the context tree 
Replaces PROMPT! when it is used. This is a message 
to be printed out if MYCIN assumes that there is at 
least one node of this type in the tree. 
Indicates the category of clinical parameters (see 
Section 5.1.3) that may be used to characterize a 
context of this type 
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SYN 

TRANS 

TYPE 

MAIN PROPS 

ASSOC WITH 
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Indicates the categories of rules that may be applied 
to a context of this type 
Indicates a conversational synonym for referring to a 
context of this type. MYCIN uses SYN when filling in 
the asterisk of PROMPT properties for clinical 
parameters. 
Used for English translations of rules referencing this 
type of context 
Indicates what kind of internal name to give a context 
of this type 
Lists the clinical parameters, if any, that are to be 
automatically traced (by FINDOUT) whenever a 
context of this type is created 
Gives the context-type of nodes in the tree. 
immediately above contexts of this type 

Two sample context-types are shown in Figure 5-9. The following ob­
servations may help clarify the information given in that figure: 

I. PRIORCULS: Whenever a prior culture is created, it is given the name 
CULTURE-# (see TYPE), where# is the next unassigned culture num­
ber. The values of SITE and WHEN CUL are immediately traced using 
the FINDOUT mechanism (see MAINPROPS). The culture node is put 
in the context tree below a node of type PERSON (see ASSOCWITH), 
and the new context may be characterized by clinical parameters of the 
type PROP-CUL (see PROPTYPE). The prior culture may be the con­
text for either PRCULRULES or CULRULES (see SUBJECT) and is 
translated, in questions to the user, as "this (site) culture" (see SYN) 
where (site) is replaced by the site of the culture if it is known. 

2. CURORG: Since there is a PROMPT3 rather than a PROMPT!, MY­
CIN prints out the PROMPT3 message and assumes (without asking) 
that there is at least one CURORG for each CURCUL (see AS­
SOCWITH); the other CURORG properties correspond to those de­
scribed above for PRIORCULS. 

Whenever MYCIN creates a new context using these models, it prints 
out the name of the new node in the tree, e.g.: 

------ORGANISM-1------

Thus the user is familiar with MYCIN's internal names for the cultures, 
organisms, and drugs under discussion. The node names may then be used 
in MYCIN's questions at times when there may be ambiguity regarding 
which node is the current context, e.g.: 

Is the patient's illness with the staphylococcus (ORGANISM-2) a hospital-acquired infection? 
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PR/ORCULS 

ASSOCWITH: PERSON 
MAINPROPS: (SITE WHENCUL) 
PROMPT I: (Were any organisms that were significant (but no longer 

require therapeutic attention) isolated within the last 
approximately 30 days?) 

PROMPT2: (Any other significant earlier cultures from which pathogens 
were isolated?) 

PROPTYPE: PROP-CUL 
SUBJECT: (PRCULRULES CULRULES) 
SYN: (SITE (this * culture)) 
TRANS: (PRIOR CULTURES OF *) 
TYPE: CULTURE-

CURORG 
ASSOCWITH: CURCUL 
MAINPROPS: (IDENT GRAM MORPH SENSITIVS) 
PROMPT2: (Any other organisms isolated from * for which you would like 

a therapeutic recommendation?) 
PROMPT3: (I will refer to the first offending organism from *as:) 
PROPTYPE: PROP-ORG 
SUBJECT: (ORGRULES CURORGRULES) 
SYN: (IDENT (the*)) 
TRANS: (CURRENT ORGANISMS OF *) 
TYPE: ORGANISM-

FIGURE 5-9 Context trees such as that shown in Figure 5-1 
are generated from prototype context-types such as those shown 
here. The defining properties are described in the text. 

It should also be noted that when PROMPTl or PROMPT2 is used to 
ask a question, the physician need not be aware that the situation is dif­
ferent from that occurring when FINDOUT asks questions. All the user 
options described in Section 5.2. l operate in the normal fashion. 

Finally, the MAINPROPS property (later called INITIALDATA) re­
quires brief explanation. The claim was previously made that clinical pa­
rameters are traced and their values requested by FINDOUT only when 
they are needed for evaluation of a rule that has been invoked. Yet we 
must now acknowledge that certain LABDATA parameters are automati­
cally traced whenever a node for the context tree is created. The reason 
for this departure is an attempt to keep the program acceptable to physi­
cians. Since the order of rules on UPDATED-BY lists is arbitrary, the order 
in which questions are asked is somewhat arbitrary as well. We have found 
that physicians are annoyed if the "basic" questions are not asked first, as 
soon as the context is created. The MAIN PROPS convention forces certain 
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standard questions early in the characterization of a node in the context 
tree. Parameters not on the MAINPROPS list are then traced in an arbi­
trary order that depends on the order in which rules are invoked. Since 
the parameters on MAIN PROPS lists are important pieces of information 
that would uniformly be traced by FINDOUT anyway, the convention we 
have implemented forces a standardized ordering of the "basic" questions 
without generating useless information. 

5.3.2 Explicit Mechanisms for Branching 

There are two situations under which MYCIN attempts to add new nodes 
to the context tree. The simpler case occurs when rules explicitly reference 
contexts that have not yet been created. Suppose, for example, MYCIN is 
trying to determine the identity of a current organism and therefore in­
vokes the following CURORGRULE: 

IF: 1) The identity of the organism is not known 
with certainty, and 

2) This current organism and prior organisms of 
the patient agree with respect to the following 
properties: GRAM MORPH 

THEN: There is weakly suggestive evidence that each of 
them is a prior organism with the same identity 
as this current organism 

The second condition in the premise of this rule references other nodes 
in the tree, namely nodes of the type PRIORORGS. If no such nodes exist, 
the MONITOR asks FINDOUT to trace PRIORORGS in the normal fash­
ion. The difference is that PRIORORGS is not a clinical parameter but a 
context-type. FIN DO UT therefore uses PROMPT I of PRIORORGS to ask 
the user if there is at least one organism. If so, an instantiation of PRIOR­
ORGS is added to the context tree, and its MAINPROPS are traced. 
PROMPT2 is then used to see if there are any additional prior organisms, 
and the procedure continues until the user indicates there are no more 
PRIORORGS that merit discussion. Finally, FINDOUT returns the list of 
prior organisms to the MONITOR so that the second condition in the rule 
above can be evaluated. 

5.3.3 Implicit Mechanisms for Branching 

There are two kinds of implicit branching mechanisms. One of these is 
closely associated with the example of the preceding section. As shown in 
Figure 5-1, a prior organism is associated with a prior culture. But the 
explicit reference to prior organisms in the rule above made no mention 
of prior cultures. Thus if FINDOUT tries to create a PRIORORGS in 
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response to an explicit reference but finds there are no PRIORCULS, the 
program knows there is an implied need to ask the user about prior cul­
tures before asking about prior organisms. Since PRIORCULS are asso­
ciated with the patient, and since the patient node already exists in the 
context tree, only one level of implicit branching is required in the evalu­
ation of the rule. 

The other kind of implicit branching occurs when the MONITOR 
attempts to evaluate a rule for which no appropriate context exists. For 
example, the first rule invoked in an effort to execute the goal rule is a 
CURORGRULE (see RULE090, Figure 5-8). Since no current organism 
has been created at the time the MONITOR is passed this CURORGRULE, 
MYCIN automatically attempts to create the appropriate nodes and then 
to apply the invoked rule to each. 

5.4 Selection of Therapy 

The preceding discussion concentrated on the premise of MYCIN's prin­
cipal goal rule (RULE092). This section explains what happens when the 
premise is found to be true and the two-step action clause is executed. 
Unlike other rules in the system, the goal rule does not lead to a conclusion 
(Section 5.2.2) but instead instigates actions. The functions in the action 
of the goal rule thus correspond to the <actfunc> class that was introduced 
in the BNF description. The first of these functions causes a list of potential 
therapies to be created. The second allows the best drug or drugs to be 
selected from the list of possibilities. 

5.4.1 Creation of the Potential Therapy List 

There is a class of decision rules, the THERULES, that are never invoked 
by MYCIN's regular control structure because they do not occur on the 
UPDATED-BY list of any clinical parameter. These rules contain sensitivity 
information for the various organisms known to the system, for example: 

IF: The identity of the organism is pseudomonas 
THEN: I recommend therapy chosen from among the following drugs: 

1 - colistin (.98) 
2 - polymyxin (.96) 
3 - gentamicin (.96) 
4 - carbenicillin (.65) 
5 - sulfisoxazole (.64) 

The numbers associated with each drug are the probabilities that a Pseu­
domonas isolated at Stanford Hospital will be sensitive (in vitro) to the in-
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dicated drug. The sensitivity data were acquired from Stanford's micro­
biology laboratory (and could easily be adjusted to reflect changing 
resistance patterns at Stanford or the data for some other hospital desiring 
a version of MYCIN with local sensitivity information). Rules such as the 
one shown here provide the basis for creating a list of potential therapies. 
There is one such rule for every kind of organism known to the system. 

MYCIN selects drugs only on the basis of the identity of offending 
organisms. Thus the program's first task is to decide, for each current 
organism deemed to be significant, which hypotheses regarding the or­
ganism's identity (!DENT) are sufficiently likely that they must be consid­
ered in choosing therapy. MYCIN uses the CF's of the various hypotheses 
in order to select the most likely identities. Each identity is then given an 
item number (see below) and the process is repeated for each significant 
current organism. The Set of Indications for therapy is then printed out, 
e.g.: 

My therapy recommendation will be based on the following possible 
identities of the organism(s) that seem to be significant: 

<Item 1 > The identity of ORGANISM-1 may be 
STREPTOCOCCUS-GROUP-D 

<Item 2> The identity of ORGANISM-1 may be 
STREPTOCOCCUS-ALPHA 

<Item 3> The identity of ORGANISM-2 is PSEUDOMONAS 

Each item in this list of therapy indications corresponds to one of the 
THERULES. Thus MYCIN retrieves the list of potential therapies for each 
indication from the associated THERULE. The default (in vitro) statistical 
data are also retrieved. MYCIN then replaces the default sensitivity data 
with real data about those of the patient's organisms, if any, for which 
actual sensitivity information is available from the laboratory. Furthermore, 
if MYCIN has inferred sensitivity information from the in vivo perfor­
mance of a drug that has already been administered to the patient, this 
information also replaces the default sensitivity data. Thus the compiled 
list of potential therapies is actually several lists, one for each item in the 
Set of Indications. Each list contains the names of drugs and, in addition, 
the associated numbers representing MYCIN's judgment regarding the 
organism's sensitivity to each of the drugs. 

5.4.2 Selecting the Preferred Drug from the List 

When MYCIN recommends therapy, it tries to suggest a drug for each of 
the items in the Set of Indications. Thus the problem reduces to selecting 
the best drug from the therapy list associated with each item. Clearly, the 
probability that an organism will be sensitive to a drug is an important 
factor in this selection process. However, there are several other consid-
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erations. MYCIN's strategy is to select the best drug on the basis of sensi­
tivity information but then to consider contraindications for that drug. 
Only if a drug survives this second screening step is it actually recom­
mended. Furthermore, MYCIN also looks for ways to minimize the num­
ber of drugs recommended and thus seeks therapies that cover for more 
than one of the items in the Set of Indications. The selection/screening 
process is described in the following two subsections. 

Choosing the Apparent First-Choice Drug 

The procedure used for selecting the apparent first-choice drug is a com­
plex algorithm that is somewhat arbitrary and is thus currently ( 1974) 
under revision. This section describes the procedure in somewhat general 
terms since the actual LISP functions and data structures are not partic­
ularly enlightening. 

There are three initial considerations used in selecting the best therapy 
for a given item: 

1. the probability that the organism is sensitive to the drug; 

2. whether the drug is already being administered; 

3. the relative efficacy of drugs that are otherwise equally supported by 
the first two criteria. 

As is the case with human consultants, MYCIN does not insist on a 
change in therapy if the physician has already begun a drug that may work, 
even if that drug would not otherwise be MYCIN's first choice. Drugs with 
sensitivity numbers within .05 of one another are considered to be almost 
identical on the basis of the first criterion. Thus the rule in the previous 
section, for example, indicates no clear preference among colistin, poly­
myxin, and gentamicin5 for Pseudomonas infections (if default sensitivity 
information from the rule is used). However, our collaborating experts 
have ranked the relative efficacy of antimicrobials on a scale from 1 to 10. 
The number reflects such factors as whether the drug is bacteriostatic or 
bacteriocidal or its tendency to cause allergic sensitization. Since genta­
micin has a higher relative efficacy than either colistin or polymyxin, it is 
the first drug considered for Pseudomonas infections (unless known sensi­
tivity information or previous drug experience indicates that an alternate 
choice is preferable). 

Once MYCIN has selected the apparent best drug for each item in the 
Set of Indications, it checks to see if one of the drugs is also useful for one 
or more of the other indications. For example, if the first-choice drug for 

5Ed. note: Amikacin and tobramycin were not yet available in 1974 when this rule was written. 
The knowledge base was later updated with the new drug information. 
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Item I is the second-choice drug for Item 2 and if the second-choice drug 
f(>r Item 2 is almost as strongly supported as the first-choice drug, Item 
l's first-choice drug also becomes Item 2's first-choice drug. This strategy 
permits MYCIN to attempt to minimize the number of drugs to be rec­
ommended. 

A similar strategy is used to avoid giving two drugs of the same drug 
class. For example, MYCIN knows that if the first choice for one item is 
penicillin and the first choice for another is ampicillin, then the ampicillin 
may be given for both indications (because ampicillin covers essentially all 
organisms sensitive to penicillin). 

In the ideal case MYCIN will find a single drug that effectively covers 
for all the items in the Set of Indications. But even if each item remains 
associated with a different drug, a screening stage to look for contraindi­
cations is required. This rule-based process is described in the next sub­
section. It should be stressed, however, that the manipulation of drug lists 
described above is algorithmic; i.e., it is coded in LISP functions that are 
called from the action clause of the goal rule. There is considerable "knowl­
edge" in this process. Since rule-based knowledge provides the foundation 
of MYCIN's ability to explain its decisions, it would be desirable eventually 
to remove this therapy selection method from functions and place it in 
decision rules.6 

Rule-Based Screening for Contraindications 

Unlike the complex list manipulations described in the preceding subsec­
tion, criteria for ruling out drugs under consideration may be effectively 
placed in rules. The rules in MYCIN for this purpose are termed OR­
DERRULES. A sample rule of this type is: 

IF: 1) The therapy under consideration is tetracycline, and 
2) The age (in years) of the patient is less than 13 

THEN: There is strongly suggestive evidence (.8) that 
tetracycline is not a potential therapy for use 
against the organism 

In order to use MONITOR and FINDOUT with such rules, we must con­
struct appropriate nodes in the context tree and must be able to charac­
terize them with clinical parameters. The context-type used for this 
purpose is termed POSSTHER and the parameters are classified as PROP­
THER. Thus when MYCIN has selected the apparent best drugs for the 
items in the Set of Indications, it creates a context corresponding to each 
of these drugs. POSSTHER contexts occur below CURORGS in the context 
tree. FINDOUT is then called to trace the relevant clinical parameter, 

6Ed. note: See the next chapter for a discussion of how this was later accomplished. 
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which collects contraindication information (i.e., this becomes a new goal 
statement), and the normal recursive mechanism through the MONITOR 
insures that the proper ORDERRULES are invoked. 

ORDERRULES allow a great deal of drug-specific knowledge to be 
stored. For example, the rule above insures that tetracycline is ruled out 
in youngsters who still have developing bone and teeth. 7 Similar rules tell 
MYCIN never to give streptomycin or carbenicillin alone, not to give sul­
fonamides except in urinary tract infections, and not to give cephalothin, 
clindamycin, lincomycin, vancomycin, cefazolin, or erythromycin if the pa­
tient has meningitis. Other ORDERRULES allow MYCIN to consider the 
patient's drug allergies, dosage modifications, or ecological considerations 
(e.g., save gentamicin for Pseudomonas, Serratia, and Hafnia unless the pa­
tient is so sick that you cannot risk using a different aminoglycoside while 
awaiting lab sensitivity data). Finally, there are rules that suggest appro­
priate combination therapies (e.g., add carbenicillin to gentamicin for 
known Pseudomonas infections). In considering such rules MYCIN often is 
forced to ask questions that never arose during the initial portion of the 
consultation. Thus the physician is asked additional questions during the 
period after MYCIN has displayed the items in the Set of Indications but 
before any therapy is actually recommended. 

After the presumed first-choice drugs have been exposed to the OR­
DERRULE screening process, MYCIN checks to see whether any of the 
drugs is now contraindicated. If so, the drug-ranking process is repeated. 
New first-choice drugs are then subjected to the ORDERRULES. The pro­
cess continues until all the first-choice drugs have been instantiated as 
POSSTHERS. These then become the system's recommendations. Note 
that this strategy may result in the recommendation of drugs that are only 
mildly contraindicated so long as they are otherwise strongly favored. The 
therapy recommendation itself takes the following form: 

My preferred therapy recommendation is as follows: 
In order to cover for Items <1 > <2> <3>: 

Give the following in combination: 
1. PENICILLIN 

Dose: 285,000 UNITS/KG/DAY - IV 
2. GENTAMICIN 

Dose: 1.7 MG/KG OBH - IV OR IM 
Comments: MODIFY DOSE IN RENAL FAILURE 

The user may also ask for second, third, and subsequent therapy recom­
mendations until MYCIN is able to suggest no reasonable alternatives. The 
mechanism for these iterations is merely a repeat of the processes described 
above but with recommended drugs removed from consideration. 

7 Ed. note: This rule ignores any statement of the mechanism whereby its conclusion follows 
from its premise. The lack of underlying "support" knowledge accounts for changes intro­
duced in GUIDON when MYCIN's rules were used for education. See Part Eight for further 
discussion of this point. 
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5.5 Mechanisms for Storage of Patient Data 

5.5.1 Changing Answers to Questions 

If a physician decides he or she wants to change a response to a question 
that has already been answered, MYCIN must do more than merely re­
display the prompt, accept the user's new answer, and make the appro­
priate change to the value of the clinical parameter in question. In general, 
the question was originally asked because the premise of a decision rule 
referenced the clinical parameter. Thus the original response affected the 
evaluation of at least one rule, and subsequent pathways in the reasoning 
network may have been affected as well. It is therefore necessary for MY­
CIN somehow to return to the state it was in at the time the question was 
originally asked. Its subsequent actions can then be determined by the 
corrected user response. 

Reversing all decisions made since a question was asked is a complex 
problem, however. The most difficult task is to determine what portions 
of a parameter's cumulative CF preceded or followed the question requir­
ing alteration. In fact, the extra data structures needed to permit this kind 
of backing up are so large and complicated, and would be used so seldom, 
that it seems preferable simply to restart the consultation from the begin­
ning when the user wants to change one of his or her answers. 

Restarting is of course also less than optimal, particularly if it requires 
that the physician reenter the answers to questions that were correct the 
first time around. Our desire to make the program acceptable to physicians 
required that we devise some mechanism for changing answers, but re­
starting from scratch also had obvious drawbacks regarding user accep­
tance of the system. We therefore needed a mechanism for restarting MY­
CIN's reasoning process but avoiding questions that had already been 
answered correctly. When FINDOUT asks questions, it therefore uses the 
following three-step algorithm: 

I. Before asking the question, check to see if the answer is already stored 
(in the Patient Data Table-see Step 3 below); if the answer is there, use 
that value rather than asking the user; otherwise go to Step 2. 

2. Ask the question using PROMPT or PROMPT! as usual. 

3. Store the user's response in the dynamic record of facts about the pa­
tient, called the Patient Data Table, under the appropriate clinical pa­
rameter and context. 

The Patient Data Table, then, is a growing record of the user's responses 
to questions from MYCIN. It is entirely separate from the dynamic data 
record that is explicitly associated with the nodes in the context tree. Note 



128 Details of the Consultation System 

that the Patient Data Table contains only the text responses of the user­
there is no CF information (unless included in the user's response), nor 
are there data derived from MYCIN's rule-based inferences. 

The Patient Data Table and the FINDOUT algorithm make the task 
of changing answers much simpler. The technique MYCIN uses is the 
following: 

a. Whenever the user wants to change the answer to a previous question, 
he or she enters CHANGE <numbers>, where <numbers> is a list of 
the questions whose answers need correction. 

b. MYCIN looks up the indicated question numbers in its question record. 

c. The user's responses to the indicated questions are removed from the 
current Patient Data Table. 

d. MYCIN reinitializes the system, erasing the entire context tree, includ­
ing all associated parameters; however it leaves the Patient Data Table 
intact except for the responses deleted in (c). • 

e. MYCIN restarts the consultation from the beginning. 

This simple mechanism results in a restarting of the Consultation System 
but does not require that the user enter correct answers a second time. 
Since the Patient Data Table is saved, Step 1 of the FINDOUT algorithm 
above will find all the user's responses until the first question requiring 
alteration is reached. Thus the first question asked the user after he or she 
gives the CHANGE command is, in fact, the earliest of the questions he 
or she wants to change. There may be a substantial pause after the 
CHANGE command while MYCIN reasons through the network to the 
first question requiring alteration, but a pause is to be preferred over a 
mechanism requiring reentry of all answers. The implemented technique 
is entirely general because answers to questions regarding context tree 
propagation are also stored in the Patient Data Table. 

5.5.2 Remembering Patients for Future Reference 

When a consultation is complete, the Patient Data Table contains all re­
sponses necessary for generating a complete consultation for that patient. 
It is therefore straightforward to store the Patient Data Table (on disk or 
tape) so that it may be reloaded in the future. FINDOUT will automatically 
read responses from the table, rather than ask the user, so a consultation 
may be run several times on the basis of only a single interactive session. 

There are two reasons for storing Patient Data Tables for future ref­
erence. One is their usefulness in evaluating changes to MYCIN's knowl­
edge base. The other is the resulting ability to reevaluate patients once new 
clinical information becomes available. 
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Evaluating New Rules 

New rules may have a large effect on the way a given patient case is handled 
by MYCIN. For example, a single rule may reference a clinical parameter 
not previously sought or may lead to an entirely new chain in the reasoning 
network. It is therefore useful to reload Patient Data Tables and run a new 
version of MYCIN on old patient cases. A few new questions may be asked 
(because their responses are not stored in the Patient Data Table). Conclu­
sions regarding organism identities may then be observed, as may the pro­
gram's therapeutic recommendations. Any changes from the decisions 
reached during the original run (i.e., when the Patient Data Table was 
created) must be explained. When a new version of MYCIN evaluates 
several old Patient Data Tables in this manner, aberrant side effects of new 
rules may be found. Thus a library of stored patient cases provides a useful 
mechanism for screening new rules before they become an integral part 
of MYCIN's knowledge base. 

Reevaluating Patient Cases 

The second use for stored Patient Data Tables is the reevaluation of patient 
data once additional laboratory or clinical information becomes available. 
If a user answers several questions with UNKNOWN during the initial 
consultation session, MYCIN's advice will of course be based on less than 
complete information. After storing the Patient Data Table, however, the 
physician may return for another consultation in a day or so once he or 
she has more specific information. MYCIN can use the previous Patient 
Data Table for responses to questions whose answers are still up to date. 
The user therefore needs to answer only those questions that reference 
new information. A mechanism for the physician to indicate directly what 
new data are available has not yet been automated, however. 8 

A related capability to be implemented before MYCIN becomes avail­
able in the clinical setting is a SAVE command.9 If a physician must leave 
the computer terminal midway through a consultation, this option will save 
the current Patient Data Table on the disk. When the physician returns to 
complete the consultation, he or she will reload the patient record and the 
session will continue from the point at which the SAVE command was 
entered. 

It should be stressed that saving the current Patient Data Table is not 
the same as saving the current state of MYCIN's reasoning. Thus, as we 
have stated above, changes to MYCIN's rule corpus may result in different 
advice from the same Patient Data Table. 

8Ed. note: A RESTART option was subsequently developed to permit reassessment of cases 
over time. 
9Ed. note: This option was also subsequently implemented. 
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5.6 Suggested Improvements to the System 

This section summarizes some ideas for improvement of the consultation 
program described in this chapter. Each of the topics mentioned is the 
subject of current ( 1974) efforts by one or more of the researchers asso­
ciated with the MYCIN project. 

5.6.1 Dynamic Ordering of Rules 

The order in which rules are invoked by the MONITOR is currently con­
trolled solely by their order on the UPDATED-BY property of the clinical 
parameter being traced. 10 The order of rules on the UPDATED-BY prop­
erty is also arbitrary, tending to reflect nothing more than the order in 
which rules were acquired. Since FINDOUT sends all rules on such lists 
to the MONITOR and since our certainty factor combining function is 
commutative, the order of rules is unimportant. 

Some rules are much more useful than others in tracing the value of 
a clinical parameter. For example, a rule with a six-condition premise that 
infers the value of a parameter with a low CF requires a great deal of work 
(as many as six calls to FINDOUT) with very little gain. On the other hand, 
a rule with a large CF and only one or two premise conditions may easily 
provide strong evidence regarding the value of the parameter in question. 
It may therefore be wise for FINDOUT to order the rules in the UP­
DATED-BY list on the basis of both information content (CF) and the work 
necessary to evaluate the premise. Then if the first few rules are success­
fully executed by the MONITOR, the CF associated with one of the values 
of the clinical parameter may be so large that invocation of subsequent 
rules will require more computational effort than they are worth. If FIN­
DOUT therefore ignores such rules (i.e., does not bother to pass them to 
the MONITOR), considerable time savings may result. Furthermore, entire 
reasoning chains will in some cases be avoided, and the number of ques­
tions asked the user could accordingly be decreased. 11 

5.6.2 Dynamic Ordering of Conditions Within Rules 

The MONITOR diagram in Figure 5-6 reveals that conditions are evalu­
ated strictly in the order in which they occur within the premise of the 
rule. The order of conditions is therefore important, and the most com-

10An exception to this p0int is the selt~referencing rules-see Section 5.2.3. 
11Ed. note: Many of these ideas were later implemented and are briefly mentioned in Chapter 
4. For example, meta-rules provided a mechanism for encoding strategies to help select the 
most pertinent rules in a set, and the concept of a unity path was implemented to favor chains 
of rules that reached conclusions with certainty at each step in the chain. 
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monly referenced clinical parameters should be placed earliest in the prem­
ise. 

Suppose, however, that in a given consultation the clinical parameter 
referenced in the fourth condition of a rule has already been traced by 
FINDOUT because it was referenced in some other rule that the MONI­
TOR has already evaluated. As currently designed, MYCIN checks the first 
three conditions first, even if the fourth condition is already known to be 
false. Since the first three conditions may well require calls to FINDOUT, 
the rule may generate unnecessary questions and expand useless reasoning 
chains. 

The solution to this problem would be to redesign the MONITOR so 
that it reorders the premise conditions, first evaluating those that reference 
clinical parameters that have already been traced by FINDOUT. In this 
way a rule will not cause new questions or additions to the reasoning net­
work if any of its conditions are known to be false at the outset. 12 

5.6.3 Prescreening of Rules 

An alternate approach to the problem described in the preceding section 
would be for FINDOUT to judge the implications of every parameter it 
traces. Once the value has been determined by the normal mechanism, 
FINDOUT could use the LOOKAHEAD list for the clinical parameter in 
order to identify all rules referencing the parameter in their premise con­
ditions. FINDOUT could then evaluate the relevant conditions and mark 
the rule as failing if the condition turns out to be false. Then, whenever 
the MONITOR begins to evaluate rules that are invoked by the normal 
recursive mechanism, it will check to see if the rule has previously been 
marked as false by FINDOUT. If so, the rule could be quickly ruled out 
without needing to consider the problem of reordering the premise con­
ditions. 

At first glance, the dynamic reordering of premise conditions appears 
to be a better solution than the one just described. The problem with rule 
prescreening is that it requires consideration of all rules on the parameter's 
LOOKAHEAD list, some of which may never actually be invoked during 
the consultation. 13 

5.6.4 Placing All Knowledge in Rules 

Although most of MYCIN's knowledge is placed in decision rules, we have 
pointed out several examples of knowledge that is not rule-based. The 
simple lists and knowledge tables may be justified on the basis of efficiency, 

•12Ed. note: The preview mechanism in MYCIN was eventually implemented to deal with this 
issue. 
l:l£d. note: It was for this reason that the idea outlined here was never implemented. 
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especially since those knowledge structures may be directly accessed by 
rules. 

However, the algorithmic mechanisms for therapy selection are some­
what more bothersome. Although we have managed to put many drug­
related decision criteria in the ORDERRULES, the mechanisms for cre­
ating the potential therapy lists and for choosing the apparent first-choice 
drug are programmed explicitly in a series of relatively complex LISP 
functions. Since MYCIN's ability to explain itself is based on rule retrieval, 
the system cannot give good descriptions of these drug selection proce­
dures. It is therefore desirable to place more of the drug selection knowl­
edge in rules. 

Such efforts should provide a useful basis for evaluating the power of 
our rule-based formalism. If the goal-oriented control structure we have 
developed is truly general, one would hope that algorithmic approaches 
to the construction and ordering of lists could also be placed in decision 
rule format. We therefore intend to experiment with ways for incorporat­
ing the remainder of MYCIN's knowledge into decision rules that are in­
voked by the standard MONITOR/FINDOUT process. 14 

5.6.5 The Need for a Context Graph 

The context tree used by MYCIN is the source of one of the system's 
primary problems in attempting to simulate the consultation process. Every 
node in the context tree leads to the uppermost patient node by a single 
pathway. In reality, however, drugs, patients, organisms, and cultures are 
not interrelated in this highly structured fashion. For example, drugs are 
often given to cover for more than one organism. The context tree does 
not permit a single CURDRUG or PRIORDRUG to be associated with 
more than a single organism. What we need, therefore, is a network of 
contexts in the form of a graph rather than a pure tree. The reasons why 
MYCIN currently needs a tree-structured context network are explained 
in Section 5.1.2. We have come to recognize that a context graph capability 
is an important extension of the current system, however, and this will be 
the subject of future design modifications. 15 When implemented, for ex­
ample, it will permit a physician to discuss a prior drug only once, even 
though it may have been given to cover for several prior organisms. 

14Ed. note: Rule-based encoding of the therapy selection algorithm was eventually undertaken 
and is described in the next chapter. 
1''Ed. note: This problem was never adequately solved and remains a limitation of the EMYCIN 
architecture (Part Five). A partial solution was achieved when predicate functions were de­
veloped that allowed a specific rule to be applied to all contexts of a given type and to draw 
inferences in one part of the context tree based on findings elsewhere in the context tree. 



6 
Details of the Revised 
Therapy Algorithm 

William J. Clancey 

A program that is designed to provide sophisticated expert advice must 
cope with the needs of naive users who may find the advice puzzling or 
difficult to accept. This chapter describes additions to MYCIN that provide 
for explanations of its therapy decisions, the lack of which was a shortcom­
ing of the original therapy recommendation code described in Section 5.4 
of Chapter 5. It deals with an optimization problem that seeks to provide 
"coverage" for organisms while minimizing the number of drugs pre­
scribed. There are many factors to consider, such as prior therapies and 
drug sensitivities, and a person often finds it hard to juggle all of the 
constraints at once. When the optimal solution is provided by a computer 
program, its correctness may not be immediately obvious to the user. This 
motivates our desire to provide an explanation capability to justify the 
program's results. 

The explanation capability derives from two basic programming con­
siderations. First, we have used heuristics that capture what expert physi­
cians consider to be good medical practice. Thus, while the program is not 
designed to mimic the step-by-step problem-solving behavior of a physi­
cian, its chief decision criteria have been provided by expert physicians. It 
is accordingly plausible that the criteria will make sense to other physicians. 

The second consideration is that the program must maintain records 
of decisions that were made. These are used for explaining what occurred 

This chapter is an expanded version of a paper originally appearing in Proceedings of the !]CAI 
1977. Used by permission of International Joint Conferences on Artificial Intelligence, Inc.; 
copies of the Proceedings are available from William Kaufmann, Inc., 95 First Street, Los 
Altos, CA 94022. 
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during the optimization process and why the output was not different. 
While the maintenance of records for explanation purposes is not new 
(e.g., see Winograd, 1972; Bobrow and Brown, 1975; Scragg, 1975a; 
1975b), the means that we use to retrieve them are novel, namely a state 
transition representation of the algorithm. Our work demonstrates that a 
cleanly structured algorithm can provide both sophisticated performance 
and a simple, useful explanation capability. 

6 1 The Problem • 

The main problem of the therapy selector is to prescribe the best drug for 
each organism thought to be a likely cause of the infection, while mini­
mizing the total number of drugs. These two constraints often conflict: the 
best prescription for, say, four items may require four different drugs, 
although for any patient usually no more than two drugs need to be given 
(or should be, for reasons of drug interaction, toxic side effects, cost, etc.). 

The original therapy program lacked a general scheme for relating 
the local constraints (best drug for each item) to the global constraint (few­
est possible number of drugs). As we began to investigate the complexities 
of therapy selection, it became necessary to patch the program to deal with 
the special cases we encountered. Before long we were losing track of how 
any given change would affect the program's output. We found it increas­
ingly difficult to keep records during the program execution for later use 
in the explanation system; indeed, the logic of the program was too con­
fusing to explain easily. We decided to start over, aiming for a more struc­
tured algorithm that would provide sophisticated therapy, and by its very 
organization would provide simple explanations for a naive user. The ques­
tion was this: what organization could balance these two, sometimes con­
tradictory, goals? 

Because we wanted to formulate judgments that could be provided by 
physicians and would appear familiar to them, we decided not to use math­
ematical methods such as evaluation polynomials or Bayesian analysis. On 
the other hand, MYCIN's inferential rule representation seemed to be 
inadequate because of the general algorithmic nature of the problem (i.e., 
iteration and complex data structures). We turned our attention to sepa­
rating out the optimization criteria of therapy selection from control in­
formation (specifications for iteratively applying the heuristics). As is dis­
cussed below, the key improvement was to encode canonically the 
optimization performed by the inner loop of the algorithm. 
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6 2 Our Solution • 

6.2.1 Local and Global Criteria 

We found that viewing the optimization problem in terms of local and 
global criteria provides a fruitful means for structuring the problem. Local 
criteria are the item-specific factors, such as sensitivity of the organism to 
preferred drugs, toxicity of drugs, the desire to "reserve" drugs for more 
serious diseases, ans the desire to continue current therapy if possible. 
Global criteria deal with the entire recommendation; we wished to mini­
mize the number of drugs, prescribing only two drugs if possible to cover 
for all of the most likely organisms. 1 In addition, there were a few patient 
factors to consider, such as allergies to antibiotics. 

Besides providing for optimal therapy, we wished to provide for an 
explanation capability that would list simple descriptions of the therapy 
selection heuristics used by the algorithm, as well as reasons for not making 
a different recommendation. 

i 
1111 PLAN GENERATE TEST ------t~OUTPUT 

(local factors) (global) (global) 

1111 RANK PROPOSE APPROVE ----i• PRESCRIBE 

t I 
FIGURE 6-1 Therapy selection viewed as a plan-generate­
and-test process. 

After clearly stating these design goals, we needed an implementation 
scheme that would bring about the optimization. The key to our solution 
was the use of a generate-and-test control structure for separately apply­
ing the local and global factors. Figure 6-1 shows the steps of the plan­
generate-and-test method and, below them, the corresponding steps of 
our algorithm. Briefly, the steps are 

I. plan by ranking the drugs-the local factors are considered here; 

1 Here we realized that we could group the items into those that should definitely be treated 
("most likely") and those that could be left out when three or more drugs would be necessary. 
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Number of drugs of each rank: 

Instruction first second third 
1 1 0 0 
2 2 0 0 
3 1 0 
4 0 

FIGURE 6-2 Instructions for the therapy proposer. 

2. propose a recommendation and test it, thus dealing with the global 
factors; and 

3. make a final recommendation. 

The following sections consider these steps in more detail. 

6.2.2 Plan 

We start with an initial list of drugs to which each organism is sensitive 
and sort it by applying production rules for ranking. These reranking rules 
are applied independently for every organism to be treated. The chief 
purpose of this sorting process is to incorporate drug sensitivity informa­
tion for the organisms growing in cultures taken from the patient. 2 Thus 
we arrive at a patient-specific list of drugs for each organism, reranked 
and grouped into first, second, and third ranks of choices. 

Because this sorting process is a consideration specific to each orga­
nism, we refer to it as a local criterion of optimal therapy. We call it (loosely) 
a planning step because it makes preparations for later steps. 

6.2.3 Generate 

The second step of the algorithm is to take the ordered drug lists and 
generate possible recommendations. This is done by a proposer that selects 
subsets of drugs (a recommendation) from the collection of drugs for all 
of the organisms to be treated. Selection is directed by a fixed, ordered set 
of instructions that specify how many drugs to select from each preference 
group. The first few instructions are listed in Figure 6-2. For example, the 

2A typical rule might be "If the organism growing from the culture appears to be resistant 
to the drug, then classify the drug as a third choice." 
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third instruction tells the proposer to select a drug from each of the first 
and second ranks. Instructions for one- and two-drug recommendations 
are taken from a static list; those for recommendations containing three 
or more drugs are generated from a simple pattern. 

It should be clear that the ordering of the instructions ensures that 
two of the global criteria will be satisfied: prescribing one or two drugs if 
possible, and selecting the best possible drug(s) for each organism. An 
instruction therefore serves as a canonical description of a recommenda­
tion. Consequently, we can "reduce" alternate subsets of drugs to this form 
(the number of drugs of each rank) and compare them. 

6.2.4 Test 

Since all of the drugs for all of the organisms were grouped together for 
use by the proposer, it is quite possible that a proposed recommendation 
will not cover all of the most likely organisms. For example, the proposal 
might have two drugs that are in the first rank for one item but are second 
or third for other items, or are not even on their lists. Thus the first step 
of testing is to make sure that all of the most likely items are covered. 

The second test ensures that each drug is in a unique drug class. For 
example, a proposal having both gentamicin and streptomycin would be 
rejected because these two drugs are aminoglycosides and therefore cause 
a "redundant" effect. 

The last test is for patient-specific contraindications. These rules take 
into account allergies, age of the patient, pregnancy, etc. These rules are 
relatively expensive to apply, so they are done last, rather than applying 
them to each possible drug in the plan step. With this test we have dealt 
with the last global criterion of therapy selection. The first proposal that 
satisfies these three tests becomes the therapy advice. The details of drug 
prescription will not be considered further here; it consists primarily of 
algorithmic dosage calculation and adjustment in the case of renal failure. 

6.2.5 Performance 

We have found that the algorithm described above is manageable and 
performs well. It is straightforward to add new rules for ranking the drugs 
and for testing the proposals. The canonical instructions are relatively 
fixed, but it would not be difficult, for example, to provide infection-spe­
cific instruction sets. The program has made acceptable recommendations 
for a library of more than I 00 meningitis patients. 
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6.3 The Explanation Capability 

We will now consider how the structure of the algorithm is exploited to 
produce simple explanations. A sample question about therapy selection 
is shown in Figure 6-3. The medical decisions that were applied to the 
drug chloramphenicol are listed as a logical sequence of reasons, which is 
produced by retrieving and printing traces that were left behind by the 
program. The trace retrieval program is termed CHRONICLER because 
its explanations consist of a chronicle of decision events. 

•• WHY DID YOU GIVE CHLORAMPHENICOL FOR E.COLI IN REC·1? 

CHLORAMPHENICOL was prescribed for ITEM-2 in RECOMMENDATION-1: 

Since 
-- CHLORAMPHENICOL is a treatment of choice for e.coli in meningitis 
-- ITEM-2 is sensitive to CHLORAMPHENICOL 
-- there were no contraindications for it 

CHLORAMPHENICOL was prescribed because it was part of the 
recommendation that covers for all of the items, using the fewest number 
of drugs. 

FIGURE 6-3 A question concerning why a drug was pre­
scribed. (User's input follows the double asterisks.) 

Figure 6-4 shows the general organization of the Explanation System. 
The traces (discussed below) constitute a dynamic event history. A chronicle 
of events is printed by using a process transition diagram to selectively 
retrieve the relevant traces. 

Figure 6-5 shows the kind of transition diagram. we use to represent 
the steps of therapy selection. The states roughly correspond to the gen­
erate and test steps shown in Figure 6-1. The arrows are labeled as positive 
(pos) and negative (neg) criteria (i.e., criteria that support or oppose the 
recommendation of a given drug). These correspond to the medical strat­
egies, e.g., "The drug is on the treatment-of-choice list for the organism 
(the initial list) and so was considered to cover for the organism." If a drug 
is prescribed, there must be a sequence of positive criteria leading from 
the first state to the output state. These are the reasons offered the user 
as an explanation for prescribing the drug. To make the explanation 
clearer, the states are reordered into three groups (planning criteria, testing 
criteria, and generate and output criteria) to conform to the following 
general scheme: 

Since 
--<plan criteria> 
--<test criteria> 
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MYCIN 
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PROGRAM Records 
left 

behind 

(static) 

PROCESS 

TRANSITION -
~ 

Event 
DIAGRAM Structure 

(dynamic) 

TRACES 

Event 
History 

' . 
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Ans we rto 
on Questi 

~~ 
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FIGURE 6-4 Organization of the Explanation System. 

(therefore) 
<generate and output criteria> 

On the other hand, if a drug is not prescribed, there must be a negative 
criterion to explain why it dropped out of contention if it was on the initial 
list. Failure to prescribe can be caused by either failure to consider the 

---tit• STATE·1 
initalize 

cr~~a ----la• STATE·2 
cr~~a 

----•• STATE-3 

neg criteria neg criteria 

STATE·2 

{final} 

STATE-3 

{final} 

FIGURE 6-5 The state transition diagram. 

STATE-N 

{goal} 
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** WHY DIDN'T YOU SUGGEST PENICILLIN IN REC-1 FOR STAPH·COAG +? 

PENICILLIN was not prescribed for ITEM-1 in RECOMMENDATION-1: 

PENICILLIN was discounted for ITEM-1 because it is NOT DEFINITE that the item is sensitive to this drug. 
There are other potential therapies under consideration which are much more desirable, viz., current therapies 
or drugs to which the item is definitely sensitive. 

Would you like to see some details? ** YES 

The drugs to which the staphylococcus-coag-pos is sensitive are: cephalothin (1.0) vancomycin (1.0) 
gentamycin (1.0) tobramycin (1.0) erythromycin-and-tetracycline (1.0) chloramphenicol-and-erythromycin (1.0) 
[RULE098 RULE445] 

Would you like to know about the history of PENICILLIN in the decision 
process up to this point? ** YES 

-- PENICILLIN is a treatment of choice for staphylococcus-coag-pos in meningitis. But as explained above, 
PENICILLIN was discounted. 

FIGURE 6-6 Question concerning why a drug was not pre­
scribed. 

drug (plan) or failure of a test. A third possibility is that the drug wasn't 
part of an acceptable recommendation, but was otherwise a plausible choice 
(when considered alone). In this case, the drug needs to be considered in 
the context of a full recommendation for the patient. 3 (See Figure 6-9 for 
an example.) 

Figure 6-6 shows an example of a question concerning why a drug wa<s 
not prescribed. In response to a question of this type, the negative criterion 
is printed and the user is offered an opportunity to see the positive deci­
sions accrued up to this point. In this example we see that penicillin was 
not prescribed because it is not definite that the item is sensitive to this 
drug. That is the negative criterion. The fact that penicillin was a potential 
treatment of choice permitted its transition to the reranking step. 4 This is 
shown in Figure 6-7. When MYCIN's rules (as opposed to Interlisp code) 
are used to make a transition decision, we can provide further details, as 
shown in Figure 6-6. 

For questions involving two drugs, e.g., "Why did you prescribe chlor­
amphenicol instead of penicillin for Item-I?", CHRONICLER is invoked 
to explain why the rejected drug was not given. Then the user is offered 
the opportunity to see why the other drug was given. 

To summarize, MYCIN leaves behind traces that record the application 

3Events are recorded as properties of the drugs they involve. The trace includes other contexts 
such as the item being considered. To deal with iteration, events are of two types: enduring 
and pass-specific. Enduring events represent decisions that, once made, are never reconsidered, 
e.g., the initial ranking of drugs for each organism. Pass-specific events may not figure in the 
final result; they may indicate computation that failed to produce a solution, e.g., proposing 
a drug as part of a specific recommendation. Thus traces are accessed by drug name and the 
context of the computation, including which pass of the generate-and-test process produced 
the final solution. 
4 Penicillin is given for staph-coag + only if the organism is known to be sensitive to that agent. 
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--------- plan1 
"treatment of choice" 

-------.. plan2 

l ·1 .. moot~~-· 
plan2 

{final} 

FIGURE 6-7 Trace history for the question shown in Figure 
6-6. 

of the positive and negative criteria. The Explanation System uses a state 
transition diagram that represents the steps of the algorithm to retrieve 
the relevant traces in a logical order. 

It is interesting to note that CHRONICLER is described well by Bob­
row and Brown's synthesis, contingent knowledge, and analysis (SCA) par­
adigm for understanding systems (Bobrow and Brown, 1975). Contingent 
knowledge is a record of program-synthesized observations for later use 
by an analysis program to answer questions or comment on the observed 
system. In CHRONICLER the traces and transition diagram constitute the 
contingent knowledge structure. Synthesis (abstraction of results) is per­
formed by the therapy selector as it classifies the drugs in the various 
decision steps and records its "observations" in traces. Analysis is per­
formed by CHRONICLER as it "reads" the traces, interpreting them in 
terms of the state transition diagram. The meteorology question-answering 
system described by Brown et al. (1973) uses a similar knowledge repre­
sentation. 

6.4 Comparing Alternative Recommendations 

The therapy program will print alternative recommendations if asked to 
do so. This is done by eliminating drugs from contention and rerunning 
the algorithm. Figure 6-8 shows an example of an alternative recommen­
dation and a comparison of this alternative to the algorithm's first choice. 
The comparison is made by simply reducing the recommendations to can­
onical form and then determining their relative ranking in the list of in­
structions. A recommendation is better than another when it reduces to a 
better instruction, i.e., when the preference description of its drugs appears 
earlier in the fixed list of instructions. It is also possible that the comparison 
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Do you wish to see the next choice therapy? 
**YES 
Which, if any, of the above drugs do you wish eliminated from 
consideration? 
**CHLORAMPHENICOL 

[REC-2] Next best therapy recommendation: 
In order to cover for Items <2 3 4>: 

Give: GENTAMICIN 

In order to cover for Item < 1 >: 
Give: METHICILLIN 

RECOMMENDATION-2 is substantially inferior to RECOMMENDATION-1 (because 
it requires more drugs or drugs that are not as good). 

Would you like to see details of this comparison? 
**YES 

Looking at the coverage of the 'most likely' items, we see that: 

RECOMMENDATION-1 consists of 1 first choice drug 
(CHLORAMPHENICOL for ITEM-2 and ITEM-3) and 1 second choice drug 
(GENTAMICIN for ITEM-3 and ITEM-1) 

RECOMMENDATION-2 consists of 1 first choice drug (METHICILLIN 
for ITEM-1) and 1 third choice drug (GENTAMICIN for ITEM-2 and 
ITEM-3) 

Do you wish to see the next choice therapy? 
••NO 

FIGURE 6-8 Comparing alternative recommendations. 

will be a "close call," because one of the recommendations might use better 
drugs for the most likely organisms but cover for fewer of the less likely 
organisms. Again, it is the ability to encode output canonically that gives 
us the ability to make such a direct comparison of alternatives. 

6.5 Evaluating a User's Choice of Therapy 

The comparison described above is useful to a physician who prefers to 
give therapy other than MYCIN's first choice and wishes to know if the 
program truly considers it to be suboptimal therapy. However, it is tedious 
for the user to request all possible alternatives to be printed, so we offer 
the user the opportunity to enter his or her own choice of drugs for the 
organisms that require therapy (Figure 6-9). 

Each drug the user suggests for an item is first formed into a standard 
internal question for CHRONICLER: "Why wasn't <drug> prescribed for 
<item>?" If there is a negative criterion about this drug for this item in 
the event history, it is printed and the user is given the option of selecting 
another drug. 



Evaluating a User's Choice of Therapy 143 

**WHY DIDN'T YOU GIVE AMPICILLIN-AND-GENTAMICIN FOR E.COLI IN REC-1? 

AMPICILLIN-AND-GENTAMICIN was not prescribed for ITEM-2 in 
RECOMMENDATION-1: 

AMPICILLIN-AND-GENTAMICIN is a plausible choice for e.coli in 
meningitis, and was not explicitly rejected for use against ITEM-2 in 
RECOMMENDATION-1. However, the best therapy did not include 
AMPICILLIN-AND-GENTAMICIN. 

If you would like to suggest therapy which includes 
AMPICILLIN-AND-GENTAMICIN, your regimen will be compared to MYCIN's. 
Would you like to do this? ** YES 

For each item in turn, enter the drug you would have prescribed in 
RECOMMENDATION-1. 
In order to minimize the number of drugs in your recommendation, you may 
not want to prescribe therapy for every item. Items which represent the 
most likely organisms are indicated with a plus sign ( + ). 

+ ITEM-1 -- the staphylococcus-coag-pos •• GENTAMICIN 
+ ITEM-2 -- the e.coli •• AMPICILLIN GENTAMICIN 
+ ITEM-3 -- the klebsiella-pneumoniae ** GENTAMICIN 
+ ITEM-4 -- the pseudomonas-aeruginose •• 

[Checking for contraindications ... ] 
[Considering AMPICILLIN-AND-GENTAMICIN for use against INFECTION-1 ... ] 
[No contraindications found ... ] 

[Now comparing your prescription to MYCIN's ... ] 

Perhaps you did not realize that one of the drugs you prescribed, 
GENTAMICIN, will cover for ITEM-4, an item for which you did not 
prescribe therapy. I have changed your prescription accordingly. 

ORGANISMS Your regimen MYCIN's regimen 
Drug -- Choice Drug -- Choice 

"most likely" 
ITEM-3 GENTAMICIN -- 3rd CHLORAMPHENICOL-AND-

GENTAMICIN -- 1st 
ITEM-2 AMPICILLIN-AND- CHLORAMPHENICOL -- 1st 

GENTAMICIN -- 1st 
ITEM-1 GENTAMICIN -- 2nd GENTAMICIN -- 2nd 

"less likely" 
ITEM-4 GENTAMICIN -- 2nd GENTAMICIN -- 2nd 

(The desirability of a drug is defined to be its lowest ranking for the 
items it covers.) 

Both prescriptions include fewer than 3 drugs, so we must look at how 
highly ranked each prescription is for the most likely organism(s). 

Your prescription of 1 first choice drug (AMPICILLIN for ITEM-2) and 1 
third choice drug (GENTAMICIN for ITEM-3) is not as good as MYCIN's 
prescription of 1 first choice drug (CHLORAMPHENICOL for ITEM-2 and 
ltem-3) and 1 second choice drug (GENTAMICIN for ITEM-1). 

[You may refer to your regimen as RECOMMENDATION-2 in later questions.] 

FIGURE 6-9 Evaluating a user's choice of therapy. 
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Once the user has supplied a set of drugs to cover for all of the most 
likely organisms, his or her proposal is tested for the criteria of drug class 
uniqueness and patient-specific factors (described in Section 6.2.4). If the 
proposal is approved, this recommendation is compared to the program's 
choice of therapy, just as the program compares its alternatives to its own 
first-choice recommendation. 5 It is also possible to directly invoke the ther­
apy comparison routine. 

6 6 Some Unsolved Problems • 

There are a number of improvements that could be made to this system. 
Among the most important to potential users is a more flexible question 
format. In our experience physicians tend to address short, unspecific 
questions to the program, e.g., "Why ampicillin?" or "What happened to 
E. coli?" Processing these questions will require a fairly sophisticated pre­
processor that can help the user define such a question more precisely, or 
at least make some plausible assumptions. 

Second, we anticipate the need to explain the heuristics, which now 
are describable only in a template form. 6 A user might like to know what 
a "drug sensitivity" is or why a heuristic was not used. Providing simple, 
fixed-text definitions is easy, but discussing a particular heuristic to the 
extent of explaining why it was not applicable is well beyond the capabilities 
of this Explanation System. One possible solution is to represent the heu­
ristics internally in a rulelike form with a set of preconditions in program­
readable predicates, like MYCIN's rules. We could then say, for example, 
that a drug was lowered in rank because its sensitivity was "intermediate," 
even though it was a current therapy (which would otherwise be reason 
for continuing to prescribe it). Thus we would be splitting a medical cri­
terion into its logical components. Moreover, human explanations some­
times include hypothetical relations that have important instructional ben­
efit, e.g., "If all of the drugs had been intermediate, then this current 
therapy would have been given preference." In general, paraphrasing ex­
planations, explaining why an event failed to take place, and relating de­
cisions are difficult because they require some representation of what the 
heuristics mean. Providing a handle on these underlying concepts is a far 
cry from a system that can only fill in templates. 

Third, it is important to justify the medical heuristics and initial pref-

5The explanations at this point are more pedagogical than those supplied when the program 
compares its own alternatives. It seems desirable to phrase comparisons as positively as pos­
sible to avoid irritating the user. 
6That is, each medical heuristic has a string with blanks associated with it, e.g., <drug> "was 
discounted for" <item> "because it was not definite that the item was sensitive to this drug." 
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erence ranks for drugs. We now provide text annotations that include ref­
erences and comments about shortcomings and intent. 

Finally, we could further develop the tutorial aspects of the Explana­
tion System. Rather than passively answering questions, the Explanation 
System might endeavor to teach the user about the overall structure and 
philosophy of the program (upon request!). For example, a user might 
appreciate the optimality of the results better if he or she understood the 
separation of factors into local and global considerations. Besides explain­
ing the results of a particular run, an Explanation System might charac­
terize individual decisions in the context of the program's overall design. 
Parts Six and Eight discuss the issues of explanation and education in more 
detail. 

6 7 Conclusions • 

We have developed a system that prescribes optimal therapy and is able to 
provide simple, useful explanations. The system is based on a number of 
design ideas that are summarized as follows: 

1. separate the local and global optimality criteria; 
2. apply these criteria in comprehensible steps-a generate-and-test con­

trol structure was found to be suitable; 

3. justify selected therapies by using canonical descriptions that 

a. juggle several global criteria at once, and 
b. permit direct comparison of alternatives; and 

4. exploit the simple control structure by using a state transition diagram 
to order retrieval of traces. 

In addition, the Explanation System has benefited from a few simplifying 
factors: 

1. There are relatively few traces (fewer than 50 drugs to keep track of 
and fewer than 25 strategies that might be applied). 

2. There is a single basic question: Why was (or was not) a particular drug 
prescribed for a particular organism? 

While this therapy selection algorithm may appear straightforward, it 
is the product of trying to codify an unstructured list of factors presented 
by physicians. The medical experts did not order these considerations and 
were not sure how conflicting constraints should be resolved. The frame­
work we imposed, namely, invoking optimality criteria locally and globally 
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within a generate-and-test control structure and describing output can­
onically, provided a language that enabled us to codify the physicians' judg­
ments, thereby significantly improving the performance and manageability 
of the program. 

Moreover, this well-structured design enables us to print simple ex­
planations of the program's decisions and to compare alternative solutions. 
We have provided this facility because we want the program to be used 
intelligently. If a user is confused or disagrees with the optimality criteria, 
we expect him or her to feel free to reject the results. The explanation 
system we have provided is intended to encourage thoughtful use of the 
therapy selection program. 
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7.1 

Knowledge Engineering 

From early experience building the DENDRAL system, it was obvious to 
us that putting domain-specific knowledge into a program was a bottleneck 
in building knowledge-based systems (Buchanan et al., 1970). In other AI 
systems of the 1960s and early 1970s, items of knowledge were cast as LISP 
functions. For example, in the earliest version of DENDRAL the fact that 
the atomic weight of carbon is 12 was built into a function, called WEIGHT, 
which returned 12 when called with the argument C. The function "knew 
about" several common chemical elements, but when new elements or new 
isotopes were encountered, the function had to be changed. Because we 
wanted to keep our programs "lean" to run in 64K of working memory, 
we gave our programs only as much knowledge as we thought they would 
have to know. Thus we often encountered missing items in running new 
test cases. It was very quickly seen that LISP property lists (data structures) 
were a superior alternative to LISP code as a way of storing simple facts, 
so definitions of functions like WEIGHT were changed to retrievals from 
property lists (using GETPROP's and macros). Defining new objects and 
properties was trivial in comparison to the overhead of editing functions. 
This was the beginning of our realization that there is considerable flexi­
bility to be gained by separating domain-specific knowledge from the code 
that uses that knowledge. This was also our first encounter with the prob­
lem that has come to be known as knowledge acquisition (Buchanan et al., 
1970). 

The Nature of the Knowledge Acquisition 
Process 

Knowledge acquisition is the transfer and transformation of problem-solving 
expertise from some knowledge source to a program. There are many 

Section 7.1 is largely taken from material originally written for Chapter 5 of Building Expert 
Systems (eds., F. Hayes-Roth, D. Waterman, and D. Lenat). Reading, Mass.: Addison-Wesley, 
1983. 
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sources we might turn to, including human experts, textbooks, data bases, 
and our own experience. In this section we will concentrate mostly on 
acquiring knowledge from human experts in an enterprise known as 
knowledge engineering (Hayes-Roth et al., 1983). These experts are spe­
cialists (but not necessarily unique individuals) in a narrow area of knowl­
edge about the world. The expertise that we hope to elucidate is a collection 
of definitions, relations, specialized facts, algorithms, strategies, and heu­
ristics about the narrow domain area. It is different from general knowl­
edge about the domain and from commonsense knowledge about the 
world, some of which is also needed by expert systems. 

A knowledge base for an expert system is constructed through a pro­
cess of iterative development. After initial design and prototype imple­
mentation, the system grows incrementally both in breadth and depth. 
While other large software systems are sometimes built by accretion, this 
style of construction is inescapable for expert systems because the requisite 
knowledge is impossible to define as one complete block. 

One of the key ideas in constructing an expert system is transparency­
making the system understandable despite the complexity of the task. An 
expert system needs to be understandable for the following reasons: 

• the system matures through incremental improvements, which require 
thorough understanding of previous versions and of the reasons for 
good and poor performance on test cases; 

• the system improves through criticism from persons who are not (or 
need not be) familiar with the implementation details; 

• the system uses heuristic methods and symbolic reasoning because math­
ematical algorithms do not exist (or are inefficient) for the problems it 
solves. 

7.1.1 Modes of Knowledge Acquisition 

The transfer and transformation required to represent expertise for a 
program may be automated or partially automated in some special cases. 
Most of the time a person, called a knowledge engineer, is required to 
communicate with the expert and the program. The most difficult aspect 
of knowledge acquisition is the initial one of helping the expert concep­
tualize and structure the domain knowledge for use in problem solving. 
Because the knowledge engineer has far less knowledge of the domain 
than does the expert, by definition, the process of transferring expertise 
into a program is bound to suffer from communication problems. For 
example, the vocabulary that the expert uses to talk about the domain with 
a novice is probably inadequate for high-performance problem solving. 

There are several modes of knowledge acquisition for an expert sys­
tem, which can be seen as variations on the process shown in Figure 7-1. 
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FIGURE 7-1 Important elements in the transfer of expertise. 
Feedback to the expert about the system's performance on test 
cases is not shown. 

All involve transferring, in one way or another, the expertise needed for 
high-performance problem solving in a domain from a source to a program. 
The source is generally a human expert, but could also be the primary 
sources from which the expert has learned the material: journal articles 
(and textbooks) or experimental data. A knowledge engineer translates 
statements about the domain from the source to the program with more 
or less assistance from intelligent programs. And there is variability in the 
extent to which the knowledge base is distinct from the rest of the system. 

Handcrafting 

Conceptually, the simplest way for a programmer to put knowledge into a 
program is to code it in. This was the standard mode of building AI pro­
grams in the 1950s and 1960s because the main emphasis of most of those 
systems was demonstrating intelligent behavior for a few problems. AI 
programmers could be their own experts for many game-playing, puzzle­
solving, and mathematics programs. And a few domain specialists became 
their own AI programmers in order to construct complex systems (Colby, 
1981; Hearn, 1971 ). When the programmer and the specialist are not the 
same person, however, it is risky to rely on handcrafting to build complex 
programs embodying large amounts of judgmental knowledge. Generally, 
it is slow to build and debug such a program, and it is nearly impossible 
to keep the problem-solving expertise consistent if it grows large by small 
increments. 

Knowledge Engineering 

The process of working with an expert to map what he or she knows into 
a form suitable for an expert system to use has come to be known as 
knowledge engineering (Feigenbaum, 1978; Michie, 1973). 

As DENDRAL matured, we began to see patterns in the interactions 
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between the person responsible for the code and the expert responsible 
for the knowledge. There is a dialogue which, at first, is much like a systems 
analysis dialogue between analyst and specialist. The relevant concepts are 
named, and the relations among them made explicit. The knowledge engi­
neer has to become familiar enough with the terminology and structure 
of the subject area that his or her questions are meaningful and relevant. 
As the knowledge engineer learns more about the subject matter, and as 
the specialist learns more about the structure of the knowledge base and 
the consequences of expressing knowledge in different forms, the process 
speeds up. 

After the initial period of conceptualization, in which most of the 
framework for talking about the subject matter is laid out, the knowledge 
structures can be filled in rather rapidly. This period of rapid growth of 
the knowledge base is then followed by meticulous testing and refinement. 
Knowledge-engineering tools can speed up this process. For example, in­
telligent editing programs that help keep track of changes and help find 
inconsistencies can be useful to both the knowledge engineer and the ex­
pert. At times, an expert can use the tools independently of the knowledge 
engineer, thus approaching McCarthy's idea of a program accepting advice 
from a specialist (McCarthy, 1958). The ARL editor incorporated in EMY­
CIN (see Chapters 14-16) is a simple tool; the TEIRESIAS debugging 
system (discussed in Chapter 9) is a more complex tool. Politakis (1982) 
has recently developed a tool for examining a knowledge base for the 
EXPERT system (Kulikowski and Weiss, 1982) and suggesting changes, 
much like the tool for ONCOCIN discussed in Chapter 8. 

A recent experiment in knowledge engineering is the ROGET pro­
gram (Bennett, 1983), a knowledge-based system that aids in the concep­
tualization of knowledge bases for EMYCIN systems. Its knowledge is part 
of what a knowledge engineer knows about helping an expert with the 
initial process of laying out the structure of a new body of knowledge. It 
carries on a dialogue about the relationships among objects in the new 
domain, about the goal of the new system, about the evidence available, 
and about the inferences from evidence to conclusions. Although it knows 
nothing (initially) about a new knowledge base, it knows something about 
the structure of other knowledge bases. For example, it knows that evi­
dence can often be divided into "hard" evidence from instruments and 
laboratory analysis and "soft" evidence from subjective reports and that 
both are different from identifying features such as gender and race. Much 
more remains to be done, but ROGET is an important step in codifying 
the art of knowledge engineering. 

Various Forms of "Learning" 

For completeness, we mention briefly several other methods of building 
knowledge-based programs. We have not experimented with these in the 
context of MYCIN, so we will not dwell ori them. 
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Learning from examples may automate much of the knowledge ac­
quisition process by exploiting large data bases of recorded experience 
(e.g., hospital records of patients, field service records of machine failures). 
The conceptualization stage may be bypassed if the terminology of the 
records is sufficient for problem solving. Induction of new production 
rules from examples was used by Waterman (1970) in the context of the 
game of poker and in Meta-DENDRAL (Lindsay et al., 1980) in the context 
of mass spectrometry. The RX system (Blum, 1982) uses patient records 
to discover plausible associations. 

Other methods of learning are discovery by exploration of new con­
cepts and relations (Lenat, 1983), reading published accounts (Ciesielski, 
1980), learning by watching (Waterman, 1978), and learning by analogy 
(Winston, 1979). See Buchanan et al. ( 1978) and Barr and Feigenbaum 
( 1982) for reviews of automatic learning methods. 

7 .2 Knowledge Acquisition in MYCIN 

In the MYCIN work we experimented with computer-based tools to ac­
quire knowledge from experts through interactive dialogues. TEIRESIAS, 
discussed in Chapter 9, is the best-known example. In discussing knowl­
edge acquisition, it is important to remember that there are separate pro­
grams under discussion: the expert system, i.e., MYCIN, and the programs 
that provide help in knowledge acquisition, i.e., TEIRESIAS. 

As mentioned above, MYCIN itself was an experiment in keeping med­
ical knowledge separate from the rest of the program. We believed that 
this would simplify knowledge acquisition, and it does, but not to the extent 
we had hoped. Because the syntax of the elements carrying knowledge was 
simplified, however, our focus shifted from the mechanics of editing those 
elements to the contents of those knowledge structures. That is, there was 
an important conceptual shift from thinking of editing data structures to 
thinking of modifying knowledge structures; we have come to call the latter 
process knowledge programming. 

The processes of constructing and editing a knowledge base became 
interesting subjects of our research. We could see that the communication 
between expert and program was very slow. So we began investigating 
computer-based tools that would facilitate the transfer of expertise. In the 
original version of MYCIN, there were some tools for helping Shortliffe, 
as knowledge engineer, build and modify the infectious disease knowledge 
base. No attempt was made to get experts to use the tools directly, although 
that was clearly a next step. These first tools included a rule language 
(syntax and parser) that allowed entering a new rule in a quasi-English 
form. In the example shown in Figure 7-2, the user indicates a desire to 
enter a new rule by typing NR. He or she is then asked for a rule in English, 
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••NR 
The new rule will be called RULE200. 

[The knowledge engineer starts 
the rule acquisition routine by 
typing NR for New Rule.] If: 1-** THE ORGANISM IS A GRAM NEGATIVE ROD 

and 2-** IT IS ANAEROBIC 
and 3-'' IT WAS ISOLATED FROM THE BLOOD 
and 4-" YOU THINK THE PORTAL WAS THE GI TRACT 
and 5-*' 

Then: 1-" IT IS PROBABLY A BACTEROIDES 
On a scale of 1 to 10, how much certainty would 
you affix to this conclusion? 
.. 9 

and 2-·· 

This is my understanding of your rule: 
RULE200 

IF: 1) The site of the culture is blood, and 
2) The stain of the organism is gramneg, and 
3) The morphology of the organism is rod, and 
4) The aerobicity of the organism is anaerobic, and 
5) The portal of entry of the organism is GI 

THEN: There is strongly suggestive evidence (.9) that the 
organism is bacteroides 

Okay? (YES or NO) 
"YES 

[user: carriage return with no 
entry] 

[user: carriage return with no 
entry] 

[Note that the original clause 1 
has been expanded to separate 
the two attributes, stain and 
morphology.] 

FIGURE 7-2 Example of rule acquisition in the original 
(1974) MYCIN program. (User's input follows double asterisks.) 

following the format of other rules in the system. MYCIN translates the 
rule into its internal LISP representation and then translates it back into 
English to print out a version of the rule as it has understood the meaning. 
The user is then asked to approve the rule or modify it. The original system 
also allowed simple changes to rules in a quick and easy interaction, much 
as is shown in Figure 7-2 for acquiring a new rule. 

This simple model of knowledge acquisition was subsequently ex­
panded, most notably in the work on TEIRESIAS (Chapter 9). Many of 
the ideas (and lines of LISP code) from TEIRESIAS were incorporated in 
EMYCIN (Part Five). Contrast Figure 7-2 with the TEIRESIAS example 
in Section 9.2 and the EMYCIN example in Chapter 14 for snapshots of 
our ideas on knowledge acquisition. Research on this problem continues. 

Two of our initial working hypotheses about knowledge acquisition 
have had to be qualified. We had assumed that the rules were sufficiently 
independent of one another that an expert could always write new rules 
without examining the rest of the knowledge base. Such modularity is 
desirable because the less interaction there is among rules, the easier and 
safer it is to modify the rule set. However, we found that some experts are 



Knowledge Acquisition in MYCIN 155 

I. Expert tells knowledge engineer what rules to add or modify. 
2. Knowledge engineer makes changes to the knowledge base. 
3. Knowledge engineer runs one or more old cases for consistency checking. 
4. If any problems with old cases, knowledge engineer discusses them with expert, 

then goes to Step I. 
5. Expert runs modified system on new case(s) until problems are discovered. 
6. If no problems on substantial number of cases, then stops; otherwise, goes to 

Step I. 

FIGURE 7-3 The major steps of rule writing and refinement 
after conceptualization. 

helped if they see the existing rules that are similar to a new rule under 
consideration, where similar means either that the conclusion mentions the 
same parameter (but perhaps different values) or that the premise clauses 
mention the same parameters. The desire to compare a proposed rule with 
similar rules stems largely from the difficulty of assigning CF's to new rules. 
Comparing other evidence and other conclusions puts the strength of the 
proposed rule into a partial ordering. For example, evidence el for con­
clusion C could be seen to be stronger than e2 but weaker than e3 for the 
same conclusion. We also assumed, incorrectly, that the control structure 
and CF propagation method were details that the expert could avoid learn­
ing. That is, an expert writing a new rule sometimes needs to understand 
how the rule will be used and what its effect will be in the overall solution 
to a problem. These two problems are illustrated in the transcripts of 
several electronic mail messages reprinted at the end of Chapter 10. The 
transcripts also reveal much about the vigorous questioning of assumptions 
that was taking place as rules were being written. 

Throughout the development of MYCIN's knowledge base about in­
fectious diseases (once a satisfactory conceptualization for the problem was 
found), the primary mode of interaction between the knowledge engineer 
and expert was a recurring cycle as shown in Figure 7-3. Much of the 
actual time, particularly in the early years, was spent on changes to the 
code, outside of this loop, in order to get the system to work efficiently (or 
sometimes to work at all) with new kinds of knowledge suggested by ex­
perts. Considerable time was spent with the experts trying to understand 
their larger perspective on diagnosis and therapy in infectious disease. And 
some time was spent trying to reconceptualize the program's problem­
solving framework. We believed that the time-consuming nature of the six­
step loop shown in Figure 7-3 was one of the key problems in building an 
expert system, although the framework itself was simple and effective. 
Thus we looked at several ways to improve the expert's and knowledge 
engineer's efficiency in the loop. 

For Step 1 of the loop we created facilities for experts (or other users) 
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to leave comments for the knowledge engineers. We gave them an English­
like language for describing new relationships. And we created the expla­
nation facility described in Part Six, so they could understand a faulty line 
of reasoning well enough to correct the knowledge base. For Step 2, as 
mentioned, we created tools for the knowledge engineer, to facilitate entry 
and modification of rules. For Step 3, we created an indexed library of test 
cases and facilities for running many cases in batch mode overnight. For 
Step 4, the batch system recorded differences caused by a set of modifi­
cations in the advice given on the test cases. The record was then used by 
the knowledge engineer to assess the detrimental effects, if any, of recent 
changes to the rules. Some of our concern with human engineering, dis­
cussed in Part Eleven, was motivated by Step 5 because we realized the 
necessity of an expert's "playing with" the system in order to discover its 
weaknesses. 

The TEIRESIAS system discussed in Chapter 9 was the product of an 
experiment on interactive transfer of expertise. TEIRESIAS was designed 
to help an expert at Steps 1, 2, and 5. Although the program was never 
used routinely in its entirety by collaborating infectious disease specialists, 
we considered the experiment to be highly successful. It showed the power 
of using a model of the domain-specific knowledge with syntactic editors. 
It showed that debugging in the context of a specific case is an effective 
means to focus the expert's attention. TEIRESIAS analyzed a rule set stat­
ically to build rule models, which, in turn, were used during the dynamic 
debugging. It thus "knew what it knew," that is, it had models of the knowl­
edge base. It used the rule models to provide advice about incomplete 
areas of the knowledge base, to provide suggestions and help during in­
teractive debugging sessions and to provide summary explanations. Much 
of TEIRESIAS is now embedded in the knowledge acquisition code of 
EMYCIN. 

The rule checker discussed in Chapter 8 was an experiment in static 
analysis of a rule set, in contrast to TEIRESIAS' dynamic analysis in con­
text. It was not a large project, but it does demonstrate the power of ana­
lyzing a rule set for the expert. Its analysis of rules is simpler than 
TEIRESIAS' static analysis for two reasons: the rules it considers all make 
conclusions with certainty (i.e., CF = l); and the clusterings of rules are 
easier to identify as a result of an extra slot attached to each rule naming 
the context in which it applies. It analyzes rules for the ONCOCIN system, 
described in more detail in Chapters 32 and 35. 

As we had believed from the start, the kind of analysis performed by 
the rule checker provides helpful information to the expert writing new 
rules. To some extent, it is orthogonal to the six-step interactive loop men­
tioned above, but it might also be seen as Step 2a between entering a set 
of changes and running test cases. After the expert adds several new rules 
(through the interactive loop or not), the rule checker will point out logical 
problems of inconsistency and subsumption and pragmatic problems of 
redundancy and incompleteness. Any of these is a signal to the expert to 
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examine the subsets of rules in which the rule checker identifies problems. 
Because this analysis is more systematic than the empirical testing in Steps 
3-5 of the six-step loop, it can catch potential problems long before they 
would manifest themselves in test cases. 

Some checking of rules is also done in EMYCIN, as described in the 
EMYCIN manual (van Melle et al., 1981). As each rule is entered or edited, 
it is checked for syntactic validity to catch common input errors. By syn­
tactic, we mean issues of rule form-viz., that terms are spelled correctly, 
values are legal for the parameters with which they are associated, etc.­
rather than the actual information (semantic) content (i.e., whether or not 
the rule "makes sense"). Performing the syntactic checks at acquisition time 
reduces the likelihood that the consultation program will later fail due to 
"obvious" errors. This permits the expert to concentrate on debugging 
logical errors and omissions. 

The purely syntactic checks are made by comparing each rule clause 
with the internal function ternplate corresponding to the predicate or action 
function used in the clause. Using this template, EMYCIN determines 
whether the argument slots for these functions are correctly filled. For 
example, each argument requiring a parameter must be assigned a valid 
parameter (of some context), and any argument requiring a value must be 
assigned a legal value for the associated parameter. If an unknown param­
eter is found, the checker tries to correct it with the Interlisp spelling 
corrector, using a spelling list of all parameters in the system. If that fails, 
it asks if this is a new (previously unmentioned) parameter. If so, it defines 
the new parameter and, in a brief diversion, prompts the system builder 
to describe it. Similar action is also taken if an unrecognized value for a 
parameter is found. 

A limited semantic check is also performed: each new or changed rule 
is compared with any existing rules that conclude about the same param­
eter to make sure it does not directly contradict or subsume any of them. 
A contradiction occurs when two rules with the same set of premise clauses 
make conflicting conclusions (contradictory values of CF's for the same 
parameter); subsumption occurs when one rule's premise is a subset of the 
other's, so that the first rule succeeds whenever the second one does (i.e., 
the second rule is more specific), and both conclude about the same values. 
In either case, the interaction is reported to the expert, who may then 
examine or edit any of the conflicting or redundant rules. 

Another experimental system we incorporated into MYCIN was a 
small body of code that kept statistics on the use of rules and presented 
the statistical results to the knowledge base builders. 1 It provided another 
way of analyzing the contents of a knowledge base so potential problems 
could be examined. It revealed, for example, that some rules never suc­
ceeded, even though they were called many times. Even though their con-

1This code was largely written by .Jan Aikins. 
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clusions were relevant (mentioned a subgoal that was traced), their premise 
conditions never matched the specific facts of the cases. Sometimes this 
happens because a rule is covering a very unusual set of circumstances not 
instantiated in the test cases. Since much expertise resides in such rules, 
we did not modify them if they were in the knowledge base for that reason. 
Sometimes, though, the lack of successful invocation of rules indicated a 
problem. The premises might be too specific, perhaps because of tran­
scription errors in premise clauses, and these did need attention. This 
experimental system also revealed that some rules always succeeded when 
called, occasionally on cases where they were not supposed to. Although it 
was a small experiment, it was successful: empirically derived statistics on 
rule use can provide valuable information to the persons building the 
knowledge base. 

One of the most important questions we have been asking in our work 
on knowledge acquisition is 

How (or to what extent) can an intelligent system replace a knowledge 
engineer in helping an expert build a knowledge base? 

The experimental systems we have written are encouraging in pointing 
toward automated assistance (see Chapter 16), but they are far from a 
definitive solution. We have built tools for the knowledge engineer more 
readily than for the expert. In retrospect we now believe that we under­
estimated both the intellectual effort involved in building a good knowl­
edge base and the amount of global information about the expert system 
that the expert needs to know. 
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The builders of a knowledge-based expert system must ensure that the 
system will give its users accurate advice or correct solutions to their prob­
lems. The process of verifying that a system is accurate and reliable has 
two distinct components: checking that the knowledge base is correct, and 
verifying that the program can interpret and apply this information cor­
rectly. The first of these components has been the focus of the research 
described in this chapter; the second is discussed in Part Ten (Chapters 30 
and 31). 

Knowledge base debugging, the process of checking that a knowledge 
base is correct and complete, is one component of the larger problem of 
knowledge acquisition. This process involves testing and refining the sys­
tem's knowledge in order to discover and correct a variety of errors that 
can arise during the process of transferring expertise from a human expert 
to a computer system. In this chapter, we discuss some common problems 
in knowledge acquisition and debugging and describe an automated assis­
tant for checking the completeness and consistency of the knowledge base 
in the ONCOCIN system (discussed in Chapters 32 and 35). 

As discussed in Chapters 7 and 9, an expert's knowledge must undergo 
a number of transformations before it can be used by a computer. First, 
the person acquires expertise in some domain through study, research, 
and experience. Next, the expert attempts to formalize this expertise and 
to express it in the internal representation of an expert system. Finally, the 

This chapter is based on an article originally appearing in The AI Magazine 3: 16-21 (Autumn 
1982). Copyright © 1982 by AAA!. All rights reserved. Used with permission. 
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knowledge, in a machine-readable form, is added to the computer system's 
knowledge base. Problems can arise at any stage in this process: the expert's 
knowledge may be incomplete, inconsistent, or even partly erroneous. Al­
ternatively, while the expert's knowledge may be accurate and complete, it 
may not be adequately transferred to the computer-based representation. 
The latter problem typically occurs when an expert who does not under­
stand computers works with a knowledge engineer who is unfamiliar with 
the problem domain; misunderstandings that arise are often unrecognized 
until performance errors occur. Finally, mistakes in spelling or syntax 
(made when the knowledge base is entered into the computer) are frequent 
sources of errors. 

The knowledge base is generally constructed through collaboration 
between experts in the problem domain and knowledge engineers. This 
difficult and time-consuming task can be facilitated by a program that: 

I. checks for inconsistencies and gaps in the knowledge base, 

2. helps the experts and knowledge engineers communicate with each 
other, and 

3. provides a clear and understandable display of the knowledge as the 
system will use it. 

In the remainder of this chapter we discuss an experimental program with 
these capabilities. 

8 I Earlier Work • 

One goal of the TEIRESIAS program, described in the next chapter, was 
to provide aids for knowledge base debugging. TEIRESIAS allows an ex­
pert to judge whether or not MYCIN's diagnosis is correct, to track down 
the errors in the knowledge base that led to incorrect conclusions, and to 
alter, delete, or add rules in order to fix these errors. TEIRESIAS makes 
no formal assessment of rules at the time they are initially entered into the 
knowledge base. 

In the EMYCIN system for building knowledge-based consultants 
(Chapter 15), the knowledge acquisition program fixes spelling errors, 
checks that rules are semantically and syntactically correct, and points out 
potentially erroneous interactions among rules. In addition, EMYCIN's 
knowledge base debugging facility includes the following options: 

I. a trace of the system's reasoning process during a consultation, available 
to knowledge engineers familiar with the program's internal represen­
tation and control processes; 
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2. an interactive mechanism for reviewing and correcting the system's con­
clusions (a generalization of the TEIRESIAS program); 

3. an interface to the system's explanation facility to produce automatically, 
at the end of a consultation, explanations of how the system reached its 
results; and 

4. a verification mechanism, which compares the system's results at the 
end of a consultation with the stored "correct" results for the case that 
were saved from a previous interaction with the TEIRESIAS-like op­
tion. The comparison includes explanations of why the system made its 
incorrect conclusions and why it did not make the correct ones. 

8.2 Systematic Checking of a Knowledge Base 

The knowledge base debugging tools mentioned above allow a system 
builder to identify problems with the system's knowledge base by observing 
errors in its performance on test cases. While thorough testing is an essen­
tial part of verifying the consistency and completeness of a knowledge base, 
it is rarely possible to guarantee that a knowledge base is completely de­
bugged, even after hundreds of test runs on sample test cases. TEIRESIAS 
was designed to aid in debugging an extensive rule set in a fully functional 
system. EMYCIN was designed to allow incremental building of a knowl­
edge base and running consultations with only a skeletal knowledge base. 
However, EMYCIN assumes that the task of building a system is simply to 
encode and add the knowledge. 

In contrast, building a new expert system typically starts with the se­
lection of knowledge representation formalisms and the design of a pro­
gram to use the knowledge. Only when this has been done is it possible to 
encode the knowledge and write the program. The system may not be 
ready to run tests, even on simple cases, until much of the knowledge base 
is encoded. Regardless of how an expert system is developed, its developers 
can profit from a systematic check on the knowledge base without gath­
ering extensive data for test runs, even before the full reasoning mecha­
nism is functioning. This can be accomplished by a program that checks a 
knowledge base for completeness and consistency during the system's de­
velopment. 

8.2.1 Logical Checks for Consistency 

When knowledge is represented in production rules, inconsistencies in the 
knowledge base appear as: 
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• Conflict: two rules succeed in the same situation but with conflicting re­
sults. 

• Redundancy: two rules succeed in the same situation and have the same 
results. 

• Subsumption: two rules have the same results, but one contains additional 
restrictions on the situations in which it will succeed. Whenever the more 
restrictive rule succeeds, the less restrictive rule also succeeds, resulting 
in redundancy. 

Conflict, redundancy, and subsumption are defined above as logical con­
ditions. These conditions can be detected if the syntax allows one to ex­
amine two rules and determine if situations exist in which both can succeed 
and whether the results of applying the two rules are identical, conflicting, 
or unrelated. 

8.2.2 Logical Checks for Completeness 

Incompleteness of the knowledge base is the result of: 

• Missing rules: a situation exists in which a particular inference is required, 
but there is no rule that succeeds in that situation and produces the 
desired conclusion. 

Missing rules can be detected logically if it is possible to enumerate all 
circumstances in which a given decision should be made or a given action 
should be taken. 

8.2.3 Pragmatic Considerations 

It is often pragmatic conditions, not purely logical ones, that determine 
whether or not there are inconsistencies in a knowledge base. The seman­
tics of the domain may modify syntactic analysis. Of the three types of 
inconsistency described above, only conflict is guaranteed to be a true error. 

In practice, logical redundancy may not cause problems. In a system 
where the first successful rule is the only one to succeed, a problem will 
arise only if one of two redundant rules is revised or deleted while the 
other is left unchanged. On the other hand, in a system using a scoring 
mechanism, such as the certainty factors in EMYCIN systems, redundant 
rules cause the same evidence to be counted twice, leading to erroneous 
increases in the weight of their conclusions. 

In a set of rules that accumulate evidence for a particular hypothesis, 
one rule that subsumes another may cause an error by causing the same 
evidence to be counted twice. Alternatively, the expert might have pur-
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posely written the rules so that the more restrictive one adds a little more 
weight to the conclusion made by the less restrictive one. 

An exhaustive syntactic approach for identifying missing rules would 
assume that there should be a rule that applies in each situation defined 
by all possible combinations of domain variables. Some of these combina­
tions, however, are not meaningful. For example, there are no males who 
are pregnant (by definition) and no infants who are alcoholics (by reason 
of circumstances). Like checking for consistency, checking for complete­
ness generally requires some knowledge of the problem domain. 

Because of these pragmatic considerations, an automated rule checker 
should display potential errors and allow an expert to indicate which ones 
represent real problems. It should prompt the expert for domain-specific 
information to explain why apparent errors are, in fact, acceptable. This 
information should be represented so that it can be used to make future 
checking more accurate. 

8.3 Rule Checking in ONCOCIN 

8.3.1 Brief Description of ONCOCIN 

ONCOCIN (see Chapter 35) is a rule-based consultation system to advise 
physicians at the Stanford Medical Center cancer clinic on the management 
of patients who are on experimental treatment protocols. These protocols 
serve to ensure that data from patients on various treatment regimens can 
be compared in order to evaluate the success of therapy and to assess the 
relative effectiveness of alternative regimens. A protocol specifies when the 
patient should visit the clinic, what chemotherapy and/or radiation therapy 
the patient should receive on each visit, when laboratory tests should be 
performed, and under what circumstances and in what -ways the recom­
mended course of therapy should be modified. 

As in MYCIN, a rule in ONCOCIN has an action part that concludes 
a value for some parameter on the basis of values of other parameters in 
the rule's condition part. Currently, however, all parameter values can be 
determined with certainty; there is no need to use weighted belief mea­
sures. When a rule succeeds, its action parameter becomes known so no 
other rules with the same action parameter will be tried. 

In contrast to MYCIN, rules in ONCOCIN specify the context in which 
they apply. Examples of ONCOCIN contexts are drugs, chemotherapies 
(i.e., drug combinations), and protocols. A rule that determines the dose 
of a drug may be specific to the drug alone or to both the drug and the 
chemotherapy. In the latter case, the context of the rule would be the list 
of pairs of drug and chemotherapy for which the rule is valid. At any time 
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during a consultation, the current context represents the particular drug, 
chemotherapy, and protocol currently under consideration. 

In order to determine the value of a parameter, the system tries rules 
that conclude about that parameter and that apply in the current context. 
For example, Rule 75 shown below is invoked to determine the value of 
the parameter current attenuated dose. The condition will be checked only 
when the current context is a drug in the chemotherapy MOPP or a drug 
in the chemotherapy PAVE. Clause 1 of the condition gives a reason to 
attenuate (lessen) the doses of drugs, and clause 2 mentions a reason not 
to attenuate more than 75%. 

RULE 75 

[action parameter] (a) To determine the current attenuated dose 
[context] (b) for all drugs in MOPP, or for all drugs in PAVE: 

[condition] IF: 1) This is the start of the first cycle after a cycle 
was aborted, and 

2) The blood counts do not warrant dose 
attenuation 

[action] THEN: Conclude that the current attenuated dose is 75 
percent of the previous dose 

Certain rules for determining the value of a parameter serve special func­
tions. Some give a "definitional" value in the specified context. These are 
called initial rules and are tried first. Other rules provide a (possibly context­
dependent) "default" or "usual" value in the event that no other rule suc­
ceeds. These are called default rules and are applied last. Rules that do not 
serve either of these special functions are called normal rules. Concluding 
a parameter's value consists of trying, in order, three groups of rules: 
initial, normal, then default. A rule's classification tells which of these three 
groups it belongs to. 1 

1 Internally in LISP, the context, condition, action, and classification are properties of an atom 
naming the rule. The internal form of Rule 75 is 

RULE075 

CONTEXT: ((MOPP DRUG)(PAVE DRUG)) 
CONDITION: (AND ($IS POST.ABORT 1) 

($IS NORMALCOUNTS YES)) 
ACTION: (CONCLUDEVALUE ATTENDOSE (PERCENTOF 75 PREVIOUSDOSE)) 
CLASSIFICATION: NORMAL 

As in MYCIN, the LISP functions that are used in conditions or actions in ONCOCIN have 
templates indicating what role their arguments play. For example, both $IS and CON­
CLUDEVALUE take a parameter as their first argument and a value of that parameter as 
their second argument. Each function also has a descriptor representing its meaning. For 
example, the descriptor of $IS shows that the function will succeed when the parameter value 
of its first argument is equal to its second argument. 
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8.3.2 Overview of the Rule-Checking Program 

A rule's context and condition together describe the situations in which it 
applies. The templates and descriptors of rule functions make it possible 
to determine the combination of values of condition parameters that will 
cause a rule to succeed. The rule's context property shows the context(s) 
in which the rule applies. The contexts and conditions of two rules can 
therefore be examined to determine if there are situations in which both 
can succeed. If so, and if the rules conclude different values for the same 
parameter, they are in conflict. If they conclude the same thing, except 
that one contains extra condition clauses, then one subsumes the other. 

These definitions of inconsistencies simplify the task of checking the 
knowledge base. The rules can be partitioned into disjoint sets, each of 
which concludes about the same parameter in the same context. The re­
sulting rule sets can be checked independently. To check a set of rules, the 
program: 

I. finds all parameters used in the conditions of these rules; 

2. makes a table, displaying all possible combinations of condition param­
eter values and the corresponding values that will be concluded for the 
action parameters (see Figure 8-1); 2 and 

3. checks the tables for conflict, redundancy, subsumption, and missing 
rules; then displays the table with a summary of any potential errors 
that were found. The rule checker assumes that there should be a rule 
for each possible combination of values of condition parameters; it hy­
pothesizes missing rules on this assumption (see Figure 8-2).3 

ONCOCIN's rule checker dynamically examines a rule set to determine 
which condition parameters are currently used to conclude a given action 
parameter. These parameters determine what columns should appear in 
the table for the rule set. The program does not expect that each of the 
parameters should be used in every rule in the set (as illustrated by Rule 
76 in the example of the next subsection). In contrast, TEIRESIAS (see 
next chapter) examined the "nearly complete" MYCIN knowledge base and 
built static rule models showing (among other things) which condition pa­
rameters were used (in the existing knowledge base) to conclude a given 
action parameter. When a new rule was added to MYCIN, it was compared 

~Because a parameter's value is always known with certainty and the possible values are 
mutually exclusive, the different combinations of condition parameter values are disjoint. If 
a rule corresponding to one combination succeeds, rules corresponding to other combinations 
in the same table will fail. This would not be true in an EMYCIN consultation system in 
which the values of some parameters can be concluded with less than complete certainty. In 
such cases, the combinations in a given table would not necessarily be disjoint. 
:iwe plan to add a mechanism to acquire information about the meanings of parameters and 
the relationships among them and to use this information to omit semantically impossible 
combinations from subsequent tables. 



Rule set: 667 600 82 80 69 67 76 

Context: the drug cytoxan in the chemotherapy CVP 

Action parameter: the current attenuated dose 

Condition parameters: 
NORMALCOUNTS-the blood counts do not warrant dose attenuation 
CYCLE-the current chemotherapy cycle number 
SIGXRT-the number of cycles since significant radiation 

Abbreviations in the Value column: 
V 1-the previous dose advanced by 50 mg/m2 

V 2-250 mg/m2 attenuated by the minimum count attenuation 
V 3-the minimum of 250 mg/m2 and the previous dose 
V4-the minimum of 250 mg/m2 and the previous dose attenuated by the minimum count attenuation. 

Evaluation Rule Value NORMALCOUNTS CYCLE SIGXRT Combination 

80 250mg/m2 YES 1 1 C1 
76 (D) V1 YES (1) (1) C1 

R 667 V2 NO 1 1 C2 
R 67 V2 NO 1 1 C2 

76 (D) V1 YES (1) (OTHER) C3 
M - NO I OTHER C4 

82 V3 YES OTHER 1 C5 
76 (D) V1 YES (OTHER) (1) C5 

c 600 V3 NO OTHER I C5 
c 69 V4 NO OTHER 1 C5 

76 (D) V1 YES (OTHER) (OTHER) C1 
M - NO OTHER OTHER 

-al 
al 



Summary of Comparison 
Conflict exists in combination(s): Ci; (RULE600 RULE069) 
Redundancy exists in combination(s): C2 (RULE667 RULE067) 
Missing rules are in combination(s): C4 , C8 

Notes 
Evaluation: M-missing; C--conAict; R-redundant 

Rules: Default rules are indicated by (D). 

Values of condition parameters: A value in parentheses indicates that the parameter is not explicitly used in the 
rule, but the rule will succeed when the parameter has the indicated value. 

FIGURE 8-1 An example of output from ONCOCIN's rule-checking program. 

.... 
a> 

"' 
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Missing rule corresponding to combination C4: 

To determine the current attenuated dose for Cytoxan in CVP 
IF: 1) The blood counts do warrant dose attenuation, 

2) The current chemotherapy cycle number is 1, and 
3) This is not the start of the first cycle after 

significant radiation 
THEN: Conclude that the current attenuated dose is ... 

FIGURE 8-2 Proposed m1ssmg rule (English translation). 
Note that no value is given for the action parameter; this could 
be filled in by the system builder if the rule looked appropriate 
for addition to the knowledge base. 

with the rule model for its action parameter. TEIRESIAS proposed missing 
clauses if some condition parameters in the model did not appear in the 
new rule. 

8.3.3 An Example 

ONCOCIN's rule-checking program can check the entire rule base, or can 
interface with the system's knowledge acquisition program and check only 
those rules affected by recent changes to the knowledge base. This latter 
mode is illustrated by the example in Figure 8-1. Here the system builder 
is trying to determine if the recent addition of one rule and deletion of 
another have introduced errors. 

The rules checked in the example conclude the current attenuated 
dose for the drug cytoxan in the chemotherapy named CVP. There are 
three condition parameters commonly used in those rules. Of these, NOR­
MALCOUNTS takes YES or NO as its value. CYCLE and SIGXRT take 
integer values. The only value of CYCLE or SIGXRT that was mentioned 
explicitly in any rule is 1; therefore, the table has rows for values 1 and 
OTHER (i.e., other than I). 

The table shows that Rule 80 concludes that the attenuated dose 
should have a value of 250 milligrams per square meter when the blood 
counts do not warrant dose attenuation (NORMALCOUNTS = YES), the 
chemotherapy cycle number is l (CYCLE = l), and this is the first cycle 
after significant radiation (SIGXRT = I). This combination of values of 
the condition parameters is labeled C 1• 

Rule 76, shown next in Figure 8- l, can succeed in the same situation 
(C 1) as Rule 80, but it concludes a different dose. These rules do not 
conHict, however, because Rule 76 is a default rule, which will be invoked 
only if all normal rules (including Rule 80) fail. Note that NORMAL­
COUNTS is the only condition paramete1· that appears explicitly in Rule 
76, as indicated by the parentheses around the values of the other two 
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Rule set: 33 24 

Context: the drug DTIC in the chemotherapy ABVD 

Action parameter: the dose attenuation due to low WBC 

Default value: 100 

Evaluation Rule 

33 
24 

Summmy of Comparison 

Value 
(percentage) 

25 
50 

No problems were found. 

Notes 

WBC 
(in thousands) 

0 1.5 2 3 5 
.... *** 0 ..... . 
........ ***O .. . 

Asterisks appear beneath values included by the rule. 

Combination 

Zeros appear beneath upper and lower bounds that are not included. 
(e.g., Rule 33 applies when 1.5 '.'S WBC < 2.0) 

FIGURE 8-3 A table of rules with ranges of numerical values. 

parameters. Rule 76 will succeed in all combinations that include NOR­
MALCOUNTS = YES (namely C 1, C3 , C5 , and C7). 

Rules 667 and 67 are redundant (marked R) because both use com­
bination C2 to conclude the value labeled V 2 (250 mg/m2 attenuated by 
the minimum count attenuation). 

Rule 600 is in conflict with Rule 69 (both marked C) because both use 
combination CG but conclude different values (and both are categorized as 
normal rules). 

No rules exist for combinations C4 and C8, so the program hypoth­
esizes that rules are missing. 

The system builder can enter ONCOCIN's knowledge acquisition pro­
gram to correct any of the errors found by the rule checker. A missing 
rule can be displayed in either LISP or English (Figure 8-2) and then added 
to the system's knowledge base after the expert has provided a value for 
its action parameter. 

If a summary table is too big to display, it is divided into a number of 
subtables by assigning constant values to some of the condition parameters. 
If the conditions involve ranges of numeric values, the table will display 
these ranges graphically as illustrated in Figure 8-3. 
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8.4 Effects of the Rule-Checking Program 

The rule-checking program described in this chapter was developed at the 
same time that ONCOCIN's knowledge base was being built. During this 
time, periodic runs of the rule checker suggested missing rules that had 
been overlooked by the oncology expert. They also detected conflicting 
and redundant rules, generally because a rule had the incorrect context 
and therefore appeared in the wrong table. 

A number of inconsistencies in the use of domain concepts were re­
vealed by the rule checker. For example, on one occasion the program 
proposed a missing rule for a meaningless combination of condition pa­
rameter values. In discussing the domain knowledge that expressed the 
interrelationship among the values, it became clear that a number of in­
dividual yes/no valued parameters could be represented more logically as 
different values for the same parameter. 

The knowledge engineers and oncology experts alike have found the 
rule checker's tabular display of rule sets much easier to interpret than a 
rule-by-rule display. Having tabular summaries of related rules has facili­
tated the task of modifying the knowledge base. Although the program 
described assists a knowledge engineer in ensuring the consistency and 
completeness of the rule set in the ONCOCIN system, its design is general, 
so it can be adapted to other rule-based systems. 



9 
Interactive Transfer of 
Expertise 

Randall Davis 

Whereas much early work in artificial intelligence was devoted to the search 
for a single, powerful, domain-independent problem-solving methodology 
[e.g., GPS (Newell and Simon, 1972)], subsequent efforts have stressed the 
use of large stores of domain-specific knowledge as a basis for high per­
formance. The knowledge base for this sort of program [e.g., DENDRAL 
(Feigenbaum et al., 1971), MACSYMA (Moses, 1971)] is often assembled 
by hand, an ongoing task that may involve several person-years of effort. 
A key element in constructing a knowledge base is the transfer of expertise 
from a human expert to the program. Since the domain expert often knows 
nothing about programming, the interaction between the expert and the 
perfc>rmance program usually requires the mediation of a human pro­
grammer. 

We have sought to create a program that could supply much the same 
sort of assistance as that provided by the programmer in this transfer of 
expertise. The result is a system called TEIRESIAS 1 (Davis, 1976; 1978; 
Davis et al., 1977), a large Interlisp program designed to offer assistance 
in the interactive transfer of knowledge from a human expert to the knowl­
edge base of a high-performance program (Figure 9-1). Information flow 
from right to left is labeled explanation. This is the process by which TEl­
RESIAS clarifies for the expert the source of the performance program's 
results and motivations for its actions. This is a prerequisite to knowledge 
acquisition, since the expert must first discover what the performance pro-

This chapter originally appeared in Artificial Intelligence 12: 121-157 (1979). It has been 
shortened and edited. Copyright © I 979 by Artificial Intelligence. All rights reserved. Used 
with permission. 
1The program is named for the blind seer in Oedipus the King, since the program, like the 
prophet, has a form of "higher-order" knowledge. 
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TEIRESIAS 

DOMAIN 
~ 

explanation 
PERFORMANCE ~ 

EXPERT knowledge 
~ 

PROGRAM 
~ 

transfer 

FIGURE 9-1 Interaction between the expert and the perfor­
mance program is facilitated by TEIRESIAS. 

gram already knows and how it used that knowledge. Information flow 
from left to right is labeled knowledge transfer. This is the process by which 
the expert adds to or modifies the store of domain-specific knowledge in 
the performance program. 

Work on TEIRESIAS has had two general goals. We have attempted 
first to develop a set of tools for knowledge base construction and main­
tenance and to abstract from them a methodology applicable to a range 
of systems. The second, more general goal has been the development of 
an intelligent assistant. This task involves confronting many of the tradi­
tional problems of AI and has resulted in the exploration of a number of 
solutions, reviewed below. · 

This chapter describes a number of the key ideas in the development 
of TEIRESIAS and discusses their implementation in the context of a 
specific task (acquisition of new inference rules 2) for a specific rule-based 
performance program. While the discussion deals with a specific task, sys­
tem, and knowledge representation, several of the main ideas are appli­
cable to more general issues concerning the creation of intelligent pro­
grams. 

9.} Meta-Level Knowledge 

A central theme that runs through this chapter (and is discussed more 
fully in Part Nine) is the concept of meta-level knowledge, or knowledge about 
knowledge. This takes several different forms, but can be summed up 
generally by saying that a program can "know what it knows." That is, not 
only can a program use its knowledge directly, but it may also be able to 
examine it, abstract it, reason about it, and direct its application. 

To see in general terms how this might be accomplished, recall that 

~Acquisition of new conceptual primitives from which rules are built is discussed by Davis 
( 1978), while the design and implementation of the explanation capability suggested in Figure 
9-1 is discussed in Part Six. 
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one of the principal problems of AI is the question of representation of 
knowledge about the world, for which numerous techniques have been 
developed. One way to view what we have done is to imagine turning this 
in on itself, using some of these same techniques to describe the program 
itself. The resulting system contains both object-level representations, which 
describe the external world, and meta-level representations, which describe 
the internal world of representations. As the discussion of rule models in 
Sections 9.6 and 9.7 will make clear, such a system has a number of inter­
esting capabilities. 

9.2 Perspective on Knowledge Acquisition 

We view the interaction between the domain expert and the performance 
program as interactive tram/er of expertise. We see it in terms of a teacher 
who continually challenges a student with new problems to solve and care­
fully observes the student's performance. The teacher may interrupt to 
request a justification of some particular step the student has taken in 
solving the problem or may challenge the final result. This process may 
uncover a fault in the student's knowledge of the subject (the debugging 
phase) and result in the transfer of information to correct it (the knowledge 
acquisition phase). Other approaches to knowledge acquisition can be com­
pared to this by considering their relative positions along two dimensions: 
(i) the sophistication of their debugging facilities, and (ii) the independence 
of their knowledge acquisition mechanism. 

The simplest sort of debugging tool is characterized by programs like 
DDT, used to debug assembly language programs. The tool is totally pas­
sive (in the sense that it operates only in response to user commands), is 
low-level (since it operates at the level of machine or assembly language), 
and knows nothing about the application domain of the program. Debug­
gers like BAIL (Reiser, 1975) and Interlisp's break package (Teitelman, 
1974) are a step up from this since they function at the level of program­
ming languages such as SAIL and Interlisp. The explanation capabilities 
in TEIRESIAS, in particular the HOW and WHY commands (see Part Six 
for examples), represent another step, since they function at the level of 
the control structure of the application program. The guided debugging 
that TEIRESIAS can also provide (illustrated in Section 9.5) represents yet 
another step, since here the debugger is taking the initiative and has 
enough built-in knowledge about the control structure that it can track 
down the error. Finally, at the most sophisticated level are knowledge-rich 
debuggers like the one described by Brown and Burton (1978). Here the 
program is active, high-level, informed about the application domain, and 
capable of independently localizing and characterizing bugs. 

By indejJendence of the knowledge acquisition mechanism, we mean the 
degree of human cooperation necessary. Much work on knowledge acqui-
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sition has emphasized a highly autonomous mode of operation. There is, 
for example, a large body of work aimed at inducing the appropriate gen­
eralizations from a set of test data; see, for example, Buchanan and Mit­
chell (1978) and Hayes-Roth and McDermott ( 1977). In these efforts user 
interaction is limited to presenting the program with the data and perhaps 
providing a brief description of the domain in the form of values for a 
few key parameters; the program then functions independently. Winston's 
work on concept formation (Winston, 1970) relied somewhat more heavily 
on user interaction. There the teacher was responsible for providing an 
appropriate sequence of examples (and nonexamples) of a concept. In 
describing our work, we have used the phrase "interactive transfer of ex­
pertise" to indicate that we view knowledge acquisition as information 
transfer from an expert to a program. TEIRESIAS does not attempt to 
derive new knowledge on its own, but rather tries to "listen" as attentively 
as possible, commenting appropriately to help the expert augment the 
knowledge base. It thus requires strong cooperation from the expert. 

There is an important assumption involved in the attempt to establish 
this sort of communication: we are assuming that it is possible to distinguish 
between the problem-solving paradigm and the expertise or, equivalently, that 
control structure and representation in the performance program can be 
considered separately from the content of its knowledge base. The basic 
control structure(s) and representations are assumed to be established and 
debugged, and the fundamental approach to the problem is assumed to 
be acceptable. The question of how knowledge is to be encoded and used 
is settled by the selection of one or more of the available representations 
and control structures. The expert's task is to enlarge what it is the program 
knows. 

There is a corollary assumption, too, in the belief that the control 
structures and knowledge representations can be made sufficiently com­
prehensible to the expert that he or she can (a) understand the system's 
behavior in terms of them and (b) use them to codify his or her own 
knowledge. This ensures that the expert understands system performance 
well enough to know what to correct, and can then express the required 
knowledge, i.e., can "think" in those terms. Thus part of the task of estab­
lishing the link shown in Figure 9-1 involves insulating the expert from 
the details of implementation, by establishing a discourse at a level high 
enough that he or she does not have to program in LISP. 

9.3 Design of the Performance Program 

Figure 9-2 shows the major elements of the performance program that 
TEIRESIAS is designed to help construct. Although the performance pro­
gram described here is MYCIN, the context within which TEIRESIAS was 
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Performance Program 

INFERENCE 

ENGINE 

KNOWLEDGE 

BASE 

FIGURE 9-2 Architecture of the performance program. 

actually developed, many of the features of TEIRESIAS have been incor­
porated in EMYCIN (see Chapter 15) and are independent of any domain. 
The knowledge base is the program's store of task-specific knowledge that 
makes possible high performance. The inference engine is an interpreter 
that uses the knowledge base to solve the problem at hand. The main point 
of interest in this very simple design is the explicit division between these 
two parts of the program. This design is in keeping with the assumption 
noted above that the expert's task is to augment the knowledge base of a 
program whose control structure (inference engine) is assumed to be both 
appropriate and debugged. 

Two important advantages accrue from keeping this division as strict 
as possible. First, if all of the control structure information has been kept 
in the inference engine, then we can engage the domain expert in a dis­
cussion of the knowledge base alone rather than of questions of program­
ming and control structures. Second, if all of the task-specific knowledge 
has been kept in the knowledge base, then it is possible to remove the 
current knowledge base, "plug in" another, and obtain a performance pro­
gram for a new task (see Part Five). The explicit division thus offers a 
degree of domain-independence. It does not mean, however, that the in­
ference engine and knowledge base are totally independent: knowledge 
base content is strongly influenced by the control paradigm used in the 
inference engine. It is this unavoidable interaction that motivates the im­
portant assumption, noted in Section 9.2, that the control structure and 
knowledge representation are comprehensible to the expert, at least at the 
conceptual level. 

An example of the program in action is shown in Section 9.5. The 
program interviews the user, requesting various pieces of information that 
are relevant to selecting the most appropriate antibiotic therapy, then 
prints its recommendations. In the remainder of this chapter the user will 
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be an expert running MYCIN in order to challenge it, offering it a difficult 
case and observing and correcting its performance. 

We have noted earlier that the expert must have at least a high-level 
understanding of the operation of the inference engine and the manner 
of knowledge representation in order to be able to express new knowledge 
for the performance program. An example of a rule, with brief explana­
tions of the terms premise, Boolean combination, conclusion, and certainty 
factor, suffices to allow understanding of the representation of knowledge. 
An equally brief explanation of backward chaining and the conservative 
strategy of exhaustive evidence gathering suffices to allow understanding 
of the inference engine. As mentioned in Section 9.2, we are assuming that 
the expert can understand these concepts without having to deal with 
details of implementation. Note as well that TEIRESIAS' basic design and 
the notion of interactive transfer of expertise do not depend on this par­
ticular control structure, only on the (nontrivial) assumption that an equally 
comprehensible explanation can be found for whatever control structure 
is actually used in the inference engine. 

9.4 A Word About Natural Language 

Natural language has not been a major focus of this work, and for the 
most part we have used the simplest techniques that would support the 
level of performance required. For instance, all questions and responses 
from TEIRESIAS are either preformed or manufactured by filling in tem­
plates with appropriate words (as evidenced by the occasional appearance 
of ungrammatical phrases like "a organism"). Where answers are free text 
(rather than multiple choice), the system relies primarily on the keyword­
and template-oriented techniques described in Chapter 18. There is no 
parser in the system, in part to minimize processing time and in part be­
cause users often give ungrammatical responses. 

9.5 Example of TEIRESIAS in Operation 

In the interaction shown in Figure 9-3, the expert is challenging MYCIN 
with a particular case, observing the program's performance, and then 
making the necessary correction to the knowledge base. The bug encoun­
tered here was created by deleting an existing rule from the knowledge 
base and removing all references to it. The expert then repairs the bug by 
tracking down the source of the problem and teaching the system the "new" 
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rule. The deleted rule was chosen in order to display a large number of 
TEIRESIAS's capabilities in a single example. It is special in no other sense, 
however, and offers a real trace of the system in action. 

In the trace, computer output is in mixed upper and lower case, user 
responses follow a double asterisk and are in bold upper case, and com­
mentary is indented, italicized, and enclosed in parentheses. The example 
is also divided into five phases for later reference. 

(MYCIN has been provided with details of a case and has just concluded likely causes of the infection.) 

My therapy recommendation will be based on the following probable infection(s) and potential causative 
organism(s): 

INFECTION-1 is PRIMARY-BACTEREMIA 
<Item 1> E.COLI [ORGANISM-1] 
<Item 2> PSEUDOMONAS-AERUGINOSA [ORGANISM-1] 

Are all these identities correct? 
+ +•• N 

(The expert disagrees with the results and will indicate to TE/RES/AS the identities that he thinks should 
have resulted.) 

Are there any identities missing? 
+ +•• y 

Which one(s)? 

(PHASE I: TRACKING DOWN THE BUG) 

+ + •• KLEBSIELLA-PNEUMONIAE PROTEUS-NON-Ml RABI LIS 

Are there any identities that shouldn't have appeared? 
+ + •• PSEUDOMONAS·AERUGINOSA 

Do you want to 

Type 1, 2 or 3 
++ .. 2 

1] track down the problem yourself, or 
2] allow me to guide the debugging, or 
3] ignore it for now and fix it another time? 

We'll start with the PSEUDOMONAS-AERUGINOSA first. 

(This time, TE/RES/AS will guide the process. It applies the heuristic of starting with an identity that 
appeared incorrectly.) 

The following rules were used in deducing that the identity of ORGANISM-1 is pseudomonas-aeruginosa. 

RULE184 

Since [1.1] the category of ORGANISM-1 is not known 
[1.2] the gram stain of ORGANISM-1 is gramneg 
[1.3] the morphology of ORGANISM-1 is rod 

FIGURE 9-3 TEIRESIAS example. 
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[1.4] the aerobicity of ORGANISM-1 is facultative 
There is weakly suggestive evidence (.3) that the identity of ORGANISM-1 is pseudomonas-aeruginosa 

Is this rule correct? 
+ +•• y 

Should its premise have failed for this case? 
++"Y 

Which clause of the premise should have been false? [give #] 
+ +" 1 

No conclusions were reached concerning the category of ORGANISM-1 
Should it have been possible to conclude a category? 
+ +" y 

Which one? 
+ +" ENTEROBACTERIACEAE 

There were no rules successfully invoked in the attempt to deduce that the category of ORGANISM-1 is 
enterobacteriaceae. 

The following (potentially applicable) rules were not executed because the starred ["] clause failed: 

RULE116 

IF: 1) the identity of ORGANISM-1 is not known 
"2) the gram stain of ORGANISM-1 is not known•• 

3) the morphology of ORGANISM-1 is not known 
4) the site of CULTURE-1 is csf 
5) the infection is meningitis 
6) the age (in years) of the patient is less than or 

equal to .17 

THEN: There is weakly suggestive evidence (.3) that the 
category of ORGANISM-1 is enterobacteriaceae 

RULE050 

IF: 1) the morphology of ORGANISM-1 is rod 
2) the gram stain of ORGANISM-1 is gramneg 
3) the aerobicity of ORGANISM-1 is facultative 

.. 4) the infection with ORGANISM-1 was acquired while the 
patient was hospitalized .. 

THEN: There is evidence that the category of ORGANISM-1 
is enterobacteriaceae 

Are all these rules correct? 
+ +" y 

Should any of them have been successfully invoked? 
++"N 

(This would be the case if one of the starred premise clauses was false because it had been "stepped 
on" by yet another rule further back in the chain.) 

Is there a rule missing? 
+ +" y 

FIGURE 9-3 continued 
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Ok, then I need a rule that would allow me to deduce that the category 
of ORGANISM-1 is enterobacteriaceae. 
Would you like to give me such a rule now? 
+ + .. y 

Good ... 

(To review briefly: The expert is tracking down the reason why MYC/N incorrectly concluded that the 
identity was pseudomonas-aeruginosa. Pseudomonas-aeruginosa appeared because Rule 184 executed 
successfully. This occurred in part because category was unknown. Category was unknown because all 
rules to conclude it (50 and 116) failed. Since the expert believes all existing rules are correct, the 
knowledge base must lack a rule that will conclude about category; in particular, that the category is 
enterobacteriaceae. This will cause category to be known, inhibiting Rule 184, fixing at least this first 
problem, the incorrect conclusion about pseudomonas-aeruginosa. 

Note how sharply focused the issue has become, for both the expert and TE/RES/AS, as a result of the 
large amount of contextual information available. The doctor is not being asked to "discuss bacteremia"; 
instead, the system can at this point say: "/need a rule that would allow me to deduce that the category 
of ORGANISM-1 is enterobacteriaceae." And it must be a rule which is invocable in the context of this 
patient. This focus makes it easier for the expert to specify a rule that may never have been explicitly 
stated or recognized as such. This can be an important advantage in any domain where the knowledge 
is not yet fully formalized. 

The contextual information is useful for TE/RES/AS as well. It provides a number of expectations about 
the content of the rule that are useful both in understanding what the expert types in and in checking the 
new rule to make sure that it does indeed solve the problem at hand. Details of this process are 
explained below. 

The trace continues with the expert typing in the rule .. .) 

(PHASE//: INTERPRETING THE RULE) 

The new rule will be called RULE383 

If: 1 - THE PATIENT'S INFECTION IS PRIMARY-BACTEREMIA 
and 2 - THE SITE IS ONE OF THE STERILE SITES 
and 3-

Then: 1 - THERE IS EVIDENCE (.8) THAT THE CATEGORY IS ENTEROBACTERIACEAE 
and 2 -

This may take a few moments ... 

(Generally, it takes on the order of 10 to 30 seconds of cpu time.) 

This is my understanding of your rule: 

RULE383 

IF: 1) Primary-bacteremia is an associated infection for 
which therapy would cover, and 

2) The infection with the organism was acquired while 
the patient was hospitalized, and 

3) The culture was taken from a sterile source, and 
4) The organism is not normally found at this site 

THEN: There is strongly suggestive evidence (.8) that the 
category of the organism is enterobacteriaceae 
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(PHASE Ill: MODIFYING THE INTERPRETATION) 

(TE/RES/AS' initial interpretation of the natural language is incorrect (recall that the example was chosen 
in part for this reason). In the system's first attempt to understand the rule, each line of the original text 
has been interpreted as two clauses. This results primarily from the word-by-word approach to meaning. 
For instance, despite the obvious grammatical simplicity of the first line of text, the system used two 
connotations of the word "infection" to generate the first two clauses. In the second line of text the word 
"sterile" was responsible for clause 3, and the word "sites" used as the basis for clause 4. The details of 
this process are explained below, where it will become clear that while the translation is wrong, it is not 
unreasonable given the simple natural language facilities. 

Nor is it unreasonable that TE/RES/AS has turned each line of English into more than one premise 
clause. The expert is not restricted to typing the English equivalent of a single premise clause on each 
line. If he were, rather than typing "the organism is a gram-negative aerobic rod," he would have to type 
three lines. 

We will see later that while TE/RES/AS' interpretations are incorrect, they are all "reasonable" and 
"consistent," in light of the system's somewhat primitive approach to natural language. The rest of the 
example shows that even when the initial guesses are incorrect, straightening things out may be very 
easy.) 

Okay? (Yes or No) 
+ +** N 

(The expert indicates that there is a problem with the interpretation and uses the system's rule editor to 
specify the changes needed.) 

Change premise? 
+ +·· y 

What clause should be changed in premise? 
(type HELP for list of commands) 

++••CHANGE 1 

Suppose (1) were changed to read-
1 - The infection is primary-bacteremia 

Would that be ok? 
+ +•• y 

(Several simple heuristics are invoked to select the next most likely interpretation, based on the English 
source of this clause and the set of interpretations already rejected. In this case, the second choice is 
correct.) 

Then you'll probably want to delete: 

Correct? 
+ +•• y 

2) The infection with the organism was acquired while the 
patient was hospitalized 

(TE/RES/AS enforces consistency constraints on its interpretation of the English text. One of these 
constraints indicates that if the new interpretation of clause 1 is correct, then clause 2 must have arisen 
spuriously. That is, the system realizes it cannot get both the new version of clause 1 and the old clause 
2 from the same line of text, and indicates this to the expert.) 

FIGURE 9-3 continued 
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+ +·· 03 
clause(s) 3 deleted. 
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(Realizing that there was another spurious clause, the expert deletes clause 3, but then has second 
thoughts about the one he chose, so he checks, using the? command.) 

Anything else? 
+ + .. ? 

1 - the infection is primary-bacteremia 
and 2 - <deleted> 
and 3 - <deleted> 
and 4 - the organism is not normally found at this site 

(He then discovers that he has typed the wrong number, undoes the damage, and deletes the one 
initially intended. All commands can be abbreviated to a single letter.) 

Anything else? 
+ +·· u 3 
clause(s) 3 undeleted. 

Anything else? 
+ +·• D 4 
clause(s) 4 deleted. 

(There is one last correction to be made for which TE/RES/AS suggests the wording .. . ) 

Anything else? 
++•• C3 
Suppose (3) were changed to read-

3 - The site of the culture is one of: those sites that are 
normally sterile 

Would that be ok? 
+ + .. y 

Anything else? 
+ + .. ? 

1 - the infection is primary-bacteremia 
and 2 - <deleted> 
and 3 - the site of the culture is one of: those sites that are 

normally sterile 
and 4 - <deleted> 

++••OK 

( . .. and at last he's happy with the rule.) 

Change action? 
+ +·• N 

This is my understanding of your rule: 
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RULE383 
IF: 1) The infection is primary-bacteremia, and 

2) The site of the culture is one of: those sites that are normally sterile 
THEN: There is strongly suggestive evidence (.8) that the category of the organism is 

enterobacteriaceae 

Okay? (Yes or No) 
+ +** y 

(This is the classic test of comprehension: the original English text has been turned into a rule coded in 
LISP; the LISP is then translated back into English for approval. Compare the results with the expert'.s 
original input. 

Now that the expert is satisfied that the system understands the rule as he has entered it, TEIRESIAS 
checks several more things about the rule.) 

(PHASE IV: SECOND-GUESSING) 

I hate to criticize, Dr. Davis, but did you know that most rules about 
what the category of a organism might be, that mention -

the site of a culture 
the infection 

Also mention -

• 
[A] - the portal of entry of a organism 

Shall I try to write a clause to account for [A)? 
+ +** y 

(The mechanism that makes possible this sort of second-guessing by TEIRESIAS is explained in detail 
below. Briefly, the system maintains a model of the knowledge base. In checking to see how this new 
piece of information "fits into" that model, it discovers that its expectations have been only partially met. 
ft indicates to the expert what expectations were left unfulfilled and asks if it should attempt to fill in the 
missing parts.) 

How about-

[A] The portal of entry of the organism is GI 

Ok? 
+ +•• y 

(The expert agreed to the inclusion of a clause about the portal of entry; this determines which attribute 
to use. TE/RES/AS examines its model of the knowledge base to see which predicate function is /iko/y to 
be the right one; the model evidently suggested the function SAME. Finally, in order to fix the original 
bug, it must be possible to invoke the new rule for this patient. Since, in the original consultation, th11 
expert responded that the portal of entry was the GI tract, this is a plausible guess for the value to use. 
This demonstrates another benefit of the "knowledge acquisition in context" methodology mentionec1 in 
Chapter 7.) 

Also, most rules about what the category of a organism may be 
Also conclude about -

[A) - the identity of a organism 

Shall I try to write a clause to account for [A]? 

FIGURE 9-3 continued 
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+ +•• N 

(The system noticed another unfulfilled expectation concerning the action part of the rule, but the expert 
always has the option of overriding the system's suggestions, and does so.) 

The rule now reads: 

RULE383 

IF: 1) The infection is primary-bacteremia, and 
2) The site of the culture is one of: those sites 

that are normally sterile, and 
3) The portal of entry of the organism is GI 

THEN: There is strongly suggestive evidence (.8) that the 
category of the organism is enterobacteriaceae 

(Now that both the expert and TE/RES/AS are satisfied with the rule, there is a bit of bookkeeping to do. 
First, the new rule is checked by the system (behind the scenes) to be sure that there is nothing 
obviously wrong with it-for instance, one of the tests ensures that premise clauses are not contradictory. 
Had this been the case, the system would have noticed it at this point and the user would have been 
given the option of returning to the rule editor to fix the problem. There are several other things the 
system checks at this point, but this rule passes all the tests, and hence there is no indication of any 
problem.) 

(PHASE V: FINAL CHECKOUT, BOOKKEEPING, RERUNNING THE CONSULTATION) 

Please describe briefly why you added (or changed) this rule. Type an 
empty line when done. 

+ + •• THE SYSTEM FAILED TO REALIZE IT COULD CONCLUDE 
+ + •• CATEGORY, AND THIS ALLOWED RULE184 TO INCORRECTLY 
+ + •• CONCLUDE IDENTITY 
+ +·· 

(Over the years of MYCIN development, the experts associated with the project have occasionally looked 
in astonishment at a rule which, though it had been around for some time, seemed, superficially at least, 
to make very little sense. The question then arises as to why that rule was added to the knowledge base. 
To avoid this problem, the expert is required to explain why he wrote or changed the rule. 

There are also a number of other bookkeeping-type chores that are being attended to here, again, 
behind the scenes. TE/RES/AS takes care of tagging the rule with information that will simplify keeping 
track of the large, and constantly changing, body of rules. We will see in a moment how that information 
is accessed.) 

RULE383 has now been added to the knowledge base. 

I will now rerun the consultation to check the effectiveness of your new 
rule. Get comfortable, since this may take a bit. 

Also, new questions may be asked as a result of this new rule. If a 
question is printed, please answer it with reference to this current 
patient. 

(TE/RES/AS now invokes the performance program as a subprocess to make sure the bug is fixed, and 
to test for any other side effects. Since MYCIN has saved all the answers from the initial consultation, the 



184 Interactive Transfer of Expertise 

process is fairly inexpensive. The expert is warned about new questions because his new rule may 
mention an attribute that was not previously traced, or it may indirectly cause the tracing of one. While 
there are some cases in which it is possible to compute the incremental effect on a given consultation of 
adding a single new rule to the knowledge base, these are rare enough that in the long run it is 
computationally cheaper to simply rerun the consultation.) 

18-DEC-75 16:30:46 
----------PATIENT ·281-----····· 

----------INFECTION-1 •••••••·•• 
--·······--CULTURE-1 ·········--

··········-0RGANISM-1----------

(The answers to all questions were available Internally, so the performance program asks nothing new. 
The context names are printed to let the expert follow the progress of the consultation.) 

My therapy recommendation will be based on the following probable 
infection(s) and potential causative organism(s): 

INFECTION-1 is PRIMARY-BACTEREMIA 
<Item 1> E.COLI [ORGANISM-1) 
<Item 2> KLEBSIELLA-PNEUMONIAE [ORGANISM-1] 
<Item 3> PROTEUS-NON-MIRABILIS [ORGANISM-1) 

Well, it appears that things are straightened out. 

(The new conclusions are the ones the expert indicated earlier as the correct answers. This does not go 
unnoticed by TE/RES/AS, which, as before, interrupts the consultation at this point to check the validity of 
the answers produced.) 

Are all these values correct now? 
+ +" y 

(As always, TE/RES/AS gives the expert the last word, and waits for approval before proceeding.) 

Good, then the problem's been fixed . 
. . . continuing with therapy selection now. 

(At this point TE/RES/AS allows the performance program subprocess to continue with the normal 
therapy-selection phase. This has been omitted here for brevity. 

The reader may be wondering why three errors disappeared with the addition of one rule. Once the new 
rule permitted the category of the organism to be concluded, not only did Rule 184 fail, but a second rule 
that had previously failed was now successfully invoked. This rule used the category of the organism to 
conclude that klebsiella-pneumoniae and proteus-non-mirabilis were likely identities. 

All of the bookkeeping that was done is accessible via the INFOrmation command added to the 
question-answering facility of the performance program. This gives the expert the background for any 
rule in the system.) 

**INFO 383 

was written by Dr. Davis 

on December 18, 1975 

FIGURE 9-3 continued 
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for the following reason: 

THE SYSTEM FAILED TO REALIZE IT COULD CONCLUDE CATEGORY, AND 
THIS ALLOWED RULE184 TO INCORRECTLY CONCLUDE IDENTITY. 

for patient (281) 

[who was described as follows: 
CLASSIC CASE OF GRAM NEGATIVE ROD INFECTION FOR A 
PATIENT WITH A NON-NOSOCOMIAL DISEASE] 

FIGURE 9-3 continued 

9 6 How It All Works • 

9.6. l Overview of the Main Ideas 

Before reviewing the trace in more detail, we describe the ideas that make 
possible the capabilities displayed. This subsection serves primarily to name 
and briefly sketch each in turn; the details are supplied in subsequent 
subsections reviewing the example. [See Davis ( 1976) for more details.] 

Knowledge Acquisition in Context 

Performance programs of the sort TEIRESIAS helps create will typically 
find their greatest utility in domains where there are no unifying laws on 
which to base algorithmic methods. In such domains there is instead a 
collection of informal knowledge based on accumulated experience. This 
means an expert specifying a new rule may be codifying a piece of knowl­
edge that has never previously been isolated and expressed as such. Since 
this is difficult, anything that can be done to ease the task will prove very 
useful. 

In response, we have emphasized knowledge acquisition in the context 
of a shortcoming in the knowledge base. To illustrate the utility of this 
approach, consider the difference between asking the expert: 

What should I know about the patient? 

and saying to him: 

Here is an example in which you say the performance program made 
a mistake. Here is all the knowledge the program used, here are all 
the facts of the case, and here is how it reached its conclusions. Now, 
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what is it that you know and the system doesn't that allows you to avoid 
making that same mistake? 

Note how much more focused the second question is and how much easier 
it is to answer. 

Building Expectations 

The focusing provided by the context is also an important aid to TEIRE­
SIAS. In particular, it permits the system to build up a set of expectations 
concerning the knowledge to be acquired, facilitating knowledge transfer 
and making possible several useful features illustrated in the trace and 
described below. 

Model-Based Understanding 

Model-based understanding suggests that some aspects of understanding 
can be viewed as a process of matching: the entity to be understood is 
matched against a collection of prototypes, or models, and the most ap­
propriate model is selected. This sets the framework in which further in­
terpretation takes place. While this view is not new, TEIRESIAS employs 
a novel application of it, since the system has a model of the knowledge it 
is likely to be acquiring from the expert. 

Giving a Program a Model of Its Own Knowledge 

We will see that the combination of TEIRESIAS and the performance 
program amounts to a system that has a picture of its own knowledge. That 
is, it not only knows something about a particular domain but also in a 
primitive sense knows what it knows and employs that model of its knowl­
edge in several ways. 

Learning as a Process of Comparison 

We do not view learning as simply the addition of information to an ex­
isting base of knowledge, but instead take it to include various forms of 
comparison of the new information with the old. This of course has its 
corollary in human behavior: a student will quickly point out discrepancies 
between newly taught material and his or her current stock of information. 
TEIRESIAS has a similar, though very primitive, capability: it compares 
new information supplied by the expert with the existing knowledge base, 
points out inconsistencies, and suggests possible remedies. 
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Learning by Experience 

One of the long-recognized potential weaknesses of any model-based sys­
tem is dependence on a fixed set of models, since the scope of the pro­
gram's "understanding" of the world is constrained by the number and 
types of models it has. As will become clear, the models TEIRESIAS em­
ploys are not handcrafted and static, but are instead formed and contin­
ually revised as a by-product of its experience in interacting with the ex­
pert. 

9.6.2 Phase I: Tracking Down the Bug 

To provide the debugging facility shown in the dialogue of Section 9.5, 
TEIRESIAS maintains a detailed record of the actions of the performance 
program during the consultation and then interprets this record on the 
basis of an exhaustive analysis of the performance program's control struc­
ture. This presents the expert with a comprehensible task because (a) the 
backward-chaining technique used by the performance program is 
straightforward and intuitive, even to a nonprogrammer, and (b) the rules 
are designed to encode knowledge at a reasonably high conceptual level. 
As a result, even though TEIRESIAS is running through an exhaustive 
case analysis of the preceding consultation, the expert is presented with a 
task of debugging reasoning rather than code. 

The availability of an algorithmic debugging process is also an impor­
tant factor in encouraging the expert to be as precise as possible in making 
responses. Note that at each point in tracking down the error the expert 
must either approve of the rules invoked and the conclusions made or 
indicate which one was in error and supply the correction. This approach 
is extremely useful in domains where knowledge has not yet been formal­
ized and where the traditional reductionist approach of dissecting reason­
ing down to observational primitives is not yet well established. 3 

TEIRESIAS further encourages precise comments by keeping the de­
bugging process sharply focused. For instance, when it became clear that 
there was a problem with the inability to deduce the category, the system 
first asked which category it should have been. It then displayed only those 
rules appropriate to that answer, rather than all the rules concerning that 
topic that were tried. 

Finally, consider the extensive amount of contextual information that 
·is now available. The expert has been presented with a detailed example 

3The debugging process does allow the expert to indicate that the performance program's 
results are incorrect, but he or she cannot find an error in the reasoning. This choice is 
offered only as a last resort and is intended to deal with situations where there may be a bug 
in the underlying control structure of the performance program (contrary to our assumption 
in Section 9.2). 
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of the performance program in action, has available all of the facts of the 
case, and has seen how the relevant knowledge has been applied. This 
makes it much easier for him or her to specify the particular chunk of 
knowledge that may be missing. This contextual information will prove 
very useful for TEIRESIAS as well. It is clear, for instance, what the effect 
of invoking the new rule must be (as TEIRESIAS indicates, it must be a 
rule that will deduce that the category should be Enterobacteriaceae), and it 
is also clear what the circumstances of its invocation must be (the rule must 
be invocable for the case under consideration, or it won't repair the bug). 
Both of these pieces of information are especially useful in Phase II and 
Phase V. 

9.6.3 Phase II: Interpreting the Rule 

As is traditional, "understanding" the expert's natural language version of 
the rule is viewed in terms of converting it to an internal representation 
and then retranslating that into English for the expert's approval. In this 
case the internal representation is the Interlisp form of the rule, so the 
process is also a simple type of code generation. 

There were a number of reasons for rejecting a standard natural lan­
guage understanding approach to this problem. First, as noted, under­
standing natural language is well known to be a difficult problem and was 
not a central focus of this research. Second, our experience suggested that 
experts frequently sacrifice precise grammar in favor of the compactness 
available in the technical language of the domain. As a result, approaches 
that were strongly grammar-based might not fare well. Finally, technical 
language often contains a fairly high percentage of unambiguous words, 
so a simpler approach that includes reliance on keyword analysis has a 
good chance of performing adequately. 

As will become clear, our approach to analyzing the expert's new rule 
is based on both simple keyword spotting and predictions TEIRESIAS is 
able to make about the likely content of the rule. Code generation is ac­
complished via a form of template completion that is similar in some re­
spects to template completion processes that have been used in generating 
natural language. Details of all these processes are given below. 

Models and Model-Based Understanding 

To set the stage for reviewing the details of the interpretation process, we 
digress for a moment to consider the idea of models and model-based 
understanding, and then to explore their application in TEIRESIAS. In 
the most general terms, a model can be seen as a compact, high-level description 
of structure, organization, or content that may be used both to provide a frame­
work for lower-level processing and to express expectations about the world. One 
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early, particularly graphic example of this idea can be found in the work 
on computer vision by Falk (I 970). The task there was understanding 
block-world scenes; the goal was to determine the identity, location, and 
orientation of each block in a scene containing one or more blocks selected 
from a known set of possibilities. The key element of this work of interest 
to us here is the use of a set of prototypes for the blocks, prototypes that 
resembled wire frame models. Although such a description oversimplifies, 
part of the operation of Falk's system can be described in terms of two 
phases. The system first performed a preliminary pass to detect possible 
edge points in the scene and attempted to fit a block model to each col­
lection of edges. The model chosen was then used in the second phase as 
a guide to further processing. If, for instance, the model accounted for all 
but one of the lines in a region, this suggested that the extra line might be 
spurious. If the model fit well except for some line missing from the scene, 
that was a good hint that a line had been overlooked and indicated as well 
where to go looking for it. 

We can imagine one further refinement in the interpretation process, 
though it was not a part of Falk's system, and explain it in these same 
terms. Imagine that the system had available some a priori hints about what 
blocks might be found in the next scene. One way to express those hints 
would be to bias the matching process. That is, in the attempt to match a 
model against the data, the system might (depending on the strength of 
the hint) try the indicated models first, make a greater attempt to effect a 
match with one of them, or even restrict the set of possibilities to just those 
contained in the hint. 

Note that in this system (i) the models supply a compact, high-level 
description of structure (the structure of each block), (ii) the description is 
used to guide lower-level processing (processing of the array of digitized 
intensity values), (iii) expectations can be expressed by a biasing or restric­
tion on the set of models used, and (iv) "understanding" is viewed in terms 
of a matching and selection process (matching models against the data and 
selecting one that fits). 

Rule Models 

Now, recall our original task of interpreting the expert's natural language 
version of the rule, and view it in the terms described above. As in the 
computer vision example, there is a signal to be processed (the text), it is 
noisy (words can be ambiguous), and there is context available (from the 
debugging process) that can supply some hints about the likely content of 
the signal. To complete the analogy, we need a model that can (a) capture 
the structure, organization, or content of the expert's reasoning, (b) guide 
the interpretation process, and (c) express expectations about the likely 
content of the new rule. 

Where might we get such a thing? There are interesting regularities 
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EXAMPLES-the subset of rules this model describes 

DESCRIPTION-characterization of a typical member of this subset 

• characterization of the premise 

• characterization of the action 

MORE GENERAL-pointers to models describing more general subsets of rules 

MORE SPECIFIC-pointers to models describing more specific subsets of rules 

FIGURE 9-4 Rule model structure. 

in the knowledge base that might supply what we need. Not surprisingly, 
rules about a single topic tend to have characteristics in common-there 
are ways of reasoning about a given topic. From these regularities we have 
constructed rule models. These are abstract descriptions of subsets of rules, 
built from empirical generalizations about those rules and used to char­
acterize a typical member of the subset. 

Rule models are composed of four parts as shown in Figure 9-4. They 
contain, first, a list of EXAMPLES, the subset of rules from which this 
model was constructed. Next, a DESCRIPTION characterizes a typical 
member of the subset. Since we are dealing in this case with rules composed 
of premise-action pairs, the DESCRIPTION currently implemented con­
tains individual characterizations of a typical premise and a typical action. 
Then, since the current representation scheme used in those rules is based 
on associative triples, we have chosen to implement those characterizations 
by indicating (a) which attributes typically appear in the premise (or action) 
of a rule in this subset and (b) correlations of attributes appearing in the 
premise (or action).4 Note that the central idea is the concept of character­
izing a typical member of the subset. Naturally, that characterization will look 
different for subsets of rules, procedures, theorems, or any other repre­
sentation. But the main idea of characterization is widely applicable and 
not restricted to any particular representational formalism. 

The two remaining parts of the rule model are pointers to models 
describing more general and more specific subsets of rules. The set of 
models is organized into a number of tree structures, each of the general 
form shown in Figure 9-5. At the root of each tree is the model made from 
all the rules that conclude about the attribute (i.e., the CATEGORY model), 
below this are two models dealing with all affirmative and all negative rules 
(e.g., the CATEGORY-IS model). Below this are models dealing with rules 
that affirm or deny specific values of the attribute. These models are not 
handcrafted by the expert. They are instead assembled by TEIRESIAS on 
the basis of the current contents of the knowledge base, in what amounts 
to a simple statistical form of concept formation. The combination of TEI­
RESIAS and the performance program thus presents a system that has a 
model of its own knowledge, one it forms itself. 

1 Both (a) and (b) are constructed via simple thresholding operations. 
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<attribute> 

-------- --------<attribute>-is <attribute>· isn't 

~ ~ 
<attribute>-is·X <attribute>-is-Y <attribute>-isn't·X <attribute>-isn't· Y 

FIGURE 9-5 Organization of the rule models. 

The rule models are the primary example of meta-level knowledge 
used in knowledge aquisition (for discussion of other forms, see Chapter 
28). This form of knowledge and its generation by the system itself have 
several interesting implications illustrated in later sections. 

Figure 9-6 shows a rule model; this is the one used by TEIRESIAS in 
the interaction shown earlier. (Since not all of the details of implementation 
are relevant here, this discussion will omit some.) As indicated above, there 
is a list of the rules from which this model was constructed, descriptions 
characterizing the premise and the action, and pointers to more specific 
and more general models. Each characterization in the description is shown 

CATEGORY-IS 

EXAMPLES ((RULE116 .33) 
(RULE050 .78) 
(RULE037 .80) 
(RULE095 .90) 
(RULE152 1.0) 
(RULE140 1.0)) 

PREMISE ((GRAM SAME NOTSAME 3.83) 
(MORPH SAME NOTSAME 3.83) 
((GRAM SAME) (MORPH SAME) 3.83) 
((MORPH SAME) (GRAM SAME) 3.83) 
((AIR SAME) (NOSOCOMIAL NOTSAME SAME) (MORPH SAME) 

(GRAM SAME) 1.50) 
((NOSOCOMIAL NOTSAME SAME) (AIR SAME) (MORPH SAME) 

(GRAM SAME) 1.50) 
((INFECTION SAME) (SITE MEMBF SAME) 1.23) 
((SITE MEMBF SAME) (INFECTION SAME) (PORTAL SAME) 

1.23)) 

ACTION ((CATEGORY CONCLUDE 4.73) 
(IDENT CONCLUDE 4.05) 
((CATEGORY CONCLUDE) (IDENT CONCLUDE) 4.73)) 

MORE-GENL (CATEGORY-MOD) 

MORE-SPEC NIL 

FIGURE 9-6 Rule model for rules concluding affirmatively 
about CATEGORY. 
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split into its two parts, one concerning the presence of individual attributes 
and the other describing correlations. The first item in the premise de­
scription, for instance, indicates that most rules reaching conclusions about 
the category mention the attribute GRAM (for gram stain) in their prem­
ises; when they do mention it, they typically use the predicate functions 
SAME and NOTSAME; and the "strength," or reliability, of this piece of 
advice is 3.83 [see Davis (1976) for precise definitions of the quoted terms]. 

Correlations are shown as several lists of attribute-predicate pairs. The 
fourth item in the premise description, for example, indicates that when 
the attribute gram stain (GRAM) appears in the premise of a rule in this 
subset, the attribute morphology (MORPH) typically appears as well. As 
before, the predicate functions are those frequently associated with the 
attributes, and the number is an indication of reliability. 

Choosing a Model 

It was noted earlier that tracking down the bug in the knowledge base 
provides useful context and, among other things, serves to set up TEI­
RESIAS's expectations about the sort of rule it is about to receive. As sug­
gested, these expectations are expressed by restricting the set of models 
that will be considered for use in guiding the interpretation. At this point 
TEIRESIAS chooses a model that expresses what it knows thus far about 
the kind of rule to expect, and in the curtent example it expects a rule 
that will deduce that the category should be Enterobacteriaceae. 

Since there is not necessarily a rule model for every characterization, 
the system chooses the closest one. This is done by starting at the top of 
the tree of models and descending until either reaching a model of the 
desired type or encountering a leaf of the tree. In this case the process 
descends to the second level (the CATEGORY-IS model), notices that there 
is no model for CATEGORY-IS-ENTEROBACTERIACEAE at the next 
level, and settles for the former. 5 

Using the Rule Model: Guiding the Natural Language 
Interpretation 

TEIRESIAS uses the rule models in two different ways in the acquisition 
process. The first is as a guide in understanding the text typed by the 
expert, as is described here. The second is as a means of allowing TEI-

5This technique is used in several places throughout the knowledge transfer process, and in 
general supplies the model that best matches the current requirements, by accommodating 
varying levels of specificity in the stated expectations. If, for instance, the system had known 
only that it expected a rule that concluded about category, it would have selected the first 
node in the model tree without further search. TEIRESIAS also has techniques for checking 
that the appropriate model has been chosen and can advise the expert if a discrepancy 
appears. See Davis ( 1976) for an example. 
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infection I prima:L:teremia 

PREDICATE 
FUNCTION 

ATTRIBUTE 
(a) Connotations found in the new rule. 

Function 
SAME 

Template 
(OBJ ATTRIBUTE VALUE) 

(b) Template for the predicate function SAME. 

1) (SAME CNTXT TREAT-ALSO PRIMARY-BACTEREMIA) 
"Primary bacteremia is an associated infection for which 
therapy should cover." 

2) (SAME CNTXT INFECTION PRIMARY-BACTEREMIA) 
"The infection is primary bacteremia." 

(c) Two choices for the resulting code (with translations). 

FIGURE 9-7 Use of rule models to guide the understanding 
of a new rule. 

RESIAS to see whether the new rule "fits into" its current model of the 
knowledge base in Phase IV. 

To see how the rule models are used to guide the interpretation of the 
text of the new rule in the example, consider the first line of text typed by 
the expert in the new rule, Rule 383 (THE PATIENT'S INFECTION IS 
PRIMARY-BACTEREMIA). Each word is first reduced to a canonical form 
by a process that can recognize plural endings and that has access to a 
dictionary of synonyms (see Chapter 18). We then consider the possible 
connotations that each word may have (Figure 9-7a). Here connotation 
means the word might be referring to one or more of the conceptual 
primitives from which rules are built (i.e., it might refer to a predicate 
function, attribute, object, or value). One set of connotations is shown.6 

Code generation is accomplished via a fill-in-the-blank mechanism. 
Associated with each predicate function is a template (see Chapter 5), a list 
structure that resembles a simplified procedure declaration and gives the 

6The connotations of a word are determined by a number of pointers associated with it, 
which are in turn derived from the English phrases associated with each of the primitives. 
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order and generic type of each argument to a call of that function (Figure 
9-7b). Associated with each of the primitives that make up a template (e.g., 
ATTRIBUTE, VALUE) is a procedure capable of scanning the list of con­
notations to fo_,.d an item of the appropriate type to fill in that blank. The 
whole process is begun by checking the list of connotations for the predi­
cate function implicated most strongly (in this case, SAME), retrieving the 
template for that function, and allowing it to scan the connotations and 
"fill itself in" using the procedures associated with the primitives. The set 
of connotations in Figure 9-7a produces the LISP code in Figure 9-7c. The 
ATTRIBUTE routine finds two choices for the attribute name, TREAT­
ALSO and INFECTION, based on associations of the word infection with 
the phrases used to mention those attributes. The VALUE routine finds 
an appropriate value (PRIMARY-BACTEREMIA), the OBJect routine 
finds the corresponding object type (PATIENT) (but following the con­
vention noted earlier, returns the variable name CNTXT to be used in the 
actual code). 

There are several points to note here. First, the first interpretation in 
Figure 9-7c is incorrect (the system has been misled by the use of the word 
infection in the English phrase associated with TREAT-ALSO); we'll see 
in a moment how it is corrected. Second, several plausible (syntactically 
valid) interpretations are usually available from each line of text, and TEI­
RESIAS generates all of them. Each is assigned a score (the text score) 
indicating how likely it is, based on how strongly it was implicated by the 
text. Finally, we have not yet used the rule models, and it is at this point 
that they are employed. 

We can view the DESCRIPTION part of the rule model selected ear­
lier as a set of predictions about the likely content of the new rule. In these 
terms the next step is to see how well each interpretation fulfills those 
predictions. Note, for example, that the last line of the premise description 
in Figure 9-6 "predicts" that a rule about category of organism will contain 
the attribute PORTAL and the third clause of Rule 383 fulfills this pre­
diction. Each interpretation is scored (employing the "strength of advice" 
number in the rule model) according to how many predictions it fulfills, 
yielding the prediction satisfaction score. This score is then combined with the 
text score to indicate the most likely interpretation. Because more weight 
is given to the prediction satisfaction score, the system tends to "hear what 
it expects to hear." 

Rule Interpretation: Sources of Performance 

While our approach to natural language is very simple, the overall perfor­
mance of the interpretation process is adequate. The problem is made 
easier, of course, by the fact that we are dealing with a small amount of 
text in a restricted context and written in a semiformal technical language, 
rather than with large amounts of text in unrestricted dialogue written in 
unconstrained English. Even so, the problem of interpretation is substan-
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tial. TEIRESIAS' performance is based on the application of the ideas 
noted above (Section 9.6.1), notably the ideas of building expectations and 
model-based understanding. Its performance is also based on the use of 
two additional techniques: the intersection of data-driven and model-dri­
ven processing, and the use of multiple sources of knowledge. 

First, the interpretation process proceeds in what has been called the 
recognition mode: it is the intersection of a bottom-up (data-directed) process 
(the interpretations suggested by the connotations of the text) with a top­
down (goal-directed) process (the expectations set up by the choice of a 
rule model). Each process contributes to the end result, but it is the com­
bination of them that is effective. This intersection of two processing modes 
is important when the interpretation techniques are as simple as those 
employed here, but the idea is more generally applicable as well. Even with 
more powerful interpretation techniques, neither data-directed nor goal­
directed processing is in general capable of eliminating all ambiguity and 
finding the correct answer. By moving from both directions, top-down and 
bottom-up, we make use of all available sources of information, resulting 
in a far more focused search for the answer. This technique is applicable 
across a range of different interpretation problems, including those of text, 
vision, and speech. 

Second, in either direction of processing, TEIRESIAS uses a number 
of different sources of knowledge. In the bottom-up direction, for exam­
ple, distinct information about the appropriate interpretation of the text 
comes from (a) the connotations of individual words (interpretation of each 
piece of data), (b) the function template (structure for the whole interpre­
tation), and (c) internal consistency constraints (interactions between data 
points), as well as several other sources [see Davis (1976) for the full list]. 
Any one of these knowledge sources alone will not perform very well, but 
acting in concert they are much more effective [a principle developed ex­
tensively in the HEARSAY system (Reddy et al., 1973)]. 

The notion of program-generated expectations is also an important 
source of power, since the selection of a particular rule model supplies the 
focus for the top-down part of the processing. Finally, the idea of model­
based understanding offers an effective way of using the information in 
the rule model to effect the top-down processing. 

Thus our relatively simple techniques supply adequate power because 
of the synergistic effect of multiple, independent sources of knowledge, 
because of the focusing and guiding effect of intersecting data-directed 
and goal-directed processing, and because of the effective mechanism for 
interpretation supplied by the idea of model-based understanding. 

9.6.4 Phase III: Modifying the Interpretation 

TEIRESIAS has a simple rule editor that allows the expert to modify ex­
isting rules or (as in our example) to indicate changes to the system's at-
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tempts to understand a new rule. 7 The editor has a number of simple 
heuristics built into it to make the rule modification process as effective as 
possible. In dealing with requests to change a particular clause of a new 
rule, for instance, the system reevaluates the alternative interpretations, 
taking into account the rejected interpretation (trying to learn from its 
mistakes) and making the smallest change possible (using the heuristic that 
the original clause was probably close to correct). In our example, this 
succeeds in choosing the correct clause next (the second choice shown in 
Figure 9-7c). 

There are also various forms of consistency checking available. One 
obvious but effective constraint is to ensure that each word of the text is 
interpreted in only one way. In the trace shown earlier, for instance, ac­
cepting the new interpretation of clause 1 means clause 2 must be spurious, 
since it attempts to use the word infection in a different sense. 

9.6.5 Phase IV: Second-Guessing, Another Use of the 
Rule Models 

After the expert indicates that TEIRESIAS has correctly understood what 
he or she has written, the system checks to see if it is satisfied with the 
content of the rule. The idea is to use the rule model to see how well this 
new rule "fits into" the system's model of its knowledge; i.e., does it "look 
like" a typical rule of the sort expected? 

In the current implementation, an incomplete match between the new 
rule and the rule model triggers a response from TEIRESIAS. Recall the 
last line of the premise description in the rule model of Figure 9-6: 

((SITE MEMBF SAME) (INFECTION SAME) (PORTAL SAME) 1.23)) 

This indicates that when the culture SITE for the patient appears in the 
premise of a rule of this sort, then INFECTION type and organism POR­
TAL of entry typically appear as well. Note that the new rule in the ex­
ample has the first two of these, but is missing the last, and the system 
points this out. 

If the expert agrees to the inclusion of a new clause, TEIRESIAS 
attempts to create it. Since in this case the agreed-on topic for the clause 
was the portal of entry of the organism, this must be the attribute to use. 
The rule model suggests which predicate function to use (SAME, since 
that is the one paired with PORTAL in the relevant line of the rule model), 
and the template for this function is retrieved. It is filled out in the usual 
way, except that TEIRESIAS checks the record of the consultation when 
seeking items to fill in the template blanks. In this case only a value is still 
missing. Note that since the expert indicated that the portal of entry was 

7Much of the editor has subsequently been incorporated into EMYCIN-see Chapter 15. 
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GI, TEIRESIAS uses this as the value for PORTAL. The result is a plau­
sible guess, since it ensures that the rule will in fact work for the current 
case (note this further use of the debugging in context idea). It is not 
necessarily correct, of course, since the desired clause may be more general, 
but it is at least a plausible attempt. 

It should be noted that there is nothing in this concept of second­
guessing that is specific to the rule models as they are currently designed, 
or indeed to associative triples or rules as a knowledge representation. The 
fundamental point (as mentioned above)· is testing to see how the new 
knowledge "fits into" the system's current model of its knowledge. At this 
point the system might perform any kind of check, for violations of any 
established prejudices about what the new chunk of knowledge should look 
like. Additional kinds of checks of rules might concern the strength of the 
inference, number of clauses in the premise, etc. In general, this second­
guessing process can involve any characteristic that the system may have 
"noticed" about the particular knowledge representation in use. 

Note also that this use of the rule model for second-guessing is quite 
different from the first use mentioned-guiding the understanding of En­
glish. Earlier we were concerned about interpreting text and determining 
what the expert actually said; here the task is to see what the expert plau­
sibly should have said. Since, in assembling the rule models, TEIRESIAS 
may have noticed regularities in the reasoni.ng about the domain that may 
not yet have occurred to the expert, the system's suggestions may conceiv­
ably be substantive and useful. 

Finally, all this is in turn an instance of the more general notion of 
using meta-level knowledge in the process of knowledge acquisition: TEI­
RESIAS does not simply accept the new rule and add it to the knowledge 
base; it instead uses the rule model to evaluate the new knowledge in light 
of its current knowledge base. In a very simple way, learning is effected as 
a process of examining the relationships between what is already known 
and the new information being taught. 

9.6.6 Phase V: Final Checkout, Bookkeeping, 
Rerunning the Consultation 

When both the expert and TEIRESIAS are satisfied, there is one final 
sequence of tests to be performed, reflecting once again the benefit of 
knowledge acquisition in context. At this point TEIRESIAS examines sev­
eral things about the rule, attempting to make sure that it will in fact fix 
the problem uncovered. In this case, for instance, the action of the new 
rule should be a conclusion about category, the category mentioned should 
be Enterobacteriaceae, and the conclusion should be affirmative. The premise 
should not contain any clauses that are sure to fail in the context in which 
the rule will be invoked. All these are potential sources of error that would 
make it obvious that the rule will not fix the bug. 
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There are also a number of straightforward bookkeeping tasks to be 
performed, including hooking the new rule into the knowledge base so 
that it is retrieved and invoked appropriately (in this case it gets added to 
the list of rules that conclude about category),8 and tagging it with infor­
mation that will make .it easier to maintain the large and constantly chang­
ing body of rules (e.g., the name of the rule author, date of creation, 
author's justification for adding the rule, a pointer to the consultation that 
prompted its creation). 

At this point, the system also performs any necessary recomputation 
of rule models. The operation is very fast, since it is clear from the action 
part of the rule which models may need to be recomputed, and the EX­
AMPLES part of the model then supplies the names of the other relevant 
rules. TEIRESIAS then reruns the performance program as a subprocess, 
and checks the results to see if all of the problems have been repaired. 

9 • 7 Other Uses for the Rule Models 

Two other uses have been developed for the rule models, which demon­
strate capabilities made possible by meta-level knowledge. 

9. 7 .1 "Knowing What You Know" 

As described in Part Six, MYCIN has the ability to answer simple natural 
language questions about the knowledge base. In response to a question 
such as "How do you determine the identity of an organism causing an 
infection?" MYCIN would originally have printed the relevant rules. But 
a rule model, as a generalization of an entire class of rules, answers the 
question, too. Figure 9-8 shows one example of MYCIN's capabilities after 
rule models had been added. By simply "reading" the rule model to the 
user, TEIRESIAS can supply an overview of the knowledge in the relevant 
rules. This suggests the structure of global trends in the knowledge of the 
expert who assembled the knowledge base, and thus helps to make clear 
the overall approach of the system to a given topic. 

8Note that these tests require the ability to dissect and partially evaluate the rule. The same 
function template that is used as a pattern for constructing rules is also used as a guide in 
this dissection and partial evaluation process. 
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" HOW DO YOU DECIDE THAT AN ORGANISM IS PSEUDOMONAS 
AERUGINOSA? 

Rules which conclude that the identity of the organism is 
pseudomonas-aeruginosa generally use one or more of the following pieces 
of information: 

the site of the culture 
the gram stain of the organism 
the morphology of the organism 

Furthermore, the following relationships hold: 
The gram stain of the organism and the morphology of the 
organism tend to appear together in these rules. 

RULE184, RULE116, RULE047, RULE085, and RULE040 conclude that the 
identity of the organism is pseudomonas-aeruginosa. 

Which of these do you wish to see? .. 

FIGURE 9-8 "Knowing what you know." 

9.7.2 "Knowing What You Don't Know" 

Another use of the models demonstrates that, in a primitive fashion, they 
give TEIRESIAS a model of what it doesn't know. There are models in the 
current system made from between 2 (the defined minimum) and 35 rules. 
We have defined a metric to measure the strength of a model, based on 
both the total number of rules from which the model was constructed and 
the strength of the inference of each of those rules. The entire model set 
is kept ordered from weakest to strongest, giving the system some indi­
cation of its likely competence on a range of subjects. In a very primitive 
way, it thus gains knowledge of where it is ignorant. 

This makes possible a new option for the expert. Instead of adding a 
rule to fix a bug, the expert can ask the system what it would like to learn. 
(See Figure 9-9.) The system cycles through the rule models in order, 
indicating the weakest topics first. This is, of course, a first-order solution 
to the problem of giving the system an indication of its areas of ignorance. 
A better solution would supply an indication of how much the system 
knows about a subject, compared with how much there is to know. There 
surely are subjects for which three or four rules exhaust the available 
knowledge, while for others a hundred or more rules may not suffice. The 
issue is related to work described by Carbonell and Collins (1973) on closed 
versus open sets. That paper offers some interesting strategies for allowing 
a program to decide when it is ignorant and how it might reason in the 
face of the inability to store every fact about a given topic. 

There appear to be no easy ways to deduce the incompleteness of the 
knowledge base using only the information stored in it. It is not valid to 
say, for instance, that there ought to be even a single rule for every attribute 
(how could a patient's name be deduced?). Nor is there a well-defined set 
of attributes for which no rules are likely to exist. Nor is it clear what sort 
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--•• WHAT WOULD YOU LIKE TO KNOW? 
Answer 

-Y for yes 
-N for no, or 
-Q to quit this. 

There are only two rules for concluding that the identity of an 
organism might be enterococcus. Would you like to give me a 
rule for that? 
++"N 
There are only 2 rules for concluding that an infection might 
be infeclive-endocarditis. Would you like to offer a rule for 
that? 
+ +" y 
The new rule will be called RULE384 

11(1) 

FIGURE 9-9 "Knowing what you don't know." 

of information would allow the incompleteness to be deduced. The issue 
is a significant one, since a good solution to the problem would not only 
give TEIRESIAS a better grasp of where the performance program was 
weak but also provide several important capabilities to the performance 
program itself. It would, for example, permit the use of the "if it were true 
I would know" heuristic of Carbonell and Collins ( 1973). Roughly restated, 
this says "If I know a great deal about subject S, and fact F concerns an 
important aspect of S, then if I don't already know that F is true, it's 
probably false." Thus in certain circumstances a lack of knowledge about 
the truth of a statement can plausibly be used as evidence suggesting that 
the statement is false. This is another useful form of meta-level knowledge. 

9.8 Assumptions and Limitations 

The work reported here can be evaluated with respect to both the utility 
of its approach to knowledge acquisition and its success in implementing 
that approach. 

9.8.1 The Approach 

As noted, our approach involves knowledge transfer that is interactive, that 
is set in the context of a shortcoming in the knowledge base, and that 
transfers a single rule at a time. Each of these has implications about TEI­
RESIAS's range of applicability. 

Interactive knowledge transfer seems best suited to task domains in-
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volving problem solving that is entirely or primarily a high-level cognitive 
task, with a number of distinct, specifiable principles. Consultations in 
medicine or financial investments seem to be appropriate domains, but the 
approach would not seem well suited to those parts of, say, speech under­
standing or scene recognition in which low-level signal processing plays a 
significant role. 

The transfer of expertise approach presents a useful technique for 
task domains that do not permit the use of programs (like those noted in 
Section 9.2) that autonomously induce new knowledge from test data. The 
autonomous mode may most commonly be inapplicable because the data 
for a domain simply don't exist yet. In quantitative domains [such as mass 
spectrum analysis (Buchanan and Feigenbaum, 1978)) or synthesized 
("toy") domains [such as the line drawings in Hayes-Roth and McDermott 
( 1977)], a large body of data points is easily assembled. This is not currently 
true for many domains; consequently induction techniques cannot be used. 
In such cases interactive transfer of expertise offers a useful alternative.9 

Knowledge acquisition in context appears to offer useful guidance 
wherever knowledge of the domain is as yet ill-specified. The context of 
the interaction need not be a shortcoming in the knowledge base uncovered 
during a consultation, however, as it was here. Our recent experience sug­
gests that an effective context is also provided by examining certain subsets 
of rules in the knowledge base and using them as a framework for speci­
fying additional rules. The overall concept is limited, however, to systems 
that already have at least some minimal amount of information in their 
knowledge bases. Prior to this, there may be insufficient information to 
provide any context for the acquisition process. 

Finally, the rule-at-a-time approach is a limiting factor. The example 
given earlier works well, of course, because the bug was manufactured by 
removing a single rule. In general, acquiring a single rule at a time seems 
well suited to the later stages of knowledge base construction, in which 
bugs may indeed be caused by the absence of one or a few rules. We need 
not be as lucky as in the example, in which one rule repaired three bugs; 
the approach will also work if three independent bugs arise in a consul­
tation. But early in knowledge base construction, when large subareas of 
a domain are not yet specified, it appears more useful to deal with groups 
of rules or, more generally, with larger segments of the basic task [as in 
Waterman ( 1978)]. 

In general then, the interactive transfer of expertise approach seems 
well suited to the later stages of knowledge base construction for systems 
performing high-level tasks, and offers a useful technique for domains 
where extensive sets of data points are not available. 

YWhere the autonomous induction technique can be used, it offers the interesting advantage 
that the knowledge we expect the system to acquire need not be specified ahead of time, 
indeed not even known. Induction programs are in theory capable of inducing new infor­
mation (i.e., information unknown to their author) from their set of examples. Clearly, the 
interactive transfer of expertise approach requires that the expert know and be able to specify 
precisely what it is the program is to learn. 
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9.8.2 The Program 

Several difficult problems remained unsolved in the final implementation 
of the program. There is, for instance, the weakness of the technique of 
natural language understanding. There is also an issue with the technique 
used to generate the rule models. Model generation could be made more 
effective even without using a different approach to concept formation. 
Although an early design criterion suggested keeping the models trans­
parent to the expert, making the process interactive would allow the expert 
to evaluate new patterns as they were discovered by TEIRESIAS. This 
might make it possible to distinguish accidental correlations from valid 
interrelations and might increase the utility and sophistication of TEIRE­
SIAS's second-guessing ability. Alternatively, more sophisticated concept 
formation techniques might be borrowed from existing work. 

There is also a potential problem in the way the models are used. Their 
effectiveness both in guiding the parsing of the new rule and in second­
guessing its content is dependent on the assumption that the present 
knowledge base is both correct and a good basis for predicting the content 
of future rules. Either of these can at times be false, and the system may 
then tend to continue stubbornly down the wrong path. 

There is also the difficult problem of determining the impact of any 
new or changed rule on the rest of the knowledge base, as discussed in 
Chapter 8, which we have considered only briefly. One difficulty (avoided 
in the work described in Chapter 8) involves establishing a formal defini­
tion of inconsistency for inexact logics, such as CF's (see Chapter 11), since, 
except for obvious cases (e.g., two identical rules with different strengths), 
it is not clear what constitutes an inconsistency. Once the definition is es­
tablished, we would also require routines capable of uncovering them in a 
large knowledge base. This can be attacked by using an incremental ap­
proach (i.e., by checking every rule as it is added, the knowledge base is 
kept consistent and each consistency check is a smaller task), but the prob­
lem is substantial. 

9 9 Conclusions • 

Each of the ideas reviewed above offers some contribution toward achiev­
ing the two goals set out at the beginning of this chapter: the development 
of a methodology of knowledge base construction via transfer of expertise, 
and the creation of an intelligent assistant to aid in knowledge acquisition. 
These ideas provide a set of tools and ideas to aid in the construction of 
knowledge-based programs and represent some new empirical techniques 
of knowledge engineering. Their contribution here may arise from their 
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potential utility as case studies in the development of a methodology for 
this discipline. 

Knowledge acquisition in the context of a shortcoming in the knowledge base, 
for instance, has proved to be a useful technique for achieving transfer of 
expertise, offering advantages to both the expert and TEIRESIAS. It of­
fers the expert a framework for the explication of a new chunk of domain 
knowledge. By providing a specific example of the performance program's 
operation and forcing the expert to be specific in his or her criticism, it 
encourages the formalization of previously implicit knowledge. It also en­
ables TEIRESIAS to form a number of expectations about the knowledge 
it is going to acquire and makes possible several checks on the content of 
that knowledge to ensure that it would in fact fix the bug. In addition, 
because the system has a model of its own knowledge, it is able to determine 
whether a newly added piece of knowledge "fits into" its existing knowledge 
base. 

A second contribution of the ideas reviewed above lies in their ability 
to support a number of intelligent actions on the part of the assistant. 
While those actions have been demonstrated for a single task and system, 
it should be clear that none of the underlying ideas are limited to this 
particular task or to associative triples or rules as a knowledge represen­
tation. The foundation for many of these ideas is the concept of meta-level 
knowledge, which has made possible a program with a limited form of 
introspection. 

The idea of model-based understanding, for instance, found a novel ap­
plication in the fact that TEIRESIAS has a model of the knowledge base 
and uses this to guide acquisition by interpreting the model as predictions 
about the information it expects to receive. 

The idea of biasing the set of models to be considered offers a specific 
mechanism for the general notion of program-generated expectations and 
makes possible an assistant whose understanding of the dialogue is more 
effective. 

TEIRESIAS is able to second-guess the expert with respect to the 
content of the new knowledge by using its models to see how well the new 
piece of knowledge ''fits into" what it already knows. An incomplete match be­
tween the new knowledge and the system's model of its knowledge prompts 
it to make a suggestion to the expert. With this approach, learning becomes 
more than simply adding the new information to the knowledge base; 
TEIRESIAS examines as well the relationship between the new and exist­
ing knowledge. 

The concept of meta-level knowledge makes possible multiple uses of 
the knowledge in the system: information in the knowledge base is not only 
used directly (during the consultation) but also examined and abstracted 
to form the rule models. 

TEIRESIAS also represents a synthesis of the ideas of model-based 
understanding and learning by experience. Although both of these have 
been developed independently in previous AI research, their combination 
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produces a novel sort of feedback loop (Figure 9-10). Rule acquisition relies 
on the set of rule models to effect the model-based understanding process. 
This results in the addition of a new rule to the knowledge base, which in 
turn prompts the recomputation of the relevant rule model(s). 10 

This loop has a number of interesting implications. First, performance 
on the acquisition of the next rule may be better because the system's 
"picture" of its knowledge base has improved-the rule models are now 
computed from a larger set of instances, and their generalizations are more 
likely to be valid. Second, since the relevant rule models are recomputed 
each time a change is made to the knowledge base, the picture they supply 
is kept constantly up to date, and they will at all times be an accurate 
reflection of the shifting patterns in the knowledge base. This is true as 
well for the trees into which the rule models are organized: they too grow 
(and shrink) to reflect the changes in the knowledge base. 

Finally, and perhaps most interesting, the models are not handcrafted 
by the system architect or specified by the expert. They are instead formed 
by the system itself, and formed as a result of its experience in acquiring 
rules from the expert. Thus, despite its reliance on a set of models as a 
basis for understanding, TEIRESIAS's abilities are not restricted by the 
existing set of models. As its store of knowledge grows, old models can 
become more accurate, new models will be formed, and the system's stock 
of knowledge about its knowledge will continue to expand. This appears 
to be a novel capability for a model-based system. 

10The models are recomputed when any change is made to the knowledge base, including 
rule deletion or modification, as well as addition. 



KNOWLEDGE _ (KNOWLEDGE ACQUISITION) ..... 
~ RULE ACQUISITION 

~(DIALOG) BASE 
EXPERT 

~~ 

~ 
RULE (MODEL-DIRECTED 

~ 

MODELS UNDERSTANDING) 
(CONCEPT 

FORMATION) 

FIGURE 9-10 Model-directed understanding and learning by experience combine to produce a useful feedback 
loop. 

N> 
Q 
(;I 



Reasoning Under 
Uncertainty 

PART FOUR 



10 
Uncertainty and Evidential 
Support 

As we began developing the first few rules for MYCIN, it became clear 
that the rules we were obtaining from our collaborating experts differed 
from DENDRAL's situation-action rules in an important way-the infer­
ences described were often uncertain. Cohen and Axline used words such 
as "suggests" or "lends credence to" in describing the effect of a set of 
observations on the corresponding conclusion. It seemed clear that we 
needed to handle probabilistic statements in our rules and to develop a 
mechanism for gathering evidence for and against a hypothesis when two 
or more relevant rules were successfully executed. 

It is interesting to speculate on why this problem did not arise in the 
DENDRAL domain. In retrospect, we suspect it is related to the inherent 
complexity of biological as opposed to artificial systems. In the case of 
DENDRAL we viewed our task as hypothesis generation guided by rule­
based constraints. The rules were uniformly categorical (nonprobabilistic) 
and were nested in such a way as to assure that contradictory evidence was 
never an issue. 1 In MYCIN, however, an overall strategy for nesting cate­
gorical rules never emerged; the problem was simply too ill-structured. It 
was possible to tease out individual inference rules from the experts work­
ing with us, but the program was expected to select relevant rules during 
a consultation and to accumulate probabilistic evidence regarding the com­
peting hypotheses. 

In response to these observations we changed the evolving system in 
two ways. First, we modified the rule structure to permit a conclusion to 
be drawn with varying degrees of certainty or belief. Our initial intent was 
to represent uncertainty with probabilistic weights on a 0-to- l scale. Sec­
ond, we modified the data structures for storing information. Rather than 
simply recording attribute-object-value triples, we added a fourth element 
to represent the extent to which a specific value was believed to be true. 
This meant that the attribute of an object could be associated with multiple 
competing values, each associated with its own certainty weight. 

1 In the model of mass spectrometry used by DENDRAL, the statistical nature of events is 
largely ignored in favor of binary decisions about occurrence or nonoccurrence of events. 

209 
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It was logical to turn to probability theory in our initial efforts to define 
the meaning of these certainty values. Bayes' Rule (or Bayes' Theorem) 
the traditional evidence-combining technique used in most medical diag­
nosis programs, provided a model for how the weights could be manipu­
lated if they were interpreted as probabilities. For reasons that are dis­
cussed in detail in the next chapter, we were gradually led to consider 
other interpretations of the numerical weights and to reject a purely prob­
abilistic interpretation of their meaning. 

Shortliffe was encouraged by Buchanan, as well as by Professors Pa­
trick Suppes and Byron Brown, who were on his thesis committee, to at­
tempt to formalize the numerical weights rather than to define and com­
bine them in a purely ad hoc fashion. There ensued many months of 
reading the literature of statistics and the philosophy of science, focusing 
on the theory of confirmation and attempting to understand the psycho­
logical issues underlying the assignment of certainty weights. Chapter 11, 
originally published in 1975, summarizes the formal model that ultimately 
emerged from these studies. The concept of certainty factors (CF's) was 
implemented and tested in MYCIN and became a central element of other 
EMYCIN systems that have been developed in the ensuing years. 

Another source of uncertainty in a knowledge base is the imprecision 
in language. Even though the vocabulary of medicine is technical, it is not 
without ambiguity. For example, one question asks whether the dosage of 
a drug given previously was "adequate." Rules use the answers given in 
response to such questions with the assumption that the user and the ex­
pert who wrote the rules agree on the meanings of such terms. What do 
we do to help satisfy this assumption? Rule writers are encouraged to 
anticipate the ambiguities when formulating their questions. They write 
the English forms of the TRANS and PROMPT values. Also, they can 
supply further clarification in the REPROMPT value, which is printed 
when the user types a question mark. MYCIN (and EMYCIN) provides 
facilities for experts to clarify their use of terms, but cannot guarantee the 
elimination of ambiguity. 2 

10.1 Analyses of the CF Model 

Although the motives behind the CF model were largely pragmatic and 
we justified the underlying assumptions by emphasizing the system's ex­
cellent performance (see, for example, Chapter 31), several theoretical ob-

~Fuzzy logic (Zadeh, 1978) quantifies the degree to which imprecise concepts are satisfied, 
thus adding another level of detail to the reasoning. For our purposes, it is sufficient to ask 
the user whether a concept, such as "adequateness," is satisfied-where an appropriate re­
sponse may be "Yes (0.7)." In fuzzy logic, a possibility distribution for the user's understanding 
of the concept "adequate" would be matched against a corresponding distribution for the 
rule writer's understanding. We believe this is an unnecessary layer of detail for the precision 
we want to achieve (or feel is justified by the precision of the information). 
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jections to the model were subsequently raised. Professor Suppes had been 
particularly influential in urging Shortliffe to relate CF's to the rules of 
conventional probability theory, 3 and the resulting definitions of MB's and 
MD's did help .us develop an intuitive sense of what our certainty measures 
might mean. However, the probabilistic definitions also permitted formal 
analyses of the underlying assumptions in the combining functions and of 
limitations in the applicability of the definitions themselves. 

For example, as we note in Chapter 11, the source of confusion be­
tween CF(h,e) and P(h/e) becomes clear when one sees that, for small values 
of the prior probabilities P(h), CF(h,e) = P(h/e). Our effort to ignore prior 
probabilities was largely defended by observing that, in the absence of all 
information, priors for a large number of competing hypotheses are uni­
formly small. For parameters such as organism identity, which is the major 
diagnostic decision that MYCIN must address, the assumption of small 
priors is reasonable. The same model is used, however, to deal with all 
uncertain parameters in the system, including yes-no parameters for which 
the prior probability of one of the values is necessarily greater than or 
equal to 0.5. 

The significance of the 0.2 threshold used by many of MYCIN's pred­
icates (see Chapter 5) was also a source of puzzlement to many observers 
of the CF model. This discontinuity in the evaluation function is not an 
intrinsic part of the CF theory (and is ignored in Chapter 11) but was 
added as a heuristic f(>r pruning the reasoning network. 4 If any small 
positive CF were accepted in evaluating the premise of a rule, without a 
threshold, two undesirable results would occur: 

I. Very weak evidence favoring a condition early in the rule premise would 
be "accepted" and would lead to consideration of subsequent conditions, 
possibly with resulting backward-chained reasoning. It is wasteful to 
pursue these conditions, possibly with generation of additional ques­
tions to the user, if the evidence favoring the rule's premise cannot 
exceed 0.2 (recall that $AND uses min in calculating the TALLY-see 
Chapters 5 and 11 for further details). 

2. Even if low-yield backward chaining did not occur, the rule would still 
have limited impact on the value of the current subgoal since the 
TALLY for the rule premise would be less than 0.2. 

:1suppes pressed us early on to state whether we were trying to model how expert physicians 
do think or how they ought to think. We argued that we were doing neither. Although we were 
of course influenced by information regarding the relevant cognitive processes of experts 
[see, for example, the recent books by Elstein et al. (1978) and Kahneman et al. (1982)), our 
goals were oriented much more toward the development of a high-performance computer 
program. Thus we sought to show that the CF model allowed MYCIN to reach good decisions 
comparable to those of experts and intelligible both to experts and to the intended user 
community of practicing physicians. 
1Duda ct al. ( 1976) have examined this discontinuity and the relationship of CF's to their 
Bayesian updating model used in the PROSPECTOR system. 
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Thus the 0.2 threshold was added for pragmatic reasons and should not 
be viewed as central to the CF model itself. In later years questions arose 
as to whether the value of the threshold should be controlled dynamically 
by the individual rules or by meta-rules (rather than being permanently 
bound to 0.2), but this feature was never implemented. 

Another important limitation of MYCIN's control scheme was noted 
in the mid-l 970s but was never changed (although it would have been easy 
to do so). The problem results from the requirement that the premise of 
a rule be a conjunction of conditionals with di~junctions handled by mul­
tiple rules. As described in Chapter 5, A V B V C -> D was handled by 
defining three rules: A ---> D, B ---> D, and C -> D. If all rules permitted 
conclusions with certainty, the three rules would indeed be equivalent to a 
single disjunctive rule with certain inference (CF= 1). However, with CF's 
less than unity, all three rules might succeed for a given case, and then 
each rule would contribute incremental evidence in favor of D. This evi­
dence would be accumulated using the CF combining function, that is, 
CFcoMBINE• and might be very different from the CF that the expert 
would have given if asked to assign a weight to the single disjunctive rule. 
This problem could have been handled by changing the rule monitor to 
allow disjunctions in a rule premise, but the change was never implemented 
because a clear need never arose. 

The rule interpreter does not allow rules to be written whose primary 
connective is disjunction ($OR). We have encouraged splitting primary 
disjunctions into separate rules for this reason. Thus 

[1] ($OR ABC)~ D 

would be written as three separate rules: 

[2] A~D 
[3] B ~ D 
[4] C ~ D 

Conceptually this is simple and straightforward. In some cases, however, 
the disjuncts are better understood as a set, and [ 1] would be a clearer 
expression than [2], [3], and [4]. In these cases, Carli Scott has pointed out 
that [l] can be rewritten as a primary conjunction wih only one clause: 

[5] ($AND ($OR A B C)) ~ D 

This uncovers a limitation on the CF model, however. While [5] should 
give the same results as [2], [3], and [4] together, the resulting CF's on 
conclusion D will differ. The reason is that in [5] the CF on the rule will 
be multiplied by the MAX of the CF's of the disjunction A, B, or C, while 
in [2], [3], and [ 4] the cumulative CF associated with D will be the result 
of combining three products according to the combining function. 5 

5It is possible to force them to give the same result by adjusting the CF's either on [5] or on 
[2), [3] and [4). We would not expect a rule writer to do this, however, nor would we think 
the difference would matter much in practice. 
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FIGURE 10-1 Family of curves showing how rapidly MY­
CIN's CF combining function converges for rules with the same 
CF. 
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Another limitation for some problems is the rapidity with which CF's 
converge on the asymptote 1. This is easily seen by plotting the family of 
curves relating the number of rules with a given CF, all providing evidence 
for a hypothesis, to the resulting CF associated with the hypothesis. 6 The 
result of plotting these curves (Figure 10-1) is that CF COMBINE is seen to 
converge rapidly on 1 no matter how small the CF's of the individual rules 
are. For some problem areas, therefore, the combining function needs to 
be revised. For example, damping factors of various sorts could be devised 

6This was first pointed out to us by Mitch Model, who was investigating the use of the CF 
model in the context of the HASP/SIAP program (Nii et al., 1982). 
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(but were not) that would remedy this problem in ways that are meaningful 
for various domains. In MYCIN's domain of infectious diseases, however, 
this potential problem never became serious. In PROSPECTOR this prob­
lem does not arise because there is no finite upper limit to the likelihood 
ratios used. 

As we were continuing to learn about the CF model and its implica­
tions, other investigators, faced with similar problems in building medical 
consultation systems, were analyzing the general issues of inexact inference 
(Szolovits and Pauker, 1978) and were in some cases examining shortcom­
ings and strengths of CF's. Later, Schefe analyzed CF's and fuzzy set theory 
(Schefe, 1980). Dr. Barclay Adams, a member of the research staff at the 
Laboratory of Computer Science, Massachusetts General Hospital, re­
sponded to our description of the MYCIN model with a formal analysis 
of its assumptions and limitations (Adams, 1976), included in this book as 
Chapter 12. The observations there nicely specify the assumptions that are 
necessary if the CF's in MYCIN's rules are interpreted in accordance with 
the probabilistic definitions from Chapter 11. Adams correctly notes that 
there may be domains where the limitations of the CF model, despite their 
minimal impact on MYCIN's performance, would seriously constrain the 
model's applicability and success. For example, if MYCIN had required a 
single best diagnosis, rather than a clustering of leading hypotheses, there 
would be reason to doubt the model's ability to select the best hypothesis 
on the basis of a maximal CF. 

Even before the Adams paper appeared in print, many of the same 
limitations were being noted within the MYCIN project. For example, in 
January of 1976 Shortliffe prepared an extensive internal memo that made 
several of the same observations cited by Adams. 7 He was aided in these 
analyses by Dana Ludwig, a medical student who studied the CF model in 
detail as a summer research project. The Shortliffe memo outlined five 
alternate CF models and argued for careful consideration of one that 
would require the use of a priori probabilities of hypotheses in addition to 
the conventional CF's on rules. The proposed model was never imple­
mented, however, partly due to time constraints but largely because 
MYCIN's decision-making performance was proving to be excellent despite 
the theoretical limitations of CF's. Some of us felt that a one-number cal­
culus was preferable in this domain to a more theoretically sound calculus 
that requires experts to supply estimates of two or more quantities per 
rule. It is interesting to note, however, that the proposals developed bore 
several similarities to the subjective Bayesian model developed at about the 
same time for SRI's PROSPECTOR system (Duda et al., 1976). The CF 
model has been used successfully in several EMYCIN systems (see Part 
Five) and in the IRIS system (Trigoboff, 1978) developed at Rutgers Uni­
versity for diagnosing glaucomas. 

7This is the file CF.MEMO referred to by Clancey in the exchange of electronic messages at 
the end of this chapter. 
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There is an additional element of uncertainty in rules that is also 
bound up in the CF's. Besides capturing some measure of increased prob­
ability associated with the conclusion after the premises are known and 
some measure of the utility associated with the conclusion, the CF also 
includes some measure of how "flaky" the rule is. That is, a CF of 0.2 can 
indicate that the probability increases by 20% (rather precisely) or that the 
rule writer felt there was a positive association between premises and con­
clusion but was only 20% certain of it. Some rule writers would be able to 
quantify their degree of doubt about the CF's (e.g., "I am about 90% certain 
that this strength of association is 0.5''), but there is no provision in our 
CF model for doing so. In most cases where increased precision is possible, 
rule writers would have prior and posterior probabilities and would not 
need a one-number calculus. 

Despite the shortcomings of the CF model, it must be recognized that 
the issues we were addressing reflected a somewhat groping effort to cope 
with the limitations of probability theory. It has therefore been with con­
siderable interest that we have discovered in recent years the work of 
Dempster and Shafer. Shafer's book, The Mathematical Theory of Evidence, 
appeared in 1976 and proposed solutions to many of the same problems 
being considered in the MYCIN work. Several aspects of the CF model 
appear as special cases of their theory. Interestingly, Bayesian statistics is 
another special case. Our recent attempt to understand the Dempster­
Shafer model and its relevance to MYCIN is described in Chapter 13. This 
work, the most recent in the book, was largely done by Jean Gordon, a 
mathematician who recently joined our group when she came to Stanford 
as a medical student. Because of new insights regarding the topics under­
lying CF's and the relationships to probabilistic reasoning, we have chosen 
to include that analysis in this volume even though we have not imple­
mented the ideas in the program. 

10 2 Evolution of the CF Model • 

Although the model described in Chapter 11 has persisted to the present 
for the MYClN program, and for other EMYCIN systems (see Part Five), 
a few revisions and additional observations have been made in the inter­
vening years. The only major change has been a redefinition of the com­
bining function by Bill van Melle. This was undertaken for two reasons: 

I. the potential for a single piece of negative evidence to overwhelm sev­
eral pieces of positive evidence (or vice versa); and 

2. the computational expense of storing both MB's and MD's (rather than 
cumulative CF's) in order to maintain commutativity. 
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The second of these points is discussed briefly in Chapter 11, but the first 
may require clarification. Consider, for example, eight or nine rules all 
supporting a single hypothesis with Cf's in the range 0.4 to 0.8. Then the 
asymptotic behavior of the cumulative MB would result in a value of about 
0.999. Suppose now that a single disconfirming rule were to succeed with 
CF = 0.8. Then the net support for the hypothesis would be 

CF= MB - MD= 0.999 - 0.8 = 0.199 

This behavior was counterintuitive and occasionally led MYCIN to reach 
incorrect inferences, especially in situations where the final CF after tracing 
became less than 0.2. This would drop the final belief below the established 
threshold. Hence a single piece of negative evidence could overwhelm and 
negate the combined evidence of any number of supporting rules. 

As a result, we changed both the definition of a CF and the corre­
sponding combining function to soften the effect: 

CFcoMBINE(X,Y) 

MB - MD 
CF=---·---

1 - min(MB,MD) 

1 

X + Y(l - X) 

X+Y 
1 - min(IXI, IYI) 

-CFcoMBINE( - X, -Y) 

X, Y both> 0 

one of X, Y < 0 

X, Y both< 0 

Note that the definition of CF is unchanged for any single piece of evidence 
(where either MD or MB is zero by definition) and that the combining 
function is unchanged when both Cf's are the same sign. It is only when 
combining two Cf's of opposite sign that any change occurs. The reader 
will note, for example, that 

CF COMBINE(O. 999, - 0.80) 0.199/0.2 0.99 

whereas 

CF COMBINE(0.55, - 0.5) = 0.05/0.5 = 0.1 

In addition, the change in CFcoMBINE preserved commutativity without 
the need to partition evidence into positive and negative weights for later 
combination. Thus, rather than storing both MB and MD for each hy­
pothesis, MYCIN simply stores the current cumulative CF value and com­
bines it with riew evidence as it becomes available. Beginning in approxi­
mately 1977 these changes were incorporated into all EMYCIN systems. 
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} 0.3 Assessing the CF Model 

Even before the change in the combining function was effected, we had 
observed generally excellent decision-making performance by the program 
and therefore questioned just how sensitive MYCIN's decisions were to the 
CF's on rules or to the model for evidence accumulation. Bill Clancey (then 
a student on the project) undertook an analysis of the CF's and the sensi­
tivity of MYCIN's behavior to those values. The following discussion is 
based in large part on his analysis and the resulting data. 

The CF's in rules reflect two kinds of knowledge. In some cases, such 
as a rule that correlates the cause of meningitis with the age of the patient, 
the CF's are statistical and are derived from published studies on the in­
cidence of disease. However, most CF's represent a mixture of probabilistic 
and cost/benefit reasoning. One criticism of MYCIN's rules has been that 
utility considerations (in the decision analytic sense) are never made explicit 
but are "buried" in a rule's CF. For example, the rule that suggests treating 
for Pseudomonas in a burned patient is leaving out several other organisms 
that can also cause infection in that situation. However, Pseudomonas is a 
particularly aggressive organism that often causes fatal infections and yet 
is resistant to most common antibiotics. Thus its "weight" is enhanced by 
rules to ensure that it is adequately considered when reaching therapy 
decisions. 8 Szolovits and Pauker ( 1978) have also provided an excellent 
discussion of the issues complicating the combination of decision analytic 
concepts and categorical reasoning in medical problems. 

Figure 10-2 is a bar graph showing how frequently various CF values 
occur in MYCIN's rules. All but about 60 of the 500 rules in the most 
recent version of the system have CF's. 9 The cross-hatched portion of each 
bar shows the frequency of CF's in the 1975 version of MYCIN, when 
there were only 200 rules dealing with bacteremia. The open portion of 
each bar refers to the CF's of incremental rules since that time, most of 
which deal with meningitis. The overall pattern is about the same, although 
the more recent system has proportionally more small positive CF's. This 
makes sense because the newer rules often deal with softer data (clinical 
evidence) in contrast to the rules for bacteremia, which generally interpret 

8Self~referencing rules, described in Chapter 5, were often used to deal with such utility 
considerations. As mentioned in Chapter 3, they allowed dangerous organisms, initially sug­
gested with only minimal certainty, to be reconsidered and further confirmed by special 
evidence. For example: if you are already considering Pseudomonas and the patient has ecthyma 
gangrenosum skin lesions, then there is even greater importance to the conclusion that the 
pathogen is Pseudomonas. 
9The rules without Cf's do not associate evidence with hypotheses but make numerical com­
putations or save a text string to be printed later. Note also that some rules, particularly 
tabular rules, make many conclusions and thus account for the fact that there are more CF's 
than rules. 
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FIGURE 10-2 Frequency of CF's in MYCIN's rules. Cross· 
hatched bars indicate frequencies for the 1975 version of MY­
CIN. Open bars show frequencies since then. 
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more concrete laboratory results. The bimodal distribution with peaks at 
0.8 and 0.2 (ignoring for a moment those rules, often definitional, that 
reach conclusions with certainty) suggests that experts tend to focus on 
strong associations ( + 0.8, a number that might seem less binding than 0.9) 
and many weak associations ( + 0.2, the minimum CF that will allow the 
inferred parameter to exceed the threshold for partial belief). In contrast 
there are relatively few rules with negative CF's. We suspect this reflects 
the natural tendency to state evidence in a positive way. 

Analysis of MYCIN's reasoning networks suggests that the program 
should not be very sensitive to changes in rule CF's. This conclusion is 
based on two observations about how CF's are actually used in the program. 
First, inference chains are short, and premises often pass a TALLY of 1.0 
to the conclusion (see Chapter 5), so the effect of multiplying CF's from 
one step in the chain to the next is minimal. Second, conclusions are fre­
quently made by only a single rule, thereby avoiding the use of CFcoMBINE 
for all but a few key parameters. Observe that the first effect deals with 
combination of CF's from goal to goal (by passing a value from a rule 
premise to the conclusion) and the second deals with combination of evi­
dence for a single goal. 

Intrigued by observations such as those outlined above, Clancey en­
listed the assistance of Greg Cooper, and in 1979 they undertook an ex­
periment to determine quantitatively how sensitive MYCIN is to changes 
in rule CF's. The ten cases used in the formal evaluation of the meningitis 
rule set (see Chapter 31) were used for this study. The cases were run in 
batch mode using systematic variations of the CF's in MYCIN's rules. For 
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Number of cases (out of JO) 

Number Same Different Different 
of organisms organisms organisms 

intervaL1 and therapy and therapy 

IO 9 I 0 
5 7 3 0 
4 8 2 I 
3 5 5 I 
2 9 3 

FIGURE 10-3 Results of CF sensitivity experiment. 

each run, rules were modified by mapping the existing rule CF's onto a 
new, coarser scale. The original CF scale has 1000 intervals from 0 to 
1000. 10 Trials were run using ten, five, four, three, and two intervals. Thus, 
when there are five intervals, all rule CF's are mapped onto 0, 200, 400, 
600, 800, and 1000, rounding as necessary. When there are two intervals, 
only the numbers 0, 500, and 1000 are used. 

CF's were combined using the usual combining function (the revised 
version that was in use by 1979). Thus intermediate conclusions mapped 
onto arbitrary numbers from 0 to 1000. Clustering the final organism list 
was done in the normal way (cutting off at the largest gap). Finally, negative 
CF's were treated analogously, for example, mapping onto 0, - 333, - 666, 
and - 1000 when there were three intervals. 

In examining results, we are interested primarily in three possible 
outcomes: (l) no change to the item list (and hence no change in therapy); 
(2) different organisms, but the same therapy; and (3) new therapy (and 
therefore different organisms). Figure 10-3 summarizes the data from the 
ten cases run with five different CF scales. 

Degradation of performance was only pronounced when the number 
of intervals was changed to three (all rule CF's mapped onto 0, 333, 666, 
and 1000). But even here five of the ten cases had the same organism list 
and therapy. It wasn't until CF's were changed to 0, 500, and 1000 that a 
dramatic change occurred; and even with nine new organism lists, we find 
that seven of the ten cases had the same therapy. The fact that the organism 
list did not change radically indicates that MYCIN's rule set is not "fine­
tuned" and does not need to be. The rules use CF's that can be modified 
by ± 0.2, showing that there are few deliberate (or necessary) interactions 
in the choice of CF's. The observed stability of therapy despite changing 
organism lists probably results because a single drug will cover for many 
organisms, a property of the domain. 

10CF's are handled internally on a 0 to 1000 scale to avoid floating-point arithmetic, which is 
more expensive in Interlisp than is integer arithmetic. 
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10.4 Additional Uses of Certainty Factors 

By the early 1980s, when much of our research was focusing on issues 
other than EMYCIN systems, we still often found CF's to be useful com­
putational devices. One such example was the work of Jerry Wallis, de­
scribed in detail in Chapter 20. His research modeled causal chains with 
rules and used CF's to represent the uncertainty in the causal links. Because 
his system reasoned both from effects to causes and from causes to effects, 
techniques were needed to prevent fruitless searching of an entire con­
nected subgraph of the network. To provide a method for search termi­
nation, the concept of a subthreshold path was defined, i.e., a path of 
reasoning whose product of CF's can be shown to be below the threshold 
used to reject a hypothesis as unknown. For example, if there is a linear 
reasoning path of four rules (RI, R2, R3, and R4) where A can be asked 
of the user and E is the goal that initiated a line of backward-chained 
reasoning: 

R1 R2 
B 

___ ..., c 
.4 

A 
.8 

R3 

.7 
D 

R4 
----• E .7 

then if B were known with certainty, E would be known only with a CF of 
(0.4)(0. 7)(0. 7) = 0.19. This is less than the conventional cutoff of 0.2 used 
in EMYCIN systems, so the line of reasoning from B to E would be con­
sidered a subthreshold path. There is no need to invoke rule Rl and ask 
question A in an effort to conclude B because the result cannot affect the 
final value for the variable E. If the product of CF's is tabulated during 
the backward-chaining process, the accumulated value provides a method 
for limiting the search space that needs to be investigated. 

In a branched reasoning tree this becomes slightly more complex. Nor­
mally, when a rule is used to conclude a value with a particular CF, that 
number is stored with the parameter's value in case it is later needed by 
other rules. In the example above, termination of the search from E back 
to A (due to the subthreshold condition at B) would have left the value at 
C "unknown" and might have left a CF of 0 stored at that node. Suppose, 
though, that another rule, R5, later needed the value of C because of 
consideration of goal F: 
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It would be inappropriate to use the unknown value of C stored from the 
previous inference process, for now it would be appropriate to back-chain 
further using RI (the higher CF of 0.9 associated with RS, compared to 
the composite CF of 0.49 associated with the chaining of rules R3 and R4, 
keeps the path to A from being subthreshold this time). Thus, if one wants 
to use previous results only if they are appropriate, it is necessary to store 
the "vigor" with which a value was investigated along with its CF. Wallis 
proposed that this be computed by multiplying the CF's from the goal (in 
this case E) through the value in question. Then, when a node is investi­
gated for a second time via an alternate reasoning chain, this measure of 
vigor, or investigation strength, can be used to determine whether to inves­
tigate the node further. If the stored investigation strength is greater than 
the investigation strength of the new reasoning chain, the old value can be 
used. Otherwise the backward-chaining process must be repeated over a 
larger portion of the search space. 

Although there is further complexity in these ideas developed by Wal­
lis, the brief discussion here shows some of the ways in which concepts 
drawn from the CF model have been broadened in other settings. Despite 
the theoretical limitations discussed above and in the subsequent chapters, 
these concepts have provided an extremely useful tool for dealing with 
issues of inexact inference in the expert systems that we have developed. 

} 0.5 An Electronic Exchange Regarding CF's 

We close this chapter with a series of informal electronic mail messages 
that were exchanged by some members of our research group in 1976 
(Carli Scott, Bruce Buchanan, Bill Clancey, Victor Yu, and Jan Aikins). 
Victor was developing the meningitis rule set at the time and was having 
frequent problems deciding what CF's to assign to individual rules and 
how to anticipate the ramifications of any decisions made. The messages 
are included in their entirety. Not only do they provide insight into the 
way that our ideas about CF's evolved through a collaborative effort over 
many years, but they are also representative of the kinds of dialogues that 
occurred frequently aniong members of the project. Because many of the 
ideas in this book evolved through such interchanges, we felt it was ap­
propriate to provide one verbatim transcript of a typical discussion. The 
ideas expressed were fresh at the time and not fully worked out, so the 
messages (and Clancey's closing memo) should be seen as examples of 
project style rather than as an exposition of the "last word" on the topics 
discussed. 
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Date: 26 Feb 1976 
From: Scott 
Subject: Summary of discussion 
To: MYCIN gang 

This is a summary of what I think came out of yesterday's meeting. Please 
read it and send me comments, objections, etc. 

l) Victor [Yu] has assigned certainty factors to his rules based on the 
relative strengths of the evidence in these rules. While trying to find a nu­
merical scale that would work as he wanted it to with the system's 0.2 cutoff 
and combining functions, he had to acljust certainty factors of various rules. 
Now that this scale has been established, however, he assigns certainty factors 
using this scale, and does NOT adjust certainty factors of rules if he doesn't 
like the system's performance. Furthermore, he does NO combinatorial anal­
ysis before delermining what CF to use; he is satisfied that using the scale he 
has devised, the system's combining function, and the 0.2 cutoff, the program 
will arrive at the right results for any combination of factors, and if it doesn't, 
he looks for missing information to add. 

2) Assuming that the parameters !DENT and COVERFOR are disam­
biguated in Victor's set of rules, Ted [Shortliffe] believes the CF's that Victor 
uses in his rules, and approves of the idea of using a cutoff for COVERFOR 
since this is what we've been doing with bacteremia (since it is a binary de­
cision, a cutoff makes sense for COVERFOR). Furthermore, this is quite 
similar to what clinicians do: they accumulate lots of small bits of clinical 
evidence, then decide if the total is enough to make them cover for a partic­
ular organism-independent of what the microbiological evidence suggests. 

3) Bruce [Buchanan] and BC [Bill Clancey] still object to Victor's CF's 
because they seem too precise (since he is working in the 0 to 0.2 range). My 
claim is that he really isn't making numbers more precise, the difference in 
CF's from one strength to the next is 0.05 (i.e., the classes of rules he has are 
assigned CF's 0.05, 0.1, 0.15, 0.2, 0.25, ... ). This is no finer a distinction than 
we've had in the past-we have rules with CF 0.2, 0.25, 0.3, 0.35. I don't see 
why the smaller absolute values of the CF's Victor uses makes much differ­
ence; the rules have much smaller strengths than any rules we've had before, 
so they should have smaller CF's. 

4) There seems to be concern because Victor believes in his CF's, and 
relies on them to combine in the right way. In the past, we never dealt with 
this type of accumulation of small bits of information that would combine to 
give either enough total info or not (though I believe CF's were designed to 
handle just such combinations). Since Victor has defined guidelines on de­
ciding how strong the evidence must be in order for a rule to be assigned a 
certain CF, and since he has tested these guidelines within the framework of 
MYCIN's combining functions, he believes that it all works as it should. Fur­
thermore, he believes that he can define these "points of reference" so that 
future medical people can add rules, using the same guideline that Victor 
has used, and they should fit into the system and work fine with his rules. 

5) I am satisfied with what Victor is doing, and would like to try Ted's 
suggestion of separating COVERFOR from !DENT in Victor's system. I be­
lieve the result of this would be that the program would continue to perform 
very well on meningitis patients, and Ted, Victor, (I believe) Larry [Fagan], 
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and I would all be happy with the results. I think points (3) and (4) above 
sum up other people's objections that might remain. If this is so, what are 
suggestions from people who still aren't happy with the model? Is everyone 
satisfied with everything now? Are there more objections that I missed? Have 
I completely misunderstood something? Have I completely misunderstood 
everything? Please let me know what you think so we can start to work out 
problems that might remain. 

Date: 27 Feb 1976 
From: Buchanan 
To: MYCIN gang 

Carli, 

Carli 

Thanks for your summary-it appears to be correct in almost every de­
tail. I would like you to try separating COVERFOR and IDENT as soon as 
possible since that is needed for bacteremia anyway and is a help in clarifying 
the conceptual basis on which the program makes a recommendation. I also 
think that everyone will be happy with the results, especially me if it brings 
the knowledge bases into a common framework. 

My concern is I would also like you to begin working on the rerepresen­
tation of the context tree to help us with time relations and the infection­
organism link. As Ted described it, you and he have pretty well worked things 
out. Because it is necessary for the FOREACH 11 mechanism and is desirable 
for many other reasons, I would like us not to delay it. Do you see problems 
with this? 

As I tried lo say yesterday, my reservations with the meningitis system 
stem from my uneasiness with the CF model, which we all know needs im­
proving (which Pacquerette [a visiting student from France] was starting, but 
won't finish). I don't want Victor to become dependent on a particular mech­
anism for combining Cf's-because we hope the mechanism will be improved 
soon. I have no doubt that the rules work well now, and I don't disagree at 
all with the need for firm reference points for the CF's. 

As soon as COVERFOR and IDENT are separate, could you try the 
meningitis patients again, enlisting whatever help you need? Then we'll be 
able to decide whether that meets all our specs. After that we can be working 
on the context tree and time problems while Victor continues development 
on the medical side. I foresee no difficulty in mapping the CF's from existing 
rules (meningitis as well as bacteremia) into whatever numbers are appro­
priate for a new CF model when we have one-with firm reference points if 
at all possible. 

Bruce 

PS: I think a reference point for defining how strongly suggestive some 
evidence is for a conclusion is easier when almost all conclusions are about 
identities of organisms that should be treated for. In bacteremia the rules 
conclude about so many different things that it is harder-but no less desir-

11 FOREACH is a quantification primitive in rules. 
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able-to be precise about what "weakly suggestive" and "strongly suggestive" 
mean. 

Date: 27 Feb l 976 
From: Clancey 
To: MYCIN gang 

Your summarization of the meeting was excellent. Here I will go into 
more detail about the problem with Victo1·'s choice of certainty factors. 

Your claim that Victor's preciseness in selecting CF's is not different from 
the distinctions made in the past ignores my wariness about the RANGE in 
which he is being precise. Your examples (0.25, 0.3, 0.35) are greater than 
0.2, the range in which I showed that the current system is insensitive to even 
large variation of the CF's chosen. (That is, a change in the range of ± 0.2 
does not affect system performance (rule invocation and success), as long as 
the numbers are > 0.2.) The area in which Victor is working which is both­
ersome is <0.2 (your examples: 0.05, 0.1, 0.15, 0.2). What Bruce was saying, 
I believe, was that accumulation of evidence in this area is going to affect 
very much the invocation and success of rules. It is in this range that 
CHANGES to the CF of a rule for purposes of adjusting system performance 
violate the principle of a rule being a modular, independent chunk of knowl­
edge. 

Now, first, Victor tells us that he does not make these adjustments.Rather, 
he is assigning numbers according to a consistent scale about belief which he 
has devised in his subdomain. I am very pleased to hear this, and am in full 
agreement with his claim that such a scale is necessary and should be defined 
for ALL rules in MYCIN. 

What remains disturbing is the certainty factor model itself. Here we 
have no sure intuition about the performance meaning of 0.05 as opposed 
to O. l, yet we are assigning them as if they were significantly different from 
one another. It is clear to everyone working on the CF model, I believe, that 
we need a combining function that will make use of these numerical repre­
sentations of subjective distinctions. For example, I would expect a good 
model to take as many pieces of O. l evidence as Victor deems significant, i.e., 
makes a condition (parameter value) "true," and bumps the conglomeration 
above 0.2. The problem here is that I DO NOT expect Victor or anyone to 
be able to assign facts a weighting that is independent of the entire context. 
That is, the 0.1 that comes from Rule 371 for CATEGORY FUNGUS may 
combine (in Victor's mind) with the conclusion in Rule 372 of the same value 
to give a feeling of the CATEGORY ACTUALLY BEING FUNGUS >0.2, so 
SAME succeeds. But perhaps the same CF value combination coming from 
Rule 385 DOES NOT make for belief in the conclusion (NOT >0.2). It seems 
entirely conceivable in my mind that Victor would find some combination of 
rule successes to be completely nonsensical. So, he would not know what to 
make of it at all, and would almost certainly not make the same conclusions 
as he would if he looked at each set of premise clauses independently. 

I am saying here that rules that break observations into many small parts, 
resulting in CF's <0.2 intended to combine to form an accumulated obser­
vation, ignore the total perspective, which says, "Hey, wait a minute, these 6 
clauses can't appear together: why was she given corticosteroids if she has 
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XX? This doesn't mean FUNGUS to me; no, I want to know why that pre­
scription was made." This same criticism does not apply with the same force 
to many rules with CF >0.2 because they bring together a "more significant 
set of facts." They do this by capturing (often disjoint) pictures of the world 
that in themselves MAKE SENSE. I do not at all understand how a rule can 
be written that can at once stand on its own and yet NOT be significant truth 
(i.e., believable observation, tangible conclusion). It is my suspicion that Vic­
tor has not built a system in which EVIDENCE combines plausibly, but rather 
a system in which independent rules SUCCEED TOGETHER to make a 
conclusion that could be expressed as a single rule, and WOULD have to be 
expressed that way to have a CF > 0.2. 

Now, Victor has said that he could have combined these ruleslto give a 
body of rules in which these same small observations appear together, thus 
yielding larger CF's. However, he believes that this would result in far more 
rules (to allow for the cross product of occurrences), and he would not be 
sure that he had covered all of the possible cases. Well, certainly, with respect 
to the latter, we can tell him if the larger set covers all of the various com­
binations. The question of having far more rules is, I suppose, a valid con­
cern. But at least then we could feel sure that only the PLAUSIBLE obser­
vations had been combined. 

To summarize, we talk about accumulating "lots of small bits of clinical 
evidence," but I do not understand how a bit of EVIDENCE could be NOT­
KNOWN (the definition of CF < = 0.2). To me, evidence gathered by a rule 
should be an all-or-nothing thing-if something more is needed to make the 
parameter KNOWN [i.e., CF > 0.2], then I expect that there is something 
to be made explicit in the rule. This is the only way in which I can interpret 
the notion of a discrete cutoff at 0.2. Above that point I know something; 
below it I know nothing (NOTKNOWN). The only plausible explanation I 
have for Victor's small CF's is that they are like tags that record an observa­
tion. It would make me much happier to see each of these CF's changed to 
NOTICED P, with definite ( = I) CF's. Then these parameters could be com­
bined with evidence garnered from lab rules. 

I would be happy to hear other opinions about the 0.2 cutoff and its 
meaning for rule CF's. 

Date: 28 Feb 1976 
From: Aikins 
Subject: On Wednesday's meeting 
To: MYCIN gang 

Bill 

There are three things that I feel we should consider in our discussions 
that have not yet been mentioned. The first is a concern about knowledge 
acquisition. I feel that whatever we decide, the MYCIN acquisition module 
should be designed so that a recognized medical expert could, without too 
1!1uch difficulty, add a new rule or other piece of knowledge to the MYCIN 
data base. I wonder if a doctor in Boston would be able to add a meningitis 
rule to MYCIN without hurting the performance of Victor's system. I got 
the impression that Victor's system was somewhat fragile in this regard. I 
doubt that he would want to give up the ability to easily add medical know!-
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edge to MYCIN. I fear that we would be doing just that. (This problem 
includes the question of maintaining rule modularity.) 

My second concern is that even if we can define fairly well what we mean 
by 0.7, 0.5, anything above 0.2, 0.2, etc., it seems that the next problem will 
be to define 0.25, 0.225, 0.175, 0.5, etc. We could continue this defining of 
CF's in smaller and smaller intervals forever. However, I doubt that medical 
science is exact enough for us to be able to do this. 

This brings us to my third concern. In my recent meeting with Dr. Ken 
Vosti [a professor in Stanford's Division of Infectious Diseases], he stated a 
problem, already familiar to most of us, that even if we could reach agree­
ment among the infectious disease experts at Stanford as to the "right" CF's 
to put on our rules, the infectious disease experts on the East Coast and other 
places would probably not agree with us. Now let's take this one step further. 
Say we are able to assign fairly straightforward meanings to our CF's. Now 
we have the problem of a doctor in some other part of the country who 
doesn't want to use MYCIN because our CF's don't agree with what he would 
use. In other words, by defining our CF's at all rigorously, we're inviting 
disagreement. So, concerns two and three are saying that we can never define 
each number on the 0 to 1.0 scale, and if we could, that might not be such 
a good idea anyway. 

I have no solutions to offer at this time, but I hope everyone will keep 
these concerns in mind. I feel that CF's are designed to give doctors who 
read and write the rules a certain "commonsense referent" as to how valid 
the rule might be. If CF's become more important than that, I fear we will 
use too much of our medical expertise in deciding on the "right" CF for each 
rule, time that could be used to add more medical knowledge to the MYCIN 
data base. 

Date: 29 Feb 1976 
From: Yu 
Subject: On Wed. meeting and Clancey 
To: Clancey, Scott 
cc: MYCIN gang 

Bill, 

Jan 

1. Why is the system insensitive to CF? Certainly, this is not true for the 
meningitis rules. 

2. Your point about plausible situations is a good one, and deserves fur­
ther amplification and discussion. The reason I have "separated" the number 
of premises that in the bacteremia rules would have been combined is that I 
believe they are independent premises. I don't believe I ever said the reason 
for separating them is to avoid having too many rules; the reason for sepa­
rating them is to cover a number of subtle clinical situations that would 
otherwise not have been considered. More on this later. 

3. Finally, I should add that the 0.2 cutoff was selected because it is the 
one being used for SIGNIFICANCE and I thought it would best mesh with 
the current system. I must admit that I am surprised at the furor it has 
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evoked; if you wish to use some other cutoff, that's fine with me-the CF's 
could be easily adjusted. 

4. I didn't understand a few of the points you raised, so I look forward 
to the next meeting. 

Finally, I should say that the system that I have proposed is not meant 
in any way to replace the current bacteremia rules; it was merely a simple, 
practical way to handle meningitis. I did not feel the approach used in bac­
teremia was precise enough to handle meningitis. 

Victor 

Date: 29 Feb 1976 
From: Yu 
Subject: On Wed. meeting and Aikins 
To: Aikins, Scott 
cc: MYCIN gang 

Jan, 

I. You state that we are g1vmg up the ability to "easily" add rules to 
MYCIN. Certainly, it is currently "easy" to add new rules to MYCIN; 
however, it is not so "easy" to rationalize, justify, and analyze these 
new rules. Furthermore, it becomes "difficult" when the system starts 
giving incorrect therapy after these new rules have been added. 

2. I believe a doctor in Boston would have an "easier" task of adding 
new meningitis rules, as compared to bacteremia rules. He now has 
some reference points and definite guidelines on how a rule should 
be written. Again, the rule is more likely to be compatible with the 
existing system, since the new rule is written along the same guidelines 
and same philosophy. This is not the case with the bacteremia rules 
where it is likely and even probable that any new rule written by a 
non-MYCIN person could cause the system to malfunction. 

3. I have not attempted to specifically define every increment between 
CF's. 

4. I need not remind all of us that we are dealing directly with human 
lives. If another M.D. on the East Coast disagrees with our CF's and 
has data (be it strong or weak) as the basis for his disagreement, then 
we had better know about it. I claim that one of the advantages of 
specific criteria for CF's is that this "invites disagreement" (or to put 
it another way-critical analysis of the rules by non-MYCIN experts 
is possible). 

5. What is this mystical "commonsense referent" that you have men­
tioned? (Likewise, Ted has stated that physicians would PROBABLY 
agree fairly closely on the CF's currently in MYCIN. If this is true, 
then my arguments for preciseness are invalid and unnecessary.) 

6. Your last point concerning using too much time and effort on the CF 
question, when we could be adding more medical knowledge-I will 
merely refer you to Matthew: Chapter 7, verses 24-27. 

Cheers, 
Victor 
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Date: 1 Mar 1976 
From: Clancey 
Subject: More about certainty factors and a reply to your message 
To: Yu 
cc: MYCIN gang 

Thanks for commenting on my remarks on CF's. I am well aware that 
my observations suffered from vagueness. As you might expect, this was just 
a first-shot approach to issues that have been bothering me. I am now pre­
paring a paper that discusses rule modularity. I believe that you will find that 
it clarifies my arguments from last week. Briefly, I see now that the problem 
is not so much with the CF's you have proposed, but is instead a general issue 
concerning all rules. 

As for the furor, as far as I am concerned, your rules have the precise 
property I predicted last August would not occur, namely, small CF's. What 
will come of this discussion, I believe, is primarily a better understanding of 
rules. More on this later in the week. 

I will now briefly reply to your numbered remarks: 

1. You will notice that I said the system was insensitive to variations in 
CF>0.2 in so far as rule success and invocation are concerned. This 
excludes calculations that use CF's in percentage cutoffs. Do you have 
other sensitivities in mind? 

2. It was Larry who told me that you wanted to form a large rule set 
from the combinations of these rules. Perhaps this was only the gist 
of a side argument that centered on allowing for all cases. I look 
forward to hearing about these "subtle clinical situations that would 
otherwise not be covered." 

3. I have no problem with the 0.2 cutoff, per se. 

3 March 1976 
From: Clancey 
Subject: Modularity of rules 
To: Yu 
cc: MYCIN gang 

Bill 

I have completed a write-up of my understanding of what we 
mean by rule independence. I consider this useful as a tutorial to those who 
perhaps have not fully appreciated the significance of the constraint 
P(el & e21 h)=P(ellh)*P(e2lh), which is discussed in several of Ted's write­
ups on the relation of CF's to probabilities. 

For those of you for whom this is old hat by now, I would appreciate it 
if you would peruse my memo and let me know if I've got it straight. 

I've expanded the discussion of plausibility of rule interaction here also. 
This appears to be an issue worth pursuing. 

The memo is CF.MODULAR on my directory. It is about 3 pages long. 

Bill Clancey 
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<CLANCEY>CF.MODULAR. l 

I. Introduction 
This memo arose from my desire to understand rule CF's of less than 

the 0.2 threshold. How could such a rule be evidence of something? Does a 
rule having a CF less than 0.2 pose any problems to the process of combining 
certainty factors? What does it mean to say that a rule is modular? Must a 
rule satisfy some property relating to its certainty factor to be considered 
modular? 

After thinking out all of these problems for myself, I re-examined our 
publications in the light of my new understanding. Alas! The ideas discussed 
below have long been known and were simply overlooked or undervalued by 
me. Indeed, I suspect that most of us have to some degree failed to appreciate 
Ted's thesis, from which I will be quoting below. 

II. What Is Modularity? 
The following is a restatement of one requirement for rule indepen­

dence. As Ted discusses in CF.MEMO, it is a necessary assumption 
for our combining functions to be consistent with probability theory, namely: 
P(el & e2Jh) = P(e1Jh)*P(e2Jh), and the same for -h (e=premise and h= 
action of rule). 

Let {Ri} be a subset of the UPDATED-BY rules for some parameter P, 
all of which mention the same value for Pin the conclusion, namely VALUEP, 
though perhaps with different certainty factors. (If P is a yes-no parameter, 
then this set contains all of the UPDATED-BY rules.) Now let P! be the power 
set of R, and for every element of P!, let PREMi designate the union of the 
premises of all rules Rj in the power set element i. 

Now for every PREMi that is logically consistent (no subset of premises 
is unsatisfiable), it must be the case that the CF applied to the new rule 
PREMi-+VALUEP is given by the combining function applied over all rule 
CF's in the power set element. If so, we can say that these original rules are 
independent logically and so can contribute evidence incrementally, regard­
less of the pattern of succession or failure of the set. 

This is a requirement for rule modularity. It can also be shown [working 
from assumption 9 of the memo: P(el & e2) = P(el)*P(e2)] that premises 
must be independent "for ALL rules dealing with a clinical parameter re­
gardless of the value specified (e.g., all rules that conclude. anything about 
the identity of an organism). This assumption is generally avoided by Baye­
sians. I have not examined our rules closely with this assumption in mind, 
but I suspect we may discover several examples of nonindependent PREM­
ISES" (Shortliffe, CF.MEMO). This is a generalization of the above restric­
tion, which I believe is more intuitive. 

It is worth reviewing at this time some of the related restrictions on rules 
and CF's mentioned in Ted's thesis. 

A. Given mutually exclusive hypotheses hi for an observation e, the sum 
of their CF's, CF(hi,e), must not exceed I. (From CF.MEMO, page 7: "We 
often find that this rule is broken.") 

B. "We must insist that dependent pieces of evidence be grouped into 
single rather than multiple rules." 

C. "The rule acquisition procedure requires a screening process to see if 
the new rule improperly interacts with other rules in the knowledge base." 
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Some of the consistency checks led discusses are subsumption and rule con­
tradictions. 

III. Understanding Modularity 
I did not fully appreciate these problems, even after several readings 

over the past year, until I worked out an example containing nonindependent 
rules. 

Example: Consider the following rules having CF's that I believe to be 
valid. The rules would be used in a consultation system for deciding whether 
or not to carry an umbrella. 

Rule A: If the weatherman said that there is a 20% chance of rain today, 
then I expect it to rain today (0.1). 

Rule B: If it is summer, then I expect it to rain today (- 0.9). 
Rule C: If there are many clouds, then I expect it to rain today (0.1 ). 

Now let these rules succeed in various combinations: 

Power set element 
A&B&C 

A&B 
A&C 
B&C 

Computed CF 
-0.71 
-0.8 
-0.19 
-0.8 

Preferred CF 
0.5 
0.21 

Evaluation 
wrong 
wrong 
okay 

wrong 

These rules are not modular-the combined CF does not correspond to 
what I believe when I form the combination of the premises in my mind. 
Specifically, I give far more weight to clouds and weatherman's prediction of 
rain in the summer (when I expect neither) than in the winter (when clouds 
and 20% chance are common). 

Using Webster's definition of belief, "the degree of mental acceptance of 
an idea or conclusion," I think that it would be fair to say that I DO NOT 
believe the conclusion of "rain today," given premises A, C, A & C, or B & 
C. As far as MYCIN's operation is concerned, this corresponds to a CF<0.2. 
The CF combining function has not worked above because my rules are not 
independent. (It is also possible for independent rules to combine improperly 
because the combining function is wrong-more on this later.) 

Looking again at the rules I wrote above, I feel that Rule A in particular 
is a bad rule. It takes a mere fragment of an argument and tries to draw a 
conclusion. Now admittedly we know something, given that 20% was pre­
dicted, but we are being logically naive to think that this fact alone is worth 
isolating. It depends radically on other information for its usefulness. More­
over, the context in which it is true will radically determine the conclusion 
we draw from it. We saw above that in summer I am far more inclined to 
give it weight than in winter. The only thing I AM willing to say given just 
this clause is that it probably won't be fair (0.3). (Like Wittgenstein, I ask 
myself, "What do I know now?") 

IV. Implications for 0.2 Rules 
I see now that the problem I was anticipating in my earlier message will 

hold if the rules are not modular. My fear was that a rule having a CF<0.2 
was more likely to have a premise that was incomplete than was a rule of 
CF>0.2. I understand now that a 0.2 rule, like any other rule, is acceptable 
if there is no known argument that involves its premise with that of another 
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rule, olher than one that simply adds the evidence together incrementally 
according lo the combining function. A new argument that is built from the 
evidence mentioned in the other rules is proof that the individual rules are 
not modular. (Subsumption is an explicit form of this.) Thus, Victor's claim 
that he wants to allow for all combinations MUST rest on the inherent in­
dependence of his premise sets. Again, no conclusion whatsoever should be 
drawn from the coincidence of any combination of premise sets, other than 
that arrived at by the CF combining function. Moreover, every conclusion 
collecled incrementally by the combining function must be one Victor would 
reach with Lhe same strength, given that union of premise clauses (cf., B & 
C above). In fact, I am willing to believe now that a rule having a CF<0.2 is 
perhaps MORE likely to be independent because it wouldn't have been given 
such a small CF unless lhe author saw it as minimally useful. That is, it stands 
on its own as a very weak observation having no other inferential value (I 
am still wary of calling it "evidence"). If it had a higher CF, it would almost 
certainly be useful in combination with other observations. Based on Victor's 
decision to separate meningitis clinical and lab rules, I conclude that doctors 
do nol have the ability to relate the two. Is this correct? I believe that Ted 
has also questioned Victor's rules in this respect. 

V. Plausibilily 
The problem of plausible combination of rules is difficult to anticipate 

because it is precisely the unanticipated coincidence of rule success that we 
are most likely to find o~jectionable. Suppose that we do find two rules D 
and E that we can't imagine ever succeeding at the same time, yet there is no 
logical reason for this not to occur (i.e., the rules are not mutually exclusive; 
not always easy to determine since all rules that cause these rules to be in­
voked must be examined). In this case we should try to define a new param­
eter that explains the connection between these two parameters, which we 
do not as yet understand. (A method of theory formation: ask yourself "What 
would I think if these two pieces of evidence were true?" Perhaps the actions 
are in conHict-why? Perhaps the premises never appear together (usually 
aren't both true)-why not? Do this for the power set of all evidence under 
consideration.) 

VI. What Does This Say About MYCIN's Rule Set? 
(I) They must be disjoint (mutually exclusive) within an UPDATED-BY 

subsel, or (2) the parameters in the premises of rules that succeed together 
must be logically noninteracting. This means that there must be nothing 
significant about their coincidence. Their contribution separately must be the 
same as an inference that considers them together. [In pseudochemical terms, 
the rule CF is a measure of (logical) force, which binds together the clauses 
of the premise in a single rule.] 

Taking my example, I should rewrite the rules and form a new set in­
cluding A & B & C and A & B. Rules A and C are incomplete. They say 
nothing here because they say something when a context is added. Leaving 
them separate led to a nonsensical result (B & C), which CF theory claims 
should make sense. This is an example of where plausibility of rule interac­
tion must be made at rule acquisition time. Indeed, I believe now that unless 
we require our rules to be di~joint within an UPDATED-BY set, it will be very 
difficult to say whether or not a rule is modular. For too long I have assumed 
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that because a rule looks like a discrete object it is necessarily modular. I have 
assumed that it is sufficient to have a CF combining function that models 
adequately the process of incrementally collecting evidence, forgetting that 
this evidence MUST be discrete for the function to be valid. Otherwise, a 
FUNCTION is replacing a logical argument, which a rule unifying the prem­
ises would represent. 

VII. Making Rules Modular 
It remains to detect if MYCIN's rules are modular. We must look for 

premises that are still "charged" with inference potential, as measured relative 
to clauses in other rules. Victor has said that his rules are modular (at least 
the ones having CF<0.2). If so, there is no problem, though we should be 
wary about the 0.05/0.15 distinctions. (How is it that "evidence" that is too 
weak to yield an acceptable conclusion nevertheless is definite enough to be 
put in one of three CF categories: 0.05, 0.10 and 0.15?) 

One method for detecting rule modularity is as follows. Given, for ex­
ample, three rules A, B, and C, where B and C have the same CF (all three 
mention VALUEP), then if A & Band A & Care determined to have different 
certainty factors (where & denotes the process of combining the rules into a 
single rule), then the rules A, B, and C aren't modular. 

On the other hand, given two rules A and B known to be modular (our 
knowledge of the domain cannot yield an argument that combines the prem­
ises), then A & B must have a CF given by the combining function (obviously 
true for disjoint rules). This gives us a way for evaluating a combining func­
tion. 
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A Model of Inexact 
Reasoning in Medicine 

Edward H. Shortliffe and Bruce G. Buchanan 

Inexact reasoning is common in the sciences. It is characterized by such 
phrases as "the art of good guessing," the "softer aspects of physics" (or 
chemistry, or any other science), and "good scientific judgment." By defi­
nition, inexact reasoning defies analysis as applications of sets of inference 
rules that are expressed in the predicate logic. Yet it need not defy all 
analysis. In this chapter we examine a model of inexact reasoning applied 
to a subdomain of medicine. Helmer and Rescher (1960) assert that the 
traditional concept of "exact" versus "inexact" science, with the social sci­
ences accounting for the second class, has relied on a false distinction 
usually reflecting the presence or absence of mathematical notation. They 
point out that only a small portion of natural science can be termed exact­
areas such as pure mathematics and subfields of physics in which some of 
the exactness "has even been put to the ultimate test of formal axiomati­
zation." In several areas of applied natural science, on the other hand, 
decisions, predictions, and explanations are made only after exact proce­
dures are mingled with unformalized expertise. The general awareness 
regarding these observations is reflected in the common references to the 
"artistic" components in the "science of medicine." 

During the years since computers were first introduced into the med­
ical arena, researchers have sought to develop techniques for modeling 
clinical decision making. Such efforts have had a dual motivation. Not only 
has their potential clinical significance been apparent, but the design of 
such programs has required an analytical approach to medical reasoning, 
which has in turn led to distillation of decision criteria that in some cases 

This chapter is a shortened and edited version of a paper appearing in Mathematical Biosciences 
23: 351-379 (1975). Copyright© 1975 by Mathematical Biosciences. All rights reserved. Used 
with permission. 
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had never been explicitly stated. It is both fascinating and educational for 
experts to reflect on the inference rules that they use when providing 
clinical consultations. 

Several programs have successfully modeled the diagnostic process. 
Many of these have relied on statistical decision theory as reflected in the 
use of Bayes' Theorem for manipulation of conditional probabilities. Use 
of the theorem, however, requires either large amounts of valid back­
ground data or numerous approximations and assumptions. The success 
of Corry and Barnett's early work (Corry and Barnett, 1968) and of a 
similar study by Warner and coworkers using the same data (Warner et al., 
1964) depended to a large extent on the availability of good data regarding 
several hundred individuals with congenital heart disease. 

Although conditional probability provides useful results in areas of 
medical decision making such as those we have mentioned, vast portions 
of medical experience suffer from having so few data and so much im­
perfect knowledge that a rigorous probabilistic analysis, the ideal standard 
by which to judge· the rationality of a physician's decisions, is not possible. 
It is nevertheless instructive to examine models for the less formal aspects 
of decision making. Physicians seem to use an ill-defined mechanism for 
reaching decisions despite a lack of formal knowledge regarding the in­
terrelationships of all the variables that they are considering. This mech­
anism is often adequate, in well-trained or experienced individuals, to lead 
to sound conclusions on the basis of a limited set of observations. 1 

The purpose of this chapter is to examine the nature of such non­
probabilistic and unformalized reasoning processes and to propose a model 
by means of which such incomplete "artistic" knowledge might be quan­
tified. We have developed this model in response to the needs of a com­
puter program that will permit the opinions of experts to become more 
generally available to nonexperts. The model is, in effect, an approxima­
tion to conditional probability. Although conceived with medical decision 
making in mind, it is potentially applicable to any problem area in which 
real-world knowledge must be combined with expertise before an informed 
opinion can be obtained to explain observations or to suggest a course of 
action. 

We begin with a brief discussion of Bayes' Theorem as it has been 
utilized by other workers in this field. The theorem will serve as a focus 
for discussion of the clinical problems that we would like to solve by using 
computer models. The potential applicability of the proposed decision 
model is then introduced in the context of the MYCIN system. Once the 
problem has been defined in this fashion, the criteria and numerical char­
acteristics of a quantification scheme will be proposed. We conclude with 
a discussion of how the model is used by MYCIN when it offers opinions 
to physicians regarding antimicrobial therapy selection. 

1 Intuition may also lead to unsound conclusions, as noted by Schwartz et al. ( 1973). 
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11 1 Formulation of the Problem • 

The medical diagnostic problem can be viewed as the assignment of prob­
abilities to specific diagnoses after analyzing all relevant data. If the sum 
of the relevant data (or evidence) is represented by e, and d; is the ith 
diagnosis (or "disease") under consideration, then P(d;je) is the conditional 
probability that the patient has disease i in light of the evidence e. Diag­
nostic programs have traditionally sought to find a set of evidence that 
allows P(d;je) to exceed some threshold, say 0.95, for one of the possible 
diagnoses. Under these circumstances the second-ranked diagnosis is suf­
ficiently less likely (<0.05) that the user is content to accept disease i as the 
diagnosis requiring therapeutic attention. 2 

Bayes' Theorem is useful in these applications because it allows P(d;je) 
to be calculated from the component conditional probabilities: 

P(d;je) 
P(d;) P(ejd;) 

L P(d1) P(ejd1) 

In this representation of the theorem, d; is one of n disjoint diagnoses, 
P(d;) is simply the a priori probability that the patient has disease i before 
any evidence has been gathered, and P(ejd;) is the probability that a patient 
will have the complex of symptoms and signs represented by e, given that 
he or she has disease d;. 

We have so far ignored the complex problem of identifying the "rel­
evant" data that should be gathered in order to diagnose the patient's 
disease. Evidence is actually acquired piece by piece, the necessary addi­
tional data being identified on the basis of the likely diagnoses at any given 
time. Diagnostic programs that mimic the process of analyzing evidence 
incrementally often use a modified version of Bayes' Theorem that is ap­
propriate for sequential diagnosis (Gorry and Barnett, 1968): 

Let e1 be the set of all observations to date, and s1 be some new 
piece of data. Furthermore, let e be the new set of observations 
once s1 has been added to e1• Then: 

The successful programs that use Bayes' Theorem in this form require 
huge amounts of statistical data, not only P(skld) for each of the pieces of 

2Several programs have also included utility considerations in their analyses. For example, 
an unlikely but lethal disease that responds well to treatment may merit therapeutic attention 
because P(d;Je) is nonzero (although very small). 
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data, sk, in e, but also the interrelationships of the sk within each disease 
d/ The congenital heart disease programs (Gorry and Barnett, 1968; War­
ner et al., 1964) were able to acquire all the necessary conditional proba­
bilities from a survey of several hundred patients with confirmed diagnoses 
and thus had nonjudgmental data on which to base their Bayesian analyses. 

Edwards (1972, pp. 139-140) has summarized the kinds of problems 
that can arise when an attempt is made to gather the kinds of data needed 
for rigorous analysis: 

My friends who are expert about medical records tell me that to attempt 
to dig out from even the most sophisticated hospital's records the frequency 
of association between any particular symptom and any particular diagnosis 
is next to impossible-and when I raise the question of complexes of symp­
toms, they stop speaking to me. For another thing, doctors keep telling me 
that diseases change, that this year's flu is different from last year's tlu, so 
that symptom-disease records extending far back in time are of very limited 
usefulness. Moreover, the observation of symptoms is well-supplied with er­
ror, and the diagnosis of diseases is even more so; both kinds of errors will 
ordinarily be frozen permanently into symptom-disease statistics. Finally, 
even if diseases didn't change, doctors would. The usefulness of disease cat­
egories is so much a function of available treatments that these categories 
themselves change as treatments change-a fact hard to incorporate into 
symptom-disease statistics. 

All these arguments against symptom-disease statistics are perhaps some­
what overstated. Where such statistics can be obtained and believed, obviously 
they should be used. But I argue that usually they cannot be obtained, and 
even in those instances where they have been obtained, they may not deserve 
belief. 

An alternative to exhaustive data collection is to use the knowledge that 
an expert has about the disease-partly based on experience and partly on 
general principles-to reason about diagnoses. In the case of this judg­
mental knowledge acquired from experts, the conditional probabilities and 
their complex interrelationships cannot be acquired in an exhaustive man­
ner. Opinions can be sought and attempts made to quantify them, but the 
extent to which the resulting numbers can be manipulated as probabilities 
is not clear. We shall explain this last point more fully as we proceed. First, 
let us examine some of the reasons that it might be desirable to construct 
a model that allows us to avoid the inherent problems of explicitly relating 
the conditional probabilities to one another. 

A conditional probability statement is, in effect, a statement of a de­
cision criterion or rule. For example, the expression P(d;Jsk) =x can be read 
as a statement that there is a I 00x% chance that a patient observed to have 
symptom sk has disease di· Stated in rule form, it would be 

3For example, although St and s2 are independent over all diseases, it may be true that St and 
s2 are closely linked for patients with disease d;. Thus relationships must be known within 
each of the dj; overall relationships are not sufficient. 
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IF: The patient has sign or symptom s. 
THEN: Conclude that he has disease d1 with probability x 

We shall often refer to statements of conditional probability as decision 
rules or decision criteria in the diagnostic context. The value of x for such 
rules may not be obvious (e.g., "y strongly suggests that z is true" is difficult 
to quantify), but an expert may be able to offer an estimate of this number 
based on clinical experience and general knowledge, even when such num­
bers are not readily available otherwise. 

A large set of such rules obtained from textbooks and experts would 
clearly contain a large amount of medical knowledge. It is conceivable that 
a computer program could be designed to consider all such general rules 
and to generate a final probability of each d; based on data regarding a 
specific patient. Bayes' Theorem would only be appropriate for such a 
program, however, if values for P(srld;) and P(sr!d; & s2) could be obtained. 
As has been noted, these requirements become unworkable, even if the 
subjective probabilities of experts are used, in cases where a large number 
of diagnoses (hypotheses) must be considered. The first requires acquiring 
the inverse of every rule, and the second requires obtaining explicit state­
ments regarding the interrelationships of all rules in the system. 

In short, we would like to devise an approximate method that allows 
us to compute a value for P(d;le) solely in terms of P(d;lsk), where e is the 
composite of all the observed sk. Such a technique will not be exact, but 
since the conditional probabilities reflect judgmental (and thus highly sub­
jective) knowledge, a rigorous application of Bayes' Theorem will not nec­
essarily produce accurate cumulative probabilities either. Instead, we look 
for ways to handle decision rules as discrete packets of knowledge and for 
a quantification scheme that permits accumulation of evidence in a manner 
that adequately reflects the reasoning process of an expert using the same 
or similar rules. 

11.2 MYCIN's Rule-Based Approach 

As has been discussed, MYCIN's principal task is to determine the likely 
identity of pathogens in patients with infections and to assist in the selec­
tion of a therapeutic regimen appropriate for treating the organisms under 
consideration. We have explained how MYCIN models the consultation 
process, utilizing judgmental knowledge acquired from experts in con­
junction with certain statistical data that are available from the clinical 
microbiology laboratory and from patient records. 

It is useful to consider the advantages provided by a rule-based system 
for computer use of judgmental knowledge. It should be emphasized that 
we see these advantages as being sufficiently strong in certain environments 
that we have devised an alternative and approximate approach that par-
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allels the results available using Bayes' Theorem. We do not argue against 
the use of Bayes' Theorem in those medical environments in which suffi­
cient data are available to permit its adequate use. 

The advantages of rule-based systems for diagnostic consultations in­
clude: 

1. the use of general knowledge (from textbooks or experts) for consid­
eration of a specific patient (even well-indexed books may be difficult 
for a nonexpert to use when considering a patient whose problem is 
not quite the same as those of patients discussed in the text); 

2. the use of judgmental knowledge for consideration of very small classes 
of patients with rare diseases about which good statistical data are not 
available; 

3. ease of modification (since the rules are not explicitly related to one 
another and there need be no prestructured decision tree for such a 
system, rule modifications and the addition of new rules need not re­
quire complex considerations regarding interactions with the remainder 
of the system's knowledge); 

4. facilitated search for potential inconsistencies and contradictions in the 
knowledge base (criteria stored explicitly in packets such as rules can 
be searched and compared without major difficulty); 

5. straightforward mechanisms for explaining decisions to a user by iden­
tifying and communicating the relevant rules; 

6. an augmented instructional capability (a system user may be educated 
regarding system knowledge in a selective fashion; i.e., only those por­
tions of the decision process that are puzzling need be examined). 

We shall use the following rule for illustrative purposes throughout this 
chapter: 

IF: 1) The stain of the organism is gram positive, and 
2) The morphology of the organism is coccus, and 
3) The growth conformation of the organism is chains 

THEN: There is suggestive evidence (.7) that the identity 
of the organism is streptococcus 

This rule reflects our collaborating expert's belief that gram-positive cocci 
growing in chains are apt to be streptococci. When asked to weight his 
belief in this conclusion,4 he indicated a 70% belief that the conclusion was 
valid. Translated to the notation of conditional probability, this rule seems 

4 In the English-language version of the rules, the program uses phrases such as "suggestive 
evidence," as in the above example. However, the numbers following these terms, indicating 
degrees of certainty, are all that is used in the model. The English phrases are not given by 
the expert and then quantified; they are, in effect, "canned-phrases" used only for translating 
rules into English representations. The prompt used for acquiring the certainty measure 
from the expert is as follows: "On a scale of I to 10, how much certainty do you affix to this 
conclusion?" 
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to say P(hils 1 & s2 & s3) = 0.7 where h 1 is the hypothesis that the organism 
is a Streptococcus, s 1 is the observation that the organism is gram-positive, 
s2 that it is a coccus, and 53 that it grows in chains. Questioning of the 
expert gradually reveals, however, that despite the apparent similarity to 
a statement regarding a conditional probability, the number 0. 7 differs 
significantly from a probability. The expert may well agree that 
P(hils 1 & s2 & s3) = 0. 7, but he becomes uneasy when he attempts to follow 
the logical conclusion that therefore P(--,h 1/s 1 & 52 & 53) = 0.3. He claims 
that the three observations are evidence (to degree 0. 7) in favor of the 
conclusion that the organism is a Streptococcus and should not be construed 
as evidence (to degree 0.3) against Streptococcus. We shall refer to this prob­
lem as Paradox 1 and return to it later in the exposition, after the inter­
pretation of the 0.7 in the rule above has been introduced. 

It is tempting to conclude that the expert is irrational if he is unwilling 
to follow the implications of his probabilistic statements to their logical 
conclusions. Another interpretation, however, is that the numbers he has 
given should not be construed as probabilities at all, that they are judg­
mental measures that reflect a level of belief The nature of such numbers 
and the very existence of such concepts have interested philosophers of 
science for the last half-century. We shall therefore digress temporarily to 
examine some of these theoretical issues. We then proceed to a detailed 
presentation of the quantitative model we propose. In the last section of 
this chapter, we shall show how the model has been implemented for on­
going use by the MYCIN program. 

11.3 Philosophical Background 

The familiar P-function5 of traditional probability theory is a straightfor­
ward concept from elementary statistics. However, because of imperfect 
knowledge and the dependence of decisions on individual judgments, the 
?-function no longer seems entirely appropriate for modeling some of the 
decision processes in medical diagnosis. This problem with the ?-function 
has been well recognized and has generated several philosophical treatises 

"The />-function may be defined in a variety of ways. Emanuel Parzen ( 1960) suggests a set­
theoretical definition: Given a random situation, which is described by a sample description 
space .1, probability is a function P that to every event e assigns a nonnegative real number, 
denoted by P(e) and called the probability of the event e. The probability function must satisfy 
three axioms: 

Axiom I: P(e) ;;. 0 for every event e; 
Axiom 2: P(s) = I for the certain elements; 
Axiom 3: P(e U f) = P(e) + P(f) if ef = 0 or, in words, the probability of the union of 

two mutually exclusive events is the sum of their probabilities. 
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during the last 30 years. One difficulty with these analyses is that they are, 
in general, more theoretical than practical in orientation. They have char­
acterized the problem well but have offered few quantitative or theoretical 
techniques that lend themselves to computer simulation of related reason­
ing processes. It is useful to examine these writings, however, in order to 
avoid recognized pitfalls. 

This section therefore summarizes some of the theory that should be 
considered when analyzing the decision problem that we have described. 
We discuss several interpretations of probability itself, the theory on which 
Bayes' Theorem relies. The difficulties met when trying to use the ?-func­
tion during the modeling of medical decision making are reiterated. Then 
we discuss the theory of confirmation, an approach to the interpretation 
of evidence. Our discussion argues that confirmation provides a natural 
environment in which to model certain aspects of medical reasoning. We 
then briefly summarize some other approaches to the problem, each of 
which has arisen in response to the inadequacies of applied probability. 
Although each of these alternate approaches is potentially useful in the 
problem area that concerns us, we have chosen to develop a quantification 
scheme based on the concept of confirmation. 

11.3.l Probability 

Swinburne ( 1973) provides a useful classification of the theories of prob­
ability proposed over the last 200 years. The first of these, the Classical 
Theory of Probability, asserts that if the probability of an event is said to 
be P, then "there are integers rn and n such that P = rnln ... such that n 
exclusive and exhaustive alternatives must occur, rn of which constitute the 
occurrence of s." This theory, like the second and third to be described, is 
called "statistical probability" by Swinburne. These interpretations are typ­
ified by statements of the form "the probability of an A being a B is P." 

The second probability theory cited by Swinburne, the Propensity The­
ory, asserts that probability propositions "make claims" about a propensity 
or "would-be" or tendency in things. If an atom is said to have a probability 
of 0.9 of disintegrating within the next minute, a statement has been made 
about its propensity to do so. 

The Frequency Theory is based on the familiar claim that propositions 
about probability are propositions about proportions or relative frequen­
cies as observed in the past. This interpretation provides the basis for the 
statistical data collection used by most of the Bayesian diagnostic programs. 

Harre ( 1970) observes that statistical probability seems to differ syn­
tactically from the sense of probability used in inference problems such as 
medical diagnosis. He points out that the traditional concept of probability 
refers to what is likely to turn out to be true (in the future), whereas the 
other variety of probability examines what has already turned out to be 
true but cannot be determined directly. Although these two kinds of prob-
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!ems may be approached on the basis of identical observations, the occur­
rence or nonoccurrence of future events is subject to the probabilistic anal­
ysis of statistics, whereas the verification of a belief, hypothesis, or 
conjecture concerning a truth in the present requires a "process" of analysis 
commonly referred to as confirmation. This distinction on the basis of tense 
may seem somewhat artificial at first, but it does serve a useful purpose as 
we attempt to develop a framework for analysis of the diagnosis problem. 

Swinburne also discusses two more theories of probability, each of 
which bears more direct relation to the problem at hand. One is the Sub­
jective Theory originally put forward by Ramsey (1931) and developed in 
particular by Savage (1974) and de Finetti (1972). In their view, statements 
of probability regarding an event are propositions regarding people's ac­
tual belief in the occurrence (present or future) of the event in question. 
Although this approach fails as an explanation of statistical probability 
(where beliefs that may be irrational have no bearing on the calculated 
probability of, say, a six being rolled on the next toss of a die), it is alluring 
for our purposes because it attempts to recognize the dependence of de­
cisions, in certain problem areas, on both the weight of evidence and its 
interpretation as based on the expertise (beliefs) of the individual making 
the decision. In fact, de Finetti (1972, p. 4) has stated part of our problem 
explicitly: 

On many occasions decision-makers make use of expert opinion. Such 
opinions cannot possibly take the form of advice bearing directly on the 
decision; .... Occasionally, [the expert] is required to state a probability, but 
it is not easy to find a convenient form in which he can express it. 

Furthermore, the goals of the subjective probabilists seem very similar to 
those which we have also delineated (de Finetti, 1972, p. 144): 

We hold it to be chimerical for anyone to arrive at beliefs, opinions, or 
determinations without the intervention of his personal judgment. We strive 
to make such judgments as dispassionate, reflective, and wise as possible by 
a doctrine which shows where and how they intervene and lays bare possible 
inconsistencies among judgments. 

One way to acquire the subjective probabilities of experts is suggested 
by Savage and described by a geological analyst as follows (Grayson, 1960, 
p. 256): 

The simplest [way] is to ask the geologist. ... The geologist looks at the 
evidence, thinks, and then gives a figure such as I in 5 or 50-50. Admittedly 
this is difficult. ... Thus, several ways have been proposed to help the ge­
ologist make his probability estimate explicit .... The leading proponent of 
personal [i.e., su~jective] probabilities, Savage, proposes what seems to be the 
most workable method. One can, namely, ask the person not how he feels 
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but what he would do in such and such a situation. Accordingly, a geologist 
would be confronted with a choice-making situation. 

There is one principal problem to be faced, however, in attempting to 
adopt the subjectivist model for our computer program-namely, the sub­
jectivists' criticism of those who avoid a Bayesian approach. Subjectivists 
assert that the conditional and initial probabilities needed for use of Bayes' 
Theorem may simply be acquired by asking the opinion of an expert. We 
must reject this approach when the number of decision criteria becomes 
large, however, because it would require that experts be asked to quantify 
an unmanageably large number of interrelationships.6 

A final point to be made regarding subjectivist theory is that the prob­
abilities so obtained are meant to be utilized by the ?-function of statistical 
probability so that inconsistencies among the judgments offered by the 
experts may be discovered. Despite apparently irrational beliefs that may 
be revealed in this way ("irrational" here means that the subjective prob­
abilities are inconsistent with the axioms of the ?-function), the expert 
opinions provide useful criteria, which may lead to sound decisions if it is 
accepted that the numbers offered are not necessarily probabilities in the 
traditional sense. It is our assertion that a new quantitative system should 
therefore be devised in order to utilize the experts' criteria effectively. 

Let us return now to the fifth and final category in Swinburne's list of 
probability theories (Swinburne, 1973). This is the Logical Theory, which 
gained its classical exposition in ]. M. Keynes' A Treatise on Probability 
( 1962). Since that time, its most notable proponent has been Rudolf Car­
nap. In the Logical Theory, probability is said to be a logical relation 
between statements of evidence and hypotheses. Carnap describes this 
and the frequency interpretation of probability as follows (Carnap, 1950, 
p. 19): 

(i) Probability 1 is the degree of confirmation of a hypothesis h with 
respect to an evidence statement e; e.g., an observational report. This is a 
logical semantical concept. A sentence about this concept is based, not on 
observation of facts, but on logical analysis .... 

(ii) Probability2 is the relative frequency (in the long run) of one property 
of events or things with respect to another. A sentence about this concept is 
factual, empirical. 

In order to avoid confusion regarding which concept of probability is 
being discussed, the term probability will hereafter be reserved for 
probability2, i.e., the ?-function of statistical probability. Probability 1, or 
epistemic probability as Swinburne ( 1973) describes it, will be called degree 
of confirmation in keeping with Carnap's terminology. 

6 It would also complicate the addition of new decision criteria since they would no longer be 
modular and would thus require itemization of all possible interactions with preexisting cri­
teria. 
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11.3.2 Confirmation 

Carnap's interpretation of confirmation rests upon strict logical entailment. 
Several authors, however, have viewed the subject in a broader context, 
such as our application requires. For example, just as the observation of a 
black raven would logically "confirm" the hypothesis that "all ravens are 
black" (where "confirm" means "lends credence to"), we also want the fact 
that an organism is gram-positive to "confirm" the hypothesis that it is a 
Streptococcus, even though the conclusion is based on world knowledge and 
not on logical analysis. 

Carnap ( 1950) makes a useful distinction among three forms of con­
firmation, which we should consider when trying to characterize the needs 
of our decision model. He calls these classificatory, comparative, and quan­
titative uses of the concept of confirmation. These are easily understood 
by example: 

a. classificatory: "the evidence e confirms the hypothesis h" 

b. comparative: "e 1 confirms h more strongly than e2 confirms h" or "e 
confirms h 1 more strongly than e confirms h2" 

c. quantitative: "e confirms h with strength x" 

In MYCIN's task domain, we need to use a semiquantitative approach 
in order to reach a comparative goal. Thus, although our individual de­
cision criteria might be quantitative (e.g., "gram-positive suggests Strepto­
coccus with strength 0.1 "), the effort is merely aimed at singling out two or 
three identities of organisms that are approximately equally likely and that 
are "comparatively" much more likely than any others. There is no need 
to quote a number that reflects the consulting expert's degree of certainty 
regarding his or her decisions. 

When quantitative uses of confirmation are discussed, the degree of 
confirmation of hypothesis hon the basis of evidence e is written as C[h,e]. 
This form roughly parallels the familiar P-function notation for condi­
tional probability, P(hie). Carnap has addressed the question of whether it 
is reasonable to quantify degree of confirmation (Carnap, I 950). He notes 
that, although the concept is familiar to us all, we attempt to use it for 
comparisons of relative likelihood rather than in a strict numerical sense. 
In his classic work on the subject, however, he suggested that we all know 
how to use confirmation as a quantitative concept in contexts such as "pre­
dictions of results of games of chance [where] we can determine which 
numerical value [others] implicitly attribute to probabilityi. even if they do 
not state it explicitly, by observing their reactions to betting proposals." 
The reason for our reliance on the opinions of experts is reflected in his 
observation that individuals with experience are inclined to offer theoret­
ical arguments to defend their viewpoint regarding a hypothesis; "this 
shows that they regard probability1 as an objective concept." However, he 
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was willing to admit the subjective nature of such concepts some years later 
when, in discussing the nature of inductive reasoning, he wrote (Carnap, 
1962, p. 317): 

I would think that inductive reasoning should lead, not to acceptance or 
rejection [of a proposition], but to the assignment of a number to the prop­
osition, viz., its value (credibility value) .... This rational subjective proba­
bility ... is sufficient for determining first the rational subjective value of any 
act, and then a rational decision. 

As mentioned above, quantifying confirmation and then manipulating 
the numbers as though they were probabilities quickly leads to apparent 
inconsistencies or paradoxes. Carl Hempel presented an early analysis of 
confirmation (Hempel, 1965), pointing out as we have that C[h,e] is a very 
different concept from P(hie). His famous Paradox of the Ravens was pre­
sented early in his discussion of the logic of confirmation. Let hi be the 
statement that "all ravens are black" and h2 the statement that "all nonblack 
things are nonravens." Clearly hi is logically equivalent to h2. If one were 
to draw an analogy with conditional probability, it might at first seem valid, 
therefore, to assert that C[h 1 ,e] = C[h2 ,e] for all e. However, it appears coun­
terintuitive to state that the observation of a green vase supports hi> even 
though the observation does seem to support h2 . C[h,e] is therefore differ­
ent from P(hie) for it seems somehow wrong that an observation of a vase 
could logically support an assertion about ravens. 

Another characteristic of a quantitative approach to confirmation that 
distinguishes the concept from probability was well-recognized by Carnap 
(1950) and discussed by Barker (1957) and Harre (1970). They note that 
it is counterintuitive to suggest that the confirmation of the negation of a 
hypothesis is equal to one minus the confirmation of the hypothesis, i.e., 
C[h,e] is not 1 - C[---ih,e]. The streptococcal decision rule asserted that a 
gram-positive coccus growing in chains is a Streptococcus with a measure of 
support specified as 7 out of 10. This translates to C[h,e]=0.7 where his 
"the organism is a Streptococcus" and e is the information that "the organism 
is a gram-positive coccus growing in chains." As discussed above, an expert 
does not necessarily believe that C[---ih,e] = 0.3. The evidence is said to be 
supportive of the contention that the organism is a Streptococcus and can 
therefore hardly also support the contention that the organism is not a 
Streptococcus. 

Since we believe that C[h,e] does not equal 1 - C[-ih,e], we recognize 
that disconfirmation is somehow separate from confirmation and must be 
dealt with differently. As Harre ( 1970) puts it, "we need an independently 
introduced D-function, for disconfirmation, because, as we have already 
noticed, to confirm something to ever so slight a degree is not to disconfirm 
it at all, since the favorable evidence for some hypothesis gives no support 
whatever to the contrary supposition in many cases." Our decision model 
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must therefore reflect this distinction between confirmation and disconfir­
mation (i.e., confirmatory and disconfirmatory evidence). 

The logic of confirmation has several other curious properties that 
have puzzled philosophers of science (Salmon, 1973). Salmon's earlier anal­
ysis on the confirmation of scientific hypotheses (Salmon, 1966) led to the 
conclusion that the structure of such procedures is best expressed by Bayes' 
Theorem and a frequency interpretation of probability. Such an assertion 
is appealing because, as Salmon expresses the point, "it is through this 
interpretation, I believe, that we can keep our natural sciences empirical 
and objective." However, our model is not offered as a solution to the 
theoretical issues with which Salmon is centrally concerned. We have had 
to abandon Bayes' Theorem and the ?-function simply because there are 
large areas of expert knowledge and intuition that, although amenable in 
theory to the frequency analysis of statistical probability, defy rigorous 
analysis because of insufficient data and, in a practical sense, because ex­
perts resist expressing their reasoning processes in coherent probabilistic 
terms. 

11.3.3 Other Approaches 

There are additional approaches to this problem area that bear mention­
ing, even though they are peripheral to confirmation and probability as 
we have described them. One is the theory of fuzzy sets first proposed by 
Zadeh (1965) and further developed by Goguen (1968). The theory at­
tempts to analyze and explain an ancient paradox paraphrased by Goguen 
as follows: 

If you add one stone to a small heap, it remains small. A heap containing 
one stone is small. Therefore (by induction) every heap is small. 

The term fuzzy set refers to the analogy with set ~heory whereby, for 
example, the set of tall people contains all 7-foot individuals but may or 
may not contain a man who is 5 feet 10 inches tall. The "tallness" of a man 
in that height range is subject to interpretation; i.e., the edge of the set is 
fuzzy. Thus, membership in a set is not binary-valued (true or false) but is 
expressed along a continuum from 0 to 1, where 0 means "not in the set," 
1 means "in the set," and 0.5 means "equally likely to be in or out of the 
set." These numbers hint of statistical probability in much the same way 
that degrees of confirmation do. However, like confirmation, the theory of 
fuzzy sets leads to results that defy numerical manipulation in accordance 
with the axioms of the P-function. Although an analogy between our di­
agnostic problem and fuzzy set theory can be made, the statement of di­
agnostic decision criteria in terms of set membership does not appear to 
be a natural concept for the experts who must formulate our rules. Fur-
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thermore, the quantification of Zadeh's "linguistic variables" and the mech­
anisms for combining them are as yet poorly defined. Fuzzy sets have 
therefore been mentioned here primarily as an example of another semi­
statistical field in which classic probability theory fails. 

There is also a large body of literature discussing the theory of choice, 
an approach to decision making that has been reviewed by Luce and 
Suppes ( 1965 ). The theory deals with the way in which personal prefer­
ences and the possible outcomes of an action are considered by an indi­
vidual who must select among several alternatives. Tversky describes an 
approach based on "elimination by aspects" (Tversky, 1972), a method by 
which alternatives are ruled out on the basis of either their undesirable 
characteristics (aspects) or the desirable characteristics they lack. The the­
ory thus combines preference (utility) with a probabilistic approach. Shac­
kle suggests a similar approach (Shackle, 1952; 1955), but utilizes different 
terminology and focuses on the field of economics. He describes "expec­
tation" as the act of "creating imaginary situations, of associating them with 
named future dates, and of assigning to each of the hypotheses thus 
formed a place on a scale measuring the degree of belief that a specified 
course of action on our own part will make this hypothesis come true" 
(Shackle, 1952). Selections among alternatives are made not only on the 
basis of likely outcomes but also on the basis of uncertainty regarding 
expected outcomes (hence his term the "logic of surprise"). 

Note that the theory of choice differs significantly from confirmation 
theory in that the former considers selection among mutually exclusive 
actions on the basis of their potential (future) outcomes and personal pref­
erences regarding those outcomes, whereas confirmation considers selec­
tion among mutually exclusive hypotheses on the basis of evidence ob­
served and interpreted in the present. Confirmation does not involve 
personal utilities, although, as we have noted, interpretation of evidence 
may differ widely on the basis of personal experience and knowledge. Thus 
we would argue that the theory of choice might be appropriately applied 
to the selection of therapy once a diagnosis is known, a problem area in 
which personal preferences regarding possible outcomes clearly play an 
important role, but that the formation of the diagnosis itself more closely 
parallels the kind of decision task that engendered the theory of confir­
mation. 

We return, then, to confirmation theory as the most useful way to think 
about the medical decision-making problem that we have described. Swin­
burne suggests several criteria for choosing among the various confirma­
tion theories that have been proposed (Swinburne, 1970), but his reasons 
are based more on theoretical considerations than on the pragmatics of 
our real-world application. We will therefore propose a technique that, 
although it draws closely on the theory of confirmation described above, 
is based on desiderata derived intuitively from the problem at hand and 
not from a formal list of acceptability criteria. 
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11.4 The Proposed Model of Evidential Strength 

This section introduces our quantification scheme for modeling inexact 
medical reasoning. It begins by defining the notation that we use and 
describing the terminology. A formal definition of the quantification func­
tion is then presented. The remainder of the section discusses the char­
acteristics of the defined functions. 

Although the proposed model has several similarities to a confirmation 
function such as those mentioned above, we shall introduce new terms for 
the measurement of evidential strength. This convention will allow us to 
clarify from the outset that we seek only to devise a system that captures 
enough of the flavor of confirmation theory that it can be used for accom­
plishing our computer-based task. We have chosen belief and disbelief as our 
units of measurement, but these terms should not be confused with their 
fi:>rmalisms from epistemology. The need for two measures was introduced 
above in our discussion of a disconfirmation measure as an adjunct to a 
measure for degree of confirmation. The notation will be as follows: 

• MB[h,e] = x means "the measure of increased belief in the hypothesis 
h, based on the evidence e, is x" 

• MD[h,e] = y means "the measure of increased disbelief in the hypothesis 
h, based on the evidence e, is y" 

The evidence e need not be an observed event, but may be a hypothesis 
(itself suqject to confirmation). Thus one may write MB[h 1,h2] to indicate 
the measure of increased belief in the hypothesis h1 given that the hypoth­
esis h2 is true. Similarly MD[h 1,/i2] is the measure of increased disbelief in 
hypothesis h 1 if hypothesis h2 is true. 

To illustrate in the context of the sample rule from MYCIN, consider 
e = "the organism is a gram-positive coccus growing in chains" and h = 

"the organism is a Streptococcus." Then MB[h,e] = 0.7 according to the 
sample rule given us by the expert. The relationship of the number 0.7 to 
probability will be explained as we proceed. For now, let us simply state 
that the number 0. 7 reflects the extent to which the expert's belief that h 
is true is increased by the knowledge that e is true. On the other hand, 
MD[h,e] = 0 for this example; i.e., the expert has no reason to increase 
his or her disbelief in h on the basis of e. 

In accordance with subjective probability theory, it may be argued that 
the expert's personal probability P(h) reflects his or her belief in h at any 
given time. Thus l - P(h) can be viewed as an estimate of the expert's 
disbelief regarding the truth of h. If P(h/e) is greater than P(h), the obser­
vation of e increases the expert's belief in h while decreasing his or her 
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disbelief regarding the truth of h. In fact, the proportionate decrease in 
disbelief is given by the following ratio: 

P(h/e) - P(h) 
1 - P(h) 

This ratio is called the measure of increased belief in h resulting from the 
observation of e, i.e., MB[h,e]. 

Suppose, on the other hand, that P(h/e) were less than P(h). Then the 
observation of e would decrease the expert's belief in h while increasing his 
or her disbelief regarding the truth of h. The proportionate decrease in 
belief in this case is given by the following ratio: 

P(h) - P(h/e) 
---

P(h) 

We call this ratio the measure of increased disbelief in h resulting from the 
observation of e, i.e., MD[h,e]. 

To summarize these results in words, we consider the measure of 
increased belief, MB[h,e ], to be the proportionate decrease in disbelief 
regarding the hypothesis h that results from the observation e. Similarly, 
the measure of increased disbelief, MD[h,e], is the proportionate decrease 
in belief regarding the hypothesis h that results from the observation e, 
where belief is estimated by P(h) at any given time and disbelief is estimated 
by 1 - P(h). These definitions correspond closely to the intuitive concepts 
of confirmation and disconfirmation that we have discussed above. Note 
that since one piece of evidence cannot both favor and disfavor a single 
hypothesis, when MB[h,e] > 0, MD[h,e] = 0, and when MD[h,e] > 0, 
MB[h,e] = 0. Furthermore, when P(h/e) =P(h), the evidence is independent 
of the hypothesis (neither confirms nor disconfirms) and MB[h,e] = 

MD[h,e] = 0. 
The above definitions may now be specified formally in terms of con­

ditional and a priori probabilities: 

MB[h,e] { ~ax[P0ie),P(~2l___=-~(h) 
max[l,O] - P(h) 

MD[h,e] = { :1in[P(h~(h)] - P(h) 
min[l,O] - P(h) 

if P(h)= 1 

otherwise 

if P(h) = 0 

otherwise 

Examination of these expressions will reveal that they are identical to the 
definitions introduced above. The formal definition is introduced, how­
ever, to demonstrate the symmetry between the two measures. In addition, 
we define a third measure, termed a certainty.factor (CF), that combines the 
MB and MD in accordance with the following definition: 
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CF[h,e] = MB[h,e] - MD[h,e] 

The certainty factor is an artifact for combining degrees of belief and 
disbelief into a single number. Such a number is needed in order to facil­
itate comparisons of the evidential strength of competing hypotheses. The 
use of this composite number will be described below in greater detail. The 
following observations help to clarify the characteristics of the three mea­
sures that we have defined (MB, MD, CF): 

Characteristics of the Belief Measures 

l. Range of degrees: 

a. 0 ~ MB[h,e] ~ 1 

b. 0 ~ MD[h,e] ~ I 

c. - I ~ CF[h,e] ~ +I 
2. Evidential strength and mutually exclusive hypotheses: 

If his shown to be certain [P(hie) = I]: 

a. MB[h e] = _I~_1:_if~ = I 
' I - P(h) 

b. MD[h,e] = 0 

c. CF[h,e] = 1 

If the negation of his shown to be certain [PC•hle) I]: 

a. MB[h,e] 0 

0 - P(h) 
b. MD[h,e] = 0--=._-P(h) 

c. CF[h,e] = - I 

Note that this gives MB[•h,e] = l if and only if MD[h,e] = I in accor­
dance with the definitions of MB and MD above. Furthermore, the num­
ber 1 represents absolute belief (or disbelief) for MB (or MD).Thus if 
MB[h 1,e] = I and h1 and h2 are mutually exclusive, MD[h2,e] = 1.7 

7There is a special case of Characteristic 2 that should be mentioned. This is the case of 
logical truth or falsity where P(hje) = 1 or P(hje) = 0, regardless of e. Popper has also 
suggested a quantification scheme for confirmation (Popper, 1959) in which he uses - I "" 
C[h,e] "" + 1, defining his limits as: 

- 1 = C[•h,h] "" C[h,e] "" C[h,h] = + 1 

This proposal led one observer (Harre, 1970) to assert that Popper's numbering scheme 
"obliges one Lo identify the truth of a self-contradiction with the falsity of a disconfirmed 
general hypothesis and the truth of a tautology with the confirmation of a confirmed exis­
tential hypothesis, both of which are not only question begging but absurd." As we shall 
demonstrate, we avoid Popper's problem by introducing mechanisms for approaching cer­
tainly asymptotically as items of confirmatory evidence are discovered. 
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3. Lack of evidence: 

a. MB[h,e] = 0 if h is not confirmed bye (i.e., e and h are independent 
or e disconfirms h) 

b. MD[h,e] = 0 if his not disconfirmed bye (i.e., e and hare indepen­
dent or e confirms h) 

c. CF[h,e] = 0 if e neither confirms nor disconfirms h (i.e., e and h are 
independent) 

We are now in a position to examine Paradox 1, the expert's concern 
that although evidence may support a hypothesis with degree x, it does 
not support the negation of the hypothesis with degree 1 - x. In terms of 
our proposed model, this reduces to the assertion that, when e confirms /z: 

CF[h,e] + CF[•h,e] f. 1 

This intuitive impression is verified by the following analysis for e 
confirming h: 

Thus 

CF[h,e] 

MB[•h,e] - MD[ih,e] 

O _ P(•h\e) - P(•h) 

-P(•h) 

[I - P(h\e)] - [I - P(h)] 

1 - P(h) 

MB[h,e] - MD[h,e] 

P(h\e) - P(h) _ O 
I - P(h) 

P(h) - P(h\e) 

1 - P(h) 

CF[•h e] = P(h\e) - P(h) + P(h) - P(h\e) 
CF[h,e] + ' 1 - P(h) I - P(h) 

= 0 

Clearly, this result occurs because (for any h and any e) MB[h,e] 
MD[i/z,e]. This conclusion is intuitively appealing since it states that evi­
dence that supports a hypothesis disfavors the negation of the hypothesis 
to an equal extent. 

We noted earlier that experts are often willing to state degrees of belief 
in terms of conditional probabilities but they refuse to follow the assertions 
to their logical conclusions (e.g., Paradox I above). It is perhaps revealing 
to note, therefore, that when the a priori belief in a hypothesis is small (i.e., 
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P(h) is close to zero), the CF of a hypothesis confirmed by evidence is 
approximately equal to its conditional probability on that evidence: 

P(hie) - P(h) 
CF[h,e] = MB[h,e] - MD[h,e] = l _ P(h) - 0 = P(h/e) 

whereas, as shown above, CF[-ih,e] = - P(hie) in this case. This observation 
suggests that confirmation, to the extent that it is adequately represented 
by CF's, is close to conditional probability (in certain cases), although it still 
defies analysis as a probability measure. 

We believe, then, that the proposed model is a plausible representation 
for the numbers an expert gives when asked to quantify the strength of 
his or her judgmental rules. The expert gives a positive number (CF > 0) 
if the hypothesis is confirmed by observed evidence, suggests a negative 
number (CF < 0) if the evidence lends credence to the negation of the 
hypothesis, and says there is no evidence at all (CF = 0) if the observation 
is independent of the hypothesis under consideration. The CF combines 
knowledge of both P(h) and P(hie). Since the expert often has trouble stat­
ing P(h) and P(hie) in quantitative terms, there is reason to believe that a 
CF that weights both the numbers into a single measure is actually a more 
natural intuitive concept (e.g., "I don't know what the probability is that 
all ravens are black, but I do know that every time you show me an addi­
tional black raven my belief is increased by x that all ravens are black."). 

If we therefore accept CF's rather than probabilities from experts, it 
is natural to ask under what conditions the physician's behavior based on 
CF's is irrational.8 We know from probability theory, for example, that if 
there are n mutually exclusive hypotheses h;, at least one of which must be 
true, then L" P(h;/e) = 1 for all e. In the case of certainty factors, we can 
also show that there are limits on the sums of CF's of mutually exclusive 
hypotheses. Judgmental rules acquired from experts must respect these 
limits or else the rules will reflect irrational quantitative assignments. 

Sums of CF's of mutually exclusive hypotheses have two limits-a lower 
limit for disconfirmed hypotheses and an upper limit for confirmed 
hypotheses. The lower limit is the obvious value that results because 
CF[h,e] ~ - 1 and because more than one hypothesis may have CF = - 1. 
Note first that a single piece of evidence may absolutely disconfirm several 
of the competing hypotheses. For example, if there are n colors in the 
universe and C; is the ith color, then ARC; may be used as an informal 
notation to denote the hypothesis that all ravens have color C;. If we add 
the hypothesis ARC0 that some ravens have different colors from others, 
we know La P(ARC;) = l. Consider now the observation e that there is a 
raven of color C,,. This single observation allows us to conclude that 
CF[ARC;,e] = - 1 for 1 ~ i ~ n - l. Thus, since these n - 1 hypotheses 

8We assert that behavior is irrational if actions taken or decisions made contradict the result 
that would be obtained under a probabilistic analysis of the behavior. 
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are absolutely disconfirmed by the observation e, Li'- i CF[ARC;,e] = 
-(n - 1). This analysis leads to the general statement that, if k mutually 
exclusive hypotheses h; are disconfirmed by an observation e: 

Li CF[h;,e] ~ - k [for h; disconfirmed by e] 

In the colored raven example, the observation of a raven with color 
C11 still left two hypotheses in contention, namely ARC,, and ARC 0 . What, 
then, are CF[ARC,,,e], CF[ARC0 ,e], and the sum of CF[ARC,,,e] and 
CF[ARC0 ,e]? It can be shown that, if k mutually exclusive hypotheses h; are 
confirmed by an observation e, the sum of their CF's does not have an 
upper limit of k but rather: 

Lk CF[h;,e] ~ 1 [for h; confirmed bye] 

In fact, Lk CF[h;,e] is equal to 1 if and only if k = 1 and e implies h1 with 
certainty, but the sum can get arbitrarily close to 1 for small k and large n. 
The analyses that lead to these conclusions are available elsewhere (Short­
liffe, 1974). 

The last result allows us to analyze critically new decision rules given 
by experts. Suppose, for example, we are given the following rules: 
CF[hi.e] = 0.7 and CF[h2,e] = 0.4, where hi is "the organism is a Strepto­
coccus," h2 is "the organism is a Staphylucoccus," and e is "the organism is a 
gram-positive coccus growing in chains." Since hi and h2 are mutually exclu­
sive, the observation that L CF[h1,e] > 1 tells us that the suggested certainty 
factors are inappropriate. The expert must either adjust the weightings, 
or we must normalize them so that their sum does not exceed 1. Because 
behavior based on these rules would be irrational, we must change the 
rules. 

11.5 The Model as an Approximation Technique 

Certainty factors provide a useful way to think about confirmation and the 
quantification of degrees of belief. However, we have not yet described 
how the CF model can be usefully applied to the medical diagnosis prob­
lem. The remainder of this chapter will explain conventions that we have 
introduced in order to use the certainty factor model. Our starting as­
sumption is that the numbers given us by experts who are asked to quantify 
their degree of belief in decision criteria are adequate approximations to 
the numbers that would be calculated in accordance with the definitions 
of MB and MD if the requisite probabilities were known. 

When we discussed Bayes' Theorem earlier, we explained that we 
would like to devise a method that allows us to approximate the value for 
P(d;je) solely from the P(d;\sk), where d; is the ith possible diagnosis, skis the 
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kth clinical observation, and e is the composite of all the observed sk. This 
goal can be rephrased in terms of certainty factors as follows: 

Suppose that MB[d;,sk] is known for each sk, MD[di,sk] is known for 
each s1,, and e represents the conjunction of all the sk. Then our goal 
is to calculate CF[d;,e] from the MB's and MD's known for the indi­
vidual s1,'s. 

Suppose that e = SJ & s2 and that e confirms di. Then: 

CF[d;,e] MB[d;,e] - 0 
P(diJe) - P(di) 

1 - P(di) 

P(dils1 & s2) - P(d;) 
1 - P(d;) 

There is no exact representation of CF[di,s1 & s2] purely in terms of 
CF[d;,si] and CF[d;,s2]; the relationship of s1 to s2, within di and all other 
diagnoses, needs to be known in order to calculate P(diJs1 & s2). Further­
more, the CF scheme adds one complexity not present with Bayes' Theo­
rem because we are forced to keep MB's and MD's isolated from one an­
other. Suppose SJ confirms d; (MB > 0) but s2 disconfirms d; (MD > 0). 
Then consider CF[d;,SJ & s2]. In this case, CF[d;,SJ & s2] must reflect both 
the disconfirming nature of s2 and the confirming nature of s1• Although 
these measures are reflected in the component Cf's (it is intuitive in this 
case, for example, that CF[d;,s2] ~ CF[di.si & s2] ~ CF[di,si]), we shall 
demonstrate that it is important to handle component MB's and MD's 
separately in order to preserve commutativity (see Item 3 of the list of 
defining criteria below). We have therefore developed an approximation 
technique for handling the net evidential strength of incrementally ac­
quired observations. The combining convention must satisfy the following 
criteria (where e + represents all confirming evidence acquired to date, and 
e- represents all disconfirming evidence acquired to date): 

Defining Criteria 

I. Limits: 

a. MB[h,e +] increases toward 1 as confirming evidence is found, 
equaling 1 if and only if a piece of evidence logically implies h with 
certainty 

b. MD[h,e - ] increases toward 1 as disconfirming evidence is found, 
equaling 1 if and only if a piece of evidence logically implies --ih 
with certainty 

c. CF[h,e-] ~ CF[h,e - & e +] ~ CF[h,e +] 
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These criteria reflect our desire to have the measure of belief 
approach certainty asymptotically as partially confirming evidence is 
acquired, and to have the measure of disbelief approach certainty 
asymptotically as partially disconfirming evidence is acquired. 

2. Absolute confirmation or disconfirmation: 

a. If MB[h,e +] = 1, then MD[h,e - ] = 0 regardless of the 
disconfirming evidence in e-; i.e., CF[h,e+] = 1 

b. If MD[h,e-] = 1, then Mlilh,e+] = 0 regardless of the 
confirming evidence in e +; i.e., CF[h,e - ] = - 1 

c. The case where MB[h,e +] = MD[h,e - ] = 1 is contradictory and 
hence the CF is undefined 

3. Commutativity: 

If s1 & s2 indicates an ordered observation of evidence, first s1 and then 
s2: 

a. MB[h,s 1 & s2] = MB[h,s2 & si] 

b. MD[h,s 1 & s2] = MD[h,s2 & si] 

c. CF[h,s1 & s2] = CF[h,s2 & si] 

The order in which pieces of evidence are discovered should not affect 
the level of belief or disbelief in a hypothesis. These criteria assure that 
the order of discovery will not matter. 

4. Missing information: 

Ifs? denotes a piece of potential evidence, the truth or falsity of which 
is unknown: 

a. MB[h,s 1 & s?] = MB[h,si] 

b. MD[h,s 1 & s?] = MD[h,si] 

c. CF[h,s 1 & s?] = CF[h,si] 

The decision model should function by simply disregarding rules of the 
form CF[h.52] = x if the truth or falsity of s2 cannot be determined. 

A number of observations follow from these criteria. For example, 
Items 1 and 2 indicate that the MB of a hypothesis never decreases unless 
its MD goes to 1. Similarly, the MD never decreases unless the MB goes to 
1. As evidence is acquired sequentially, both the MB and MD may become 
nonzero. Thus CF = MB - MD is an important indicator of the net belief 
in a hypothesis in light of current evidence. Furthermore, a certainty factor 
of zero may indicate either the absence of both confirming and disconfirm-
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ing evidence (MB = MD = 0) or the observation of pieces of evidence 
that are equally confirming and disconfirming (MB = MD, where each is 
nonzero). Negative CF's indicate that there is more reason to disbelieve the 
hypothesis than to believe it. Positive CF's indicate that the hypothesis is 
more strongly confirmed than disconfirmed. 

It is important also to note that, if e = e+ & e-, then CF[h,e] repre­
sents the certainty factor for a complex new rule that could be given us by 
an expert. CF[h,e], however, would be a highly specific rule customized for 
the few patients satisfying all the conditions specified in e + and e - . Since 
the expert gives us only the component rules, we seek to devise a mecha­
nism whereby a calculated cumulative CF[h,e], based on MB[h,e+] and 
MD[h,e-], gives a number close to the CF[h,e] that would be calculated if 
all the necessary conditional probabilities were known. 

The first of the following four combining functions satisfies the criteria 
that we have outlined. The other three functions are necessary conventions 
for implementation of the model. 

Combining Functions 

I. Incrementally acquired evidence: 

+ MB[h,s2](1 - MB[h,si]) 

MD[h,sr]) 

2. Conjunctions of hypotheses: 

MB[h 1 & h2,e] = min(MB[h1>e], MB[h2,e]) 

MD[h 1 & h2,e] = max(MD[h 1,e], MD[h2,e]) 

3. Disjunctions of hypotheses: 

MB[h 1 or h2,e] 

MD[h 1 or h2,e] 

4. Strength of evidence: 

max(MB[h1>e], MB[h2,e]) 

min(MD[h 1,e], MD[h2,e]) 

otherwise 

otherwise 

If the truth or falsity of a piece of evidence s1 is not known with cer­
tainty, but a CF (based on prior evidence e) is known reflecting the 
degree of belief in s1, then if MB'[h,sr] and MD'[h,sr] are the degrees 
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of belief and disbelief in h when s1 is known to be true with certainty 
(i.e., these are the decision rules acquired from the expert) then the 
actual degrees of belief and disbelief are given by: 

MB[h,si] 

MD[h,si] 

MB'[h,si] · max(O, CF[sl>e]) 

MD'[h,si] · max(O, CF[s 1,e]) 

This criterion relates to our previous statement that evidence in favor 
of a hypothesis may itself be a hypothesis subject to confirmation. Sup­
pose, for instance, you are in a darkened room when testing the gen­
eralization that all ravens are black. Then the observation of a raven 
that you think is black, but that may be navy blue or purple, is less 
strong evidence in favor of the hypothesis that all ravens are black than 
if the sampled raven were known with certainty to be black. Here the 
hypothesis being tested is "all ravens are black," and the evidence is 
itself a hypothesis, namely the uncertain observation "this raven is black." 

Combining Function 1 simply states that, since an MB (or MD) rep­
resents a proportionate decrease in disbelief (or belief), the MB (or MD) 
of a newly acquired piece of evidence should be applied proportionately 
to the disbelief (or belief) still remaining. Combining Function 2a indicates 
that the measure of belief in the conjunction of two hypotheses is only as 
good as the belief in the hypothesis that is believed less strongly, whereas 
Combining Function 2b indicates that the measure of disbelief in such a 
conjunction is as strong as the disbelief in the most strongly disconfirmed. 
Combining Function 3 yields complementary results for disjunctions of 
hypotheses. The corresponding CF's are merely calculated using the def­
inition CF = MB - MD. Readers are left to satisfy themselves that Com­
bining Function 1 satisfies the defining criteria.9 

Combining Functions 2 and 3 are needed in the use of Combining 
Function 4. Consider, for example, a rule such as: 

Then, by Combining Function 4: 

CF[h,51 & 52 & (s3 or s4)] = x · max (O,CF[5 1 & s2 & (5 3 or 54),e]) 

= x · max(O,MB[5 1 & s2 & (s 3 or 54),e] 
- MD[5 1 & 52 & (s3 or 54),e]) 

9 Note that MB[h,s1] = MD[h,s1] = 0 when examining Criterion 4. 
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Thus we use Combining Functions 2 and 3 to calculate: 

min(MB[s 1,e], MB[s 2 ,e], MB[s 3 or s4,e]) 

min(MB[s 1,e], MB[s2,e ], 
max(MB[s 3,e], MB[s 4 ,e])) 

MD[s 1 & s2 & (s3 or s4 ),e] is calculated similarly. 
An analysis of Combining Function 1 in light of the probabilistic def­

initions of MB and MD does not prove to be particularly enlightening. The 
assumptions implicit in this function include more than an acceptance of 
the independence of s1 and s2. The function was conceived purely on 
intuitive grounds in that it satisfied the four defining criteria listed. How­
ever, some obvious problems are present. For example, the function always 
causes the MB or MD to increase, regardless of the relationship between 
new and prior evidence. Yet Salmon has discussed an example from sub­
particle physics (Salmon, 1973) in which either of two observations taken 
alone confirms a given hypothesis, but their conjunction disproves the hy­
pothesis absolutely! Our model assumes the absence of such aberrant sit­
uations in the field of application for which it is designed. The problem 
of formulating a more general quantitative system for measuring confir­
mation is well recognized and referred to by Harre (1970): "The syntax 
of confirmation has nothing to do with the logic of probability in the nu­
merical sense, and it seems very doubtful if any single, general notion of 
confirmation can be found which can be used in all or even most scientific 
contexts." Although we have suggested that perhaps there is a numerical 
relationship between confirmation and probability, we agree that the chal­
lenge for a confirmation quantification scheme is to demonstrate its use­
fulness within a given context, preferably without sacrificing human in­
tuition regarding what the quantitative nature of confirmation should be. 

Our challenge with Combining Function 1, then, is to demonstrate 
that it is a close enough approximation for our purposes. We have at­
tempted to do so in two ways. First, we have implemented the function as 
part of the MYCIN system (Section 11.6) and have demonstrated that the 
technique models the conclusions of the expert from whom the rules were 
acquired. Second, we have written a program that allows us to compare 
CF's computed both from simulated real data and by using Combining 
Function 1. Our notation for the following discussion will be as follows: 

CF*[h,e] = the computed CF using the definition of CF from Section 11.4 
(i.e., "perfect knowledge" since P(hie) and P(h) are known) 

CF[h,e] = the computed CF using Combining Function 1 and the known 
MB's and MD's for each sk where e is the composite of the sk's 
(i.e., P(hie) not known, but P(hlsk) and P(h) known for calculation 
of MB[h,sk] and MD[hh]) 
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FIGURE 11-1 Chart demonstrating the degree of agreement 
between CF and CF* for a sample data base. CF is an approxi­
mation of CF*. The terms are defined in the text. 
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The program was run on sample data simulating several hundred patients. 
The question to be asked was whether CF[h,e] is a good approximation to 
CF*[h,e]. Figure I I-I is a graph summarizing our results. For the vast 
majority of cases, the approximation does not produce a CF[h,e] radically 
different from the true CF*[h,e]. In general, the discrepancy is greatest 
when Combining Function 1 has been applied several times (i.e., several 
pieces of evidence have been combined). The most aberrant points, how­
ever, are those that represent cases in which pieces of evidence were 
strongly interrelated for the hypothesis under consideration (termed con-
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ditional nonindependence). This result is expected because it reflects precisely 
the issue that makes it difficult to use Bayes' Theorem for our purposes. 

Thus we should emphasize that we have not avoided many of the 
problems inherent with the use of Bayes' Theorem in its exact form. We 
have introduced a new quantification scheme, which, although it makes 
many assumptions similar to those made by subjective Bayesian analysis, 
permits us to use criteria as rules and to manipulate them to the advantages 
described earlier. In particular, the quantification scheme allows us to con­
sider confirmation separately from probability and thus to overcome some 
of the inherent problems that accompany an attempt to put judgmental 
knowledge into a probabilistic format. Just as Bayesians who use their 
theory wisely must insist that events be chosen so that they are independent 
(unless the requisite conditional probabilities are known), we must insist 
that dependent pieces of evidence be grouped into single rather than mul­
tiple rules. As Edwards (1972) has pointed out, a similar strategy must be 
used by Bayesians who are unable to acquire all the necessary data: 

An approximation technique is the one now most commonly used. It is 
simply to combine conditionally non-independent symptoms into one grand 
symptom, and obtain [quantitative] estimates for that larger more complex 
symptom. 

The system therefore becomes unworkable for applications in which 
large numbers of observations must be grouped in the premise of a single 
rule in order to ensure independence of the decision criteria. In addition, 
we must recognize logical subsumption when examining or acquiring rules 
and thus avoid counting evidence more than once. For example, if s1 im­
plies s2, then CF[h,s 1 & s2] = CF[h,sr] regardless of the value of CF[h,s2]. 

Function 1 does not "know" this. Rules must therefore be acquired and 
utilized with care. The justification for our approach therefore rests not 
with a claim of improving on Bayes' Theorem but rather with the devel­
opment of a mechanism whereby judgmental knowledge can be efficiently 
represented and utilized for the modeling of medical decision making, 
especially in contexts where (a) statistical data are lacking, (b) inverse prob­
abilities are not known, and (c) conditional independence can be assumed 
in most cases. 

11 6 MYCIN's Use of the Model • 

Formal quantification of the probabilities associated with medical decision 
making can become so frustrating that some investigators have looked for 
ways to dispense with probabilistic information altogether (Ledley, 1973). 
Diagnosis is not a deterministic process, however, and we believe that it 
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should be possible to develop a quantification technique that approximates 
probability and Bayesian analysis and that is appropriate for use in those 
cases where formal analysis is difficult to achieve. The certainty factor 
model that we have introduced is such a scheme. The MYCIN program 
uses certainty factors to accumulate evidence and to decide on likely iden­
tities for organisms causing disease in patients with bacterial infections. A 
therapeutic regimen is then determined-one that is appropriate to cover 
for the organisms requiring therapy. 

MYCIN remembers the alternate hypotheses that are confirmed or 
disconfirmed by the rules for inferring an organism's identity. With each 
hypothesis is stored its MB and MD, both of which are initially zero. When 
a rule for inferring identity is found to be true for the patient under 
consideration, the action portion of the rule allows either the MB or the 
MD of the relevant hypothesis to be updated using Combining Function 
1. When all applicable rules have been executed, the final CF may be 
calculated, for each hypothesis, using the definition CF = MB - MD. 
These alternate hypotheses may then be compared on the basis of their 
cumulative certainty factors. Hypotheses that are most highly confirmed 
thus become the basis of the program's therapeutic recommendation. 

Suppose, for example, that the hypothesis h1 that the organism is a 
Streptococcus has been confirmed by a single rule with a CF = 0.3. Then, 
if e represents all evidence to date, MB[h 1,e] = 0.3 and MD[h1>e] = 0. If 
a new rule is now encountered that has CF = 0.2 in support of h1, and if 
e is updated to include the evidence in the premise of the rule, we now 
have MB[h1>e] = 0.44 and MD[h 1,e] = 0. Suppose a final rule is encoun­
tered for which CF = - 0.1. Then if e is once again updated to include 
all current evidence, we use Function l to obtain MB[h 1,e] = 0.44 and 
MD[h1>e] = 0.1. If no further system knowledge allows conclusions to be 
made regarding the possibility that the organism is a Streptococcus, we cal­
culate a final result, CF[h1 ,e] = 0.44 - 0.1 = 0.34. This number becomes 
the basis for comparison between h1 and all the other possible hypotheses 
regarding the identity of the organism. 

It should be emphasized that this same mechanism is used for evalu­
ating all knowledge about the patient, not just the identity of pathogens. 
When a user answers a system-generated question, the associated certainty 
factor is assumed to be + l unless he or she explicitly modifies the response 
with a CF (multiplied by ten) enclosed in parentheses. Thus, for example, 
the following interaction might occur (MYCIN's question is in lower-case 
letters): 

14) Did the organism grow in clumps, chains, or pairs? 
••CHAINS (6) PAIRS (3) CLUMPS (-8) 

This capability allows the system automatically to incorporate the user's 
uncertainties into its decision processes. A rule that referenced the growth 
conformation of the organism would in this case find: 



MB[chains,e] = 0.6 
MB[pairs,e] = 0.3 
MB[clumps,e] = 0 
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MD[chains,e] = 0 
MD[pairs,e] = 0 
MD[clumps,e] = 0.8 

Consider, then, the sample rule: 

where h 1 is the hypothesis that the organism is a Streptococcus, s1 is the 
observation that the organism is gram-positive, s2 that it is a coccus, and s3 
that it grows in chains. Suppose gram stain and morphology were known 
to the user with certainty, so that MYCIN has recorded: 

In the case above, however, MYCIN would find that 

CF[chains,e] = CF[s3,e] = 0.6 - 0 = 0.6 

Thus it is no longer appropriate to use the rule in question with its full 
confirmatory strength of 0.7. That CF was assigned by the expert on the 
assumption that all three conditions in the premise would be true with 
certainty. The modified CF is calculated using Combining Function 4: 

MB[h1,S1 & S2 & S3] - MD[hj,S] & S2 & S3] 

0.7 · max(O, CF[s1 & s2 & s3,e]) - 0 

Calculating CF[s 1 & s2 & s3,e] using Combining Function 2 gives: 

i.e., 

and 

CF[h[,S] & S2 & S3] = (0.7) (0.6) - 0 

= 0.42 - 0 

MB[hJ>S] & S2 & S3] 

MD[h1,S1 & S2 & S3] 

0.42 

0 

Thus the strength of the rule is reduced to reflect the uncertainty re­
garding s3. Combining Function 1 is now used to combine 0.42 (i.e., 
MB[h1>s 1 & s2 & s3]) with the previous MB for the hypothesis that the 
organism is a Streptococcus. 

We have shown that the numbers thus calculated are approximations 
at best. Hence it is not justifiable simply to accept as correct the hypothesis 
with the highest CF after all relevant rules have been tried. Therapy is 
therefore chosen to cover for all identities of organisms that account for a 
sufficiently high proportion of the possible hypotheses on the basis of their 
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CF's. This is accomplished by ordering them from highest to lowest and 
selecting all those on the list until the sum of their CF's exceeds z (where 
z is equal to 0.9 times the sum of the CF's for all confirmed hypotheses). 
This ad hoc technique therefore uses a semiquantitative approach in order 
to attain a comparative goal. 

Finally, it should be noted that our definition of CF's allows us to 
validate those of our rules for which frequency data become available. This 
would become increasingly important if the program becomes a working 
tool in the clinical setting where it can actually be used to gather the sta­
tistical data needed for its own validation. Otherwise, validation necessarily 
involves the comments of recognized infectious disease experts who are 
asked to evaluate the program's decisions and advice. Evaluations of MY­
CIN have shown that the program can give advice similar to that suggested 
by infectious disease experts (see Part Ten). Studies such as these have 
allowed us to gain confidence that the certainty factor approach is robust 
enough for use in a decision-making domain such as antimicrobial selec­
tion. 



12 
Probabilistic Reasoning and 
Certainty Factors 

J. Barclay Adams 

The development of automated assistance for medical diagnosis and de­
cision making is an area of both theoretical and practical interest. Of meth­
ods for utilizing evidence to select diagnoses or decisions, probability the­
ory has the firmest appeal. Probability theory in the form of Bayes' 
Theorem has been used by a number of workers (Ross, 1972). Notable 
among recent developments are those of de Dombal and coworkers (de 
Dombal, 1973; de Dombal et al., 1974; 1975) and Pipberger and coworkers 
(Pipberger et al., 1975). The usefulness of Bayes' Theorem is limited by 
practical difficulties, principally the lack of data adequate to estimate ac­
curately the a priori and conditional probabilities used in the theorem. One 
attempt to mitigate this problem has been to assume statistical indepen­
dence among various pieces of evidence. How seriously this approximation 
affects results is often unclear, and correction mechanisms have been ex­
plored (Ross, 1972; Norusis and Jacquez, 1975a; 1975b). Even the in­
dependence assumption requires an unmanageable number of estimates 
of probabilities for most applications with realistic complexity. To circum­
vent this problem, some have tried to elicit estimates of probabilities di­
rectly from experienced physicians (Corry, 1973; Ginsberg, 1971; Gustaf­
son et al., 1971 ), while others have turned from the use of Bayes' Theorem 
and probability theory to the use of discriminant analysis (Ross, 1972) and 
non probabilistic methods (Scheinok and Rinaldo, 1971; Cumberbatch and 
Heaps, J 973; Cumberbatch et al., 1974; Glesser and Collen, 1972). 

Shortliffe and Buchanan (197 5) have offered a model of inexact rea­
soning in medicine used in the MYCIN system (Chapter 11). Their model 

This chapter is a shortened and edited version of a paper appearing in Mathematical Biosciences 
32: 177-186 (1976). Copyright© 1976 by Mathematical Biosciences. All rights reserved. Used 
with permission. 
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uses estimates provided by expert physicians that reflect the tendency of a 
piece of evidence to prove or disprove a given hypothesis. Because of the 
highly promising nature of the MYCIN system, this model deserves ex­
amination. Shortliffe and Buchanan conceived their system purely on in­
tuitive grounds and assert that it is an alternative to probability theory. I 
shall show below that a substantial part of this model can be derived from 
and is equivalent to p-robability theory with the assumption of statistical 
independence. In Section 12.l I first review a simple probability model 
and discuss some of its limitations. 

12 .1 A Simple Probability Model 

Consider a finite population of n members. Members of the population 
may possess one or more of several properties that define subpopulations 
or sets. Properties of interest might be e1 or e2, which might be evidence 
for or against a disease, and h, a certain disease state or other hypothesis 
about an individual. The number of individuals with a certain property, 
say e, will be denoted n(e), and the number with both of two properties e1 

and e2 will be denoted n(e 1 & e2). Probabilities are taken as ratios of num­
bers of individuals. From the observation that: 

ri,Je & '!)_ . n ri,~e_ & h) . - rl_ 
n(e) n(h) n(h) n(e) 

a convenient form of Bayes' Theorem follows immediately: 

P(hje) 

P(h) 

P(ejh) 

P(e) 

Now consider the case in which two pieces of evidence e1 and e2 bear on 
a hypothesis or disease state h. Let us make the assumptions that these 
pieces of evidence are independent both in the population as a whole and 
in the subpopulation with h; that is: 

n(e1 & e2) ri,~ei) . n(e2) 
(1) --~-

n n n 

and 

n(e 1 & e2 & h) n(e_i_~ h) . n(e~~ h) (2) -------
n(h) n(h) n(h) 
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or 

(3) 

and 

(4) 

With these the right-hand side of Bayes' Theorem becomes 

P(e 1 _& e2lh) = P(e l.02 . P(e2ih) 
P(e 1 & e2) P(e 1) P(e2) 

(5) 

and, because of this factoring, the right-hand side is computationally sim­
ple. 

Now, because of the dearth of empirical data to estimate probabilities, 
suppose we were to ask experts to estimate the probabilities subjectively. 
We could ask for estimates of the ratios P(eiih)IP(ei) and P(h), and from 
these compute P(hje; & e2 & ... & e11 ). The ratios P(eilh)IP(e;) must be in 
the range [O, IIP(h)]. Most physicians are not accustomed to thinking of 
diseases and evidence in terms of probability ratios. They would more 
willingly attempt to quantitate their intuition by first deciding whc::ther a 
piece of evidence tends to prove or disprove a hypothesis and then assign­
ing a parameter on a scale of 0 to 10 as a measure of the weight or strength 
of the evidence. One way to translate this parameterization into an "esti­
mate" of a probability ratio is the following. Divide the intuitive parameter 
by 10, yielding a new parameter, which for evidence favoring the hypoth­
esis will be called MB, the physician's measure of belief, and for evidence 
against the hypothesis will be called MD, the physician's measure of disbe­
lief. Both MB and MD are in the range [0,1] and have the value 0 when 
the evidence has no bearing on the hypothesis. The value 1 for MB[h,e] 
means that all individuals with e have h. The value 1 for MD[h,e] means 
that no individual withe hash. From these physician-estimated parameters 
we derive the corresponding probability ratios in the following way. For 
evidence against the hypothesis we simply take 

P(e/h) = 1 - MD[h e] 
P(e) ' 

(6) 

For evidence favoring the hypothesis we use a similar construct by taking 
the evidence as against the negation of the hypothesis, i.e., by considering 
the subpopulation of individuals who do not have h, denoted 1h. So we 
construct the ratio of probabilities using MB: 

(7) 
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Now, to continue the parallel, we write Bayes' Theorem for two pieces of 
evidence favoring a hypothesis: 

P("1hle1 & e2) P(e 1 & e2l1h)P(e 1 & e2) 
(8) 

P(1h) P(e 1 & e2) 

with 

P(e 1 & e21h) P(edih) . P(e211h) 
(9) 

P(e 1 & e2) P(e1) P(e2) 

where, for the last equality, independence of e1 and e2 in 1h is assumed. 
By using the identities 

P(h) + P(ih) 

P(hle) + P(1hie) 

(IO) 

( 11) 

one then has a computationally simple way of serially adjusting the prob­
ability of a hypothesis with new evidence against the hypothesis: 

P(hle") = P(e;/h) · P(hle') 
P(e;) 

or new evidence favoring the hypothesis: 

(hi 
,, P(e;/1h) hi , P e) = 1 - --- · [l - P( e )] 

P(e;) 

(12) 

( 13) 

where e; is the new evidence, e" is the total evidence after the introduction 
of e;, and e' is the evidence before the new evidence is introduced [note 
that P(hle') = P(h) before any evidence is introduced]. Alternatively, one 
could combine all elements of evidence against a hypothesis simply by 
using independence as in Equation (5) and separately combine all elements 
of evidence favoring a hypothesis by using Equation (9), and then use 
Equations (12) and (13) once. 

The attractive computational simplicity of this scheme is vitiated by 
the restrictive nature of the independence assumptions made in deriving 
it. The MB's and MD's for different pieces of evidence cannot be chosen 
arbitrarily and independently. This can be clearly seen in the following 
simple theorem. If e1 and e2 are independent both in the whole population 
and in the subpopulation with property h, then 

(14) 
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This follows from dividing Equation (2) by Equation (1). The nature of 
restrictions placed on the probabilities can be seen from the limiting case 
in which all members of e1 are in h. In that case, P(hle 1) = P(hiei & e2) = 
1, so P(h/e2) = P(h); that is, if some piece of evidence is absolutely diagnostic 
of an illness, then any evidence that is independent can have no diagnostic 
value. This special case of the theorem was noted in a paper of Warner et 
al. ( 1961 ). Restrictions this forces on the MB's can be further demonstrated 
by the following example. We write Bayes' Theorem with the independence 
assumption as follows: 

P(edh) . ~(e2ih) 
P(e1) P(e2) 

(15) 

Consider the case of two pieces of evidence that favor the hypothesis. Using 
Equations (6), (10), and (11), one can express P(eih)IP(e) in terms of MB 
as follows: 

P(eih) ( 1 ) -- = 1 + - - 1 MB[h e] 
P(e) P(h) ' 

(16) 

Using this form and the fact that P(hie 1 & e2) ~ 1, we get from Equation 
( 15) 

This is not satisfied for all values of the MB's; e.g., if P(h) = 1111 and 
MB[h,ei]=0.7, then we must choose the narrow range MB[h,e2] ~ 0.035 
to satisfy the inequality. Most workers in this field assume that elements of 
evidence are statistically independent only within each of a complete set 
of mutually exclusive subpopulations and not in the population as a whole; 
thus the properties of (14) and ( 15) do not hold. Occasionally, writers have 
implicitly made the stronger assumption of independence in the whole 
space (Slovic et al., 1971). 

12 .2 The MYCIN Model 

The model developed by Shortliffe and Buchanan is in part equivalent to 
that in Section 12.1. They introduce quantities MB[h,e] and MD[h,e], which 
are identical to those we have defined above (and were the reason for 
selecting our choice of parameterization). They postulate rules for com-
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bining MB[h,ei] with MB[h,e2 ] to yield MB[h,ei & e2 ] and similar rules for 
MD. With one exception discussed below, these rules need not be postu­
lated because they are equivalent to, and can be derived from, the method 
of combining probability ratios under the assumption of independence 
used in the previous section. For example, the rule for MD's is derived as 
follows by using Equation (5): 

P(eiJh) . P(e2Jh) 

P(ei) P(e2) 
( 18) 

or 

l - MD[ h,e i & e2] = (l - MD[h,e i])(l - MD[h,e~?]) ( 19) 

which is an algebraic rearrangement of the rule postulated in their paper. 
A similar construct holds for MB. The exceptional case in the MYCIN 
model is one in which a piece of evidence proves a hypothesis (all with e i 
have h). As noted in the previous section, this case excludes the possibility 
of other independent diagnostically meaningful evidence. In the MYCIN 
model, if e proves h, then one sets MD equal to zero for the combined 
evidence. A similar assumption is introduced for the case that evidence 
disproves a hypothesis. To maintain internal consistency the MB's and MD's 
must be subject to the restrictions discussed in Section 12.l. This important 
fact is not noted in the work of Shortliffe and Buchanan. 

Two other properties are assumed for the MB's and MD's by Shortliffe 
and Buchanan. The extent or importance of the use of these assumptions 
in the employment of their model is not clear, but does not seem great. 
One concerns the conjunction of hypotheses hi and h2, for which they 
assume 

MB[h 1 & h2,e] = min(MB[hi,eJ.MB[h2,e]) 

MD[hi & h2,e] = max(MD[h1>e],MD[h2 ,e]) 

(20) 

(21) 

Unstated are strong restrictive assumptions about the relationship of hi 
and h2 . As an extreme example, suppose that hi and h2 are mutually ex­
clusive; then the conjunction hi & h2 is false (has probability zero) no matter 
what the evidence, and the assumptions on the conjunction of hypotheses 
would be unreasonable. In the context of the probability model of Section 
12. I, one can derive a relationship 

P(h1 & h2ie) 
----

P(hi & h2) 

P(h_1~2 . P(h2ie) 

P(h1) P(h2) 
(22) 

only by making strong assumptions on the independence of hi and h2 . 
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A pair of further assumptions made by Shortliffe and Buchanan con­
cerns the disjunction of two hypotheses, denoted h 1 V h2. These are 

MB[h 1 V h2,e] 

MD[h 1 V h2,e] 

max(MB[h 1 ,e ],MB[h2 ,e]) 

min(MD[h 1,e],MD[h2,e]) 

(23) 

(24) 

Again these contain unstated assumptions about the relationship of h1 and 
h2 . If, for example, h 1 and h2 are mutually exclusive and each has a prob­
ability of being true, then the disjunction h1 V h2 should be more likely or 
probable or confirmed than either h1 or h2 . Expressions for P(elh1 V h2)/ 

P(e) can be derived in probability theory, but they have no compact or 
perspicuous form. 

The MYCIN model combines separately all evidence favoring a 
hypothesis to give MB[h,ef], where el = e11 & e12 & ... & e1n, the intersection 
of all elements of evidence favoring hypothesis h. Similarly, all elements 
against a hypothesis are combined to give MD[h,eaJ. By Bayes' Theorem 
these provide measures of P(hie1)1P(h) and P(hiea)IP(h). These could be 
combined using the probability theory outlined in Section 12 .1 to give 
P(hie1 & ea)IP(h), an estimate of the change of the probability due to the 
evidence. However, it is at this point that the MYCIN model departs from 
standard probability theory. Shortliffe and Buchanan combine the MB with 
the MD by defining a certainty factor to be 

(25) 

The certainty factor is used in two ways. One is to rank hypotheses to select 
those for further action. The other is as a weighting factor for the credi­
bility of a hypothesis h, which is supposed by an intermediate hypothesis 
i, which in turn is supported by evidence e. The appropriateness of CF for 
each of these roles will be examined. 

One of the uses of CF is to rank hypotheses. Because CF[h,e] does not 
correspond to the probability of h given e, it is not difficult to give examples 
in which, of two hypotheses, the one with the lower probability would have 
the higher certainty factor, or CF. For example, consider two hypotheses. 
h1 and h2 and some body of evidence e that tends to confirm both 
hypotheses. Suppose that the a priori probabilities were such that P(h 1) ~ 

P(h2) and P(h 1le) > P(h2ie); it is possible that CF[h 1,e] < CF[h2,e]. For exam­
ple, if P(h 1) = 0.8, P(h2) = 0.2, P(hiie) = 0.9, P(h2le) = 0.8, then 
CF[h 1,e] = 0.5 and CF[h2,e] = 0.75. This failure to rank according to 
probabilities is an undesirable feature of CF. It would be possible to avoid 
it if it were assumed that all a priori probabilities were equal. 

The weighting role for CF is suggested by the intuitive notion that in 
a chain of reasoning, if e implies i with probability P(ile), and i, if true, 
implies h with probability P(h/i), then 

P(h/e) = P(h/i)P(i/e) (26) 
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This is not true in general; however, a set of assumptions can be identified 
under which it will be true. Suppose the population with property h is 
contained in the set with i, and the set with i is contained in the set with 
e. This may be expressed as 

n(h & i) = n(h) n(i & e) n(i) n(h & e) n(h) (27) 

These allow us to write 

n(h & e) n(h & i) n(i & e) 
---- = -- - . -----

n(e) n(i) n 
(28) 

which is the desired result in numerical form. The proposal of Shortliffe 
and Buchanan, which may be written as 

MB[h,e] 

MD[h,e] 

MB[h,i]max(O, CF[i,e]) 

MD[h,i]max(O, CF[i,e]) 

(29) 

(30) 

is not true in general under the assumptions of (27) or any other natural 
set, as may be demonstrated by substitution into these relationships of the 
definitions of MB, MD, and CF. 

12 3 Conclusions • 

The simple model of Section 12.1 is attractive because it is computationally 
simple and apparently lends itself to convenient estimation of parameters 
by experts. The weakness of the system is the inobvious interdependence 
restriction placed on the estimation of parameters by the assumptions of 
independence. The MYCIN model is equivalent in part to the simple prob­
ability model presented and suffers from the same subtle restrictions on 
parameter estimation if it is to remain internally consistent. 

The ultimate measure of success in models of medical reasoning of 
this sort, which attempt to mimic physicians, is the closeness of their ap­
proach to perfect imitation of experts in the field. The empirical success 
of MYCIN using the model of Shortliffe and Buchanan stands in spite of 
theoretical objections of the types discussed in the preceding sections. It is 
probable that the model does not founder on the difficulties pointed out 
because in actual use the chains of reasoning are short and the hypotheses 
simple. However, there are many fields in which, because of its shortcom­
ings, this model could not enjoy comparable success. 

The fact that in trying to create an alternative to probability theory or 
reasoning Shortliffe and Buchanan duplicated the use of standard theory 



Conclusions 271 

demonstrates the difficulty of creating a useful and internally consistent 
system that is not isomorphic to a portion of probability theory. In pro­
posing such a system, a careful delineation of its relationship to conven­
tional probability theory can contribute to an understanding and clear 
exposition of its assumptions and approximations. It thereby allows tests 
of whether these are satisfied in the proposed field of use. 



13 
The Dempster-Shafer 
Theory of Evidence 

Jean Gordon and Edward H. Shortliffe 

The drawbacks of pure probabilistic methods and of the certainty factor 
model have led us in recent years to consider alternate approaches. Par­
ticularly appealing is the mathematical theory of evidence developed by 
Arthur Dempster. We are convinced it merits careful study and interpre­
tation in the context of expert systems. This theory was first set forth by 
Dempster in the 1960s and subsequently extended by Glenn Shafer. In 
1976, the year after the first description of CF's appeared, Shafer published 
A Mathematical Theory of Evidence (Shafer, 1976). Its relevance to the issues 
addressed in the CF model was not immediately recognized, but recently 
researchers have begun to investigate applications of the theory to expert 
systems (Barnett, 1981; Friedman, 1981; Garvey et al., 1981 ). 

We believe that the advantage of the Dempster-Shafer theory over 
previous approaches is its ability to model the narrowing of the hypothesis 
set with the accumulation of evidence, a process that characterizes diag­
nostic reasoning in medicine and expert reasoning in general. An expert 
uses evidence that, instead of bearing on a single hypothesis in the original 
hypothesis set, often bears on a larger subset of this set. The functions and 
combining rule of the Dempster-Shafer theory are well suited to represent 
this type of evidence and its aggregation. 

For example, in the search for the identity of an infecting organism, 
a smear showing gram-negative organisms narrows the hypothesis set of 
all possible organisms to a proper subset. This subset can also be thought 
of as a new hypothesis: the organism is one of the gram-negative orga­
nisms. However, this piece of evidence gives no information concerning 
the relative likelihoods of the organisms in the subset. Bayesians might 
assume equal priors and distribute the weight of this evidence equally 
among the gram-negative organisms, but, as Shafer points out, they would 
thus fail to distinguish between uncertainty, or lack of knowledge, and 

272 
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equal certainty. Because he attributes belief to subsets, as well as to indi­
vidual elements of the hypothesis set, we believe that Shafer more accu­
rately reflects the evidence-gathering process. 

A second distinct piece of evidence, such as morphology of the orga­
nism, narrows the original hypothesis set to a different subset. How does 
the Dempster-Shafer theory pool these two pieces of evidence? Each is 
represented by a belief function, and two belief functions are merged via 
a combination rule to yield a new function. The combination rule, like the 
Bayesian and CF combining functions, is independent of the order in 
which evidence is gathered and requires that the hypotheses under con­
sideration be mutually exclusive and exhaustive. In fact, the Dempster­
Shafer combination rule includes the Bayesian and CF functions as special 
cases. 

Another consequence of the generality of the Dempster-Shafer belief 
functions is avoidance of the Bayesian restriction that commitment of belief 
to a hypothesis implies commitment of the remaining belief to its negation, 
i.e., that P(h) = 1 - P(1 h). The concept that, in many situations, evidence 
partially in favor of a hypothesis should not be construed as evidence 
partially against the same hypothesis (i.e., in favor of its negation) was one 
of the desiderata in the development of the CF model, as discussed in 
Chapter 11. As in the CF model, the beliefs in each hypothesis in the 
original set need not sum to 1 but may sum to a number less than or equal 
to 1; some of the belief can be allotted to subsets of the original hypothesis 
set. 

Thus the Dempster-Shafer model includes many of the features of the 
CF model but is based on a firm mathematical foundation. This is a clear 
advantage over the ad hoc nature of CF's. In the next sections, we motivate 
the exposition of the theory with a medical example and then discuss the 
relevance of the theory to MYCIN. 

13. } Basics of the Dempster-Shafer Theory 

13.1.1 A Simple Example of Medical Reasoning 

Suppose a physician is considering a case of cholestatic jaundice for which 
there is a diagnostic hypothesis set of hepatitis (hep), cirrhosis (cirr), gall­
stone (gall) and pancreatic cancer (pan). There are, of course, more than 
four causes of jaundice, but we have simplified the example here for illus­
trative purposes. In the Dempster-Shafer theory, this set is called a frame 
of discernment, denoted 8. As noted earlier, the hypotheses in 8 are as­
sumed mutually exclusive and exhaustive. 

One piece of evidence considered by the physician might support the 
diagnosis of intrahepatic cholestasis, which is defined for this example as 
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{hep, cirr, gall, pan} 

{hep, cirr, gall} {hep, cirr, pan} {hep, gall, pan} {cirr, gall, pan} 

{hep, cirr} {hep, gall} {cirr, gall} {hep, pan} {cirr, pan} {gall, pan} 

{hep} {cirr} {gall} {pan} 

FIGURE 13-1 The subsets of the set of causes of cholestasis. 

the two-element subset of e {hep, cirr}, also represented by the hypothesis 
HEP-OR-CIRR. Similarly, the hypothesis extrahepatic cholestasis corre­
sponds to {gall, pan}. Evidence confirming intrahepatic cholestasis to some 
degree will cause the physician to allot a proportional amount of belief to 
that subset. 

A new piece of evidence might help the physician exclude hepatitis to 
some degree. Evidence disconfirming hepatitis (HEP) is equivalent to evi­
dence confirming the hypothesis NOT-HEP, which corresponds to the hy­
pothesis CIRR-OR-GALL-OR-PAN or the subset {cirr, gall, pan}. Thus 
evidence disconfirming hepatitis to some degree will cause the physician 
to allot a proportional amount of belief to this three-element subset. 

As illustrated above, a subset of hypotheses in 8 gives rise to a new 
hypothesis, which is equivalent to the disjunction of the hypotheses in the 
subset. Each hypothesis in 8 corresponds to a one-element subset (called 
a singleton). By considering all possible subsets of 8, denoted 28 , the set of 
hypotheses to which belief can be allotted is enlarged. Henceforth, we use 
the term hypothesis in this enlarged sense to denote any subset of the orig­
inal hypotheses in e. 

A pictorial representation of 28 is given in Figure 13-1. Note that a 
set of size n has 2n subsets. (The empty set, 0, is one of these subsets, but 
corresponds to a hypothesis known to be false and is not shown in Figure 
13-1. 

In a given domain, only some subsets in 28 will be of diagnostic inter­
est. Evidence often bears on certain disease categories as well as on specific 
disease entities. In the case of cholestatic jaundice, evidence available to 
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Cholestatic Jaundice 

lntrahepatic Cholestasis Extrahepatic Cholestasis 

~ ~ 
{hep} {cirr} {gall} {pan} 

FIGURE 13-2 The subsets of clinical interest in cholestatic 
jaundice. 

the physician tends to support either intrahepatic cholestasis, extra­
hepatic cholestasis, or the singleton hypotheses. The tree of Figure 
13-1 can thus be pruned to that of Figure 13-2, which summarizes the 
hierarchical relations of clinical interest. In at least one medical artificial 
intelligence system, the causes of jaundice have been usefully structured 
in this way for the diagnostic task (Chandrasekharan et al., 1979). 

13.l.2 Basic Probability Assignments 

The Dempster-Shafer theory uses a number in the range [O, 1] to indicate 
belief in a hypothesis given a piece of evidence. This number is the degree 
to which the evidence supports the hypothesis. Recall that evidence against 
a hypothesis is regarded as evidence for the negation of the hypothesis. 
Thus, unlike the CF model, the Dempster-Shafer model avoids the use of 
negative numbers. 

The impact of each distinct piece of evidence on the subsets of e is 
represented by a function called a basic probability assignment (bpa). A bpa 
is a generalization of the traditional probability density function; the latter 
assigns a number in the range [O, 1] to every singleton of 8 such that the 
numbers sum to 1. Using 28 , the enlarged domain of all subsets of 8, a 
bpa denoted m assigns a number in [0,1] to every subset of e such that 
the numbers sum to I. (By definition, the number 0 must be assigned to 
the empty set, since this set corresponds to a false hypothesis. It is false 
because the hypotheses in e are assumed exhaustive.) Thus mallows assign­
ment of a quantity of belief to every element in the tree of Figure 
13-1, not just to those elements on the bottom row, as is the case for a 
probability density function. 

The quantity m(A) is a measure of that portion of the total belief com­
mitted exactly to A, where A is an element of 28 and the total belief is 1. 
This portion of belief cannot be further subdivided among the subsets of 
A and does not include portions of belief committed to subsets of A. Since 
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belief in a subset certainly entails belief in subsets containing that subset 
(i.e., nodes "higher" in the network of Figure 13-1), it would be useful to 
define a function that computes a total amount of belief in A. This quantity 
would include not only belief committed exactly to A but belief committed 
to all subsets of A. Such a function, called a belief Junction, is defined in the 
next section. 

The quantity m(8) is a measure of that portion of the total belief that 
remains unassigned after commitment of belief to various proper subsets 
of e. For example, evidence favoring a single subset A need not say any­
thing about belief in the other subsets. If m(A) =sand m assigns no belief 
to other subsets of 8, then m(8) = 1 - s. Thus the remaining belief is 
assigned toe and not to the negation of the hypothesis (equivalent to Ac, 
the set-theoretic complement of A), as would be required in the Bayesian 
model. 

Examples 

Example 1. Suppose that there is no evidence concerning the specific 
diagnosis in a patient with known cholestatic jaundice. The bpa repre­
senting ignorance, called the vacuous bpa, assigns 1 to e ={hep, cirr, gall, 
pan} and 0 to every other subset of e. Bayesians might attempt to represent 
ignorance by a function assigning 0.25 to each singleton, assuming no prior 
information. As remarked before, such a function would imply more in­
formation given by the evidence than is truly the case. 

Example 2. Suppose that the evidence supports, or confirms, the diag­
nosis of intrahepatic cholestasis to the degree 0.6, but does not support 
a choice between cirrhosis and hepatitis. The remaining belief, 1 - 0.6 = 
0.4, is assigned to e. The hypothesis corresponding to e is known to 
be true under the assumption of exhaustiveness. Bayesians would 
assign the remaining belief to extrahepatic cholestasis, the negation of 
intrahepatic cholestasis. Such an assignment would be an example of 
Paradox 1, discussed in Chapter 11. Thus m({hep, cirr}) = 0.6, 
m(8) = m({hep, cirr, gall, pan}) = 0.4, and the value of m for every other 
subset of e is 0. 

Example 3. Suppose that the evidence disconfirms the diagnosis of 
hepatitis to the degree 0.7. This is equivalent to confirming that of NOT­
HEP to the degree 0.7. Thus m({cirr, gall, pan})=0.7, m(8)=0.3, and the 
value of m for every other subset of e is 0. 

Example 4. Suppose that the evidence confirms the diagnosis of hep­
atitis to the degree 0.8. Then m({hep}) = 0.8, m(8) = 0.2, and m is 0 else­
where. 
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13.1.3 Belief Functions 

A belief function, denoted Bel, corresponding to a specific bpa, m, assigns 
to every subset A of 0 the sum of the beliefs committed exactly to every 
subset of A by m. For example, 

Bel({hep, cirr, pan})= m({hep, cirr, pan}) + m({hep, cirr}) 
+ m({hep, pan}) + m({cirr, pan}) 
+ m({hep}) + m({cirr}) + m({pan}) 

Thus, Bel(A) is a measure of the total amount of belief in A and not of the 
amount committed precisely to A by the evidence giving rise to m. 

Referring to Figure 13-1, Bel and m are equal for singletons, but 
Bel(A), where A is any other subset of 0, is the sum of the values of m for 
every subset in the subtree formed by using A as the root. Bel(0) is always 
equal to 1 since Bel(0) is the sum of the values of m for every subset of 0. 
This sum must be 1 by definition of a bpa. Clearly, the total amount of 
belief in e should be equal to the total amount of belief, 1, since the 
singletons are exhaustive. 

To illustrate, the belief function corresponding to the bpa of Example 
2 is given by Bel(0) = l, Bel(A) = 0.6, where A is any proper subset of 0 
containing {hep, cirr}, and the value of Bel for every other subset of 0 is 
0. 

13.1.4 Combination of Belief Functions 

As discussed in Chapter 11, the evidence-gathering process in medical 
diagnosis requires a method for combining the support for a hypothesis, 
or for its negation, based on multiple, accumulated observations. The 
Dempster-Shafer model also recognizes this requirement and provides a 
formal proposal for its management. Given two belief functions, based on 
two observations, but with the same frame of discernment, Dempster's 
combination rule, shown below, computes a new belief function that rep­
resents the impact of the combined evidence. 

Concerning the validity of this rule, Shafer ( 1976) writes that although 
he can provide "no conclusive a priori argument, ... it does seem to reflect 
the pooling of evidence." In the special case of a frame of discernment 
containing two elements, Dempster's rule can be found in Johann Heinrich 
Lambert's book, Neues Organon, published in 1764. In another special case 
where the two bpa's give support to exactly one and the same hypothesis, 
the rule reduces to that found in the MYCIN CF model and in Ars Con­
jectandi, the work of the mathematician Jakob Bernoulli in 1713. 

The Dempster combination rule differs from the MYCIN combining 
function in the pooling of evidence supporting mutually exclusive hy­
potheses. For example, evidence supporting hepatitis reduces belief in each 
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of the singleton hypotheses-CIRR, GALL, and PAN-and in any dis­
junction not containing HEP, e.g., CIRR-OR-GALL-OR-PAN, NOT-HEP, 
CIRR-OR-PAN, etc. As we discuss later, if the Dempster-Shafer model 
were adapted for use in MYCIN, each new piece of evidence would have 
a wider impact on other hypotheses than it does in the CF model. The 
Dempster combination rule also gives rise to a very different result re­
garding belief in a hypothesis when confirming and disconfirming evi­
dence is pooled. 

Let Bel 1 and Bel2 and m 1 and m2 denote two belief functions and their 
respective bpa's. Dempster's rule computes a new bpa, denoted m1E9 m2, 

which represents the combined effect of m 1 and m2 • The corresponding 
belief function, denoted Bel 1E9Bel2 , is then easily computed from m1E9 m2 

by the definition of a belief function. 
If we sum all products of the form m1(X)m2(Y), where X and Y run 

over all subsets of 8, the result is 1 by elementary algebra and the definition 
of a bpa: 

(1) 

The bpa representing the combination of m 1 and m2 apportions this num­
ber 1, the total amount of belief, among the subsets of e by assigning 
m1(X)m2(Y) to the intersection of X and Y. Note that there are typically 
several different subsets of 8 whose intersection equals that of X and Y. 
Thus, for every subset A of 8, Dempster's rule defines m 1E9 m2(A) to be 
the sum of all products of the form m1(X)m2(Y), where X and Y run over 
all subsets whose intersection is A. The commutativity of multiplication 
ensures that the rule yields the same value regardless of the order in which 
the functions are combined. This is an important property since evidence 
aggregation should be independent of the order of its gathering. The 
following two examples illustrate the combination rule. 

Example 5. As in Examples 2 and 3, suppose that for a given patient 
one observation supports intrahepatic cholestasis to degree 0.6 (m 1) 

whereas another disconfirms hepatitis (i.e., confirms {cirr, gall, pan}) to 
degree 0. 7 (m2). Then our net belief based on both observations is giv~n 
by m1E9 m2. For computational purposes, an "intersection tableau" with 
values of m 1 and m2 along the rows and columns, respectively, is a helpful 
device. Only nonzero values of m1 and m2 need be considered, since if 
m1(X) and/or m2(Y) is 0, then the product m1(X)m2(Y) contributes 0 to 
m1E9 m2(A), where A is the intersection of X and Y. Entry i,j in the tableau 
is the intersection of the subsets in row i and column j. Clearly, some of 
these entries may be the same subset. The product of the bpa values is in 
parentheses next to the subset. The value of m1E9 m2(A) is computed by 
summing all products in the tableau adjacent to A. 
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m2 
{cirr, gall, pan} (0.7) e (0.3) 

{hep, cirr} (0.6) m, 8 (0.4) 
{cirr} (0.42) 
{cirr, gall, pan} (0.28) 

{hep, cirr} (0.18) 
8 (0.12) 

In this example, a subset appears only once in the tableau and m1EB m2 is 
easily computed: 

m1EB m2({cirr}) = 0.42 

m1EB m2({hep, cirr}) = 0.18 

m1EB m2({cirr, gall, pan})=0.28 

m,EB m2(8) = 0.12 

m1EB m2 is O for all other subsets of 8 

Since Bel 1EBBel2 is fairly complex, we give only a few sample values: 

Bel 1EBBel2({hep, cirr}) = m1EB m2({hep, cirr}) + m1EB m2({hep}) 
+ m1EB m2'({cirr}) 

= 0.18 + 0 + 0.42 
= 0.60 

Bel1EBBel2({cirr, gall, pan}) = m1EB m2({cirr, gall, pan}) 
+ m1EB m2({cirr, gall}) 

smce 

+ m1EB m2({cirr, pan}) 
+ m1EB m2({gall, pan}) + m1EB m2({cirr}) 
+ m1EB m2({gall}) + m1EB m2({pan}) 
0.28 + 0 + 0 + 0 + 0.42 + 0 + 0 
0.70 

In this example, the reader should note that m1EB m2 satisfies the def­
inition of a bpa: I m1EB m2(X) = 1, where X runs over all subsets of 8 and 
m 1EB m2(0) = 0. Equation ( 1) shows that the first condition in the definition 
is always fulfilled. However, the second condition is problematic in cases 
where the "intersection tableau" contains null entries. This situation did 
not occur in Example 5 because every two sets with nonzero bpa values 
always had at least one element in common. In general, nonzero products 
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of the form m1(X)m2(Y) may be assigned when X and Y have an empty 
intersection. 

Dempster deals with this problem by normalizing the assigned values 
so that m 1 EB m2(0) = 0 and all values of the new bpa lie between 0 and 1. 
This is accomplished by defining K as the sum of all nonzero values as­
signed to 0 in a given case (K = 0 in Example 5 ). Dempster then assigns 0 
to m 1 EB m2(0) and divides all other values of rn 1 EB rn2 by 1 - K. 1 

Example 6. Suppose now that, for the same patient as in Example 5, 
a third observation (rn3) confirms the diagnosis of hepatitis to the degree 
0.8 (cf. Example 4). We now need to compute rn3EB m4 , where rn4 =m 1 +rn2 
of Example 5. 

m:~ {hep} (0.8) 
8 (0.2) 

m.1=m 1EB 1112 
{cirr} (0.42) {hep, cirr} (0.18) {cirr, gall, pan} (0.28) 8 (0.12) 

0 (0.336) {hep} (0.144) 0 (0.224) {hep} (0.096) 
{cirr} (0.084) {hep, cirr} (0.036) {cirr, gall, pan} (0.056) 8 (0.()24) 

In this example, there are two null entries in the tableau, one assigned 
the value 0.336 and the other 0.224. Thus 

K=0.336+0.224=0.56 and 1 - K=0.44 

m3EB rn4({hep}) = (0.144 + 0.096)/0.44 = 0.545 

rn3EB rn4 ({cirr}) = 0.084/0.44 = 0.191 

m3EB rn4({hep, cirr}) = 0.036/0.44 = 0.082 

m3EB m4({cirr, gall, pan})= 0.056/0.44 = 0.127 

m3EB m4(8) = 0.024/0.44 = 0.055 

m3EB m4 is o for all other subsets of e 

Note that ~rn3EB m4 (X) = 1, as is required by the definition of a bpa. 

13.1.5 Belief Intervals 

After all bpa's with the same frame of discernment have been combined 
and the belief function Bel defined by this new bpa has been computed, 
how should the information given by Bel be used? Bel(A) gives the total 

1Note that the revised values will still sum to I and hence satisfy that condition in the defi­
nition of a bpa. If a+ b+ c= I then (a+ b)/(l - c) =I and a/(1- c) + b/(1-c) =I. 
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amount of belief committed to the subset A after all evidence bearing on 
A has been pooled. However, the function Bel contains additional infor­
mation about A, namely, Bel(Ac), the extent to which the evidence supports 
the negation of A, i.e., Ac. The quantity 1- Bel(Ac) expresses the plausibility 
of A, i.e., the extent to which the evidence allows one to fail to doubt A. 

The information contained in Bel concerning a given subset A may be 
conveniently expressed by the interval 

[Bel(A) 1- Bel(Ac)] 

It is not difficult to see that the right endpoint is always greater than the 
left: l - Bel(Ac) ~ Bel(A) or, equivalently, Bel(A) + Bel(K) ~ 1. Since 
Bel(A) and Bel(Ac) are the sum of all values of m for subsets of A and Ac, 
respectively, and since A and Ac have no subsets in common, Bel(A) + 
Bel(Ac) ~ lm(X) = l where X ranges over all subsets of 8. 

In the Bayesian situation, in which Bel(A) + Bel(Ac) = 1, the two 
endpoints of the belief interval are equal and the width of the interval 
l - Bel(K) - Bel(A) is 0. In the Dempster-Shafer model, however, the 
width is usually not 0 and is a measure of the belief that, although not 
committed to A, is also not committed to Ac. It is easily seen that the width 
is the sum of belief committed exactly to subsets of 8 that intersect A but 
that are not subsets of A. If A is a singleton, all such subsets are supersets 
of A, but this is not true for a nonsingleton A. To illustrate, let A= {hep}: 

1 - Bel(Ac) - Bel(A) 1 - Bel({cirr, gall, pan}) - Bel({hep}) 
1 - [m({cirr, gall, pan}) + m({cirr, gall}) 
+ m({cirr, pan}) + m({gall, pan}) + m({cirr}) 
+ m({gall}) + m({pan})] - m({hep}) 

= m({hep, cirr}) + m({hep, gall}) 
+ m({hep, pan}) + m({hep, cirr, gall}) 
+ m({hep, cirr, pan}) 
+ m({hep, gall, pan}) + m(8) 

Belief committed to a superset of {hep} might, on further refinement 
of the evidence, result in belief committed to {hep}. Thus the width of the 
belief interval is a measure of that portion of the total belief, 1, that could 
be added to that commited to {hep} by a physician willing to ignore all but 
the disconfirming effects of the evidence. 

The width of a belief interval can also be regarded as the amount of 
uncertainty with respect to a hypothesis, given the evidence. It is belief 
that is committed by the evidence to neither the hypothesis nor the ne­
gation of the hypothesis. The vacuous belief function results in width 1 
for all belief intervals, and Bayesian functions result in width 0. Most evi­
dence leads to belief functions with intervals of varying widths, where the 
widths are numbers between 0 and 1. 
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13.2 The Dempster-Shafer Theory and MYCIN 

MYCIN is well suited for implementation of the Dempster-Shafer theory. 
First, mutual exclusivity of singletons in a frame of discernment is satisfied 
by the sets of hypotheses in MYCIN constituting the frames of discernment 
(single-valued parameters; see Chapter 5). This condition may be a stum­
bling block to the model's implementation in other expert systems where 
mutual exclusivity cannot be assumed. Second, the belief functions that 
represent evidence in MYCIN are of a particularly simple form and thus 
reduce the combination rule to an easily managed computational scheme. 
Third, the variables and functions already used to define CF's can be 
adapted and modified for belief function values. These features will now 
be discussed and illustrated with examples from MYCIN. It should be 
noted that we have not yet implemented the model in MYCIN. 

13.2.1 Frames of Discernment in MYCIN 

How should the frames of discernment m MYCIN be chosen? Shafer 
( 1976, p. 36) points out: 

It should not be thought that the possibilities that comprise 8 will be 
determined and meaningful independently of our knowledge. Quite to the 
contrary: 8 will acquire its meaning from what we know or think we know; 
the distinctions that it embodies will be embedded within the matrix of our 
language and its associated conceptual structures and will depend on those 
structures for whatever accuracy and meaningfulness they possess. 

The "conceptual structures" in MYCIN are the associative triples 
found in the conclusions of the rules, which have the form (object attribute 
value). 2 Such a triple gives rise to a singleton hypothesis of the form "the 
attribute of object is value." A frame of discernment would then consist of 
all triples with the same object and attribute. Thus the number of triples, 
or hypotheses in e, will equal the number of possible values that the object 
may assume for the attribute in question. The theory requires that these 
values be mutually exclusive, as they are for single-valued parameters in 
MYCIN. 

For example, one frame of discernment is generated by the set of all 
triples of the form (Organism-I Identity X), where X ranges over all possible 
identities of organisms known to MYCIN-Klebsiella, E. coli, Pseudomonas, 
etc. Another frame is generated by replacing Organism-I with Organism-2. 
A third frame is the set of all triples of the form (Organism-I Morphology 

2Also referred to as (context parameter value); see Chapter 5. 
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X), where X ranges over all known morphologies-coccus, rod, bacillus, 
etc.:{ 

Although it is true that a patient may be infected by more than one 
organism, organisms are represented as separate contexts in MYCIN (not 
as separate values of the same parameter). Thus MYCIN's representation 
scheme is particularly well suited to the mutual exclusivity demand of the 
Dempster-Shafer theory. Many other expert systems meet this demand less 
easily. Consider, for example, how the theory might be applicable in a 
system that gathers and pools evidence concerning the identity of a pa­
tient's disease. Then there is often the problem of multiple, coexistent 
diseases; i.e., the hypotheses in the frame of discernment may not be mu­
tually exclusive. One way to overcome this difficulty is to choose 8 to be 
the set of all subsets of all possible diseases. The computational implications 
of this choice are harrowing, since if there are 600 possible diseases (the 
approximate scope of the INTERNIST knowledge base), then 

1e1 = 2600 and 

However, since the evidence may actually focus on a small subset of 28 , 

the computations need not be intractable. A second, more reasonable al­
ternative would be to apply the Dempster-Shafer theory after partitioning 
the set of diseases into groups of mutually exclusive diseases and consid­
ering each group as a separate frame of discernment. The latter approach 
would be similar to that used in INTERNIST-I (Miller et al., 1982), where 
scoring and comparison of hypotheses are undertaken only after a special 
partitioning algorithm has separated evoked hypotheses into subsets of 
mutually exclusive diagnoses. 

13.2.2 Rules as Belief Functions 

In the most general situation, a given piece of evidence supports many of 
the subsets of 8, each to varying degrees. The simplest situation is that in 
which the evidence supports only one subset to a certain degree and the 
remaining belief is assigned to 8. Because of the modular way in which 
knowledge is captured and encoded in MYCIN, this latter situation applies 
in the case of MYCIN rules. 

If the premises confirm the conclusion of a rule with degree s, where 
s is above threshold value, then the rule's effect on belief in the subsets of 

3The objection may be raised that in some cases all triples with the same object and attribute 
are not mutually exclusive. For example, both (Patient-I Allergy Penicillin) and (Patient-I 
Allergy Ampicillin) may be true. In MYCIN, however, these triples tend not to have partial 
degrees of belief associated with them; they are usually true-false propositions ascertained 
by simple questioning of the user by the system. Thus it is seldom necessary to combine 
evidence regarding these multi-valued parameter~ (see Chapter 5), and these hypotheses need 
not be treated by the Dempster-Shafer theory. 
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8 can be represented by a bpa. This bpa assigns s to the singleton corre­
sponding to the hypothesis in the conclusion of the rule, call it A, and 
assigns 1-s to 8. In the language of MYCIN, the CF associated with this 
conclusion is s. If the premise disconfirms the conclusion with degree s, 
then the bpa assigns s to the subset corresponding to the negation of the 
conclusion, Ac, and assigns 1-s to 8. The CF associated with this con­
clusion is -s. Thus, we are arguing that the CF's associated with rules 
in MYCIN and other EMYCIN systems can be viewed as bpa's in the 
Dempster-Shafer sense and need not be changed in order to implement 
and test the Dempster-Shafer model. 

13.2.3 Types of Evidence Combination in MYCIN 

The revised quantification scheme we propose for modeling inexact infer­
ence in MYCIN is the replacement of the previous CF combining function 
with the Dempster combination rule applied to belief functions arising 
from the triggering of domain rules. The combination of such functions 
is computationally simple, especially when compared to that of two general 
belief functions. 

To illustrate, we consider a frame of discernment, 8, consisting of all 
associative triples of the form (Organism- I Identity X), where X ranges 
over all identities of organisms known to MYCIN. The triggering of two 
rules affecting belief in these triples can be categorized in one of the three 
following ways. 

Category 1. Two rules are both confirming or both disconfirming of 
the same triple, or conclusion. For example, both rules confirm Pseudornonas 
(Pseu), one to degree 0.4 and the other to degree 0. 7. The effect of trig­
gering the rules is represented by bpa's rn 1 and rn2 , where rn 1({Pseu})=0.4, 
m1(8)=0.6, and m2({Pseu})=0.7, m2(8)=0.3. The combined effect on be­
lief is given by m 1EB rn2, computed using the following tableau: 

{Pseu} (0.4) m, e (0.6) 

{Pseu} (0. 7) 

{Pseu} (0.28) 
{Pseu} (0.42) 

e (0.3) 

{Pseu} (0.12) 
e (0.18) 

Note that K= 0 in this example, so no normalization is required (i.e., 
1-K=l). 

m1EB rn2({Pseu}) = 0.28 + 0.12 + 0.42 0.82 

m1EB rn2(8) = 0.18 
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Note that m1EB m2 is a bpa that, like m1 and m2 , assigns some belief to a 
certain subset of 8, {Pseu}, and the remaining belief to 8. For two con­
firming rules, the subset is a singleton; for disconfirming rules, the subset 
is a set of size n - 1, where n is the size of 8. 

This category demonstrates that the original MYCIN CF combining 
function is a special case of the Dempster function (MYCIN would also 
combine 0.4 and 0. 7 to get 0.82). From earlier definitions, it can easily be 
shown, using the Dempster-Shafer model to derive a new bpa correspond­
ing to the combination of two CF's of the same sign, that 

m1EB m2(A) = 5152 + 51(1-52) + 52(1-51) where 5i=mi(A), i= 1, 2 
= s1 + 52(1-5 1) 

= 52 + 5 1(1-52) 

1 - (l -51)(1-52) 

= 1 - m1EB m2(8) 

Category 2. One rule is confirming and the other disconfirming of the 
same singleton hypothesis. For example, one rule confirms {Pseu} to degree 
0.4, and the other disconfirms {Pseu} to degree 0.8. The effect of triggering 
these two rules is represented by bpa's m1 and m3, where m1 is defined in 
the example from Category 1 and m3({Pseu}c) = 0.8, m3(8) = 0.2. The com­
bined effect on belief is given by m1EB m3 . 

{Pseu} (0.4) m, 8 (0.6) 

Here K = 0.32 and 1 - K = 0.68. 

{PseuY (0.8) 

0 (0.32) 
{Pseu}c (0.48) 

8(0.2) 

{Pseu} (0.08) 
e co.12) 

m1EB m3({Pseu}) = 0.0810.68 =0.1'18 

m 1E9 m3({Pseu}c) = 0.48/0.68 = 0.706 

m1EBm3(8) = 0.12/0.68 = 0.176 

m 1EB m3 is 0 for all other subsets of 8 

Given m 1 above, the belief interval of {Pseu} is initially [Bel 1({Pseu}) 
1- Bel 1({Pseu}c)] = [0.4 l]. After combination with m3 , it becomes 
[0.118 0.294]. Similarly, given m3 alone, the belief interval of {Pseu} is 
[O 0.2]. After combination with m 1, it becomes [0.118 0.294]. 

As is illustrated in this category of evidence aggregation, an essential 
aspect of the Dempster combination rule is the reducing effect of evidence 
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supporting a subset of 8 on belief in subsets disjoint from this subset. Thus 
evidence confirming {Pseu}' will reduce the effect of evidence confirming 
{Pseu}; in this case the degree of support for {Pseu}, 0.4, is reduced to 
0.118. Conversely, evidence confirming {Pseu} will reduce the effect of 
evidence confirming {Pseu}c; 0.8 is reduced to 0.706. These two effects are 
reflected in the modification of the belief interval of {Pseu} from [0.4 l] 
to [0.118 0.294], where 0.294 = 1 - Bel({Pseu}c) = 1 - 0.706. 

If A ={Pseu}, 51 =rn 1(A), and 53 =rn3(A"), we can examine this modifi­
cation of belief quantitatively: 

rn 1E9 rn3(A) = 51(1-53)/(l-s15:1) where K=5 153 

rn1E9 rn3(N) = S:10 - s 1)/(1 - 5153) 

rn 1E9 rn3(8) = (l -5i)(l -53)/(l -5 1S:{) 

Thus 51 is multiplied by the factor (l -53)/(l -s153), and 53 is multiplied by 
(l -5 1)/(1-5 153). Each of these factors is less than or equal to 1.4 Thus 
combination of confirming and disconfirming evidence reduces the sup­
port provided by each before combination. 

Consider the application of the MYCIN CF combining function to this 
situation. If CF p is the positive (confirming) CF for {Pseu} and CF n is the 
negative (disconfirming) CF: 5 

CF COMBINdCF p,CF,,] (CFp + CFn)/(l - min{iCFpi,iCFni}) 
(5 1 - 53)/(l - min{5 1,53}) 

(0.4 - 0.8)/(1 - 0.4) 
-0.667 

When this CF is translated into the language of Dempster-Shafer, the result 
of the MYCIN combining function is belief in {Pseu} and {Pseu}c to the 
degrees 0 and 0.667, respectively. The larger disconfirming evidence of 
0.8 essentially negates the smaller confirming evidence of 0.4. The con­
firming evidence reduces the effect of the disconfirming from 0.8 to 0.667. 

By examining CFcoMBINE• it is easily seen that its application to CF's 
of the opposite sign results in a CF whose sign is that of the CF of greater 
magnitude. Thus support for A and Ac is combined into reduced support 
for one or the other. In contrast, the Dempster function results in reduced 
support for both A and Ac. The Dempster function seems to us a more 
realistic reflection of the competing effects of conflicting pieces of evidence. 

Looking more closely at the value of 0.667 computed by the MYCIN 
function, we observe that its magnitude is less than that of the correspond-

45 1s3 ,,;; s; implies I -5 153 ~I - s; implies (I - s;)/(l - 5 153) ,,;; I for i = I, 3. 
5See Section 10.2 for a discussion of this modified version of the original CF combining 
function, which was defined and defended in Chapter 11. 
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ing value of 0.706 computed by the Dempster function. It can be shown 
that the MYCIN function always results in greater reductions. To sum­
marize, if s 1 and s3 represent support for A and AC, respectively, with 
s1 ~ s;i, and if s 1' and s3 ' represent support after Dempster combination, 
then the MYCIN function results in support for only A, where this support 
is less than s 1'. Similarly, if s3 ~ s 1, the MYCIN function results in support 
for only A', where the magnitude of this support is less than s3 '. 

The difference in the two approaches is most evident in the case of 
aggregation of two pieces of evidence, one confirming A to degree s and 
the other disconfirming A to the same degree. MYCIN's function yields 
CF=O, whereas the Dempster rule yields belief of s(l-s)/(l-s2)=s/(l +s) 
in each of A and Ac. These results are clearly very different, and again the 
Dempster rule seems preferable on the grounds that the effect of confirm­
ing and disconfirming evidence of the same weight should be different 
from that of no evidence at all. 

We now examine the effect on belief of combination of two pieces of 
evidence supporting mutually exclusive singleton hypotheses. The MYCIN 
combining function results in no effect and differs most significantly from 
the Dempster rule in this case. 

Category 3. The rules involve different- hypotheses in the same frame 
of discernment. For example, one rule confirms {Pseu} to degree 0.4, and 
the other disconfirms {Strep} to degree 0.7. The triggering of the second 
rule gives rise to m4 defined by m4({Strep}c)=0.7, m4(8)=0.3. The com­
bined effect on belief is given by m1EB m4. 

{Pseu} (0.4) 
mi 8 (0.6) 

In this case, K = 0. 

{Strep}c (0. 7) 

{Pseu} (0.28) 
{StrepY (0.42) 

m1EB m4({Pseu}) = 0.28 + 0.12 0.40 

m1EB rn4({Strep}c) = 0.42 

m1EB rn4(8) = 0.18 

m1EB m4 is 0 for all other subsets of 8 

Bel 1E9Bel4({Pseu}) = 0.40 

8 (0.3) 

{Pseu} (0.12) 
8 (0.18) 

Bel 1E9Bel4({Strep}c) rn 1EB rn4({Strep}c) + rn 1EB rn4({Pseu}) 
= 0.42 + 0.40 
= 0.82 

Bel 1E9Bel4({Pseu}c) = Bel 1EBBel4({Strep}) 0 
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Before combination, the belief intervals for {Pseu} and {Strep}c are 
[0.4 l] and [0.7 l], respectively. After combination, they are [0.4 l] and 
[0.82 l], respectively. Note that evidence confirming {Pseu} has also con­
firmed {Strep}c, a superset of {Pseu}, but that evidence confirming {Strep}c 
has had no effect on belief in {Pseu}, a subset of {Strep}'. 

13.2.4 Evidence Combination Scheme 

We now propose an implementation in MYCIN of the Dempster-Shafer 
method, which minimizes computational complexity. Barnett (1981) claims 
that direct translation of the theory, without attention to the order in which 
the belief functions representing rules are combined, results in exponential 
increases in the time for computations. This is due to the need to enu­
merate all subsets or supersets of a given set. Barnett's scheme reduces the 
computations to linear time by combining the functions in a simplifying 
order. We outline his scheme adapted to MYCIN. 

Step 1. For each triple (i.e., singleton hypothesis), combine all bpa's 
representing rules confirming that value of the parameter. If s1, s2 , ... , sk 

represent different degrees of support derived from the triggering of k 
rules confirming a given singleton, then the combined support is 

(Refer to Category 1 combinations above if this is not obvious.) Similarly, 
for each singleton, combine all bpa's representing rules disconfirming that 
singleton. Thus all evidence confirming a singleton is pooled and repre­
sented by a bpa, and all evidence disconfirming the singleton (confirming 
the hypothesis corresponding to the set complement of the singleton) is 
pooled and represented by another bpa. We thus have 2n bpa's, where n 
is the size of 8. These functions all have the same form as the original 
functions. This step is identical to the original approach for gathering 
confirming and disconfirming evidence into MB's and MD's, respectively. 

Step 2. For each triple, combine the two bpa's computed in Step l. 
Such a computation is a Category 2 combination and has been illustrated. 
We now have n bpa's, which are denoted Evi 1' Evi2 , ••. , Evi 11 • 

Step 3. Combine the bpa's computed in Step 2 in one computation, 
using formulae developed by Barnett (1981 ), to obtain a final belief func­
tion Bel. A belief interval for each singleton hypothesis can then be com­
puted. The form of the required computation is shown here without proof. 
See Barnett (1981) for a complete derivation. 

Let {i} represent the ith of n singleton hypotheses in 8 and let 
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Evii({i}) = Pi 

Evii({iY) = c; 

Evi;(8) = r; 

Since p; + c; + r; = I, r; = I - p; - c;. Let d; = c; + r;. Then it can be 
shown that the function Bel resulting from combination of Evir, ... , Evin 
is given by 

· Bel({i}) = K[p;Q di + r; IT c] 
Jrl j-4'i J 

For a subset A of e with IAI > I, 

where 

[ITd] [I+ Lnld] - ITc 
all j J all f 1 J all j J 

as long as PJ f. I for all j. 

An Example 

The complex formulation for combining belief functions shown above is 
computationally straightforward for limited numbers of competing hy­
potheses such as are routinely encountered in medical domains. As we 

. noted earlier, the INTERNIST program (Miller et al., 1982) partitions its 
extensive set of possible diagnoses into a limited subset of likely diseases 
that could be seen as the current frame of discernment. There are likely 
to be knowledge-based heuristics that can limit the search space in other 
domains and thereby make calculations of a composite belief function ten­
able. 

Example 7. Consider, for example, the net effect of the following set 
of rules regarding the diagnosis of the infecting organism. Assume that all 
other rules failed and that the final conclusion about the beliefs in com­
peting hypotheses will be based on the following successful rules: 

RI: disconfirms {Pseu} to the degree 0.6 
R2: disconfirms {Pseu} to the degree 0.2 
R3: confirms {Strep} to the degree 0.4 
R4: disconfirms {Staph} to the degree 0.8 
RS: confirms {Strep} to the degree 0.3 
R6: disconfirms {Pseu} to the degree 0.5 
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R7: confirms {Pseu} to the degree 0.3 
RS: confirms {Staph} to the degree 0.7 

Note, here, that 8 = {Staph, Strep, Pseu} and that for this example 
we are making the implicit assumption that the patient has an infection 
with one of these organisms. 

Step 1. Considering first confirming and then disconfirming evidence 
for each organism, we obtain: 

{Pseu} confirmed to the degree s1 = 0.3, disconfirmed to the degree s1' = 

1 - (1 - 0.6)(1 - 0.2)(1 - 0.5) = 0.84 

{Staph} confirmed to the degree s2 = 0. 7, disconfirmed to the degree 
s2 ' = 0.8 

{Strep} confirmed to the degree s3 = 1 - ( 1 - 0.4)( 1 - 0.3) = 0.58, 
disconfirmed to the degree s3 ' = 0 

Step 2. Combining the confirming and disconfirming evidence for 
each organism, we obtain: 

E . { } 0.3( 1 - 0.84) - 0 0 -
v1 1( Pseu) = 1 _ (0.3)(0.S4) - . 64 - P1 

. { } 0.84(1 - 0.3) 7 
Ev1 I ( Pseu c) = 1 - (0.3)(0.84) = 0. 86 = C1 

Thus r1 = 0.15 and d1 = 0.786 + 0.15 = 0.936 . 

. { } 0.7(1 - 0.08) 
Ev12( Staph) = l=(0.7)(0.S) = 0.318 = P2 

. { } 0.8(1 - 0.07) 
Ev12 ( Staph c) = l _ (0.7)(0.8) = 0.545 = C2 

Thus r2 = 0.137 and d2 = 0.545 + 0.137 = 0.682. 

Evi3({Strep}) = 0.58 = p3 

Evi3({Strep}c) = 0 = c3 

Thus r3 = 0.42 and d3 = 0.42. 

Step 3. Assessing the effects of belief in the various organisms on each 
other, we obtain: 
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K- I = d1d2d3(l + p,ld, + P2ld2 + p3!d3) - C1C2C3 
= (0.936)(0.682)(0.42)(1 + 0.064/0.936 + 0.318/0.682 

+ 0.58/0.42) - (0. 786)(0.545)(0) 
= 0.268( 1 + 0.068 + 0.466 + 1.38) 
= 0.781 

K = 1.28 

Bel({Pseu}) = K(p1d2d3 + r1c2c3) 
= 1.28((0.064)(0.682)(0.42) + (0.15 )(0.545)0) 
= 0.023 

Bel({Staph}) = K(p2d1d3 + r2c1c3) 
= 1.28((0.318)(0.936)(0.42) + ( 1.137)(0. 786)0) 
= 0.160 

Bel({Strep}) = K(p3d1d2 + r3c1c2) 
= 1.28((0.58)(0.936)(0.682) + (0.42)(0. 786)(0.545)) 

Bel({Pseu}") = K(d1d2d3(p2ld2 + p3!d3) + c1d2d3 - c1c2c3) 
= 1.28(0.268(0.466 + 1.381) + (0. 786)(0.682)(0.42)) 
= 0.922 

Bel({Staph}") = K(d1d2d3(p,ld1 + p3!d3) + c2d1d3 - 0) 
= 1.28(0.268(0.068 + 1.381) + (0.545)(0.936)(0.42)) 
= 0.771 

Bel({Strep}") = K(d1d2d3(p1ld, + P2ld2) + c3d1d2 - 0) 
= 1.28(0.268(0.068 + 0.466) + 0) 
= 0.184 

The final belief intervals are therefore: 

Pseu: [0.023 0.078] Staph: [0.160 0.229] Strep: [0.704 0.816] 

13 3 Conclusion • 

The Dempster-Shafer theory is particularly appealing in its potential for 
handling evidence bearing on categories of diseases as well as on specific 
disease entities. It facilitates the aggregation of evidence gathered at vary­
ing levels of detail or specificity. Thus collaborating experts could specify 
rules that refer to semantic concepts at whatever level in the domain hi­
erarchy is most natural and appropriate. They would not be limited to the 
most specific level-the singleton hypotheses of their frame of discern­
ment-but would be free to use more unifying concepts. 

In a system in which all evidence either confirms or disconfirms sin-
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gleton hypotheses, the combination of evidence via the Dempster scheme 
is computationally simple if ordered appropriately. Due to its present rule 
format, MYCIN provides an excellent setting in which to implement the 
theory. Claims by others that MYCIN is ill-suited to this implementation 
due to failure to satisfy the mutual exclusivity requirement (Barnett, 1981) 
reflect a misunderstanding of the program's representation and control 
mechanisms. Multiple diseases are handled by instantiating each as a sep­
arate context; within a given context, the requiremems of single-valued 
parameters maintain mutual exclusivity. 

In retrospect, however, we recognize that the hierarchical relationships 
that exist in the MYCIN domain are not adequately represented. For ex­
ample, evidence suggesting Enterobacteriaceae (a family of gram-negative 
rods) could have explicitly stated that relationship rather than depending 
on rules in which an observation supported a list of gram-negative orga­
nisms with varying CF's based more on guesswork than on solid data. The 
evidence really supported the higher-level concept, Enterobacteriaceae, and 
further breakdown may have been unrealistic. In actual practice, decisions 
about treatment are often made on the basis of high-level categories rather 
than specific organism identities (e.g., 'Tm pretty sure this is an enteric 
organism, and would therefore treat with an aminoglycoside and a ceph­
alosporin, but I have no idea which of the enteric organisms is causing the 
disease"). 

If the MYCIN knowledge base were restructured in a hierarchical 
fashion so as to allow reasoning about unifying high-level concepts as well 
as about the competing singleton hypotheses, then the computations of 
the Dempster-Shafer theory would increase exponentially in complexity. 
The challenge is therefore to make these computations tractable, either by 
a modification of the theory or by restricting the evidence domain m a 
reasonable way. Further work should be directed to this end. 



PART FIVE 

Generalizing MYCIN 



14 
Use of the MYCIN 
Inference Engine 

One of the reasons for undertaking the original MYCIN experiment was 
to test the hypothesis that domain-specific knowledge could successfully be 
kept separate from the inference procedures. We felt we had done just 
that in the original implementation; specifically, we believed that knowl­
edge of a new domain, when encoded in rules, could be substituted for 
MYCIN's knowledge of infectious diseases and that no changes to the in­
ference procedures were required to produce MYCIN-like consultations. 
In the fall of 1974 Bill van Melle began to investigate our claim seriously. 
He wrote (van Melle, 1974): 

The MYCIN program for infectious disease diagnosis claims to be gen­
eral. One ought to be able to take out the clinical knowledge and plug in 
knowledge about some other domain. The domain we had in mind was the 
diagnosis of failures in machines. We had available a 1975 Pontiac Service 
Manual, containing a wealth of diagnostic information, mostly in decision 
tree form, with branching on the results of specific mechanical tests. Since 
MYCIN's rule base can be viewed as an implicit decision tree, with judgments 
based on laboratory test results, it at least seemed plausible that rules could 
be written to represent these diagnostic procedures. Because of the need to 
understand a system in order to write rules for diagnosing it, a fairly simple 
system, the horn circuit, was selected for investigation. 

After some consideration, van Melle decided that the problem re­
quired only a degenerate context tree, with "the horn" as the only context, 
and that all relevant rules in the Pontiac manual could be written as defi­
nitional rules with no uncertainty. Two rules of his fifteen-rule system are 
shown in Figure 14-1. 

Much of MYCIN's elaborate mechanism for gathering and weighing 
evidence was unnecessary for this simple problem. Nevertheless, the proj­
ect provided support for our belief that MYCIN's diagnostic procedures 

295 
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RULE002 

IF: 1) The horn is inoperative is a symptom of the horn, and 
2) The relay does click when the horn button is depressed, and 
3) The test lamp does not light when one end is grounded and 

the other connected to the green wire terminal of the relay 
while the horn button is depressed 

THEN: It is definite (1.0) that a diagnosis of the horn is 
replace the relay 

[HORN RULES] 

RULE003 

IF: 1) The horn is inoperative is a symptom of the horn, and 
2) The relay does not click when the horn button is depressed, and 
3) The test lamp does light when one end is grounded and the 

other is touched to the black wire terminal of the relay 
THEN: It is definite (1.0) that there is an open between the 

black wire terminal of the relay and ground 

[HORNRULES] 

FIGURE 14-1 English versions of two rules from the first 
nonmedical knowledge base for E'MYCIN. 

were general enough to allow substitutions of new knowledge bases. 1 As a 
result, we began the project described in Chapter 15, under the name 
EMYCIN.2 In Chapter 16 we describe two applications of EMYCIN and 
discuss the extent to which building those two systems was easier because 
of the framework provided. Remember, too, that the MYCIN system itself 
was successfully reimplemented as another instantiation of EMYCIN. 

The flexibility needed by MYCIN to extend or modify its knowledge 
base was exploited in EMYCIN. Neither the syntax of rules nor the basic 
ideas underlying the context tree and inference mechanism were changed. 
The main components of an EMYCIN consultation system are described 
in Chapter 5, specifically for the original MYCIN program. These are as 
follows: 

1 It also revealed several places in the code where shortcuts had been taken in keeping medical 
knowledge separate. For example, the term organism was used in the code occasionally as 
being synonymous with cause. 
2We are indebted to Joshua Lederberg for suggesting the phrase Essential MYCIN, i.e, 
MYCIN stripped of its domain knowledge. EMYCIN is written in Interlisp, a programming 
environment for a particular dialect of the LISP language, and runs on a DEC PDP-JO or 
-20 under the TENEX or TOPS20 operating systems. The current implementation of EMY­
CIN uses about 45K words of resident memory and an additional SOK of swapped code 
space. The version of Interlisp in which it is embedded occupies about 130K of resident 
memory, leaving approximately SOK free for the domain knowledge base and the dynamic 
data structures built up during a consultation. A manual detailing the operation of the system 
for the prospective system designer is available (van Melle et al., 19Sl). 
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Parameters 
Rules 
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Objects of interest, organized hierarchically in a tree, 
called the context tree 
The attributes of objects about which the system reasons 
Associations among object-attribute-value triples 

While these concepts were generalized and access to them made simpler, 
they are much the same in EMYCIN as they were in the original system. 

The major conceptual shift in generalizing MYCIN to EMYCIN was 
to focus primarily on the persons who build new systems rather than on 
the persons who use them. Much of the interface to users remains un­
changed. The interface to system builders, however, became easier and 
more transparent. We were attempting to reduce the time it takes to create 
an expert system by reducing the effort of a knowledge engineer in helping 
an expert. As discussed in Chapter 16, we believe the experiment was 
successful in this respect. 

Much of the TEIRESIAS system (discussed 'in Chapter 9) has been 
incorporated in EMYCIN. Thus the debugging facilities are very similar. 
In addition, EMYCIN allows rules to be entered in the Abbreviated Rule 
Language, called ARL, that simplifies the expression of new relations. For 
example, the rule premise 

($AND (SAME CNTXT SITE BLOOD) 
(GREATERP• (VAL 1 CNTXT SICKDEGREE) 2) 
($OR (NOTSAME CNTXT BURNED) 

(LESSERQ• (PLUS (VAL 1 CNTXT NUMCULS) 
(VAL 1 CNTXT NUMPOS)) 

3))) 

might have been entered as either 

(SITE = BLOOD AND 
SICKDEGREE > 2 AND 
-BURNED OR NUMCULS + NUMPOS LE 3) 

or 

(SITE = BLOOD, SICKDEGREE > 2, -BURNED OR NUMCULS + NUMPOS LE 3) 

In the sample EMYCIN dialogue shown in Figure 14-2, EMYCIN can 
be seen to ask about contexts, parameters, and rules for a hypothetical 
consultation system about business problems. EMYCIN keeps track of the 
properties, such as TRANS (for the appropriate English translation of the 
concept name), and does the bookkeeping necessary to create a new knowl­
edge base. Then it helps the user debug the knowledge base in the context 
of sample cases. 
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@<EMYCIN>EMYCIN 

EMYCIN 12-Dec-80 ... 

Do you wish to create a new knowledge base? Yes 
Enter a word or phrase to describe your domain, i.e. fill in the blank in 

"this program performs a ---- consultation". (e.g. 
infectious disease, structural analysis). 

** business problem 

[Run EMYCIN from the appropriate 
directory.] 

Enter a one-word name for the root of your context tree, the central "object" with which the consultation is 
concerned (e.g. PATIENT, STRUCTURE): 

**COMPANY [The "root" of the context tree] 
Please enter a word or phrase as "translation" of COMPANY: 
•• company--Okay? Yes 

And the plural form is: 
•• companys--Okay? No 

** companies 
Parameter group: COMPANY-PARMS--Okay? Yes 
COMPANY 

[EMYCIN makes the obvious 
suggestion, we accept it. The 
translation might have been fancier, 
say "municipal agency."] 

[EMYCIN doesn't know some 
spelling rules.] 
[So spell it right.] 

PRINTID: COMPANY--Okay? Yes {i.e., there will be a COMPANY-1, 
COMPANY-2, in consultations/ 

Enter a list of parameters which will always be asked to the user when a COMPANY is created: 
COMPANY 
INTIALDATA: (CNAME PROBLEM EMPLOYEES) 
And now a list of parameters to infer whenever a COMPANY is created: 
COMPANY 
GOALS: (TOOLS) 
Do you want the program to automatically display the values concluded for some or all of the GOALS? Yes 

[Automatically print the values of 
TOOLS at end of each consultation.] 

Now please define each of the parameters listed above. Each is a member 
of COMPANY-PARMS. 

What kind of parm is CNAME--Yes/No, Singlevalued, Multivalued, or 
Ask-All? Slnglevalued 

CNAME 
EXPECT: ANY 
CNAME 
TRANS: (THE NAME OF *) 
CNAME 
PROMPT: (WHAT COMPANY IS HAVING A PROBLEM?) 

What kind of parm is PROBLEM--Yes/No, Singlevalued, 
Multivalued, or Ask-All? Slnglevalued 

PROBLEM 
EXPECT: (PAYROLL INVENTORY) 
PROBLEM 
TRANS: (THE TYPE OF PROBLEM) 

FIGURE 14-2 Sample dialogue with EMYCIN to create a new 
consultation program for business problems. (User's input is in 
boldface, and <er> indicates that the user typed a carriage re­
turn. Comments are in italics.) [This sample is taken from The 
EMYCIN Manual (van Melle et al., 1981).] 
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PROBLEM 
PROMPT: (IS THE PROBLEM WITH PAYROLL OR INVENTORY?) 

What kind of parm is EMPLOYEES--Yes/No, Singlevalued, Multivalued, Ask-All? Singlevalued 
EMPLOYEES 
EXPECT: POSNUMB 
EMPLOYEES 
UNITS: <er> 
EMPLOYEES 
RANGE: <er> 
EMPLOYEES 
TRANS: (THE NUMBER OF EMPLOYEES OF •) 
EMPLOYEES 
PROMPT: (HOW MANY PEOPLE DOES • EMPLOY?) 

What kind of parm is TOOLS--Yes/No, Singlevalued, Multivalued, or 
Ask-All? Multivalued 

TOOLS 
LEGALVALS: TEXT 

TOOLS 
TRANS: (THE TOOLS TO USE IN SOLVING THE PROBLEM) 

Okay, now back to COMPANY ... 

COMPANY 

[<er> here gives the property 
a value of NIL.] 

[Values produced by 
CONCLUDETEXT, the results to be 
printed.] 

[Now that we've defined those 
parms, finish defining the context 
type.] 

SYN: (((CNAME) (CNAME)))--Yes, No, or Edit? Yes {The company name (CNAME) will 
Creating rule group COMPANYRULES to apply to COMPANY contexts . . . be used to translate a COMPANY.] 

.. Autosave .. 
Please give a one-word identifier for your knowledge base files: 
••BUSINESS 
<EMYCIN>CHANGES.BUSINESS;1 
Are there any descendants of COMPANY in the context tree? No 

Rules, Parms, Go, etc.? Rules 
Author of any new rules, if not yourself: <er> 
Will you be entering any of the rule information properties? No 

Rule# or NEW: NEW 

RULE001 
PREMISE: (PROBLEM = PAYROLL AND EMPLOYEES> 1000) 
RULE001 
ACTION: (TOOLS = "a large computer") 

Translate, No further change, or prop name: TRANSLATE 

RULE001 

(This rule applies to companies, and is tried in order to find out 
about the tools to use in solving the problem] 

{This is asked upon the first entrance 
to the rule editor.] 
{Now enter rules to deduce each of 
the GOALS defined above; in this 
case, just TOOLS.] 
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If: 1) The type of problem is payroll, and 
2) The number of employees of the company is greater than 1000 

Then: It is definite (1.0) that the following is one of the tools to use in solving the problem: a large computer 

Translate, No further change, or prop name: <er> 

Rule# or NEW: <er> 

Rules, Parms, Go, etc.? Save 
<EMYCIN>CHANGES.BUSINESS;2 
Rules, Parms, Go, etc.? Go 

Special options (type ? for help): 
**<er> 

20-0ct-79 14:16:48 

--------COMPANY-1--------
1) What company is having a problem? 
**IBM 
2) Is the problem with payroll or inventory? 
**PAYROLL 
3) What is the number of employees of ibm? 
•• 10000000 

[Finished entering rules.] 

[Save the knowledge base.] 

[Run a consultation to test the 
knowledge base.] 

{No options needed.] 

Conclusions: the tools to use in solving the problem are as follows: a large computer. 

Enter Debug/review, Rules, Parms, Go, etc.? Parameters 

Parameter name: ename 
Property: PROPERNOUN 
CNAME 
PROPERNOUN: T 
Property: <er> 

Parameter name: <er> 

Rules, Parms, Go, etc.? Save 

<EMYCIN>CHANGES.BUSINESS;3 

Rules, Parms, Go, etc.? Quit 
@ 

@<EMYCIN>EMYCIN 
EMYCIN 12-DEC-80 ... 

Hi. 

Should I load <EMYCIN>CHANGES.BUSINESS;37 Yes 
File created 25-Sep-81 10:49:24 
CHANGESCOMS 

FIGURE 14-2 continued 

{A small parameter change-we 
noted that ibm was not capitalized. 
Setting the PROPERNOUN property 
will fix the problem.] 

[Finished entering parameters.] 

[Save these changes to the 
knowledge base.] 

[Sometime later. .. ] 
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( <EMYCIN>CHANGES.BUSINESS;3) 

Do you want to enter Rules, Parms, Go, etc. (? for help)? New consultation 
[confirm] <er> 

Special options (type? for help): 
**<er> 

23-Feb-91 10:28:37 

--------COMPANY-1--------
1) What company is having a problem? 
.. STANFORD 
2) Is the problem with payroll or inventory? 
.. INVENTORY 
3) How many people does Stanford employ? 
.. 10000 

I was unable to make any conclusion about the tools to use in solving 
the problem. 

Enter Debug/review phase, or other option (?for help)? Quit 

FIGURE 14-2 continued 

[No rules have yet been entered for 
making conclusions about inventory 
problems.} 



15 
EMYCIN: A Knowledge 
Engineer's Tool for 
Constructing Rule-Based 
Expert Systems 

William van Melle, Edward H. Shortliffe, and 
Bruce G. Buchanan 

Much current work in artificial intelligence focuses on computer programs 
that aid scientists with complex reasoning tasks. Recent work has indicated 
that one key to the creation'·~[ intelligent systems is the incorporation of 
large amounts of task-specific knowledge. Building knowledge-based, or 
expert, systems from scratch can be very time-consuming, however. This 
suggests the need for general tools to aid in the construction of knowledge­
based systems. 

This chapter describes an effective domain-independent framework 
for constructing one class of expert programs: rule-based consultants. The 
system, called EMYCIN, is based on the domain-independent core of the 
MYCIN program. We have reimplemented MYCIN as one of the consul­
tation systems that run under EMYCIN. 

15 1 The Task • 

EMYCIN is used to construct a consultation program, by which we mean a 
program that offers advice on problems within its domain of expertise. 
The consultation program elicits information relevant to the case by asking 

This chapter is a shortened and edited version of a paper appearing in Pergamon-Infotech state 
of the art report on machine intelligence, pp. 249-263. Maidenhead, Berkshire, U.K.: Infotech 
Ltd., 1981. 

302 



Background 303 

SYSTEM DESIGNER) 
,,. 

expertise debugging feedback 

1• 

Knowledge Base . ~ 

Construction Aids - r Domain 

EMYCIN Knowledge 

Consultation Base 
~ 

Driver r 

t. 

case data advice 

1 • 

CLIENT ) 

FIGURE 15-1 The major roles of EMYCIN: acqmrmg a 
knowledge base from the system designer, and interpreting that 
knowledge base to provide advice to a client. 

questions. It then applies its knowledge to the specific facts of the case and 
informs the user of its conclusions. The user is free to ask the program 
questions about its reasoning in order to better understand or validate the 
advice given. 

There are really two "users" of EMYCIN, as depicted in Figure 15-1. 
The system designer, or expert, interacts with EMYCIN to produce a knowledge 
base for the domain. EMYCIN then interprets this knowledge base to pro­
vide ad vice to the client, or consultation user. Thus the combination of EMY­
CI Nanda specific knowledge base of domain expertise is a new consultation 
program. Some instances of such consultation programs are described be­
low. 

15.2 Background 

Some of the earliest work in artificial intelligence attempted to create gen­
eralized problem solvers. Programs such as GPS (Newell and Simon, 1972) 
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and theorem provers (Nilsson, 1971 ), for instance, were inspired by the 
apparent generality of human intelligence and motivated by the desire to 
develop a single program applicable to many problems. While this early 
work demonstrated the utility of many general-purpose techniques (such 
as problem decomposition into subgoals and heuristic search in its many 
forms), these techniques alone did not offer sufficient power for high per­
formance in complex domains. 

Recent work has instead focused on the incorporation of large 
amounts of task-specific knowledge in what have been called knowledge­
based systems. Such systems have emphasized high performance based on 
the accumulation of large amounts of knowledge about a single domain 
rather than on nonspecific problem-solving power. Some examples to date 
include efforts at symbolic manipulation of algebraic expressions (Moses, 
1971), chemical inference (Lindsay et al., 1980), and medical consultations 
(Pople, 1977; Shortliffe, 1976). Although these systems display an expert 
level of performance, each is powerful in only a very narrow domain. In 
addition, assembling the knowledge base and constructing a working pro­
gram for such domains is a difficult, continuous task that has often ex­
tended over several years. However, because MYCIN included in its design 
the goal of keeping the domain knowledge well separated from the pro­
gram that manipulates the knowledge, the basic rule methodology pro­
vided a foundation for a more general rule-based system. 

With the development of EMYCIN we have now come full circle to 
GPS's philosophy of separating the deductive mechanism from the prob­
lem-specific knowledge; however, EMYCIN's extensive user facilities make 
it a much more accessible environment for producing expert systems than 
were the earlier programs. 1 Like MYCIN's, EMYCIN's representation of 
facts is in attribute-object-value triples, with an associated certainty factor. 
Facts are associated in production rules. Rules of the same form are shown 
throughout this book. Figures 16-2 and 16-5 in the next chapter show rules 
from two different consultation systems constructed in EMYCIN. 

15.2.1 Application of Rules-The Rule Interpreter 

The control structure is primarily MYCIN's goal-directed backward chain­
ing of rules. At any given time, EMYCIN is working toward the goal of 
establishing the value of some parameter of a context; this operation is 
termed tracing the parameter. To this end, the system retrieves the (pre­
computed) list of rules whose conclusions bear on the goal. SACON's Rule 
50 (see Figures 15-2 and 16-2) would be one of several rules retrieved in 
an attempt to determine the stress of a substructure. Then for each rule 

1 Even so, it is still not an appropriate tool for building certain kinds of application systems 
because some of its power comes from the specificity of the rule-based representation and 
backward-chaining inference structure. See Section 15.5 for a discussion of these limitations. 
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in the list, EMYCIN evaluates the premise; if true, it makes the conclusion 
indicated in the action. The order of the rules in the list is assumed to be 
arbitrary, and all the rules are applied unless one of them succeeds and 
concludes the value of the parameter with certainty (in which case the 
remaining rules are superfluous). 

This control structure was also designed to be able to deal gracefully 
with incomplete information. If the user is unable to supply some piece of 
data, the rules that need the data will fail and make no conclusions. The 
system will thus make conclusions, if possible, based on less information. 
Similarly, if the system has inadequate rules (or none at all) for concluding 
some parameter, it may ask the user for the value. When too many items 
of information are missing, of course, the system will be unable to offer 
sound advice. 

15.2.2 More on the Rule Representation 

There are many advantages to having rules as the primary representation 
of knowledge. Since each rule is intended to be a single "chunk" of infor­
mation, the knowledge base is inherently modular, making it relatively easy 
to update. Individual rules can be added, deleted, or modified without 
drastically affecting the overall performance of the system. The rules are 
also a convenient unit for explanation purposes, since a single step in the 
reasoning process can be meaningfully explained by citing the English 
translation of the rule used. 

While the syntax of rules permits the use of any LISP functions as 
matching predicates in the premises of rules, or as special action functions 
in the conclusions of rules, there is a small set of standard functions that 
are most frequently used. The system contains information about the use 
of these predicates and functions in the form of function templates. For 
example, the predicate SAME is described as follows: 

(a) function template: 
(b) sample function call: 

(SAME CNTXT PARM VALUE) 

(SAME CNTXT SITE BLOOD) 

The system can use these templates to "read" its own rules. For example, 
the template shown here contains the standard symbols CNTXT, PARM, 
and VALUE, indicating the components of the associative triple that SAME 
tests. If clause (b) above appears in the premise of a given rule, the system 
can determine that the rule needs to know the site of the culture and, in 
particular, that it tests whether the culture site is (i.e., is the same as) blood. 
When asked to display rules that are relevant to blood cultures, the system 
will know that this rule should be selected. The most common matching 
predicates and conclusion functions are those used in MYCIN (see Chapter 
5): SAME, NOTSAME, KNOWN, NOTKNOWN, DEFINITE, NOT­
DEFINITE, etc. 
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15.2.3 Explanation Capability 

As will be described in Part Six, EMYCIN's explanation program allows the 
user of a consultation program to interrogate the system's knowledge, 
either to find out about inferences made (or not made) during a particular 
consultation or to examine the static knowledge base in general, indepen­
dently of any specific consultation. 

During the consultation, EMYCIN can offer explanations of the cur­
rent, past, and likely future lines of reasoning. If the motivation for any 
question that the program asks is unclear, the client may temporarily put 
off answering and instead inquire why the information is needed. Since 
each question is asked in an attempt to evaluate some rule, a first approx­
imation to an explanation is simply to display the rule currently under 
consideration. The program can also explain what reasoning led to the 
current point and what use might later be made of the information being 
requested. This is made possible by examining records left by the rule 
interpreter and by reading the rules in the knowledge base to determine 
which are relevant. This form of explanation requires no language under­
standing by the program; it is invoked by simple commands from the client 
(WHY and HOW). 

Another form of explanation is available via the Question-Answering 
(QA) Module, which is automatically invoked after the consultation has 
ended, and which can also be entered during the consultation to answer 
questions other than those handled by the specialized WHY and HOW 
commands mentioned above. The QA Module accepts simple English-lan­
guage questions (a) dealing with any conclusion drawn during the consul­
tation, or (b) about the domain in general. Explanations are again based 
on the rules; they should be comprehensible to anyone familiar with the 
domain, even if that person is not familiar with the intricacies of the EMY­
CIN system. The questions are parsed by pattern matching and keyword 
look-up, using a dictionary that defines the vocabulary of the domain. 
EMYCIN automatically constructs the dictionary from the English phrases 
used in defining the contexts and parameters of the domain; the system 
designer may refine this preliminary dictionary to add synonyms or to fine­
tune QA's parsing. 

15.3 The System-Building Environment 

The system designer's principal task is entering and debugging a knowl­
edge base, viz., the rules and the object-attribute structures on which they 
operate. The level at which the dialogue between system and expert takes 
place is an important consideration for speed and efficiency of acquisition. 
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IF: Composition = (LISTOF METALS) and 
Error< 5 and 
Nd-stress> .5 and 
Cycles > 10000 

THEN: Ss-stress = fatigue 

FIGURE 15-2 Example of ARL format for SACON's Rule 50. 

The knowledge base must eventually reside in the internal LISP format 
that the system manipulates to run the consultation and to answer ques­
tions. At the very basic level, one could imagine a programmer using the 
LISP editor to create the necessary data structures totally by hand; 2 here 
the entire translation from the expert's conceptual rule to LISP data struc­
tures is performed by the programmer. At the other extreme, the expert 
would enter rules in English, with the entire burden of understanding 
placed on the program. 

The actual means used in EMYCIN is at a point between these ex­
tremes. Entering rules at the base LISP level is too error-prone, and re­
quires greater facility with LISP on the part of the system designer than 
is desirable. On the other hand, understanding English rules is far too 
difficult for a program, especially in a new domain where the vocabulary 
has not even been identified and organized for the program's use. (Just 
recognizing new parameters in free English text is a major obstacle. 3) EMY­
CI N instead provides a terse, stylized, but easily understood, language for 
writing rules and a high-level knowledge base editor for the knowledge 
structures in the system. The knowledge base editor performs extensive 
checks to catch common input errors, such as misspellings, and handles all 
necessary bookkeeping chores. This allows the system builder to try out 
new ideas quickly and thereby to get some idea of the feasibility of any 
particular formulation of the domain knowledge into rules. 

15.3.1 Entering Rules 

The Abbreviated Rule Language (ARL) constitutes an intermediate form 
between English and pure LISP. ARL is a simplified ALGOL-like language 
that uses the names of the parameters and their values as operands; the 
operators correspond to EMYCIN predicates. For example, SACON's Rule 
50 could have been entered or printed as shown in Figure 15-2. 

ARL resembles a shorthand form derived from an ad hoc notation that 
we have seen several of our domain experts use to sketch out sets of rules. 

2This is the way the extensive knowledge base for the initial MYCIN system was originally 
created. 
3The task of building an assistant for designers of new EMYCIN systems is the subject of 
current research by James Bennett (Bennett, 1983). The name of the program is ROGET. 
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The parameter names are simply the labels that the expert uses in defining 
the parameters of the domain. Thus they are familiar to the expert. The 
conciseness of ARL makes it much easier to enter than English or LISP, 
which is an important consideration when entering a large body of rules. 

Rule Checking 

As each rule is entered or edited, it is checked for syntactic validity to catch 
common input errors. By syntactic, we mean issues of rule form-whether 
terms are spelled correctly, values are legal for the parameters with which 
they are associated, etc.-rather than the actual information content (i.e., 
semantic considerations as to whether the rule "makes sense"). Performing 
the syntactic check at acquisition time reduces the likelihood that the con­
sultation program will fail due to "obvious" errors, thus freeing the expert 
to concentrate on debugging logical errors and omissions. These issues are 
also discussed in Chapter 8. 

EMYCIN's purely syntactic check is made by comparing each clause 
with the corresponding function template and seeing that, for example, 
each PARM slot is filled by a valid parameter and that its VALUE slot holds 
a legal value for the parameter. If an unknown parameter is found, the 
checker tries to correct it with the Interlisp spelling corrector, using a 
spelling list of all parameters in the system. If that fails, it asks if this is a 
new (previously unmentioned) parameter. If so, it defines the new param­
eter and, in a brief diversion, prompts the system builder to describe it. 
Similar action is also taken if an illegal value for a parameter is found. 

A limited semantic check is also performed: each new or changed rule 
is compared with any existing rules that conclude about the same param­
eter to make sure it does not directly contradict or subsume any of them. 
A contradiction occurs when two rules with the same set of premise clauses 
make conflicting conclusions (contradictory values or CF's for the same 
parameter); subsumption occurs when one rule's premise is a subset of 
another's, so that the first rule succeeds whenever the second one does (i.e., 
the second rule is more specific), and both conclude about the same values. 
In either case, the interaction is reported to the expert, who may then 
examine or edit any of the offending rules. 

15.3.2 Describing Parameters 

Information characterizing the parameters and contexts of the domain is 
stored as properties of each context or parameter being described. When a 
new entity is defined, the acquisition routines automatically prompt for the 
properties that are always needed (e.g., EXPECT, the list of values expected 
for this parameter); the designer may also enter optional properties (those 
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needed to support special EMYCIN features). The properties are all 
checked for validity, in a fashion similar to that employed by the rule 
checker. 

15.3.3 System Maintenance 

While the system designer builds up the domain knowledge base as de­
scribed above, EMYCIN automatically keeps track of the changes that have 
been made (new or changed rules, parameters, etc.). The accumulated 
changes can be saved on a file by the system builder either explicitly with 
a simple command or automatically by the system every n changes (the 
frequency of automatic saving can be set by the system builder). When 
EMYCIN is started in a subsequent session, the system looks for this file 
of changes and loads it in to restore the knowledge base to its previous 
state. 

15.3.4 Human Engineering 

Although the discussion so far has concentrated on the acquisition of the 
knowledge base, it is also important that the resulting consultation program 
be pleasing in appearance to the user. EMYCIN's existing human-engi­
neering features relieve the system builder of many of the tedious cosmetic 
concerns of producing a usable program. Since the main mode of inter­
action between the consultation program and the client is in the program's 
questions and explanations, most of the features concentrate on making 
that interface as comfortable as possible. A main feature in this category 
that has already been described is the explanation program-the client can 
readily find out why a question is being asked, or how the program arrived 
at its conclusions. The designer can also control, by optionally specifying 
the PROMPT property for each parameter that is asked for, the manner 
in which questions are phrased. More detail can be specified, for example, 
than would appear in a simple prompt generated by the system from the 
parameter's translation. 

EMYCIN supplies a uniform input facility that allows the normal in­
put-editing functions-character, word, and line deletions-and on display 
terminals allows more elegant editing capabilities (insertion or deletion in 
the middle of the line, for example) in the style of screen-oriented text 
editors. It performs spelling correction and TENEX-style completion4 

from a list of possible answers; most commonly this list is the list of legal 

4 After the user types ESCAPE or ALTMODE, EMYCIN fills out the rest of the phrase if the 
pare the user has typed is unambiguous. For example, when EMYCIN expects the name of 
an organism, PSEU is unambiguous for PSEUDOMONAS-AERUGINOSA. Thus the auto­
matic completion of input can save considerable effort and frustration. 
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values for the parameter being asked about, as supplied by the system 
designer. 

In most places where EMYCIN prompts for input, the client may type 
a question mark to obtain help concerning the options available. When the 
program asks for the value of a parameter, EMYCIN can provide simple 
help by listing the legal answers to the question. The system designer can 
also include more substantial help by giving rephrasings of or elaborations 
on the original question; these are simply entered via the data base editor 
as an additional property of the parameter in question. This capability 
provides for both streamlined questions for experienced clients and more 
detailed explanations of what is being requested for those who are new to 
the consultation program. 

15.3.5 Debugging the Knowledge Base 

There is more to building a knowledge base than just entering rules and 
associated data structures. Any errors or omissions in the initial knowledge 
base must be corrected in the debugging process. In EMYCIN the principal 
method of debugging is to run sample consultations; i.e., the expert plays 
the role of a client seeking advice from the system and checks that the 
correct conclusions are made. As the expert discovers errors, he or she 
uses the knowledge acquisition facilities described above to modify existing 
rules or add new ones. 

Although the explanation program was designed to allow the consul­
tation user to view the program's reasoning, it is also a helpful high-level 
debugging aid for the system designer. Without having to resort to LISP­
level manipulations, it is possible to examine any inferences that were 
made, find out why others failed, and thereby locate errors or omissions 
in the knowledge base. The TEI RES I AS program developed the WHY I 
HOW capability used in EMYCIN for this very task (see Chapter 9). 

EMYCIN provides a debugger based on a portion of the TEIRESIAS 
program. The debugger actively guides the expert through the program's 
reasoning chain and locates faulty (or missing) rules. It starts with a con­
clusion that the expert has indicated is incorrect and follows the inference 
chain back to locate the error. 

The rule interpreter also has a debugging mode, in which it prints out 
assorted information about what it is doing: which rules it tries, which ones 
succeed (and what conclusions they make), which ones fail (and for what 
reason), etc. If the printout indicates that a rule succeeded that should 
have failed, or vice versa, the expert can interrupt immediately, rather than 
waiting for the end of the consultation to do the more formal TEIRESIAS­
style review. 

In either case, once the problem is corrected, the expert can then 
restart and try again, with the consultation automatically replayed using 
the new or modified rules. 
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Case Library 

EMYCIN has facilities for maintaining a library of sample cases. These can 
be used for testing a complete system, or for debugging a growing one. 
The answers given by the consultation user to all the questions asked dur­
ing the consultation are simply stored away, indexed by their context and 
parameter. When a library case is rerun, answers to questions that were 
previously asked are looked up and automatically supplied; any new ques­
tions resulting from changes in the rule base are asked in the normal 
fashion. This makes it easy to check the performance of a new set of rules 
on a "standard" case. It is especially useful during an intensive debugging 
session, since the expert can make changes to the knowledge base and, 
with a minimum of extra typing, test those changes-effectively reducing 
the "turnaround time" between modifying a rule and receiving consulta­
tion feedback. 

The BATCH Program 

A problem common to most large systems is that new knowledge entered 
to fix one set of problems often introduces new bugs, affecting cases that 
once ran successfully. To simplify the task of keeping the knowledge base 
consistent with cases that are known to be correctly solved, EMYCIN's 
BATCH program permits the system designer to run any or all cases in 
the library in background mode. BATCH reports the occurrence of any 
changes in the results of the consultation and invokes the QA Module to 
explain why the changes occurred. Of course, the system builder must first 
indicate to the system which parameters represent the results or the most 
important intermediate steps by which the correctness of the consultation 
is to be judged. The use of the BATCH program could be viewed as a 
form of additional semantic checking to supplement the checking routinely 
performed at the time of rule acquisition. 

15.3.6 The Rule Compiler 

To improve efficiency in a running consultation program, EMYCIN pro­
vides a rule compiler that transforms the system's production rules into a 
decision tree, eliminating the redundant computation inherent in a rule 
interpreter. The rule compiler then compiles the resulting tree into ma­
chine code. The consultation program can thereby use an efficient deduc­
tive mechanism for running the actual consultation, while the flexible rule 
format remains available for acquisition, explanation, and debugging. For 
details about the rule compiler see van Melle ( 1980). 
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15.4 Applications 

Several consultation systems have been written using EMYCIN. The orig­
inal MYCIN program provides advice on diagnosis and therapy for infec­
tious diseases. MYCIN is now implemented in EMYCIN, but its knowledge 
base was largely constructed before EMYCIN was developed as a separate 
system. SACON and CLOT (described in Chapter 16), PUFF (Aikins et 
al., 1983), HEADMED (Heiser et al., 1978), LITHO (Bonnet, 1981), DART 
(Bennett and Hollander, 1981), BLUEBOX (Mulsant and Servan­
Schreiber, 1983), and several other demonstration systems have been suc­
cessfully built in EMYCIN. All have clearly shown the power of starting 
with a well-developed framework and concentrating on the knowledge 
base. For example, to bring the SACON program to its present level of 
performance, about two person-months of the experts' time were required 
to explicate their task as consultants and to formulate the knowledge base, 
and about the same amount of time was required to implement and test 
the rules in a preliminary version of EMYCIN. CLOT was constructed as 
a joint effort by an experienced EMYCIN programmer and a collaborating 
medical student. Following approximately ten hours of discussion about 
the contents of the knowledge base, they entered and debugged in another 
ten hours a preliminary knowledge base of some 60 rules using EMYCIN. 
Both knowledge bases would need considerable refinement before the pro­
grams would be ready for general use. The important point, however, is 
that starting with a framework like EMYCIN allows system builders to 
focus quickly on the expertise necessary for high performance because the 
underlying framework is ready to accept it. 

15.5 Range of Applicability 

EMYCIN is designed to help build and run programs that provide con­
sultative advice. The resulting consultation system takes as input a body of 
measurements or other information pertinent to a case and produces as 
output some form of recommendation or analysis of the case. The frame­
work seems well suited for many diagnostic or analytic problems, notably 
some classes of fault diagnosis, where several input measurements (symp­
toms, laboratory tests) are available and the solution space of possible di­
agnoses can be enumerated. It is less well suited for "formation" problems, 
where the task is to piece together existing structures according to specified 
constraints to generate a solution. 

EMYCIN was not designed to be a general-purpose representation 
language. It is thus wholly unsuited for some problems. The limitations 
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derive largely from the fact that EMYCIN has chosen one basic, readily 
understood representation for the knowledge in a domain: production 
rules that are applied by a backward-chaining control structure and that 
operate on data in the form of associative triples. The representation, at 
least as implemented In EMYCIN, is unsuitable for problems of constraint 
satisfaction, or those requiring iterative techniques. 5 Among other classes 
of problems that EMYCIN does not attempt to handle are simulation tasks 
and tasks involving planning with stepwise refinement. One useful heuris­
tic in thinking about the suitability of EMYCIN for a problem is that the 
consultation system should work with a "snapshot" of information about a 
case. Good advice should not depend on analyzing a continued stream of 
data over a time interval. 

Even those domains that have been successfully implemented have 
demonstrated some of the inadequacies of EMYCIN. In addition to rep­
resentational difficulties, other problems noted have been the lack of user 
control over the consultation dialogue (e.g., the order of questions) and 
the amount of time a user must spend supplying information. These lim­
itations are discussed further in subsequent chapters. 

5The VM program (Chapter 22), however, has shown that production rules can be used to 
provide advice in a dynamic setting where iterative monitoring is required. Greatly influenced 
by EMYCIN design issues, VM deals with the management of patients receiving assisted 
ventilation after cardiac surgery. 



16 
Experience Using EMYCIN 

James S. Bennett and Robert S. Engelmore 

The development of expert systems is plagued with a well-known and 
crucial bottleneck: in order for these systems to perform at all the domain­
specific knowledge must be engineered into a form that can be embedded 
in the program. Advances in understanding and overcoming this knowl­
edge acquisition bottleneck rest on an analysis of both the process and the 
product of our current, rather informal interactions with experts. To this 
end the purpose and structure of two quite dissimilar rule-based systems 
are reviewed. Both systems were constructed using the EMYCIN system 
after interviewing an expert. The first, SACON (Bennett et al., 1978), is 
meant to assist an engineer in selecting a method to perform a structural 
analysis; the second, CLOT (Bennett and Goldman, 1980), is meant to 
assist a physician in determining the presence of a blood clotting disorder. 

The presentation of the details of these two systems is meant to ac­
complish two functions. The first is to provide an indication of the scope 
and content of these rule-based systems. The reader need not have any 
knowledge of the specific application domain; the chapter will present the 
major steps and types of inferences drawn by these consultants. This con­
ceptual framework, what we term the inference structure, forms the basis for 
the expert's organization of the domain expertise and, hence, the basis for 
successful acquisition of the knowledge base and its continued mainte­
nance. The second purpose of this chapter is to indicate the general form 
and function of these inference structures. 

We first present the motivations and major concepts of both the SA­
CON and CLOT systems. A final section then summarizes a number of 
observations about the knowledge acquisition process and the applicability 
of EMYCIN to these tasks. This chapter thus shows how the knowledge 
acquisition ideas from Chapter 9 and the EMYCIN framework from Chap­
ter 15 have been used in domains other than infectious disease. 

This chapter is a shortened and edited version of a paper appearing in Pergamon-Infotech state 
of the art report on machine intelligence. Maidenhead, Berkshire, U.K.: Infotech Ltd., 1981. 

314 
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16.1 SACON: A Consultant for Structural Analysis 

SACON (Structural Analysis CONsultant) was developed to advise nonex­
pert engineers in the use of a general-purpose computer program for 
structural analysis. The automated consultant was constructed using the 
EMYCIN system. Through a substitution of structural engineering knowl­
edge for the medical knowledge, the program was converted easily from 
the domain of infectious diseases to the domain of structural analysis. 

The purpose of a SACON consultation is to provide advice to a struc­
tural engineer regarding the use of a structural analysis program called 
MARC (MARC Corporation, 1976). The MARC program uses finite-ele­
ment analysis techniques to simulate the mechanical behavior of objects, 
for example, the metal fatigue of an airplane wing. Engineers typically 
know what they want the MARC program to do-e.g., examine the behav­
ior of a specific structure under expected loading conditions-but do not 
know how the simulation program should be set up to do it. The MARC 
program offers a large (and, to the novice, bewildering) choice of analysis 
methods, material properties, and geometries that may be used to model 
the structure of interest. From these options the user must learn to select 
an appropriate subset of methods that will simulate the correct physical 
behavior, preserve the desired accuracy, and minimize the (typically large) 
computational cost. A year of experience with the program is required to 
learn how to use all of MARC's options proficiently. The goal of the au­
tomated consultant is to bridge this "what-to-how" gap, by recommending 
an analysis strategy. This advice can then be used to direct the MARC user 
in the choice of specific input data-e.g., numerical methods and material 
properties. Typical structures that can be analyzed by both SACON and 
MARC include aircraft wings, reactor pressure vessels, rocket motor cas­
ings, bridges, and buildings. 

16.l.l The SACON Knowledge Base 

The objective of a SACON consultation is to identify an analysis strategy for 
a particular structural analysis problem. The engineer can then implement 
this strategy, using the MARC program, to simulate the behavior of the 
structure. This section introduces the mathematical and physical concepts 
used by the consultant when characterizing the structure and recommend­
ing an analysis strategy. 

An analysis strategy consists of an analysis class and a number of as­
sociated analysis recommendations. Analysis classes characterize the complex­
ity of modeling the structure and the ability to analyze the material be­
haviors of the structure. Currently, 36 analysis classes are considered; 
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among them are Nonlinear Geometry Crack Growth, Nonlinear Geometry 
Stress Margin, Bifurcation, Material Instability, Inelastic Stiffness Degra­
dation, Linear Analysis, and No Analysis. The analysis recommendations 
advise the engineer on specific features of the MARC program that should 
be activated when performing the actual structural analysis. (The example 
consultation in Figure 16-3 concludes with nine such recommendations.) 

To determine the appropriate analysis strategy, SACON infers the crit­
ical material stress and deflection behaviors of a structure under a number 
of loading conditions. Among the material stress behaviors inferred by 
SACON are Yielding Collapse, Cracking Potential, Fatigue, and Material 
Instabilities; material deflection behaviors inferred by SACON are Exces­
sive Deflection, Flexibility Changes, Incremental Strain Failure, Buckling, 
and Load Path Bifurcation. 

Using SACON, the engineer decomposes the structure into one or 
more substructures and provides the data describing the materials, the gen­
eral geometries, and the boundary conditions for each of these substruc­
tures. A substructure is a geometrically contiguous region of the structure 
composed of a single material, such as high-strength aluminum or struc­
tural steel, and having a specified set of kinematic boundary conditions. A 
structure may be subdivided by the structural engineer in a number of 
different ways; the decomposition is chosen that best reveals the worst-case 
material behaviors of the structure. 

For each substructure, SACON estimates a numeric total loading from 
one or more loadings. Each loading applied to a substructure represents 
one of the typical mechanical forces on the substructure during its working 
life. Loadings might, for example, include loadings experienced during 
various maneuvers, such as braking and banking for planes, or, for build­
ings, loadings caused by natural phenomena, such as earthquakes and 
windstorms. Each loading is in turn composed of a number of point or 
distributed load components. 

Given the descriptions of the component substructures and the de­
scriptions of the loadings applied to each substructure, the consultant es­
timates stresses and deflections for each substructure using a number of 
simple mathematical models. The behaviors of the complete structure are 
found by determining the sum of the peak relative stress and deflection 
behaviors of all the substructures. Based on these peak responses (essen­
tially the worst-case behaviors exhibited by the structure), its knowledge of 
available analysis types, and the tolerable analysis error, SACON recom­
mends an analysis strategy. Figure 16-1 illustrates the basic types of infer­
ences drawn by SACON during a consultation. 

Judgmental knowledge for the domain, and about the structural anal­
ysis task in particular, is represented in EMYCIN in the form of production 
rules. An example of a rule, which provides the transition from simple 
numeric estimates of stress magnitudes to symbolic characterizations of 
stress behaviors for a substructure, is illustrated in Figure 16-2. 

One major feature of EMYCIN that was not used in this task was the 
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Analysis Strategy of the Structure 

Worst-Case Strels and Deflection 
Behaviors of the Structure 

t 
Symbolic Stress and Deflection 
Behaviors of Each Substructure 

t 
Composite Numeric Stress and Deflection 

Estimations of Each Loading 

Numeric Stres! and Deflection 
Magnitudes of Each Load Component 

FIGURE 16-1 Inference structure during a SACON consulta­
tion. The user specifies loading and substructure descriptions 
that the system uses to infer material behaviors and, finally, an 
analysis strategy. 

certainty factor mechanism-i.e., the ability to draw inferences using un­
certain knowledge. The present consultation strategy and the associated 
mathematical models were designed to estimate extreme loading condi­
tions, from which SACON concludes the appropriate analysis class. Con­
sequently, by using a conservative model, the rules, though inexact, are 
sufficiently accurate for predicting response bounds with certainty. 

The existing knowledge base is able to select from among 36 nonlinear 
analysis strategies. If nonlinear analysis is not indicated by the response 
estimates, the consultation recommends linear analysis. In addition, if rel­
ative stress and displacement estimates are low (less than 5% of critical 
values), the consultation indicates that no analysis is required. The knowl­
edge base consists of 170 rules and about 140 consultation parameters. A 

RULE050 

IF: 1) The material composing the sub-structure is one of: the metals. and 
2) The analysis error (in percent) that is tolerable is between 5 and 30, and 
3) The non-dimensional stress of the sub-structure is greater than .9, and 
4) The number of cycles the loading is to be applied is between 1000 and 10000 

THEN: It is definite (1.0) that fatigue is one of the stress behavior phenomena in the sub-structure 

PREMISE: ($AND (SAME CNTXT MATERIAL (LISTOF METALS)) 
(BETWEEN* CNTXT ERROR 5 30) 
(GREATER* CNTXT ND-STRESS .9) 
(BETWEEN* CNTXT CYCLES 1000 10000)) 

ACTION: (CONCLUDE CNTXT SS-STRESS FATIGUE TALLY 1.0) 

FIGURE 16-2 A sample rule from SACON, showing both the 
English and LISP forms. 
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typical consultation (2 substructures, 3 loadings, 3 load components) re­
quires about 25 minutes in an interactive session. 

The transcript in Figure 16-3 illustrates SACON's interactions with an 
engineer and SACON's recommendation of an analysis strategy. The en­
gineer's responses to questions follow the prompt (**) and are printed in 
bold capitals. 

July 26, 1978 10:54AM in <SACON>MARC.SAV;80709 by SACON> 

Hello Dr. Melosh, 

This consultation concerns the 747 wing. The purpose of the consultation is to demonstrate the general features 
of a structural analysis consultation on a simple problem. Thus the consultation involves only one substructure: 
The total wing. 

26-Jul-78 10:54:44 
[consultation of 13-Jul-78 1 :55PM]. 
--------STRUCTURE-28--------
1) What is the name of STRUCTURE-28? 
•• BOEING 747 WING 
2) Assuming that your characterization of the boeing 747 wing in terms of its geometry, material characteristics, 

and boundary conditions are accurate, how much error (in percent) is tolerable for the analysis? 
•• 10 

3) Do you want to examine the responses of the boeing 747 wing, to evaluate its instability, or both? 
•• EXAMINE-RESPONSES 
4) Does the boeing 747 wing have any time dependent terms in its equations of equilibrium? 
.. NO 

5) Is heating or cooling of interest in determining structure responses? 
••NO 

6) Have you decomposed the boeing 747 wing into a number of potential sub-structures which are relevant to this 
analysis? 

••YES 

--------SUB-STRUCTURE-1--------
7) What is the name of SUB-STRUCTURE-1? 
••TOTAL WING 
8) What is the material composing most of the total wing (SUB-STRUCTURE-1 )? 
•• HIGH·STRENGTH·ALUMINUM 
9) Enter the average longest dimension of the total wing (SUB-STRUCTURE-1) in inches (or <number> 

CMS): 
•• 1420 
10) Enter the weight of the total wing (SUB-STRUCTURE-1) in pounds (or <number> KGS): 
•• 46000 

11) Is the total wing (SUB-STRUCTURE-1) thin-walled or solid? 
•• THIN-WALLED 
12) What is the configuration of support for the total wing (SUB-STRUCTURE-1 )? 
••ONE-SIDE 
13) Is the total wing (SUB-STRUCTURE-1) to be modelled as a 1, 2, or 3 dimensional system? 
•• 2 

14) Would you describe the construction of the total wing (SUB-STRUCTURE-1) to be truss and/or frame 
elements (NETWORK), sheets and/or blocks of .naterial (CONTINUUM), or a combination of both? 

••CONTINUUM 
15) Is the overall geometry of the total wing (SUB-STRUCTURE-1) curved or planar? 
••PLANAR 

FIGURE 16-3 A SACON consultation. 
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The first loading applied to the total wing (SUB-STRUCTURE-1) will be called: 

--------LOADING-1--------
16) What is the name of LOADING-1? 
**FLIGHT 
17) Enter the number of loading cycles to be applied: 
•• 20000 

The first load component associated with LOADING-1 will be called: 

--------LOAD-COMPONENT-1--------
18) Would you describe LOAD-COMPONENT-1 as being DISTRIBUTED over most of the 

sub-structure or as acting at a POINT of the sub-structure? 
** DISTRIBUTED 
19) Which surface of the sub-structure does LOAD-COMPONENT-1 act NORMAL to? (If 

more than one surface, you should consider the loading as two or more component 
loadings) 

** WIDTH-LENGTH 
20) Enter the average wall thickness of the total wing (SUB-STRUCTURE-1) in inches (or 

<number> CMS): 
•• . 31 

21) Enter the average depth of the total wing (SUB-STRUCTURE-1) in inches (or 
<number> CMS): 

•• 41 

22) Enter the magnitude of the distributed load (in psi): 
•• 1 

23) Are there any other load components associated with LOADING-1? 
**NO 

24) Are there any other loading conditions associated with the total wing (SUB-STRUCTURE-1)? 
**NO 

25) Are there any other sub-structures of the boeing 747 wing relevant to this analysis? 
**NO 
26) Do the supports of the boeing 747 wing involve Coulomb friction, nonlinear springs, and/or gapping? 
**NO 

The following analysis classes are relevant to the analysis of your structure: 
1) general-inelastic 

The following recommendations apply to this case: 

Activate incremental stress-incremental strain analysis. 

Model nonlinear stress-strain relation of the material. 

Solution will be based on a mix of gradient and Newton methods. 

Logic to scan peak stress at each step and evaluate fatigue integrity should be used. 

Logic to scan stresses, smooth, and compare with allowable stresses (with appropriate safety factors) 
should be used. 

Logic to scan deflections, calculate relative values, and compare with code limits, should be called upon. 

Cumulative strain damage should be calculated. 

Analysis should include two or more load cycles (if cyclic) with extrapolation for strain accumulation. 

Shakedown extrapolation logic should be used. 

A single cycle of loading is sufficient for the analysis. 

Do you wish advice on another structure? 
**NO 
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16.2 CLOT: A Consultant for Bleeding Disorders 

In a different, and in some ways more standard, application of EMYCIN, 
we have recently developed a prototype of a consultant called CLOT, which 
advises physicians on the presence and types of disorders of the human 
coagulation system. CLOT was constructed by augmenting the EMYCIN 
system with domain-specific knowledge about bleeding disorders encoded 
as production rules. Section 16.3 describes the general structure of the 
CLOT knowledge base. 

Our primary intent in constructing CLOT was to explore knowledge 
acquisition techniques that might be useful during the initial phases of 
knowledge base specification. Thus we sought to determine the primary 
inference structures and preliminary medical concepts that a consultant 
might require. We acquired the initial medical expertise for CLOT from a 
third-year medical student within a brief amount of time. This expertise 
has not yet been refined by an acknowledged expert physician. We conjec­
ture that with these structures now in place the arduous task of detailing 
the knowledge required for truly expert performance can proceed at a 
more rapid pace. However, we have riot had the opportunity to test this 
conjecture (cf. Mulsant and Servan-Schreiber, 1984). 

16.3 The CLOT Knowledge Base 

The primary objective of a CLOT consultation is to identify the presence 
and type of bleeding defect in a patient. If a defect is diagnosed, the 
consultant attempts to refine its diagnosis by identifying the specific con­
ditions or syndromes in the patient and their plausible causes. These re­
fined diagnoses can then be used by the physician to evaluate the patient's 
clinical status and to suggest possible therapies. At present, CLOT makes 
no attempt to recommend such therapies. This section briefly introduces 
the physiological basis and inference structure used by the consultant when 
characterizing the bleeding defect of the patient. 

There are two major types of bleeding disorders, corresponding to 
defects in the two component subsystems of the human coagulation system. 
The first subsystem, termed the platelet-vascular system, is composed of 
the blood vessels and a component of the blood, the platelets. Upon sus­
taining an injury, the blood vessels constrict, reducing the flow of blood to 
the iajured area. This vasoconstriction in turn activates the platelets, caus­
ing them to adhere to one another and form a simple, temporary "plug," 
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or thrombus. This thrombus is at last reinforced by fibrin, a protein re­
sulting from a complex, multienzyme pathway, the second component sub­
system of the coagulation system. Fibrin converts the initial platelet plug 
into the more permanent clot with which most people are familiar. A defect 
in either the platelet-vascular or the coagulation (enzymatic) subsystem can 
cause prolonged and uncontrollable bleeds. For example, the familiar 
"bleeder's" disease (hemophilia) is the result of a missing or altered enzyme 
in the coagulation system, which inhibits the formation of fibrin and hence 
of the final clot. 

CLOT was designed to be used eventually by a physician attending a 
patient with a potential bleeding problem. The system assumes that the 
physician has access to the necessary laboratory tests and the patient's med­
ical history. CLOT attempts to diagnose the bleeding defect by identifying 
which of the two coagulation subsystems might be defective. This inference 
is based first on clinical evidence and then, independently, on the labora­
tory findings. Finally, if these independent conclusions are mutually con­
sistent, an overall estimation of the defect is deduced and reported. 

The consultation begins with the collection of standard demographic 
data about the patient (name, age, sex, and race) followed by a review of 
the clinical, qualitative evidence for a bleeding disorder. The physician is 
asked to describe an episode of bleeding in terms of its location, whether 
its onset was immediate or prolonged, and whether the physician feels the 
amount of bleeding was disproportionate for its type. Other factors such 
as the spontaneity of the bleeding, its response to applied pressure, and its 
persistence (duration) are also requested. These data are supplemented 
with facts from the patient's background and medical history to provide 
an estimate of the significance of the episode. These factors are then used 
to provide suggestive, but not definitive, evidence for the presence of a 
bleeding defect. This suggestive, rather than diagnostic, expertise was en­
coded using EMYCIN's certainty factor mechanism. Each rule mentions a 
key clinical parameter whose presence or absence contributes to the final, 
overall certainty of a particular bleeding disorder. (See Figure 16-4.) 

The clinical description of the bleeding episode is followed by a report 
of the coagulation-screen test results. These six standard, quantitative mea­
surements made of the patient's blood sample are used to determine if the 
blood clots abnormally. If the patient's blood does clot abnormally, CLOT 
attempts to infer what segment of the enzymatic pathway might be im­
paired and what platelet dysfunction might be present. 

Finally, if clinical and laboratory evidence independently produce a 
mutually consistent estimation of the defect type, the case data and the 
intermediate inferences about the significance and possible causes of the 
bleed combine to produce a refined diagnosis for the patient. Currently, 
for patients experiencing a significant bleed, these conclusions include spe­
cific enzyme deficiencies, von Willebrand's syndrome, Kallikrein defects, 
thrombocytopenia, and thrombocytosis. 



322 Experience Using EMYCIN 

RULE025 

IF: 1) Bleeding-history is one of the reasons for this consultation, 
2) There is an episode of significant bleeding in the patient, 
3) Coagulation-defect is one of the bleeding disorders in the patient, 
4) The defective coagulation pathway of the patient is intrinsic, and 
5) There are not factors which interfere with the patient's normal bleeding 

THEN: It is definite (1.0) that the following is one of the bleeding diagnoses of the patient: The 
patient has one or more of the following conditions: Hemophilia A, von Willebrand's 
syndrome, an IX, XI, or XII deficiency, or a high molecular weight Kallikrein defect. 

PREMISE: ($AND (SAME CNTXT REASON BLEEDING-HISTORY) 
(SAME CNTXT SIGBLD) 
(SAME CNTXT FINALDEF COAGULATION-DEFECT) 
(SAME CNTXT DEFPATH INTRINSIC) 
(NOTSAME CNTXT INTERFERENCE)) 

ACTION: (CONCLUDETEXT CNTXT DX (TEXT DXHEMOPHILIA) TALLY 1000) 

FIGURE 16-4 A sample rule from CLOT. RULE025 partly 
determines the final diagnosis. 

Figure 16-5 indicates the major inferences drawn by CLOT during a 
consultation. 

The current knowledge base is able to select from among 13 refined 
diagnoses and can indicate that the patient is a normal bleeder. CLOT is 
also able to detect possibly false negative test results due to various inter­
fering factors such as recent exercise, pregnancy, presence of chronic ill­
nesses, and the patient's use of drugs known to alter the clotting process. 
The knowledge base consists of 63 rules and 50 consultation parameters. 
A typical consultation requires about five minutes of interaction. A sample 
consultation is shown in Figure 16-6. The transcript in Figure 16-6 illus­
trates CLOT's interactions with a physician about a patient and CLOT's 
final diagnosis. The physician's responses follow the prompt (**) and are 
printed in bold capitals. 

Final Diagnosis 

F. 1 C . t E . . ma , ons1stent sumauon 
of the Bleeding Defect 

Estimation of Enztmatic and Platelet 
Defects on the Basis of the Coagulation Battery 

t 
Initial Estimation of Bleeding Defect Type 

Based on Clinical Evidence 

FIGURE 16-5 Inference structure during a CLOT con­
sultation. 



-------PATIENT-110--------
1) Name: 
•• Pt110 

2) Age: 
•• 90 YEARS 
3) Sex: 
**FEMALE 
4) Race: 
••CAUCASIAN 
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5) Please indicate your reason(s) for requesting this consultation: 
** BLEEDING-HISTORY 
6) What type of bleeding describes Pt11 O's most recent episode of bleeding? 
•• HEMARTHROSIS 
7) Is there a history of a genetic bleeding disorder in Pt11 O's family? 
**YES 
8) Was the onset of the bleed immediate or delayed? 
**DELAYED 
9) BT: 
** 5 MINUTES 
10) PT: 
•• 13 
11) PTT: 
**SO 
12) TT: 
** 15 
13) FSF: 
••NORMAL 
14) Has Pt110 recently exercised? 
**NO 
15) Is Pt110 currently receiving any of the following drugs: ASA, Heparin, Coumarin, oral-contraceptives, 

Ephedrine, Epinephrine, ADH? 
**NO 
16) Is Pt11 O diagnosed as having cirrhosis, collagen disease, cancer, or any chronic disease? 
**NO 

Conclusions: the blood disorders of Pt11 O are as follows: 
COAGULATION-DEFECT (.97) 

Conclusions: the statements about the consistency of the case data and CLOT's interpretation are as follows: 

Both clinical and lab data are internally consistent and there is overall, consistent interpretation of the blood 
disorder. 

Conclusions: the bleeding diagnoses of Pt11 O are as follows: 

The patient has one or more of the following conditions: 

16.4 

Hemophilia A, von Willebrand's syndrome, an IX, XI, or XII deficiency, or a high molecular weight 
Kallikrein defect. (.97) 

FIGURE 16-6 Transcript ofa CLOT consultation. 

EMYCIN as a Knowledge Representation 
Vehicle 

We did not find the representation formalism of EMYCIN to be a hin­
drance to either the formulation of the knowledge by the expert or its 
eventual implementation in either program. In fact, the simplicity of using 
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and explaining both EMYCIN's rule-based formalism and its backward­
chaining control structure actually facilitated the rapid development of the 
knowledge base during the early stages of the consultant's design. More­
over, the control structure, like the rule-based formalism, seemed to impose 
a salutary discipline on the expert during the formulation of the knowledge 
base. 

The development of SACON was a major test of the domain-indepen­
dence of the EMYCIN system. Previous applications using EMYCIN had 
been primarily medical, with the consultations focusing on the diagnosis 
and prescription of therapy for a patient. Structural analysis, with its em­
phasis on structures and loadings, allowed us to detect the small number 
of places where this medical bias had unduly influenced the system design, 
notably in the text strings used for prompting and giving advice. 

Both the MARC expert and the medical student found that their 
knowledge was easily cast into the rule-based formalism and that the ex­
isting predicate functions and context-tree mechanism provided sufficient 
expressive power to capture the task of advising their respective clients. 
The existing interactive facilities for performing explanation, question an­
swering, and consultation were found to be well developed and were used 
directly by our application. None of these features required any significant 
reprogramming. 

EMYCIN provides many tools to aid the knowledge engineer during 
the process of embedding the expertise into the system. During the con­
struction of CLOT we found that the knowledge acquisition tools in EMY­
CIN had substantially improved since the construction of SACON. These 
facilities now perform a large amount of useful checking and default spec­
ification when specifying an initial knowledge base. In particular, a new 
facility had been implemented that provides assistance during the specifi­
cation of the context tree. This facility eliminates a substantial amount of 
user effort by setting up the multitude of data structures for each context 
and ensuring their mutual consistency. Furthermore, the facility for ac­
quiring clinical parameters of a context now performs a significant amount 
of prompting and value checking on the basis of a simple parameter clas­
sification scheme; we found these facilities very useful. 

We made extensive use of the ARL (Abbreviated Rule Language) fa­
cility when acquiring the rules for CLOT. Designed to capitalize on the 
stereotypically terse expression of rule clauses by experts, ARL reduces the 
amount of typing time and, again, ensures that the correct forms are used 
when specifying both the antecedent and consequent parts of a rule. For 
example, when specifying the CLOT rule shown in Figure 16-4, the med­
ical student engaged in the interaction shown in Figure 16-7. The user's 
input follows a colon or a question mark. 

In addition to ARL, EMYCIN's rule-subsumption checker also proved 
very useful during the specification of larger rule sets in the system. This 
checker analyzes each new rule for possible syntactic subsumptions, or 
equivalences with the premise clauses of the other rules. We found that, 
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Enter Parms, Rules, Save changes, or Go? Rules 

Rule number of NEW: NEW 
RULE025 
PREMISE: (REASON = BLEEDING, SIGBLD, FINALDEF = COAGULATION, 

DEFPATH = INTRINSIC - INTERFERENCE) 
RULE025 
ACTION: (DX = DXHEMOPHILIA) 
BLEEDING __, BLEEDING-HISTORY? Yes 
COAGULATION __, COAGULATION-DEFECT? Yes 
Translate, No further changes, or prop name: 

FIGURE 16-7 Interaction with EMYCIN, using the Abbrevi­
ated Rule Language (ARL) to specify the CLOT rule shown in 
Figure 16-4. 

for the larger rule sets, the checker detected these inconsistencies, due to 
either typing mistakes or actual errors in the rule base logic, and provided 
a graceful method for dealing with them. Together these facilities contrib­
uted to the ease and remarkable rapidity of construction of this consultant. 
For further details on the design and operation of these aids, see van Melle 
(1980). 

16.5 Observations About Knowledge Acquisition 

To bring the SACON program to its present level of performance, we 
estimate that two person-months of the expert's time were required to 
explicate the consultation task and formulate the knowledge base, and 
about the same amount of time was required to implement and test the 
rules. This estimate does not include the time devoted to meetings, prob­
lem formulation, demonstrations, and report writing. For the first 170 
rules in the knowledge base, we estimate the average time for formulating 
and implementing a rule was about four hours. The marginal time for a 
new rule is about two hours. 1 

The construction of CLOT required approximately three days, divided 
as follows. The first day was spent discussing the major medical concepts, 
clinical setting, and diagnostic strategies that were appropriate for this 
consultant. At the end of this period, the major subtasks of the consultant 
had been sketched, and a large portion of the clinical parameters the con­
sultant would request of the physician had been mentioned. The following 

1These estimates represent a simple average that held during the initial construction of these 
projects. They do not rettect the wide variation in the amount of effort spent defining rules 
versus the other knowledge base development tasks that occurred over that time period. 
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two days were spent detailing aspects of the parameters and rules that the 
EMYCIN system required (i.e., specifying expected values, allowable 
ranges on numeric parameters, question formats, etc.) and entering these 
details into the system itself. We may approximate the average cost of 
formulating and implementing a rule in such a system based on the num­
ber of person-hours spent in construction versus the number of rules spec­
ified. CLOT required about 60 person-hours to specify 60 rules yielding 
a rate of 1 person-hour per rule. The marginal cost for a new rule is 
expected to be similar. 

Our experience explicating these rule bases provided an opportunity 
to make some observations about the process of knowledge acquisition for 
consultation systems. Although these observations were made with respect 
to the development of SACON and CLOT, other knowledge-based con­
sultation systems have demonstrated similar processes and interactions. 

Our principal observation is that the knowledge acquisition process is 
composed of three major phases. These phases are characterized strongly 
by the types of interaction that occur between expert and knowledge en­
gineer and by the type of knowledge that is being explicated and trans­
ferred between the participants during these interactions. At present only 
a small fraction of these interactions can be held directly with the knowl­
edge-based system itself (Davis, 1976; 1977), and research continues to 
expand the knowledge acquisition expertise of these systems. 

16.5.1 The Beginning Phase 

The beginning phase of the knowledge formalization process is character­
ized by the expert's ignorance of knowledge-based systems and unfamil­
iarity with the process of explicitly describing exactly what he or she knows 
and does. At the same time, the knowledge engineers are notably ignorant 
about the application domain and clumsily seek, by analogy, to characterize 
the possible consultation tasks that could be performed (i.e., "Well, in MY­
CIN we did this .... "). 

During the initial weeks of effort, the domain expert learns what tools 
are available for representing the knowledge, and the knowledge engineer 
becomes familiar with the important concepts of the domain. During this 
period, the two formulate a taxonomy of the potential consultation areas 
for the application of the domain and the types of advice that could be 
given. Typically, a small fragment of the complete spectrum of consultation 
tasks is selected to be developed during the following phases of the knowl­
edge acquisition effort. For example, the MYCIN project began by limiting 
the domain of expertise to the diagnosis and prescription of therapy for 
bacteremia (blood infections); SACON is currently restricted to determin­
ing analysis strategies for structures exhibiting nonlinear, nonthermal, 
time-independent material behaviors. 

Having decided on the subdomain that is to be developed and the type 
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of advice that is to be tendered, the team next identifies the major factors 
(parameters) and reasoning steps (rules) that will be used to characterize 
the object of the consultation (be it patient or airplane wing) and to rec­
ommend any advice. This forms the inference structure of the consultant. 

16.5.2 The Middle Phase 

After this initial conceptual groundwork is laid, work proceeds to detailing 
the reasoning chains and developing the major rule sets in the system. 
During the development of these rule sets, the amount of domain vocab­
ulary, expressed as contexts, parameters, and values, increases substantially. 
Enough knowledge is explicated during this middle phase to advise a large 
number of common cases. 

While developing these systems, we profited by "hand-simulating" any 
proposed rules and parameter additions. In particular, major advances in 
building the structural analysis knowledge base came when the knowledge 
engineer would "play EMYCIN" with the expert. During the sessions the 
knowledge engineer would prompt the expert for tasks that needed to be 
performed. By simulating the backward-chaining manner of EMYCIN, we 
asked, as was necessary, for rules to infer the parameter values, "fired" 
these rules, and thus defined a large amount of the parameter, object, and 
rule space used during the present consultations. This process of simulat­
ing the EMYCIN system also helped the expert learn how the program 
worked in detail, which in turn helped him develop more rules and pa­
rameters. 

16.5.3 The Final Phase 

Finally, when the knowledge base is substantially complete, the system de­
signers concentrate on debugging the existing rule base. This process typi­
cally involves the addition of single rules to handle obscure cases and might 
involve the introduction of new parameters. However, the major structure 
of the knowledge base remains intact (at least for this subdomain), and 
interactions with the expert involve relatively small changes. (Chapters 8 
and 9 describe debugging and refining a knowledge base that is nearly 
complete.) 

The initial development of the knowledge base is greatly facilitated 
when the knowledge engineering team elicits a well-specified consultation 
goal for the system as well as an inference structure such as that depicted 
in Figure 16-1. Without these conceptual structures to give direction to the 
knowledge explication process, a confused and unusable web of facts typ­
ically issues from the expert. We speculate that the value of these organi­
zational structures is not restricted to the production system methodology. 
They seem to be employed whenever human experts attempt to formalize 
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their knowledge in any representation formalism, be it production rules, 
predicate calculus, frames, etc. Indeed, when difficulties arise in building 
a usable knowledge base, we suspect that the trouble is as likely to come 
from a poor choice of inference structure as from the choice of any par­
ticular representation scheme. 

The inference structure is a form of meta-knowledge, i.e., knowledge 
about the structure and use of the domain expertise (see Part Nine). Our 
experience shows that this meta-knowledge should be elicited and dis­
cussed early in the knowledge acquisition process, in order to insure that 
a sufficient knowledge base is acquired to complete a line of reasoning, 
and to reduce the time and cost of system development. Also, Chapter 29 
discusses the need to explain such meta-level knowledge. 

Making the inference structure an explicit part of the program would 
assist the explanation, tutoring, and further acquisition of the knowledge 
base. Several researchers, including Swartout (1981) and Clancey (1979b), 
have employed portions of the inference structure to guide both the design 
and tutoring of a knowledge-based system. The success of this work sup­
ports the hypothesis that the inference structure will play a critical role in 
the development of new knowledge-based consultation systems. 



Explaining the 
Reasoning 

PART SIX 



17 
Explanation as a Topic of 
AI Research 

In describing MYCIN's design considerations in Chapter 3, we pointed out 
that an ability of the program to explain its reasoning and defend its advice 
was an early major performance goal. It would be misleading, however, to 
suggest that explanation was a primary focus in the original conception. 
As was true for many elements of the system, the concept of system trans­
parency evolved gradually during the early years. In reflecting on that 
period, we now find it impossible to recall exactly when the idea was first 
articulated. The SCHOLAR program (Carbonell, l 970a) was our working 
model of an interactive system, and we were trying to develop ways to use 
that model for both training and consultation. Thus, with hindsight, we 
can say that the issue of making knowledge understandable was in our 
model, although it was not explicitly recognized at first as a research issue 
of importance. 

} 7 .1 The Early Explanation Work 

When the first journal article on MYCIN appeared in 1973 (Shortliffe et 
al., 1973), it included examples of the program's first rudimentary expla­
nation capabilities. The basic representation and control strategies were 
relatively well developed at that time, and it was therefore true that any 
time the program asked a question some domain rule under consideration 
had generated the inquiry. To aid with system debugging, Shortliffe had 
added a RULE command that asked MYCIN to display (in LISP) the rule 
currently under consideration. At the weekly research meetings it was ac­
knowledged that if the rules were displayed in English, rather than in LISP, 
they would provide a partial justification of the question for the user and 
thereby be useful to a physician obtaining a consultation. We then devised 
the translation mechanism (described in Chapter 5), assigning the TRANS 
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property to all clinical parameters, predicate functions, and other key data 
structures used in rules. Thus, when a user typed "RULE" in response to 
a question from MYCIN, a translation of the current rule was displayed 
as an explanation. This was the extent of MYCIN's explanation capability 
when the 1973 paper was prepared. 

At approximately the same time as that first article appeared, Corry 
published a paper that influenced us greatly (Corry, 1973). In retrospect, 
we believe that this is a landmark essay in the evolution of medical Al. In 
it he reviewed the experience of the M.l.T. group in developing a program 
that used decision analysis techniques to give advice regarding the diag­
nosis of acute renal failure (Corry et al., 1973). Despite the successful 
decision-making performance of that program, he was concerned by its 
obvious limitations (p. 50): 

Decision analysis is a useful tool when the problem has been reduced to 
a small, well-defined task of action selection. [However,] it cannot be the sole 
basis of a program to assist clinicians in an area such as renal disease. 

He proceeded to describe the M.l.T. group's nascent work on an AI system 
that used "experimental knowledge" as the basis for understanding renal 
diseases 1 and expressed excitement about the potential of the symbolic 
reasoning techniques he had recently discovered (p. 50): 

The new technology [AI] ... has greatly facilitated the development [of 
the prototype system] and it seems likely that a much improved program can 
be implemented. The real question is whether sufficient improvement can 
be realized to make the program useful. At present, we cannot answer the 
question, but I can indicate the chief problem areas to be explored: [concept 
identification, language development, and explanation]. 

We will not dwell here on his discussion of the first two items, but regarding 
the third (p. 51): 

.If experts are to use and improve the program directly, then it must be 
able to explain the reasons for its actions. Furthermore, this explanation must 
be in terms that the physician can understand. The steps in a deduction and 
the facts employed must be identified for the expert so that he can correct 
one or more of them if necessary. As a corollary, the user must be able to 
find out easily what the program knows about a particular subject. 

Gorry's discussion immediately struck a sympathetic chord for us in 
our own work. The need for explanation to provide transparency and to 
encourage acceptance by physicians seemed immediately intuitive, not only 
for expert system builders (as Gorry discussed) but also for the eventual 

1This program later became the Present Illness Program (Pauker et al., I 976). 
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end-users of consultation systems.2 Our early RULE command, however, 
did not meet the criteria for explanation outlined by Gorry above. 

During the next two years, the development of explanation facilities 
for MYCIN became a major focus of the research effort. Randy Davis had 
joined the project by this time, and his work on the TEIRESIAS program, 
which would become his thesis, started by expanding the simple RULE 
command and language translation features that Shortliffe had developed. 
Davis changed the RULE command to WHY and implemented a history 
tree (see Chapter 18) that enabled the user to examine the entire reasoning 
chain upward to the topmost goal by asking WHY several times in succes­
sion. He also developed the HOW feature, which permitted the user to 
descend alternate branches of the reasoning network. By the time the 
second journal article appeared in 1975 (Shortliffe et al., 1975), explana­
tion and early knowledge acquisition work were the major topics of the 
exposition.:~ 

In addition to the RULE command, Shortliffe developed a scheme 
enabling the user to ask free-text questions at the end of a session after 
MYCIN had given its advice. He was influenced in this work by Dr. Ken 
Colby, then at Stanford and actively involved in the development of the 
PARRY program (Colby et al., 1974). Shortliffe was not interested in un­
dertaking cutting-edge research in natural language understanding (he 
had taken Roger Schank's course at Stanford in computational linguistics 
and realized it would be unrealistic to tackle the problem exhaustively for 
a limited portion of his own dissertation work). He was therefore convinced 
by Colby's suggestion to exploit existing methods, such as keyword search, 
and to take advantage of the limited vocabulary used in the domain of 
infectious diseases. The resulting early version of MYCIN's question-an­
swering system was described in a chapter of his dissertation (Shortliffe, 
1974). 

When Carli Scott first joined the project, she was completing a master's 
degree in computer science and needed a project to satisfy her final re­
quirements. She was assigned the task of refining and expanding the ques­
tion-answering (QA) capability in the program. Not only did this work 
complete her M.S. requirements, but she continued to devote much of her 
time to explanation during her next few years with the project. She was 
assisted in this work by Bill Clancey, then a Ph.D. candidate in computer 
science, who joined us at about the same time. MYCIN's explanation ca­
pability was tied to its rule-based representation scheme, so Clancey was 
particularly interested in how the therapy algorithm might be transferred 
from LISP code into rules so that it could be made accessible to the expla­
nation routines. His work in this area is the subject of Chapter 6 in this 
volume. 

2Almost ten years later we undertook a formal study (described in Chapter 34) that confirmed 
this early intuition. A survey of 200 physicians revealed that high-quality explanation capa­
bilities were the most important requirement for an acceptable clinical consultation system. 
3This simple model of explanations still has considerable appeal. See Clark and McCabe 
( 1982) for a discussion of implementing WHY and HOW in PRO LOG, for example. 
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By late 1976 the explanation features of the system had become highly 
polished, and Scott, Clancey, Davis, and Shortliffe collaborated on a paper 
that appeared in the American journal of Computational Linguistics in 1977. 
That paper is included here as Chapter 18. It describes MYCIN's expla­
nation capabilities in some detail. Although most of the early work de­
scribed in that chapter stressed the need to provide explanations to users, 
we have also seen the value such capabilities have for system builders. As 
mentioned in Chapters 9 and 20, system builders-both experts and knowl­
edge engineers-find explanations to be valuable debugging aids. The fea­
tures described in Chapter 18 were incorporated into EMYCIN and exist 
there relatively unchanged to the present. 

17 .1.1 Explaining the Pharmacokinetic Dosing Model 

By the mid- l 970s much of the project time was being spent on knowledge 
base refinement and enhancement. Because we needed assistance from 
someone with a good knowledge of the antimicrobial agents in use, we 
sought the involvement of a clinical pharmacist. Sharon Bennett, a recent 
pharmacy graduate who had taken a clinical internship at the Palo Alto 
Veterans Administration Hospital affiliated with Stanford, joined the proj­
ect and played a key role in knowledge base development during the mid­
to late-l 970s. Among the innovations she brought to the group was an 
eagerness to heighten MYCIN's utility by making it an expert at dosage 
adjustment as well as drug selection. She and Carli Scott worked together 
closely to identify the aspects of pharmacokinetic modeling that could be 
captured in rules and to identify the elements that were so mathematical 
in nature that they required encoding in special-purpose functions. By this 
time, however, the need for explanation capabilities had become so obvious 
to the project's members that even this specialized code was adapted so 
that explanations could be provided. A paper describing the features, in­
cluding a brief discussion of explanation of dosing, was prepared for the 
American journal of Hospital Pharmacy and is included here as Chapter 19. 
We include the paper here not only because it demonstrates the special­
purpose explanation features that were developed, but also because it 
shows the way in which mathematical modeling techniques were integrated 
into a large system that was otherwise dependent on AI representation 
methods. 

1 7 .2 Recent Research in Explanation 

Even after research on MYCIN terminated, the development of high-per­
formance explanation capabilities for expert systems remained a major 
focus of our work. Several small projects and a few doctoral dissertations 
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have dealt with 1the issue. This level of interest developed out of the MYCIN 
experience and a small group seminar series held in 1979 and 1980. Sev­
eral examples of inadequate responses by MYCIN (to questions asked by 
users) were examined in an effort to define the reasons for suboptimal 
performance. One large area of problems related to MYCIN's lack of sup­
port knowledge, the underlying mechanistic or associational links that explain 
why the action portion of a rule follows logically from its premise. This 
limitation is particularly severe in a teaching setting where it is incorrect 
to assume that the system user will already know most rules in the system 
and merely needs to be reminded of their content. Articulation of these 
points was largely due to Bill Clancey's work, and they are a central element 
of his analysis of MYCIN's knowledge base in Chapter 29. 

Other sources of MYCIN's explanation errors were its failure to deal 
with the context in which a question was asked (i.e., it had no sense of 
dialogue, so each question required full specification of the points of in­
terest without reference to earlier exchanges) and a misinterpretation of 
the user's intent in asking a question. We were able to identify examples 
of simple questions that could mean four or five different things depend­
ing on what the user knows, the information currently available about the 
patient under consideration, or the content of earlier discussions. These 
issues are inevitably intertwined with problems of natural language un­
derstanding, and they reflect back on the second of Gorry's three concerns 
(language development) mentioned earlier in this chapter. 

Partly as a result of work on the problem of student modeling by Bill 
Clancey and Bob London in the context of GUIDON, we were especially 
interested in how modeling the user's knowledge might be used to guide 
the generation of explanations. Jerry Wallis began working on this problem 
in 1980 and developed a prototype system that emphasized causal reason­
ing chains. The system associated measures of complexity with both rules 
and concepts and measures of importance with concepts. These reasoning 
chains then guided the generation of explanations in accordance with a 
user's level of expertise and the reasoning details that were desired. Chap­
ter 20 describes that experimental system and defines'additional research 
topics of ongoing interest. 

Our research group continues to explore solutions to the problems of 
explanation in expert systems. John Kunz has developed a program called 
Al/MM (Kunz, 1983), which combines simple mathematical models, phys­
iologic principles, and AI representation techniques to analyze abnormal­
ities in fluids and electrolyte balance. The resulting system can use causal 
links and general laws of nature to explain physiologic observations by 
reasoning from first principles. The program generates English text to 
explain these observations. 

Greg Cooper has developed a system, known as NESTOR, that cri­
tiques diagnostic hypotheses in the area of calcium metabolism. In order 
to critique a user's hypotheses, his system utilizes powerful explanation 
capabilities. Similarly, the work of Curt Langlotz, who has adapted ON­
COCIN to critique a physician's therapy plan (see Chapter 32), requires 
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the program to explain the basis for any disagreements that occur. Langlotz 
has developed a technique known as hierarchical plan analysis (Langlotz 
and Shortliffe, 1983), which controls the comparison of two therapy plans 
and guides the resulting explanatory interaction. Langlotz is also pursuing 
a new line of investigation that we did not consider feasible during the 
MYCIN era: the use of graphics capabilities to facilitate explanations and 
to minimize the need for either typing or natural language understanding. 
Professional workstations and graphics languages have recently reduced 
the cost of high-resolution graphics systems (and the cost of programming 
them) enough that we expect considerably more work in this area. 

Bill Clancey's NEOMYCIN research (Clancey and Letsinger, 1981), 
mentioned briefly in Chapter 21 and developed partially in response to his 
analysis of MYCIN in Chapter 29, also has provided a fertile arena for 
explanation research. Diane Warner Hasling has worked with Clancey to 
develop an explanation feature for NEOMYCIN (Hasling et al., 1983) 
similar to the HOW's and WHY's of MYCIN (Chapter 18). Because NEO­
MYCIN is largely guided by domain-independent meta-rules, however, 
useful explanations cannot be generated simply by translating rules into 
English. NEOMYCIN is raising provocative questions about how strategic 
knowledge should be capsulized and instantiated in the domain for expla­
nation purposes. 

Finally, we should mention the work of Randy Teach, an educational 
psychologist who became fascinated by the problem of explanation, in part 
because of the dearth of published information on the subject. Teach 
joined the project in 1980, discovered the issue while working on the survey 
of physicians' attitudes toward computer-based consultants reported in 
Chapter 34, and undertook a rather complex psychological experiment in 
an attempt to understand how physicians explain their reasoning to one 
another (Teach, 1984). We mention the work because it reflects the way in 
which the legacy of MYCIN has broadened to involve a diverse group of 
investigators from several disciplines. We believe that explanation contin­
ues to provide a particularly challenging set of issues for researchers from 
computer science, education, psychology, linguistics, philosophy, and the 
domains of potential application. 

} 7 .3 Current Perspective 

We believe now that there are several overlapping reasons for wanting an 
expert system to explain its reasoning. These are 

• understanding 

• debugging 
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• education 

• acceptance 
• persuasion 

Understanding the contents of the knowledge base and the line of 
reasoning is a major goal of work on explanation. Both the system builder 
and the user need to understand the knowledge in the system in order to 
maintain it and use it effectively. The system can sometimes take the ini­
tiative to inform users of its line of reasoning, such as when MYCIN prints 
intermediate conclusions about the type of infection or the likely identities 
of organisms causing a problem. More often, however, we think of a system 
providing explanations in response to specific requests. 

The debugging rationale is important, especially because knowledge 
bases are built incrementally. As mentioned, this was one of Shortliffe's 
original motivations for displaying the rule under consideration. This line 
of research continues in work to provide monitoring tools within program­
ming environments so that a system builder can watch what a system is 
doing while it is running. Mitch Model's Ph.D. research (Model, 1979) used 
MYCIN as one example for the monitoring tools he designed. His work 
shows the power of describing a 'reasoning system's activities along several 
different dimensions and the power of displaying those activities in dif­
ferent windows on a display screen. 

Education is another important reason to provide insights into a 
knowledge base. Users who feel they learn something by interacting with 
an expert system are likely to use it again. As discussed in Part Eight, 
educating users can become as complex as providing good advice. In any 
case, making the knowledge base and line of reasoning understandable is 
a necessary step in educating users. This line of research continues in 
Clancey's work on NEOMYCIN (Clancey and Letsinger, 1981). 

Acceptance and persuasion are closely linked. Part of making an 
expert system acceptable is convincing potential users and managers that 
its conclusions are reasonable. That is, if they understand how a system 
reaches conclusions on several test cases and believe that process is reason­
able, they will be more likely to trust its conclusions on new cases. For the 
same reason, it is also important to show that the system is responsive to 
differences between cases. 

Persuading users that a system's conclusions are correct also requires 
the same kind of window into the knowledge base and line of reasoning. 
When using a consultant program, a person is expected to understand the 
conclusions (and the basis for them) well enough to accept responsibility 
for acting on them. In medicine, for example, physicians have a moral and 
legal responsibility for the consequences of their actions, so they must 
understand why-and sometimes be persuaded that-a consultant's rec­
ommendations are appropriate. 



18 
Methods for Generating 
Explanations 

A. Carlisle Scott, William J. Clancey, 
Randall Davis, and Edward H. Shortliffe 

A computer program that models an expert in a given domain is more 
likely to be accepted by experts in that domain, and by nonexperts seeking 
its advice, if the system can explain its actions. This chapter discusses the 
general characteristics of explanation capabilities for rule-based systems: 
what types of explanations they should be able to give, what types of knowl­
edge they will need in order to give these explanations, and how this knowl­
edge might be organized (Figure 18-1). The explanation facility in MYCIN 
is discussed to illustrate how the various problems can be approached. 

A consultative rule-based system need not be a psychological model, 
imitating a human's reasoning process. The important point is that the 
system and a human expert use the same (or similar) knowledge about the 
domain to arrive at the same (or similar) answers to a given problem. The 
system's knowledge base contains the domain-specific knowledge of an expert 
as well as facts about a particular problem under consideration. When a 
rule is used, its actions make changes to the internal data base, which 
contains the system's decisions or deductions. 

The process of trying rules and taking actions can be compared to 
reasoning, and explanations require displays of how the rules use the in­
formation provided by the user to make various intermediate deductions 
and finally to arrive at the answer. If the information contained in these 
rules adequately shows why an action was taken (without getting into pro­
gramming details), an explanation can simply entail printing each rule or 
its free-text translation. 

This chapter is a revised version of a paper originally appearing in American journal of Com­
putational Linguistics, Microfiche 62, 1977. Copyright © 1977 by American Society for Com­
putational Linguistics. All rights reserved. Used with permission. 
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FIGURE 18-1 A rule-based consultation system with expla­
nation capability. The three components of a rule-based system 
(a rule interpreter, a set of production rules, and a data base) 
are augmented by an explanation capability. The data base is 
made up of general facts about the system's domain of expertise, 
facts that the user enters about a specific problem, and deduc­
tions made about the problem by the system's rules. These de­
ductions form the basis of the system's consultative advice. The 
explanation capability makes use of the system's knowledge 
base to give the user explanations. This knowledge base is made 
up of static domain-specific knowledge (both factual and judg­
mental) and dynamic knowledge specific to a particular prob­
lem. 

Performance Characteristics of an Explanation Capability 

The purpose of an explanation capability (EC) is to give the user access to 
as much of the system's knowledge as possible. Ideally, it should be easy 
for a user to get a complete, understandable answer to any sort of question 
about the system's knowledge and operation-both in general terms and 
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with reference to a particular consultation. This implies three major goals 
in the development of an explanation capability: 

1. It is important to ensure that the EC can handle questions about all 
relevant aspects of the system's knowledge and actions. It should be 
capable of giving several basic types of explanation, for example, 

• how it m~de a certain decision 
• how it used a piece of information 
• what decision it made about some subproblem 
• why it did not use a certain piece of information 

• why it failed to make a certain decision 

• why it required a certain piece of information 

• why it did not require a certain piece of information 

• how it will find out a certain piece of information (while the consul­
tation is in progress) 

• what the system is currently doing (while the consultation is in prog­
ress) 

2. It is important to enable the user to get an explanation that answers 
the question completely and comprehensively. 

3. Finally, it is also necessary to make the EC easy to use. A novice should 
be able to use the EC without first spending a large amount of time 
learning how to request explanations. 

We will distinguish two functions for an EC: the reasoning status checker 
(RSC) to be used during the consultation, and the general question an­
swerer (GQA) to be used during the consultation or after the system has 
printed its results. An RSC answers questions asked during a consultation 
about the status of the system's reasoning process. A few simple commands 
often suffice to handle the questions that the RSC is expected to answer. 
A GQA answers questions about the current state of the system's knowl­
edge base, including both static domain knowledge and facts accumulated 
during the consultation. It must recognize a wide range of question types 
about many aspects of the system's knowledge. For this reason, a few simple 
commands that are easy to learn but still cover all the possible questions 
that might be asked may be difficult to define. Consequently, natural lan­
guage processing may be important for a useful GQA. 

In an interactive consultation, the system periodically requests infor­
mation about the problem. This offers the user an opportunity to request 
explanations while the consultation is in progress. In noninteractive con­
sultations, the user has no opportunity to interact with the system until 
after it has printed its conclusions. Unless there is a mechanism for inter­
rupting the reasoning process and asking questions, the EC for such a 
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FIGURE 18-2 Knowledge requirements for an explanation ca­
pability (EC). Access to the consultation system's knowledge 
base is a prerequisite for adequate performance of the EC. Other 
types of knowledge may be added to the system to enable the 
EC to answer a wider range of questions. 

system will be limited to questions about the system's final knowledge state. 
It will have no RSC. 

An EC must know what is in the system's knowledge base and how it 
is organized (Figure 18-2). In order to give explanations of the system's 
actions, an EC also needs to understand how the system's rule interpreter 
works: when rules will be tried, how they can fail, and what causes the 
interpreter to try one rule but not another. This general "schema" for how 
or why certain rules are used, together with a comprehensive record of 
the specific actions taken during a particular consultation, can be used as 
a basis for explaining the results of that consultation. 

An RSC will need a record of what the system has done in order to 
explain how it arrived at the current step. General knowledge of how the 
rule interpreter works is necessary to explain where the current step will 
lead. The ability to understand individual rules is necessary to the extent 
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that the content of a rule may explain why it was necessary to use that rule 
or may affect which rules will be tried in the future. 

A GQA will need more information about the system since the scope 
of its explanations is much broader. It must know how the system stores 
knowledge about its area of expertise (the static knowledge with which it 
starts each consultation), how it stores facts gathered during a particular 
consultation (its dynamic knowledge), and how the dynamic knowledge 
was obtained or inferred. Thus the GQA must have access to all the in­
formation that the RSC uses: a detailed record of the consultation, an 
understanding of the rule interpreter, and the ability to understand rules. 

18.1 Design Considerations 

To complement the preceding discussion of an EC, we must describe rel­
evant design considerations for the parent consultation system. This dis­
cussion is not meant to define the "correct" way of representing or orga­
nizing knowledge, but rather to mention factors that should be taken into 
account when deciding what representation or organization will be best 
for a developing system. 

The first step is to decide what basic types of questions the system 
should be able to answer. This will have a direct influence on how the EC 
is implemented. It is important, however, to make the initial design flexible 
enough to accommodate possible future additions; if the basic forms are 
sufficiently diverse, limited natural language understanding may be nec­
essary, depending on the level of performance expected of the EC. 

The format and organization of the consultation system's knowledge 
base will also affect the design of an EC because both static and dynamic 
knowledge must be readily accessible. The more disorganized the knowl­
edge base, the more difficult will be the task of the EC because more 
complicated routines will be needed to access the desired information. 
Similarly, when the ordering of events is important, the dynamic record 
must reflect that ordering as well as the reasons why each event occurred. 

The EC often needs to understand the underlying semantics of indi­
vidual rules. This requirement can be met by having the system's knowl­
edge base include a description of what each rule means, encoded in a 
form that is of use to the EC. If the format of the system's rules is highly 
stylized and well defined, however, it is possible instead to implement a 
mechanism for "reading" the rules and describing their meaning in natural 
language. This can be achieved through a high-level description of the 
individual components of the rules, one that tells what each element 
means. If the rule set consists of a large number of rules, and they are 
composed entirely of a relatively small number of primitive elements, this 
second approach has the advantage that less information needs to be 



An Example-MYCIN 343 

stored-a description of each of the primitive components, as opposed to 
a description of each rule. When new rules are added to the system, the 
first approach requires that descriptions of these rules must be added. With 
the second approach, provided that the new rules are constructed from 
the standard rule components, no additional descriptive information is 
needed. 

As well as understanding rules in the knowledge base, an EC must 
also be able to "read" the interpreter or have access to some stored de­
scription of how the interpreter works. A third option is to build knowledge 
of how the interpreter works directly into the EC; the information need 
not be stated explicitly but can be used implicitly by the programmer in 
writing the actual EC code. The EC can then function as a set of "special­
ists," each capable of giving a single type of explanation. 

Finally, the GQA generally must be able to make deductions from facts 
in the knowledge base. If logic is needed only to determine the answers to 
questions of a certain type, it may be possible to build the necessary de­
ductions into the specialist for answering that type of question. On the 
other hand, the GQA will often need to be expanded to do more than 
simply give explanations of the system's actions or query its data base-it 
will be expected to answer questions involving inferences (e.g., to check 
for equality or set membership, to make arithmetical comparisons, or to 
make logical deductions). Information of this type can often be embodied 
in a new kind of specialist that deals with logical deduction or comparison. 

18.2 An Example-MYCIN 

MYCIN's domain of expertise, its mechanisms for knowledge representa­
tion, and its inference mechanisms have been discussed in detail earlier in 
this book. We will not repeat those points here except to emphasize issues 
that relate directly to this discussion. 

18.2.l Organization of Knowledge in MYCIN 

As we have discussed, an EC must have access to all components of the 
system's knowledge base. MYCIN's knowledge base consists of static med­
ical knowledge plus dynamic knowledge about a specific consultation. Static 
knowledge is further classified as factual or judgmental. Factual knowledge 
consists of facts that are medically valid, by definition and with certainty, 
independent of the particular case. Judgmental knowledge, on the other 
hand, is composed of the rules acquired from experts. Although this 
knowledge is also assumed to be medically valid, the indicated inferences 
are often drawn with less than complete certainty and are seldom defini-
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tional. The conventions for storing both dynamic and static knowledge, 
including attribute-object-value triples, tables, lists, and rules themselves, 
are described in detail in Chapter 5. 

Knowledge of Rule Structure 

Each of MYCIN's rules is composed of a small number of conceptual prim­
itives drawn from a library of 60 such primitives that make up the language 
in which rules are written. This design has facilitated the implementation 
of a mechanism for translating rules into English (described in Chaper 5). 
Each primitive function has a template (Chapter 9) with blanks to be filled 
in using translations of the function's arguments. A large part of MYCIN's 
explanation capability depends on this ability to translate rules into a form 
that the user can understand. 

In order to understand rules, the system's various specialists use a 
small amount of knowledge about rules in general, together with descrip­
tions or templates of each of the rule components. As an example, the 
following rule (shown in LISP and its English translation) is composed of 
the units $AND, SAME, and CONCLUDE: 

RULE009 

PREMISE: ($AND (SAME CNTXT GRAM GRAMNEG) 
(SAME CNTXT MORPH COCCUS)) 

ACTION: (CONCLUDE CNTXT IDENTITY NEISSERIA TALLY BOO) 

IF: 1) The gram stain of the organism is gramneg, and 
2) The morphology of the organism Is coccus 

THEN: There is strongly suggestive evidence (.B) that the Identity 
of the organism is Neisseria 

When the rule is used, the LISP atom CNTXT is bound to some object, 
the context to which the rule is applied; see Chapter 5. The template for 
CONCLUDE is shown below. This describes each of the arguments to the 
function: first, an object (context); second, an attribute (clinical parameter); 
third, a value for this parameter; fourth, the tally, or degree of certainty, 
of the premise; and last, the certainty factor, a measure of how strong our 
belief in this conclusion would be if the premise of the rule were definitely 
true. 

Template for CONCLUDE: (CNTXT PARM VALU TALLY CF) 

Having a small number of rule components also facilitates examination 
of rules to see which might be applicable to the explanation at hand. MY­
CIN's knowledge of rules, therefore, takes the form of a general mecha­
nism for "reading" them. On the other hand, no attempt has been made 
to read the code of the rule interpreter. Procedural knowledge about the 
interpreter is embodied in "specialists,'' each capable of answering a single 
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type of question. Each specialist knows how the relevant part of the control 
structure works and what pieces of knowledge it uses. 

To understand how a specialist might use a template such as that 
shown above, consider an explanation that involves finding all rules that 
can conclude that the identity of an organism is Neisseria. The appropriate 
specialist would start with those rules used by the system to conclude values 
for the parameter IDENTITY. Using templates of the various action func­
tions that appear in each of these rules, the specialist picks out only those 
(like Rule 009) that have NEISSERIA in their VALU slot. 

This also illustrates the sort of knowledge that can be built into a 
specialist. The specialist knows that the control structure uses stored lists 
telling which rules can be used to determine the value of each parameter. 
Furthermore, it knows that it is necessary to look only at the rules' actions 
since it is the action that concludes facts, while the premise uses facts. 

The History Tree 

Many of the EC's specialists need a record of the interaction with the user. 
This record is built during the consultation and is organized into a tree 
structure called the history tree, which reflects MYCIN's goal-directed ap­
proach. Each node in the tree represents a goal and contains information 
about how the system tried to accomplish this goal (by asking the user or 
by trying rules). Associated with each rule is a record of whether or not 
the rule succeeded, and if not, why it failed. If evaluating the premise of 
a rule causes the system to trace a new parameter, thereby setting up a 
new subgoal, the node for this subgoal is the offspring of the node con­
taining the rule that caused the tracing. Figure 18-3 shows part of a rep­
resentative history tree. In this example, Rule 003 caused the tracing of 
the parameter CATEGORY, which is used in the premise of this rule. 

Other Domain-Independent Knowledge 

MYCIN's question-answering ability is limited to describing the system's 
actions and explaining what facts the system knows. The system also has 
capabilities for the use of specialized logic. For example, to explain why a 
particular decision was not made, MYCIN recognizes that a reasonable 
response is to explain what prevented the system from using rules that would 
have rnade that decision. For situations such as this, the necessary logic is 
built into the appropriate specialist; there is no general representation of 
knowledge about logic, arithmetic, or set theory. To find out if ORGA­
NISM- I and ORGANISM-2 have the same identity, for example, it is nec­
essary for the user to ask separately for the identity of each organism, then 
to compare the answers to these questions. 
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I 
goal: IDENTITY of ORGANISM-1 

ask: question 1 

rules: RULE009 (failed, clause 1) ... RULE003 (succeeded) ... 

I I 
goal: GRAM of ORGANISM-1 goal: CATEGORY OF ORGANISM-1 

ask: question 11 rules: RULE037 (succeeded) ... 

[no rules] I 
goal: HOSPITAL-ACQUIRED of 

ORGANISM·l 
ask: question 15 

[no rules] 

FIGURE 18-3 Portion of a history tree. (Rule 009 is shown in 
the text; see Figure 18-4 for Rule 003 and Rule 037.) 

18.2.2 Scope of MYCIN's Explanation Capability (EC) 

I 

Because we wish to allow the user to see how MYCIN makes all its decisions, 
we have tried to anticipate all types of questions a user might ask and to 
make every part of the system's knowledge base and reasoning process 
accessible. The EC consists of several specialists, each capable of giving one 
type of explanation. These specialists are grouped into three sets: one for 
explaining what the system is doing at a given time, one for answering 
questions about the system's static knowledge base, and one for answering 
questions about the dynamic knowledge base. The first set forms MYCIN's 
reasoning status checker; the second and third together make up the sys­
tem's general question answerer. 

MYCIN's Reasoning Status Checker (RSC) 

Whenever MYCIN asks a question, the user is allowed to examine the 
current reasoning chain by asking WHY the piece of information being 
sought by the system is important. As explained above, the system asks a 
question in order to find out about its current goal. Consider the partial 
history tree shown in Figure 18-3. HOSPITAL-ACQUIRED is one subgoal, 
CATEGORY is another at the next level up, and Rule 037 links them. The 
"reason" for asking if the infection was hospital-acquired, then, is the pro­
gram's use of Rule 037 in an effort to determine the value of the higher 
subgoal CATEGORY. The answer to WHY at this point is thus a lucid 
display of the goals and the rules linking them. Since any WHY could 
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[preceded by the first 14 questions in the consultation] 

15) Is the patient's illness with ORGANISM-1 a hospital-acquired infection? 
••WHY 
(i.e. WHY is it important to determine whether or not the infection with 

ORGANISM-1 was acquired while the patient was hospitalized?] 
(1.0] This will aid in determining the category of ORGANISM-1. 

••WHY 

It has already been established that 
(1.1] the gram stain of ORGANISM-1 is gramneg, and 
(1.2] the morphology of ORGANISM-1 is rod, and 
(1.3] the aerobicity of ORGANISM-1 is facultative 

Therefore, if 

then 

(1.4] the infection with ORGANISM-1 was not acquired while the 
patient was hospitalized 

there is strongly suggestive evidence ( .8) that the category of 
ORGANISM-1 is enterobacteriaceae 

ALSO: there is weakly suggestive evidence (.1) that the identity of 
ORGANISM-1 is pseudomonas-aeruginosa 

[RULE037] 

(i.e. WHY is it important to determine the category of ORGANISM-1?] 
(2.0] ... in order to determine the identity of ORGANISM-1. 

It has already been established that 
(2.1] this blood culture was taken from a sterile source 

Therefore, if 

then 

(2.2] this current organism and at least one of the list of members 
associated with the category of the organism agree with 
respect to the following properties: air conformation 

There is strongly suggestive evidence (.9) that each of them is the 
identity of ORGANISM-1 

[RULE003] 
••HOW 1.3 
(i.e. HOW was it established that the aerobicity of ORGANISM-1 is 

facultative?] 
The following were used: 
(3.1] RULE027 indicated there is strongly suggestive evidence (.8) that the 

aerobicity of ORGANISM-1 is facultative 
(3.2] RULE027 indicated there is weakly suggestive evidence (.2) that the 

aerobicity of ORGANISM-1 is anaerobic 
Since this gave a cumulative CF of (.8) for facultative, and (.2) for 

anaerobic, it has been established that the aerobicity of ORGANISM-1 
is facultative 

**HOW 1.1 
[i.e. HOW was it established that the gram stain of ORGANISM-1 is gramneg?] 
You said so [question 11 ]. 

FIGURE 18-4 MYCIN's reasoning status checker (user entries 
follow the double asterisks). 

potentially have several interpretations, and we wanted to avoid extensive 
natural language processing in this component of MYCIN's EC, MYCIN 
first restates its understanding of the meaning of the user's WHY (Figure 
18-4). The higher goal is then presented, followed by the rule. The clauses 
in the premise of the rule are divided into those already established and 
those yet to be determined. Finally, since rules may have multiple conclu-
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IS BLOOD A STERILE SITE? 
WHAT ARE THE NONSTERILE SITES? 
WHAT ORGANISMS ARE LIKELY TO BE FOUND IN THE THROAT? 
IS BACTEROIDES AEROBIC? 
WHAT METHODS OF COLLECTING SPUTUM CULTURES DO YOU CONSIDER? 
WHAT DOSAGE OF STREPTOMYCIN DO YOU GENERALLY RECOMMEND? 
HOW DO YOU DECIDE THAT AN ORGANISM MIGHT BE STREPTOCOCCUS? 
WHY DO YOU ASK WHETHER THE PATIENT HAS A FEVER OF UNKNOWN ORIGIN? 
WHAT DRUGS WOULD YOU CONSIDER TO TREAT E.COLI? 
HOW DO YOU USE THE SITE OF THE CULTURE TO DECIDE AN ORGANISM'S IDENTITY? 

FIGURE 18-5 Sample questions about MYCIN's static knowl­
edge. 

sions about different clinical parameters, the relevant conclusion is pre­
sented first and all others follow. 

As Figure 18-4 illustrates, additional links in the reasoning chain can 
be examined by repeating the WHY command. For any of the subgoals 
mentioned in answer to a WHY, the user may ask HOW this goal was (or 
will be) achieved. MYCIN's reasoning status checker is described in more 
detail by Shortliffe et al. (1975) and Davis et al. (1977). 

MYCIN's General Question Answerer (GQA) 

The question-answering part of the system has natural language routines 
for analyzing the user's input. The system recognizes questions phrased in 
a number of ways, thereby making the question-answering facility easier 
to use. Questions about the static knowledge base may deal with judgmental 
knowledge (e.g., rules used to conclude a certain piece of information) or 
they may ask about factual knowledge (e.g., entries in tables and lists). Some 
questions about static knowledge are shown in Figure 18-5. 

Perhaps the more important part of the question-answering system is 
its ability to answer questions about a particular consultation. While some 
users may be interested in checking the extent of MYCIN's static knowl­
edge, most questions will ask for a justification of, or for the rationale 
behind, particular decisions that were made during the consultation. Listed 
in Figure 18-6 are the types of questions about dynamic knowledge that 
can be handled at present. A few examples of each type are given. The 
slot <cntxt> indicates some context that was discussed in the consultation; 
<parm> is some clinical parameter of this context; <rule> is one of the 
system's decision rules. Before a question can be answered, it must be 
classified as belonging to one of these groups. As Figure 18-6 illustrates, 
each question type may be asked in a variety of ways, some specifying the 
parameter's value, some phrased in the negative, and so forth. MYCIN's 
natural language processor must classify the questions, then determine 
what specific clinical parameters, rules, etc., are being referenced. 
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I. What is <parm> of <cntxt>? 

TO WHAT CLASS DOES ORGANISM-1 BELONG? 
IS ORGANISM·1 CORYNEBACTERIUM·NON-DIPHTHERIAE? 

2. How do you know the value of <parm> of <cntxt>? 

HOW DO YOU KNOW THAT CULTURE-1 WAS FROM A STERILE SOURCE? 
DID YOU CONSIDER THAT ORGANISM·1 MIGHT BE A BACTEROIDES? 
WHY DON'T YOU THINK THAT THE SITE OF CULTURE-1 IS URINE? 
WHY DID YOU RULE OUT STREPTOCOCCUS AS A POSSIBILITY FOR ORGANISM-1? 

3. How did you use <parm> of <cntxt>? 

DID YOU CONSIDER THE FACT THAT PATIENT-1 IS A COMPROMISED HOST? 
HOW DID YOU USE THE AEROBICITY OF ORGANISM-1? 

4. Why didn't you find out about <parm> of <cntxt>? 

DID YOU FIND OUT ABOUT THE CBC ASSOCIATED WITH CULTURE-1? 
WHY DIDN'T YOU NEED TO KNOW WHETHER ORGANISM-1 IS A CONTAMINANT? 

5. What did <rule> tell you about <cntxt>? 

HOW WAS RULE 178 HELPFUL WHEN YOU WERE CONSIDERING ORGANISM-1? 
DID RULE 116 TELL YOU ANYTHING ABOUT INFECTION-1? 
WHY DIDN'T YOU USE RULE 189 FOR ORGANISM-2? 

FIGURE 18-6 Types of questions about a consultation, with 
examples. 

18.2.3 Understanding the Question 

The main emphasis in the development of MYCIN has been the creation 
of a system that can provide sound diagnostic and therapeutic advice in 
the field of infectious diseases. The explanation system was included in the 
system's original design in order to make the consultation program's de­
cisions acceptable, justifiable, and instructive. Since the question-answering 
facility was not the primary focus of the research, it is not designed to be 
a sophisticated natural language understander. Instead, it uses crude tech­
niques, relying strongly on the very specific vocabulary of the domain, to 
"understand" what information is being requested (Figure· 18-7). 

The analysis of a question is broken into three phases (Steps 1-3 of 
Figure 18-7): the first creates a list of terminal, or root, words; the second 
determines what type of question is being asked (see the classification of 
questions above); and the last determines what particular parameters, lists, 
etc., are relevant to the question. In the first and third steps, the system 
dictionary is important. The dictionary contains approximately 1400 words 
that are commonly used in the domain of infectious diseases. It includes 
all words that are acceptable values for a parameter, common synonyms 
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1. The question is reduced to a list of terminal words. 

2. Pattern matching classifies the question as a rnle-retrieval question, and divides 
it into a premise part and an action part. 

3. Dictionary properties of the terminal words are used to determine which pa­
rameters (and their values) are relevant to each part of the question. These 
vocabulary clues are listed in the form (<parm> (<values>) weight) where 
weight is used by the scoring mechanism to determine which parameters should 
be eliminated from consideration. 

4. After selecting only the most strongly indicated parameters, the final translation 
tells what rules can answer the question: there are no restrictions on the premise, 
and the action must contain the parameter CONTAMINANT with any value. 

5. The answer consists of finding all rules that meet these restrictions, and printing 
those that the user wants to see. 

FIGURE 18-7 Major steps in understanding a question, find­
ing rules, and printing an answer. See Figure 18-8 for an ex­
ample. 

of these words, and words used elsewhere by the system in describing the 
parameter (e.g., when translating a rule into English or requesting the 
value of the parameter). 

We now briefly describe how MYCIN achieves each of the five tasks 
outlined in Figure 18-7. An example analysis is shown in Figure 18-8. 

Step 1: Reducing the Question to Terminal Words 

Each word in the dictionary has a synonym pointer to its terminal word 
(terminal words point to themselves). For the purpose of analyzing the 
question, a nonterminal word is considered to be equivalent to its (terminal) 
synonym. Terminal words have associated with them a set of properties or 
descriptors (Table 18- l) that are useful in determining the meaning of a 
question that uses a terminal word or one of its synonyms. A given word 
may be modified by more than one of these properties. 

The first three properties of terminal words are actually inverse point­
ers, generated automatically from attributes of the clinical parameters. Spe­
cifically, a word receives the "acceptable value" pointer to a clinical param­
eter (Property l in Table 18-1) if it appears in the parameter's list of 
acceptable values-a list that is used during the consultation to check the 
user's response to a request for the parameter's value (see EXPECT attrib­
ute, Chapter 5). 

Also, each clinical parameter, list, and table has an associated list of 
keywords that are commonly used when talking about that parameter, list, 
or table. These words are divided according to how sure we can be that a 
doctor is referring to this parameter, list, or table when the particular word 
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.. WHEN DO YOU DECIDE THAT AN ORGANISM IS A CONTAMINANT? 

[1] Terminal words: WHEN DO YOU CONCLUDE THAT A ORGANISM IS A CONTAMINANT 

[2] Question type: 
Premise part: 
Action part: 

[3] vocab. clues: 
(Premise) 

vocab. clues: 
(Action) 

(4] Final translation: 
Premise: ANY 

Rule retrieval 
(WHEN DO YOU CONCLUDE) 
(THAT A ORGANISM IS A CONTAMINANT) 

(WHENINFECT (ANY) 1) (WHENSTOP (ANY) 1) 
(WHENSTART (ANY) 1) (DURATION (ANY) 1) 
(CONTAMINANT (ANY) 4) (FORM (ANY) 1) 
(SAMEBUG (ANY) 1) (COVERFOR (ANY) 1) 

Action: (CONTAMINANT ANY) 

[5] The rules listed below conclude about: 
whether the organism is a contaminant 

6, 31, 351, 39, 41, 42, 44, 347, 49, 106 
Which do you wish to see? 

•• 6 

RULE006 

IF: 1) The culture was taken from a sterile source, and 
2) It is definite that the identity of the organism 

is one of: staphylococcus-coag-neg bacillus­
subtilis corynebacterium-non-diphtheriae 

THEN: There is strongly suggestive evidence (.8) 
that the organism is a contaminant 

FIGURE 18-8 Sample of MYCIN's analysis of a general ques­
tion. (User input follows the double asterisks. Steps 1 through 
4 are usually not shown to the user. See Figure 18-7 for a de­
scription of what is occurring in each of the five steps.) 

TABLE 18-1 Properties of Terminal Words 

1. The word is an acceptable value for some clinical parameter(s). 

2. The word always implicates a certain clinical parameter, system list, or table (e.g., 
the word "identity" always implicates the parameter IDENTITY, which means 
the identity of an organism). 

3. The word might implicate a certain parameter, system list, or table (e.g., the 
word "positive" might implicate the parameter NUMPOS, which means the 
number of positive cultures in a series). 

4. The word is part of a phrase that can be thought of as a single word (examples 
of such phrases are "transtracheal aspiration," "how long," and "not sterile"). 
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is used in a question. It is from this list that terminal words' "implication" 
pointers (Properties 2 and 3 in Table 18-1) are generated. 

During the first phase of parsing, each word in the original text is 
replaced by its terminal word. For words not found in the dictionary, the 
system uses Winograd's root-extraction algorithm (Winograd, 1972) to see 
if the word's lexical root is in the dictionary (e.g., the root of "decision" is 
"decide"). If so, the word is replaced by the terminal word for its root. 
Words still unrecognized after root extraction are left unchanged. 

The resulting list of terminal and unrecognized words is then passed 
to a function that recognizes phrases. Using Property 4 (Table 18-1), the 
function identifies a phrase and replaces it with a single synonymous ter­
minal word (whose dictionary properties may be important in determining 
the meaning of the question). 

Step 2: Classifying the Question 

The next step is to classify the question so that the program can tell which 
specialist should answer it. Since all questions about the consultation must 
be about some specific context, the system requires that the name of the 
context (e.g., ORGANISM-I) be stated explicitly. This provides an easy 
mechanism to separate general questions about the knowledge base from 
questions about a particular consultation. 

Further classification is done through a pattern-matching approach 
similar to that used by Colby et al. (1974). The list of words created by the 
first phase is tested against a number of patterns (about 50 at present). 
Each pattern has a list of actions to be taken if the pattern is matched. 
These actions set flags that indicate what type of question was asked. In 
the case of questions about judgmental knowledge (called rule-retrieval ques­
tions), pattern matching also divides the question into the part referring to 
the rule's premise and the part referring to its action. For example, in 
"How do you decide that an organism is streptococcus?" there is no premise 
part, and the action part is "an organism is streptococcus"; in "Do you ever 
use the site of the culture to determine an organism's identity?" the premise 
part is "the site of the culture" and the action part is "an organism's 
identity." 

Steps 3 and 4: Determining What Pieces of Knowledge 
Are Relevant 

The classification of a question guides its further analysis. Each question 
type has an associated template with blanks to be filled in from the ques­
tion. The different blanks and the techniques for filling them in are listed 
in Table 18-2. With the question correctly classified, the general question 
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TABLE 18-2 Mechanisms for Analyzing a Question 

Slot Analysis cues for filling a slot 

<cntxt> 

<rule> 

<value> 

<parm> 

<list> 

<table> 

The context must be mentioned by name, e.g., ORGANISM-2. 

Either a rule's name (RULE04 7) will be mentioned or the word 
"rule" will appear, together with the rule's number (47). 

One of the terminal words in the question has a dictionary property 
indicating that it is a legal value for the parameter (Property I, Table 
18-1), e.g., THROAT is a legal value for the parameter SITE. 

All of the words in the list are examined to see if they implicate any 
clinical parameters. Strong implications come from words with prop­
erties showing that the word is an acceptable value of the parameter, 
or that the word always implicates that parameter (Properties l and 
2, Table 18-1). Weak implications come from words with properties 
showing that they might implicate the parameter (Property 3, Table 
18-1). The system uses an empirical scoring mechanism for picking 
out only the most likely parameters. 

Associated with certain parameters are words or patterns that must 
appear in the question in order for the parameter to be implicated. 
This scheme allows the system to distinguish among related param­
eters that may be implicated by the same keywords in the first pass. 
For example, the word "PMN" implicates parameters CSFPOLY (the 
percent of PMN's in the CSF) and PMN (the percent of PMN's in 
the complete blood count). These are distinguished by requiring that 
the word "CSF" be present in a question in order for CSFPOLY to 
be implicated. 

System lists are indicated in a manner similar to that for parameters, 
except that scoring is not done. Lists, like parameters, may have 
associated patterns that must be present in the question. Further­
more, lists have properties telling which other system lists are their 
subsets. If a question implicates both a list and a subset of that list, 
the more general (larger) list is discarded. As an example, the ques­
tion "Which drugs are aminoglycosides?" implicates two lists: the list 
of all drugs, and the list of drugs that are aminoglycosides. The 
system only considers the more specific list of aminoglycosides when 
answering the question. 

Tables are indicated in a manner similar to that for lists except that 
an entry in the table must also be present in the question. For ex­
ample, the word "organism" may indicate two tables: one containing 
a classification of organisms, and the other containing normal flora 
of various portals. The question "What organisms are considered to 
be subtypes of Pseudomonas?" will correctly implicate the former ta­
ble, and "What are the organisms likely to be found in the throat?" 
will implicate the latter, because PSEUDO MONAS is in the first table 
and THROAT is in the second. 
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answerer can tell which specialist should answer it. Filling in all blanks in 
the template gives the specialist all the information needed to find the 
answer. 

Step 5: Answering the Question 

Corresponding to each question type, there are a number of possible an­
swer templates. For example, for questions of the form "How do you know 
the value of <parm> of <cntxt> ?" two of the answer templates are 

I used <rule> to conclude that <parm> of <cntxt> is <value>. 
This gave a cumulative CF of <certainty factor>. 
The last question asked before the conclusion was made 
was <question number>. 

In answer to question <question number> you said that <parm> of 
<cntxt> is <value>. 

The specialist for answering questions of a given type has to check the 
history tree or the system's knowledge base in order to determine which 
of the answer templates is appropriate for a particular question. Some 
blanks in the answer template are filled in by the same items as are used 
to fill blanks in the question template. The remainder are filled by the 
specialist with the information that answers the question. In the above 
example, the slots <parm>, <cntxt>, and possibly <value> would be 
filled in from the question, and the other slots would be filled from the 
history tree. 

18.2.4 Questions About MYCIN's Static Knowledge 

General questions about MYCIN's factual knowledge (Figure 18-9) are the 
easiest to answer. The specialist that provides answers to such questions 
must look up the desired information in the system's static knowledge base. 
Generally, an answer consists of simply displaying this information. The 
most processing occurs when checking the retrieved information against 
some item in the question for equality or set membership. 

As was discussed in the previous section, the specialist that answers 
questions about judgmental knowledge is more complicated (Figure 18-8). 
Answering such questions (Figure 18-10) involves built-in knowledge about 
the rule set, plus the ability to "read" the rules. By the time the question 
has been analyzed, the specialist knows which parameters must appear in 
the premise and which must appear in the action of any rule that answers 
the question. Values may be specified for any of the parameters. To answer 
the question, the rule-retrieval specialist must first find every rule whose 
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**IS BLOOD A STERILE SITE? 
Yes. Blood is one of those sites that are normally sterile. 

** WHAT ARE THE NONSTERILE SITES? 
Those sites that are normally nonsterile are: CERVIX, 

CUTANEOUS-ULCER, LOCHIA, NOSE, SKIN, STOOL, THROAT, URETHRA, 
VAGINA. 

** WHAT ORGANISMS ARE LIKELY TO BE FOUND IN THE THROAT? 
The likely pathogens associated with throat are: STREPTOCOCCUS­

PNEUMONIAE, STREPTOCOCCUS-GROUP-A, NEISSERIA-MENINGITIDIS. 

•• IS BACTEROIDES AEROBIC? 
No, the aerobicity of bacteroides is anaerobic. 

' 
** WHAT DOSAGE OF STREPTOMYCIN DO YOU GENERALLY RECOMMEND? 
The suggested dosage and route of streptomycin is 7.5 mg/kg 

q12h IM (or IV). 

** HOW DO YOU TREAT MENINGOCOCCAL BACTEREMIA? 
For treatment of NEISSERIA-MENINGITIDIS in PRIMARY-BACTEREMIA 
Select therapy from among the following drugs (ranked according 

to relative efficacy, assuming uniform sensitivity): 
PENICILLIN (.91) 
AMPICILLIN (.9) 
SULFISOXAZOLE (.8) 
CHLORAMPHENICOL (.7) 
ERYTHROMYCIN (.5) 
TETRACYCLINE (.4) 

FIGURE 18-9 Questions about factual knowledge. 

premise and action satisfy these constraints. It accordingly needs to know 
that there are two special lists associated with each parameter: one con­
taining every rule that uses the parameter in its premise, and the other 
containing every rule that concludes about the parameter in its action 
(LOOKAHEAD and UPDATED-BY, see Chapter 5). Using these lists for 
the various parameters mentioned in the question, the specialist can find 
those rules that might answer the question. If no values were specified, 
the job is done and the relevant rules can be displayed without further 
analysis; otherwise, it is necessary to read each of the rules in the list and 
to eliminate those that do not mention the correct values for the parameter. 

The rule-retrieval specialist also makes use of a piece of MYCIN's 
knowledge discussed in Chapter 9. The system contains models of its own 
knowledge (called rule models), which are used primarily during acquisition 
of new medical knowledge from an expert (Davis, 1976). These models, 
however, can be put to many uses--0ne is to explain general patterns in 
decision making. The rule models are abstract descriptions of subsets of 
rules and are generated automatically by reading the rules. For example, 
the model for IDENT IS PSEUDOMONAS tells what features are common 
to the majority of rules that conclude that the identity of an organism is 
Pseudomonas. 

If a model exists describing the rules about which the question is ask-
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•• WHY DO YOU ASK WHETHER THE PATIENT HAS A FEVER OF UNKNOWN 
ORIGIN? 

The rules listed below use: 
whether the patient has a true fever of unknown origin 

RULE180 

IF: 1) The site of the culture is blood, and 
2) The number of cultures in the series including the 

culture Is greater than or equal to 1, and 
3) The number of cultures In this series which were 

positive for the organism is less than or equal to 1, 
and 

4) The patient has a true fever of unknown origin, and 
5) Cardiac-surgery is a relevant item from the history of 

the patient 
Then: There is suggestive evidence (.6) that the Infection Is 

lnfective-endocardltls 

•• WHAT DOES GU MANIPULATION TELL YOU ABOUT THE IDENTITY OF AN 
ORGANISM? 

The rules listed below use: 
whether the patient has had a genlto-urinary manipulative 

procedure 
to conclude about: 

the Identity of the organism 
156, 163, 190 
Which do you wish to see? 

** 156 

RULE156 

IF: 1) The site of the culture is blood, and 
2) The gram stain of the organism is gramneg, and 
3) The morphology of the organism is rod, and 
4) The portal of entry of the organism is urine, and 
5) The patient has not had a genlto-urinary manipulative 

procedure, and 
6) Cystitis is not a problem for which the patient has 

been treated 
THEN: There is suggestive evidence (.6) that the Identity of 

the organism Is e.coli 

FIGURE 18-10 Rule-retrieval questions. 

ing, the rule-retrieval specialist incorporates this model's information into 
its answer (Figure 18-11). Thus the question-answering facility is able to 
give some information about strategies for achieving some of the system's 
goals, as well as giving the individual rules that use the strategies. 

18.2.5 Consultation-Specific Questions 

Some of the simplest questions about a specific consultation are those that 
inquire about the value of a particular parameter (Figure 18-12). The 
specialist that answers these questions must know how to retrieve this in-
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•• HOW DO YOU DECIDE THAT AN ORGANISM MIGHT BE 
PSEUDOMONAS AERUGINOSA? 
Rules which conclude that the identity of the organism is 
pseudomonas-aeruginosa generally use one or more of the 
following pieces of Information: 

the site of the culture 
the gram stain of the organism 
the morphology of the organism 

Furthermore, the following relationships hold: 
The gram stain of the organism, and the morphology of the 

organism tend to appear together in these rules. 
RULE184, RULE116, RULE047, RULE085, RULE040 conclude that 

the identity of the organism is pseudomonas-aeruglnosa. 
Which of these do you wish to see? 
** 184 

RULE184 

IF: 1) The category of the organism is not known, and 
2) The gram stain of the organism is gramneg, and 
3) The morphology of the organism is rod, and 
4) The aeroblclty of the organism is facul 

THEN: There Is weakly suggestive evidence (.1) that the 
identity of the organism is pseudomonas-aeruginosa 

FIGURE 18-11 Response that uses rule models. 

formation. In some cases it will also be necessary to make comparisons to 
see if a value specified in the question is one of the values that was inferred 
for that parameter. 

Answering other types of consultation-specific questions involves the 
use of knowledge about the control structure: 

• how the system acquires information, 

• why the system tries to find out about parameters, 

• how information is used once it is acquired, 

• what causes a rule to be tried, and 

• what causes a rule to fail. 

** TO WHAT CLASS DOES ORGANISM·1 BELONG? 
The category of ORGANISM-1 is enterobacteriaceae (.9) 

** IS ORGANISM·1 A STREPTOCOCCUS? 
No. 
The identity of ORGANISM·1 Is e.coli (.74) bacteroides (.7) 

klebsiella-pneumonlae (.4) pseudomonas·aeruginosa (.22) 
enterobacter (.21) proteus-non-mirabllis (.19) serratia (.03) 
salmonella (.02) 

FIGURE 18-12 Questions about a parameter's value. 
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** HOW DO YOU KNOW THAT CULTURE-1 WAS FROM A STERILE SOURCE? 
I used rule189 to conclude that this blood culture was taken from 

a sterile source. This gave a cumulative CF of (1.0). The 
last question asked before the conclusion was made was 7. 

** DID YOU CONSIDER BACTEROIDES AS A POSSIBILITY FOR ORGANISM-1? 
Yes. I used rule095 to conclude that the identity of ORGANISM-1 

is bacteroides. This gave a cumulative CF of (.7). The 
last question asked before the conclusion was made was 20. 

** HOW DO YOU KNOW THAT ORGANISM-1 IS E.COLI? 
The following rules made conclusions about whether the identity 

of ORGANISM-1 is e.coli 

cumulative certainty last question asked 
Rule Yes No 

RULE021 (.47) 
RULE084 (.55) 
RULE003 (.74) 
In answer to question 9 you said that the identity of ORGANISM-1 

is e.coli (.3) 

before conclusion was made 
20 
22 
24 

FIGURE 18-13 Questions regarding how a conclusion was 
made. 

The specialist for answering questions like "How do you know the 
value of <parm> of <cntxt> ?" knows that the value of a parameter can 
come from two sources: it can be deduced by rules, or the user can give it 
in response to a question. The history tree will show which (possibly both) 
of these sources provided the particular information mentioned in the 
question (Figure 18-13). 

If the question is phrased in the negative, it is necessary first to find 
all the ways the conclusion could have been made (this is a simple task of 
rule retrieval), then to explain why it wasn't made in this consultation (Fig­
ure 18-14). The specialist for answering these questions must know what 
situations can prevent conclusions from being made. The second question 
in Figure 18-14 illustrates how the answer to one question might cause 
another question to be asked. 

The specialist for answering questions of the form "How did you use 
<parm> of <cntxt> ?" needs to know not only how to find the specific 
rules that might use a parameter, but also how a parameter can cause a 
rule to fail and how one parameter can prevent another from being used. 
The history tree can be checked to see which of the relevant rules used 
the parameter, which failed because of the parameter, and which failed 
for some other reason, preventing the parameter from being used (Figure 
18-15). 

For questions of the form "Why didn't you find out about <parm> 
of <cntxt> ?" general knowledge of MYCIN's control structure tells the 
conditions under which it would have been necessary to find out some 
piece of information. The record of the consultation can be used to de-
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•• WHY DID YOU RULE OUT STREPTOCOCCUS AS A POSSIBILITY FOR 
ORGANISM-1? 

The following rules could have been used to determine that the 
identity of ORGANISM-1 is streptococcus: RULE033. However, 
none of these succeeded in the context of ORGANISM-1. 
If you would like an explanation for why any of these 
rules failed, please enter their numbers: 
•• 33 

Clause 2 of RULE033 ["the morphology of the organism is coccus"] 
was already known to be false for ORGANISM-1, so the rule 
was never tried. 

••WHY DON'T YOU THINK THAT THE MORPHOLOGY OF ORGANISM-1 IS 
COCCUS? 

It is definite that the morphology of ORGANISM-1 is rod. Knowing 
this with certainty rules out all other values for the 
morphology of ORGANISM-1, including coccus. 

FIGURE 18-14 Questions regarding why a conclusion was not 
made. 

•• HOW DID YOU USE THE AEROBICITY OF ORGANISM-1? 
The aerobicity of ORGANISM-1 was used in the following rules: 

RULE003, RULEOOS, RULE084. 
The aerobicity of ORGANISM-1 caused the following rules to fail: 

RULE035, RULE051, RULE052, RULE053, RULE111. 
The aerobicity of ORGANISM-1 also would have been used in: 

RULE037, RULEOSO, RULE058, RULE086, RULE110, RULE184, 
RULE203, RULE204, RULE205. However, none of these 
succeeded in the context of ORGANISM-1. If you would 
like an explanation for why any of these rules failed, 
please enter their numbers: 
•• 37 

RULE037 was tried in the context of ORGANISM-1, but it failed 
due to clause 1 ["the category of the organism is not 
known"]. 

•• DID YOU CONSIDER THE FACT THAT PATIENT-1 IS NOT A COMPROMISED 
HOST? 

The fact that Fred Jones is not a compromised host caused the 
following rules to fail: RULE085, RULE106. 

The fact that Fred Jones is not a compromised host also would 
have been used in: RULE109. However, none of these 
succeeded in the context of PATIENT-1. If you would 
like an explanation for why any of these rules failed, 
please enter their numbers: 
**NONE 

FIGURE 18-15 Questions regarding how information was 
used. 
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termine why these conditions never arose for the particular parameter in 
question (Figure 18-16). Figure 18-16 also illustrates that MYCIN's general 
question answerer allows a user to get as much information as is desired. 
The first answer given was not really complete in itself, but it led the user 
to ask another question to get more information. Then another question 
was asked to determine why clause 1 of Rule 159 was false. The answers 
to the first two questions both .mentioned rules, which could be printed if 
the user wanted to examine them. The special command PR (Print Rule) 
is for the user's convenience. It requires no natural language processing 
and thus can be understood and answered immediately ("What is Rule 
109?" or "Print Rule 109" also would be understood). 

In questions that ask about the application of a rule to a context there 
are three possibilities: the rule told us something about the context; the 
rule failed when applied to that context; or the rule was never tried in that 
context. The history tree tells which of these is the case. Furthermore, if a 
rule succeeded, there is a record of all the conclusions it made, and if it 
failed, the reason for failure is recorded. As Figure 18-17 illustrates, rules 
are only applicable in certain contexts. If the rule could not apply to the 
context mentioned in the question but might be relevant when applied to 
some other context (which is an ancestor or descendent in the context tree), 
then the question is answered as if it had mentioned the relevant context. 

There are interactions among the different types of questions, but they 
weren't mentioned earlier for the sake of clarity. Sometimes a question 
may indicate an incorrect assumption about the state of MYCIN's knowl­
edge. For example, a question could be "Why don't you think that OR­
GANISM-1 is£. coli?" when, in fact, the system has concluded that the 
organism is E. coli. To answer this question, the explanation system would 
explain how it did make such a decision, despite the phrasing of the ques­
tion. Similarly, when asked how the system used (or concluded about) some 
parameter that was never traced, the system explains why it didn't need to 
find out about the parameter, regardless of how the question was phrased. 

18 3 Conclusions • 

Consultation systems form a class of artificial intelligence programs that 
can provide useful solutions to real-world problems. The utility of such 
systems, however, depends on their acceptability to human users. One fea­
ture that can increase their acceptability is a mechanism whereby they can 
explain or justify their advice. 

The development of an explanation mechanism for a consultation sys­
tem is very much related to the problems of representing knowledge and 
of making use of different sources of knowledge. Since the use of inference 
rules provides a unified way to represent modular pieces of knowledge, 
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**DID YOU FIND OUT ABOUT THE CBC ASSOCIATED WITH CULTURE-1? 
During the preceding consultation, I never had reason to try to find out 

whether the results of the CBC from the time period of this blood 
culture are available. It would have been necessary to know this 
information in order to use any of the following: RULE109. However, 
none of these succeeded in the context of this blood culture. If you 
would like an explanation for why any of these rules failed, please 
enter their numbers: 
•• 109 

RULE109 would be relevant to this blood culture when applied to: ORGANISM-1. 
I never had reason to try to apply RULE109 to ORGANISM-1. I would have 

needed to use RULE109 in order to find out whether ORGANISM-1 is a 
contaminant. However, during the preceding consultation, I never had 
reason to try to find out whether ORGANISM-1 is a contaminant. 

** WHY DIDN'T YOU NEED TO KNOW WHETHER ORGANISM-1 IS A CONTAMINANT? 
During the preceding consultation, I never had reason to try to find out 

whether ORGANISM-1 is a contaminant. It would have been necessary to 
know this information in order to use any of the following: RULE006, 
RULE007, RULE106, RULE108, RULE109, RULE159. However, none of these 
succeeded in the context of ORGANISM-1. If you would like an 
explanation for why any of these rules failed, please enter their 
numbers: 
•• 159 

RULE159 was tried in the context of ORGANISM-1, but it failed due to clause 
1 ["it is suspected that the identity of the organism is 
corynebacterium-non-diphtheriae''] 

** IS ORGANISM-1 CORYNEBACTERIUM-NON-DIPHTHERIAE? 
No. The identity of ORGANISM-1 is e.coli (.74) bacteroides (.7) 

klebsiella-pneumoniae (.4) pseudomonas-aeruginosa (.22) enterobacter 
(.21) proteus-non-mirabilis (.19) serratia (.03) salmonella (.02) 

**PR 109 
RULE109 
IF: 1) The culture was taken from a sterile source, and 

2) It is not known whether the organism is a contaminant, and 
3) The patient is not a compromised host, and 
4) The patient was febrile due to the infection, and 
5) The results of the CBC from the time period of the culture are 

available, and 
6) A - The white count from the CBC is greater than 10.5, or 

B - The percent of PMN's in the CBC at the time the culture was 
obtained is greater than 78, or 

C - The percent of WBC's which were bands in the CBC at the 
time the culture was obtained is greater than 10 

THEN: There is strongly suggestive evidence (.8) that the organism is 
not a contaminant 

FIGURE 18-16 Questions about why a parameter was not 
traced. 
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••DID RULE 116 TELL YOU ANYTHING ABOUT INFECTION-1? 
RULE116 would be relevant to the primary-bacteremia when applied 

to: ORGANISM-1. 
Clause 5 of RULE116 ["the infection is meningitis"] was already 

known to be false for ORGANISM-1, so the rule was never tried. 

•• HOW WAS RULE 178 HELPFUL WHEN YOU WERE CONSIDERING ORGANISM-1? 
RULE178 would be relevant to ORGANISM-1 when applied to: 

CULTURE-1. 
I never had reason to try to apply RULE178 to this blood culture. 

I would have needed to use RULE178 in order to find out 
whether this blood culture was taken from a sterile source. 
However, I was already certain that this blood culture was 
taken from a sterile source. 

••WHAT DID RULE 295 TELL YOU ABOUT ORGANISM-1? 
I used RULE295 to conclude that the identity of ORGANISM-1 is 

hemophilus-influenzae. This gave a cumulative CF of (.25). 
The last question asked before the conclusion was made 
was 36. 

••WHY DIDN'T YOU USE RULE 112 TO FIND OUT ABOUT ORGANISM-1? 
RULE112 was not executed because it would have caused circular 

reasoning when applied to ORGANISM-1. Would you like to 
see the chain of rules and parameters which makes up this 
circle? 
**YES 

I wanted to know about the identity of ORGANISM-1 because I 
try to find out the identity of the organism for all 
current organisms of the patient. 

To find out about the identity of ORGANISM-1, I tried to use 
RULE021. Before I could use RULE021, I needed to know about 
a prior organism with possibly the same identity as 
ORGANISM-1. 

To find out about a prior organism with possibly the same 
identity as ORGANISM-1, I tried to use RULE005. Before I 
could use RULE005, I needed to know about the aerobicity of 
ORGANISM-1. 

To find out about the aerobicity of ORGANISM-1, I tried to use 
RULE031. Before I r.ould use RULE031, I needed to know about 
the category of ORGANISM-1. 

To find out about the category of ORGANISM-1, I tried to use 
RULE112. Before I could use RULE112, I needed to know about 
the identity of ORGANISM-1. 

But this is the unknown parameter I sought originally. 

FIGURE 18-17 Questions regarding the application of rules. 

the task of designing an explanation capability is simplified for rule-based 
consultation systems. The example of MYCIN shows how this can be done 
and illustrates further that a system designed for a single domain with a 
small, technical vocabulary can give comprehensive answers to a wide range 
of questions without sophisticated natural language processing. 
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Specialized Explanations 
for Dosage Selection 

Sharon Wraith Bennett and A. Carlisle Scott 

In this chapter we describe specialized routines that MYCIN uses to eval­
uate and explain appropriate drug dosing. The processes that the program 
uses in its selection of antimicrobials and subsequent dosage calculations 
have been refined to take into account a variety of patient- and drug­
specific factors. Originally, all dosage recommendations were based on nor­
mal adult doses. However, it was soon recognized that the program needed 
to be able to recommend optimal therapy by considering information about 
the patient, such as age and renal function, as well as pharmacokinetic 
variables of the drugs. The addition of an ability to customize doses ex­
panded the capabilities of the consultation program. 

Earlier chapters have described the way in which MYCIN uses clinical 
and laboratory data to establish the presence of an infection and the likely 
identity of the infecting organism(s). If positive laboratory identification is 
not available, MYCIN ranks possible pathogens in order of likelihood. 
Antimicrobials are then chosen to treat effectively all likely organisms. In 
order to select drugs to which the organisms are usually sensitive, MYCIN 
uses susceptibility data from the Stanford bacteriology laboratory. The pro­
gram also considers the fact that the patient's previous antimicrobial treat­
ment may influence an organism's susceptibility. MYCIN disfavors a drug 
that the patient is receiving at the time a positive culture was obtained. 

Drug-specific factors are then considered before therapy is chosen. 
Some drugs, such as many of the cephalosporins, are not recommended 
for patients with meningitis because they do not adequately cross the blood-

This chapter is an abridged version of a paper, some of which was originally presented by 
Sharon Wraith Bennett at the 12th Annual Midyear Clinical Meeting of the American Society 
of Hospital Pharmacists, Atlanta, Georgia, December 8, 1977, and which appeared in American 
Journal of Hospital Pharmacy 37: 523-529 (1980). Copyright © 1980 by American Journal of 
Hospital Pharmacy. All rights reserved. Used with permission. 
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brain barrier and may lead to the development of resistance (Fisher et al., 
1975). One antimicrobial may be selected over another, similar drug be­
cause it causes fewer or less severe side effects. For example, nafcillin is 
generally preferred over methicillin for treatment of staphylococcal infec­
tions because of the reported interstitial nephritis associated with methi­
cillin (Ditlove et al., 1977). MYCIN'S knowledge base therefore requires 
continual updating with new indications or adverse reactions as they are 
reported in the medical literature. 

Several patient-specific factors may further limit the list of acceptable 
antimicrobials. Tetracycline, for example, is not recommended for children 
(Conchie et al., 1970) or pregnant (Anthony, 1970) or breast-feeding 
(O'Brien, 1974) women. Also, prior adverse reactions to antimicrobials 
must be considered by the program. 

19 .1 Customizing Doses 

Efficacious treatment of infectious diseases begins with selection of an an­
timicrobial; however, it is likely that the patient will not be cured unless 
the dose and the route of administration of the drug are appropriate. 
MYCIN takes into account the site of the infection, the age of the patient, 
and the patient's renal status in determining the dosage regimen for each 
drug. 

Consider, for example, the importance of patient age in therapy plan­
ning. The half-life of some drugs may be longer in neonates than in adults 
because of the immaturity of the former's microsomal enzyme system and 
kidneys (Weiss et al., 1960). Therefore, the doses of these drugs, in mg/kg 
amounts, should be lower in the neonates than in the adults. On the other 
hand, some antimicrobials, such as gentamicin, may require a higher rel­
ative dose in children than in the adults, possibly because of a larger vol­
ume of distribution (Siber et al., 1975). MYCIN therefore uses different 
calculations when appropriate for determining doses for neonates, infants, 
children, and adults. 

Most antimicrobials are fully or partially excreted by the kidneys; for 
this reason, it is necessary to consider the patient's renal function in order 
to determine a safe and effective regimen. The program uses the patient's 
creatinine clearance as an indicator of the degree of renal impairment. 
Doses are adjusted in patients over six months of age if the creatinine 
clearance falls below 80 ml/min/1.73 m2 and if more than 15% of the drug 
is excreted unchanged in the urine. In children between one week and six 
months of age, the dose is changed if the creatinine clearance is less than 
60ml/min/1.73 m 2 . A creatinine clearance of 30ml/min/l.73 m2 indicates 
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47) Does John Jones have a clinically significant allergic reaction to any antimicrobial agent? 
**NO 
48) Do you have reason to suspect that John Jones may have impaired renal function? 
**YES 
49) What is the most recent creatinine clearance in ml/min which you feel is a true representation of John Jones's 

renal function? 
**UNKNOWN 
50) What is the most recent serum creatinine of John Jones (in mg/1 OOml)? 
** 1.9 
51) What is the previous serum creatinine of John Jones (in mg/100ml)? 
** 1.8 
52) Number of days between John Jones two most recent serum creatinines: 
** 2 
53) John Jones's weight in kilograms (or <number> POUNDS): 
** 70 
54) John Jones's height in centimeters (or <number> INCHES): 
** 175 
Estimated body surface area is 1.9 sq. meters. 
Dosage adjustments will be based on the calculated creatinine 

clearance of 42.7 ml/min/1.73 sq. meters (adjusted to 
average body surface area). 

FIGURE 19-1 The patient's creatinine clearance is used as an 
indicator of the degree of renal function. When the creatinine 
clearance is not known, it is estimated from the age, sex, weight, 
and serum creatinine of the patient and adjusted to average 
body surface area before the dose is calculated. 

renal impairment in infants 1 between one day and one week old (Edel­
mann and Barnett, 1971). Because of the passage of maternal creatinine 
into the infant serum at birth, no estimate of renal function is attempted 
if the newborn is less than one day old. For infants younger than six 
months, MYCIN warns the user of the large degree of possible error in 
the estimated doses because of the changing renal function and a poor 
relationship between glomerular filtration rate and body surface area 
(Rubin et al., 1949). 

When the creatinine clearance of an adult patient is not known, it is 
estimated from the age, sex, weight, and serum creatinine Qelliffe and 
Jelliffe, 1972) (Figure 19-1). For children less than 12 years of age, the 
height and serum creatinine are used to estimate the creatinine clearance 
(Schwartz et al., 1976). If two consecutive serum creatinines indicate rap-

1The creatinine clearance in infants is less than in adults because of decreased glomerular 
membrane permeability, smaller glomerular filtering surface, lower perfusion pressure, and 
lower renal plasma flow. 
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[REC-1] My preferred therapy recommendation is: 
Give the following in combination: 

1) CHLORAMPHENICOL 
Give: 1.75g (17.6 ml) q6h IV [calculated on basis of 25 mg/kg] 

2) GENTAMICIN 
After a loading dose of: 112 mg (2.8 ml, 80mg/2ml ampule) IV 

[calculated on basis of 1.6 mg/kg], 
give: 70 mg (1.8 ml, 80mg/2ml ampule) q8h IV [calculated on 

basis of 1.0 mg/kg] plus consider giving 5 mg q24h 
lntrathecal 

Or, after a loading dose of: 140 mg (3.6 ml, 80mg/2ml ampule) 
IV [calculated on basis of 2.0 mg/kg], 

give: 119 mg (3.0 ml, 80mg/2ml ampule) q14h IV [calculated on 
basis of 1 . 7 mg/kg] plus consider giving 5 mg q24h 
lntrathecal 

[normal dose is 1.7 mg/kg q8h IV] 
Would you like to enter a new dosing interval? 
**YES 
Please enter the number of hours . 
•• 12 

After a loading dose of: 133 mg (3.4 ml, 80mg/2ml ampule) IV 
[calculated on basis of 1.9 mg/kg], 

give: 105 mg (2.6 ml, 80mg/2ml ampule) q12h IV (calculated on 
basis of 1.4 mg/kg] plus consider giving 5 mg q24h 
lntrathecal 

FIGURE 19-2 MYCIN provides three different dosage regi­
mens for each antimicrobial whose dose must be adjusted in 
renal failure. One method changes the dose, another alters the 
interval, and the third calculates a new dose given any interval. 

idly changing renal function, a warning is printed, which recommends 
repeating the assessment of the degree of impairment before an accurate 
dosage regimen can be determined. The creatinine clearance is adjusted 
to average body surface area (Boyd, 1935) before the program calculates 
a dose (Figure 19-2). If the creatinine clearance indicates renal failure, 
MYCIN calculates doses based on the first-order pharmacokinetic prop­
erties of the antimicrobials (see Figure 19-2) and the patient's creatinine 
clearance. (A description of the formulas is included in Figure 19-4.) 

The program provides three different dosage regimens for each an­
timicrobial whose dose must be adjusted. One method changes the dose, 
another alters the dosing interval, while the third calculates a new dose 
given any interval. This last option allows the physician to select a dosing 
interval that is convenient for the staff to follow and a dose that is a rea­
sonable volume to administer. A loading dose is calculated for each regi­
men so that an effective blood level can be reached as soon as possible. 
The dose is provided in both a mg/kg amount and the number of milliliters, 
capsules, or tablets required (Figure 19-2). 

If a patient's renal function changes during therapy, the physician can 
obtain a new dosage recommendation without repeating the entire infec-
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tious disease consultation. A shortened version of the consultation will 
recalculate the doses on the basis of the patient's current renal function. 
The program will request only the information necessary for determining 
the new doses, such as the most recent creatinine clearance (or serum 
creatinine). 

19.2 Selection of Dosage Regimen 

Although it is widely debated which dosage regimen is best, it is generally 
recognized that the blood level of antimicrobials used to treat bacteremias 
should exceed the minimum inhibitory concentration (MIC) while remain­
ing below toxic levels. The health professional must decide between allow­
ing the drug level to fluctuate above and below the MIC and consistently 
maintaining the drug level above the MIC through more frequent dosing. 
This decision is based on a variety of factors including the organism iden­
tity and the drug under consideration. To aid the prescriber in selecting 
the most appropriate regimen, MYCIN generates a graph for each regi­
men showing the predicted steady-state blood levels over time (Figure 
19-3) (Gibaldi and Perrier, 1975). The MIC of the organism and the toxic 
level of the drug (when they are available) are also included on the graph. 
The graph provides a rough estimate of the blood levels and the time of 
peak concentration in the patient. It is provided to improve the initial 
selection of a dosage regimen, not to replace the measurement of blood 
levels. Monitoring blood levels whenever they are available is strongly rec­
ommended. 

19.3 Explanation of Recommendations 

At the conclusion of the consultation, the physician can ask MYCIN simple 
questions to obtain assurance that the diagnosis and treatment are reason­
able. These questions may refer to the current consultation or they may 
be general, regarding any of the system's knowledge. The program pro­
vides a justification for the therapy selection, which includes the reasons 
for selecting one antimicrobial instead of another. Also available is an ex­
planation of the calculations used to decide on a dose (Figure 19-4). The 
physician can also ask to see relevant parts of MYCIN'S knowledge base, 
including justification and literature references (Figure 19-5). 
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FIGURE 19-3 Graph of blood levels of a drug (gentamicin) 
over time for different doses and dose intervals. The graph is 
shown precisely as it is printed by the computer. Note that reg­
imen I, with the longest dosing interval, reaches the highest 
blood levels episodically but also leaves the patient with blood 
levels below the MIC for the longest period of time. The some­
what atypical orientation of this graph, designed for terminal 
output, displays time vertically, blood level horizontally. 



Summary and Conclusions 369 

•• HOW DID YOU CALCULATE THE DOSE FOR GENTAMICIN? 

When GENTAMICIN is given for MENINGITIS, the recommended dosage is: 
if age is> 2 yrs then 1.7 mg/kg q8h IV plus consider giving 5 mg q24h IT, 

else 2.3 mg/kg q8h IV plus consider giving 2.5-4 mg/day IT. 

The normal dose for John Jones is: 119 mg (3.0 ml, 80mg/2ml ampule) q8h IV 
[calculated on the basis of 1.7 mg/kg] plus consider giving 5 mg q24h IT 

GENTAMICIN is excreted by the kidneys, so its dosage must be modified in 
renal failure. 

The following table shows how the patient's renal function was determined: 
Identifier Value Definition 
SCR1 1.9 the most recent serum creatinine (mg/1 OOml) 
SCR2 1.8 the previous serum creatinine (mg/1 OOml) 
CCr(f) 42.7 estimated creatinine clearance, adjusted for normal 

body surface area (ml/min/1.73 sq. meters) 
CCr(n) 100 the average normal creatinine clearance for 

John Jones's age group 
CCr(min) 80 the minimum normal creatinine clearance for 

John Jones's age group 

Since CCr(f) < CCr(min), John Jones has renal impairment. 

To modify the dosage of GENTAMICIN, the following pharmacokinetic parameters 
were used: 

Identifier Value 
.007 

Definition 
a 

b .0022 

a .57 

the fraction hourly loss of a drug due to non-renal 
processes 

the slope of the plot of the elimination rate 
constant of a drug versus the patient's 
creatinine clearance 

the drug's elimination rate fraction: elimination 
rate of the drug as a fraction of the drug's 
"normal" elimination rate. 

Q was calculated using the formula: 
Q = [a + b ' CCr(f)] I [a + b * CCr(n)] 

My first dosage recommendation decreased the amount of GENTAMICIN and left 
the dosing interval unchanged. The new amount was calculated by 
multiplying the old amount by Q. 

The second recommendation increased the dosing interval and left the amount 
of GENTAMICIN unchanged. The new interval was calculated by dividing 
the old interval by a. 

FIGURE 19-4 The physician can ask MYCIN questions to ob­
tain assurance that the diagnosis, treatment, and dose are rea­
sonable. 

19.4 Summary and Conclusions 

MYCIN is able to customize therapy recommendations by using its knowl­
edge base in conjunction with patient-specific information. The large 
knowledge base contains facts about organism susceptibilities to drugs, ep-
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**HOW DO YOU DETERMINE BODY SURFACE AREA? 

RULE104 

[This rule applies to any patient, and is tried in order to find out 
about the patient's estimated body surface area] 

IF: 1) The weight of the patient is known, and 
2) The height of the patient is known 

THEN: Use Boyd's algorithm to calculate body surface area from 
weight and height [Boyd, E. The Growth of the Surface 
Area of the Human Body, 1935, pp 1-133.] 

Author: Wraith 
Justification: A comparative evaluation with statistical analysis of 

the Boyd method with the DuBois formula demonstrated that the 
Boyd formula is more accurate for abnormal body types. 
[Sendray J. et al., Determination of human body surface area from 
height and weight, Applied Physiology, 7(1):1-12, July 1954.] 

FIGURE 19-5 The person obtaining a MYCIN consultation 
can see the decision rules that the program uses, including jus­
tification and literature references. 

idemiology of infectious diseases, and pharmacokinetics and tox1C1ty of 
various antimicrobials. This knowledge enables the program to determine 
appropriate treatment specific to a patient's age, renal function, and prior 
drug reactions. MYCIN'S explanation capability allows the user to analyze 
the process by which the program arrived at a therapy recommendation. 
This capability may also play an educational role by reminding the physi­
cian of critical factors to consider when prescribing therapy for other pa­
tients. 

Increasing evidence of inappropriate antimicrobial therapy indicates 
a need for assistance in the expanding area of infectious disease therapy 
selection (Neu and Howrey, 1975). There is a recognized need for contin­
uing education as well as for computational assistance with dosage adjust­
ments in renal failure. This is not surprising when one recognizes all of 
the factors that must be considered in a therapy decision. One response to 
the problem of antimicrobial misuse is to increase the availability of con­
sultations with infectious diseases experts. A consultation not only provides 
assistance in determining the appropriate therapy for the patient under 
consideration but also is an educational experience for the physician re­
questing it. Computer-based consultation programs such as MYCIN can 
provide medical professionals with clinical advice and educational infor­
mation when human consultants are not available. 



20 
Customized Explanations 
Using Causal Knowledge 

Jerold W. Wallis and Edward H. Shortliffe 

Developers of expert systems have increasingly recognized the importance 
of explanation capabilities to the acceptance of their programs; such ca­
pabilities are also critical in medical consultation system development 
(Gorry, 1973; Shortliffe, 1980). Good explanations serve four functions in 
a consultation system: ( 1) they provide a method for examining the pro­
gram's reasoning if errors arise when the system is being built; (2) they 
assure users that the reasoning is logical, thereby increasing user accep­
tance of the system; (3) they may persuade users that unexpected advice 
is appropriate; and (4) they can educate users in areas where users' knowl­
edge may be weak. These diverse roles impose several requirements on the 
system. For example, the explanations must adequately represent the rea­
soning processes of the program, and they should allow the user to ex­
amine the reasoning history or underlying knowledge at various levels of 
detail. In addition, although the program's approach to a problem need 
not be identical to an expert's approach, the program's overall strategy and 
reasoning steps must be understandable and seem logical, regardless of 
the user's level of expertise. This means that the system must have the 
capability to tailor its explanations to the varying needs and characteristics 
of its users. 

In this chapter we describe recent experiments in the design and im­
plementation of a prototype explanation program. Our past work in ex­
planation for consultation systems, described in Chapter 18, dealt primar­
ily with the ability to cite the rules involved in a particular decision. 
Although MYCIN's responses provide an accurate description of a portion 

This chapter is based on a paper originally appearing in Methods of Information in Medicine 
21: 127-136 (July 1982). Copyright© by Springer-Verlag, Inc. All rights reserved. Used 
with permission. 
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" DO YOU TREAT PSEUDOMONAS-AERUGINOSA BACTEREMIA WITH CARBENICILLIN? 
Yes, for treatment of PSEUDOMONAS-AERUGINOSA in BACTEREMIA, the drugs 
of choice (ranked by relative efficacy, assuming sensitivity) are: 

1st choice: 
CARBENICILLIN-AND-TOBRAMYCIN 
CARBENICILLIN-AND-GENTAMICIN 
AMIKACIN-AND-CARBENICILLIN 

2nd choice: 
TOBRAMYCIN 
GENTAMICIN 
AMIKACIN 

FIGURE 20-1 An example of an interaction with MYCIN's ex­
planation program. Note that the rule for selecting a drug to 
cover Pseudomonas aeruginosa is adequate for allowing MY­
CIN to reach the correct conclusion but that the underlying 
reason for combining two drugs is unclear. 

of its reasoning, to understand the overall reasoning scheme a user needs 
to request a display of all rules that are used. Additionally, rules such as 
that shown in the interaction of Figure 20-1 are designed largely for effi­
ciency and therefore frequently omit underlying causal mechanisms that 
are known to experts but that a novice may need in order to understand 
a decision. The rule guiding the choice of carbenicillin with an aminogly­
coside, for example, does not mention the synergism of the two drugs when 
combined in the treatment of serious Pseudomonas aeruginosa infections. 
Finally, while MYCIN does have a limited sense of discourse (viz., an ability 
to modify responses based on the topic under discussion), its explanations 
are not customized to the questioner's objectives or characteristics. 

MYCIN's explanation capabilities were expanded by Clancey in his 
work on the GUIDON tutorial system (Chapter 26). In order to use 
MYCIN's knowledge base and patient cases for tutorial purposes, Clancey 
found it necessary to incorporate knowledge about teaching. This knowl­
edge, expressed as tutoring rules, and a four-tiered measure of the baseline 
knowledge of the student (beginner, advanced, practitioner, or expert), 
enhanced the ability of a student to learn efficiently from MYCIN's knowl­
edge base. Clancey also noted problems arising from the frequent lack of 
underlying "support" knowledge, which is needed to explain the relevance 
and utility of a domain rule (Chapter 29). 

More recently, Swartout has developed a system that generates expla­
nations from a record of the development decisions made during the writ­
ing of a consultation program to advise on digitalis dosing (Swartout, 
1981 ). The domain expert provides information to a "writer" subprogram, 
which in turn constructs the advising system. The traces left by the writer, 
a set of domain principles, and a domain model are utilized to produce 
explanations. Thus both the knowledge acquisition process and automatic 
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programming techniques are intrinsic to the explanations generated by 
Swartout's system. Responses to questions are customized for different 
kinds of users by keeping track of what class is likely to be interested in a 
given piece of code. 

Whereas MYCIN generates explanations that are usually based on a 
single rule, 1 Weiner has described a system named BLAH (Weiner, 1980) 
that can summarize an entire reasoning chain in a single explanatory state­
ment. The approach developed for BLAH was based on a series of psy­
cholinguistic studies (Linde, 1978; Linde and Goguen, 1978; Weiner, 1979) 
that analyzed the ways in which human beings explain decisions, choices, 
and plans to one another. For example, BLAH structures an explanation 
so that the differences among alternatives are given before the similarities 
(a practice that was noted during the analysis of human explanations). 

The tasks of interpreting questions and generating explanations are 
confounded by the problems inherent in natural language understanding 
and text generation. A consultation program must be able to distinguish 
general questions from case-specific ones and questions relating to specific 
reasoning steps from those involving the overall reasoning strategy. As 
previously mentioned, it is also important to tailor the explanation to the 
user, giving appropriate supporting causal and empirical relationships. It 
is to this last task that our recent research has been aimed. We have de­
ferred confronting problems of natural language understanding for the 
present, concentrating instead on representation and control mechanisms 
that permit the generation of explanations customized to the knowledge 
and experience of either physician or student users. 

20.1 Design Considerations: The User Model 

For a system to produce customized explanations, it must be able to model 
the user's knowledge and motivation for using the system. At the simplest 
level, such a model can be represented by a single measure of what the 
user knows in this domain and how much he or she wants to know (i.e., to 
what level of detail the user wishes to have things explained). One approach 
is to record a single rating of a user's expertise, similar to the four categories 
mentioned above for GUIDON. The model could be extended to permit 
the program to distinguish subareas of a user's expertise in different por­
tions of the knowledge base. For example, the measures could be dynam­
ically updated as the program responds to questions and explains segments 

1 Although MYCIN's WHY command has a limited ability to integrate several rules into a 
single explanation (Shortliffe et al., 1975), the user wishing a high-level summary must spe­
cifically augment the WHY with a number that indicates the level of detail desired. We have 
found that the feature is therefore seldom used. Tl would, of course, be preferable if the 
system "knew" on its own when such a summary is appropriate. 
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of its knowledge. If the user demonstrates familiarity with one portion of 
the knowledge base, then he or she probably also knows about related 
portions (e.g., if physicians are familiar with the detailed biochemistry of 
one part of the endocrine system, they are likely to know the biochemistry 
of other parts of the endocrine system as well). This information can be 
represented in a manner similar to Goldstein's rule pointers, which link 
analogous rules, rule specializations, and rule refinements (Goldstein, 
1978). In addition, the model should ideally incorporate a sense of dia­
logue to facilitate user interactions. Finally, it must be self-correcting (e.g., 
if the user unexpectedly requests information on a topic the program had 
assumed he or she knew, the program should correct its model prior to 
giving the explanation). In our recent experiments we have concentrated 
on the ability to give an explanation appropriate to the user's level of 
knowledge and have deemphasized dialogue and model correction. 

20.2 Knowledge Representation 

20.2.l Form of the Conceptual Network 

We have found it useful to describe the knowledge representation for our 
prototype system in terms of a semantic network (Figure 20-2). 2 It is similar 
to other network representations used in the development of expert sys­
tems (Duda et al., l 978b; Weiss et al., 1978) and has also been influenced 
by Rieger's work on the representation and use of causal relationships 
(Rieger, 1976). A network provides a particularly rich structure for enter­
ing detailed relationships and descriptors in the domain model. Object nodes 
are arranged hierarchically, with links to the possible attributes (parameters) 
associated with each object. The parameter nodes, in turn, are linked to the 
possible value nodes, and rules are themselves represented as nodes with 
links that connect them to value nodes. These relationships are summa­
rized in Table 20-1. 

The certaintyfactor (CF) associated with each value and rule node (Table 
20-1) refers to the belief model developed for the MYCIN system (Chapter 
11). The property ask first/last controls whether or not the value of a pa­
rameter is to be requested from the user before an attempt is made to 
compute it using inference rules from the knowledge base (see LABDATA, 
Chapter 5). The text justification of a rule is provided when the system 
builder has decided not to break the reasoning step into further compo-

2The descriptive power of a semantic network provides clarity when describing this work. 
However, other representation techniques used in artificial intelligence research could also 
have captured the attributes of our prototype system. 
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concludes 
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-......._precondition-of 
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FIGURE 20-2 Sample section of network showing object, 
parameter, value, and rule nodes. Dashed lines indicate the fol­
lowing rule: 

IF: PARAMETER·1 of OBJECT-1 Is VALUE-1, and 
PARAMETER-2 of OBJECT-1 is VALUE-4 

THEN: Conclude that PARAMETER-4 of OBJECT-3 is VALUE-7 

nent parts but wishes to provide a brief summary of the knowledge un­
derlying that rule. Complexity, importance, and rule type are described in more 
detail below. 

20.2.2 Rules and Their Use 

In the network (Figure 20-2) rules connect value nodes with other value 
nodes. This contrasts with the MYCIN system in which rules are function­
ally associated with an object-parameter pair and succeed or fail only after 
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TABLE 20-1 

Type of Node 

object node 

parameter node 

value node 

rule node 

Static Information 
(associated with node) 

part-of link (hierarchic) 
parameter list 

object link 
value-node list 
default value 
text definition 

parameter-node link 
precondition-rule list 
conclusion-rule list 
importance 
complexity 
ask first/last 

precondition list (boolean) 
conclusion 
certainty factor 
rule type 
complexity 
text justification 

Dynamic Information 
(consultation-specific) 

contexts for which this value is true 
certainty factor 
explanation data 
ask state 

explanation data 

completion of an exhaustive search for all possible values associated with 
that pair. To make this clear, consider a rule of the following form: 

IF: DISEASE-STATE of the LIVER is ALCOHOLIC-CIRRHOSIS 
THEN: It is likely (.7) that the SIZE of ESOPHAGEAL-VEINS is INCREASED 

When evaluating the premise of this rule to decide whether it applies in a 
specific case, a MYCIN-like system would attempt to determine the cer­
tainty of all possible values of the DISEASE-STATE of the LIVER, pro­
ducing a list of values and their associated certainty factors. Our experi­
mental system, on the other hand, would only investigate rules that could 
contribute information specifically about ALCOHOLIC-CIRRHOSIS. In 
either case, however, rules are joined by backward chaining. 

Because our system reasons backwards from single values rather than 
from parameters, it saves time in reasoning in most cases. However, there 
are occasions when this approach is not sufficient. For example, if a value 
is concluded with absolute certainty (CF= 1) for a parameter with a mu­
tually exclusive set of values, this necessarily forces the other values to be 
false (CF= - 1 ). Lines of reasoning that result in conclusions of absolute 
certainty (i.e., reasoning chains in which all rules make conclusions with 
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CF= 1) have been termed unity paths (see Chapter 3). In cases of mutually 
exclusive values of parameters, complete investigation of one value re­
quires consideration of any other value that could be reached by a unity 
path. Thus the representation must allow quick access to such paths. 

When reasoning by elimination, similar problems arise if a system fo­
cuses on a single value. One needs the ability to conclude a value by ruling 
out all other possible values for that parameter; this entails a slight mod­
ification of the organizational and reasoning scheme. One strategy is to use 
this elimination method in cases of mutually exclusive options only after 
the normal backward-chaining process fails (provided that the possibilities 
represented in the knowledge base are known to span all potential values). 

20.2.3 Complexity and Importance 

The design considerations for adequate explanations require additions to 
the representation scheme described above. To provide customized expla­
nations, appropriate for different levels of expertise, we have found it 
useful to associate a measure of complexity, both with the inference rules 
and with the concepts about which they are concluding. Because some 
concepts are key ideas in a reasoning chain and should be mentioned 
regardless of their complexity, a measure of importance associated with con­
cepts is useful as well. Currently, both measures are specified at the time 
knowledge is added to the system, but a dynamic modification of these 
initial values would improve the flexibility of the approach. 

Even though complexity and importance are related, one cannot nec­
essarily be predicted from the other. For example, biochemical details of 
the endocrine system are complex but are not important to an understanding 
of endocrine abnormalities, yet the same complexity of biochemical detail is 
important for understanding the glycogen storage diseases. A measure of a 
fact's importance was also used by Carbonell ( l 970a) in the form of "re­
levancy tags," supplemented by "distance" in a semantic network, but he 
did not distinguish between the two concepts discussed here. 

20.3 Explanation Capabilities 

20.3. l Tailored Explanations 

The measurements of complexity and importance described above facili­
tate the generation of tailored explanations. Consider a linear causal chain 
representing a simplified causal mechanism for the existence of kidney 
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stones (Figure 20-3). A sample interaction based on this reasoning chain 
might be as follows: 3 

Sample Interaction 1: 

*'EXPERTISE 3 [the user indicates his or her level of expertise on a scale of 1 to 
10 where 10 = expert] 

*'HOW DOES HYPERPARATHYROIDISM CAUSE RENAL STONES? 
Renal stones are caused by hypercalcemia 

Hypercalcemia is caused by hyperparathyroidism 

*'MORE DETAIL 
Renal stones are caused by increased urinary calcium 

Increased urinary calcium is caused by hypercalcemia 
Hypercalcemia is caused by increased bone breakdown 

Increased bone breakdown is caused by hyperparathyroidism 

"EXPERTISE 7 [the user indicates that he or she is more expert here than above] 

"HOW DOES HYPERPARATHYROIDISM LEAD TO INCREASED BONE BREAKDOWN? 
Bone breakdown is caused by increased osteoclast activity 

Increased osteoclast activity is caused by increased cyclic-AMP 
Increased cyclic-AMP is caused by hyperparathyroidism 

This sample dialogue demonstrates: ( 1) the user's ability to specify his or 
her level of expertise, (2) the program's ability to employ the user's exper­
tise to adjust the amount of detail it offers, and (3) the user's option to 
request more detailed information about the topic under discussion. 

Two user-specific variables are used to guide the generation of expla­
nations:4 

EXPERTISE: A number representing the user's current level of knowl­
edge. As is discussed below, reasoning chains that involve 
simpler concepts as intermediates are collapsed to avoid the 
display of information that might be obvious to the user. 

DETAIL: A number representing the level of detail desired by the user 
when receiving explanations (by default a fixed increment 
added to the EXPERTISE value). A series of steps that is ex­
cessively detailed can be collapsed into a single step to avoid 
flooding the user with information. However, if the user wants 
more detailed information, he or she can request it. 

As shown in Figure 20-3, a measure of complexity is associated with 
each value node. Whenever an explanation is produced, the concepts in 

30ur program functions as shown except that the user input requires a constrained formal 
rather than free text. We have simplitied that interaction here for illustrative purposes. The 
program actually has no English interface. 
'1Another variable we have discussed but not implemented is a focusing parameter that would 
put a ceiling on the number of steps in the chain to trace when formulating an explanation. 
A highly focused explanation would result in a discussion of only a small part of the reasoning 
tree. In such cases, it would be appropriate to increase the detail level as well. 



Explanation Capabilities 

VALUES RULES 

Hyperparathyroidism RULE CF RULE TYPE 
NAME Comp 3 Imp 8 

::>r1 .9 Cause-effect 

Elevated cyclic-AMP 
Comp 9 Imp 

::>r2 Cause-effect 

Increased osteoclast activity 
Comp 8 Imp 

::>r3 .9 Cause-effect 

Bone breakdown 
Comp 6 Imp 3 

::>r4 .6 Cause-effect 

Hypercalcemia 
Comp 3 Imp 8 

::>r5 .9 Cause-effect 

Increased urinary calcium 
Comp 7 Imp 4 

::>r6 .5 Cause-effect 

Calcium-based renal stones 
Comp 2 Imp 3 

::>r7 Definitional 

Renal stones 
Comp 1 Imp 6 

FIGURE 20-3 An example of a small section of a causal 
knowledge base, with measures of the complexity (Comp) and 
importance (Imp) given for the value nodes (concepts). This 
highly simplified causal chain is provided for illustrative pur­
poses only. For example, the effect of parathormone on the kid­
ney (promoting retention of calcium) is not mentioned, but it 
would have an opposite causal impact on urinary calcium. This 
reasoning chain is linear (each value has only one cause) and 
contains only cause-effect and definitional rules. Sample Inter­
actions 1 and 2 (see text) are based on this reasoning chain. 

379 
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Reasoning sequence : 

r1 r2 r3 r4 r5 
A ---+e --+c---+ o---+ E---+ F 

10 

concept 

complexity 1B\_D7E-=-:r 
- - - - - - - - expertise 

FIGURE 20-4 Diagram showing the determination of which 
concepts (parameter values) to explain to a user with a given 
expertise and detail setting. The letters A through F represent 
the concepts (values of parameters) that are linked by the in­
ference rules r1 through r5. Only those concepts whose com­
plexity falls in the range between the dashed lines (including 
the lines themselves) will be mentioned in an explanation dia­
logue. Explanatory rules to bridge the intermediate concepts 
lying outside this range are generated by the system. 

the reasoning chain are selected for exposition on the basis of their com­
plexity; those concepts with complexity lying between the user's expertise 
level and the calculated detail level are used. 5 Consider, for example, the 
five-rule reasoning chain linking six concepts shown in Figure 20-4. When 
intermediate concepts lie outside the desired range (concepts B and E in 
this case), broader inference statements are generated to bridge the nodes 
that are appropriate for the discussion (e.g., the statement that A leads to 
C would be generated in Figure 20-4). Terminal concepts in a chain are 
always mentioned, even if their complexity lies outside the desired range 
(as is true for concept F in the example). This approach preserves the 

5The default value for DETAIL in our system is the EXPERTISE value incremented by 2. 
When the user requests more detail, the detail measure is incremented by 2 once again. Thus, 
for the three interchanges in Sample Interaction I, the expertise-detail ranges are 3-5, 3-
7, and 7-9 respectively. Sample Interaction 2 demonstrates how this scheme is modified by 
the importance measure for a concept. 
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Reasoning sequence : 

r1 r2 r3 r4 r5 
A ----+ B ----+C----+ D----+ E----+ F 

rule 

complexity 

10 

r1 

detail 

1 
expertise 

FIGURE 20-5 Diagram showing the determination of which 
rules to explain further for a user with a given expertise and 
detail setting. When a rule is mentioned because of the associ­
ated concepts, but the rule itself is too complex, further text 
associated with the rule is displayed. 

logical flow of the explanation without introducing concepts of inappro­
priate complexity. 

We have also found it useful to associate a complexity measure with 
each inference rule to handle circumstances in which simple concepts (low 
complexity) are linked by a complicated rule (high complexity).6 This sit­
uation typically occurs when a detailed mechanism, one that explains the 
association between the premise and conclusion of a rule, consists of several 
intermediate concepts that the system builder has chosen not to encode 
explicitly.7 When building a knowledge base, it is always necessary to limit 
the detail at which mechanisms are outlined, either because the precise 
mechanisms are unknown or because minute details of mechanisms are 
not particularly useful for problem solving or explanation. Thus it is useful 
to add to the knowledge base a brief text justification (Table 20-1) of the 
mechanism underlying each rule. 

Consider, for example, the case in Figure 20-5, which corresponds to 

6The opposite situation does not occur; rules of low complexity do not link concepts of higher 
complexity. 
iPatil has dealt with this problem by explicitly representing causal relationships concerning 
acid-base disorders at a variety of different levels of detail (Patil et al., 1981). 



382 Customized Explanations Using Causal Knowledge 

the reasoning chain represented in Figure 20-4. Although rule r3 links two 
concepts (C and D) that are within the complexity-detail range for the user, 
the relationship mentioned in rule r3 is itself considered to be outside this 
range. When generating the explanation for this reasoning chain, the pro­
gram mentions concepts C and D, and therefore mentions rule r3 despite 
its complexity measure. Since the rule is considered too complex for the 
user, however, the additional explanatory text associated with the rule is 
needed in this case. If the rule had fallen within the complexity-detail range 
of the user, on the other hand, the text justification for the rule would not 
have been required.8 

Further modulation of rule and concept selection is accomplished us­
ing the importance measure associated with parameters. A high impor­
tance forces the inclusion of a reasoning step in an explanation, thereby 
overriding the complexity considerations that were shown in Figures 20-4 
and 20-5. When the importance level of a concept is two or more points 
above the expertise of the user, the item is included in the explanation. 
Consider, for example, the following dialogue, which demonstrates the way 
in which the importance measure is used: 

Sample Interaction 2: 

**EXPERTISE 6 

"HOW DOES HYPERPARATHYROIDISM CAUSE RENAL STONES? 
Renal stones are caused by increased urinary calcium 

Increased urinary calcium is caused by hypercalcemia 
Hypercalcemia is caused by increased bone breakdown 

Bone breakdown is caused by increased osteoc/ast activity 
Increased osteoclast activity is caused by hyperparathyroidism 

Note that this example shows a response to the same question asked in 
Sample Interaction l. This time, however, the expertise level is 6 rather 
than 3. Hypercalcemia is therefore mentioned only because its importance 
level of 8 (see Figure 20-3) is 2 points higher than the expertise of the 
user; the complexity level of hypercalcemia does not fall within the exper­
tise-detail range of the user and thus would not have been included in the 
explanation if it were not for its high importance. The other items men­
tioned are either terminal concepts in the chain (renal stones and hyper­
parathyroidism) or have a complexity measure lying within the user's ex­
pertise-detail range of 6-8. 

Many reasoning chains are not as simple as those shown in Figures 
20-3, 20-4, and 20-5. When explaining a branched reasoning chain, for 
example, the explanation system can set aside the branches of the chain 
and mention them only when it is appropriate to the level of detail required 
by the user. This feature provides users with an overview of the reasoning 
process to help them decide whether it is necessary to examine the more 
detailed steps. This capability is illustrated in the following dialogue, which 

8An example of this approach is included in Sample Interaction 4 in Section 20.3.2. 
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involves a patient with hypercalcemia and a possible malignancy who has 
undergone prolonged bed rest: 

Sample Interaction 3: 

.. WHY DOES THE PATIENT HAVE INCREASED SERUM CALCIUM? 
Increased serum calcium is suggested by immobilization and malignancy 

**MORE DETAIL 
Increased serum calcium is implied by increased bone breakdown 

Increased bone breakdown is suggested by 2 paths of reasoning: 
Increased bone breakdown is implied by increased osteoclast activity 

Increased osteoclast activity is implied by prolonged immobilization 
Increased bone breakdown is also implied by malignant bone invasion 

20.3.2 Types of Rules 

Our refinement of the rule types presented by Clancey (Chapter 29) yields 
five types of rules9 that are relevant to explanation strategies: 

definitional: the conclusion is a restatement of the precondition in different 
terms 

cause-effect: the conclusion follows from the precondition by some mecha­
nism, the details of which may not be known 

associational: the conclusion and the precondition are related, but the causal 
direction (if any) is not known 

effect-cause: the presence of certain effects are used to conclude about a 
cause with some degree of certainty 

self-referencing: the current state of knowledge about a value is used to 
update that value further 10 

The importance of distinguishing between cause-effect and effect­
cause rules is shown in Figure 20-6, which considers a simplified network 
concerning possible fetal Rh incompatibility in a pregnant patient. Rea­
soning backwards from the goal question "Is there a fetal-problem?" one 
traverses three steps that lead to the question of whether the parents are 
Rh incompatible; these three steps use cause-effect and definitional links 
only. However, in order to use the laboratory data concerning the amniotic 
fluid to form a conclusion about the presence of fetal hemolysis, effect­
cause links must be used. 

The sample interactions in Section 20.3.1 employed only cause-effect 

9Rules considered here deal with domain knowledge, to be distinguished from strategic or 
meta-level rules (Davis and Buchanan, 1977). 
10In many cases self~referencing rules can be replaced by strategy rules (e.g., "If you have 
tried to conclude a value for this parameter and have failed to do so, then use the default 
value for the parameter"). 
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RH INCOMPATABILITY 
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FIGURE 20-6 A simple causal network showing the differ­
ence in reasoning between effect-cause and cause-effect rules 
in the medical setting. The number beside a link indicates the 
certainty factor (CF) associated with the rule. Note that an actual 
rule network for this domain would be more complex, with 
representation of intermediate steps, associated medical con­
cepts, default values, and definitions. 

and definitional rules. An explanation for an effect-cause rule, on the other 
hand, requires a discussion of the inverse cause-effect rule (or chain of 
rules) and a brief mention of other possibilities to explain the certainty 
measure associated with the rule. As discussed above, the expertise of a 
user may also require that the program display a text justification for the 
causal relationships cited in a cause-effect rule. Consider, for example, an 
interaction in which an explanation of the effect-cause rule in Figure 20-
6 is produced: 

Sample Interaction 4: 

**WHY DO INCREASED BILIRUBIN COMPOUNDS IN THE AMNIOTIC FLUID IMPLY FETAL 
HEMOLYSIS? 

Fetal hemolysis leads to bilirubin compounds in the fetal circulation; 
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equilibration then takes place between the fetal plasma and the amniotic 
fluid, leading to increased bilirubin compounds in the amniotic fluid 

While the relationship in this direction is nearly certain, the inverse 
relationship is less certain because of the following other possible 
causes of increased bilirubin compounds in the amniotic fluid: 

Maternal blood in the amniotic fluid from trauma 
Maternal blood in the amniotic fluid from prior amniocentesis 

The response regarding the equilibration of fetal plasma and amniotic 
fluid is the stored text justification of the cause-effect rule that leads from 
"fetal hemolysis" to "increased bilirubin in amniotic fluid." The individual 
steps could themselves have been represented in causal rules if the system 
builder had preferred to enter rule-based knowledge about the nature of 
hemolysis and bilirubin release into the circulation. The second component 
of the response, on the other hand, is generated from the other cause­
effect rules that can lead to "increased bilirubin in amniotic fluid." 

The other types of rules require minor modifications of the explana­
tion strategy. Definitional rules are usually omitted for the expert user on 
the basis of their low complexity and importance values. An explanation 
of an associational rule indicates the lack of known causal information and 
describes the degree of association. Self-referencing rules frequently have 
underlying reasons that are not adequately represented by a causal net­
work; separate support knowledge associated with the rule (Chapter 29), 
similar to the text justificatfon shown in Sample Interaction 4, may need 
to be displayed for the user when explaining them. 

20.4 Causal Links and Statistical Reasoning 

We have focused this discussion on the utility of representing causal knowl­
edge in an expert system. In addition to facilitating the generation of 
tailored explanations, the use of causal relationships strengthens the rea­
soning power of a consultation program and can facilitate the acquisition 
of new knowledge from experts. However, an attempt to reason from 
causal information faces many of the same problems that have been en­
countered by those who have used statistical approaches for modeling di­
agnostic reasoning. It is possible to generate an effect-cause rule, and to 
suggest its corresponding probability or certainty, only if the information 
given in the corresponding cause-effect rule is accompanied by additional 
statistical information. For example, Bayes' Theorem may be used to de­
termine the probability of the ith of k possible "causes" (e.g., diseases), 
given a specific observation ("effect"): 

P(cause;/effect) 
P(effect/causeJ P(cause;) 

k 

.L P(causey) P(effect/cause1) 
.1=! 
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This computation of the probability that the ith possible cause is pres­
ent given that the specific effect is observed, P(cause;jeffect), requires 
knowledge of the a priori frequencies P(cause;) for each of the possible 
causes (cause 1, cause2 ... causek) of the effect. These data are not usually 
available for medical problems and are dependent on locale and prescreen­
ing of the patient population (Shortliffe et al., 1979; Szolovits and Pauker, 
1978). The formula also requires the value of P(effectjcausei) for all cause­
effect rules leading to the effect, not just the one for the rule leading from 
cause; to the effect In Figure 20-6, for example, the effect-cause rule 
leading from "increased bilirubin in amniotic fluid" to "fetal hemolysis" 
could be derived from the cause-effect rule leading in the opposite direc­
tion only if all additional cause-effect rules leading to "increased bilirubin 
in amniotic fluid" were known (the "other causes" indicated in the figure) 
and if the relative frequencies of the various possible causes of "increased 
bilirubin in amniotic fluid" were also available. A more realistic approach 
is to obtain the inference weighting for the effect-cause rule directly from 
the expert who is building the knowledge base. Although such subjective 
estimates are fraught with danger in a purely Bayesian model (Leaper et 
al., 1972), they appear to be adequate (see Chapter 31) when the numerical 
weights are supported by a rich semantic structure (Shortliffe et al., 1979). 

Similarly, problems are encountered in attempting to produce the in­
verse of rules that have Boolean preconditions. For example, consider the 
following rule: 

IF: (A and (B or C)) 
THEN: Conclude D 

Here D is known to imply A (with a certainty dependent on the other 
possible causes of D and their relative frequencies) only if B or C is present. 
While the inverse rule could be generated using Bayes' Theorem given the 
a priori probabilities, one would. not know the certainty to ascribe to cases 
where both B and C are present. This problem of conditional independence 
tends to force assumptions or simplifications when applying Bayes' Theo­
rem. Dependency information can be obtained from data banks or from 
an expert, but cannot be derived directly from the causal network. 

It is instructive to note how the Present Illness Program (PIP) and 
CADUCEUS, two recent medical reasoning programs, deal with the task 
of representing both cause-effect and effect-cause information. CADU­
CEUS (Pople, 1982) has two numbers for each manifestation of disease, 
an "evoking strength" (the likelihood that an observed manifestation is 
caused by the disease) and a "frequency" (the likelihood that a patient with 
a disease will display a given manifestation). These are analogous to the 
inference weightings on effect-cause rules and cause-effect rules, respec­
tively. However, the first version of the CADUCEUS program (INTERN­
IST-I) did not allow for combinations of manifestations that give higher 
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(or lower) weighting than the sum of the separate manifestations, 11 nor 
did it provide a way to explain the inference paths involved (Miller et al., 
1982). 

PIP (Pauker et al., 1976; Szolovits and Pauker, 1978) handles the im­
plication of diseases by manifestations by using "triggers" for particular 
disease frames. No weighting is assigned at the time of frame invocation; 
instead PIP uses a scoring criterion that does not distinguish between 
cause-effect and effect-cause relationships in assigning a numerical value 
for a disease frame. While the information needed to explain the program's 
reasoning is present, the underlying causal information is not. 12 

In our experimental system, the inclusion of both cause-effect rules 
and effect-cause rules with explicit certainties, along with the ability to 
group manifestatiOns into rules, allows flexibility in constructing the net­
work. Although causal information taken alone is insufficient for the con­
struction of a comprehensive knowledge base, the causal knowledge can 
be used to propose effect-cause relationships for modification by the sys­
tem-builder. It can similarly be used to help generate explanations for such 
relationships when effect-cause rules are entered. 

20 5 Conclusion • 

We have argued that a need exists for better explanations in medical con­
sultation systems and that this need can be partially met by incorporating 
a user model and an augmented causal representation of the domain 
knowledge. The causal network can function as an integral part of the 
reasoning system and may be used to guide the generation of tailored 
explanations and the acquisition of new domain knowledge. Causal infor­
mation is useful but not sufficient for problem solving in most medical 
domains. However, when it is linked with information regarding the com­
plexity and importance of the concepts and causal links, a powerful tool 
for explanation emerges. 

Our prototype system has been a useful vehicle for studying the tech­
niques we have discussed. Topics for future research include: (I) the de­
velopment of methods for dynamically determining complexity and im­
portance (based on the semantics of the network rather than on numbers 
provided by the system builder); (2) the discovery of improved techniques 
for using the context of a dialogue to guide the formation of an expla-

11 This problem is one of the reasons for the move from INTERNIST-I to the new approaches 
used in CADUCEUS (Pople, 1982). 
12Recently the ABEL program, a descendent of PIP, has focused on detailed modeling of 
causal relationships (Patil et al., 1981). 
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nation; (3) the use of linguistic or psychological methods for determining 
the reason a user has asked a question so that a customized response can 
be generated; and (4) the development of techniques for managing the 
various levels of complexity and detail inherent in the mechanistic rela­
tionships underlying physiological processes. The recent work of Patil, Szo­
lovits, and Schwartz ( 1981), who have separated such relationships into 
multiple levels of detail, has provided a promising approach to the solution 
of the last of these problems. 
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PART SEVEN 



21 
Other Representation 
Frameworks 

Representing knowledge in an AI program means choosing a set of con­
ventions for describing objects, relations, and processes in the world. One 
first chooses a conceptual framework for thinking about the world-sym­
bolically or numerically, statically or dynamically, centered around objects 
or around processes, and so forth. Then one needs to choose conventions 
within a given computer language for implementing the concepts. The 
former is difficult and important; the latter is both less difficult and less 
important because good programmers can find ways of working with al­
most any concept within almost any programming language. 

In one respect finding a representation for knowledge is like choosing 
a set of data structures for a program to work with. Tables of data, for 
example, are often conveniently represented as arrays. But manipulating 
knowledge structures imposes additional requirements. Because some of 
an expert's knowledge is inferential, conventions are needed for a program 
to interpret the structures. And, as we have emphasized, an expert (or 
knowledge engineer) needs to be able to edit knowledge structures quickly 
and easily in order to refine the program's knowledge base iteratively. Some 
programming conventions facilitate editing and interpreting knowledge; 
others throw up road blocks. 

The question of how to represent knowledge for intelligent use by 
programs is one of two major questions motivating research in AI. (The 
other major theme over the last 25 years is how to use the knowledge for 
intelligent problem solving.) Although we were not developing new rep­
resentations in MYCIN, we were experimenting with the power of one 
representation, modified production rules, for reasoning in a detailed and 
ill-structured domain, medicine. Chapters 1 and 3 have described much of 
the historical context of our work with rules. As should be obvious from 
Chapters 3 through 6, we added many embellishments to the basic pro­
duction rule representation in order to cope with the demands of the 
problem and of physicians. We stumbled over many items of medical 
knowledge that were difficult to encode or use in the simple formalism 
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with which we started. Our choice of rules and fact triples, with CF's, has 
been explained in Part Two. As summarized at the end of Chapter 3, we 
were under no illusion that we were creating a "pure" production system. 
We had taken many liberties with the formalism in order to make it more 
flexible and understandable. However, we still felt that the stylized condi­
tion-action form of knowledge brought many advantages because of its 
simplicity. For example, creating English translations from the LISP rules 
and translating stylized English rules into LISP were both somewhat sim­
plified because of the restricted syntax. Similarly, creating explanations of 
a line of reasoning was simplified as well, because of the simple backward­
chaining control structure that links rules together dynamically. 

Representing knowledge in procedures was one alternative we were 
trying hard to avoid. Our experience with DENDRAL and with the therapy 
algorithm in MYCIN (Chapter 6) showed how inflexible and opaque a set 
of procedures could be for an expert maintaining a knowledge base. And, 
as mentioned in previous chapters, we saw that production rules offered 
some opportunity for making a knowledge base easier to understand and 
modify. 

We were aware of predicate calculus as a possibility for representing 
MYCIN's knowledge. We were working in a period in AI research when 
logic and resolution-based theorem provers were being recommended for 
many problems. We did not seriously entertain the idea of using logic, 
however, largely because we felt that inexact reasoning was undeveloped 
in theorem-proving systems. 

We had initially experimented with a semantic network representation, 
as mentioned in Chapter 3. Although we felt we could store medical knowl­
edge in that form, we felt it was difficult to focus a dialogue in which gaps 
in the knowledge were filled both by inference and by the user's answers 
to questions. Minsky's paper on frames (Minsky, 1975) did not appear until 
after this work was well underway. Even so, we were looking for a more 
structured representation, specifically rules, to build editors and parsers 
for, to modify and explain, and to reason with in an understandable line 
of reasoning. 

In this part we describe three experiments with alternative represen­
tations and control structures in programs called VM, CENTAUR, and 
WHEEZE. The first two programs were written for Ph.D. requirements, 
the last as a class project. All are programs that work on medical problems, 
although in areas outside of infectious diseases. Another experiment with 
representations is described in Chapter 20 in the context of explanation. 
There MYCIN's rules are rewritten in an inference net (cf. Duda et al., 
l 978b) in order to facilitate explaining the inferences at different levels of 
detail. 

The VM program discussed in Chapter 22 was selected by Professor 
E. Feigenbaum, H. Penny Nii, and Dr. John Osborn and worked on pri­
marily by Larry Fagan for his Ph.D. dissertation. Feigenbaum and Nii had 
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been developing the SU/X program 1 (Nii and Feigenbaum, 1978) for in­
terpretation of multisensor data. Feigenbaum was a friend of Osborn's, 
knew of Osborn's pioneering work on computer monitoring in intensive 
care, and saw this as a possible domain in which to explore further the 
problems in multisensor signal understanding involving signals for which 
the time course is important to the interpretation. Osborn agreed to be 
the expert collaborator. Fagan had been working on MYCIN and had con­
tributed to the code as well as to the knowledge base of meningitis rules. 
(In Feigenbaum's words, Fagan had become "MYCINized.") So it was nat­
ural that his initial thinking about the ICU data interpretation problem 
was in MYCIN's terms. Fagan quickly found, however, that the MYCIN 
model was not appropriate for a problem of monitoring data continuously 
over time. MYCIN was much too oriented toward a "snapshot" of data 
about a patient at a fixed time (although some elements of data in the 
"snapshot" name historical parameters, such as dates of prior infections). 
The only obvious mechanism for making MYCIN work with a stream of 
data in the ICU was to restart the program at frequent time intervals to 
reason about each new "snapshot" of data gathered during each 2-5 min­
ute time period. This is inelegant and completely misses any sense of con­
tinuity or the changing context in which data are being gathered. Thus 
VM was designed to remedy this deficiency. 

The other two programs in Part Seven were designed as alternatives 
to a rule-based representation, varying the representation of one program, 
called PUFF. Although desirable, it is difficult in AI to experiment with 
programs by varying one parameter at a time while holding everything 
else fixed. Of course, not everything else could remain fixed for such a 
gross experiment. Both CENTAUR and WHEEZE, discussed in Chapters 
23 and 24, were deliberate attempts to alter the representation and control 
of the PUFF program (while leaving the knowledge base unchanged) in 
order to examine advantages and disadvantages of alternatives. 

PUFF is a program that diagnoses pulmonary (lung) diseases. The 
problem was suggested to Feigenbaum and Nii by Osborn at the time VM 
was being formulated, and appeared to be appropriate for a MYCIN-like 
approach. It was initially programmed using EMYCIN (see Part Five), in 
collaboration with Drs. R. Fallat and J. Osborn at Pacific Medical Center 
in San Francisco (Aikins et al., 1983). About 50-60 rules were added to 
EMYCIN [in a much shorter time than expected (Feigenbaum, 1978)] to 
interpret the type and severity of pulmonary disorders. 2 The primary data 
are mostly from an instrument known as a spirometer that measures flows 
and volumes of patients' inhalation and exhalation. The conlusions are 
diagnoses that account for the spirometer data, the patient history data, 
and the physician's observations. 

1Later known as HASP (Nii et al., 1982). 
2These handled obstructive airways disease. Many other rules were later added to handle 
other classes of pulmonary disease. The system now contains about 250 rules. 
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EMYCIN-PUFF 
CENTAUR 
WHEEZE 
BASIC-PUFF 
AGE-PUFF 

(Aikins and Nii-see Chapter 14) 
(Aikins-see Chapter 23) 
(Smith and Clayton-see Chapter 24) 
(Pacific Medical Center-see Aikins et al., 1983) 
(Nii and Aiello-see Aiello and Nii, 1981) 

FIGURE 21-1 Five implementations of PUFF. 

PUFF has been a convenient vehicle for experimentation because it is 
a small system. Figure 21-1 lists five different implementations of essen­
tially the same knowledge base. 

In developing CENTAUR, Aikins focused on the problem of making 
control knowledge explicit and understandable. She recognized the awk­
wardness of explanations of rules or rule clauses that were primarily con­
trolling MYCIN's inferences as opposed to making substantive inferences. 
For example, many of the so-called self-referencing rules are awkward to 
explain: 

If A & B & C, 
then A 

In these rules, one intent of mentioning parameter A in both conclusion 
and premise is to screen the rule and keep it from forcing questions about 
parameters B and C if there is not already evidence for A. This is largely 
an issue of control, and the kind of problem that CENTAUR is meant to 
remedy. The solution is to use frames to represent the context and control 
information and MYCIN-like rules to represent the substantive medical 
relations. Thus there is a frame for A to represent the context in which a 
set of rules should be invoked, one of which would be: 

B&C-.A 

This is much more natural to explain than trying to say why, or in what 
sense, A can be evidence for itself. CENTAUR was demonstrated using the 
same knowledge as in the EMYCIN version of PUFF (Aikins, 1983). 

David Smith and Jan Clayton developed WHEEZE as a further ex­
periment with frames. They asked, in effect, if all the knowledge in PUFF 
could be represented in frames and what benefits would follow from doing 
so. In a short time (as a one-term class project) they reimplemented PUFF 
with a frame-based representation. Chapter 24 is a summary of their re­
sults. 

The version of PUFF written in BASIC (BASIC-PUFF) is a simplified 
version of the EMYCIN rule interpreter with the medical knowledge built 
into the code (Aikins et al., 1983). It was redesigned to run efficiently on 
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a PDP-11 in the pulmonary laboratory at Pacific Medical Center. Its knowl­
edge has been more finely tuned than it was in the original version, but is 
largely the same. BASIC-PUFF is directly coupled to the spirometer in the 
pulmonary function lab and automatically provides interpretations of the 
test results. Thus it turns the spirometer into a "smart instrument" instead 
of simply a data-collecting and recording device. Its interpretations are 
printed immediately, reviewed by a physician, and inserted into the per­
manent record with the physician's signature. In the majority of cases, the 
physician makes no additions or corrections to the conclusions; in some, 
however, additional notes are made to clarify the program's suggestions. 
BASIC-PUFF provides one model of technology transfer for expert sys­
tems: first implement a prototype with "off-the-shelf" tools such as EMY­
CIN, then rewrite the system to run efficiently on a small computer. 

Another experiment in which the PUFF knowledge base was recast 
into a different formalism is the AGE-PUFF version (Aiello and Nii, 1981). 
The intent was to use this small, easily managed knowledge base to exper­
iment with control issues, more specifically to explore the adequacy of the 
BLACKBOARD model, with event-driven control (Erman et al., 1980). 
Further experiments with AGE-PUFF are reported by Aiello (1983). 

One of the difficulties with a production rule formalism is in repre­
senting control information. For example, if we want rules R3, RS, and R7 
to be executed in that order, then we have to arrange for the LHS of R7 
not to match any current data base until after R3 and RS have fired. Often 
this is accomplished by defining a flag that is set when and only when R3 
fires and that is checked by RS, and another that is set by RS and checked 
by R7, as described in Chapter 2. The authors ofMYCIN's rules have only 
a few means available to influence the system's backward chaining, one of 
which is to define "dummy" parameters that act as flags. To the best of our 
knowledge, this was not done in MYCIN (in fact, it was explicitly avoided), 
but it has been done by others using EMYCIN. 

Another means of influencing the control is to order the clauses in 
premises of rules. This was done much of the time as a way of keeping 
MYCIN from pursuing minutiae before the more general context that 
motivates asking about minute details was established. Since MYCIN eval­
uates the premise clauses from first to last, in order, 3 putting more general, 
context-setting clauses at the beginning of the premise assures that the 
more specific clauses will not be asked about, or even considered, unless 
the context is appropriate. Using the order of premise clauses for this kind 
of screening permits the system builder to use early clauses to ensure that 
some parameters are traced first. For example, the predicate KNOWN is 
often used to cause a parameter to be traced. 

Still another means of representing controlling information in the 
rule-based formalism is via meta-rules, described in Chapter 28. Another 

3 An except ion is the preview mechanism described earlier. 
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similar approach is via strategy rules, as described in Chapter 29. The unity 
path mechanism (Chapter 3) also affects the order of rule invocation. 

ONCOCIN (discussed in Chapters 32 and 35) incorporates many of 
the ideas from these experiments, most notably the framelike representa­
tion of control knowledge and the description of changing contexts over 
time. It builds on other results presented in this book as well, so its design 
is described later. ONCOCIN clearly shows the influence of the evolution 
of our thinking presented in this section. 

One piece of recent research not included in this volume is the rerepre­
sentation of MYCIN's knowledge along the lines described in Chapter 29. 
The new program, called NEOMYCIN (Clancey and Letsinger, 1981 ), car­
ries much of its medical knowledge in rules. But it also represents (a) the 
taxonomy of diseases as a separate hierarchy, (b) strategy knowledge as 
meta-rules, (c) causal knowledge as links in a network, and (d) knowledge 
about disease processes in the form of frames characterizing location and 
temporal properties. One main motivation for the reconceptualization was 
to provide improved underpinnings for the tutorial program described in 
Chapter 26. Because of the richer knowledge structures in NEOMYCIN, 
informative explanations can be given regarding the program's diagnostic 
strategies, as well as the medical rules. 

NEOMYCIN, along with other recent work, emphasizes the desirabil­
ity of augmenting MYCIN's homogeneous set of rules with a classification 
of types of knowledge and additional knowledge of each type. In MYCIN's 
rule set, the causal mechanisms, the taxonomic structure of the domain, 
and the problem-solving strategies are all lumped together. An augmented 
knowledge base should separate these different types of knowledge to fa­
cilitate explanation and maintenance of the knowledge base, and perhaps 
to enhance performance as well. Causal mechanisms have been repre­
sented and used in several domains, including medicine (Patil et al., 1981) 
and electronics debugging (Davis, 1983). Mathematical models have been 
merged with symbolic causal models in AI/MM (Kunz, 1983). As a result 
of this recent work, considerably richer alternatives than MYCIN's ho­
mogeneous rule set can be found. 

Finally, it should be noted that the chapters in this part describe rather 
fundamental viewpoints on representation. Within a rule-based or frame­
based (or mixed) framework there are still numerous details of represent­
ing uncertainty, quantified variables, strategies, temporal sequences, book­
keeping information, and other concepts mentioned throughout the book. 



22 
Extensions to the 
Rule-Based Formalism 
for a Monitoring Task 

Lawrence M. Fagan, John C. Kunz, 
Edward A. Feigenbaum, and John J. Osborn 

The Ventilator Manager (VM) program is an experiment in expert system 
development that builds on our experience with rules in the MYCIN sys­
tem. VM is designed to interpret on-line quantitative data in the intensive 
care unit (ICU) of a hospital. After a major cardiovascular operation, a 
patient often needs mechanical assistance with breathing and is put in the 
ICU so that many parameters can be monitored. Many of those data are 
relevant to helping physicians decide whether the patient is having diffi­
culty with the breathing apparatus (the ventilator) or is breathing ade­
quately enough to remove the mechanical assistance. The VM program 
interprets these data to aid in managing postoperative patients receiving 
mechanical ventilatory assistance. 

VM was strongly influenced by the MYCIN architecture, but the pro­
gram was redesigned to allow for the description of events that change 
over time. VM is an extension of a physiologic monitoring system 1 and is 
designed to perform five specialized tasks in the ICU: 

This chapter is a longer and extensively revised version of a paper originally appearing in 
Proceedings of the Sixth UCAI (1979, pp. 260-262). Used by permission of International Joint 
Conferences on Artificial Intelligence, Inc.; copies of the Proceedings are available from Wil­
liam Kaufmann, Inc., 95 First Street, Los Altos, CA 94022. 

IVM was developed as a collaborative research project between Stanford University and 
Pacific Medical Center (PMC) in San Francisco. It was tested with patient information acquired 
from a physiologic monitoring system implemented in the cardiac surgery ICU at PMC and 
developed by Dr. John Osborn and his colleagues (Osborn et al., 1969). 

397 
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1. detect possible errors in measurement, 
2. recognize untoward events in the patient/machine system and suggest 

corrective action, 

3. summarize the patient's physiologic status, 

4. suggest adjustments to therapy based on the patient's status over time 
and long-term therapeutic goals, and 

5. maintain a set of case-specific expectations and goals for future evalu­
ation by the program. 

VM differs from MYCIN in two major respects. It interprets measurements 
over time, and it uses a state-transition model of intensive care therapies 
in addition to clinical knowledge about the diagnostic implications of data. 
Most medical decision-making programs, including MYCIN, have based 
their advice on the data available at one particular time. In actual practice, 
the clinician receives additional information from tests and observations 
over time and reevaluates the diagnosis and prognosis of the patient. Both 
the progression of the disease and the response to previous therapy are 
important for assessing the patient's situation. 

Data are collected in different therapeutic situations, or contexts. In 
order to interpret the data properly, VM includes a model of the stages 
that a patient follows from ICU admission through the end of the critical 
monitoring phase. The correct interpretation of physiologic measurements 
depends on knowing which stage the patient is in. The goals for intensive 
care are also stated in terms of these clinical contexts. The program main­
tains descriptions of the current and optimal ventilatory therapies for any 
given time. Details of the VM system are given by Fagan ( 1980). 

2 2 .1 The Application 

The intensive care unit monitoring system at Pacific Medical Center (Os­
born et al., 1969) was designed to aid in the care of patients in the period 
immediately following cardiac surgery. The basic monitoring system has 
proven to be useful in caring for patients with marked cardiovascular in­
stability or severe respiratory malfunction (Hilberman et al., 1975). Most 
of these patients are given breathing assistance with a mechanical ventilator 
until the immediate effects of anesthesia, surgery, and heart-lung bypass 
have subsided. The ventilator is essential to survival for many of these 
patients. Electrocardiogram leads are always attached, and patients usually 
have indwelling arterial catheters to assure adequate monitoring of blood 
pressure and to provide for the collection of arterial blood for gas analysis. 
The ventilator-to-patient airway is monitored to collect respiratory flows, 
rates, and pressures. Oxygen and carbon dioxide concentrations are also 
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measured. All of these measurements are available at the bedside through 
the use of specialized computer terminals. 

The mechanical ventilator provides total or partial breathing assistance 
(or ventilation) for seriously ill patients. Most ventilator therapy is with a 
type of machine that delivers a fixed volume of air with every breath, but 
a second type of machine delivers air at each breath until a fixed pressure 
is attained. Both the type and settings of the ventilator are adjusted to 
match the patient's intrinsic breathing ability. The "volume" mechanical 
ventilator provides a fixed volume of air under pressure through a tube 
to the patient. The ventilator can be adjusted to provide breaths at fixed 
intervals, which is called controlled mandatory ventilation (CMV), or in re­
sponse to sucking by the patient, which is known as assist mode. Adjustments 
to the output volume or the respiration rate of the ventilator are made to 
ensure an adequate minute volume to the patient. When the patient's status 
improves, the mechanical ventilator is disconnected and replaced by a T­
piece that connects an oxygen supply with the tube to the patient's lungs. 
If the patient can demonstrate adequate ventilation, the tube is removed 
(extubation). Often many of these clinical transitions must be repeated until 
the patient can breathe without assistance. 

Three types of problems can occur in managing the patient on the 
mechanical ventilator: 

1. changes in the patient's recovery process, requiring modifications to the 
life support equipment, 

2. malfunctions of the life support equipment, requiring replacement or 
adjustment of the ventilator, and 

3. failures of the patient to respond to therapeutic interventions within 
the expectations of the clinicians in charge. 

22.2 Overview of the Ventilator Manager Program 

The complete system (diagrammed in Figure 22-1) includes the patient 
monitoring sensors in the ICU, the basic monitoring system running on 
IBM 1800 and PDP-11 computers at the Pacific Medical Center, and the 
VM measurement interpretation program running on the SUMEX-AIM 
PDP- l 0 computer located at Stanford University Medical Center. Patient 
measurements are collected by the monitoring system for VM at two- or 
ten-minute intervals. Summary information, suggestions to the clinicians, 
and requests for additional information are generated at SUMEX for eval­
uation by research clinicians. The program's outputs are in the form of 
periodic graphical summaries of the major conclusions of the program and 
short suggestions for the clinician (as shown in Figures 22-2 and 22-3). 
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.....-----~ LI FE SUPPORT i+-----. 

OBSERVATIONS 
PATIENT CLINICIAN 

INTERPRETATIONS 

GOALS 

DATA 

MONITORING ---DATA 

FIGURE 22-1 VM system configuration. Physiological mea­
surements are gathered automatically by the monitoring system 
and provided to the interpretation program. The summary in­
formation and therapeutic suggestions are sent back to the ICU 
for consideration by clinicians. 

Summary generated at time 15:40 

All conclusions: 

BRADYCARDIA[PRESENT] 
HEMODYNAMICS[STABLE] 
HYPERVENTILATION[PRESENT] 
HYPOTENSION[PRESENT] 
Goal Location 
Patient Location 

. I 
1 2 

I . . 
1 3 

. I ..... I 
1 4 1 5 

ccccccccccccc1AAAAAAAAAAA 
V/CCGGGGGGGGGGCCCCCCCCCCC 

. I . . I I . I . 
1 2 1 3 1 4 1 5 

FIGURE 22-2 Summary of conclusions drawn by VM based 
on four hours of patient data. Current and optimal patient ther­
apy stages are represented by their first letter: V = VOLUME, 
A = ASSIST, C = controlled mandatory ventilation, I = chang­
ing. A double bar ( =) is printed for each ten-minute interval 
in which the conclusion on the left is made. 
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.. 1640 .. 
•• SUGGEST CONSIDER PLACING PATIENT ONT-PIECE IF 
•• PA02 > 70 ON FI02 < = .4 
•• PATIENT AWAKE AND TRIGGERING VENTILATOR 
•• ECG IS STABLE 

[measure of blood gas status] 

.. 1650 .... 1700 .... 1710 .... 1720 .... 1730 .... 1740 .... 1750 .. 

. . 1800 .. 
•• HYPERVENTILATION 
•• PATIENT HYPERVENTILATING. 
•• SUGGEST REDUCING EFFECTIVE ALVEOLAR VENTILATION. 
•• TO REDUCE ALVEOLAR VENTILATION, REDUCE TIDAL VOLUME, 
•• REDUCE RESPIRATION RATE, OR 
•• INCREASE DISTAL DEAD SPACE TUBING VOLUME 

.. 1810 .. 
•• SYSTEM ASSUMES PATIENT STARTING T-PIECE 

.. 1813 .... 1815 .... 1817 .. 
•• HYPOVENTILATION 

.. 1819 .... 1822 .. 
•• HYPOVENTILATION 

FIGURE 22-3 Trace of program output. Format is " .. <time 
of day> .. " followed by suggestions for clinicians. Comments 
are in brackets. 

22.2.1 Measurement Interpretation 

Knowledge is represented in VM by production rules of the form shown 
in Figure 22-4. 

The historical relations in the premise of a rule cause the program to 
check values of parameters for a period of time; e.g., HYPERVENTI­
LATION is PRESENT for more than ten minutes. Conclusions made in the 
action part of the rule assert that a parameter has had a particular value 
during the time instance when the rule was examined. Suggestions are text 
statements, printed out for clinicians, that state important conclusions and 
a possible list of remedies. Expectations assert that specific measurements 

IF: Historical relations about one or more parameters hold 

THEN: 1) Make a conclusion based on these facts; 
2) Make appropriate suggestions to clinicians; and 
3) Create new expectations about the 

future values of parameters. 

FIGURE 22-4 Format for rules in VM. Not every rule's action 
part includes conclusions, suggestions, and expectations. 
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should be within the specified ranges at some point in the future. Thus a 
rule examines the current and historical data to interpret what is happen­
ing at the present and to predict events in the future. 

Additional information associated with each rule includes the symbolic 
name (e.g., STABLE-IIEMODYNAMICS), the rule group (e.g., rules about 
instrument faults), the main concept (definition) of the rule, and all of the 
therapeutic states in which it makes sense to apply the rule. The list of 
states is used to focus the program on the set of rules that are applicable 
at a particular point in time. Figure 22-5 shows a sample rule for deter­
mining hemodynamic stability (i.e., a measure of the overall status of the 
cardiovascular system). 2 

STATUS RULE: STABLE-HEMODYNAMICS 
DEFINITION: Defines stable hemodynamics based on blood pressures and heart rate 
APPLIES TO: patients on VOLUME, CMV, ASSIST, T-PIECE 
COMMENT: Look at mean arterial pressure for changes in blood pressure and systolic blood pres­

sure for maximum pressures. 
IF 

HEART RATE is ACCEPTABLE 
PULSE RATE does NOT CHANGE by 20 beats/minute in 15 minutes 
MEAN ARTERIAL PRESSURE is ACCEPTABLE 
MEAN ARTERIAL PRESSURE does NOT CHANGE by 15 torr in 15 minutes 
SYSTOLIC BLOOD PRESSURE is ACCEPTABLE 

THEN 
The HEMODYNAMICS are STABLE 

FIGURE 22-5 Sample VM rule. 

The VM knowledge base includes rules to support five reasoning steps 
that are evaluated at the start of each new time segment: 

1. characterize measured data as reasonable or spurious; 

2. determine the therapeutic state of the patient (currently the mode of 
ventilation); 

3. adjust expectations of future values of measured variables when the 
patient state changes; 

4. check physiological status, including cardiac rate, hemodynamics, ven­
tilation, and oxygenation; and 

5. check compliance with long-term therapeutic goals. 

Each reasoning step is associated with a collection of rules, and each rule 
is classified by the type of conclusions made in its action portion; e.g., all 
rules that determine the validity of the data are classed together. 

~The complete rule set, from which this rule was selected, is included in the dissertation by 
Fagan (1980), which is available from University Microfilms, #AAD80-2465 l. 



Overview of the Ventilator Manager Program 403 

22.2.2 Treating Measurement Ranges Symbolically 

Most of the rules represent the measurement values symbolically, using the 
terms ACCEPTABLE or IDEAL to characterize the appropriate ranges. 
The actual meaning of ACCEPTABLE changes as the patient moves from 
state to state, but the statement of the relation between physiological mea­
surements remains constant. For example, the rule shown in Figure 22-5 
checks to see if the patient's heart rate is ACCEPTABLE. In the different 
clinical states, or stages of mechanical assistance, the definition of AC­
CEPTABLE changes. Immediately after cardiac surgery a patient's heart 
rate is not expected to be in the same range as it is when he or she is moved 
out of the ICU. Mentioning the symbolic value ACCEPTABLE in a rule, 
rather than the state-dependent numerical range, thus reduces the number 
of rules needed to describe the diagnostic situation. 

The meaning of the symbolic range is determined by other rules that 
establish expectations about the values of measured data. For example, 
when a patient is taken off the ventilator, the upper limit of acceptability 
for the expired carbon dioxide measurement is raised. (Physiologically, a 
patient will not be able to exhale all the C02 produced by his or her system, 
and so C02 will accumulate.) The actual numeric calculation of EXPIRED 
pC02 HIGH in the premise of any rule will change when the context 
switches (removal from ventilatory support), but the statement of the rules 
remains the same. A sample rule that creates these expectations is shown 
in Figure 22-6. 

22.2.3 Therapy Rules 

Therapy rules can be divided into two classes: the long-term therapy as­
sessment (e.g., when to put the patient on the T-piece), and the determi­
nation of response to a clinical problem, such as hyperventilation or hy­
pertension. The two rules shown in Figure 22-7, for selecting T-piece 
therapy and fi:>r responding to a hyperventilation problem, demonstrate 
several key factors in the design of the rule base: 

• use of a hierarchy of physiological states, 
• use of the program's determination of patient's clinical state, 

• generation of conditional suggestions. 

The abstracted hierarchy of states, such as hemodynamic stability, is im­
portant because it makes the rules more understandable. Since the defi­
nition of stability changes with transition to different clinical stages, as 
described above, rules about stability are clearer if they mention the con­
cept rather than the context-specific definition. It is important for the 
program to determine what state the patient is in, since the program is 
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INITIALIZING RULE: INITIALIZE-CMV 
DEFINITION: Initialize expectations for 

patients on controlled mandatory 
ventilation (CMV) therapy 

APPLIES TO: all patients on CMV 
IF ONE OF: 

PATIENT TRANSITIONED FROM VOLUME TO CMV 
PATIENT TRANSITIONED FROM ASSIST TO CMV 

THEN EXPECT THE FOLLOWING 

acceptable range 
[ ideal ] 

very very 

MEAN PRESSURE 
HEART RATE 
EXPIRED pC02 

low 

60 

22 

low 

75 
60 
28 

min max high 

BO 95 110 
110 

30 35 42 

FIGURE 22·6 Portion of an initializing rule. This type of rule 
establishes initial expectations of acceptable and ideal ranges 
of variables after state changes. Not all ranges are defined for 
each measurement. EXPIRED pC02 is a measure of the per· 
centage of carbon dioxide in expired air measured at the mouth. 

high 

120 

50 

designed to avoid interrupting the activities in the ICU to ask questions of 
the physicians or nurses. Its design is thus different from the design of a 
one-shot consultation system such as MYCIN. A physician will change the 
mode of assistance from CMV (where the machine does all the work of 
breathing) to ASSIST (where the machine responds to a patient's attempts 
to breathe). The VM program has to know that this transition is normal 
and to determine when it occurs in order to avoid drawing inappropriate 
conclusions. The advice that VM offers is often conditional. Unlike other 
consultation programs such as MYCIN, VM attempts to avoid a dialogue 
with the clinician. When the appropriateness of a suggestion depends on 
facts not known to VM, it creates a conditional suggestion. The clinician 
can check those additional facts and make an independent determination 
of the appropriateness of the suggestion. 

22.2.4 Selecting Optimal Therapy 

The stages of ventilatory therapy are represented in VM by a finite state 
graph (see Figure 22-8). The boxed nodes of the graph represent the 
values associated with the parameters "PatientLocation," specifying the cur­
rent state, and "GoalLocation," specifying alternative therapies. The arcs 
of the graph represent transition rules and therapy rules. Thus goals are 
expressed as "moves" away from the current therapeutic setting, and each 
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THERAPY-RULE: THERAPY.A-T 
DEFINITION: DEFINES READINESS TO TRANSITION FROM ASSIST MODE TOT-PIECE 
COMMENT: If patient has stable hemodynamics, ventilation is acceptable, and patient has been 

awake and alert enough to interact with the ventilator for a period of time then transition 
to T-piece is indicated. 

APPLIES TO: ASSIST 
IF 

HEMODYNAMICS ARE STABLE 
HYPOVENTILATION NOT PRESENT 
RESPIRATION RATE ACCEPTABLE 
PATIENT IN ASSIST FOR > 30 MINUTES 

THEN 
THE GOAL IS FOR THE PATIENT TO BE ON THE T-PIECE 
SUGGEST CONSIDER PLACING PATIENT ONT-PIECE IF 

Pa02 > 70 on FI02 < = 0.4 
PATIENT AWAKE AND TRIGGERING VENTILATOR 
ECG IS STABLE 

THERAPY-RULE: THERAPY.VENTILATOR-ADJUSTMENT-FOR-HYPERVENTILATION 
DEFINITION: MANAGE HYPERVENTILATION 
APPLIES TO: VOLUME ASSIST CMV 
IF 

HYPERVENTILATION PRESENT for > 8 minutes 
COMMENT wait a short while to see if hyperventilation persists 
V02 not low 

THEN 
SUGGEST PATIENT HYPERVENTILATING. 

SUGGEST REDUCING EFFECTIVE ALVEOLAR VENTILATION. 
TO REDUCE ALVEOLAR VENTILATION, REDUCE TV BY 15%, REDUCE RR, OR 

INCREASE DISTAL DEAD SPACE TUBING VOLUME 

FIGURE 22-7 Two therapy rules. The first (THERAPY.A-T) 
suggests a T-piece trial; the second resolves a hyperventilation 
problem. 

possible move corresponds to a decision rule. The overall clinical goal, of 
course, is to make the patient self-sufficient, specifically, to remove the 
mechanical breathing assistance (extubate) as soon as is practical for each 
patient. The knowledge base is linked to the graph through the APPLIES 
TO statement specified in the introductory portion of each rule. 

The mechanism for deriving and representing therapy decisions in 
VM takes into account the relationship between VM's suggestions and ac­
tual therapy changes. Computer-generated suggestions about therapy 
changes are decoupled from actual changes due to: (1) additional infor­
mation to the clinician suggesting modification to or disagreement with 
VM's suggestion; (2) sociologic factors that delay the implementation of 
the therapy decisions (e.g., T-piece trials have been delayed due to concern 
about disturbing a patient in the next bed); or (3) variation of criteria 
among clinicians for making therapy decisions. Because of the discrepancy 
between computer-generated goals and actual therapy, VM cannot assume 
that the patient is actually in the stage that the program has determined 
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NOT 

MONITORED 

VOLUME 

VENTILATION 

CMV 

ASSIST 

T-PIECE 

FIGURE 22-8 Therapy state graph. 

EXTUBATE 

is optimal. Transition rules in VM allow the program to notice changes in 
a patient's state. They reset the description of the context, then, so that the 
data will be interpreted correctly. However, when the therapy rules are 
evaluated, the program may determine that the previous state is still more 
appropriate. 

Two models can be created for representing the period of time be­
tween the suggestion of therapy (a new goal) and its implementation. The 
first model is that therapy goals are the same as last stated, unless explicitly 
changed. It assumes that once a new therapeutic goal is established, the 
goal should persist until either the therapy is initiated or the goal is negated 
by a rule. This model is based on the common clinical practice of contin­
uing recently initiated therapy even if the situation has changed. This 
clinical practice, which might be termed hysteresis/' is used to avoid frequent 
changes in treatment strategy-i.e., avoid oscillation in the decision-making 
process. While clinicians acknowledge this behavior, they find it hard to 
verbalize rules for rescinding previous therapy goals. This hysteresis has 
also been evident in the formulation of some of the therapy rules. The 
rule that suggests a switch from assist mode to T-piece is stated in terms 
of ACCEPTABLE limits; the rule for aborting T-piece trials (back to assist 
mode or CMV) is stated in terms of VERY HIGH or VERY LOW limits. 
This leaves a "grey area" between the two decision points and precludes 
fluctuating between decisions. 

3 Hysteresis is "a lag of effect when the forces acting on a body are changed" (Webster's New 
World Dictionmy, 1976). 
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The second model for representing therapeutic goals requires that the 
appropriate goal be asserted each time the rule set is evaluated. If no 
therapy rules succeed in setting a new goal, the goal is asserted to be the 
current therapy. This scheme ignores the apparent practices of clinicians, 
but represents a more "conservative" approach that is consistent with the 
rule-writing strategy used by our experts. This model is potentially sensi­
tive to minor perturbations in the patient measurements, but such sensi­
tivity implies that a borderline therapy decision was originally made. 

22 3 Details of VM • 

22.3.l Parameters 

The knowledge in VM is based on relationships among the various param­
eters of the patient, such as respiration rate, sex, and hyperventilation. The 
program assigns values to each of these parameters as it applies its knowl­
edge to the patient data: the respiration rate is high, the sex of the patient 
is male, and hyperventilation is present. In a changing domain, the values 
associated with each parameter may vary with time, for example, "hyper­
ventilation was present f(>r one-half hour, starting two hours ago." Not all 
parameters have the same propensity to change over time; a classification 
is given in Figure 22-9. 

Parameters are represented internally by using the property list no­
tation of LISP. The property list contains both static elements (e.g., the list 
of rules that use the parameter in the premise) and dynamic elements (e.g., 
the time when the parameter was last updated). The static elements are 
input when the parameter is described or calculated from the contents of 
the rule set. The dynamic elements are computed as the program inter­
prets patient data. Figure 22-10 lists the properties associated with param­
eters (although not every parameter has every property). 

Figure 22-11 shows a "snapshot" of the parameters RR (respiration 
rate) and HEMODYNAMICS taken after 120 minutes of data have been 
processed. Associated with values assigned to parameters (e.g., RR LOW 
or HEMODYNAMICS STABLE) are lists of intervals when those conclu­
sions were made. Each interval is calculated in terms of the elapsed time 
since patient data first became available. Thus, in the example, the hemo­
dynamics were stable from 2-8 minutes into the program, momentarily at 
82 minutes, and in the interval of 99-110 minutes of elapsed time. 

The properties USED-IN, CONCLUDED-IN, and EXPECTED-IN 
are used to specify how the parameters are formed into a network of rules. 
These pointers can be used to guide various strategies for examining the 
rules-e.g., find and evaluate each rule that uses respiration rate or each 
rule that concludes hemodynamic status. 
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Constant 

Examples: surgery type, sex 
Input: once 
Reliability: value is good until replaced 

Continuous 

Examples: heart rate, blood pressure 
Input: at regular intervals (6-20 times/hour) 
Reliability: presumed good unless input data are missing or artifactual 

Volunteered 

Examples: temperature, blood gases 
Input: at irregular intervals (2-10 times/day) 
Reliability: good for a period of time, possibly a function of the current 

situation 

Deduced 

Examples: hyperventilation, hemodynamic status 
Input: calculated whenever new data are available 
Reliability: a function of the reliability of each of the component 

parameters. 

FIGURE 22-9 Classification of parameters. 

The UPDATED-AT and GOOD-FOR properties are used to deter­
mine the status of the parameter over time, when it was last given a value 
and the time period during which a conclusion made about this parameter 
can reasonably be used for making future conclusions. The GOOD-FOR 
property can also be a pointer to a context-dependent rule. 

DEFINITION: free form text describing the parameter 

USED-IN: a list of the names of rules that use this parameter to make conclusions 

CONCLUDED-IN: names of rules where this parameter is concluded 

EXPECTED-IN: names of rules where expectations about this parameter are made 

GOOD-FOR: length of time that a measurement can be assumed to be valid; if 
missing, then must be recomputed, input if possible, or assumed unknown 

UPDATED-AT: the last time any conclusion was made about this parameter 

FIGURE 22-10 Properties associated with parameters. 
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DEFINITION: (RESPIRATION RATE) 
USED-IN: (TRANSITION.V-CMV TRANSITION.V-A TRANSITION.A-CMV 

TRANSITION.CMV-A STATUS.BREATHING-EFFORT/T THERAPY.A-CMV 
THERAPY.A-T THERAPY.T-V ABNORMAL-EC02) 

EXPECTED-IN: (INITIALIZE.V INITIALIZE.CMV INITIALIZE.V-RETURN 
INITIALIZE.A INITIALIZE.T-PIECE) 

GOOD-FOR: 15 [information is good for 15 minutes] 
UPDATED-AT: 82 [last updated at 82 minutes after start] 
LOW: ((72 . 82) (52 . 59)) [concluded to be LOW from 52-59 minutes and 72-82 

minutes after start] 

HEMODYNAMICS 

DEFINITION: (HEMODYNAMICS) 
CONCLUDED-IN: (STATUS.STABLE-HEMODYN/V,A,CMV) 
USED-IN: (THERAPY.CMV-A THERAPY.A-T THERAPY.T-PIECE-TO-EXTUBATE) 
GOOD-FOR: NIL [this is a derived parameter so reliability is based on 

other parameters] 
UPDATED-AT: 110 [last updated at 110 minutes after start] 
STABLE: ((99 . 110) (82 . 82) (2 . 8)) 

FIGURE 22-11 "Snapshot" of parameters RR (respiration 
rate) and HEMODYNAMICS after 120 minutes of elapsed time. 

22.3.2 Measurements 

Over 30 measurements are provided to VM every 2 to 10 minutes. 4 The 
interval is dependent on the situation; shorter intervals are used at critical 
times as specified by the clinician at the bedside. It is not appropriate to 
store this information using the interval notation above, since most mea­
surements change with every new collection of data. Predefined intervals, 
e.g., respiration rate from 5-10, 10-15, and 15-20 breaths/minute, could 
be used to classify the data, but meaningful ranges change with time. In­
stead, symbolic ranges such as HIGH and LOW are calculated from the 
measurements as appropriate. A large quantity of data is presented to the 
program, in contrast to typical knowledge-based medical systems. About 
5000 measurement values per patient are collected each day (30 measure­
ments per collection with 6-8 data collections/hour). Patients are moni­
tored from a few hours to a few weeks, with the average about 1.5 days. 
While this amount of information could be stored in a large-scale program 
such as VM, only the most recent information is used to make conclusions. 
The program stores in memory about one hour's worth of data, indepen­
dent of the time interval between measurement collections (the remainder 

·1Clinicians can select the default sample rate: fast (2 minutes) or slow (IO minutes). An extra 
data sample Giii be taken immediately on request. 
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of the data are available on secondary storage). Technically, this storage is 
accomplished by maintaining a queue of arrays that contain the entire 
collection of measurements that vary over time. The length of the queue 
is adjusted to maintain an hour's worth of data. Schematically, the mea­
surement storage might be represented as follows: 

Elapsed time 
Respiration rate 
Systolic blood pressure 

Clock time 

69 
9 

141 

1230 
[current 
tirve] 

59 
9 

154 

1220 

58 
10 

153 

1219 

09 
9 

150 

1130 

Throwing away old measurements does not limit the ability of the program 
to utilize historical data. The conclusions based on the original data, which 
are stored much more compactly, are maintained throughout the patient 
run. Thus the numerical measurement values are replaced by symbolic 
abstractions over time. 

One current limitation is the program's inability to reevaluate past 
conclusions, especially when measurements are taken but are not reported 
until some time later. One example of this is the interpretation of blood 
gas measurements. It takes about 20-30 minutes for the laboratory to 
process blood gas samples, but by that time the context may have changed. 
The program cannot then back up to the time that the blood gases were 
taken and proceed forward in time, reevaluating the intervening measure­
ments in light of the new data. The resolution of conflicts between expec­
tations and actual events may also require modification of old conclusions. 
This is especially true when forthcoming events are used to imply that an 
alternative cause provides a better explanation of observed phenomena. 

22.3.3 Rules 

Rules used in VM have a fixed structure. The premise of a rule is con­
structed from the conjunction or disjunction of a set of clauses. Each clause 
checks relationships about one or more of the parameters known to the 
program. Each of these relationships, such as "the respiration rate is be­
tween an upper and lower limit," will be tested to determine if the premise 
is satisfied. If the clauses are combined conjunctively and each clause is 
true, or combined disjunctively and at least one clau&e is true, then the 
rule is said to "succeed." As explained in Section 22.3.6 on uncertainty in 
VM, no probabilistic weighting scheme is currently used in the rule eval­
uation (although the mechanism is built into the program). 
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When a rule succeeds, the action part of the rule is activated. The 
action portion of each rule is divided into three sections: conclusions (or 
interpretations), suggestions, and expectations. The only requirement is 
that at least one statement (of any of the three types) is made in the action 
part of the rule. The first section of the action of the rule is composed of 
the conclusions that can be drawn from the premise of the rule. These 
conclusions (in the form of a parameter assuming a value) are asserted by 
the program to exist at the current time and are stored away for producing 
summaries and to provide new facts for use by other rules. When the same 
conclusion is also asserted in the most recent time when data are available 
to the program, then the new conclusion is considered a continuation of the 
old one. The time interval associated with the conclusion is then extended 
to include the current time. This extension presumes that the time period 
between successive conclusions is short enough that continuity can be 
asserted. 

The second section of the action is a list of suggestions that are printed 
for the clinician. Each suggestion is a text string to be printed that sum­
marizes the conclusions made by the rule. 5 Often this list of suggestions 
includes additional factors to check that cannot be verified by the pro­
gram-e.g., the alertness of the patient. By presenting the suggestions as 
conditional statements, the need to interact with the user to determine the 
current situation is minimized. The disadvantage of this method is that the 
program maintains a more nebulous view of the patient's situation, unless 
it can be ascertained later that one of the suggestions was carried out. 

The last section of the action part of the rule is the generation of new 
expectations about the ranges of measurements for the future. Expecta­
tions are created to help the program interpret future data. For example, 
when a patient is first moved from assist mode to the T-piece, many pa­
rameters can be expected to change drastically because of the stress as well 
as the altered mode of breathing. When the measurements are taken, then, 
the program is able to interpret them correctly. New upper and lower 
bounds are defined for the acceptable range of values for heart rate, for 
example, for the duration of time specified. The duration might be spec­
ified in minutes or in terms of a context (e.g., "while the patient is on the 
T-piece"). 

MYCIN does not place any constraints on the types of conclusions 
made in the action part of the rule, although most rules use the CON­
CLUDE function in their right-hand sides. For example, MYCIN calls a 
program to compute the optimal therapy as an action part of a rule (Chap­
ter 6). The basic motivation behind imposing some structure on rules was 
to act as a mnemonic device during rule acquisition. The same advantage 
is found in framelike systems with explicit component names-e.g., 
CAUSED-BY, MUST-HAVE, and TRIGGERS in the Present Illness Pro­
gram (Szolovits and Pauker, 1978). 

5Not every conclusion has a corresponding suggestion, particularly when the conclusion 
denotes a "normal" status-e.g., hemodynamic stability. 
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A rule is represented internally by a property list with a fixed set of 
properties attached to the name of the rule: 

RU LEG ROUP 

DEFINITION 
COMMENT 

NODE 

EVAL 

ORIGLHS 

FILELOCATION 

M 

I 
s 
E 

Defines type or class of the rule; in this case, the 
rules that deduce the status of the patient 
Free text that defines the main idea of the rule 
The collected comments from the external form of 
the rule 
All of the contexts for which this rule makes sense 
(currently limited to the values associated with the 
patient's therapeutic setting) 
Specifies the methods of evaluation; ALL OF for 
conjunction, ONE OF for disjunction, X% for 
requirement of a fixed percentage of verified 
premise clauses 
A copy of the external notation of the premise of 
the rule, used in explanations and tracing 
The description of the location on a file of the 
original text of the rule 
The translated premise of the rule, a list of calls to 
premise functions (M stands for match) 
The list of interpretations (conclusions) to be made 
The list of suggestions to be printed out 
The list of expectations to be made 

The actual processing of a rule is carried out by a series of functions 
that test conditions, make interpretations, make suggestions, or create ex­
pectations. Each of these functions has a well-defined semantic interpre­
tation and provides the primitives for encoding the knowledge base. 

The translation between an external format, e.g., RESPIRATION 
RATE> 30, and the corresponding internal format, (MCOMP RR> 30), 
is made by the same parsing program used in EMYCIN.6 The MCOMP 
function is given a parameter name (RR), a relation (less than, greater 
than, or equal to), and a number with which to compare it. The execution 
of the MCOMP function returns a numerical representation of TRUE, 
FALSE or UNKNOWN, based on the current value of respiration rate. 
Figure 22-12 demonstrates the external and internal representations of a 
typical rule. 

22.3.4 Premise Functions 

One goal of the VM implementation is to create a simple set of premise 
functions that are able to test for conditions across time. Many of the static 
premise functions have been adapted from the MYCIN program; e.g., 

6The parsing program was written by James Bennett, based on work by Hendrix (1977). 



STATUS RULE: STATUS. STABLE-HEMODYNAMICS 
DEFINITION: Defines stable hemodynamics based 

on blood pressures and heart rate 
APPLIES TO: patients on VOLUME, CMV, ASSIST, 

T-PIECE 
COMMENT: Look at mean arterial pressure for 

changes in blood pressure and systolic 
blood pressure for maximum pressures. 

IF 
HEART RATE is ACCEPTABLE 
PULSE RATE does NOT CHANGE by 20 beats/minute 

in 15 minutes 
MEAN ARTERIAL PRESSURE is ACCEPTABLE 
MEAN ARTERIAL PRESSURE does NOT CHANGE by 15 

torr in 15 minutes 
SYSTOLIC BLOOD PRESSURE is ACCEPTABLE 

THEN 
The HEMODYNAMICS are STABLE 

RULEGROUP: STATUS-RULE 
DEFINITION: ((DEFINES STABLE HEMODYNAMICS BASED) 

(ON BLOOD PRESSURES AND HEART RATE)) 
COMMENT: ((LOOK AT MEAN ARTERIAL PRESSURE FOR) 

(CHANGES IN BLOOD PRESSURE AND SYSTOLIC) 
(BLOOD PRESSURE FOR MAXIMUM PRESSURES)) 

NODE: (VOLUME CMV ASSIST T-PIECE) 
EVAL: (ALL OF) 
ORIGLHS: ((HEART RATE IS ACCEPTABLE) 
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(PULSE RATE DOES NOT CHANGE BY 20 BEATS/MINUTE IN 15 
MINUTES) 

(MEAN ARTERIAL PRESSURE IS ACCEPTABLE) 
(MEAN ARTERIAL PRESSURE DOES NOT CHANGE BY 15 TORR 

IN 15 MINUTES) 
(SYSTOLIC BLOOD PRESSURE IS ACCEPTABLE)) 

FILELOCATION: (<PuffNM>VM.RULES;18 12538 13143) 
M: ((MSIMP HR ACCEPTABLE NIL) 

(FLUCT PR CHANGE 20 (0.0 15) NOT) 
(MSIMP MAP ACCEPTABLE NIL) 
(FLUCT MAP CHANGE 15 (0.0 15) NOTT 
(MSIMP SYS ACCEPTABLE NIL)) 

I: ((INTERP HEMODYNAMICS = STABLE NIL)) 

FIGURE 22-12 External and internal representations for a 
rule in VM. 

MCOMP encompasses the functions of GREATERP, LESSP, numeric 
EQUAL, and their negations in MYCIN. Most of the functions listed below 
test the value of a parameter within a time interval and return TRUE, 
FALSE or UNKNOWN. As mentioned earlier, they reference concepts, 
such as HIGH value or STABLE value, that are defined by rules at each 
stage. Each function is composed of the following program steps: (a) find 
out the value of the parameter mentioned in the time period mentioned 
(otherwise, use the current time), (b) make the appropriate tests, and (c) 
negate the answer, if required. Table 22-1 lists the premise functions. 



TABLE 22-1 ""' -""' 
Class Function Format Example Action 

Testing FLU CT FLUCT [parameter, THE MEAN ARTERIAL Calculates slopes or ranges from the 
measurement direction, amount, time- PRESSURE DOES NOT table of measurements; direction 
values range, negation] CHANGE BY 15 TORR IN can be rises, drops, or changes 

15 MINUTES 

STABILITY STABILITY [parameter, RESPIRATION RATE IS Calculates the stability of the 
time-range, negation] NOT STABLE FOR 20 measurement by comparing the 

MINUTES distance between the average and 
the maximum and minimum values 
over the time range 

MSIMP MSIMP RESPIRATION RATE IS Compares the current value of a 
[parameter, relation, NOT HIGH parameter with one of the 
negation] expectation types; relation can be 

very low, low, abnormally low, 
acceptable, high, very high, or 
abnormally high 

MCOMP MCOMP [parameter, HEART RATE IS NOT Compares the current value of the 
relation, compared to, >150 parameter with a numeric cutoff or 
negation] HEART RATE IS< THE a symbolic range; relation can be 

IDEAL-MINIMUM greater than, less than or equal to; 
EXPECTATION LIMIT compared-to can be any number, 

ideal-minimum, ideal-maximum, 
very low, etc. 

BETWEEN BETWEEN [parameter, PULSE RATE IS NOT Compares the current value of the 
lower-limit, upper-limit, BETWEEN 40 AND 60 parameter with a numeric range 
negation] BEATS/MINUTE 



Testing clerivecl TIMEEXP TIMEEXP [parameter, PATIENT IS ON CMV Checks that the parameter has had 
conclusions value, relation, time- FOR (;REATER THAN 30 a value for the specified period of 

range, negation] MINUTES time; the time range may be in the 
past, e.g., 20 to 40 minutes ago; 
relation can be greater than, less 
than, or equal to 

TRANSITION TRANSITION PATIENT Checks for state changes; parameter 
[parameter, from-node, TRANSITIONED FROM is usually PATIENT or GOAL; 
to-node] ASSIST MODE TO THE from-node and to-node are 

T-PIECE equipment configurations, e.g., 
ASSIST MODE. 

Interpretation INTERP INTERP [parameter, THERE IS Makes conclusions; updates property 
value, negation] HYPERVENTILATION list of parameter to show changes 

Suggestion SUGGEST SUGGEST [arbitrary-text] SUGGEST PUTTING Prints suggestion when rule 
THE PATIENT ON THE succeeds 
T-PIECE IF PATIENT IS 
AWAKE 

Expectation EXPECT EXPECT [parameter, THE ACCEPTABLE Sets up one of three levels of 
limit-type, limit, RANGE FOR SYSTOLIC expectations: for all time, for the 
expectation-type, time- BLOOD PRESSURES IS duration of the current context, or 
range] 110-150 (while the patient for a fixed interval; limit-type can 

is on volume ventilation) be upper limit, lower limit, range, 
or table; expectation-type can be 
default, context, or timed 

Miscellaneous EQUATION EQUATION [variables, FN(TIDAL VOLUME, Evaluates equation and returns 
equation] WEIGHT): TIDAL Boolean value 

VOLUME > 3 * WEIGHT 

EXECUTE EXECUTE [rule-group] EXECUTE STATUS- Evaluates each of the rules in the 
RULES named group according to the .... 

method specified in Section 22.3.5 ..... 
'"" 
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22.3.5 Control Structure 

A simple control structure is used to apply the knowledge base to the 
patient data. This method starts by the execution of the goal rule, which 
in turn evaluates a set of rules corresponding to each level of abstraction 
in order: first, data validation, followed by context checking and expecta­
tion setting, determination of physiological status, and finally, therapeutic 
response, if necessary. From the group of rules at each level of reasoning, 
each rule is selected in turn. The current context as determined by the 
program is compared against the list of applicable contexts for each rule 
(the NODE property). The premise portions of acceptable rules are ex­
amined. If the parameter mentioned in a premise clause has not yet been 
fully evaluated, an indexing scheme is used to select the rules within this 
rule set that can make that conclusion. Using this method avoids the ne­
cessity of putting the rules in a specific order. The rule is added to a list 
of "used" rules, and the next unexamined rule is studied. The list of eval­
uated rules is erased each time the rule set is evaluated. When a rule 
succeeds, the action part of the rule is used to make interpretations, print 
suggestions, and set expectations. 

Most rules attempt to explain the interpretation of measurements that 
have "violated" their expectations. Thus, for the portion of the rules that 
mention an "out-of-range" measurement value in their premise or that are 
based on the conclusions of these rules, the following strategy could be 
used: compare all measurements against the current expectations, and for­
ward chain only those measurements with values that require explanation. 
This method is not useful when the rule specifies that several normal mea­
surements imply a normal situation, e.g., determining hemodynamic sta­
bility. These "normal" rules would have to be separated and forward- or 
backward-chained as appropriate. 

22.3.6 Uncertainty in VM 

Although the MYCIN certainty factor mechanism (Chapter 11) is incor­
porated into the VM structure, it has not been used. Most of the repre­
sentation of uncertainty has been encoded symbolically in the contents of 
each rule. Rules conclude that measurement values can be spurious (under 
specified conditions), and the interpreter prohibits using such aberrant 
values for further inferences. Any value associated with a measured pa­
rameter that was concluded too long ago is considered to be unknown and, 
therefore, no longer useful in the reasoning mechanism. This is meant to 
be a first approximation to our intuition that confidence in an interpre­
tation decays over time unless it is reinforced by new observations. 

Uncertainty has been implicitly incorporated in the VM knowledge 
base in the formulation of some rules. In order to make conclusions with 
a higher level of certainty, premise clauses were added to rules that cor-
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related strongly with existing premise clauses-e.g., using both mean and 
systolic blood pressures. The choice of measurement ranges in several ther­
apy rules also took into account the element of uncertainty. Although the 
experts wanted four or five parameters within the IDEAL limit prior to 
suggesting the transition to the next optimal therapy state, they often used 
the ACCEPTABLE limits. In fact, it would be unlikely that all measure­
ments would simultaneously fall into IDEAL range. Therefore, incorpo­
rating these "grey areas" into the definition of the symbolic ranges was 
appropriate. There are at least two possible explanations for the lack of 
certainty factors in VM rule base: (1) on the wards, it is only worthwhile 
to make an inference if one strongly believes and can support the conclu­
sion; and (2) the measurements available from the monitoring system were 
chosen because of their high correlation with patients' conditions. 

As mentioned elsewhere, the PUFF and SACON systems also did not 
use the certainty factor mechanism. The main goal of these systems was 
to classify or categorize a small number of conclusions as opposed to mak­
ing fine distinctions between competing hypotheses. This view of uncer­
tainty is consistent with the intuitions of other researchers in the field 
(Szolovits and Pauker, 1978, p. 142): 

If possible, a carefully chosen categorical reasoning mechanism which is 
based on some simple model of the problem domain should be used for 
decision making. Many such mechanisms may interact in a large diagnostic 
system, with each being limited to its small subdomain .... When the complex 
problems need to be addressed-which treatment should be selected, how 
much of the drug should be given, etc.-then causal or probabilistic models 
are necessary The essential key to their correct use is that they must be 
applied in a limited problem domain where their assumptions can be ac­
cepted with confidence. Thus, it is the role of categorical methods to discover 
what the central problem is and to limit it as strongly as possible; only then 
are probabilistic techniques appropriate for its solution. 

22.3. 7 Representation of Expectations in VM 

Representing expectations about the course of patient measurements is a 
major design issue in VM. In the ICU situation, most of the expectations 
are about the typical ranges (bounds) associated with each physiological 
measurement. Interpreting the relationship between measurement values 
and their expectations is complicated particularly at the discontinuities 
caused by setting numeric boundaries. For example, on a scale of possible 
blood pressure values ranging from 50 to 150, how much difference can 
there be between measurement values of 119 and 121, in spite of some 
boundary at 120? However, the practice of setting specific limits and then 
treating values symbolically (e.g., TOO HIGH) appears to be a common 
educational and clinical technique. The ill effects on decision making of 
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Symbolic value 
IDEAL 
ACCEPTABLE 

VERY UNACCEPTABLE 

IMPOSSIBLE 

FIGURE 22-13 
bounds. 

Interpretation 

The desired level or range of a measurement 
The limits of acceptable values beyond which 
corrective action is necessary-bounds are high 
and low (similar for rate) 
Limit at which data are extremely out of range­
e.g., on which the definition of severe hypotension 
is based 
Outside the limits that are physiologically possible 

Representing expectations using symbolic 

setting specific limits are minimized by the practice of using multiple mea­
surements in coming to specific conclusions. One alternative to using sym­
bolic ranges would be to express values as a percentage of some predefined 
norm. This has the same problems as discrete numeric values, however, 
when the percentage is used to draw conclusions. When it was important 
clinically to differentiate how much an expectation was exceeded, the no­
tion of alternate ranges (e.g .. , VERY HIGH) was utilized. For the physio­
logical parameters, several types of bounds on expectations have been es­
tablished, as shown in Figure 22-13. In VM these limits are not static; they 
are adapted to the patient situation. Currently, the majority of the expec­
tation changes are associated with changes in ventilator support. These 
expectations are established on recognition of the changes in therapy and 
remain in effect until another therapy context is recognized. A more global 
type of expectation can be specified that persists for the entire time patient 
data are collected. A third type of expectation type corresponds to a per­
turbation, or local disturbance in the patient's situation. An example of 
this is the suctioning maneuver where a vacuum device is put in the pa­
tient's airway. This disturbance has a characteristic effect on almost every 
measurement but only persists for a short period of time, usually 10-15 
minutes. After this time, the patient's state is similar to what it was in the 
period just preceding the suction maneuver. It is possible to build a hier­
archy out of these expectation types based on their expected duration; i.e., 
assume the global expectation unless a specific contextual expectation is 
set, provided a local perturbation has not recently taken place. 

Knowledge about the patient could be used to "customize" the expec­
tation limits for the individual patient. The first possibility is the use of 
historical information to establish a priori expectations based on type of 
surgery, age, length of time on the heart/lung machine, and presurgical 
pulmonary and hemodynamic status. The second type of customization 
could be based on the observation that patient measurements tend to run 
within tighter bands than the a priori expectations. The third type of ex­
pectation based on transient events can be used to adjust for the effects of 
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temporary intervention by clinicians. This requires expert knowledge 
about the side effects of each intervention and about the variation between 
different classes of patients to these temporary changes. 

22.3.8 Summary Reports 

Summary reports are also provided at fixed intervals of time, established 
at the beginning of the program. Summaries include: (1) a description of 
current conclusions (e.g., PATIENT HYPERVENTILATING FOR 45 
MINUTES); (2) a graph with time on one axis (up to six hours) and recent 
conclusions on the other; and (3) a similar graph with time versus mea­
surements that are beyond the expected limits. (Figure 22-2 shows a por­
tion of a sample summary report.) 

The summary report is based on several lists generated by the pro­
gram. The first list is composed of parameter-value pairs concluded by the 
program. This list is extended by the INTERP function called from the 
action portion of rules. The second list includes pairs of measurement 
types and symbolic ranges (e.g., RESPIRATION RATE-HIGH). This list 
is augmented during the process of comparing measurement values to 
expected ranges. These lists are built up from the start of the program 
and are not reset during new time intervals. The graphs are created by 
sorting the lists alphabetically, and then collecting the time intervals asso­
ciated with each parameter-value pair. The conclusion and expectation 
graphs cover the period from six hours ago until the current time, with a 
double bar ( =) plotted for each ten-minute period that the conclusion was 
made. 

The number of items in each graph is controlled by the number of 
currently active pathophysiological conclusions subject to a static list of 
parameters and values that are omitted (for example, some intermediate 
conclusions are not plotted). When the rule base is extended into other 
problem areas of ICU data interpretation, new sets of rules may have to 
be created to select which of the current conclusions should be graphed. 

The graph of "violated" expectations presents a concise display of the 
combination of measurements that are simultaneously out of range. Most 
of these conclusions have been fed into rules that determine the status of 
the patient. Patterns that occur often, but fail to trigger rules about the 
status of the patient, become candidates for the development of new rules. 

22.4 Summary and Conclusions 

VM uses a simple data-directed interpreter to apply a knowledge base of 
rules to data about patients in an intensive care unit. These rules are ar­
ranged according to a set of levels ranging from measurement validation 
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to therapy planning, and are currently formulated as a categorical system. 
Interactive facilities exist to examine the evaluation of rules while VM is 
monitoring data from a patient, and to input additional test results to the 
system for interpretation. 

22.4.1 Representing Knowledge About Dynamic 
Clinical Settings 

In VM we have begun to experiment with mechanisms for providing MY­
CIN-like systems with the ability to represent the dynamic nature of the 
diagnosis and therapy process. As mentioned in the introduction, MYCIN 
was designed to produce therapeutic decisions for one critical moment in 
a patient's hospital course. This was extended with a "restart mechanism" 
that allows for selectively updating those parameters that might change in 
the interval between consultations. MYCIN can start a new consultation 
with the updated information, but the results of the original consultation 
are lost. In VM, three requirements are necessary to support the processing 
of new time frames: (1) examining the values of historical data and con­
clusions, (2) determining the validity of those data, and (3) combining new 
conclusions with previous conclusions. 

New premise functions, which define the relationships about param­
eters that can be tested when a rule is checked for validity, were created 
to examine the historical data. Premise functions used in MYCIN include 
tests to see if: (a) any value has been determined for a parameter, (b) the 
value associated with a parameter is in a particular numerical range, or (c) 
there is a particular value associated with a parameter. VM includes a series 
of time-related premise functions. One function examines trends in input 
data over time-e.g., THE MEAN ARTERIAL PRESSURE DOES NOT 
RISE BY 15 TORR IN 15 MINUTES. A second function determines the 
stability of a series of measurements, by examining the variation of mea­
surements over a specific time period. Other functions examine previously 
deduced conclusions, as in THE PATIENT HAS BEEN ON THE T-PIECE 
FOR GREATER THAN 30 MINUTES or THE PATIENT HAS NEVER 
BEEN ON THE T-PIECE. Functions also exist for determining changes 
in the state of the patient-e.g., THE PATIENT HAS TRANSITIONED 
FROM ASSIST MODE TO THE T-PIECE. When VM is required to check 
if a parameter has a particular value, it must also check to see if the value 
is "recent" enough to be useful. 

The notion that data are reliable for only a given period of time is 
also used in the representation of conclusions made by the program. When 
the same conclusion is made in contiguous time periods (two successive 
evaluations of the rule set), then the conclusions are coalesced. The result 
is a series of intervals that specify when a parameter assumed a particular 
value. In the MYCIN system this information is stored as several different 
parameters. For example, the period when a drug was given is represented 
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by a pair of parameters corresponding to the starting and ending times of 
administration. In MYCIN, if a drug was again started and stopped, a new 
entity-DRUG-2-would have to be created. The effect of the VM rep­
resentation is to aggregate individual conclusions into states whose persis­
tence denotes a meaningful interpretation of the status of the patient. 

22.4.2 Building a Symbolic Model 

A sequence of states recognized by the program represents a segmentation 
of a time line. Specifying the possible sequences of states in a dynamic 
setting constitutes a symbolic model of that setting. The VM knowledge 
base contains a model of the stages involved in ventilatory therapies. This 
model is use::l in three ways by the program: (1) to limit the number of 
rules examined by the program, (2) to provide a basis for comparing actual 
therapy with potential therapies, and (3) to provide the basis for the ad­
justment of expectations used to interpret the incoming data. 

Attached to each rule in VM is a list of the clinical situations in which 
the rule makes sense. When rules are selected for evaluation, this list is 
examined to determine if the rule is applicable. This provides a convenient 
filter to increase the speed of the program. A set of rules is used to specify 
the conditions for suggesting alternative therapeutic contexts. Since these 
rules are examined every few minutes, they serve both to suggest when 
the patient's condition has changed sufficiently for an adjustment in ven­
tilatory therapy and to provide commentary concerning clinical maneuvers 
that have been performed but are not consistent with the embedded knowl­
edge for making therapeutic decisions. The model also provides mecha­
nisms for defining expectations about reasonable values for the measured 
data. Much of the knowledge in VM is stated in terms of these expectations, 
and they can be varied in response to changes in the patient's situation. 

22.4.3 Comparison of MYCIN and VM Design Goals 

MYCIN was designed to serve on a hospital ward as an expert consultant 
for antimicrobial therapy selection. A typical interaction might take place 
after the patient has been diagnosed and preliminary cultures have been 
drawn but before very much microbiological data are available. In critical 
situations, a tentative decision about therapy must often be made on partial 
information about cultures. In return for assistance, the clinician is asked 
to provide answers to questions during a consultation. 

The intensive care unit is quite different from the static situation ad­
dressed by MYCIN, however. Continuous monitoring and evaluation of 
the patient's status are required. The problem is one of making therapeutic 
adjustments, many of which are minor, such as adjusting the respiratory 
rate on the ventilator, over a long period of time. The main reasons for 
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using VM are to monitor status or to investigate an unusual event. The 
program must therefore be able to interpret measurements with minimal 
human participation. When an interaction does take place, e.g., when an 
unexpected event is noted, the program must be concise in its warning. 
VM's environment differs from MYCIN's in that natural language is an 
unlikely mode of communication. 

This difference in the timing and style of the user-machine interaction 
has considerable impact on system design. For example, the VM system 
must be able to: 

1. reach effective decisions on the presumption that input from a clinician 
will be brief, 

2. use historical data to determine a clinical situation, 

3. provide advice at any point during the patient's hospital stay, 

4. follow up on the outcomes of previous therapeutic decisions, and 

5. summarize conclusions made over time. 

A consultation program should also be able to model the changing 
medical environment so that the program can interpret the available data 
in context. Areas such as that of infectious disease require an assessment 
of clinical problems in a variety of changing clinical situations, e.g., "pa­
tients who are severely ill but lack culture results," "patients after culture 
data are available," "patients after partial or complete therapy," or "patients 
with acquired superinfection." 

It is also necessary that VM contain knowledge that can be used to 
follow a case over a period of time. This is complicated by the fact that the 
user of the system may not follow the therapy recommended. VM then 
has to determine what actions were taken and adjust its knowledge of the 
patient accordingly. Also, if the patient does not react as expected to the 
given therapy, then the program has to determine what alternative ther­
apeutic steps may be required. 

During the implementation of the VM program, we observed many 
types of clinical behavior that represent a challenge to symbolic modeling. 
One such behavior is the reluctance of clinicians to change therapies fre­
quently. After a patient meets the criteria for switching from therapy A to 
therapy B, e.g., assist mode to T-piece, clinicians tend to allow the patient's 
status to drop below optimal criteria before returning to therapy A. This 
was represented in the knowledge base by pairs of therapy selection rules 
(A to B, B to A) with a grey zone between the two criteria. For example, 
ACCEPTABLE limits might be used to suggest going from therapy A to 
therapy B, whereas VERY HIGH or VERY LOW limits would be used for 
going from B to A. If the same limit were used for going in each direction, 
a small fluctuation of one measurement near a cutoff value would provide 
very erratic therapy suggestions. A more robust approach makes decisions 
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in such situations based on the length of time a patient has been in a given 
state and on the patient's previous therapy or therapies. 

The VM program has been used as a test-bed to investigate methods 
for increasing the capabilities of symbolic processing approaches by ex­
tending the production rule methodology. The main area of investigation 
has been in the representation of knowledge about dynamic clinical set­
tings. There are two components of representing a situation that changes 
over time: (l) providing the mechanism for accessing and evaluating data 
in each new time frame, and (2) building a symbolic model to represent 
the ongoing processes and transitions in the medical environment. 



23 
A Representation Scheme 
Using Both Frames and 
Rules 

Janice S. Aikins 

Much of artificial intelligence research has focused on determining the 
appropriate knowledge representations to use in order to achieve high 
performance from knowledge-based systems. The principal hypothesis 
being explored in this chapter is that there are many advantages to a system 
that uses both framelike structures and rules to solve problems in knowl­
edge-intensive domains. These advantages can be grouped into two broad 
categories: those dealing with the knowledge base representation itself, and 
those dealing with the system's reasoning and performance. In order to 
test this hypothesis, a knowledge representation was designed that uses a 
combination of frames and rules in a data structure called a prototype. The 
domain chosen was that of pulmonary physiology. The task was to interpret 
a set of pulmonary function test results, producing a set of interpretation 
statements and a diagnosis of pulmonary disease in the patient. 1 Initially, 
a MYCIN-like production rule system called PUFF (Kunz et al., 1978) was 
written to perform pulmonary function test interpretations. Problems with 
the production rule formalism in PUFF and similar rule-based systems 
motivated the creation of a prototype-directed system, called CENTAUR. 
See Aikins ( 1980; 1983) for more detailed discussions of this system. 

CENTAUR uses prototypes that characterize the typical features of 
each pulmonary disease. Each feature is called a component of the pro-

This chapter is based on a technical memo (HPP-79-10) from the Heuristic Programming 
Project, Department of Computer Science, Stanford University. Used with permission. 
1 It should be noted, however, that the methodology used is not domain-specific; the task that 
was chosen is not important for the comparisons made between various knowledge represen­
tation schemes. 

424 
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NORMAL RESTRICTIVE 
LUNG DISEASE 

PUFF 

OBSTRUCTIVE 
AIRWAYS DISEASE 

MILD MODERATE 
OAD OAD 
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SEVEREOAD 

SEVERE 
OAD 

DIFFUSION 
DEFECT 

ASTHMA BRONCHITIS 

FIGURE 23-1 A portion of the prototype network. 

NEUROMUSCULAR 
DISEASE 

EMPHYSEMA 

totype. Associated with each component are rules used to deduce a value 
for the component. The prototypes focus the search for new information 
by guiding the invocation of the rules and eliciting the most relevant in­
formation from the user. These prototypes are linked together in a net­
work in which the links specify the relationships between the prototypes. 
For example, the obstructive airways disease prototype is linked to the 
asthma prototype with a SUBTYPE link, because asthma is a subtype of 
obstructive airways disease (see Figure 23-1). 

This chapter discusses the problems of a purely rule-based system and 
the advantages afforded by using a combination of rules and frames in 
the prototype-directed system. A complementary piece of research (Aikins, 
1979), not discussed here, deals with the problems of a frame-based system. 
Previous research efforts have discussed systems using frames [see, for 
example, Minsky (1975) and Pauker and Szolovits (1977)] and systems us­
ing a pure rule-based approach to representation (Chapter 2). Still other 
systems have used alternate knowledge representations to perform large 
knowledge-based problem-solving tasks. For example, INTERNIST (Po­
ple, 1977) represents its knowledge using a framelike association of diseases 
with manifestations. Each manifestation, in turn, is associated with the list 
of diseases in which the manifestation is known to occur. In PROSPECTOR 
(Duda et al., l 978a), the framelike data structures have been replaced by 
a semantic network. Few researchers, however, have used both frames and 
production rules or have attempted to draw comparisons between these 
knowledge representation methodologies. CENTAUR offers an appropri­
ate mechanism with which to experiment with these representation issues. 

This paper presents an example of the CENTAUR system performing 
an interpretation of a set of pulmonary function test results and focuses 
on CENTAUR's knowledge representation and control structure. In ad­
dition, some advantages of the prototype-directed system over the rule­
based approach for this problem are suggested. 
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23.}. The CENTAUR System 

CENTAUR is a consultation system that produces an interpretation of data 
and a diagnosis based on a set of test results. The inputs to the system are 
the pulmonary function test results and a set of patient data including the 
patient's name, sex, age, and a referral diagnosis. The output consists of 
both a set of interpretation statements that serve to explain or comment 
on the pulmonary function test results and a final diagnosis of pulmonary 
disease in the patient. 

CENTAUR uses a hypothesis-directed approach to problem solving 
where the hypotheses are represented by the prototypes. The goal of the 
system is to confirm that one or more of the prototypes in the prototype 
network match the data in an actual case. The final set of confirmed pro­
totypes is the system's solution for classifying the data in that case. The 
prototypes represent the various pulmonary diseases, their severity, and 
their subtypes, with the result that the set of confirmed prototypes repre­
sents the diagnosis of pulmonary disease in the patient. 

The system begins by accepting the test and patient data. Data entered 
in the system suggest or "trigger" one or more of the prototypes. The 
triggered prototypes are placed on a hypothesis- list and are ordered ac­
cording to how closely they match the data. The prototype that matches 
the data most closely is selected to be the current prototype, the system's 
current best hypothesis about how to classify the data in the case. 

In the example in Figure 23-2, the prototype that represents a pul­
monary function consultation (PUFF) has been selected as the initial cur­
rent prototype.2 Initial data are requested and the user's responses (in 
boldface and following the asterisks) are recorded. The system attempts to 
fill in values for the components of a prototype, which may cause rules to 
be invoked, or, if no rules are associated with a component, the system will 
ask the user for the value. When all of the prototype components have 
values, the system decides whether the given data values are sufficiently 
close to those expected for the prototype to confirm that the prototype 
matches the data. 3 Another prototype is then selected as the current pro-

2.Just as the pulmonary disease prototypes represent typical ranges of values for the pulmo­
nary function tests for patients with that disease, the pulmonary function prototype states 
some of the typical features of a pulmonary function consultation. For example, for any 
pulmonary function consultation, an initial set of test and patient data is required, and both 
a final interpretation and pulmonary diagnosis are generated. Similarly, the prototype net­
work of the CENTAUR system includes a prototype called MYCIN, which states typical 
features of a MYCIN infectious disease consultation. Above both of these prototypes is a third 
prototype, CONSULTATION, which states some domain-independent features of any con­
sultation. For example, the CONSULTATION prototype contains a component called 
STRATEGY, which allows the user to specify whether a confirmation strategy (to confirm the 
most likely hypothesis) or an elimination strategy (to disprove the least likely hypothesis) is 
desired. 
3The system maintains a confirmed list of prototypes that have been shown to match the data 
in the case and a disproved list of prototypes that have been proved not to match the data. 
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totype, and the process repeats. The system moves through the prototype 
network confirming or disproving disease prototypes. The attempt to 
match data and prototypes continues until each datum has been explained 
by some confirmed prototype or until the system has concluded that it 
cannot account foi;- any more of the data. A portion of the prototype net­
work for the pulmonary function application is given in Figure 23-1. De­
tails of the knowledge representation and control structure for the CEN­
TAUR system are given in Section 23.2 and Section 23.3. 

Figure 23-2 is an example of an interpretation of a set of pulmonary 
function test results for one patient. Comments are in italics. Many addi­
tional lines of trace are printed to show what CENTAUR is doing between 
questions. 

·cENTAUR 
14-Jan-79 13:54:07 

CURRENT PROTOTYPE: PUFF 

The current hypothesis is that an interpretation of the pulmonary function tests is desired. 

[Control slot of PUFF prototype being executed ... ] 

--------PATIENT-7446--------

1) Patient's identifying number: 
.. 9007 
2) referral diagnosis: 

ASTHMA 
[Trigger for ASTHMA and CM 900] 

(The initial data given by the user.) 

Prototype ASTHMA is triggered by the value ASTHMA for the referral diagnosis. The certainty measure (CM) 
indicates on a numerical scale the degree of certainty with which the prototype is indicated by the data.) 

3) RV/RV-predicted: 
261 

4) TLC(body box)observed/predicted: 
139 

5) FVC/FVC-predicted: 
81 

[Trigger for Normal and CM 500] 

(The questioning continues and other prototypes are triggered by the data values.) 

FIGURE 23-2 An example of the interpretation of a set of pa­
tient test results. Debugging information (not routinely pro­
vided) is shown to help demonstrate the process of prototype 
invocation. (Key: ALS = amyotrophic lateral sclerosis; 
FEVI = forced expiratory volume at one minute; FVC = forced 
vital capacity; MMF = maximal midexpiratory flow; 
OAD = obstructive airways disease; RDX = referral diagnosis; 
RLD = restrictive lung disease; RV = residual volume; TLC = 
total lung capacity.) 



428 A Representation Scheme Using Both Frames and Rules 

6) FEV1/FVC ratio: 
40 

7) the DLCO/DLCO-predicted: 
117 

[Trigger for NORMAL and CM 700] 
8) Change in FEV1 post-dilation - pre-dilation: 

31 
9) MMF/MMF-predicted: 

12 
[Trigger for OAD and CM 900] 

10) The slope (F50-obs-F25-obs)/FVC-obs: 
•• 9 

[Trigger for OAD and CM 900] 

TRIGGERED PROTOTYPES 
PROTOTYPE: ASTHMA, CM: 900, REASON: ROX was ASTHMA 
PROTOTYPE: NORMAL, CM: 500, REASON: FVC was 81 
PROTOTYPE: NORMAL, CM: 700, REASON: DLCO was 117 
PROTOTYPE: OAD, CM: 900, REASON: MMF was 12 
PROTOTYPE: OAD, CM: 900, REASON: F5025 was 9 

(A list of the prototypes that have been triggered is given. The CM and the value that caused 
the trigger are also listed.) 

Confirmed List: PUFF 

It is confirmed that an interpretation of the pulmonary function tests is desired. 

(The primary purpose of the pulmonary function prototype is to acquire the initial data from the user. 
It has no components and is thus confirmed when it has completed its task.) 

MoreSpecific Prototypes chosen: NORMAL OAD 
(Although there are five possible, more specific disease prototypes for PUFF, only the two that were 
triggered by the initial data are selected as possibilities to pursue.) 

[New prototypes being filled in ... NORMAL OAD] 
(These prototypes are filled in with the data values that are already known in the case.) 

! Surprise Value I 261 for RV in NORMAL, CM: 700 
! Surprise Value! 139 for TLC in NORMAL, CM: 400 
I Surprise Value! 40 for FEV1/FVC in NORMAL, CM: -166 
! Surprise Value! 12 for MMF in NORMAL, CM: -499 
! Surprise Value ! 9 for F5025 in NORMAL, CM: -699 

(Any data values that are not consistent with the values expected for that disease prototype are 
noted as surprise values, and the CM for that prototype is lowered. In this case, five of the data 
values are not consistent with the NORMAL pulmonary function prototype.) 

Hypothesis List: (OAD 990) (NORMAL -699) 
(The hypothesis list of triggered prototypes is then ordered according to the CM of the prototypes 
and a new current prototype is chosen.) 

CURRENT PROTOTYPE: OAD 

The current hypothesis is that there is an interpretation of Obstructive Airways Disease. 

Components of OAD chosen to trace: F25 D-RV/TLC 

FIGURE 23-2 continued 
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(In order to instantiate the OAD prototype, two more components must have values. These are asked of 
the user if there are no rules associated with the components that can be used to deduce their values.) 

11) The flow F25: 
"UNKNOWN 
12) RV!TLC Observed-Predicted: 
tt 25 

Confirmed List: OAD PUFF 

It is confirmed that there is an interpretation of Obstructive Airways Disease. 

(The OAD prototype is confirmed. Control information associated with the prototype specifies that 
the degree of OAD should be determined next, followed by the subtype of OAD.) 

MoreSpecific Prototypes chosen: MILD-OAD MODERATE-OAD 
MODERATELY-SEVERE-OAD SEVERE-OAD 

(No degree prototypes were triggered by the data values, so all of them are selected as 
possible hypotheses to be filled in along with the data values in the case.) 

[New prototypes being filled in ... MILD-OAD MODERATE-OAD 
MODERATELY-SEVERE-OAD SEVERE-OAD] 

(More surprise values are noted, and the hypothesis list is ordered, leading to 
a current prototype of SEVERE-DAD.) 

CURRENT PROTOTYPE: SEVERE-OAD 

The current hypothesis is that there is an interpretation of Severe Obstructive Airways Disease. 

Components of SEVERE-OAD chosen to trace: FEV1 

13) FEV1: 
tt 42 

(The consultation continues with new components being asked and classified.) 

Confirmed List: SEVERE-OAD OAD PUFF 

It is confirmed that there is an interpretation of Severe 
Obstructive Airways Disease. 

MoreSpecific Prototypes chosen: ASTHMA 

Hypothesis List: (ASTHMA 900) 

(Next the subtypes of OAD are explored. ASTHMA is chosen from three possible subtypes 
because it was triggered by the initial data.) 

CURRENT PROTOTYPE: ASTHMA 

The current hypothesis is that there is an interpretation of Asthma. 

Components of ASTHMA chosen to trace: DEG-REV 
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14) The change in resistance pre-dilation - post-dilation: 
•• 20 

Confirmed List: ASTHMA SEVERE-OAD OAD PUFF 

It is confirmed that there is an interpretation of Asthma. 

[Facts marked Accounted For by ASTHMA, SEVERE-OAD, OAD] 

(There are no further degrees or subtypes to be explored for this case. Thus data values that 
can be accounted for by one of the confirmed prototypes are marked. If there are data values 
remaining that cannot be accounted for by the confirmed prototypes, the system will 
attempt to determine if there are multiple diseases in the patient.) 

[Action slot of OAD prototype being executed ... ] 

(At this point the system begins executing any actions associated with the confirmed prototypes. 
There are no actions for ASTHMA or SEVERE-DAD, so the OAD action is the first to be executed.) 

OAD Action Clause 
Display the findings about the diagnosis of obstructive airways 

disease 
Conclusions: the findings about the diagnosis of obstructive 

airways disease are as follows: 
Elevated lung volumes indicate overinflation. 
The RVffLC ratio is increased, suggesting a SEVERE degree of air trapping. 
Forced Vital Capacity is normal but the FEV1 /FVC ratio is 

reduced, suggesting airway obstruction of a SEVERE degree. 
Low mid-expiratory flow is consistent with severe airway 

obstruction. 
Obstruction is indicated by curvature of the flow-volume loop 

which is of SEVERE degree. 
Reversibility of airway obstruction is confirmed by improvement in airway resistance following 

bronchodilation. 

[Action slot of PUFF prototype being executed ... ] 

PUFF Action Clause 
Display the conclusion statements about this interpretation 
Conclusions: the conclusion statements about this interpretation 

are as follows: 
Smoking probably exacerbates the severity of the patient's 

airway obstruction. 
Discontinuation of smoking should help relieve the symptoms. 
Good response to bronchodilators is consistent with an 

asthmatic condition, and their continued use is indicated. 

PUFF Action Clause 
Display the summary statements about this interpretation 

Conclusions: the summary statements about this interpretation are as 
follows: 

SEVERE Obstructive Airways Disease, Subtype ASTHMA 

Do you wish advice on another patient? 
** NO 

FIGURE 23-2 continued 
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23.2 Knowledge Representation in CENTAUR 

Knowledge is represented in CENTAUR by both rules and prototypes. 
Each prototype contains two kinds of information: domain-specific com­
ponents that express the substantive characteristics of each prototype, and 
domain-independent slots that specify information used in running the 
system. Each component may, in turn, have slots of information associated 
with it, including a RULES slot that links the component to rules that 
determine values of the component. Thus the outline of a prototype can 
be viewed as shown in Figure 23-3. 

PROTOTYPE 

SLD-0 
SLOT 

SLOT 

COMPONENT 

SLOT 

SLOT 

COMPONENT 

SLOT 

SLOT 

domain·independent information 

domain-specific information 

FIGURE 23-3 Prototype outline. 

The rules consist of one or more premise clauses followed by one or 
more action clauses. An example is given in Figure 23-4.4 In general, the 
premise clauses specify a set of value ranges for some of a prototype's 
components, and the action clauses make conclusions about the values of 
other components. Besides these static data structures, there are also data 
structures that give information about the actual data values obtained dur­
ing the consultation. These are called facts and are discussed in Section 
23.2.3. 

23.2.l Prototypes and Components 

Most of CENTAUR's prototypes represent the characteristic features of 
some pulmonary disease. For example, there is a prototype for obstructive 
airways disease (OAD), a portion of which is shown in Figure 23-5. In the 

·1As in MYCIN, the rule is stored internally in the Interlisp form shown; the English trans­
lation is generated from that. 
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RULE013 

PREMISE: ($AND ($OR ($AND (LESSP• (VAL 1 CNTXT MMF) 
20) 

(GREATERP• (VAL 1 CNTXT FVC) 
($AND (LESSP• (VAL 1 CNTXT MMF) 

15) 
(LESSP• (VAL1 CNTXT FVC) 

BO)] 
ACTION: (DO-ALL (CONCLUDE CNTXT DEG<-MMF SEVERE TALLY 900) 

(CONCLUDETEXT CNTXT FINDINGS<-OAD (TEXT $MMF) 
TALLY 1000)) 

RULE013 
[This rule applies to any patient, and is tried in order to find out about the degree of obstructive airways 

disease as indicated by the MMF or the findings about the diagnosis of obstructive airways 
disease.l 

If: 1) 

2) 

Then: 

A: 
B: 
A: 
B: 
1) 

2) 

The MMF/MMF-predicted ratio is less than 20, and 
The FVC/FVC-predicted ratio is greater than BO, or 
The MMF/MMF-predicted ratio is less than 15, and 
The FVC/FVC-predicted ratio is less than BO 
There is strongly suggestive evidence (.9) that the degree of obstructive airways disease 
as indicated by the MMF is severe, and 
It is definite (1.0) that the following is one of the findings about the diagnosis of obstructive 
airways disease: Low midexpiratory flow is consistent with severe airway obstruction. 

FIGURE 23-4 A sample rule in CENTAUR in both Interlisp 
and English versions. 

OAD prototype, there are components for many of the pulmonary func­
tion tests that are useful in characterizing a patient with OAD; two of these 
are shown in the figure. For example, the total lung capacity of a patient 
with OAD is typically higher than that of a person with normal pulmonary 
function. Thus there is a component, TOTAL LUNG CAPACITY, with a 
range of plausible values that are characteristic of a person with OAD. 

In addition to a set of plausible values, that is, values consistent with 
the hypothesis represented by the prototype, the components may have 
additional information associated with them. (The ways in which this in­
formation is used are discussed in Section 23.3.) There may be one or 
more possible error values, that is, values that are inconsistent with the pro­
totype or that might have been specified by the expert to check what he 
or she considers to be a measurement error. Generally, both a reason for 
the error and a possible fix for the error are specified. For example, the 
expert may specify that one of the pulmonary function tests be repeated 
to ensure accuracy. A component may also have a default value. Thus all of 
the components in a disease prototype, with their default values, form a 
picture of the typical patient with the disease. Finally, each component has 
an importance measure (from 0 to 5) that indicates the relative importance 
of a particular component in characterizing the disease. 

In addition to the domain-specific components, each prototype con-
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Obstructive Airways Disease (OAD) 

Author: Aikins 
Date: 27-0CT-78 
Source: Dr. Falla! 
Pointers: (degree MILD-OAD) 
(degree MODERATE-GAD) ... 
(subtype ASTHMA) ... 
Hypothesis: "There is an 
interpretation of OAD." 

TOTAL LUNG CAPACITY 
Plausible Values: >100 
Importance: 4 

REVERSIBILITY 
Rules: 19,21,22,25 
Importance: 0 (value not 
considered) 

Deduce the degree of OAD 
Deduce the subtype of OAD 
Deduce any findings associated 
with OAD 

Print the findings associated 
with OAD 

FIGURE 23-5 A sample prototype showing possible slots on 
the left and values of those slots for OAD on the right. 

tains slots for general information associated with it. This includes book­
keeping information (name of the prototype, its author, date on which the 
prototype was created, and source for the information contained there) 
and English phrases used in communicating with the user. There are also 
pointers to other prototypes in the prototype network, which are useful, 
for example, when either more general disease categories or more specific 
subtypes of disease are indicated. Some control information is represented 
explicitly in slots associated with the prototype (Section 23.3). This infor­
mation includes what to do in order to confirm the prototype and what to 
do when the prototype has been confirmed or disproved. Each prototype 
also has associated with it a certainty measure (from - 1000 to 1000) that 
indicates how certain the system is that the prototype matches the data in 
each case. 

23.2.2 Rules 

The CENTAUR knowledge base also includes rules, which are grouped 
into four sets according to their functions. They refer to values for com­
ponents in their premise clauses and make conclusions about values of 
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components in their action clauses. An example of one of the rules is given 
in Figure 23-4. The RULES slot associated with a component contains a 
list of all rules that make a conclusion about that component. These may 
be applied when a value is needed for the component.5 

Many of the rules are classified as patient rules, rules dealing with the 
patient. Besides the patient rules, there are three other sets of rules. Those 
rules whose actions make summary statements about the results of the 
pulmonary function tests are classified as summary rules; rules that refer to 
values of components in their premises and suggest general disease cate­
gories in their actions are classified as triggering rules. These are used to 
"trigger" or suggest the disease prototypes. Those rules that are used in a 
second stage of processing, after the system has formulated lists of con­
firmed and disproved prototypes are called refinement rules; they are used 
to refine a preliminary diagnosis, producing a final diagnosis about pul­
monary disease in the patient. The refinement rules constitute a further 
set of domain expertise; they test the system's tentative conclusions, which 
may result in a modification of these conclusions. For example, if two dis­
eases can account for a given pulmonary function test result and both have 
been confirmed in that case, a refinement rule may determine which dis­
ease process should account for the test result in the final interpretation. 

23.2.3 Facts 

In CENTAUR, each piece of case-specific data that has been acquired 
either initially from the patient's pulmonary function test results or later 
during the interpretation process is called a fact. Each fact has six fields of 
information associated with it. When a fact is first introduced into the 
system, its name, value, and certainty factor6 fields are instantiated. For 
example, if the user specifies that the total lung capacity of the patient is 
126 with a certainty factor of 0.8, then a fact is created: 

NAME: Total Lung Capacity 
VALUE: 126 
CERTAINTY FACTOR: .8 

The fourth field associated with the fact indicates where it was ob­
tained: from the user (this includes the initial pulmonary function test 
results), from the rules, or as a default value associated with a prototype 
component. Thus, in the fact about total lung capacity, the fourth field 
would have the value USER. 

The fifth field of each fact becomes instantiated once fact values are 
classified as being plausible values, possible error values, or surprise values 

''If no rules are associated with the component, the user will be asked for the value. If the 
user responds UNKNOWN and the component has a default value, that value will be used. 
6The certainty factor is just MYCIN's CF-a number ranging from - I to I that indicates 
the importance of the given value. 
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for a given prototype. Surprise values are all of those values that are neither 
plausible values nor possible error values. They indicate facts that cannot 
be accounted for by the hypothesis represented by the prototype. In the 
fact about total lung capacity, the fifth field might contain the classification 
(PV OAD) and (SV NORMAL) meaning that the value of 126 for the total 
lung capacity of a patient would be a plausible value if the patient had 
obstructive airways disease, but would be a surprise value if the patient 
were considered to have normal pulmonary function. 

The last field associated with a fact indicates which confirmed proto­
types can account for the given value. When a prototype is confirmed, all 
of the facts that correspond to components in the prototype and whose 
values are plausible values for the component are said to be "accounted 
for" by that prototype. When the OAD prototype is confirmed, for a patient 
with total lung capacity of 126, for example, the last field of the sample 
fact for total lung capacity would be filled in with the prototype name 
OAD. 

23 3 Control Structure for CENTAUR • 

The control information used by CENTAUR is contained either in slots 
that are associated with the individual prototypes or in a simple interpreter. 
Some control strategies are specific to an individual prototype and need to 
be associated with it, while more general system control information is 
more efficiently expressed in the interpreter. 

Basically, the interpreter attempts to match one or more of the pro­
totypes with the data in an actual case. At any one time there is one current 
prototype that the system is attempting to match to the facts of the case. 
Attempting a match for this prototype entails finding values for the pro­
totype components, i.e., instantiating the prototype. The exact method to 
be used in instantiating the prototype depends on the individual prototype 
and is expressed in one of the prototype control slots. 

When all of the facts have been accounted for by some confirmed 
prototype, or when no prototype can account for a known fact,7 the system 
has completed the hypothesis-formation stage. The confirmed list of pro­
totypes then represents the system's hypothesis about how to classify the 
facts. At this point, additional knowledge may be applied before generating 
the final pulmonary function interpretation and diagnosis. Some of this 
knowledge is represented in the refinement rules associated with the con­
firmed prototypes. Further information may be sought from the user at 

7This statement oversimplifies the actual matching criteria used by the system. Some tolerance 
for a mismatch between known fact values and plausible values in the prototype is allowed. 
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this stage. For example, further lab tests may be suggested or additional 
test results may be required before a final diagnosis is given. 

The result of executing the refinement rules is a final set of confirmed 
prototypes and a list of all facts with an indication of which prototypes 
account for which facts. The system then executes the clauses specified in 
the action slot of each confirmed prototype. Typically, these clauses express 
a clean-up chore such as executing summary rules associated with the 
prototype8 or printing interpretation statements. The action slot of the 
PUFF prototype itself causes the final interpretation and pulmonary di­
agnosis to be printed. 

23.3.1 Prototype Control Slots 

Four of the slots associated with a prototype contain clauses that are exe­
cuted by the system at specific times to control the consultation. Each clause 
expresses some action to be taken by the system at different stages: (a) in 
order to instantiate the prototype (CONTROL slot), (b) upon confirmation 
of the prototype (IF-CONFIRMED slot), (c) in the event that a prototype 
is disproved (IF-DISPROVED slot), and (d) in a clean-up phase after the 
system processing has been completed (ACTION slot). 

When a prototype is first selected as the current prototype, the system 
executes the clauses in the CONTROL slot of that prototype. The infor­
mation in this slot indicates how to proceed in order to instantiate the 
prototype, usually specifying what data should be acquired and in what 
order they should be acquired. Therefore, executing these clauses will 
cause values to be obtained for the prototype components. The CONTROL 
slot can be thought of as a rule whose implicit premise is "if this prototype 
is selected as the current prototype" and whose action is the given set of 
clauses. If no CONTROL slot is associated with a prototype, the interpreter 
will attempt to fill in values for the prototype components in order ac­
cording to their importance measures. 

When all of the cla_uses in the CONTROL slot have been executed and 
the prototype has been instantiated, a decision is made as to whether the 
prototype should be confirmed as matching the facts of the case. 9 The 
system then checks either the IF-CONFIRMED slot or the IF-DISPROVED 
slot to determine what should be done next. These slots can be viewed as 
rules whose implicit premise is either "if this prototype is confirmed as 
matching the data" or "if this prototype is proved not to match the data." 
The appropriate actions are then indicated in the set of clauses contained 
in the slot. 

8Recall that the premise of a summary rule typically checks the values for one or more 
parameters and that the action generates an appropriate summarizing statement. 
9It would be possible to associate such a confirmation criterion with each individual prototype, 
but this has not been found to be necessary for the pulmonary diagnosis problem. Instead, 
the system uses a general algorithm, applicable to all of the prototypes, that checks the values 
of the components and their importance measures to determine if the prototype should be 
marked as confirmed. 
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The fourth slot specifying clauses to be executed is the ACTION slot. 
The implicit premise in this slot is "if the system has completed its selection 
of confirmed prototypes and this prototype is confirmed." Thus the clauses 
in the ACTION slot are the last ones to generate summary statements or 
print data interpretations. ' 

23.4 Advantages of the Prototype-Directed 
Approach 

One question addressed by this research is this: in what ways are both 
frames and rules superior to either alone? Comparisons can be drawn 
between purely rule-based systems, such as PUFF, at one end of the spec­
trum and purely frame-based systems at the other. This section states some 
of the advantages of the prototype-directed approach used in CENTAUR 
for the pulmonary function interpretation task, as compared to the purely 
rule-based approach used in PUFF. The next chapter discusses a purely 
frame-based approach to the same problem. These advantages can be 
grouped into two broad categories: those dealing with knowledge base 
representation, and those dealing with reasoning and performance. 

23.4.1 Knowledge Representation 

Specific advantages of using prototypes in the pulmonary function domain 
include the following: 

A. Rules attached to prototypes are used to represent only medical expertise, 
not computational information. In the PUFF system, there are rules that guide 
computation by controlling the invocation of other rules. This feature can 
be very confusing to the medical experts since they do not know which 
rules are intended to represent medical expertise and which rules serve a 
necessary computational function. For example, a PUFF rule necessary to 
determine whether there is obstructive airways disease (OAD) in the patient 
is 

If an attempt has been made to deduce the degree of OAD, and an attempt has been made to 
deduce the subtype of OAD, and an attempt has been made to deduce the findings about OAD, 
then there is an interpretation of potential OAD, 

This rule expresses some of the control structure of the system, namely, 
that when there is an interpretation of OAD, then the degree, subtype, 
and findings associated with the OAD should be determined. The rule is 
confusing because it implies that finding out the degree, subtype, and find­
ings leads to an interpretation of OAD-which might be misinterpreted as 
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medical expertise. In fact, this rule is executed for every case and causes 
all of the other OAD rules to be invoked, even when no OAD is present. 

In CENTAUR, rules that guide computation have been removed from 
the rule base, leaving a less confusing, more uniform rule base, where each 
rule represents some "chunk" of medical expertise. Computation is now 
guided by the prototypes. For example, the CONTROL slot represents 
information dealing with how to instantiate the prototype. For the OAD 
prototype, this CONTROL slot specifies that deducing the degree, subtype, 
and findings of obstructive airways disease are the steps to take in instan­
tiating that prototype. 

B. Prototypes represent more clearly some of the medical expertise formerly 
contained in rules. In some cases, medical expertise that has been repre­
sented in the production rules is more clearly represented in the prototype. 
Consider, for example, the following PUFF rule: 

If the degree for OAD is NONE, and the degree for OAD by the MMF is greater than or equal to 
MILD, then the degree for the OAD is MILD. 

The medical expertise expressed in this rule is not apparent. In order to 
understand this rule, it is necessary to see it as one part of a group of 
several other rules, all of which together help to determine the degree of 
obstructive airways disease in the patient. The first clause of the rule, "If 
the degree for OAD is NONE," is partly a description of the medical con­
text, indicating that the degree of OAD has not been established. However, 
it is also control information in that it requires that the degree for OAD 
be determined, which, in turn, invokes the other rules. Yet part of the 
motivation for using rules is that each rule should be a single "chunk" of 
knowledge, understandable in its own right. Further, what is really being 
said in this rule is that in determining the degree of OAD in the patient, 
there are several pulmonary function measurements to be considered, but, 
of these, the MMF measurement should be given somewhat more weight. 
In CENTAUR, this fact is represented explicitly in the OAD prototype by 
giving the MMF component an importance measure higher than those of 
the other measurement components. 

C. Knowledge is represented explicitly by prototypes. As was indicated in 
paragraphs A and B above, making knowledge explicit is one of the ad­
vantages of the prototype representation. Not only is knowledge about how 
to instantiate the prototype represented explicitly, but knowledge about 
what to do if the prototype is confirmed or disproved, as well as what are 
appropriate clean-up actions to perform for the prototype, e.g., printing 
findings or summarizing data, is also represented. Other information, such 
as the importance measure to assign to one of the prototype components 
when matching prototypes to data, is also made explicit. All of this specifies 
to those working with the knowledge base precisely what information is 
represented and what role that information plays in the computation. 
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D. Additional knowledge is represented by prototypes. By adding a set of 
disease prototypes, some new knowledge about pulmonary disease can be 
represented. In MYCIN additional knowledge can be added as properties 
of rules, but it is difficult to add new knowledge about diseases. For ex­
ample, plausible ranges of values for each of the pulmonary function tests 
for each disease, as well as the relative importance of each measurement 
in a particular disease prototype, can be listed. 

23.4.2 Reasoning and Performance of the System 

A second category of advantages deals with the way the system reasons 
about the problem. This is evident in part by watching the performance 
of the system, that is, the questions that are asked and the order in which 
information is acquired. Some of the advantages of a prototype-directed 
system are the following: 

E. Consultation flow follows the physician's reasoning. The consultation be­
gins with specific test results suggesting or "triggering" some of the pro­
totypes. The prototypes serve as tentative hypotheses about how to classify 
the data in a given case. They also guide further inquiry. As new infor­
mation is acquired, these hypotheses are revised, or, in CENTAUR's terms, 
prototypes are confirmed or disproved and new prototypes may then be 
suggested. The process of medical problem solving has been discussed by 
many researchers [e.g., Elstein et al. (1978)], and it is widely felt that this 
sequence of suggesting hypotheses, acquiring further information, and 
then revising the hypotheses is, in fact, the problem-solving process used 
by most physicians. Thus there is increased conceptual clarity, in that the 
user can understand what the program is doing. Other advantages that 
accrue from this approach include: (a) the knowledge base is easier to 
modify and extend, and (b) the system can offer the user a more intelligible 
explanation of its performance during the consultation. Giving the system 
the ability to explain its knowledge and performance has been a primary 
design goal of the present research efforts. Since the prototype-directed 
system reasons in a manner more like a human user, its behavior seems 
more natural and transparent and thus is more likely to be accepted by 
physicians. 

F. The order in which questions are asked can be controlled. In a rule-based 
system such as PUFF, questions are asked of the user as rules are invoked 
that contain clauses referring to information that is not yet known. The 
designers of PUFF, or any EMYCIN system, control the order in which 
the questions are asked only by writing rules to enforce some order. As 
has been discussed, this procedure results in a potentially confusing rule 
base where some rules represent medical expertise and others guide com­
putation. In the prototype-directed system, the expert specifies the order 
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in which information is to be acquired for each prototype in the CON­
TROL slot. Thus control information is labeled explicitly as such, and the 
rule base remains uniformly a body of medical expertise. The expert can 
also specify what information must be acquired and what information is 
optional, using the importance measure associated with each component. 10 

G. Only relevant questions are asked. Another advantage of CENTAUR 
over the rule-based version of PUFF is that only those hypotheses sug­
gested by the initial data are explored. For example, if the total lung ca­
pacity (TLC) for the patient is 70, then CENTAUR would begin exploring 
the possibility of restrictive lung disease (RLD) because a low TLC would 
trigger the RLD prototype. 11 In the PUFF program, the first disease tried 
is always OAD, so the PUFF program would begin asking questions dealing 
with OAD. These questions would seem irrelevant considering the data, 
and, indeed, if there were no data to indicate OAD, such questions would 
not be asked by CENTAUR. 

H. Inconsistent information is indicated. During a consultation, it is also 
possible to point out inconsistent or possibly erroneous data as they are 
entered, so that a technician can repeat a test immediately or at least decide 
if it is worth the time to continue analyzing the case. This feature is invoked 
when possible error values are detected for a component of a prototype, 
or when no prototype can be determined to account for a given value. 12 

23.5 Summary 

CENTAUR was designed in response to problems that occurred while us­
ing a purely rule-based system. The CENTAUR system offers an appro­
priate environment in which to experiment with knowledge representation 
issues such as determining what knowledge is most easily represented in 
rules and what is most easily represented in frames. In summary, much 
research remains to be done on this and associated knowledge represen­
tation issues. This present research is one attempt to make explicit the art 
of choosing the knowledge representation in AI by drawing comparisons 
between various approaches and by identifying the reasons for selecting 
one fundamental approach over another. 

100ptional information is indicated by assigning a component an importance measure of 0. 
11 A low TLC is consistent with a hypothesis of RLD; a high TLC is consistent with OAD. 
12It is also possible that there is an overly restricted range of plausible values for a prototype 
component, in which case the user may extend the range to encompass the indicated value. 
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The success of MYCIN-like systems has demonstrated that for many di­
agnostic tasks expert behavior can be successfully captured in simple goal­
directed production systems. However, even for this class of problems, 
difficulties have arisen with both the representation and control mecha­
nisms. One such system, PUFF (Kunz et al., 1978), has established a cred­
itable record in the domain of pulmonary function diagnosis. The repre­
sentation problems in PUFF are manifest in a number of rules that have 
awkward premises and conclusions. The control problems are somewhat 
more severe. Physicians have criticized PUFF on the grounds that it asks 
questions that do not follow a logical line of reasoning and that it does not 
notice data that are atypical or erroneous for the determined diagnosis. 

In the CENTAUR sygtem, described in Chapter 23, an attempt was 
made to correct representational deficiencies by using prototypes (frames) 
to characterize some of the system's knowledge. A more complex control 
scheme was also introduced. It made use of triggering rules for suggesting 
and ordering system goals, and included an additional attention-focusing 
mechanism by using frames as an index into the set of relevant rules. 

In an attempt to carry the work of Aikins one step further, we have 
constructed an experimental system for pulmonary function diagnosis, 
called WHEEZE. Our objectives were to provide a uniform declarative 
representation for the domain knowledge and to permit additional control 
flexibility beyond that offered by PUFF or CENTAUR. To achieve the first 
of these objectives, all of PUFF's rules have been translated into a frame 
representation (discussed in Section 24.1). The second objective, control 
flexibility, is achieved by using an agenda-based control scheme (discussed 

This chapter is an expanded version of a paper originally appearing in Proceedings of the First 
National Conference on Artificial Intelligence, Stanford, Calif., August 1980, pp. 154-156. Used 
with permission of the American Association for Artificial Intelligence. 
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in Section 24.2). New goals for the agenda are suggested by the success or 
failure of other goals on the agenda. In the final section, results and the 
possibilities of generalization are discussed. 

24.1 Representation 

24.1.1 The Language 

We have chosen to use a representation language called RLL (Greiner and 
Lenat, 1980). The language is frame-based, where a frame consists of a set 
of slots, or attributes. We did not rely on the special features of RLL in any 
fundamental way. Any of the multitude of frame-based languages would 
have served equally well. 

24.1.2 Vocabulary 

In our knowledge base, there are three different kinds of frames that 
contain domain-specific diagnostic knowledge and knowledge about the 
case: assertion frames, patient frames, and patient datum frames. 

Assertion Frames 

The majority of the diagnostic knowledge is captured in a set of frames 
called assertions. Most assertions in the knowledge base are about the phys­
iological state of the patient, e.g., "the patient's total lung capacity is high." 
But there are other types of assertions as well, such as "the total lung 
capacity measurement is erroneous." The organization of an assertion 
frame is shown in Figure 24-1. 

An assertion may be related to other assertions in the knowledge base 
in several ways as shown in Figure 24-1. The substantiating evidence for 
an assertion is specified in the Manifestation slot for the assertion. This 
slot can be thought of as a set of links to secondary assertions that con­
tribute to the confirmation of the assertion in question. It has been nec­
essary to allow a considerable richness of combinations of manifestations 
for an assertion; consequently, each entry in the slot may be an individual 
manifestation or a simple function of individual manifestations, such as 
OneOf, TwoOf, TwoOrMoreOf, SomeOf, etc. Associated with each man­
ifestation link is a number indicating the importance of the link in suggesting 
belief or disbelief in the assertion. The Manifestation Of slot is the inverse 
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Isa Assertion 

Description <commentary> 

Manifestation 

Manifestation Of 

Certainty 

SuggestiveOf 

ComplementaryTo 

CategorizationOf 

CategoryCriterion 

DegreeOfBelief 

Findings 

<a list of assertions on which this assertion depends> 

<a list of assertions that this assertion is a manifestation of-the 
inverse of the Manifestation slot> 

<a number between - 1000 and 1000 that indicates to what 
degree the assertion is believed, if its manifestations are 
believed> 

<related assertions that are worth investigating if this assertion 
is believed> 

<related assertions that are worth investigati.ng if this assertion 
is not believed> 

<the patient datum that this assertion is concerned with> 

<the allowed range of the patient datum corresponding to this 
assertion> 

<a number between - 1000 and 1000 that indicates to what 
degree the assertion is believed> 

<text to be reported to the user if this assertion is believed> 

FIGURE 24-1 Organization of an assertion frame. 

of the Manifestation slot; i.e., it contains a list of the assertions that have 
that assertion as a manifestation. 

The Certainty slot, in WHEEZE, is an indicator of how likely an as­
sertion is, given that its manifestations are believed. If the manifestations 
are strong indicators of the assertion, the Certainty slot will have a high 
value. The Certainty slot is a property of the knowledge rather than a 
statement about a particular consultation. 

When an assertion is directly related to a patient datum, it is termed 
a categorization of that patient datum. This relationship is specified by the 
CategorizationOf and CategoryCriterion slots of the assertion. 
Categorization Of indicates which patient datum the assertion depends on, 
while CategoryCriterion specifies the range in which the value must be for 
the assertion to be verified. For example, the assertion "the patient's TLC 
is greater than 11 O" (TLC stands for total lung capacity) would be a cate­
gorization of the TLC value with the category criterion being value> 110. 
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The relationship may also be used in the reverse manner. A high-level 
datum such as SeverityOIDisease could be defined as one of a disjoint set 
of assertions being true (MildDisease, ModerateDisease, etc.), in which case 
the categorization relationship might be used to determine the datum from 
the assertions. 

Each assertion has a DegreeOfBelief slot associated with it indicating 
to what degree the assertion is believed to be true in that particular con­
sultation. The value of this slot can be any integer between - 1000 and 
1000, where 1000 indicates complete faith and - 1000 means total denial 
of the assertion. It may also take on the value Unknown, indicating that 
the knowledge needed to determine the degree of belief of the assertion 
is not known. Note that there is a distinction made between a degree of 
belief that has not yet been investigated, a degree of belief that has been 
investigated but cannot be determined due to insufficient evidence (degree 
of belief Unknown) and a degree of belief that indicates equal positive and 
negative evidence (DegreeOfBelief = 0). 

Unlike the Certainty slot, the DegreeOffielief ic; determined by the 
system during the consultation. For an assertion that has only the catego­
rization relationship (no manifestations), the DegreeOfBelief depends only 
on the Certainty of the assertion and on the patient datum being in the 
specified range. For assertions with manifestations, the DegreeOffielief of 
the assertion can be a general function of the Certainty of the assertion, 
the DegreeOffielief of each of its manifestations, and the importance at­
tributed to each manifestation. The function used in MYCIN and PUFF 
is a simple thresholding mechanism, where, if the minimum of the ante­
cedents is above some threshold (generally 200), the DegreeOffielief is 
effectively set to the certainty factor. Importance measures provide addi­
tional flexibility by permitting the antecedents of a rule to be weighted. 
Several different combination mechanisms have been considered: 

1. Sum the products of the DegreeOffielief slots and the importance fac­
tors for each manifestation, then use a thresholding mechanism. 

2. Sum the products of the DegreeOffielief slots and the importance fac­
tors for each maniJestation, then multiply this by the certainty factor. 

3. Threshold the minimum of the DegreeOffielief/importance ratios for 
the manifestations. 

There are two assertion slots that indicate related assertions worth 
pursuing when an assertion is confirmed or denied. The SuggestiveOf slot 
contains a list of assertions to investigate if the current assertion is con­
firmed. Conversely, the ComplementaryTo slot is a list of assertions that 
should be pursued if the current assertion is denied. These slots function 
like the "triggering" rules in CENTAUR since they suggest goals to inves­
tigate. 

The Findings slot of an assertion contains text that should be printed 
out if the assertion is confirmed. In PUFF, this text was contained in the 
conclusion portions of rules. 
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Isa Patient 

Age <the patient's age> 

Sex <the patient's sex> 

Pack YearsSmoked <the number of cigarette-smoking years specified in number 
of packs per day times number of years of smoking> 

TLC <the value of the total lung capacity for the patient> 

RDX <the referral diagnosis> 

ConfirmedAssertions <assertions that have already been confirmed for this 
patient> 

DeniedAssertions 

Agenda 

<assertions that have a DegreeOfBelief less than 0> 

<a pointer to an agenda frame containing assertions worth 
pursuing> 

FIGURE 24-2 Organization of a patient frame. 

Patient Frames 

Information about the patient is kept in a frame named after that patient. 
In general, it contains slots for all of the patient data and for the state of 
the consultation. As shown in Figure 24-2, the majority of the slots in the 
patient frame contain the values of test data, derived data, or more general 
facts about the patient. Most of these values are entered directly by the 
physician; however, there are data that are derived or calculated from other 
values. The slots in the patient frame do not contain any information about 
obtaining the value for that slot. Instead, that information is kept in the 
corresponding patient datum frame (discussed below). The Confirmed­
Assertions and DeniedAssertions slots keep track of the assertions that have 
already been tested. The Agenda slot contains a pointer to the agenda 
frame for the patient. It is important to note that the patient frame does 
not contain any heuristic knowledge about the system. Its only purpose is 
to hold current information about the patient. 

Patient Datum Frames 

In addition to patient and assertion frames, there are frames in the knowl­
edge base for each type of patient datum (as shown in Figure 24-3). These 
frames indicate how a datum is obtained (whether it is requested from the 
physician or derived from other data), what a typical value for the datum 
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Isa PatientDatum 

Description <commentary on this specific datum> 

ToGetValue <how to get the value of this datum if it is not known> 

Categorization <the set of assertions that are categorizations of this datum> 

Typical Value <the value of this datum expected for a normal patient> 

FIGURE 24-3 Organization of a patient datum frame. 

might be, and what categories the value may be placed in. When the value 
of a patient datum is requested and not yet known, the frame for that 
patient datum is consulted and the information about how to obtain that 
datum is applied. This information takes the form of a procedure in the 
ToGetValue slot of the frame. 

For a given patient datum, there may be many low-level assertions that 
are categorizations of the datum. These are specified by the Categorization 
slot. For example, the Categorization slot of TLC (total lung capacity) might 
contain the assertions TLC= 80tol00, TLC= 100tol20, TLC<80, and 
TLC> 120, indicating that there are four major categories of the values. 
Thus the patient datum contains heuristic knowledge about how the datum 
is derived and how it relates to assertions in the network. 

24.1.3 Translation 

The process of translating a PUFF rule into a WHEEZE assertion consists 
of several steps. First, an assertion must be created embodying the conclu­
sion and findings of the rule. Next, assertions corresponding to each of 
the antecedents of the rule must be constructed (if they are not already 
present) and added to the Manifestation slot of the assertion. If a mani­
festation is a categorization of some patient datum, then the 
CategorizationOf and CategoryCriterion slots for that manifestation must 
be filled in accordingly, and the frame describing that patient datum must 
be created. 

Figure 24-4 is an example of how a particular PUFF rule was translated 
into our representation. The conclusion of the rule corresponds to the 
assertion and findings. The antecedents became the manifestations of the 
assertion. Quite often the manifesting assertions are not already present 
in the knowledge base and must be created. For example, the assertion 
frame RDX-Asthma (meaning "referral diagnosis of asthma") had to be 
added to the knowledge base when the Refractory Asthma frame was cre­
ated, since it is one of the manifestations of Refractory Asthma. The patient 
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PUFF Rule 42 

If: 1) There are postbronchodilation test results, and 

2) The degree of reversibility of airway obstruction of the patient is less than or equal to slight, and 

3) Asthma is one of the referral diagnoses of the patient 

Then: It is definite (1000) that the following is one of the conclusion statements about this interpretation: The 
poor response to bronchodilators is an indication of an asthmatic condition in a refractory state. 

REFRACTORY-ASTHMA 

Isa Physiological State 

Manifestation (OAD BronchodilationTestResults ROX-Asthma 
('OneOf OADReversibility-None OADReversibility-Slight)) 

Certainty 1000 

DegreeOfBelief 

Findings The poor response to bronchodilators is an indication of an asthmatic condition in a 
refractory state. 

Complementary To ((RefractoryAsthma-None 5)) 

FIGURE 24-4 PUFF rule and corresponding WHEEZE frame 
for refractory asthma. 

datum RDX (referral diagnosis) also had to be added, since RDX-Asthma 
was specified as a categorization of RDX. Most of the other rules in the 
system were translated in an analogous fashion. 

While there is not a one-to-one mapping between the representations 
we have used and the rules in PUFF, we can imagine automating the pro­
cess. The most difficult problem in conversion is to create meaningful and 
consistent names for the assertions in the knowledge base. In most cases 
we used some combination of keywords in the conclusion of the rule we 
were mapping into the assertion (as in Figure 24-4). 

24 2 Control Structure • 

Depth-first, goal-directed search is often used in production systems be­
cause questions asked by the system are focused on specific topics. Thus 
the system appears to follow a coherent line of reasoning, more closely 
mimicking that of human diagnosticians. There are, however, many widely 
recognized limitations. No mechanism is provided for dynamically select-
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FIGURE 24-5 A simplified portion of the WHEEZE knowl­
edge base. The solid lines indicate Manifestation links (e.g., 
OAD is a manifestation of Asthma); the dashed lines represent 
SuggestiveOf links. The numbers represent the corresponding 
importance and SuggestiveOf values of the links. (Key: ALS = 
amyotrophic lateral sclerosis; FEVl = forced expiratory vol­
ume at one minute; FVC = forced vital capacity; MMF = max­
imal midexpiratory flow; OAD = obstructive airways disease; 
RDX = referral diagnosis; RLD = restrictive lung disease; 
RV = residual volume; TLC = total lung capacity.) 

ing or ordering the initial set of goals. Consequently, the system may ex­
plore many "red herrings" and ask irrelevant questions before encounter­
ing a good hypothesis. In addition, a startling piece of evidence (strongly 
suggesting a different hypothesis) cannot cause suspension of the current 
investigation and pursuit of the alternative. 

For the assertion network in Figure 24-5, a depth-first, goal-directed 
system like PUFF would start with the goals Asthma, Bronchitis, and ALS 
(amyotrophic lateral sclerosis) and work backwards in a goal-directed fash­
ion toward OAD (obstructive airways disease) and RLD (restrictive lung 
disease) and then toward FEV1/FVC<80, MMF214, etc. In contrast, the 
CENTAUR system would make use of triggering rules to allow primitive 
data (e.g., RDX-ALS and FEVI/FVC<80) to suggest whether ALS and 
OAD were worth investigating and the order in which to investigate them. 
It would then proceed in a goal-directed fashion to try to verify those goals. 

Expert diagnosticians use more than simple goal-directed reasoning. 
They seem to work by alternately constructing and verifying hypotheses, 
corresponding to a mix of data- and goal-directed search. They expect 
expert systems to reason in an analogous manner. It is therefore necessary 
that the system designer have some control over the reasoning behavior of 
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the system. These intuitions, and the work on triggering described in 
Chapter 23, have led us to adopt a control mechanism that permits a 
combination of backward chaining and forward (data-driven) exploration 
together with any search strategy ranging from pure depth-first to pure 
breadth-first search. This control structure is implemented by using an 
agenda, with each suggested assertion being placed on the agenda accord­
ing to some specified priority. The control strategy is as follows: 

I. Examine the top assertion on the agenda. 

2. If its subassertions (manifestations) are known, the relative belief of the 
assertion is determined. If confirmed, any assertions of which it is 
suggestive are placed on the agenda according to the specified measure 
of suggestivity. If denied, complementary assertions are placed on the 
agenda according to their measures of suggestivity. 

3. If it cannot be immediately verified or rejected, then its unknown man­
ifestations are placed on the agenda according to their measures of 
importance and the agenda level of the original assertion. 

By varying the importance factors, SuggestiveOf values, and the initial 
items placed on the agenda, numerous control strategies are possible. For 
example, if high-level goals are placed on the agenda initially and subgoals 
are always placed at the top of the agenda, depth-first, goal-directed be­
havior will result. Alternatively, if low-level data are placed on the agenda 
initially and assertions suggested by these data assertions are always placed 
below them on the agenda, breadth-first, data-driven behavior will result. 
More commonly, what is desired is a mixture of the two, in which assertions 
suggest others as being likely and goal-directed verification is employed to 
investigate the likely assertions. The example below illustrates how this can 
be done. 

In the knowledge base of Figure 24-5, suppose that RDX-ALS is con­
firmed, suggesting RLD to the agenda at level 5 and ALS at level 4. RLD 
is then examined, and since its manifestations are unknown, they are 
placed at the specified level on the agenda. The agenda now contains 
FEV l/FVC;::..:80 at level 8, RV <80 and RLD at level 5, and ALS at level 4. 
FEV l/FVC;::..:80 is therefore selected. Suppose that it is found to be false. 
Its complementary assertion (FEV1/FVC<80) is placed at level 8 on the 
agenda and is immediately investigated. It is, of course, true, causing OAD 
to be placed at level 8 on the agenda. The diagnosis proceeds by investi­
gating the manifestations of OAD; and, if OAD is confirmed, Asthma and 
Bronchitis are investigated. 

Although many subtleties have been glossed over in this example, it is 
important to note that: 

I. The manipulation of SuggestiveOf and importance values can change 
the order in which assertions are examined, therefore changing the 
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order in which questions are asked and results are printed out. (In the 
example, FEVl/FVC was asked for before RV.) 

2. Surprise values (data contrary to the hypothesis currently being inves­
tigated) may suggest goals to the agenda that are high enough to cause 
suspension of the current investigation. (The surprise FEVl/FVC value 
caused suspension of the RLD investigation in favor of the OAD inves­
tigation. If the suggestivity of the link from FEV1/FVC<80 to OAD 
were not as high, this would not have occurred.) 

3. Low-level data assertions cause the suggestion of high-level goals, thus 
selecting and ordering goals to avoid irrelevant questions. (In the ex­
ample, RLD and ALS were suggested and ordered by the low-level 
assertion RDX-ALS.) 

24 3 Conclusions • 

It is no surprise that WHEEZE exhibits the same diagnostic behavior as its 
predecessors, PUFF and CENTAUR, on a standard set of ten patient test 
cases. The three systems are also roughly comparable in efficiency. 
WHEEZE and CENTAUR are somewhat slower than PUFF, but this may 
be misleading, since little effort has been expended on optimizing either 
of these systems. 

The frame representation described in Section 24. l has proved en­
tirely adequate for capturing the domain knowledge of both PUFF and 
CENTAUR. In some cases, several rules were collapsed into a single as­
sertion frame. In other cases, intermediate assertions, corresponding to 
common groups of clauses in rule premises, were added to the knowledge 
base. This had the effect of simplifying other assertion frames. The com­
bination of representation and control structure also eliminated the need 
for many awkward interdependent rules and eliminated the need for 
screening clauses in others. 

There are several less tangible effects of using a frame representation. 
Our purely subjective view is that a uniform, declarative representation is 
often more perspicuous. As an example, all of the interconnections be­
tween assertions about disease states are made explicit by the Manifestation 
and ManifestationOf slots. As a result, it is easier to find all other assertions 
related to a given assertion. This in turn makes it somewhat easier to 
understand and predict the control flow of the system. 

Since the agenda-based control mechanism includes backward-chain­
ing and goal-triggering capabilities, it has also proved adequate for cap­
turing the control flow of PUFF and CENTAUR. In addition, the flexibility 
of agenda-based control was used to advantage. Suggestiveness and im­
portance factors were used to change the order in which questions were 
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asked and conclusions printed out. They were also used to eliminate the 
need to order carefully sets of antecedent assertions. 

There is evidence that mixed goal-directed and data-directed control 
models human diagnostic behavior much more closely than either pure 
goal-directed or data-directed search (Elstein et al., 1978). The diagnostic 
process is one of looking at available symptoms, allowing them to suggest 
higher-level hypotheses, and then setting out to prove or disprove those 
hypotheses, all the while recognizing hypotheses that might be suggested 
by symptoms appearing in the verification process. Pauker and Szolovits 
( 1977) have noted that a physician will go to great lengths to explain data 
inconsistent with a partially verified hypothesis before abandoning it. This 
type of behavior is not altogether inconsistent with the strategy we have 
employed, albeit for a different reason. The combination of a partially 
verified hypothesis and data inconsistent with it may be enough to boost 
an assertion that would explain the inconsistent data "above" an alternative 
hypothesis on the agenda. Oddly enough, some of this behavior seems to 
be a natural consequence of the control structure we have employed. 

24.3.1 Generalizing 

There is no reason to suppose that the representation and control mech­
anisms used in WHEEZE could not be used to advantage in other diag­
nostic production systems. A system similar to EMYCIN (Chapter 15), hav­
ing both knowledge acquisition and explanation capabilities, could 
certainly be based on frames and agenda-based control. It also seems likely 
that an analogue of the EMYCIN rule compiler could be developed to take 
portions of an assertion network and produce efficient LISP code that 
would perform identically to the agenda-based control scheme operating 
on the assertion network. 

A second class of extensions that becomes possible with a frame-based 
system is the addition of other kinds of knowledge not essential to the 
diagnostic process. For example, in the development of GUIDON (Chapter 
26) Clancey noted that a substantial proportion of the domain knowledge 
had been compiled out of the rules used by most high-performance sys­
tems. Within our framework there is no reason why this information could 
not be added while still maintaining high performance. Such additional 
information might also be useful for enhanced explanation of system be­
havior. 

24.3.2 Some Outstanding Questions 

In the discussion above, claims were made about the perspicuity of the 
frame representation and about the flexibility of the agenda-based control 
mechanism. Of course, the acid test would be to see how well domain 
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experts could adapt to the representation and to see whether or not they 
would become facile at tailoring control flow. 

A second question that we pondered is this: how would WHEEZE be 
different if we had started with a basic frame system and the agenda-based 
control mechanism and worked with an expert to help build up the system 
from scratch? It is entirely possible that the backward-chaining production 
system paradigm had a significant effect on the vocabulary and knowledge 
that make up both PUFF and CENTAUR. In other words, the medium 
may have influenced the "message." 

To a large extent, we have only paraphrai>ed PUFF's rules in a different 
representational medium. This paraphrase may not be the most natural 
way to do diagnosis in the new architecture. Unfortunately, we do not have 
sufficient expertise in pulmonary function diagnosis to consider radical 
reformulations of the domain knowledge. For this reason, it would be in­
teresting to see a new diagnostic system developed using the basic archi­
tecture we have proposed. 



PART EIGHT 

Tutoring 



25 
Intelligent Computer-Aided 
Instruction 

The idea of directly teaching students "how to think" goes back at least to 
Polya ( 1957), if not to Socrates, but it reached a new stage of development 
in Papert's laboratory (Papert, 1970). In the LOGO lab, young students 
were taught AI concepts such as hierarchical decomposition, opening up 
a new dimension by which they could take apart a problem and reason 
about its solution. In part, Polya's heuristics have seemed vague and too 
general, too hard to follow in real problems (Newell, 1983). But progress 
in AI programming, particularly expert system design, has suggested a 
vocabulary of structural concepts that we now see must be conveyed along 
with the heuristics to make them intelligible (see Chapter 29). 

Developing in parallel with Papert's educational experiments and cap­
italizing even more directly on AI technology, programs called intelligent 
tutoring systems (ITS) were constructed in the 1970s. In contrast with the 
computer-aided instruction (CAI) programs of the 1960s, these programs 
used new AI formalisms to separate out the subject matter they teach from 
the programs that control interactions with students. This is called intel­
ligent computer-aided instruction (ICAI). This approach has several ad­
vantages: it becomes possible to keep records of what the student knows; 
the logic of teaching can be generalized and applied to multiple problems 
in multiple problem domains; and a model of student knowledge can be 
inferred from student behavior and used as a basis for tutoring. The well­
known milestones in ITS research include: 

• interacting with the student in a mixed-initiative dialogue 1 (Carbonell, 
l 970b) and tutoring by the Socratic method (Collins, 1976) 

Parts of this chapter are taken from the final report to the Office of Naval Research for the 
first period of GUIDON research (1979-1982). That report appeared as a technical memo 
(HPP-82-2) written by William J. Clancey and Bruce G. Buchanan from the Heuristic Pro­
gramming Project, Department of Computer Science, Stanford University. 
1In a mixed-initiative dialogue between a student and a program, either party can initiate 
questions and expect reasonable responses from the other party. This contrasts sharply with 
drill and practice programs or MYCIN's dialogue, in which users cannot volunteer infor­
mation or direct the program's reasoning. 

455 
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• evaluating student hypotheses for consistency with measurements taken 
(Brown et al., 1975) 

• enumerating bugs in causal reasoning (Stevens et al., 1978) 
• interpreting student behavior in terms of expert knowledge ("overlay 

model") (Burton, 1979; Carr and Goldstein, 1977; Clancey, 1979b) 

• codifying discourse procedures for teaching (Clancey, l 979c) 
• constructing models of incorrect plans or procedures (Genesereth, 1981; 

Brown and Burton, 1978) 
• relating incorrect procedures to a generative theory (Brown and Van­

Lehn, 1980) 

The record of ITS research reveals a few recurring questions: 

1. Nature of expertise: What is the knowledge we want to teach a student? 

2. Modeling: How can we determine what the student knows? 
3. Tutoring: How can we improve the student's performance? 

Almost invariably, researchers have backed off from initially focusing on 
the last question-"How shall we teach?"-to reconsider the second ques­
tion, that of building a model of the student's knowledge. This follows 
from the assumption that student errors are not random but reflect mis­
conceptions about the procedure to be followed or facts in the problem 
domain and that the best teaching strategy is to address directly the stu­
dent's misconceptions. 

In order to extend the research in building models of misconcep­
tions in well-understood domains such as subtraction to more complex do­
mains such as physics, medicine, and electronic troubleshooting, we need 
a sounder understanding of the nature of knowledge and expertise. Com­
parison studies of experts and novices (Chi et al., 1980; Feltovich et al., 
1980; Lesgold, 1983) reveal that how the expert structures a problem, the 
very concepts he or she uses for thinking about the problem, distinguishes 
an expert's reasoning from a student's often formal, bottom-up approach. 
These studies suggest that we might directly convey to the student the 
kinds of quick associations, patterns, and reasoning strategies that experts 
build up tediously over long exposure to many kinds of problems-the 
kind of knowledge that tends not to be written down in basic textbooks. 

It is with this premise-that we will be better teachers by better un­
derstanding expertise-that research on expert systems becomes of keen 
interest to the educator. These knowledge-based programs contain within 
them a large number of facts and rulelike associations for solving problems 
in restricted domains of medicine, science, and engineering. While these 
programs were developed originally just for the sake of building systems 
that could solve difficult problems, they have special interest to research 
in cognitive science as simulation models that can be used as a "laboratory 
workbench" for experimenting with knowledge structures and control 
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strategies. By altering the "program as a model," one can test hypotheses 
about human performance [for example, see Johnson et al. (1981)). 

Another natural application for expert systems in education is to use 
them as the "knowledge foundation" for an intelligent tutoring system. 
Brown pioneered this technology in the SOPHIE3 system (Brown et al., 
1974), which took a student through the paces of debugging a circuit. 
Brown, Collins ( 1978), and Goldstein ( 1978) pioneered the use of produc­
tion rules to express knowledge about how to interact with a student and 
how to interpret his or her behavior. The first tutor built on top of a 
complex expert system was GUIDON (Clancey, l 979a), using MYCIN's 450 
production rules and tables for teaching medical diagnosis by the case 
method. GUIDON's teaching expertise is represented cleanly and inde­
pendently of the domain rules; it has been demonstrated for both medical 
and engineering domains. 2 

25.1 Tutoring from MYCIN's Knowledge Base 

Early in the course of building MYCIN, we observed that a program with 
enough medical knowledge for consulting had high potential for educating 
physicians and medical students. Physicians who seek advice from a con­
sultant-human or machine-do so because they are uncertain whether or 
not they are ignoring important possibilities or making conclusions that 
are correct. Along with confirmation and advice, a consultant provides 
reasons, answers questions, and cites related issues. The educational com­
ponent of a computer-based consultant was too obvious for us to ignore. 

MYCIN's conclusions alone would not help a physician understand the 
medical context of the case he or she presents to the program. But the 
dialogue with MYCIN already begins to illuminate what are the key factors 
for reaching those conclusions. Because MYCIN asks whether or not the 
patient has been burned, for example, a physician is reminded that this 
factor is relevant in this context. This is very passive instruction, however, 
and does not approach the Socratic dialogue we expect from good teachers. 

MYCIN's explanation capabilities were introduced to give a physician an 
opportunity to examine parts of the dialogue he or she found puzzling. 
When the program asks whether or not the patient has burns, the user 
can inquire why that information is relevant. As described in Part Six, 
answers to such inquiries elucidate MYCIN's line of reasoning on the case 
at hand and thus provide brief instructional interchanges in the course of 
a consultation. Similarly, the question-answering capabilities give a physician 

2In GUIDON teaching knowledge is treated as a form of expertise. That is, GUIDON has a 
knowledge base of teaching rules that is distinct from MYCIN's knowledge base of infectious 
disease rules. 
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instructional access to the static knowledge base. Although we now under­
stand better the difference between MYCIN's explanation capabilities and 
an active tutor, we enthusiastically wrote in 1974 (Shortliffe, 1974, pp. 230-
231): 

As ... emphasized throughout this report, an ability to instruct the user 
was an important consideration during the design of MYCIN. We believe it 
is possible to learn a great deal simply by asking MYCIN for consultative 
advice and taking advantage of the program's explanation capabilities. It is 
quite likely, in fact, that medical students in their clinical years will comprise 
a large percentage of MYCIN's regular users. 

We were also aware of the need to make an instructional program 
more active, as others in AI were doing. In 1974 we noted (Shortliffe, 
1974, p. 231): 

It would be possible ... to adapt MYCIN so that its emphasis became 
primarily educational rather than consultative. This could be accomplished 
in a number of ways. In one scenario, MYCIN would present a sample patient 
to a student. The program would then judge the student's ability to ask 
important questions and to reach valid conclusions regarding both the iden­
tity of the organism(s) and the most appropriate therapeutic regimen. By 
comparing the student's questions and decisions to its own, MYCIN could 
infer inadequacies in the user's knowledge and enter into a tutorial discourse 
customized for the student. ... We have no plans to pursue this application 
in the near future. 

It was within this intellectual context that Clancey began asking about 
the adequacy of MYCIN's knowledge base for education. We initially be­
lieved that the rules and tables MYCIN used for diagnosing causes of 
infections would be a sufficient instructional base for an ICAI program. 
We felt that the only missing intelligence was pedagogical knowledge: how 
to carry on a mixed-initiative dialogue, how to select and present infor­
mation, how to build and use a model of the student, and so on. Clancey 
began work on a tutorial program, called GUIDON, within two years after 
the material quoted above was written. The initial model of interaction 
between MYCIN and GUIDON is shown schematically in Figure 25-1. 

GUIDON was first conceived as an extension of the explanation system 
of the MYCIN consultation program. This previous research provided the 
building blocks for a teaching program: 

• modular representation of knowledge in production rules 
• English translation of the internal rule representation 
• a developed "history trace" facility for recording reasoning steps 
• representation in the system of the grammar of its rules, so they can be 

parsed and reasoned about by the system itself 
• an explanation subsystem with a well-developed vocabulary for the log-
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GUI DON 

MYCIN 

medical 
inference engine 

= diagnostic knowledge 
knowledge 

tutorial program 

= pedagogical 

knowledge 

FIGURE 25-1 Model of interaction between MYCIN and GUI­
DON. 

ical kinds of questions that can be asked about MYCIN's reasoning ("Why 
didn't you ask X?" or "How did you use X to conclude about Y?") 

With this foundation, we constructed a tutoring program that would 
take MYCIN's solution to a problem, analyze it, and use it as the basis for 
a dialogue with a student trying to solve the same problem. About two 
hundred tutoring rules were developed, organized into "discourse proce­
dures" for carrying on the dialogue (offering advice, deciding whether and 
how to interrupt, etc.) (Clancey, l 979b). Student modeling rules were used 
to interpret a student's partial problem solutions in terms of MYCIN's 
knowledge, and the resulting model was used to decide how much to tell 
the student and when to test his or her understanding. 

Our 1978 proposal to the Office of Naval Research (ONR) for GUI­
DON research outlined investigation of both problem-solving and teaching 
strategies. With the program so well developed, it was expected that early 
experimentation could be done with alternative teaching approaches. How­
ever, during preliminary discussions with other researchers in this field, a 
key question was repeatedly raised. To paraphrase John Brown (August 2, 
1978, at Stanford University): 

What is the nature of the expertise to be transmitted by this system 
(GUIDON]? You are not just unfolding a chain of inferences; there is also 
glue or a model of process .... What makes a rule click? 

Following this lead, we began to concentrate on the nature of the 
expertise to be taught. GUIDON's interactions were studied, particularly 
the kind of feedback it was able to provide in response to incorrect partial 
solutions. The inability of the program to provide strategical guidance-
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advice about what to do next-revealed that the "glue" that was missing 
had something to do with the system of rules as a whole. With over 400 
rules to learn, there had to be some kind of underlying logic that made 
them fit together; the idea of teaching a set of weakly structured rules was 
now seriously in questi9n. Significantly, this issue had not arisen in the 
years of developing MYCIN but was now apparently critical for teaching, 
and probably had important implications for MYCIN's explanation and 
knowledge acquisition capabilities as well. 

It soon became clear that GUIDON needed to know more than MY­
CIN knows about diagnosis. MYCIN's route from goal to specific questions 
is not the only acceptable line of reasoning or strategy for gathering evi­
dence. The order in which MYCIN asks for test results, for example, is 
often arbitrary. Thus a student is not necessarily wrong if he or she deviates 
from that order. Moreover, MYCIN's explicit knowledge about medicine is 
often less complete than what a tutor needs to convey to a student. It is 
associational knowledge and does not represent causal relationships ex­
plicitly. The causal models have been "compiled into" the associations. 
Thus MYCIN cannot justify an inference from A to B in terms of a causal 
chain, A -> A 1 -> A2 -> B. A student, therefore, is left with an incomplete, 
and easily forgotten, model of the disease process. These two major short­
comings are discussed at length in Chapters 26 and 29. 

25 2 Recent Work • 

Complementing the studies of differences between experts and novices, as 
well as our own work at Stanford on systems that explain their reasoning, 
our recent work has shown that expert systems must represent knowledge 
in a special way if it is to be used for teaching (Chapter 29). First, the program 
must convey organizations and approaches that are useful to the student; this ar­
gues for a knowledge base that reflects ways of thinking used by people 
(the hypothesis formation approach). Second, various kinds of knowledge must 
be separated out and made explicit so reasoning steps can be carefully articulated­
the expert's associations must be decomposed into structural and strategic 
components. Under our current contract with ONR, such an expert sys­
tem, called NEOMYCIN, has been constructed (Clancey and Letsinger, 
1981). It is being readied for use with students through both active devel­
opment of its knowledge base and construction of modeling programs that 
will use it as a basis for interpreting student behavior. 

The ultimate goal of our work in the past few years has been to use 
NEOMYCIN for directly teaching diagnostic problem solving to students. 
Students will have the usual classroom background but will be exposed in 
this tutoring system to a way of thinking about and organizing their text­
book knowledge that is usually taught only informally in apprenticeship 
settings. That is, we are beginning to capture in an expert system what we 
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deem to be the essential knowledge that separates the expert from the 
novice and teaching it to the novice in practice sessions in which its value 
for getting a handle on difficult, confusing problems will be readily ap­
parent. Empirical studies are a key part of this research. 

We view our work as the logical "next step" in knowledge-based tu­
toring. Just as representing expert knowledge in a simulation program 
provides a vehicle for testing hypotheses about how people reason, using 
this knowledge in a tutoring system will enable us to see how the knowledge 
might be explained and recognized in student behavior. The experience 
with the first version of GUIDON, as detailed further in Chapter 26, il­
lustrates how the tutoring framework provides a "forcing function" that 
requires us to clarify what we want to teach and how we want to teach it. 

During 1979-1980 a study was undertaken to determine how an 
expert remembered MYCIN's rules (the "model of process" glue) and how 
he or she remembered to use them. This study utilized several common AI 
methods for knowledge acquisition but built upon them significantly 
through the development of an epistemological framework for character­
izing kinds of knowledge, detailed in Chapter 29. The expert's explanations 
were characterized in terms of: strategy, structure, inference rule, and sup­
port. With this kind of framework, discussions with the expert were more 
easily focused, and experiments were devised for filling in the gaps in what 
we were told. 

By the end of 1980, we had formulated and implemented a new, com­
prehensive psychological model of medical diagnosis (Clancey and Letsin­
ger, 1981) based on extensive discussions with Dr. Tim Beckett. NEO­
MYCIN is a consultation program in which MYCIN's rules are 
reconfigured according to our epistemological framework. That is, the 
knowledge representation separates out the inference rules (simple asso­
ciations among data and hypotheses) from the structural and strategic 
knowledge: we separate out what a heuristic is from when it is to be applied. 
Moreover, the strategies and structure we have chosen model how an ex­
pert reasons. We have attempted to capture the expert's forward-directed 
inferences, "diagnostic task structure," and the types of focusing strategies 
he or she uses. This explicit formulation of diagnostic strategy in the form 
of meta-rules is exactly the material that our original proposal only men­
tioned as a hopeful aside. Recently, we have been fine-tuning NEOMYCIN, 
investigating its applicability to other domains, and exploiting it as the 
foundation of a student model. 

25.3 Multiple Uses of the Same Knowledge 

From a slightly different perspective, we were also interested in exploring 
the question of whether or not one knowledge base could be used for 
multiple purposes. From the DENDRAL and MYCIN experiences, we 
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Predictive Rule for DENDRAL: 

IF the molecular structure contains the subgraph 

(where Ri and R2 represent any substructures) 

THEN predict that the molecule will fragment in the mass spectrometer at either 
side of the carbon atom, retaining the positive charge on the C=O group. 

Corresponding Interpretive Rule for DENDRAL: 

IF the mass spectrum shows data points at masses Xi and x2 such that the sum 
of xi and x2 is the molecular weight plus 28 mass units (the overlapping C=O 
group) and at least one of the two peaks is high (because the fragmentation is 
favorable) 

THEN infer that the molecular structure contains the subgraph 

0 
II 

Ri-C-R2 

where the masses of R1 and R2 are just (x 1 - 28) and (x2 - 28). 

FIGURE 25-2 Two forms of the same knowledge in DEN· 
DRAL. 

were painfully aware of how difficult it is for experts to build a single 
knowledge base capable of supporting high performance in reasoning. Yet 
there are many related reasoning tasks in any domain for which one knowl­
edge base would be important. We had been troubled, for example, by the 
fact that DENDRAL's predictive rules of mass spectrometry had to be recast 
to serve as interpretive rules. 3 Prediction is from cause to effect; interpre­
tation depends on inferences from effects to causes. An example from 
DENDRAL is shown in Figure 25-2. When we began working on MYCIN, 
we were thus already sensitized to the issue of avoiding the work of re­
casting MYCIN's interpretive rules in a form suitable for teaching or other 
purposes. 

The GUIDON program discussed in the next chapter has at least three 
important facets. First, GUIDON can be seen as an expert system in its 
own right. Its expertise is in pedagogy, but it obviously needs a knowledge 
base of medicine to teach from as well as a knowledge base about pedagogy. 
Second, we had hoped that GUIDON would help us understand the prob­
lem of transfer of expertise. We believe there is some symmetry between 
GUIDON's transferring medical knowledge to a student and an expert's 

3We experimented with two ways of using predictive rules for interpretation in DENDRAL: 
(a) generate the interpretive rules automatically from the predictive model (Delfino et al., 
1970), and (b) simulate the behavior of a skeletal structure under all plausible substitutions 
of substructures for the unnamed radicals in order to infer the structure and location of 
substituents around the skeleton (Smith et al., I 972). 
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transferring his or her medical knowledge to MYCIN. We need to do much 
more work here. And third, because professional educators cannot yet 
provide a firm set of pedagogical rules and heuristics, GUIDON can also 
be seen as a laboratory for experimenting with alternative teaching strat­
egies. In all three of these areas, the possibilities are exciting because of 
the newness of the territory and frightening because of the expanse of 
uncharted waters. 



26 
Use of MYCIN's Rules for 
Tutoring 

William J. Clancey 

How can we make the expertise of knowledge-based programs accessible 
to students? Knowledge-based programs (Davis et al., 1977; Lenat, 1976; 
Pop le, 1977; Goldstein and Roberts, 1977) achieve high performance by 
interpreting a specialized set of facts and domain relations in the context 
of particular problems. These knowledge bases are generally built by in­
terviewing human experts to extract the knowledge they use to solve prob­
lems in their area of expertise. However, it is not clear that the organization 
and level of abstraction of this performance knowledge is suitable for use 
in a tutorial program. 

A principal feature of MYCIN's formalism is the separation of the 
knowledge base from the interpreter for applying it. This makes the knowl­
edge accessible for multiple uses, including explanation of reasoning 
(Davis, 1976) and tutoring. In this chapter we explore the use of MYCIN's 
knowledge base as the foundation of a tutorial system called GUIDON. 
The goal of this project is to study the problem of transferring the exper­
tise of MYCIN-like systems to students. An important result of this study 
is that although MYCIN-like rule-based expert systems constitute a good 
basis for tutorial programs, they are not sufficient in themselves for making 
knowledge accessible to students. 

In GUIDON we have augmented the performance knowledge of rules 
by adding two other levels: a support level to justify individual rules, and 
an abstraction level to organize rules into patterns (see Section 26.3.3). The 
GUIDON system also contains teaching expertise that is represented ex­
plicitly and that is independent of the contents of the knowledge base. This 

This chapter is a shortened version of an article originally appearing in International Journal 
of Man-Machine Studies 11: 25-49 ( 1979). Copyright © 1980 by Academic Press Inc (London) 
Limited. Used with permission. 
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is expertise for carrying on a tutorial dialogue intended to present the 
domain knowledge to a student in an organized way, over a number of 
sessions. Section 26.2 describes design considerations for this tutorial dia­
logue, given the structure of the knowledge in MYCIN-like problem areas 
(described in Section 26.1). 

GUIDON is designed to transfer the expertise of MYCIN-like pro­
grams in an efficient, comprehensible way. In doing this, we overlap several 
areas of research in intelligent computer-aided instruction (ICAI), includ­
ing means for structuring and planning a dialogue, generating teaching 
material, constructing and verifying a model of what the student knows, 
and explaining expert reasoning. 

The nature of MYCIN-like knowledge bases makes it reasonable to 
experiment with various teaching strategies. The representation of teach­
ing expertise in GUIDON is intended to provide a flexible framework for 
such experimentation (Section 26.3). To illustrate the use of this framework 
in the first version of GUIDON, we present in this chapter two sample 
interactions and describe the domain knowledge and teaching strategies 
used by the program (Section 26.4 and Section 26.5). The sample inter­
actions and rule listings were generated by the implemented program. 

26.1 Description of the Knowledge Base 

MYCIN's knowledge base of infectious diseases that we use for tutoring 
has been built over four years through interactions with physicians. It 
currently contains approximately 450 rules. In addition, there are several 
hundred facts and relations stored in tables, which are referenced by the 
rules. In this chapter, each precondition is called a subgoal. If all of the 
subgoals in the premise can be achieved (shown to be true), then a conclu­
sion can be made about the goal in the action. 

The tutoring system we are developing will also work with problems 
and rules in another domain, assuming some parallels between the struc­
ture of the knowledge in the new domain and the structure of the existing 
medical knowledge. Thus GUIDON is a multiple-domain tutorial program. 
The overall configuration of this system is shown in Figure 26-1. One 
advantage of this system is that a fixed set of teaching strategies can be 
tried in different domains, affording an important perspective on their 
generality. This method of integrating domain and teaching expertise is 
quite distinct from the design of early frame-oriented computer-aided in­
struction (CAI) systems. For example, in the tutor for infectious diseases 
by Feurzeig et al. (1964), medical and teaching expertise were "compiled" 
together into the branching structure of the frames (dialogue/content sit­
uations). In GUIDON, domain and teaching expertise are decoupled and 
stated explicitly. 
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26.2 
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instruction 

STUDENT 

FIGURE 26-1 Modules for a multiple-domain tutorial system. 

Development of a Tutorial Program Based on 
MYCIN-like Systems 

In addition to the domain knowledge of the expert program, a tutorial 
program requires expertise about teaching, such as the ability to tailor the 
presentation of domain knowledge to a student's competence and interests 
(Brown and Goldstein, 1977). The GUIDON program, with its teaching 
expertise and augmented domain knowledge, is designed to be an active, 
intelligent agent that helps make the knowledge of MYCIN-like programs 
accessible to students. 

With the original MYCIN system, it was clear that even rudimentary 
explanations of the system's reasoning could provide some instruction to 
users. For example, one can ask why case data are being sought by the 
program and how goals will be (were) achieved. However, we believe that 
this is an inefficient way for a student to learn the contents of the knowl­
edge base. The MYCIN program is only a passive "teacher": it is necessary 
for the student to ask an exhaustive series of questions in order to discover 
all of the reasoning paths considered by the program. Moreover, the MY­
CIN program contains no model of the user, so program-generated ex­
planations are never tailored to his or her competence or interests. On the 
other hand, GUIDON acts as an agent that keeps track of the knowledge 
that has been presented to the student in previous sessions and looks for 
opportunities to deepen and broaden the student's knowledge of MYCIN's 
expertise. GUIDON's teaching expertise includes capabilities to measure a 
student's competence and to use this measure as a basis for selecting knowl­
edge to present. Some of the basic questions involved in converting a rule­
based expert program into a tutorial program are: 
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• What kind of dialogue might be suitable for teaching the knowledge of 
MYCIN-like consultation systems? 

• What strategies for teaching will be useful? 

• Will these strategies be independent of the knowledge base content? 
• How will they be represented? 
• What additions to the performance knowledge of MYCIN-like systems 

might be useful in a tutorial program? 

As the first step in approaching these questions, the following sections 
discuss some of the basic ways in which MYCIN's domain and formalism 
have influenced design considerations for GUIDON. Section 26.2.1 de­
scribes the nature of the dialogue we have chosen for tutorial sessions. 
Section 26.2.2 discusses the nature of MYCIN's performance knowledge 
and argues for including additional domain knowledge in the tutorial pro­
gram. Sections 26.2.3 and 26.2.4 argue that the uncertainty of MYCIN's 
knowledge and the size of its knowledge base make it desirable to have a 
framework for experimenting with teaching strategies. This framework is 
presented in Section 26.3. 

26.2.1 A Goal-Directed Case Dialogue 

In a GUIDON tutorial session, a student plays the role of a physician 
consultant. A sick patient (the case) is described to the student in general 
terms: age, sex, race, and lab reports about cultures taken at the site of the 
infection. The student is expected to ask for other information that might 
be relevant to this case. For example, did the patient become infected while 
hospitalized? Did the patient ever live in the San Joaquin Valley? GUIDON 
compares the student's questions to those asked by MYCIN and critiques 
the student's line of reasoning. When the student draws hypotheses from 
the evidence collected, GUIDON compares these conclusions to those that 
MYCIN reached, given the same information about the patient. We refer 
to this dialogue between the student and GUIDON as a case dialogue. Be­
cause GUIDON attempts to transfer expertise to students exclusively 
through case dialogues, we call it a case method tutor. 

GUIDON's purpose is to broaden the student's knowledge by pointing 
out inappropriate lines of reasoning and suggesting approaches the stu­
dent did not consider. An important assumption is that the student has a 
suitable background for solving the case; he or she knows the vocabulary 
and the general form of the diagnostic task. The criterion for having 
learned MYCIN's problem-solving methods is therefore straightforward: 
when presented with novel, difficult cases, does the student seek relevant 
data and draw appropriate conclusions? 

Helping the student solve the case is greatly aided by placing con­
straints on the case dialogue. A goal-directed dialogue is a discussion of the 
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rules applied to achieve specific goals. In general, the topics of this dialogue 
are precisely those "goals" that are concluded by MYCIN rules. 1 During 
the dialogue, only one goal at a time is considered; data that cannot be 
used in rules to achieve this goal are "irrelevant." This is a strong constraint 
on the student's process of asking questions and making hypotheses. A 
goal-directed dialogue helps the tutor to follow the student as he or she 
solves the problem, increasing the chance that timely assistance can be 
provided.2 

Our design of GUIDON has also been influenced by consideration of 
the expected sophistication of the students using it. We assume the students 
are well motivated and capable of a serious, mixed-initiative dialogue. Var­
ious features (not all described in this paper) make the program flexible, 
so that students can use their judgment to control the depth and detail of 
the discussion. These features include the capability to request: 

• descriptions of all data relevant to a particular goal 

• a subgoal tree for a goal 

• a quiz or hint relevant to the current goal 

• a concise summary of all evidence already discussed for a goal 

• discussion of a goal (of the student's choice) 

• conclusion of a discussion, with GUIDON finishing the collection of evi­
dence for the goal and indicating conclusions that the student might 
have drawn 

26.2.2 Single Form of Expertise 

The problem of multiple forms of expertise has been important in ICAI 
research. For example, when mechanistic reasoning is involved, qualitative 
and quantitative forms of expertise may be useful to solve the problem 
(Brown et al., 1976). De Kleer has found that strategies for debugging an 
electronic circuit are "radically different" depending on whether one does 
local mathematical analysis or uses a higher-level, functional analysis of 
components (Brown et al., 1975). One might argue that a tutor for elec­
tronics should also be ready to recognize and generate arguments on both 
of these levels. 3 

For all practical purposes, GUIDON does not need to be concerned 
about multiple forms of expertise. This is primarily because reasoning in 

1 A typical sequence of (nested) goals is as follows: (a) reach a diagnosis, (b) determine which 
organisms might be causing the infection, (c) determine the type of infection, (d) determine 
if the infection has been partially treated, etc. 
2Sleeman uses a similar approach for allowing a student to explore algorithms (Sleeman, 
1977). 
:isee Carr and Goldstein ( 1977) for a related discussion. 
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infectious disease problem solving is based on judgments about empirical 
information, rather than on arguments based on causal mechanisms (Weiss 
et al., 1978). MYCIN's judgments are "cookbook" responses that address 
the data directly, as opposed to attempting to explain it in terms of phys­
iological mechanisms. Moreover, the expertise to solve a MYCIN case on 
this level of abstraction constitutes a "closed" world (Carbonell and Collins, 
1973): all of the objects, attributes, and values that are relevant to the 
solution of a case are determined by a MYCIN consultation that is per­
formed before a tutorial session begins.4 

Even though MYCIN's domain makes it possible for cases to be solved 
without recourse to the level of physiological mechanisms, a student may 
find it useful to know this support knowledge that lies behind the rules. 
Section 26.3.3 describes the domain knowledge we have added to MYCIN's 
performance knowledge in developing GUIDON. 

26.2.3 Weak Model of Inquiry 

Even though the MYCIN world can be considered to be closed, there is 
no strong model for ordering the collection of evidence. 5 Medical problem 
solving is still an art. While there are some conventions to ensure that all 
routine data are collected, physicians have no agreed-upon basis for nu­
merically optimizing the decision of what to do next. 6 During a tutoring 
session, it is not only difficult to tell a student what is the "next best" piece 
of evidence to gather but also difficult to decide what to say about the 
evidence-gathering strategy. For example, when offering assistance, should 
the tutor suggest the domain rule that most confirms the evidence already 
collected or a rule that contradicts this evidence?7 

26.2.4 Large Number of Rules 

MYCIN provides to GUIDON an AND/OR tree of goals (the OR nodes) 
and rules (the AND nodes) that were pursued during consultation on a 
case. This tree constitutes a trace of the application of the knowledge base 

1There is always the possibility that a student may present an exotic case to GUIDON that is 
beyond its expertise. While MYCIN has been designed to detect simple instances of this (i.e., 
evidence of an infection other than bacteremia or meningitis), we decided to restrict GUIDON 
tutorials to the physician-approved cases in the library (currently over 100 cases). 
5 In the WUMPUS program (Carr and Goldstein, 1977), for example, it is possible to rank 
each legal move (analogous to seeking case data in MYCIN) and so rate the student according 
to "rejected inferior moves" and "missed superior moves." The same analysis is possible in 
the WEST program (Burton, 1979). 
6See, for example, Sprosty (1963). 
7MYCIN's rules are not based on Bayesian probabilities, so it is not possible to use optimization 
techniques like those developed by Hartley et al. ( 1972). Arguments against using Bayes' 
Theorem in expert systems can be found in Chapter I I. 
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to the given case.8 Many of the 450 rules are not tried because they con­
clude about goals that do not need to be pursued to solve the case. 
Hundreds of others fail to apply because one or more preconditions are 
not satisfied. Finally, 20% of the rules typically make conclusions that con­
tribute varying degrees of belief about the goals pursued. 

Thus MYCIN's interpreter provides the tutorial program with much 
information about the case solution (see Figure 26-1 ). It is not clear how 
to present this to a student. What should the tutor do when the student 
pursues a goal that MYCIN did not pursue? (Interrupt? Wait until the 
student realizes that the goal contributes no useful information?) Which 
dead-end search paths pursued by MYCIN should the tutor expect the 
student to consider? For many goals there are too many rules to discuss 
with the student; how is the tutor to decide which to present and which to 
omit? What techniques can be used to produce coherent plans for guiding 
the discussion through lines of reasoning used by the program? One so­
lution is to have a framework that allows guiding the dialogue in different 
ways. The rest of this paper shows how GUIDON has been given this 
flexibility by viewing it as a discourse program. 

26.3 A Framework for a Case Method Tutorial 
Program 

One purpose of this tutorial project is to provide a framework for testing 
teaching methods. Therefore, we have chosen an implementation that 
makes it possible to vary the strategies that the tutor uses for guiding the 
dialogue. Using methods similar to those used in knowledge-based pro­
grams, we have formalized the tutorial program in rules and procedures 
that codify expertise for carrying on a case dialogue. 

This section is a relatively abstract discussion of the kinds of knowledge 
needed to guide a discourse and the representation of that knowledge. 
The reader may find it useful to consider the sample dialogues in Figures 
26-6 and 26-7 before proceeding. 

8Before a tutorial session, GUIDON scans each rule used by MYCIN and compiles a list of 
all subgoals that needed to be achieved before the premise of the rule could be evaluated. 
In the case of a rule that failed to apply, GUI DON determines all preconditions of the premise 
that are false. By doing this, GUIDON's knowledge of the case is independent of the order 
in which questions were asked and rules were applied by MYCIN, so topics can be easily 
changed and the depth of discussion controlled flexibly by both GUIDON and the student. 
This process of automatically generating a solution trace for any case can be contrasted with 
SOPHIE's single, fixed, simulated circuit (Brown et al., 1976). 
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26.3.1 Discourse Knowledge 

Our implementation of GUIDON's dialogue capabilities makes use of 
knowledge obtained from studies of discourse in AI (Bobrow et al., 1977; 
Bruce, 1975; Deutsch, 1974; Winograd, 1977). To quote Bruce (1975, 
emphasis added): 

[It is] ... useful to have a model of how social interactions typically fit 
together, and thus a model of discourse structure. Such a model can be 
viewed as a heuristic which suggests likely action sequences . ... There are 
places in a discourse where questions make sense, others where explanations 
are expected. [These paradigms] ... facilitate generation and subsequent 
understanding. 

Based on Winograd's analysis of discourse (Winograd, 1977), it ap­
pears desirable for a case method tutor to have the following forms of 
knowledge for carrying on a dialogue: 

• Knowledge about dialogue patterns. Faught (1977) mentions two types of 
patterns: interpretation patterns (to understand a speaker), and action 
patterns (to generate utterances). GUIDON uses action patterns repre­
sented as discourse procedures for directing and focusing the case dialogue. 
These are the action sequences mentioned by Bruce. They are invoked by 
tutoring rules, discussed in Section 26.3.2.9 

• Forms of domain knowledge for carrying on a specific dialogue. Section 
26.3.3 surveys the augmented domain knowledge available to GUIDON. 

• Knowledge of the communication situation. This includes the tutorial pro­
gram's understanding of the student's intentions and knowledge, as well 
as the tutor's intentions for carrying on the dialogue. These components 
are represented in GUIDON by an overlay student model (in which the 
student's knowledge is viewed as a subset of the expert program's), a 
lesson plan (a plan of topics to be discussed, created by the tutor for each 
case), and a focus record (to keep track of factors in which the student 
has shown interest recently) (Section 26.3.4). Knowledge of the com­
munication situation controls the use of dialogue patterns. 

The following sections give details about these forms of knowledge. 

9Because of the constraints a goal-directed dialogue imposes on the student, we have not 
found it necessary to use interpretation patterns at this time. They might be useful to follow 
the student's reasoning in a dialogue that is not goal-directed. 
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26.3.2 Dialogue Patterns: Discourse Procedures and 
Tutoring Rules 

The sequences of actions in discourse procedures serve as an ordered list 
of options-types of remarks for the program to consider making. For 
example, the procedure for discussing a domain rule (hereafter, cl-rule) 
includes a step that indicates to "consider mentioning cl-rules related to 
the one just discussed." Thus a discourse procedure step specifies in a 
schematic form when a type of remark might be appropriate. Whether to 
take the option (e.g., is there an "interesting" cl-rule to mention?) and what 
to say exactly (the discourse pattern for mentioning the d-rule) will be 
dynamically determined by tutoring rules (hereafter, t-rules) whose pre­
conditions refer to the student model, case lesson plan, and focus record 
(hereafter referred to jointly as the communication model). 

T-rules are generally invoked as a packet to achieve some tutorial goal. 10 

T-rule packets are of two types: 

1. T-rules for accumulating belief Updating the communication model and 
determining how "interesting" a topic is are two examples. 11 Generally, 
a packet oft-rules of this type is applied exhaustively. 

2. T-rules for selecting a discourse procedure to follow. Generally, a packet of 
this type stops trying t-rules when the first one succeeds. The form of 
t-rules of this type is shown in Figure 26-2. Knowledge referenced in 
the premise part of a t-rule of this type is described in subsequent 
sections. The action part of these t-rules consists of stylized code, just 
like the steps of a discourse procedure. 12 A step may invoke: 

a. a packet oft-rules, e.g., to select a question format for presenting a 
given cl-rule 

b. a discourse procedure, e.g., to discuss sequentially each precondition 
of ad-rule 

c. a primitive function, e.g., to accept a question from the student, 
perform bookkeeping, etc. 

Below is an outline of the t-rules currently implemented in GUIDON. 
Except where noted, examples of these t-rules are presented in discussions 
of the sample tutorial dialogues in this chapter. 

IOPackets are implemented as stylized Interlisp procedures. This should be contrasted with 
the interpreter used by the expert program that invokes d-rules directly, indexing them 
according to the goal that needs to be determined. 
11Gl JI DON uses MYCIN's certainty factors (Chapter 11) for representing the program's belief 
in an assertion. 
12Discourse procedure steps also contain control information (e.g., for iteration) that is not 
important to this discussion. 
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Domain Knowledge Reference 

Communication Model Reference 

··Overlay Student Model 

· · Case lesson plan 

·· Focus Record 

DISCOURSE PROCEDURE 

·· T-rule Packet 

··Discourse Procedure 

·· Primitive Function 

FIGURE 26-2 Form of a tutorial rule for selecting a discourse 
procedure. 

l. T-rules for selecting discourse patterns 

a. guiding discussion of a d-rule 
b. responding to a student hypothesis 
c. choosing question formats 

2. T-rules for choosing domain knowledge 
a. providing orientation for pursuing new goals (not demonstrated in 

this paper) 
b. measuring interestingness of d-rules 

3. T-rules for maintaining the communication model 
a. updating the overlay model when d-rules fire 
b. updating the overlay model during hypothesis evaluation 
c. creating a lesson plan (not implemented) 

All t-rules are translated by a program directly from the Interlisp 
source code, using an extension of the technique used for translating MY­
CIN's rules. This accounts for some of the stilted prose in the examples 
that follow. 
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I. META· LEVEL ABSTRACTIONS: 

II. PERFORMANCE: rules 

Ill. SUPPORT: 

lists and tables 

definitions 

mechanism descriptions 

justifications 

literature references 

rule models 

rule schemata 

FIGURE 26-3 Organization of domain knowledge into three 
tiers. 

26.3.3 Augmented Representation of Domain 
Knowledge 

The representation of domain knowledge available to GUIDON can be 
organized in three tiers, as shown in Figure 26-3. Subsequent subsections 
briefly describe the components of each tier, starting with the middle one. 

Performance Tier 

The performance knowledge consists of all the rules and tables used by 
MYCIN to make goal-directed conclusions about the initial case data. The 
output of the consultation is passed to the tutor: an extensive AND/OR 
tree of traces showing which rules were applied, their conclusions, and the 
case data required to apply them. GUIDON fills in this tree by determining 
which subgoals appear in the rules. In Figure 26-4 COVERFOR signifies 
the goal to determine which organisms should be "covered" by a therapy 
recommendation; d-rule 578, shown in Figure 26-5, concludes about this 
goal; BURNED is a subgoal of this rule. 

Tutorial rules make frequent reference to this data structure in order 
to guide the dialogue. For example, the response to the request for help 
shown in Figure 26-6 (line 17) is based first of all on the rules that were 
used by MYCIN for the current goal. Similarly, the t-rules for supplying 
the case data requested by the student check to see if MYCIN asked for 
the same information, e.g., the WBC (white blood count) in the sample 
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COVERFOR 

I 
D-RULE578 

BURNED 

TYPE 

IT\ 
WB!les} 

CSF-FINDINGS 

FIGURE 26-4 The portion of the AND/OR tree of goals and 
rules created by the expert program that is relevant to the dia­
logue shown in Figure 26-6. Figure 26-5 shows the contents of 
d-rule 578. 

dialogue of Figure 26-6. 13 Associated documentation for cl-rule 578 is also 
shown in Figure 26-5. 

Support Tier 

The support tier of the knowledge base consists of annotations to the rules 
and the factors used by them. 14 For example, there are "canned-text" de­
scriptions of every laboratory test in the MYCIN domain, including, for 
instance, remarks about how the test should be performed. Mechanism 
descriptions provided by the domain expert are used to provide some 
explanation of a rule beyond the canned text of the justification. For the 
infectious disease domain of MYCIN, they indicate how a given factor leads 

130ther possibilities include: the question is not relevant to the current goal; the case data 
can be deduced by definition from other known data; or a cl-rule indicates that the requested 
data are not relevant to this case. 
11 Rule justifications, author, and edit date were first proposed by Davis ( 1976) as knowledge 
base maintenance records. 
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Abstraction Level 

RULE-SCHEMA: MENINGITIS.COVERFOR.CLINICAL 
COVER FOR-IS-MODEL RULE-MODEL: 

KEY-FACTOR: BURNED 
DUAL: D-RULE577 

Performance Level 

D-RULE578 

IF: 1) The infection which requires therapy is meningitis, and 
2) Organisms were not seen on the stain of the culture, and 
3) The type of the infection is bacterial, and 
4) The patient has been seriously burned 

THEN: There is suggestive evidence (.5) that pseudomonas-aeruginosa is one of the organisms (other than 
those seen on cultures or smears) which might be causing the infection 

UPDATES: COVERFOR 
USES: (TREATINF ORGSEEN TYPE BURNED) 

Support Level 

MECHANISM-FRAME: BODY-INFRACTION.WOUNDS 
JUSTIFICATION: "For a very brief period of time after a severe burn the surface of the wound is sterile. Shortly 

thereafter, the area becomes colonized by a mixed flora in which gram-positive organisms predominate. By 
the 3rd post-burn day this bacterial population becomes dominated by gram-negative organisms. By the 
5th day these organisms have invaded tissue well beneath the surface of the burn. The organisms most 
commonly isolated from burn patients are Pseudomonas, Klebsiella-Enterobacter, Staph., etc. Infection 
with Pseudomonas is frequently fatal." 

LITERATURE: MacMillan BG: Ecology of Bacteria Colonizing the Burned Patient Given Topical and System 
Gentamicin Therapy: a five-year study, J Infect Dis 124:278-286, 1971. 

AUTHOR: Dr. Victor Yu 
LAST-CHANGE: Sept. 8, 1976 

Fl:GURE 26-5 Domain rule 578 and its associated documen­
tation. (All information is provided by a domain expert, except 
for the key factor, which is computed by the tutor from the rule 
schema and contents of the particular rule. See third subsection 
of Section 26.3.3.) 

to a particular infection with particular organisms by stating the origin of 
the organism and the favorable conditions for its growth at the site of the 
infection. Thus the frame associated with the factor "a seriously burned 
patient" shows that the organisms originate in the air and grow in the 
exposed tissue of a burn, resulting in a frequently fatal infection. 

Abstraction Tier 

The abstraction tier of the knowledge base represents patterns in the per­
formance knowledge. For example, a rule schema is a description of a kind 
of rule: a pattern of preconditions that appears in the premise, the goal 
concluded, and the context of its application. The schema and a canned-
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text annotation of its significance are formalized in the MYCIN knowledge 
base by a physician expert. This schema is used by the tutor to "subtract 
off" the rule preconditions common to all rules of the type, leaving behind 
the factors that are specific to this particular rule, i.e., the key factors of this 
rule. Thus the key factor of d-rule 578 (see Figure 26-5), the fact that the 
patient has been seriously burned, was determined by removing the "con­
textual" information of the name of the infection, whether organisms were 
seen, and the type of the infection. (Examples of the use of key factors 
occur throughout the hypothesis evaluation example in Figure 26-7, par­
ticularly lines 4-9.) 

Rule models (Davis, 1976) are program-generated patterns that rep­
resent the typical clusters of factors in the expert's rules. Unlike rule sche­
mata, rule models do not necessarily correspond to domain concepts, al­
though they do represent factors that tend to appear together in domain 
arguments (rules). For example, the gram stain of an organism and its 
morphology tend to appear together in rules for determining the identity 
of an organism. Because rule models capture the factors that most com­
monly appear in rules for pursuing a goal, they are valuable as a form of 
orientation for naive students. 

Use of Meta-Knowledge in Tutorial Rules 

Meta-knowledge of the representation and application of cl-rules plays an 
important role in t-rules. For example, in the dialogue excerpt shown in 
Figure 26-6 GUIDON uses function templates 15 to "read" d-rule 578 and 
discovers that the type of the infection is a subgoal that needs to be com­
pleted before the d-rule can be applied. This capability to examine the 
domain knowledge and reason about its use enables GUIDON to make 
multiple use of any given production rule during the tutorial session. Here 
are some uses we have implemented: 

• examine the rule (if it was tried in the consultation) and determine what 
subgoals needed to be achieved before it could be applied; if the rule 
failed to apply, determine all possible ways this could be determined 
(perhaps more than one precondition is false) 

• examine the state of application of the rule during a tutorial interaction 
(what more needs to be done before it can be applied?) and choose an 
appropriate method of presentation 

• generate different questions for the student 

• use the rule (and variations of it) to understand a student's hypothesis 

• summarize arguments using the rule by extracting the key point it ad­
dresses 

10 A function's template "indicates the order and generic type of the arguments in a typical 
call of that function" (see Chapter 28). 
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The ability to use domain knowledge in multiple ways is an important 
feature of a "generative" tutor like GUIDON. 16 Flexible use of knowledge 
permits us to write a variety of tutoring rules that select and present teach­
ing material in multiple ways. This is important because we want to use 
the MYCIN/GUIDON system for experimenting with teaching strategies. 

26.3.4 Components of the Communication Model 

The components of the communication model are 

1. an overlay student model, 
2. a case lesson plan, and 
3. a focus record. 

The Overlay Student Model 

The cl-rules that were fired during the consultation associated with the 
given case are run in a forward direction as the student is given case data. 17 

In this way, GUIDON knows at every moment what the expert program 
would conclude based on the evidence available to the student. We make 
use of knowledge about the history and competence of the student to form 
hypotheses about which of the expert's conclusions are probably known to 
the student. This has been termed an overlay model of the student by Gold­
stein, because the student's knowledge is modeled in terms of a subset and 
simple variations of the expert rule base (Goldstein, I 977). Our work was 
originally motivated by the structural model used in the WEST system 
(Burton and Brown, I 982). 

Special t-rules for updating the overlay model are invoked whenever 
the expert program successfully applies ad-rule. These t-rules must decide 
whether the student has reached the same conclusion. This decision is 
based on: 

• the inherent complexity of the d-rule (e.g., some rules are trivial defi­
nitions, others have involved iterations), 

• whether the tutor believes that the student knows how to achieve the 
subgoals that appear in the d-rule (factors that require the application 
of rules), 

• background of the student (e.g, year of medical school, intern, etc.), and 
• evidence gathered in previous interactions with the student. 

16Generative CAI programs select and transform domain knowledge in order to generate 
individualized teaching material. See Koffman and Blount (1973) for discussion. 
17This is one application of the problem solution trace. The structure of this trace permits 
the program to repetitively reconsider d-rules (indexing them by the case data referenced in 
the premise part), without the high cost of reinterpreting premises from scratch. 



A Framework for a Case Method Tutorial Program 479 

These considerations are analogous to those used by Carr and Gold­
stein for the WUMPUS tutor (Carr and Goldstein, 1977). 

The Case Lesson Plan 

Before a human tutor discusses a case with a student, he or she has an 
idea of what should be discussed, given the constraints of time and the 
student's interests and capabilities. Similarly, in later versions of GUIDON 
a lesson plan will be generated before each case session. 18 We'd like the 
lesson plan to give GUIDON a global sense about the value of discussing 
particular topics, especially since the depth of emphasis will impact on the 
student's understanding of the problem's solution. The lesson plan of the 
type we are proposing provides consistency and goal-directedness to the 
tutor's presentations. 

The lesson plan will be derived from: 

• The student model: where does the student need instruction? 

• Professed student interests (perhaps the case was chosen because of fea­
tures the student wants to know more about) 

• Intrinsic importance of topics: what part does this information play in 
understanding the solution of the problem? 

• Extrinsic importance of topics: given the universe of cases, how inter­
esting is this topic? (A datum that is rarely available is probably worth 
mentioning when it is known, no matter how insignificant the evidence 
it contributes.) 

We believe that these considerations will also be useful for imple­
menting automatic selection of cases from the consultation library. 

The Focus Record 

The purpose of the focus record is to maintain continuity during the dia­
logue. It consists of a set of global variables that are set when the student 
asks about particular goals and values for goals. T-rules reference these 
variables when selecting cl-rules to mention or when motivating a change 
in the goal being discussed. An example is provided in Section 26.4.1. 

18Goldstein's "syllabus" and BIP's "Curriculum Information Network" are fixed networks that 
relate skills in terms of their complexities and dependencies. The lesson plan discussed here 
is a program-generated plan for guiding discussion of a particular problem with a particular 
student. We believe that a skill network relating MYCIN's rules will be useful for constructing 
dialogue plans. 
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26.4 T-Rules for Guiding Discussion of a Goal 

In this section we consider an excerpt from a dialogue and some of the 
discourse procedures and tutoring rules involved. Suppose that a first-year 
medical student has just read about treatment for burned patients sus­
pected to have a meningitis infection. His mic -obiology text mentioned 
several organisms, but it wasn't clear to him how other factors such as the 
age and degree of sickness of the patient might affect diagnosis of an actual 
case. GUIDON is available to him, so he decides to ask the program to 
select a relevant case from the MYCIN library for a tutorial session. 

The program begins by invoking the discourse procedure CASE-DIS­
CUSSION. One of the first steps is to choose a case. At this point the 
student described the case he wanted using keywords ("burned meningitis 
patient"). 19 GUIDON selected the case and set the scene for the student. 
There is one pending culture from the CSF (cerebral spinal fluid, where 
meningitis infections occur). In the excerpt in Figure 26-6, the dialogue 
has reached the subtask of determining the organisms that might be caus­
ing the infection. 

When the student requested help (line 17), the program had been 
following the pattern for discussing a goal. The request for help led to the 
invocation of tutoring rules. The teaching strategy represented by these t­
rules is to provide help for a goal by suggesting a d-rule to the student. 
The discourse procedure that provides help in this context first invokes a 
packet of t-rules that will choose a cl-rule to mention to the student. The 
second step is to invoke a packet oft-rules that will choose a presentation 
method. 

26.4.1 Choosing a D-Rule to Mention in Order to 
Provide Help for a Goal 

D-rule 578 (Figure 26-5) was chosen because it became the focus of the 
discussion when the student asked about the relevance of the "burned" 
factor. That is, when the student asked the question in line 8, a variable 
was set to indicate that the most recent factor referred to for this goal was 
"burned" (the focus topic). Then when the packet of t-rules for choosing 
a cl-rule to present was invoked, the following t-rule succeeded: 20 

19Student input to the GUIDON program is in the form of menu options and simple English 
phrases that are parsed using keyword analysis and pattern-matching routines developed for 
MYCIN's question-answering module (see Chapter 18). 
201~rule numbers are of the form <procedure number that invokes the rule>.<index of the 
rule>. Thus t-rule 26.03 is the third rule in discourse procedure number 26. 
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You should now proceed to ask questions that will enable you 
to make a hypothesis about the organisms (other than those 
seen on cultures or smears) which might be causing the infection. 

{Initiative is given to the student; he or she may ask for more 
data, make a hypothesis, or use a special option.} 

•• HOW IS THE FACT THAT THE PATIENT IS BURNED RELEVANT? 

10 {One option is to ask how a piece of data is relevant to the current goal.} 

The fact that patient-326 is seriously burned will be used to 
conclude that pseudomonas-aeruginosa is one of the organisms which 
might be present (in addition to those seen on cultures or smears) 

15 [Rule 578]. 

20 

25 

30 

35 

••HELP 
{The HELP option is a request for assistance: the student asks 
"where do I go from here?"} 

Try to determine the type of the infection: bacterial, 
fungal, viral, or Tb. 

{To provide help, GU/DON chose: (1) a rule to discuss (d-rule 578 was chosen 
because the dialogue just focused on it); and (2) a method of presentation-"tel/ the 
student to finish incomplete subgoals mentioned in the rule.'' Thus, a new topic 
is set up, "the type of the infection.'' Initiative is returned to the student. ... } 

•• WHAT IS THE PATIENT'S WBC? 

The white count from the patient's peripheral CBC is 1.9 thousand. 

{The tutor observes that this question is relevant to the new 
topic and provides the requested data. The dialogue continues in 
this goal-directed manner ... } 

FIGURE 26-6 Sample interaction: gathering data. Input from 
the student follows double asterisks; annotations appear in 
italics within curly brackets. Lines are numbered for reference 
within the text. 

T-RULE26.03 

IF: The recent context of the dialogue mentioned either a "deeper subgoal" or a factor relevant to 
the current goal 

THEN: Define the focus rule to be the d-rule that mentions this focus topic 

This example illustrates how the communication model guides the 
session by controlling t-rules. Often there is no obvious d-rule to suggest 
to the student. It is then useful for the tutor to have some measure of the 
interestingness of a d-rule at this time in the discussion. The t-rules pre­
sented below are applied to a set of d-rule candidates, ranking them by 
how strongly the tutor believes that they are interesting. 
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Change in Belief ls Interesting 

One measure of interest is the contribution the cl-rule would make to what 
is currently known about the goal being discussed. If the cl-rule contributes 
evidence that raises the certainty of the determined value of the goal to 
more than 0.2, we say that the value of the goal is now significant.21 This 
contribution of evidence is especially interesting because it depends on 
what evidence has already been considered. 

As is true for all t-rules, this determination is a heuristic, which will 
benefit from experimentation. In t-rule 25.01 we have attempted to cap­
ture the intuitive notion that, in general, change in belief is interesting: 
the more drastic the change, the more interesting the effect. The numbers 
in the conclusion oft-rule 25.01 are certainty factors that indicate our belief 
in this interestingness. 

T-RULE25.01 

IF: The effect of applying the d·rule on the current value of the goal has been determined 
THEN: The "value interest" of this d-rule depends on the effect of applying the d-rule as follows: 

a. if the value contributed is still insignificant then .05 
b. if a new insignificant value is contributed then .05 
c. if a new significant value is contributed then .50 
d. if a significant value is confirmed then .70 
e. if a new strongly significant value is contributed then . 75 
f. if an insignificant value becomes significant then .80 
g. if an old value is now insignificant then .85 
h. if belief in an old value is strongly contradicted then .90 

Use of Special Facts or Relations ls Interesting 

In contrast to that int-rule 25.01, the measure of interest int-rule 25.06 
below is static. We'd like to make sure that the student knows the infor­
mation in tables used by the expert program, so we give special consider­
ation to a cl-rule that references a table. 

T-RULE25.06 

IF: The d·rule mentions a static table in its premise 
THEN: Define the "content interest" to be .50 

26.4.2 Guiding Discussion of a D-Rule 

Returning to our example, after selecting cl-rule 578, the tutor needed to 
select a method for presenting it. The following t-rule was successfully 
applied: 

21 For example, if the goal is the "organism causing the infection" and the certainty associated 
with the value "pseudomonas" is 0.3, then this value is significant. 
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T-RULE2.04 

IF: 1) The number of factors appearing in the d-rule which need to be asked by the student is 
zero, and 

2) The number of subgoals remaining to be determined before the d-rule can be applied is 
equal to 1 

THEN: Substep i. Say: subgoal-suggestion 
Substep ii. Discuss the goal with the student in a goal-directed mode [Proc001] 
Substep iii. Wrap up the discussion of the rule being considered [Proc017] 

The premise of this t-rule indicates that all preconditions of the d-rule can 
be evaluated, save one, and this d-rule precondition requires that other d­
rules be considered. The action part of this t-rule is a sequence of actions 
to be followed, i.e., a discourse pattern. In particular, substep (i) resulted 
in the program printing "try to determine the type of the infection ... " 
(line 22).22 The discourse procedure invoked by substep (ii) will govern 
discussion of the type of the infection (in simple terms, a new context is 
set up for interpreting student questions and use of options). After the 
type of the infection is discussed (relevant data are collected and 
hypotheses drawn), the tutor will direct the dialogue to a discussion of the 
conclusion to be drawn from d-rule 578. 

Other methods for suggesting a d-rule are possible and are selected 
by other t-rules in the packet that contains t-rule 2.04. For example, the 
program could simply tell the student the conclusion of the d-rule (if the 
d-rule can be evaluated based on data currently available to the student), 
or quiz the student about the d-rule, or sequentially discuss each precon­
dition of the d-rule, and so on. 

26.5 T-Rules for Responding to a Student's 
Hypothesis 

A student's hypothesis provides the tutor with considerable evidence about 
the student's knowledge of the cl-rules. It is an excellent opportunity for 
the tutor to update the model of the student's understanding and use that 
model to make instructive remarks. The chief strategy behind the tutorial 
remarks illustrated in Figure 26-7 is to state evidence directly, or to use 
simple true-false questions when the overlay model shows that student is 
probably ignorant of the rules to apply (lines 10-16), or otherwise to use 
fill-in and multiple choice questions that are intended to "entrap" the stu-

22"Say <label>" designates something the program will "say" to the student. The label is 
useful f(:ir debugging, because every print statement is uniquely labeled. 
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{After presentation of relevant case data ... } 
•• I THINK THAT THE ORGANISMS PRESENT ARE DIPLOCOCCUS-PNEUMONIAE, 
PSEUDOMONAS-AERUGINOSA, AND NEISSERIA-MENINGITIDIS. 
Good. The age of the patient gives evidence tor concluding that 
Diplococcus-Pneumoniae might be present (Rule 507). The tact that 

5 the patient has been seriously burned is good reason to suspect 
Pseudomonas-Aeruginosa (Rule 578). Both conclusions apply because 
the infection which requires therapy is meningitis, no organisms were 
seen on a gram stain of the culture, and the type of the infection 
is bacteria/. 

1 O The age of the patient also leads one to suspect Neisseria­
Meningitidis (Rule 507). Do the fact that the infection was acquired 
while the patient was hospitalized and information about the diseases 
to which the patient has been exposed support this conclusion? 
••NO 

15 Right, this would be good reason to rule out Neisseria­
Meningitidis (Rule 561). 
What facts about this case tell you that the organisms that might be 
present are: E.Coli and Klebsiella-Pneumoniae? 
**HELP 

20 {The student was expected to describe each factor with a phrase, one 
per line. Help is provided by listing all relevant factors for the 
current goal.} 

Choose from: 
1. The patient does not have a TB risk factor and the 

25 patient's x-ray is not abnormal 
2. Otilis-media and Epiglottitis are not among the diagnoses 

which are consistent with the patient's clinical history 
3. The white count from the patient's peripheral CBC is 

less than 2.5 thousand 
30 4. The infection was acquired while the patient was hospitalized 

5. The patient has been seriously burned 
6. None of these 

•• 1 3 4 {This question was a form of "entrapment." Notice 
35 that the choices all appear in Figure 26-8.} 

You're right about the WBC (Rule 557) and the evidence gained from the 
fact that the infection was acquired while the patient was hospitalized 
(Rule 545). However, the fact that the patient does not have a TB risk 
factor and the patient's x-ray is not abnormal is weak evidence that 

40 Mycobacterium-TB is not one of the organisms which might be present 
(Rule 160). 

FIGURE 26-7 Sample interaction continued: hypothesis eval­
uation. 

dent (lines 17-32). "Entrapment," as used here, involves forcing the stu­
dent to make a choice that will reveal some aspect of his or her 
understanding. 23 In this example, all choices listed (lines 24-32) actually 

23Many of GUIDO N's question-asking strategies resemble the "Socratic" strategies formalized 
by Collins ( 1976), probably because our production rule representation of domain knowledge 
makes it convenient to think in terms of "relevant factors" for determining the "value of a 
goal" (terms we share with Collins). However, the relation between factor and goal in MYCIN 
is not necessarily causal as it is in the network representation used by Collins. 
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appear in rules applied by MYCIN (see Figure 26-8). When the student 
wrongly chose number I ("no TB risk factor and no abnormal x-ray"), 
GUIDON indicated how that evidence actually was used by MYCIN. 

26.5.1 Updating the Overlay Student Model After a 
Student Hypothesis 

Figure 26-8 illustrates how the overlay model is updated for the hypothesis 
in line I of Figure 26-7. T-rules are invoked to determine how strongly 
the tutor believes that the student has taken each of the relevant cl-rules 
into account. That is, a packet oft-rules (packet number 6 here) is tried 
in the context of each cl-rule. Those t-rules that succeed will modify the 
cumulative belief that the given cl-rule was considered by the student. T­
rule 6.05 succeeded when applied to cl-rules 545 and 557. The student 
mentioned a value (PSEUDOMONAS) that they conclude (clause 1 of the 
t-rule) but missed others (clause 3). Moreover, the student did not mention 
values that can only be concluded by these cl-rules (clause 2), so the overall 
evidence that these cl-rules were considered is weak ( - 0. 70). 24 

T-RULE6.05 

IF: 1) The hypothesis does include values that can be concluded by this d-rule, as well as others, 
and 

2) The hypothesis does not include values that can only be concluded by this d-rule, and 
3) Values concluded by the d-rule are missing in the hypothesis 

THEN: Define the belief that the d-rule was considered to be - .70 

After each of the cl-rules applied by MYCIN is considered indepen­
dently, a second pass is made to look for patterns. Two judgmental tutorial 
rules from this second rule packet are shown below. T-rule 7.01 applied to 
cl-rule 578: of the cl-rules that conclude Pseudomonas, this is the only one 
that is believed to have been considered, thus increasing our belief that d­
rule 578 was used by the student. T-rule 7.05 applies to cl-rules 545 and 
561: the factor NOSOCOMIAL appears only irr their premises, and they 
are not believed to have been considered. This is evidence that NOSO­
COMIAL was not considered by the student, increasing our belief that 
each of the cl-rules that mention it were not considered. 

T-RULE7.01 

IF: You believe that this domain rule was considered, it concludes a value present in the student's 
hypothesis, and no other rule that mentions this value is believed to have been considered 

THEN: Modify the cumulative belief that this rule was considered by .40 

T-RULE7.05 

IF: This domain rule contains a factor that appears in several rules, none of which are believed to 
have been considered to make the hypothesis 

THEN: Modify the cumulative belief that this rule was considered by - .30 

21The certainty factor of - 0. 70 was chosen by the author. Experience with MYCIN shows 
that the precise value is not important, but the scale from - I to 1 should be used consistently. 
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FIGURE 26-8 Interpreting a student hypothesis in terms of 
expert rules. Key: D-rules that conclude about organisms to 
cover for are shown with their key factors (see Figure 26-5). 
Circled values are missing from the student's hypothesis (e.g., 
E.coli) or wrongly stated (e.g., Neisseria). Dotted lines lead from 
rules the student probably did not use. Also, m = evidence link 
that the tutor deduced is unknown to the student; R and W = 
links to right and wrong values that the tutor believes are known 
by the student; ! = unique link, expert knows of no other evi­
dence at this time; ? = questionable, tutor isn't certain which 
evidence was considered by the student. For example, R? means 
that the student stated this value, it is correct, and more than 
one d-rule supplies evidence for it. 

Future improvements to this overlay model will make it possible to 
recognize student behavior that can be explained by simple variations of 
the expert's cl-rules: 

1. Variation in the premise of ad-rule: The student is using a cl-rule that fails 
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to apply or applies a successful d-rule prematurely (is misinformed 
about case data or is confused about the cl-rule's premise). 

2. Variation in the action of ad-rule: The student draws the wrong conclusion 
(wrong value and/or degree of certainty). 

26.5.2 Presentation Methods for D-Rules the Student 
Did Not Consider 

Returning to our example, after updating the overlay model, the tutor 
needs to deal with discrepancies between the student's hypothesis and what 
the expert program knows. The following t-rules are from a packet that 
determines how to present a cl-rule that the student evidently did not 
consider. The tutor applies the first tutorial rule that is appropriate. In our 
example, t-rule 9.02 generated the question shown in lines 10-14 of Figure 
26-7. T-rule 9.03 (a default rule) generated the question shown in lines 
17-32. 

T·RULE9.01 

IF: 1) The d-rule is not on the lesson plan for this case, and 
2) Based on the overlay model, the student is ignorant about the d-rule 

THEN: Affirm the conclusions made by the d-rule by simply stating the key factors and values to 
be concluded 

T·RULE9.02 

IF: The goal currently being discussed is a true/false parameter 
THEN: Generate a question about the d-rule using "facts" format in the premise part and "actual 

value" format in the action part 

T·RULE9.03 

IF: True 
THEN: Generate a question about the d-rule using "fill-in" format in the premise part and "actual 

value" format in the action part 

26.5.3 Choosing Question Formats 

When the tutor responds to a hypothesis, the context of the dialogue gen­
erally determines which question format is appropriate. However, during 
other dialogue situations it is not always clear which format to use (e.g., 
when quizzing the student about a rule that MYCIN has just applied using 
case data just given to the student). Our strategy is to apply special t-rules 
to determine which formats are logically valid for a given cl-rule, and then 
to choose randomly from the candidates. 

T-rule 3.06 is part of a packet oft-rules that chooses an appropriate 
format for a question based on a given d-rule. The procedure for format­
ting a question is to choose templates for the action part and premise part 
that are compatible with each other and the d-rule itself. 
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T-RULE3.06 

IF: 1) The action part of the question is not "wrong value," and 
2) The action part of the question is not "multiple choice," and 
3) Not all of the factors in the premise of the d-rule are true/false parameters 

THEN: Include "multiple choice" as a possible format for the premise part of the question 

T-rule 3.06 says that if the program is going to present a conclusion that 
differs from that in the cl-rule it is quizzing about, it should not state the 
premise as a multiple choice. Also, it would be nonsensical to state both 
the premise and action in multiple-choice form. (This would be a matching 
question-it is treated as another question type.) Clause 3 of this t-rule is 
necessary because it is nonsensical to make a multiple-choice question when 
the only choices are true and false. 

As can be seen here, the choice of a question type is based on purely 
logical properties of the rule and interactions among question formats. 
About 20 question types (combined premise/conclusion formats) are pos­
sible in the current implementation. 

26.6 Concluding Remarks 

We have argued in this chapter that it is desirable to add teaching expertise 
and other levels of domain knowledge to MYCIN-like expert programs if 
they are to be used for education. Furthermore, it is advantageous to pro­
vide a flexible framework for experimenting with teaching strategies, for 
we do nol know the best methods for presenting MYCIN-like rules to a 
student. 

The framework of the GUIDON program includes knowledge of dis­
course patterns and the means for determining their applicability. The 
discourse patterns we have codified into procedures permit GUIDON to 
carry on a mixed-initiative, goal-directed case method dialogue in multiple 
domains. These patterns are invoked by tutoring rules, which are in turn 
controlled by a communication model. The components of this model are 
a lesson plan (topics the tutor plans to discuss), an overlay model (domain 
knowledge the tutor believes is being considered by the student), and a 
focus record (topics recently mentioned in the dialogue). Finally, we ob­
served that meta-knowledge about the representation and use of domain 
rules made it possible to use these rules in a variety of ways during the 
dialogue. This is important because GUIDON's capability to reason flexibly 
about domain knowledge appears to be directly related to its capability to 
guide the dialogue in multiple, interesting ways. 

Furthermore, we have augmented the performance knowledge of MY­
CIN-like systems by making use of support knowledge and meta-level ab­
stractions in the dialogue. The problem-solving trace provided by the in­
terpreter is augmented by GUIDON to enable it to plan dialogues (by 
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looking ahead to see what knowledge is needed to solve the problem) and 
to carry on flexible dialogues (by being able to switch the discussion at any 
time to any portion of the AND/OR solution tree). 

Early experience with this program has shown that the tutor must be 
selective about its choice of topics if the dialogues are not to be overly 
tedious and complicated. That is, it is desirable for tutorial rules to exert 
a great deal of control over which discourse options are taken. We believe 
that it is chiefly in selection of topics and emphasis of discussion that the 
"intelligence" of this tutor resides. 



PART NINE 

Augmenting the Rules 



27 
Additional Knowledge 
Structures 

We have so far described MYCIN largely in terms of its knowledge base 
and inference mechanism, and specifically in terms of rules and a rule 
interpreter that allow high-performance problem solving. In Chapters 27 
through 29 we describe additional knowledge structures that increase the 
flexibility and transparency of MYCIN's knowledge base. We refer to many 
of these as meta-level knowledge. 

When we speak of meta-level knowledge we mean nothing more than 
knowledge about knowledge. In a computer program it needs to be rep­
resented and interpreted in order to be useful, but the main idea is that 
it can be an explicit, and flexible, element of expertise. For example, meta­
level knowledge can help in modifying an existing rule and in integrating 
the modification into the whole rule set because it provides additional in­
formation about the existing rules to the editor. 

The ideas for using meta-level knowledge in MYCIN grew out of sev­
eral projects that Randy Davis was working on in the mid-1970s. In the 
context of knowledge acquisition, we had found that the simple rule editor 
needed more knowledge about the structure and contents of the rules and 
about the representations of objects (contexts). In the context of explana­
tion, we found that the predicates (such as SAME) used in rules could be 
matched to keywords in questions much more easily if the structure of the 
predicates were known to MYCIN. And, in the context of controlling 
MYCIN's inferences, we saw that rules about MYCIN's rules could provide 
an element of control. Davis was working on solutions to these problems 
and saw that the common thread that bound these different parts of the 
TEIRESIAS system together was meta-level knowledge. 

Our first instances of domain-independent meta-level reasoning were 
(a) the unity path mechanism, by which MYCIN checks for a chain of 
inferences known to be true with certainty (CF = 1.0) before evaluating 
other rules, and (b) the preview mechanism, by which MYCIN looked over 
the clauses of a rule before exhaustively evaluating them to see if the 
conjunction of premise clauses was already falsified by virtue of any clause 
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494 Additional Knowledge Structures 

already known to be false (or not "true enough"). In both instances, MY­
CIN is reasoning about its rules before executing them. The important 
difference between these mechanisms and the meta-knowledge that 
evolved from work by Davis is that the former are buried in the code of 
the rule interpreter and thus are not open to examination by other parts 
of the system, or by the user. After these initial meta-level reasoning tech­
niques were added to the rule interpreter, however, Davis was careful to 
separate any additional meta-level knowledge structures from the editor, 
explanation generator, and interpreter, just as we had done with the (ob­
ject-level) medical knowledge. As a result, the new system (MYCIN plus 
TEIRESIAS) contains considerably more knowledge about its own knowl­
edge structures than did MYCIN alone. Many of these ideas have subse­
quently been incorporated into EMYCIN. Chapter 28 provides a summary 
of the knowledge structures used by TEIRESIAS for knowledge acquisition 
(see Chapter 9) and control of MYCIN's inferences. This was a line of 
development that was not anticipated in DENDRAL, 1 and its systematic 
treatment by Davis in his dissertation was an advance for Al. 

Bill Clancey was working on GUIDON at about the same time and was 
discovering that additional knowledge structures, including meta-level 
knowledge, were essential for tutoring. TEIRESIAS' knowledge about the 
form and contents of MYCIN's rules was certainly helpful in constructing 
GUIDON, but Clancey began focusing more on representing MYCIN's 
strategies. In the course of his research, he also uncovered the importance 
of two additional kinds of knowledge: knowledge about the structure of the 
domain (and thus about the structure of the rule set), and support knowl­
edge that justifies individual rules. Chapter 29 is a careful analysis of these 
three types of meta-level knowledge that Clancey terms "strategic, struc­
tural and support knowledge." This analysis was written in 1981-1982 (and 
published in 1983) and thus is a recent critique of the structure of MYCIN's 
knowledge base. We were not unaware of many of the issues raised here, 
but Clancey provides a coherent framework for thinking about them. 

2 7 1 The Context Tree • 

In the original ( 1974) version of MYCIJ\, several knowledge structures had 
already been added to the basic rule representation, as discussed in Chap­
ter 5. Most notable among these was the context tree, in which we encoded 
knowledge about relations among the objects mentioned in rules. The dis­
cussion here is taken from the EMYCIN manual (van Melle et al., 1981) 
and explains this important structure in more detail. 

1We used the term Meta-DENDRAL to refer to the program that inferred new knowledge 
for DENDRAL, but we did not have a well-developed concept of knowledge about knowledge. 
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As described in Chapter 15, an EMYCIN knowledge base is composed 
of factual knowledge about the domain and production rules that control 
the consultation interaction and make inferences about a case. Of all the 
structures the expert must specify for an EMYCIN system, the context tree 
is perhaps the most important, yet the least discussed. The context tree 
forms the backbone of the consultant, organizing both the conceptual 
structure of the knowledge base and the basic flow of the consultation 
interaction. The tree also indicates the goals for which the consultant will 
initially attempt to determine values. Since the principles for designing 
new context trees are poorly understood, this discussion provides examples 
from various existing EMYCIN systems. 

The context tree is composed of at least one, but possibly many, con­
text-types. A context-type corresponds to an actual or conceptual entity in 
the domain of the consultant, e.g., a patient, an aircraft, or an oil well. 
Each context-type in the context tree is very much like a record declaration 
in a traditional programming language. lt describes the form of all of its 
instances created during a case. Thus there are two related but distinct 
aspects of the context tree mechanism: a static tree of context-types and a 
dynamic tree of context-instances. The static tree of types is the structure 
defined by the expert during system construction and forms the knowledge 
base "core." 

The static tree is used to guide the creation of the dynamic context 
tree of instances during the consultation. These instances are also orga­
nized into a tree that has a form reflecting the structure of the static hier­
archy. We distinguish these two structures by referring to them as the static 
tree and the instance tree. A moderately complex example of each of these 
types of trees for the SACON system is given in the Figures 27-l and 
27-2. In these and later figures, the links, or relationships, among context­
types are labeled to show different uses of the tree. 

Each knowledge base has one main, or root, context-type for which 
there will be a single instance for each consultation. It corresponds to the 
main subject of the consultation. In MYCIN, for example, the main con­
text-type is PATIENT, and consultation provides advice about disease(s) of 
the patient. In SACON, the main context-type is STRUCTURE, and a 
consultation gives advice about performing structural analysis on a struc­
ture (such as a bridge or an airplane wing). 

Some domains are simple enough that no other context-types are 
needed. PUFF, for example, needed only attributes of the main context 
PATIENT. However, other systems, such as MYCIN and SACON, require 
the ability to discuss multiple objects. In these cases, the context-types are 
organized into a simple tree structure with the main context at the root. 
For each context-type that is subordinate to another context-type there is 
an implicit one-to-many relationship between the instances of each type 
created during a consultation. Thus, for SACON, there can be many SUB­
STRUCTURE instances for the single STRUCTURE instance during a 
case, and there can be several LOADING instances for each SUBSTRUC-
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STRUCTURE 

composed-of 

SUB-STRUCTURE 

applied-to 

LOADING 

composed-of 

LOAD-COMPONENT 

FIGURE 27-1 SACON's static tree of context-types. 

TURE instance. It should be noted that, except for the root-type, every 
possible context-type need not be instantiated during a consultation. In 
the MYCIN system, for example, the patient may or may not have had any 
prior drug therapy. 

The static tree is the major repository of structural and control infor­
mation about the consultant. It indicates, in particular, the possible param­
eters of a context (its PARMGROUP) and the groups of rules that can be 
applied to instances of a context (its RULETYPES). Hence, the context­
types must be defined before one can proceed to acquire rules and param­
eters, since both of these are defined with respect to the context tree. In 
addition, the static relationships among the context-types dictate, in large 
part, the basic mechanism for the propagation of the dynamic tree of 
instances during a consultation (see Chapter 5). 

All of the rules used by the consultant to reason about the domain are 
written without regard to specific context-instances in an actual consulta­
tion. A rule instead refers to parameters of certain context-types, and the 
rule is applied to all the context-instances for which its parameter group 
is relevant. For example, a rule that concludes about a parameter of a 
LOADING, say FORCE-BOUND, will be applied to all instances of LOAD­
ING, as shown in Figure 27-2 (e.g., LOADING-I, LOADING-2) and may 
or may not succeed within each instance depending on whether its premise 
is true in that particular context. In addition, if a rule refers to a specific 
context-type, its premise can refer to the parameters of any direct ancestors 
of this context-type. Continuing with our example, the rule premise could 
refer to parameters of any SUBSTRUCTURE and of the STRUCTURE 
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itself. The instance tree organization makes clear which LOADING in­
stances are associated with which SUBSTRUCTURE instance. 

If a rule is applied to some context-instance and uses information 
about context-instances lower in the tree, however, an implicit iteration oc­
curs: the rule is applied to each of the lower instances in turn. If the lower 
context-types have not yet been instantiated, the program digresses to ask 
about their creation at this time. Thus contexts are instantiated because 
rules need them,2 just as parameters are traced when rules need them. In 
fact, since the goals of the consultation usually consist of finding out some­
thing about the root of the tree, the only way that lower context-types are 
instantiated at all is through the application of rules that use information 
about lower context-types. 

27.l.1 Uses of the Context Tree 

There have been a few rather stereotypic uses of the context tree. Although 
experience to date has by no means exhausted the possible uses, the ex­
amples shown here should help readers to understand how an expert and 
knowledge engineer might select appropriate context-types and organize 
them in a new domain. 

The primary use of additional contexts has been to structure the data or 
evidence to be collected. Thus, in the MYCIN system, the culture contexts 
describe the tests performed to isolate organisms. Additional information 
about the patient's current and previous therapies, the cultures, and 
MYCIN's own estimation of the suspected infections are also represented 
in the tree. The current context organization for MYCIN is shown in Figure 
27-3 and should be contrasted with the sample instance tree of Figure 
5-1 (which reflects MYCIN's context-types as they were defined in 1974).3 

The second major use of the context tree has been to organize the 
important components of some object. For example, in the SACON system the 
substructures of the main structure correspond to components or regions 
of the o~ject that have some uniform property, typically a specific geometry 
or material. Each substructure instance is considered independently, and 
conclusions about individual responses to stress loadings are summarized 
on the structure level to provide a "global" sense of the overall response 
of the structure. A recent, additional example of this use of a part-whole 
hierarchy is found in a system called LITHO (Bonnet, 1979), which inter­
prets data from oil wells. In this system, each well is decomposed into a 
number of zones that the petrologist can distinguish by depth (Figure 
27-4). 

A context need not correspond to some physical object but may be an 
abstract entity. However, the relationships among contexts are explicitly 

2Contexts may also be instantiated by explicit comma11d, but the mechanism is less convenient. 

:'It is instructive to compare this structure with the original context tree described in Chapter 
5; the MYClN system has undergone at least three intermediate reorganizations of its static 
tree. Significantly, however, the kind1 of objects in the tree have not changed substantially. 
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WELL WELL·45 

composed-of 

ZONES ZONE·1 ZONE·2 ZONE·3 

FIGURE 27-4 LITHO's static tree and an instance tree. 

fixed by the tree of context-types. For this reason, physical objects, repre­
sented in this part-whole fashion, lend themselves more readily to the current 
context tree mechanism. 

The last major use of the context tree, which is closely related to the 
part-whole use described above, has been to represent important events or 
situations that happen to an object. Thus, in the SACON system, a LOAD­
ING describes an anticipated scenario or maneuver (such as pounding or 
braking) to which the particular SUBSTRUCTURE is subjected. Each 
LOADING, in turn, is composed of a number of independent LOAD­
COMPONENTS, distinguished by the direction and intensity of the ap­
plied force. Other uses of this organizational idea have been to represent 
individual past PREGNANCIES and current VISITS ofa pregnant woman 
in the GRAV IDA system of Catanzarite (unpublished; see Figure 27-5) and 
the anticipated use of BLEEDING-EPISODES of a PATIENT in the CLOT 
system (Figure 27-6; see also Chapter 16).4 

The primary reason for defining additional context-types in a consul­
tant is to represent multiple instances of an entity during a case. Some 
users may like to define context-types that always have one instance and 
no more, primarily for purposes of organization, but this is often unnec­
essary (and even cumbersome).5 For example, one might want to write 
rules that use various attributes of a patient's liver, but since there is always 
exactly one liver for a patient there is no need to have a liver context; any 
attribute of the liver can simply be viewed as an attribute of the patient. 

Reference to parameters of contexts in different parts of an instance 
tree is currently very awkward. For example, in MYCIN, a particular drug 
may be associated somehow with a particular organism (Figure 27-7). How­
ever, this relationship between context-instances is not one that always holds 

4 It should be noted that use of the context mechanism to handle sequential visits in the 
GRAVIDA system is experimental and required the definition of numerous additional func­
tions for this purpose. They are not currently in EMYCIN. 
5Note, however, that separating unique concepts out into single contexts may provide more 
understandable rule translations due to the conventions of context-name substitutions in text 
generation. See Chapter 18 for further discussion of this point. 
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between all organisms and all drugs: not all drugs are prescribed to treat 
all identified organisms. This "prescribed for" relationship cannot be stated 
statically, independently of the case. Special predicate and action functions 
must be written to establish and manipulate these kinds of relationships 
between instances. It is best to avoid these interactions between disjoint 
parts of the tree during the initial design of the knowledge base. 

Summing up our experience with this mechanism and considering its 
relative inttexibility, we offer this final caveat: for an initial system design, 
those using EMYCIN should start small and should use only one or two 
context-types. They should plan the structure of the consultant's context 
tree carefully before running the EMYCIN system, since restructuring a 
context tree is perhaps the most difficult and time-consuming knowledge­
base construction task. Indeed, restructuring the context tree implies a 
complete restructuring of the rest of the knowledge base. 

2 7 2 Grain Size of Rules • 

We had noticed that MYCIN's knowledge is "shallow" in the sense that its 
rules encode empirical associations but not theoretical laws. MYCIN lacks 
explicit representations of the "deep" understanding, such as an expert 
has, of causal mechanisms and reasoning strategies in medicine. MYCIN's 
rules do include some causal relations and definitions as well as structural 
relations, but all these are not cleanly separated from the heuristics and 
"compiled knowledge" that make up most of the rule set. 

When we were building the initial system, we recognized that many 
rules were "broad-brush" treatments of complex processes, skipping from 
A to E in one leap and omitting any mention of B, C, and D in a chain 
such as A --> B --> C --> D --> E. We were focusing on rules whose "grain 
size" was of clinical significance. Even though finer-grained rules were often 
discussed, we consciously omitted them if the finer distinctions would not 
improve the program's ability to suggest appropriate treatments for infec­
tions or if they would not improve the understandability of the program 
for clinicians.6 That is, the clinical significance of the conclusions deter­
mined the vocabulary of the rules. Thus, from the standpoint of perfor­
mance, many causal mechanisms were not needed for reasoning from evi­
dence to appropriate conclusions. 

Examples of this collapsing of inference steps abound in all domains. 
For instance, physicians generally use a diuretic, such as furosemide, to 
treat edema or congestive heart failure without thinking twice about it. It 
is typically only when a patient fails to respond that the physician considers 
the mechanism of the drug's action in order to find, perhaps, another drug 

6 Note that physicians will be able to understand rules that medical students sometimes find 
confusing. See Chapter 20 for a further discussion of the grain size of rules. 
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to give with the first in order to produce the desired effect. Or, in a 
nonmedical domain, a mechanic often makes adjustments in response to 
manifestations of an automobile problem (e.g., adjusting the carburetor in 
response to stalling) and considers more detail only if the first few adjust­
ments fail. An example from MYCIN is cited by Clancey in Chapter 29, 
in his discussion of the tetracycline rule: "If the patient is less than 8 years 
old, don't prescribe tetracycline." This rule Jacks ties to the deeper under­
standing of drug action of which it is a consequence. Thus it is not only 
difficult for a student to remember, but also difficult for one to know how 
to modify or to know exactly how far the premise clause can be stretched 
safely. 

We also recognized that many of the attributes mentioned in rules are 
not primitive observational terms in the same sense that values of labora­
tory tests are. For example, MYCIN asks whether a patient is getting better 
or worse in response to therapy, just as it asks for serum glucose levels. 
Obviously, there are a number of rules that could be written to infer 
whether the patient is better, mentioning such things as change in tem­
perature, eating habits, and general coloring. That is, we chose a rule of 
the form A --> B, with A as a primitive, rather than several rules in the 
following form: 

Neither of these shortcuts is a fatal flaw in the methodology of rule­
based systems. Expanding the rule set to cover the richer knowledge phy­
sicians are known to hold would be possible, but time-consuming and un­
necessary for improving MYCIN's advice in consultations. The consultation 
program, after all, was designed for use by physicians, and it seemed rea­
sonable to leave some of the more basic observations up to them. However, 
as a result, there is considerable knowledge absent from MYCIN. As men­
tioned in Part Eight, successful tutoring depends on deep knowledge even 
more than successful consulting does. 

27.3 Strategic, Structural, and Support Knowledge 

The missing knowledge is of three classes: strategic, structural, and sup­
port. Strategic knowledge is an important part of expertise. MYCIN's built­
in strategy is cautious: gather as much evidence as possible (without de-
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manding new tests) for and against likely causes and then weigh the evi­
dence. Operationally, this translates into exhaustive rule invocation 
whereby (a) all (relevant) rules are tried and (b) all rules whose left-hand 
sides match the case (and whose right-hand sides are relevant to problem­
solving goals) have their right-hand sides acted upon. But under different 
circumstances, other strategies would be more appropriate. In emergen­
cies, for example, physicians cannot take the time to gather much history 
data. Or, with recurring illness, physicians will order new tests and wait 
for the results. Deciding on the most appropriate strategy depends on 
medical knowledge about the context of the case. MYCIN's control struc­
ture is not concerned with resource allocation; it assumes that there is time 
to gather all available information that is relevant and time to process it. 
Thus MYCIN asks 20-70 questions and processes 1-25 rules between 
questions. We estimate that MYCIN executes about 50 rules per second 
(exclusive of 110 wait time). With larger amounts of data or larger numbers 
of rules, the control structure would need additional meta-rules that esti­
mate the costs of gathering data and executing rules, in order to weigh 
costs against benefits. Also, in crisis situations or real-time data interpre­
tation, the control structure would need to be concerned with the allocation 
of resources. 7 

One way to make strategic knowledge explicit is by putting it in meta­
rules, as discussed in Chapter 28. They are rules of the same IF/THEN 
form as the medical rules, but they are "meta" in the sense that they talk 
about and reason with the medical rules. One of the interesting aspects of 
the meta-rule formalism, as Davis designed it, is that the same rule inter­
preter and explanation system work for meta-rules as for object-level rules. 
(Chapter 23 discussed the use of prototypes, or frames, for representing 
much of the same kind of knowledge about problem solving.) Making 
strategy knowledge explicit has come to be recognized as an important 
design consideration for expert systems (Barnett and Erman, 1982; de 
Kleer et al., 1977; Genesereth, 1981; Patil et al., 1981) because it can make 
a system's reasoning more efficient and more understandable. 

Structural knowledge in medicine includes anatomical and physiolog­
ical information about the structure and function of the body and its sys­
tems.8 It is part of what we believe is needed for "deeper" reasoning about 
diagnosis. A structural model showing, inter alia, the normal connections 
of subparts can be used for reasoning about abnormalities. In contrast, 
representing this information in rules would force explicit mention of the 

71n the AM and EURISKO programs (Lenat, 1976; 1983), Lenat has added information 
about maximum amounts of time to spend on various tasks, which keeps those programs 
from "overspending" computer time on difficult tasks of low importance. (EURISKO can also 
decide to change those time allocations.) In PROSPECTOR (Duda et al., I 978a), attention is 
focused on the rules that will add the most information, i.e., that will most increase or decrease 
the probability of the hypothesis being pushed. In Fox's system (Fox, 1981 ), the estimated cost 
of evaluating premises of rules helps determine which rules to invoke. 
8 More generally, we want to talk about the structure of any system or device we want an 
expert system to analyze, such as electronic circuits or automobiles. 
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abnormal situations and their manifestations. Thus there is a saving in the 
number of items represented explicitly in a rich structural model as op­
posed to an equally rich rule set. In medicine this point has been made by 
the Rutgers group (Kulikowski and Weiss, 1971) in the context of the 
CASNET program for diagnosing glaucomas. More recently, it is being 
advanced by Patil et al. (1981 ), Kunz (1983), Pople ( 1982), and others. In 
the domain of electronics almost everyone has noticed that a circuit dia­
gram and causal knowledge are powerful pieces of knowledge to have [see, 
for example, Brown et al. (1974), Davis et al. (1982), Genesereth (1981), 
Grinberg, (1980)]. Structural knowledge also includes knowledge about the 
structure of the domain, e.g., the taxonomy of important concepts. This 
structure is an important reference point for guiding the problem solver 
in writing strategy rules. 

Support knowledge includes items of information that are relevant for 
understanding a rule (or other knowledge structure). In early versions of 
MYCIN, we attached extra information to rules as justification for them 
or as historical traces of their evolution. For example, the literature citations 
provide credibility as well as pointers to more detailed information. The 
names of the persons who authored or edited a rule and the dates when it 
was created or edited are important pointers to persons responsible for 
the interpretation of the literature. The slot called "Justification" was cre­
ated as a repository for the author's comments about why the rule was 
thought to be necessary in the first place. Additional support for a pro­
gram's knowledge comes from deeper theoretical knowledge. Quantum 
chemistry, for example, could have been (but was not) referenced as sup­
port for DENDRAL's rules of mass spectrometry; pharmacology could 
have been (but was not) referenced to support MYCIN's rules of drug 
therapy. In general, support knowledge further explains the facts and re­
lations of the domain knowledge. The contexts of tutoring and explanation 
demonstrate the need for support knowledge better than does the context 
of consultation because the additional support for rules is more relevant 
to understanding them than to using them (see Part Eight). 

Recently, we have shifted our focus for this line of work from MYCIN 
to NEOMYCIN (Clancey and Letsinger, 1981), an updated version of the 
MYCIN knowledge base, representation, and control structure. In brief, it 
separates the diagnostic strategies clearly from the medical rules and facts 
used for diagnosing individual cases. By doing this, it can better serve as 
a basis for tutoring, as discussed in Chapter 26. NEOMYCIN was under­
taken because of the issues noted in the following two chapters, but it is 
still too early to draw conclusions from the work. 



28 
Meta-Level Knowledge 

Randall Davis and Bruce G. Buchanan 

This chapter explores a number of issues ~nvolving representation and use 
of what we term meta-level knowledge, or knowledge about knowledge. 1 It 
begins by defining the term, then exploring a few of its varieties and con­
sidering the range of capabilities it makes possible. Four specific examples 
of meta-level knowledge are described, and a demonstration given of their 
application to a number of problems, including interactive transfer of ex­
pertise and the "intelligent" use of knowledge. Finally, we consider the 
long-term implications of the concept and its likely impact on the design 
of large programs. The context of this work is the TEIRESIAS program 
discussed in Chapter 9. In the earlier chapter we focused on the use of 
TEIRESIAS for knowledge acquisition. Here we focus on the classification 
and types of knowledge used by TEIRESIAS. 

In the most general terms, meta-level knowledge is knowledge about 
knowledge. Its primary use here is to enable a program to "know what it 
knows," and to make multiple uses of its knowledge. As mentioned in 
Chapter 9, the program is not only able to use its knowledge directly, but 
may also be able to examine it, abstract it, reason about it, or direct its 
application. 

This chapter discusses examples of meta-level knowledge classified 
along two dimensions: (i) specificity character (representation-specific vs. do­
main-specific), and (ii) source (user-supplied vs. derived). Representation-spe­
cific meta-level knowledge involves supplying a program with a store of 
knowledge dealing with the form of its representations, in particular, their 
design and organization. Traditionally, this design and organization infor-

This chapter is an expanded and edited version of a paper originally appearing in Proceedings 
of the Fifth !]CAI, 1977, pp. 920-928. Used by permission of International Joint Conferences 
on Artificial Intelligence, Inc.; copies of the Proceedings are available from William Kaufmann, 
Inc., 95 First Street, Los Altos, CA 94022. 
1Following standard usage, knowledge about objects and relations in a particular domain will 
be referred to as object-level knowledge. 
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I. Knowledge about contents of rules in the knowledge base-Rule Models 

II. Knowledge about syntax 
Of the representation of objects-Schemata 
Of predicate functions-Function Templates 

Ill. Knowledge about strategies-Meta-Rules 

FIGURE 28-1 Classification of meta-level knowledge in 
TEIRESIAS. 

mation is present in a system only implicitly, for example, in the way a 
particular segment of code accesses data or the way a chunk of knowledge 
is encoded. Type declarations are a small step toward more explicit speci­
fication of this information, especially as they are used in extended data 
types and record structures. As we discuss below, this sort of information, 
along with a range of other facts about representation design, can be em­
ployed quite usefully if it is made explicit and made available to the system. 

Domain-specific meta-level knowledge contains information dealing 
with the content of object-level knowledge, independent of its particular 
encoding. It might involve any kind of useful information about a chunk 
of knowledge, including its likely utility, range of applicability, speed or 
space requirements, capabilities, and side effects. The two examples given 
here deal with forms of meta-level knowledge tha~ (i) offer information 
about global patterns and trends in the content of object-level knowledge, 
and (ii) provide strategic information, i.e., knowledge about how best to 
use other knowledge. 

The examples described below also illustrate the difference between 
user-supplied and derived meta-level knowledge. The former is of course 
obtained from the user; the latter is derived by the system on the basis of 
information it already has. The user-supplied variety is used as a source 
for knowledge that the system could not have deduced on its own; the 
derived form allows the system to uncover useful characteristics of the 
knowledge base and to make maximal use of knowledge it already has. 

As will become clear below, meta-level knowledge makes possible a 
number of interesting capabilities. The representation-specific variety sup­
ports knowledge acquisition, provides assistance on knowledge base main­
tenance, and makes possible multiple distinct uses of a single chunk of 
knowledge. The domain-specific type provides a site for embedding infor­
mation about the most effective use of knowledge and can have a signifi­
cant impact on both the efficiency displayed by a system and its level of 
performance. The examples also demonstrate that the source of the meta­
level knowledge has an impact on system performance. In particular, the 
derived variety is shown to make possible a very simple but potentially 
useful form of closed-loop behavior. 

We examine below the four instances of meta-level knowledge used by 
TEIRESIAS (shown in Figure 28-1) and review for each (i) the basic idea, 
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explaining why it is a form of meta-level knowledge; (ii) a specific instance, 
detailing the information it contains; (iii) an example of how that infor­
mation is used to support knowledge base construction, maintenance, or 
use; and (iv) the other capabilities it makes possible, including a limited 
form of self-knowledge. 

2 8 I Rule Models • 

28.1.l Rule Models as Empirical Abstractions of the 
Knowledge Base 

As described in Chapter 9, a rule model is an abstract description of a 
subset of rules, built from empirical generalizations about those rules. It 
is used to characterize a "typical" member of the subset and is composed 
of four parts. First, a list of examples indicates the subset of rules from 
which this model was constructed. 

Next, a description characterizes a typical member of the subset. Since 
we are dealing in this case with rules composed of premise-action pairs, 
the description currently implemented contains individual characteriza­
tions of a typical premise and a typical action. Then, since the current 
representation scheme used in those rules is based on associative triples, 
we have chosen to implement those characterizations by indicating (a) 
which attributes "typically" appear in the premise (and in the action) of a 
rule in this subset and (b) correlations of attributes appearing in the prem­
ise (and in the action). 2 Note that the central idea is the concept of char­
acterizing a typical member of the subset. Naturally, that characterization looks 
different for subsets of rules than it does for procedures, theorems, frames, 
etc. But the main idea of characterization is widely applicable and not 
restricted to any particular representational formalism. 

The two remaining parts of the rule model are pointers to models 
describing more general and more specific rule models covering larger or 
smaller subsets of rules. The set of models is organized into a number of 
tree structures, each of the general form shown in Figure 28-2. This struc­
ture determines the subsets for which models will be constructed. At the 
root of each tree is the model made from all the rules that conclude about 
<attribute>; below this are two models dealing with all affirmative and all 
negative rules; and below this are models dealing with rules that affirm or 
deny specific values of the attribute. There are several points to note here. 
First, these models are not hardwired into the system, but are instead 
formed by TEIRESIAS on the basis of the current contents of the knowl­
edge base. Second, whereas the knowledge base contains object-level rules 
about a specific domain, the rule models contain information about those 

2Both of these are constructed via simple statistical thresholding operations. 
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<attribute> 

------------ ------------<atlribute>-ls <altribule>-isn'I 

------------- ------------<a It ribute>·is-X <attribute>-is- Y <attribute>-isn't· X <altribute>-isn't· Y 

FIGURE 28·2 Organization of the rule models. 

rules, in the form of empirical generalizations. As such, they offer a global 
overview of the regularities in the rules. The rule models are thus an 
example of derived, domain-specific meta-level knowledge. 

28.1.2 Rule Model Example 

Figure 28-3 shows an example of a rule model, one that describes the 
subset of rules concluding affirmatively about the area for an investment. 3 

(Since not all details of implementation are relevant here, this discussion 
will omit some.) As indicated above, there is a list of rules from which this 
model was constructed, descriptions characterizing the premises and ac­
tions, and pointers to more specific and more general models. Each char­
acterization in the description is shown split into its two parts, one con­
cerning the presence of individual attributes and the other describing 
correlations. The first item in the premise description, for instance, indi­
cates that "most" rules about the area of investment mention the attribute 
RETURNRATE in their premises; when they do mention it, they "typi­
cally" use the predicate functions SAME and NOTSAME; and the 
"strength," or reliability, of this piece of advice is 3.83. 

The fourth item in the premise description indicates that when the 
attribute RETURN RATE (rate of return) appears in the premise of a rule 
in this subset, the attribute TIMESCALE "typically" appears as well. As 
before, the predicate functions are those usually associated with the attri­
butes, and the number is an indication of reliability. 

28.1.3 Use of Rule Models in Knowledge Acquisition 

Use of the rule models to support knowledge acquisition occurs in several 
steps. First, as noted in Chapter 9, our model of knowledge acquisition is 
one of interactive transfer of expertise in the context of a shortcoming in 

3These examples were generated by substituting investment terms for medical terms in ex­
amples from TEIRESIAS using MYCIN's medical knowledge. 



Rule Models 511 

MODEL FOR RULES CONCLUDING AFFIRMATIVELY ABOUT INVESTMENT AREA 

EXAMPLES ((RULE116 .33) 
(RULE050 .70) 
(RULE037 .80) 
(RULE095 .90) 
(RULE152 1.0) 
(RULE140 1.0)) 

DESCRIPTION 
PREMISE ((RETURNRATE SAME NOTSAME 3.83) 

(TIMESCALE SAME NOTSAME 3.83) 
(TREND SAME 2.83) 

ACTION 

MORE·GENL 

MORE-SPEC 

((RETURNRATE SAME) (TIMESCALE SAME) 3.83) 
((TIMESCALE SAME) (RETURNRATE SAME) 3.83) 
((BRACKET SAME) (FOLLOWS NOTSAME SAME) (EXPERIENCE SAME) 1.50)) 

((INVESTMENT-AREA CONCLUDE 4.73) 
(RISK CONCLUDE 4.05) 

((INVESTMENT-AREA CONCLUDE) (RISK CONCLUDE) 4.73)) 

(INVESTMENT-AREA) 

(INVESTMENT-AREA-IS-UTILITIES) 

FIGURE 28-3 Example of a rule model. 

the knowledge base. The process starts with the expert challenging the 
system with a specific problem and observing its performance. If the expert 
believes its results are incorrect, there are available a number of tools that 
will allow him or her to track down the source of the error by selecting 
the appropriate rule model. For instance, if the problem is a missing rule 
in the knowledge base to conclude about the appropriate area for an in­
vestment, then TEIRESIAS will select the model shown in Figure 28-3 as 
the appropriate one to describe the rule it is about to acquire. Note that 
the selection of a specific model is in effect an expression by TEIRESIAS 
of its expectations concerning the new rule, and the generalizations in the 
model become predictions about the likely content of the rule. 

At this point the expert types in the new rule (Figure 28-4), using the 
vocabulary specific to the domain. (In all traces, computer output is in 
mixed upper and lower case, while user responses are in boldface capitals.) 

As mentioned in Chapter 9 and further described in Chapter 18, En­
glish text is understood by allowing keywords to suggest partial interpre­
tations and intersecting those results with the expectations provided by the 
selection of a particular rule model. We thus have a data-directed process 
(interpreting the text) combined with a goal-directed process (the predic­
tions made by the rule model). Each contributes to the end result, but it 
is their combination that is effective. TEIRESIAS displays the results of 



512 Meta-Level Knowledge 

The new rule will be called RULE383 
If: 1 - THE CLIENT'S INCOME TAX BRACKET IS 50% 

and 2 - THE CLIENT IS FOLLOWING UP ON MARKET TRENDS CAREFULLY 
and 3-

Then: 1 - THERE IS EVIDENCE (.8) THAT THE INVESTMENT AREA SHOULD BE HIGH 
TECHNOLOGY 

and 2 -

This may take a few moments ... 

FIGURE 28-4 New rule as stated by the expert. 

this initial interpretation of the rule (Figure 28-5). If there are mistakes 
(as there are in this case), a rule editor is available to allow the expert to 
indicate necessary changes. This is easily accomplished, since TEIRESIAS 
can often make an effective second choice by determining the likely source 
of error in its initial guess. 

Once the expert is satisfied that TEIRESIAS has correctly understood 
what was said, it is the system's turn to see if it is satisfied with the content 
of the rule. The main idea is to use the rule model to see how well this 
new rule "fits into" the system's model of its knowledge-i.e., does it "look 
like" a typical rule of the sort expected? 

If the expert agrees to the inclusion of a new clause, TEIRESIAS 
attempts to create it (Figure 28-6). The system relies on the context of the 
current dialogue (which indicates that the clause should deal with the 
amount of the client's investment experience) and the fact that the rule 
must work for this case or it won't fix the bug (it is not shown here, but 
earlier in the interaction the expert indicated that the client had a moderate 
amount of experience). TEIRESIAS' guess is not necessarily correct, of 
course, since the desired clause may be more general, but it is at least a 
plausible attempt. 

It should be noted that there is nothing in this concept of "second­
guessing" that is specific to the rule models as they are currently designed, 
or indeed to associative triples of rules as a knowledge representation. The 
most general and fundamental point was mentioned above-testing to see 
how something "fits into" the system's model of its knowledge. At this point 

This is my understanding of your rule: 

RULE383 
IF: 1) The client's income-tax bracket is 50%, and 

2) The market has followed a upward trend recently, and 
3) The client manages his assets carefully 

THEN: There is evidence (.8) that the area of the investment should be high-technology 

FIGURE 28-5 TEIRESIAS' first interpretation of the rule 
shown in Figure 28-4. 
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I hate to criticize, Randy, but did you know that most rules about what the area of investment might be, that mention­
the income-tax bracket of the client, and 
how closely the client follows the market 

ALSO mention -
[A] - the amount of investment experience of the client 

Shall I try to write a clause to account for [A]? 
+ + .. y 

How about -
[A] The amount of investment experience of the client is moderate 

Ok? 
+ +·· y 

FIGURE 28-6 TEIRESIAS' suggestion of an additional clause 
to the new rule based on the rule model shown in Figure 28-3. 

the system might perform any kind of check for violations of any estab­
lished prejudices about what the new chunk of knowledge should look like. 
Additional kinds of checks for rules might concern the strength of the 
inference, the number of clauses in the premise, etc. In general, this "sec­
ond-guessing" process can involve any characteristic that the system may 
have "noticed" about the particular knowledge representation in use. 

Automatic generation of rule models has several interesting implica­
tions, since it makes possible a synthesis of the ideas of model-based un­
derstanding and learning by experience. While both of these have been 
developed independently in previous AI research, their combination pro­
duces a novel sort of feedback loop: rule acquisition relies on the set of 
rule models to effect the model-based understanding process; this results 
in the addition of a new rule to the knowledge base; and this in turn 
triggers recomputation of the relevant rule model(s). 

Note, first, that performance on the acquisition of a subsequent rule 
may be better, because the system's "picture" of its knowledge base has 
improved-the rule models are now computed from a larger set of in­
stances, and their generalizations are more likely to be valid. Second, since 
the relevant rule models are recomputed each time a change is made to 
the knowledge base, the picture they supply is kept constantly up to date, 
and they will at all times be an accurate reflection of the shifting patterns 
in the knowledge base. 

Finally, and perhaps most interesting, the models are not hand-tooled 
by the system architect or specified by the expert. They are instead formed 
by the system itself, and formed as a result of its experience in acquiring 
rules from the expert. Thus, despite its reliance on a set of models as a 
basis for understanding, TEIRESIAS' abilities are not restricted by a pre­
existing set of models. As its store of knowledge grows, old models can 
become more accurate, new models will be formed, and the system's stock 
of knowledge about its knowledge will continue to expand. 
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2 8.2 Schemata 

28.2.l The Need for Knowledge About 
Representations 

As data structures go beyond the simple types available in most program­
ming languages to extended data types defined by the user, they typically 
become rather complex. Large programs may have numerous structures 
that are complex in both their internal organization and their interrela­
tionships with other data types in the system. Yet information about these 
details may be scattered in comments in system code, in documents and 
manuals maintained separately, and in the mind of the system architect. 
This presents problems to anyone changing the system. Consider, for ex­
ample, the difficulties encountered in such a seemingly simple problem as 
adding a new instance of an existing data type to a large program. Just 
finding all of the necessary information can be a major task, especially for 
someone unfamiliar with the system. 

One particularly relevant set of examples comes from the numerous 
approaches to knowledge representation that have been tried over the 
years. While the emphasis in discussions of predicate calculus, semantic 
nets, production rules, frames, etc., has naturally concerned their respec­
tive conceptual power, at the level of implementation each of these carries 
problems of data structure management. 

Our second example of meta-level knowledge, then, is of the repre­
sentation-specific variety and involves describing to a system a range of 
information about the representations it employs. The main idea here is, 
first, to view every knowledge representation in the system as an extended 
data type and to write explicit descriptions of them. These descriptions 
should include all of the information about structure and interrelations 
that is often widely scattered. Next, we devise a language in which all of 
this can be put in machine-comprehensible terms and write the descrip­
tions in those terms, making this store of information available to the sys­
tem. Finally, we design an interpreter for the language, so that the system 
can use its new knowledge to keep track of the details of data structure 
construction and maintenance. 

The approach is based on the concept of a data structure schema, a device 
that provides a framework in which representations can be specified. The 
framework, like most, carries its own perspectives on its domain. One point 
it emphasizes strongly is the detailed specification of many kinds of infor­
mation about representations. It attempts to make this specification task 
easier by providing ways of organizing the information and a relatively 
high-level vocabulary for expressing it. 



Schemata 515 

Schema hierarchy: indicates categories of representations and their organization 

Individual schema: describes structure of a single representation 

Slot names: (the schema building blocks) describe implementation conventions 

FIGURE 28-7 Levels of knowledge about representations. 

28.2.2 Schema Example 

There are three levels of organization of the information about represen­
tations (Figure 28-7). At the highest level, a schema hierarchy links the 
schemata together, indicating what categories of data structure exist in the 
system and the relationships among them. At the next level of organization 
are individual schemata, the basic units around which the information 
about representations is organized. Each schema indicates the structure 
and interrelationships of a single type of data structure. At the lowest level 
are the slot names (and associated structures) from which the schemata are 
built; these offer knowledge about specific conventions at the program­
ming language level. Each of these three levels supplies a different sort of 
information; together they comprise an extensive body of knowledge about 
the structure, organization, and implementation of the representations. 

The hierarchy is a generalization hierarchy (Figure 28-8) that indicates 
the global organization of the representations. It makes extensive use of 
the concept of inheritance of properties, so that a particular schema need 
represent only the information not yet specified by schemata above it in 
the hierarchy. This distribution of information also aids in making the 
network extensible. 

ROOT 

VALUE· SCHEMA ATTRIBUTE-SCHEMA --------AREA-SCHEMA STOCKNAME·SCHEMA 

INVSA TTRIB· SCHEMA CLIENTSATTRIB·SCHEMA MARKETSATTRIB-SCHEMA 

SINGLESVAL·SCHEMA MULTIPLESVAL-SCHEMA TRUEFALSESVAL-SCHEMA 

FIGURE 28-8 Part of the schema hierarchy. 
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Each schema contains several different types of information: 

1. the structure of its instances, 
2. interrelationships with other data structures, 
3. a pointer to all current instances, 
4. inter-schema organizational information, and 
5. bookkeeping information. 

Figure 28-9 shows the schema for a stock name; information corre­
sponding to each of the categories listed above is grouped together. The 
first five lines in Figure 28-9 contain structure information and indicate 
some of the entries on the property list (PLIST) of the data structure that 
represents a stock name. The information is a triple of the form 

<slot name> <blank> <advice> 

The slot name labels the "kind" of thing that fills the blank and serves as 
a point around which much of the "lower-level" information in the system 
is organized. The blank specifies the format of the information required, 
while the advice suggests how to find it. Some of the information needed 
may be domain-specific, and hence must be requested from the expert. 
But some of it may concern completely internal conventions of represen­
tation, and hence should be supplied by the system itself, to insulate the 
domain expert from such details. The advice provides a way of indicating 
which of these situations holds in a given case. 

STOCKNAME-SCHEMA 
PUST [( INSTOF STOCKNAME-SCHEMA 

RELATIONS 

INSTANCES 

FATHER 

OFF-SPRING 

DESCR 
AUTHOR 
DATE 
INSTOF 

SYNONYM (KLEENE (1 0) <ATOM>) 
TRADEDON (KLEENE (1 1 2) <(MARKET-INST FIRSTYEAR-INST)>) 
RISKCLASS CLASS-INST 

CREATE IT] 

( (AND' STOCKNAMELIST HILOTABLE) 
(OR' CUMVOTINGRIGHTS) 
(XOR' COMMON PFD CUMPFD PARTICPFD) 
((OR' PFD CUMPFD PARTICPFD) PFORATETABLE) 
((AND' CUMPFD) OMITTEDDIVS) ) 

(AMERICAN-MOTORS AT&T ... XEROX ZOECON) 

(VALUE-SCHEMA) 

NIL 

"the STOCKNAME-SCHEMA describes the format for a stock name" 
DAVIS 
1115 
(SCHEMA-SCHEMA) 

FIGURE 28-9 Schema for a stock name. 

GIVEN IT 
ASKIT 
ASKIT 
ASKIT 
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The next five lines in the schema (under RELATIONS) indicate its 
interrelations with other data structures in the system. The main point 
here is to provide the system architect with a way of making explicit all of 
the data structure interrelationships on which the design depends. Ex­
pressing them in a machine-accessible form makes it possible for TEIRE­
SIAS to take over the task of maintaining them, as explained below. 

The schemata also keep a list of all current instantiations of themselves 
(under INSTANCES), primarily for use in maintaining the knowledge 
base. If the design of a data structure requires modification, it is convenient 
to have a pointer to all current instances to ensure that they are similarly 
modified. 

The next two lines (FATHER and OFF-SPRING) contain organiza­
tional information indicating how the stock name schema is connected to 
the schema hierarchy. 

Finally, there are four slots for bookkeeping information to help keep 
track of a large number of data structures: each structure is tagged with 
the date of creation and author, along with a free-text description supplied 
by the author. In addition, each structure has a pointer to the schema of 
which it is an instance (note in this case that it is the schema itself that is 
the data structure being described by this information). 

28.2.3 Use of Schemata in Knowledge Acquisition 

Use of the schemata in knowledge acquisition relies on several ideas: 

• Information in the schema is viewed as a guide to creating a new instance 
of the representation it describes. 

• That guidance is supplied by (a) the structure description information, 
which is in the form of a prototype to be instantiated, and (b) the rela­
tions information, which is interpreted as pointers to a number of struc­
tures that may require updating to ensure that necessary data structure 
interrelations are maintained. 

• It is this instantiation and interpretation process that drives the knowl­
edge transfer dialogue. 

• The advice present in the schema adds a level of sophistication to the 
dialogue. 

For instance, suppose in the process of adding a new rule to the system 
the expert mentions a stock the system hasn't heard about yet. Learning 
about the new stock (i.e., creating a new instance of the concept of stock 
name) becomes a subproblem in the task of acquiring the new rule. The 
schema for the concept of stock name is retrieved and used as the basis 
for a dialogue that requests the necessary information from the expert. 
An abbreviated version of the dialogue is shown in Figure 28-10. 



518 Meta-Level Knowledge 

The new rule will be called RULE384 
If 1 - THE DESIRED RATE OF RETURN ON THE INVESTMENT IS GREATER THAN 10% 

2 - THE AMOUNT OF INVESTMENT EXPERIENCE OF THE CLIENT IS MODERATE 
3 - THE AREA OF THE INVESTMENT IS NATURAL RESOURCE DEVELOPMENT 

Then 
1 • THERE IS EVIDENCE (.5) THAT THE NAME OF THE STOCK TO INVEST IN 

IS GEORGIA PACIFIC 

Sorry, but I don't understand 
THERE IS EVIDENCE (.5) THAT THE NAME OF THE STOCK TO INVEST IN 
IS GEORGIA PACIFIC 

because these words are unknown: GEORGIA PACIFIC 

{TE/RES/AS finds it cannot generate any interpretations of the text, so it reprints the original line and 
specifies where the trouble is. This makes it possible for the expert to figure out what it is that is new to the 
system.} 

Would you care to try rephrasing that? 
+ +•• y 

(Please use *'s to mark what you think might be a new attribute or a 
new value of an existing attribute.) 

1 - THERE IS EVIDENCE (.5) THAT THE NAME OF THE STOCK TO INVEST 
IN IS * GEORGIA PACIFIC * 

{While the language in this example is very simple, there are more complex cases where it would be quite 
hard to decide from the context what sort of new item the expert had in mind. To avoid the necessity for 
more sophisticated natural language handling, the expert is asked to mark off the new word or phrase with 
asterisks.} 

It looks as though 
GEORGIA PACIFIC 

refers to a new value of an attribute, correct? 
+ +·· y 
... is it the name of a stock? 
++"Y 

{ ... and with the new item clearly marked, the system can then do some very simple pattern matching to 
decide what's going on.} 

Now please tell me a few things about it ... 

{TE/RES/AS retrieves the schema for a stock, and "reads" it to find out what it needs to know about any 
stock.) 

On what markets is GEORGIA-PACIFIC traded? 
The answer should be in the form of 1 or more of the following-

<market name> <year first traded> 
[Type 1 set to a line, then an empty line when done.] 
+ +" NYSE 1945 
+ +" PCE 1968 
+ +•• 

{Each of the questions from the system is prompted by the attempt to fill in some component of the data 
structure being built, according to the representation conventions indicated by the schema.) 

What is the current risk classification of GEORGIA-PACIFIC? 
The answer should be in the form of a 

<risk classification> 
+ +" AMEX 

FIGURE 28-10 Excerpt of dialogue in which the system learns 
a new rule. 



Sorry, but the following are invalid • 
AMEX is not a recognized <risk classification> 

Please answer again [use the same answer if you really meant it]. 
+ + •• BLUE-CHIP 
+ +·· 
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{TE/RES/AS now begins working on updating other data structures in response to the addition of the new 
stock name.} 

Should this new item be added to· 
1 • the list of common stocks, or 
2 • the list of preferred stocks, or 
3 · the list of cumulative preferred stocks, or 
4 · the list of participating preferred stocks 

Select one of the above 
+ + .. 3 

[Adding GEORGIA-PACIFIC to CUMULATIVEPFD] 

{One of these tasks involves adding the new stock to one of four mutually exclusive lists. (Several other 
necessaiy updates are also performed; these have been edited out here for brevity.)} 

Ok, done with GEORGIA-PACIFIC now ... Back to the rule. 

{Having finished acquiring information about the new stock, the system returns to parsing the new rule, and 
with some help from the expert gets the correct result [the parsing process is omitted here, see Davis 
(1977) fore detailed example].} 

This may take a few moments. 

This is my understanding of your rule: 
If 1 • the desired rate of return for the investment is greater than 10% 

2 • the amount of investment experience of the client is moderate 
3 • the area of investment is natural-resource-development 

Then 
1 • there is evidence (.5) that the name of the stock to choose is georgia·pacific 

FIGURE 28-10 continued 

28.2.4 Other Uses of Schemata 

The preceding subsection showed one instance of using schemata for main­
tenance of the knowledge base. They help ensure that one change to the 
knowledge base (adding a new instance of a known representation) will 
not violate necessary relationships between data structures. The schemata 
also support other capabilities. Besides being useful in maintaining the 
knowledge base, they offer a convenient mechanism for organizing and 
implementing data structure access and storage functions. 

One of the ideas behind the design of the schemata is to use them as 
points around which to organize knowledge. The information about struc­
ture and interrelationships described above, for instance, is stored this way. 
In addition, access and storage information is also organized in this fash­
ion. By generalizing the advice concept slightly, it is possible to effect all 
data structure access and storage requests in the appropriate schema. That 
is, code that needs to access a particular structure "sends" an access request, 
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and the structure "answers" by providing the requested item.4 This offers 
the well-known advantage of insulating the implementation of a data struc­
ture from its logical design. Code that refers only to the latter is far easier 
to maintain in the face of modifications to data structure implementation. 

28.3 Function Templates 

Associated with each predicate function in the system is a template, a list 
structure that resembles a simplified procedure declaration (Figure 28-11). 
It is representation-specific, indicating the order and generic type of the 
arguments in a typical call of that function. Templates make possible two 
interesting parallel capabilities: code generation and code dissection. Tem­
plates are used as a basis for the simple form of code generation alluded 
to in Chapter 9. Although details are beyond the scope of this chapter [see 
Davis (1976)], code generation is essentially a process of "filling in the 
blanks": processing a line of text in a new rule involves checking for key­
words that implicate a particular predicate function, and then filling in its 
template on the basis of connotations suggested by other words in the text. 

Function 
SAME 

Template 
(object attribute value) 

FIGURE 28-11 Template for the predicate function SAME. 

Code dissection is accomplished by using the templates as a guide to 
extracting any desired part of a function call. For instance, as noted earlier, 
TEIRESIAS forms the rule models on the basis of the current contents of 
the knowledge base. To do this, it must be able to pick apart each rule to 
determine the attributes to which it refers. This could have been made 
possible by requiring that every predicate function use the same function 
call format (i.e., the same number, type, and order of arguments), but this 
would be too inflexible. Instead, we allow every function to describe its 
own calling format via its template. To dissect a function call, then, we 
need only retrieve the template for the relevant function and then use the 
template as a guide to dissecting the remainder of the form. The template 
in Figure 28-11, for instance, indicates that the attribute would be the sec­
ond item after the function name. This same technique is also used by 
TEIRESIAS' explanation facility, where it permits the system to be quite 
precise in the explanations it provides. 

4This was suggested by the perspective taken in work on SMALLTALK (Goldberg and Kay, 
1976) and ACTORS (Hewitt et al., 1973). This style of writing programs has come to be 
known as object-oriented programming. 
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This approach also offers a useful degree of flexibility. The introduc­
tion of a new predicate function, for instance, can be totally transparent 
to the rest of the system, as long as its template can be written in terms of 
the available set of primitives such as attribute, value, etc. The power of 
this approach is limited primarily by this factor and will succeed to the 
extent that code can be described by a relatively small set of such primitive 
descriptors. While more complex syntax is easily accommodated (e.g., the 
template can indicate nested function calls), more complex semantics are 
more difficult (e.g., the appearance of multiple attributes in a function 
template can cause problems). 

Finally, note that the templates also offer a small contribution to system 
maintenance. If it becomes necessary to modify the calling sequence of a 
function, for instance, we can edit just the template and have the system 
take care of effecting analogous changes to all current invocations of the 
function. 

28 4 Meta-Rules • 

28.4.l Meta-Rules-Strategies to Guide the Use of 
Knowledge 

A second form of domain-specific meta-level knowledge is strategy knowledge 
that indicates how to use other knowledge. This discussion considers strat­
egies from the perspective of deciding which knowledge to invoke next in a 
situation where more than one chunk of knowledge may be applicable. For 
example, given a problem solvable by either heuristic search or problem 
decomposition, a strategy might indicate which technique to use, based on 
characteristics of the problem domain and nature of the desired solution. 
If the problem decomposition technique were chosen, other strategies 
might be employed to select the appropriate decomposition from among 
several plausible alternatives. 

This view of strategies is useful because many of the paradigms de­
veloped in Al admit (or even encourage) the possibility of having several 
alternative chunks of knowledge be plausibly useful in a single situation 
(e.g., production rules, logic-based languages, etc.). When a set of alter­
natives is large enough (or varied enough) that exhaustive invocation is 
infeasible, some decision must be made about which should be chosen. 
Since the performance of a program will be strongly influenced by the 
intelligence with which that decision was made, strategies offer an impor­
tant site for the embedding of knowledge in a system. 

A MYCIN-like system invokes rules in a simple backward-chaining 
fashion that produces an exhaustive depth-first search of an AND/OR goal 
tree. If the program is attempting, for example, to determine which stock 
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would make a good investment, it retrieves all the rules that make a con­
clusion about that topic (i.e., they mention STOCKNAME in their action 
clauses). It then invokes each one in turn, evaluating each premise to see 
if the conditions specified have been met. The search is exhaustive because 
the rules are inexact: even if one succeeds, it was deemed to be a wisely 
conservative strategy to continue to collect all evidence about a subgoal. 

The ability to use an exhaustive search is of course a luxury, and in 
time the base of rules may grow large enough to make this infeasible. At 
this point some choice would have to be made about which of the plausibly 
useful rules should be invoked. Meta-rules were created to address this 
problem. They are rules about object-level rules and provide a strategy for 
pruning or reordering object-level rules before they are invoked. 

28.4.2 Examples of Meta-Rules 

Figure 28-12 shows four meta-rules for MYCIN (reverting to medicine 
again for the moment). The first of them says, in effect, that in trying to 
determine the likely identities of organisms from a sterile site, rules that 
base their identification on other organisms from the same site are not 
likely to be successful. The second indicates that when dealing with pelvic 
abscess, organisms of the class Enterobacteriacae should be considered before 
gram-positive rods. The third and fourth are like the second in that they 
reorder relevant rules before invoking them. 

It is important to note the character of the information conveyed by 
meta-rules. First, note that in all cases we have a rule that is making a 
conclusion about other rules. That is, where object-level rules conclude 
about the medical (or other) domain, meta-rules conclude about object­
level rules. These conclusions can (in the current implementation) be of 
two forms. As in the first meta-rule, they can make deductions about the 
likely utility of certain object-level rules, or as in the second, they can 
indicate a partial ordering between two subsets of object-level rules. 

Note also that (as in the first example) meta-rules make conclusions 
about the utility of object-level rules, not about their validity. That is, 
METARULEOO 1 does not indicate circumstances under which some of the 
object-level rules are invalid [or even "very likely (.9)" to be invalid]. It 
merely says that they are likely not to be useful; i.e., they will probably fail, 
perhaps only after requiring extensive computation to evaluate their pre­
conditions. This is important because it has an impact on the question of 
distribution of knowledge. If meta-rules did comment on validity, it might 
make more sense to distribute the knowledge in them, i.e., to delete the 
meta-rule and just add another premise clause to each of the relevant 
object-level rules. But since their conclusions concern utility, it does not 
make sense to distribute the knowledge. 

Adding meta-rules to the system requires only a minor addition to 
MYCIN's control structure. As before, the system retrieves the entire list 



METAAULE001 

IF 1) the culture was not obtained from a sterile source, and 
2) there are rules which mention in their premise a previous 

organism which may be the same as the current organism 
THEN it is definite (1.0) that each of them is not going to be useful. 

PREMISE: ($AND (NOTSAME CNTXT STERILESOURCE) 
(THEREARE OBJRULES (MENTIONS CNTXT PREMISE 
'SAMEBUG) SET1)) 

ACTION: (CONCLIST SET1 UTILITY NO TALLY 1.0) 

METAAULE002 

IF 1) the infection is a pelvic-abscess, and 
2) there are rules which mention in their premise 

enterobacteriaceae, and 
3) there are rules which mention in their premise gram-positive rods, 

There is suggestive evidence (.4) that the former should be done before 
the latter. 

PREMISE: ($AND (SAME CNTXT PELVIC-ABSCESS) 
(THEREARE OBJRULES(MENTIONS CNTXT PREMISE 

ENTEROBACTERIACEAE) SET1) 
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(THEREARE OBJRULES(MENTIONS CNTXT PREMISE GRAMPOS-RODS) 
SET2)) 

ACTION: CONCLIST SET1 DOBEFORE SET2 TALLY .4) 

METARULE003 

IF 1) there are rules which do not mention the current goal in 
their premise 

2) there are rules which mention the current goal in their 
premise 

THEN it is definite that the former should be done before the latter. 

PREMISE: ($AND(THEREARE OBJRULES ($AND (DOESNTMENTION FREEVAR 
ACTION CURGOAL))SET1) 

(THEREARE OBJRULES ($AND (MENTIONS FREEVAR PREMISE 
CURGOAL)SET2)) 

ACTION: (CONCLIST SET1 DOBEFORE SET2 1000) 

METARULE004 

IF 1) there are rules which are relevant to positive cultures, and 
2) there are rules which are relevant to negative cultures 

THEN it is definite that the former should be done before the latter. 

PREMISE: ($AND(THEREARE OBJRULES ($AND (APPLIESTO FREEVAR POSCUL)) 
SET1) 

(THEREARE OBJRULES ($AND (APPLIESTO FREEVAR NEGCUL)) 
SET2)) 

ACTION: (CONCLIST SET1 DOBEFORE SET2 1000) 

FIGURE 28-12 Four meta-rules for MYCIN. 
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of rules relevant to the current goal (call the list L). But before attempting 
to invoke them, it first determines if there are any meta-rules relevant to 
the goal. 5 If so, these are invoked first. As a result of their actions, we may 
obtain a number of conclusions about the likely utility and relative ordering 
of the rules in L. These conclusions are used to reorder or shorten L, and 
the revised list of rules is then used. Viewed in tree-search terms, the 
current implementation of meta-rules can either prune the search space 
or reorder the branches of the tree. 

28.4.3 Guiding the Use of the Knowledge Base 

There are several points to note about encoding knowledge in meta-rules. 
First, the framework it presents for knowledge organization and use ap­
pears to offer a great deal of leverage, since much can be gained by adding 
to a system a store of (meta-level) knowledge about which chunk of object­
level knowledge to invoke next. Considered once again in tree terms, we 
are talking about the difference between a "blind" search of the tree and 
one guided by heuristics. The advantage of even a few good heuristics in 
cutting down the combinatorial explosion of tree search is well known. 
Thus, where earlier sections were concerned about adding more object­
level knowledge to improve performance, here we are concerned with giv­
ing the system more information about how to use what it already knows. 
Consider, too, that the definition of intelligence includes appropriate use 
of information. Even if a store of (object-level) information is not large, it 
is important to be able to use it properly. Meta-rules provide a mechanism 
for encoding strategies that can make this possible. 

Second, the description given in the preceding subsection has been 
simplified in several respects for the sake of clarity. It discusses the aug­
mented control structure, for example, in terms of two levels. In fact, there 
can be an arbitrary number of levels, each serving to direct the use of 
knowledge at the next lower level. That is, the system retrieves the list (L) 
of object-level rules relevant to the current goal. Before invoking this, it 
checks for a list (L') of first-order meta-rules that can be used to reorder 
or prune L, etc. Recursion stops when there is no rule set of the next 
higher order, and the process unwinds, each level of strategies advising on 
the use of the next lower level. We can gain leverage at this higher level 
by encoding heuristics that guide the use of heuristics. That is, rather than 
adding more heuristics to improve performance, we might add more in­
formation at the next higher level about effective use of existing heuristics. 

5That is, are there meta-rules directly associated with that goal? Meta-rules can also be as­
sociated with other objects in the system, but that is beyond the scope of this chapter. The 
issues of organizing and indexing meta-rules are covered in more detail elsewhere (Davis, 
1976; 1978). 
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The judgmental character of the rules offers several interesting ca­
pabilities. It makes it possible, for instance, to write rules that make dif­
ferent conclusions about the best strategy to use and then rely on the 
underlying model of confirmation (Shortliffe and Buchanan, 1975) to 
weigh the evidence. That is, the strategies can "argue" about the best rule 
to use next, and the strategy that "presents the best case" (as judged by the 
confirmation model) will win out. 

Next, recall that the basic control structure of the performance pro­
gram is a depth-first search of the AND/OR goal tree sprouted by the 
unwinding of rules. The presence of meta-rules of the sort shown in Figure 
28-12 means that this tree has an interesting characteristic at each node: 
when the system has to choose a path, there may be information stored 
that advises about the best path to take. There may therefore be available 
an extensive body of knowledge to guide the search, but that knowledge 
is not embedded in the code of a clever search algorithm. It is instead 
organized around the specific objects that form the nodes in the tree; i.e., 
instead of a smart algorithm, we have a "smart tree." 

Finally, there are several advantages associated with the use of strate­
gies that are goal-specific, explicit, and imbedded in a representation that 
is the same as that of the object-level knowledge. The fact that strategies 
are goal-specific, for instance, makes it possible to specify precise heuristics 
for a given goal, without imposing any overhead on the search for any 
other goals. That is, there may be a number of complex heuristics describ­
ing the best kinds of rules to use for a particular goal, but these will cause 
no computational overhead except in the search for that goal. 

The fact that they are explicit means a conceptually cleaner organiza­
tion of knowledge and an ease of modification of established strategies. 
Consider, for instance, alternative means of achieving the sort of partial 
ordering specified by the second meta-rule. There are several alternative 
schemes by which this could be accomplished, involving appropriate mod­
ifications to the relevant object-level rules and slight changes to the control 
structure. Such schemes, however, share several faults that can be illus­
trated by considering one such approach: an agenda with multiple priority 
levels like the one proposed in Bobrow and Winograd (1977). 

In an agenda-driven system, rules are put on an agenda rather than 
dealt with in the form of a linear list of relevant rules in a partial ordering. 
Partial ordering could be accomplished simply by setting the priority of 
some rules higher than that of others; rules in subset A, for instance, might 
get priority 6, while those in subset B are given priority 5. But this tech­
nique presents two problems: it is both opaque and likely to cause bugs. It 
will not be apparent from looking at the code, for instance, why the rules 
in A were given a higher priority than that of the rules in B. Were they 
more likely to be useful, or is it desirable that those in A precede those in 
B no matter how useful they may be? Consider also what happens if, before 
we get a chance to invoke any of the rules in A, an event occurs that makes 
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it clear that their priority ought to be reduced (for reasons unrelated to 
the desired partial ordering). If the priority of only the rules in A is ad­
justed, a bug arises, since the desired relative ordering may be lost. 

The problem is that this approach tries to reduce a number of differ­
ent, incommensurate factors to a single number, with no record of how that 
number was reached. Meta-rules offer one mechanism for making these sorts 
of considerations explicit, and for leaving a record of why a set of processes 
has been queued in a particular order. They also make subsequent modi­
fications easier, since all of the information is in one place-changing a 
strategy can be accomplished by editing the relevant meta-rule, rather than 
by searching through a program for all the places where priorities have 
been set to effect that strategy. 

Lastly, the use of a uniform encoding of knowledge makes the treatment 
of all levels the same. For example, second-order meta-rules require no 
machinery in excess of that needed for first-order meta-rules. It also means 
that all the explanation and knowledge acquisition capabilities developed 
for object-level rules can be extended to meta-rules as well. The first of 
these (explanation) has been done and works for all levels of meta-rules. 
Adding this to TEIRESIAS' explanation facility makes possible an inter­
esting capability: in addition to being able to explain what it did, the system 
can also explain how it decided to do what it did. Knowledge in the strategies 
has become accessible to the rest of the system and can be explained in 
just the same fashion. We noted above that adding meta-level knowledge 
to the system was quite distinct from adding more object-level knowledge, 
since strategies contain information of a qualitatively different sort. Expla­
nations based on this information are thus correspondingly different as 
well. 

28.4.4 Broader Implications of Meta-Rules 

The concept of strategies as a mechanism for deciding which chunk of 
knowledge to invoke next can be applied to a number of different control 
structures. We have seen how it works in goal-directed scheme, and it 
functions in much the same way with a data-directed process. In the latter 
case meta-rules offer a way of controlling the depth and breadth of the 
implications drawn from any new fact or conclusion. Pursuing this further, 
we can imagine making the decision to use a data- or goal-directed process 
itself as an issue to be decided by a collection of appropriate meta-rules. 
At each point in its processing, the system might invoke one set of meta­
rules to choose a control structure, then use another set to guide that 
control structure. This can be applied to many control structures, dem­
onstrating the range of applicability of the basic concept of strategies as a 
device for choosing what to do next. 
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28.4.5 Content-Directed Invocation 

If meta-rules are to be used to select from among plausibly useful object­
level rules, they must have some way of referring to the object-level rules. 
The mechanism used' to effect this reference has implications for the flex­
ibility and extensibility of the resulting system. To see this, note that the 
meta-rules in Figure 28-12 refer to the object-level rules by describing them 
and effect this description by direct examination of content. For instance, 
METARULEOO 1 refers to rules that mention in their premises previous organisms 
that may be the same as the current organism, which is a description rather than 
an equivalent list of rule names. The set of object-level rules that meet this 
description is determined at execution time by examining the source code 
of the rules. That is, the meta-rule "goes in and looks" for the relevant 
characteristic, using the function templates as a guide to dissecting the 
rules. We have termed this content-directed invocation. 

Part of the utility of this approach is illustrated by its advantages over 
using explicit lists of object-level rules. If such lists were used, then tasks 
would require extensive amounts of bookkeeping. After an object-level rule 
had been edited, for instance, we would have to check all the strategies 
that name it, to be sure that each such reference was still applicable to the 
revised rule. With content-directed invocation, however, these tasks require 
no additional effort, since the meta-rules effect their own examination of 
the object-level rules and will make their own determination of relevance. 

2 8 5 Conclusions • 

We have reviewed four examples of meta-level knowledge and demon­
strated their application to the task of building and using large stores of 
domain-specific knowledge. This has showed that supplying the system 
with a store of information about its representations makes possible a num­
ber of useful capabilities. For example, by describing the structure of its 
representations (schemata, templates), we make possible a form of transfer 
of expertise, as well as a number of facilities for knowledge base mainte­
nance. By supplying strategic information (meta-rules), we make possible 
a finer degree of control over use of knowledge in the system. And by 
giving the system the ability to derive empirical generalizations about its 
knowledge (rule models), we make possible a number of useful abilities 
that aid in knowledge transfer. 

The examples reviewed above illustrate a number of general ideas 
about knowledge representation and use that may prove useful in building 
large programs. We have, first, the notion that knowledge in programs 
should be made explicit and accessible. Use of production rules to encode 
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the object-level knowledge is one example of this, since knowledge in them 
may be more accessible than that embedded in the code of a procedure. 
The schemata, templates, and meta-rules illustrate the point also, since 
each of them encodes a form of information that is, typically, either omitted 
entirely or at best is left implicit. By making knowledge explicit and acces­
sible, we make possible a number of useful abilities. The schemata and 
templates, for example, support the forms of system maintenance and 
knowledge acquisition described above. Meta-rules offer a means for ex­
plicit representation of the decision criteria used by the system to select its 
course of action. Subsequent "playback" of those criteria can then provide 
a form of explanation of the motivation for system behavior [see Davis 
(1976) for examples]. That behavior is also more easily modified, since the 
information on which it is based is both clear (since it is explicit) and 
retrievable (since it is accessible). Finally, more of the system's knowledge 
and behavior becomes open to examination, especially by the system itself. 

Second, there is the idea that programs should have access to their 
own representations. To put this another way, consider that over the years 
numerous representation schemes have been proposed and have generated 
a number of discussions of their respective strengths and weaknesses. Yet, 
in all these discussions, one entity intimately concerned with the outcome 
has been left uninformed: the program itself. What this suggests is that 
we ought to describe to the program a range of information about the 
representations it employs, including such things as their structure, orga­
nization, and use. 

As noted, this is easily suggested but more difficult to do. It requires 
a means of describing both representations and control structures, and the 
utility of those descriptions will be strongly dependent on the power of the 
language in which they are expressed. The schemata and templates are 
the two main examples of the partial solutions we have developed for 
describing representations, and both rely heavily on the idea of a task­
specific high-level language-a language whose conceptual primitives are 
task-specific. The main reason for using this approach is to make possible 
what we might call "top-down code understanding." Traditionally, efforts 
at code understanding [e.g., Waldinger and Levitt (1974), Manna (1969)] 
have attempted to assign meaning to the code of some standard program­
ming language. Rather than take on this sizable task, we have used task­
specific languages to make the problem far easier. Instead of attempting 
to assign semantics to ordinary code, we assigned a "meaning" to each of 
the primitives in the high-level language and represented it in one or more 
informal ways. Thus, for example, ATTRIBUTE is one of the primitives 
in the "language" in which templates are written; its meaning is embodied 
in procedures associated with it that are used during code generation and 
dissection [see Davis (1976) for details]. 

This convenient shortcut also implies a number of limitations. Most 
importantly, the approach depends on the existence of a finite number of 
"mostly independent" primitives. This means a set of primitives with only 
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a few, well-specified interactions between them. The number of interac­
tions should be far less than the total possible, and interactions that do 
occur should be uncomplicated (as, for example, the interaction between 
the concepts of attribute and value). 

But suppose we could describe to a system its representations? What 
benefits would follow? The primary thing this can provide is a way of 
effecting multiple uses of the same knowledge. Consider, for instance, the 
multitude of ways in which the object-level rules have been used. They are 
executed as code in order to drive the consultation (see Part Two); they 
are viewed as data structures, and dissected and abstracted to form the 
rule models (Parts Three and Nine); they are dissected and examined in 
order to produce explanations (Part Six); they are constructed during 
knowledge acquisition (Part Three); and, finally, they are reasoned about 
by the meta-rules (Part Nine). 

It is important to note here that the feasibility of such multiplicity of 
uses is based less on the notion of production rules per se than on the 
availability of a representation with a small grain size and a simple syntax and 
semantics. "Small" modular chunks of code written in a simple, heavily styl­
ized form (though not necessarily a situation-action form) would have done 
as well, as would have any representation with simple enough internal 
structure and of manageable size. The introduction of greater complexity 
in the representation, or the use of a representation that encoded signifi­
cantly larger "chunks" of knowledge, would require more sophisticated 
techniques for dissecting and manipulating representations than we have 
developed thus far. But the key limitations are size and complexity of 
structure, rather than a specific style of knowledge encoding. 

Two other benefits may arise from the ability to describe representa­
tions. We noted earlier that much of the information necessary to maintain 
a system is often recorded in informal ways, if at all. If it were in fact 
convenient to record this information by describing it to the program itself, 
then we would have an effective and useful repository of information. We 
might see information that was previously folklore or informal documen­
tation becoming more formalized and migrating into the system itself. We 
have illustrated above a few of the advantages this offers in terms of main­
taining a large system. 

This may in turn produce a new perspective on programs. Early scarc­
ity of hardware resources led to an emphasis on minimizing machine re­
sources consumed, for example, by reducing all numeric expressions to 
their simplest form by hand. More recently, this has meant a certain style 
of programming in which a programmer spends a great deal of time think­
ing about a problem first, trying to solve as much as possible by hand, and 
then abstracting out only the very end product of all of that effort to be 
embodied in the program. That is, the program becomes simply a way of 
manipulating symbols to provide "the answer," with little indication left of 
what the original problem was or, more importantly, what knowledge was 
required to solve it. 
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But what if we reversed this trend, and instead viewed a program as 
a place to store many forms of knowledge about both the problem and the 
proposed solution (i.e., the program itself)? This would apply equally well 
to code and data structures and could help make possible a wider range 
of useful capabilities of the sort illustrated above. 

One final observation. As we noted at the outset, interest in knowledge­
based systems was motivated by the belief that no single domain-indepen­
dent paradigm could produce the desired level of performance. It was 
suggested instead that a large store of domain-specific (object-level) knowl­
edge was required. We might similarly suggest that this too will eventually 
reach its limits and that simply adding more object-level knowledge will no 
longer, by itself, guarantee increased performance. Instead, it may be nec­
essary to focus on building stores of meta-level knowledge, especially in 
the form of strategies for effective use of knowledge. Such "meta-level 
knowledge-based" systems may represent a profitable future direction for 
research. 



29 
Extensions to Rules for 
Explanation and Tutoring 

William J. Clancey 

As described in Part Eight, the success of MYCIN as a problem solver 
suggested that the program's knowledge base might be a suitable source 
of subject material for teaching students. This use of MYCIN was consis­
tent with the design goals that the program's explanations be educational 
to naive users and that the representation be flexible enough to allow for 
use of the rules outside of the consultative setting. In theory, the rules 
acquired from human experts would be understandable and useful to stu­
dents. The GUIDON program discussed in Chapter 26 was developed to 
push these assumptions by using the rules in a tutorial interaction with 
medical students. 

In attempting to "transfer back" the experts' knowledge to students 
through GUIDON, we found that the experts' diagnostic approach and 
understanding of rules were not explicitly represented. GUIDON cannot 
justify the rules because MYCIN does not have an encoding of how the 
concepts in a rule fit together. GUIDON cannot fully articulate MYCIN's 
problem-solving approach because the structure of the search space and 
the strategy for traversing it are implicit in the ordering of rule concepts. 
Thus the seemingly straightforward task of converting a knowledge-based 
system into a computer-aided instruction program has led to a detailed 
reexamination of the rule base and the foundations on which rules are 
constructed, an epistemological study. 

In building MYCIN, rule authors did not recognize a need to record 
the structured way in which they were fitting rule parts together. The rules 
are more than simple associations between data and hypotheses. Sometimes 
clause order counts for everything, and different orders can mean differ-

This chapter is an edited version of an article appearing in Artificial Intelligence 20: 215-251 
( 1983). Copyright © 1983 by Artificial Intelligence. All rights reserved. Used with permission. 
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ent things. Also, some rules are present mostly to control the invocation 
of others. The uniformity of the representation obscures these various 
functions of clauses and rules. In looking beyond the surface of the rule 
representation to make explicit the intent of the rule authors, this paper 
has a purpose similar to Woods' "What's in a Link?" (1975) and Brachman's 
"What's in a Concept?" (1976). We ask, "What's in a Rule?" 

In building GUIDON, we thought that we were simply being "appli­
cations engineers" by making use of MYCIN's explanation facility for a 
tutorial setting. As noted in Chapter 26, it was surprising to find out how 
little the explanation facility could accomplish for a student. Without a 
crisp characterization of what we expected an explanation to convey, the 
program was of questionable tutorial value. On the positive side, the study 
of these shortcomings led to a radical change in our conception of MY­
CIN's rules and supplied a new epistemological framework for building 
expert systems. 

In this chapter we provide a review of MYCIN's explanatory capability 
and an overview of an epistemological framework for enhancing that ca­
pability. The following two sections examine in detail the problems of jus­
tifying a rule and explaining an approach, thereby elucidating the support and 
strategic aspects of the epistemological framework. Implications for per­
formance of a consultation system and modifiability are considered briefly. 
Finally, in the last section, the framework is used to analyze other expert 
systems. 

2 9 .1 MYCIN's Explanation Capability 

As already mentioned, MYCIN was designed so that it could explain its 
reasoning to the user. This means that it can describe its reasoning steps: 
how a request for data is related to a goal, how one goal leads to another, 
and how a goal is achieved. Figure 29- l shows a consultation excerpt in 
which the program demonstrates a line of reasoning (chained goals) that 
lead backwards from the current question: 

Is the patient a compromised host (Rule 343) -> Is the patient 
immunosuppressed? 1 

(Rule 395) -> Is the patient 
receiving steroids? 

(Rule 543) -> Is E. coli causing 
the meningitis? 

1Read as" ... compromised host (by Rule 343) answers the question 'ls the patient immu­
nosuppressed?' ... " 



23) Is J.Smith a compromised host? 
**WHY 
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[i.e. WHY is it important to determine whether J.Smith is a compromised host?] 

[3.0] This will aid in determining whether J.Smith is immunosuppressed. 
If 

[3.1] J.Smith is not a compromised host 
then 

it is definite (1.0) that J.Smith is not immunosuppressed 
[RULE343] 

[back to question 23 ... ] 
**WHY 

[i.e. WHY is it important to determine whether J.Smith is immunosuppressed?] 

[4.0] ... in order to determine whether J.Smith has received corticosteroids. 
If 

[4.1] J.Smith is not immunosuppressed 
then 

it is definite (1.0) that J.Smith has not received corticosteroids. 
[RULE395] 

[back to question 23 ... ] 
**WHY 

[i.e. WHY is it important to determine whether J.Smith has received corticosteroids?] 

[5.0] ... in order to determine the organisms causing the infection. 

It has already been established that 
[5.1] the infection which requires therapy is meningitis, and 
[5.2] only circumstantial evidence is available for this case, and 
[5.3] the type of meningitis is bacterial. 

Therefore, if 
[5.4] J.Smith is receiving corticosteroids 

then 
there is evidence that the organisms causing the infection are: 

e.coli (.4), klebsiella-pneumoniae (.2), or pseudomonas-aeruginosa (.1) 
[RULE543] 

[back to question 23 ... ] 
**NO 

FIGURE 29-1 Consultation excerpt showing explanation 
capability. (User input in boldface capitals; all other text is 
printed by MYCIN.) 

Figure 29-2 illustrates how, in the questioning session after the consulta­
tion, one can inquire further about the program's intermediate reasoning 
steps, including why it didn't ask about something. These are the expla­
nation capabilities that we sought to exploit in a teaching program. 

MYCIN's explanations are entirely in terms of its rules and goals. The 
question WHY means "Why do you want this information?" or "How is 
this information useful?" and is translated internally as "In what rule does 
this goal appear, and what goal does the rule conclude about?" Davis, who 
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developed the explanation facility, pointed out that MYCIN did not have 
the knowledge to respond to other interpretations of a WHY question 
(Davis, 1976). He mentioned specifically the lack of rule justifications and 
planning knowledge addressed in this chapter. 

In order to illustrate other meanings for the question WHY in 
MYCIN, we illustrate the rule set as a network of goals, rules, and 
hypotheses in Figure 29-3. At the top level are all of the system's goals that 
it might want to pursue to solve a problem (diagnostic and therapeutic 
decisions). Examples of goals, stated as questions to answer, are "What is 
the shape of the organism?" and "What organism is causing the meningi­
tis?" At the second level are hypotheses or possible choices for each of the 
goals. Examples of hypotheses are "The organism is a rod." and "E. coli is 
causing the meningitis." At the third level are the rules that support each 
hypothesis. At the fourth level appear the premises of these rules, specific 
hypotheses that must be believed for the rule to apply. For example, for 
Rule 543 to apply (shown in Figure 29-1) it must be the case that the 
infection is meningitis, that the meningitis was caused by bacteria, that the 
patient is receiving steroids, and so on. 

A key aspect of MYCIN's interpreter is that, when confronted with a 
hypothesis in a rule premise that it needs to confirm, it considers all related 
hypotheses by pursuing the more general goal. For example, attempting 
to apply Rule 543, the program will consider all rules that conclude about 
the infection, rather than just those that conclude that the infection is 
meningitis. Similarly, it will consider all rules that conclude about the kind 
of meningitis (viral, fungal, TB, or bacterial), rather than just those that 
hypothesize that the meningitis is bacterial. 2 These new goals deriving 
from rules can now be seen conceptually as level 1 goals, and the process 
recurs. 

The links in Figure 29-3 and their ordering are points of flexibility in 
the rule representation. For example, the author of a rule defines each 
goal and its specific hypotheses (levels 1 and 2 and 4 and 5). Less trivially, 
it is the author's choice to define rules that link hypotheses to one another. 
For example, rules on level 3 link levels 2 and 4. We call the rationale 
behind this link the justification of the rule. GUIDON cannot teach rule 
justifications because they are not represented in MYCIN. Section 29.3 
examines the nature of rule justifications and how a tutoring system can 
provide them. 

2This is not inefficient, given the program's exhaustive search strategy and the fact that the 
other hypotheses will be referenced by other rules. Note also that some hypotheses, such as 
"the patient is receiving steroids," are not generalized but are represented as goals directly. 
Whether or not a hypothesis is represented as a yes/no parameter or as a "value" of a multi­
valued parameter (such as "kind of meningitis") is a decision of the author of the rule, deriving 
from a pattern of hypotheses that he or she wishes to collapse for clarity into a more general 
goal. By this process of abstraction, a single multi-valued parameter dealing with kinds of 
surgery would replace individual yes/no parameters that specified "cardiac surgery," "neu­
rosurgery," etc. These organizational decisions have no bearing on system performance, so 
the knowledge base is somewhat inconsistent in how these choices are made. 
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•• DID YOU CONSIDER WHETHER THE PATIENT WAS RECEIVING STEROIDS? 

RULE543 could have used: 
whether J.Smith has received corticosteroids. 

Clause 4 of RULE543 "the pafient has received corticosteroids" was already known to be false. 

•• HOW DID YOU KNOW THAT THE PATIEl\IT HAD NOT RECEIVED STEROIDS? 

RULE395 was used to conclude that J.Smith has not received corticosteroids. 
The last question asked before the conclusion was made was 23. 

•• WHAT WAS QUESTION 23? 

Question 23 was asked in order to find out whether J.Smith is a compromised host 
in an effort to execute RULE343. 

FIGURE 29-2 Excerpt from a question/answer session. (User 
input appears in boldface capitals.) 

Next, the author's ordering of hypotheses in a rule's premise will affect 
the order in which goals are pursued (level 5). The rationale for this choice 
again lies outside of the rule network. Thus the program cannot explain 
why it pursues meningitis (goal 5.1 in Figure 29-1) before determining that 
the infection is bacterial (goal 5.3). Section 29.4 examines how this ordering 
constitutes a strategy and how it can be made explicit. 

The order in which rules for a goal are tried (level 3) also affects the 
order in which hypotheses (and hence subgoals) are pursued (level 5). For 
example, Rule 535 considers whether the patient is an alcoholic; so if this 
rule is tried before Rule 543, alcoholism will be considered before steroids. 
As these goals cause questions to be asked of the user, it is evident that the 
ordering of questions is also determined by the ordering of rules as well 
as by the ordering of clauses in the premise of a rule. 

Here there is no implicit author rationale, for rule order lies outside 
of the author's choice; it is fixed, and determined only by the order in 
which rules were entered into the system. As pointed out above, MYCIN 
does not decide to pursue the hypothesis "bacterial meningitis" before "viral 
meningitis"-it simply picks up the bag of rules that make some conclusion 
about "kind of meningitis" and tries them in numeric order. Hence rule 
order is the answer to the question "Why is one hypothesis considered 
before another?" And rule order is often the answer to "Why is one ques­
tion asked before another?" Focusing on a hypothesis and choosing a ques­
tion to confirm a hypothesis are not necessarily arbitrary in human rea­
soning. This raises serious questions about using MYCIN for interpreting 
a student's behavior and teaching him or her how to reason, as discussed 
in Section 29.4.3 

3Meta-rules could have been used for ordering rules, as described in Chapter 28. The present 
chapter is a rethinking of the whole question. 
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To summarize, we have used a rule network as a device for illustrating 
aspects of MYCIN's behavior that it cannot explain. We are especially in­
terested in making explicit the knowledge that lies behind the behavior 
that is not arbitrary but that cannot be explained because it is implicit in 
rule design. To do this, we will need some sort of framework for charac­
terizing the knowledge involved, since the rule link itself is not sufficient. 
An epistemological framework for understanding MYCIN's rules is pre­
sented in the next section. 

29.2 An Epistemological Framework for 
Rule-Based Systems 

The framework presented in this section stems from an extensive study of 
MYCIN's rules. It is the basic framework that we have used for under­
standing physicians' explanations of their reasoning, as well as being a 
foundation for re-representing the knowledge in MYCIN's rules. As an 
illustration, we will consider in detail the steroids rule shown again in 
Figure 29-4. 4 

RULE543 

IF: 1) The infection which requires therapy is meningitis, 
2) Only circumstantial evidence is available for this case, 
3) The type of the infection is bacterial, 
4) The patient is receiving corticosteroids, 

THEN: There is evidence that the organisms which might be causing the infection are 
e.coli (.4), klebsiella-pneumoniae (.2), or pseudomonas-aeruginosa (.1) 

FIGURE 29-4 The steroids rule. 

Figure 29-5 shows how this diagnostic heuristic is justified and incor­
porated in a problem-solving approach by relating it to strategic, structural, 
and support knowledge. Recalling Section 29.1, we use the term strategy to 
refer to a plan by which goals and hypotheses are ordered in problem 
solving. A decision to determine "cause of the infection" before "therapy 
to administer" is a strategic decision. Similarly, it is a strategic decision to 
pursue the hypothesis "E. coli is causing meningitis" before "Cryptococcus is 
causing meningitis." And recalling an earlier example, deliberately decid­
ing to ask the user about steroids before alcoholism would be a strategic 
decision. These decisions all lie above the plane of goals and hypotheses, 

·1The English form of rules stated in this paper has been simplified for readability. Sometimes 
clauses are omitted. Medical examples are for purposes of illustration only. 
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FIGURE 29-5 Augmenting a knowledge source with three 
kinds of meta-level knowledge: knowledge for indexing, justi­
fying, and invoking a MYCIN rule. 

and as discussed later, they can often be stated in domain-independent 
terms, e.g., "consider differential-broadening factors." 

In order to make contact with the knowledge of the domain, a level 
of structural knowledge is necessary. Structural knowledge consists of abstrac­
tions that are used to index the domain knowledge. For example, one can 
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classify causes of disease into common and unusual causes, for example, 
of bacterial meningitis. These concepts provide a handle by which a strategy 
can be applied, a means of referencing the domain-specific knowledge. For 
example, a strategy might specify considering common causes of a disease; 
the structural knowledge about bacterial meningitis allows this strategy to 
be instantiated in that context. This conception of structural knowledge 
follows directly from Davis' technique of content-directed invocation of knowl­
edge sources (see Chapter 28). A handle is a means of indirect reference 
and is the key to abstracting reasoning in domain-independent terms. The 
discussion here elaborates on the nature of handles and their role in the 
explanation of reasoning. 

The structural knowledge we will be considering is used to index two 
kinds of hypotheses: problem features, which describe the problem at hand 
(for example, whether or not the patient is receiving steroids is a problem 
feature); and diagnoses, which characterize the cause of the observed prob­
lem features. For example, acute meningitis is a diagnosis. In general, 
problem features appear in the premises of diagnostic rules, and diagnoses 
appear in the conclusions. Thus organizations of problem features and 
diagnoses provide two ways of indexing rule associations: one can use a 
strategy that brings certain diagnoses to mind and consider rules that sup­
port those hypotheses; or one can use a strategy that brings certain prob­
lem features to mind, gather that information, and draw conclusions (apply 
rules) in a data-directed way. 

Figure 29-5 shows how a rule model, or generalized rule, 5 as a form of 
structural knowledge, enables either data-directed consideration of the ste­
roids rule or hypothesis-directed consideration. Illustrated are partial hier­
archies of problem features (compromised host factors) and diagnoses 
(kinds of infections, meningitis, etc.)-typical forms of structural knowl­
edge. The specific organisms of the steroids rule are replaced by the set 
"gram-negative rods," a key hierarchical concept we use for understanding 
this rule. 

Finally, the justification of the steroids rule, a link between the problem 
feature hypothesis "patient is receiving steroids" and the diagnostic hy­
pothesis "gram-negative rod organisms are causing acute bacterial infec­
tious meningitis," is based on a causal argument about steroids impairing 
the body's ability to control organisms that normally reside in the body. 
While this support knowledge is characteristically low-level or narrow in con­
trast with the strategical justification for considering compromised host 
risk factors, it still makes interesting contact with structural terms, such as 
the mention of Enterobacteriaceae, which are kinds of gram-negative rod 
organisms. In the next section, we will consider the nature of rule justifi­
cations in more detail, illustrating how structural knowledge enables us to 
make sense of a rule by tying it to the underlying causal process. -

5Davis' rule models (Chapter 28), generated automatically, capture patterns, but they do not 
restate rules more abstractly as we intend here. 
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29.3 Explaining a Rule 

Here we consider the logical bases for rules: what kinds of arguments 
justify the rules, and what is their relation to a mechanistic model of the 
domain? We use the terms "explain" and ''.justify" synonymously, although 
the sense of "making clear what is not understood" (explain) is intended 
more than "vindicating, showing to be right or lawful" Uustify). 

29.3.1 Different Kinds of Justifications 

There are four kinds of justifications for MYCIN's rules: identification, 
cause, world fact, and domain fact. In order to explain a rule, it is first 
necessary to know what kind of justification it is based on. 

1. Rules that use identifying properties of an object to classify it are called 
identification rules. Most of MYCIN's rules that use laboratory observa­
tions of an unknown are like this: "If the organism is a gram-negative, 
anaerobic rod, its genus may be bacteroides (.6)." Thus an identification 
rule is based on the properties of a class. 

2. Rules whose premise and action are related by a causal argument are 
called causal rules. The causality can go in either direction in MYCIN 
rules: "symptom caused by disease" or, more commonly, "prior problem 
causes disease." Szolovits and Pauker ( 1978) suggest that it is possible 
to subdivide causal rules according to the scientific understanding of 
the causal link: 

a. empirical association (a correlation for which the process is not under­
stood), 

b. complication (direction of causality is known, but the conditions of the 
process are not understood), and 

c. mechanism (process is well modeled). 
Most of MYCIN's causal rules represent medical complications that are 
not easily expressed as anatomical relations and physiological processes. 
The certainty factors in MYCIN's causal rules generally represent a 
mixture of probabilistic and cost/benefit judgment. Rather than simply 
encoding the strength of association between symptom and cause, a 
certainty factor also captures how important it is that a diagnosis be 
considered in therapy selection. 

3. Rules that are based on empirical, commonsense knowledge about the 
world are called world fact rules. An example is "If the patient is male, 
then the patient is not pregnant." Other examples are based on social 
patterns of behavior, such as the fact that a young male might be a 
military recruit and thus be living in a crowded environment where 
disease spreads readily. 
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4. Domain fact rules link hypotheses on the basis of domain definitions. An 
example is "If a drug was administered orally and it is poorly absorbed 
in the GI tract, then the drug was not administered adequately." By 
definition, to be administered adequately a drug must be present in the 
body at high enough dosage levels. By using domain fact rules, the 
program can relate problem features to one another, reducing the 
amount of information it has to request from the user. 

In summary, a rule link captures class properties, social and domain 
facts, and probabilistic and cost/benefit judgments. When a definition, 
property, or world fact is involved, simply saying this provides a reasonable 
explanation. But causal rules, with their connection to an underlying pro­
cess of disease, require much more, so we will concentrate on them. 

29.3.2 Levels of Explanation-What's Not in a Rule? 

In this section we consider the problem of justifying a causal rule, the 
tetracycline rule: 

"If the patient is less than 8 years old, don't prescribe tetracycline." 

This rule simply states one of the things that MYCIN needs to know to 
properly prescribe drugs for youngsters. The rule does not mention the 
underlying causal process (chelation, or drug deposition in developing 
bones) and the social ramifications (blackened permanent teeth) on which 
it is based. From this example, it should be clear that the justifications of 
MYCIN's rules lie outside of the rule base. In other words, the record of 
inference steps that ties premise to action has been left out. A few questions 
need to be raised here: Did the expert really leave out steps of reasoning? 
What is a justification for? And what is a good justification? 

Frequently, we refer to rules like MYCIN's as "compiled knowledge." 
However, when we ask physicians to justify rules that they believe and 
follow, they very often can't explain why the rules are correct. Or their 
rationalizations are so slow in coming and so tentative that it is clear they 
are not articulating reasoning steps that are consciously followed. Leaps 
from data to conclusion are justified because the intermediate steps (like 
the process of chelation and the social ramifications) generally remain the 
same from problem to problem. There is no need to step through this 
knowledge-to express it conditionally in rules. Thus, for the most part, 
MYCIN's rules are not compiled in the sense that they represent a delib­
erate composition of reasoning steps by the rule authors. They are com­
piled in the sense that they are optimizations that leave out unnecessary 
steps-evolved patterns of reasoning that cope with the demands of or­
dinary problems. 

If an expert does not think about the reasoning steps that justify a 
rule, why does a student need to be told about them? One simple reason 
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tetracycline in youngster 

---+ chelation of the drug in growing bones 

---+ teeth discoloration 

---+ undesirable body change 

---+ don't administer tetracycline 

FIGURE 29-6 Causal knowledge underlying the -tetracycline 
rule. 

is so the student can remember the rule. A justification can even serve as 
memory aid (mnemonic) without being an accurate description of the un­
derlying phenomena. For example, medical students have long been told 
to think in terms of "bacteria eating glucose" from which they can remem­
ber that low CSF (cerebrospinal fluid) glucose is a sign of a bacterial men­
ingitis (as opposed to fungal or viral meningitis). The interpretative rule 
is learned by analogy to a familiar association (glucose is a food, and bac­
teria are analogous to larger organisms that eat food). This explanation 
has been discredited by biological research, but it is still a useful mnemonic. 

Given that an accurate causal argument is usually expected, how is a 
satisfying explanation constructed? To see the difficulty here, observe that, 
in expanding a rule, there is seemingly no limit to the details that might 
be included. Imagine expanding the tetracycline rule by introducing three 
intermediate concepts as shown in Figure 29-6. The choice of intermediate 
concepts (the grain size of rules) is arbitrary, of course. For example, there 
is no mention of how the chelation occurs. What are the conditions? What 
molecules or ions are involved? There are arbitrarily many levels of detail 
in a causal explanation. To explain a rule, we not only need to know the 
intermediate steps, we also need to decide which steps in the reasoning 
need to be explained. Purpose (how deep an understanding is desirable) 
and prior knowledge are obviously important. 

Conceptually, the support knowledge for a causal rule is a tree of rules, 
where each node is a reasoning step that can theoretically be justified in 
terms of finer-grained steps. The important thing to remember is that 
MYCIN is a flat system of rules. It can only state its immediate reasoning 
steps and cannot explain them on any level of detail. 

29.3.3 Problem Features, the Hypothesis Taxonomy, 
and Rule Generalizations 

A tree of rules seems unwieldy. Surely most teachers cannot expand on 
every reasoning step down to the level of the most detailed physical knowl­
edge known. The explanation tree for the tetracycline rule, for example, 
quickly gets into chemical bonding theory. Explaining a rule (or under-
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FIGURE 29-7 Problem feature hierarchy for contraindication 
rules. 

standing one) does not require that every detail of causality be considered. 
Instead, a relatively high level of explanation is generally satisfying-most 
readers probably feel satisfied by the explanation that tetracycline causes 
teeth discoloration. This level of satisfaction has something to do with the 
student's prior knowledge. 

For an explanation to be satisfying, it must make contact with already 
known concepts. We can characterize explanations by studying the kinds 
of intermediate concepts they use. For example, it is significant that most 
contraindication rules, reasons for not giving antibiotics, refer to "unde­
sirable body changes." This pattern is illustrated hierarchically in Figure 
29-7. The first level gives types of undesirable changes; the second level 
gives causes of these types of changes. Notice that this figure contains the 
last step of the expanded tetracycline rule and a leap from tetracycline to 
this step. The pattern connecting drugs to the idea of undesirable body 
changes forms the basis of an expectation for explanations: we will be 
satisfied if a particular explanation connects to this pattern. In other words, 
given an effect that we can interpret as an undesirable body change, we 
will understand why a drug causing that effect should not be given. We 
might want to know how the effect occurs, but here again, we will rest easy 
on islands of familiarity, just as we don't feel compelled to ask why people 
don't want black teeth. 

To summarize, key concepts in rule explanations are abstractions that 
connect to a pattern of reasoning we have encountered before. This sug­
gests that one way to explain a rule, to make contact with a familiar rea­
soning pattern, is to generalize the rule. We can see this more clearly from 
the viewpoint of diagnosis, which makes rich use of hierarchical abstrac­
tions. 

Consider the following fragment from a rule we call the leukopenia 
rule: · 

"If a complete blood count is available and the white blood 
count is less than 2.5 units, then the following bacteria might be 
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3 

2 
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causing infection: e.coli (.75), pseudomonas-aeruginosa (.5), 
klebsiella-pneumoniae (.5)." 

How can we explain this rule? First, we generalize the rule, as shown 
in Figure 29-8. The premise concepts in the rules on the left-hand side of 
levels 1 through 3 are problem features (cf. Section 29.2), organized hier­
archically by different kinds of relations. Generally, a physician speaks 
loosely about the connections-referring to leukopenia both as a cause of 
immunosuppression as well as a kind of immunosuppression-probably 
because the various causes are thought of hierarchically. 

Compromised 
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FIGURE 29-8 Generalizations of the leukopenia rule. 

The relationships among CBC, WBC, and leukopenia reveal some 
interesting facts about how MYCIN's rules are constructed. WBC is one 
component of a complete blood count (CBC). If the CBC is not available, 
it makes no sense to ask for any of the components. Thus the CBC clause 
in the leukopenia rule is an example of a screening clause. Another example 
of a screening clause is the age clause in 
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"If ... age is greater than 17 and the patient is an alcoholic, 
then ... " 

Here the relation is a social fact; if the patient is not an adult, we assume 
that he is not an alcoholic. The third relation we observe is a subtype, as 
m 

"If ... the patient has undergone surgery and the patient has 
undergone neurosurgery, then ... " 

All screening relations can be expressed as rules, and some are, such as 

"If the patient has not undergone surgery, then the patient 
has not undergone cardiac surgery." 

(stated negatively, as is procedurally useful). The philosophy behind MY­
CIN's rule set is inconsistent in this respect; to be economical and to make 
the relationship between clauses explicit, all screening clauses should be 
expressed as world fact rules or hierarchies of parameters. Indeed, the 
age/alcoholic relation suggests that some of the relations are not defini­
tional and should be modified by certainty factors. 

Viewed as a semantic network representation, MYCIN's rules are links 
without labels. Even when rules explicitly link problem features, the kind 
of relation is not represented because MYCIN's rule language does not allow 
the link to be labeled. For example, a rule could state "If no CBC was 
taken, then WBC is not available," but MYCIN allows no way of saying that 
WBC is a component of CBC. Finally, when one problem feature serves as 
a redefinition of another, such as the relation between leukopenia and 
WBC, the more abstract problem feature tends to be left out altogether. 
"Leukopenia" is not a MYCIN parameter; the rule mentions WBC directly, 
another manifestation of knowledge compilation. For purposes of explanation, 
we argue that problem features, their relations, and the nature of the link should 
be explicit. 

Returning to Figure 29-8, the action concepts, or diagnostic hypotheses 
shown on the right-hand side, are part of a large hierarchy of causes that 
the problem solver will cite in the final diagnosis. The links in this diagnosis 
space generally specify refinement of cause, although in our example they 
strictly designate subclasses. Generally, problem features are abstractions 
of patient states indicated by the observable symptoms, while the diagnosis 
space is made up of abstractions of causal processes that produce the symp­
toms. Paralleling our observations about rule problem features, we note 
that the relations among diagnostic hypotheses are not represented in MY­
CIN-nowhere in the knowledge base does it explicitly state that E. coli is 
a bacterium. 

Now suppose that the knowledge in Figure 29-8 were available, how 
would this help us to explain the leukopenia rule? The idea is that we first 
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restate the rule on a higher level. We point out that a low WBC indicates 
leukopenia, which is a form of immunosuppres!'>ion, thus tying the rule to 
the familiar pattern that implicates gram-negative rods and Enterobacteri­
aceae. This is directly analogous to pointing out that tetracycline causes 
teeth discoloration, which is a form of undesirable body change, suggesting 
that the drug should not be given. 

By re-representing Figure 29-8 linearly, we see that it is an expansion 
of the original rule: 

WBC < 2.5---> leukopenia 

-> immunosuppression 

---> compromised host 

--->infection by organisms found in body 

---> gram-negative rods and Enterobacteriaceae 

---> E. coli, Pseudomonas, and Klebsiella 

The expansion marches up the problem feature hierarchy and then back 
down the hierarchy of diagnoses. The links of this expansion involve caus­
ality composed with identification, subtype, and subset relations. By the 
hierarchical relationships, a rule on one level "explains" the rule below it. 
For example, the rule on level 3 provides the detail that links immuno­
suppression to the gram-negative rods. By generalizing, we have made a 
connection to familiar concepts. 

Tabular rules provide an interesting special case. The CSF protein rule 
shown in Figure 29-9 appears to be quite formidable. Graphing this rule 
as shown in Figure 29- l 0, we find a relatively simple relation that an expert 
states as "If the protein value is less than 40, I think of viral infections; if 
it is more than 100, I think of bacterial, fungal, or TB." This is the first 
level of generalization, the principle that is implicit in the rule. The second 
level elicited from the expert is "If the protein value is low, I think of an 

RULE500 (The CSF Protein Rule) 

IF: 1) The infection which requires therapy is meningitis, 
2) A lumbar puncture has been performed on the patient, and 
3) The CSF protein is known 

THEN: The type of the infection is as follows: 
If the CSF protein is: 
a) less than 41 then: not bacterial (.5), viral (. 7), not fungal (.6), not tb (.5); 
b) between 41 and 100 then: bacterial (.1), viral (.4), fungal (.1); 
c) between 100 and 200 then: bacterial (.3), fungal (.3), tb (.3); 
d) between 200 and 300 then: bacterial (.4), not viral (.5), fungal (.4), tb (.4); 
e) greater or equal to 300 then: bacterial (.4), not viral (.6), fungal (.4), tb (.4); 

FIGURE 29-9 The CSF protein rule. 
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acute process; if it is high, I think of a severe or long-term process."6 Then, 
at the highest level, the expert states, "An infection in the meninges stim­
ulates protein production." So in moving up abstraction hierarchies on both 
the premise and action sides of the rule (acute and chronic are subtypes 
of infection), we arrive at a mnemonic, just like "bacteria eat glucose." 
Abstractions of both the observations and the conclusions are important 
for understanding the rule. 

We might be surprised that explanations of rules provide levels of detail 
by referring to more general concepts. We are accustomed to the fact that 
principled theoretical explanations of, say, chemical phenomena, refer to 
atomic properties, finer-grained levels of causality. Why should a rule ex­
planation refer to concepts like "compromised host" or "organisms nor­
mally found in the body"? The reason is that in trying to understand a 
rule like the steroids rule, we are first trying to relate it to our understand­
ing of what an infection is at a high, almost metaphorical level. In fact, 
there are lower-level "molecular" details of the mechanism that could be 
explained, for example, how steroids actually change the immunological 
system. But our initial focus as understanders is at the top level-to link 
the problem feature (steroids) to the global process of meningitis infection. 
We ask, "What makes it happen? What role do steroids play in the infec­
tious meningitis process?" 

The concept of "compromised host" is a label for a poorly understood 
causal pattern that has value because we can relate it to our understanding 
of the infection process. It enables us to relate the steroids or WBC evi­
dence to the familiar metaphor in which infection is a war that is fought 
by the body against invading organisms. 

"If a patient is compromised, his or her defenses are down; he or she 
is vulnerable to attack." 

In general, causal rules argue that some kind of process has occurred. We 
expect a top-level explanation of a causal rule to relate the premise of the 
rule to our most general idea of the process being explained. This provides 
a constraint for how the rule should be generalized, the subject of the next 
section. 

29.3.4 Tying an Explanation to a Causal Model 

MYCIN's diagnostic rules are arguments that a process has occurred in a 
particular way. There are many kinds of infections, which have different 
characteristics, but bacterial infections tend to follow the same script: entry 
of an organism into the body, passage of the organism to the site of infec-

6Bacterial meningitis is a severe, acute (short-term) problem, while fungal and TB meningitis 
are problems of long (chronic) duration. 
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tion, reproduction of the organism, and causation of observable symptoms. 
An explanation of a rule that concludes that an organism is causing an 
infection must demonstrate that this generic process has occurred. In short, 
this is the level of abstraction that the explanation must connect to. 

A program was written to demonstrate this idea. The data parameters 
in MYCIN's 40 diagnostic rules for bacterial meningitis are restated as one 
or more of the steps of the infectious process script. This restatement is 
then printed as the explanation of the rule. For example, the program's 
explanation of the rule linking alcoholism to Diplococcus meningitis is: 

The fact that the patient is an alcoholic allows access of organisms from 
the throat and mouth to lungs (by reaspiration of secretions). 

The fact that the patient is an alcoholic means that the patient is a 
compromised host, and so susceptible to infection. 

Words in italics in the first sentence constitute the pattern of "portal and 
passage." We find that the premise of a rule generally supplies evidence 
for only a single step of the causal process; the other steps must be inferred 
by default. For example, the alcoholic rule argues for passage of the Diplo­
coccus to the lungs. The person reading this explanation must know that 
Diplococcus is normally found in the mouth and throat of any person and 
that it proceeds from the lungs to the meninges by the blood. The organism 
finds conditions favorable for growth because the patient is compromised, 
as stated in the explanation. In contrast, the leukopenia rule only argues 
for the patient being a compromised host, so the organisms are the default 
organisms, those already in the body, which can proceed to the site of 
infection. 7 

These explanations say which steps are enabled by the data. They place 
the patient on the path of an infection, so to speak, and leave it to the 
understander to fill in the other steps with knowledge of how the body 
normally works. This is why physicians generally refer to the premise data 
as "predisposing factors." To be understood, a rule must be related to the 
prior steps in a causal process, the general concepts that explain many 
rules. 

The process of explanation is a bit more complicated in that causal 
relations may exist between clauses in the rule. We have already seen that 
one clause may screen another on the basis of world facts, multicomponent 
test relations, and the subtype relation. The program described here knows 
these relations and "subtracts off" screening clauses from the rule. More­
over, as discussed in Section 29.4, some clauses describe the context in 
which the rule applies. These, too, are made explicit for the explanation 
program and subtracted off. In the vast majority of MYCIN rules, only 
one premise clause remains, and this is related to the process of infection 
in the way described above. 

7 As physicians would expect, alcoholism also causes infection by gram-negative rods and 
Enterobacteriaceae. We have omitted these for simplicity. However, this example illustrates that 
a MYCIN rule can have multiple conclusions reached by different causal paths. 
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When more than one clause remains after the screening and contex­
tual clauses have been removed, our study shows that a causal connection 
exists between the remaining clauses. We can always isolate one piece of 
evidence that the rule is about (for example, WBC in the leukopenia rule); 
we call this the key factor of the rule. We call the remaining clauses restriction 
clauses. 8 There are three kinds of relations between a restriction clause and 
a key factor: 

• A confirmed diagnosis explains a symptom. For example, a petechial rash 
would normally be evidence for Neisseria, but if the patient has leukemia, 
it may be the disease causing the rash. Therefore, the rule states, "If the 
patient has a petechial rash (the key factor) and does not have leukemia 
{the restriction clause), then Neisseria may be causing the meningitis." 

• Two symptoms in combination suggest a different diagnosis than one taken alone. 
For example, when both purpuric and petechial rashes occur, then a 
virus is a more likely cause than Neisseria. Therefore, the petechial rule 
also includes the restriction clause "the patient does not have a purpuric 
rash." 

• Weak circumstantial evidence is made irrelevant by strong circumstantial evi­
dence. For example, a head injury so strongly predisposes a patient to 
infection by skin organisms that the age of the patient, a weak circum­
stantial factor, is made irrelevant. 

In summary, to explain a causal rule, a teacher must know the purposes 
of the clauses and connect the rule to abstractions in the relevant process 
script. 

29.3.5 The Relation of Medical Heuristics to 
Principles 

It might be argued that we must go to so much trouble to explain MYCIN's 
rules because they are written on the wrong level. Now that we have a 
"theory" for which intermediate parameters to include ("portal," "pathway," 
etc.), why don't we simply rewrite the rules? 

The medical knowledge we are trying to codify is really on two levels 
of detail: (1) principles or generalizations, and (2) empirical details or spe­
cializations. MYCIN's rules are empirical. Cleaning them up by represent­
ing problem feature relationships explicitly would give us the same set of 
rules at a higher level. But what would happen if process concepts were 
incorporated in completely new reasoning steps, for example, if the rule 
set related problem features to hypotheses about the pathway the organism 
took through the body? It turns out that reasoning backwards in terms of 

8 Restriction clauses are easy to detect when examining the rule set because they are usually 
stated negatively. 
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a causal model is not always appropriate. As we discovered when explaining 
the rules, not all of the causal steps of the process can be directly con­
firmed; we can only assume that they have occurred. For example, rather 
than providing diagnostic clues, the concept of "portal of entry and pas­
sage" is very often deduced from the diagnosis itself. 

According to this view, principles are good for summarizing argu­
ments, and good to fall back on when you've lost grasp on the problem, 
but they don't drive the process of medical reasoning. Specifically, (1) if a 
symptom needs to be explained (is highly unusual), we ask what could cause it 
("Strep-viridans? It is normally found in the mouth. How did it get to the 
heart? Has the patient had dental work recently?"); (2) to ''prove" that the 
diagnosis is correct (after it has been constructed), we use a causal argument ("He 
has pneumonia; the bacteria obviously got into the blood from the lungs."). 
Thus causal knowledge can be used to provide feedback that everything 
fits. 

It may be difficult or impossible to expect a set of diagnostic rules both 
to serve as concise, "clincher" methods for efficiently getting to the right 
data and still to represent a model of disease. Put another way, a student 
may need the model if he or she is to understand new associations between 
disease and manifestations, but will be an inefficient problem solver if he 
or she always attempts to convert that model directly to a subgoal structure 
for solving ordinary problems. Szolovits and Pauker ( 1978) point out that 
these "first principles" used by a student are "compiled out" of an expert's 
reasoning. 

In meningitis diagnosis, the problem is to manage a broad, if not 
incoherent, hypothesis set, rather than to pursue a single causal path. The 
underlying theory recedes to the background, and the expert tends to 
approach the problem simply in terms of weak associations between ob­
served data and bottom-line conclusions. This may have promoted a rule­
writing style that discouraged introducing intermediate concepts such as 
leukopenia, even where they might have been appropriate. 

29.4 Teaching Problem-Solving Strategy 

A strategy is an approach for solving a problem, a plan for ordering meth­
ods so that a goal is reached. It is well accepted that strategic knowledge 
must be conveyed in teaching diagnostic problem solving. As Brown and 
Goldstein ( 1977) say: 

Without explicit awareness of the largely tacit planning and strategic 
knowledge inherent in each domain, it is difficult for a person to "make sense 
of" many sequences of behavior as described by a story, a set of instructions, 
a problem solution, a complex system, etc. ... The teacher should articulate 
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for that domain the higher-order planning knowledge and strategic knowl­
edge for formulating and revising hypotheses about what something means. 

Strategic knowledge is general, much like the principles of mechanism we 
discussed earlier; both relate to processes that have structure. Thus it is 
not sufficient to show a student only MYCIN's solution, the swface structure 
of the program; we must explain why the rules are invoked in a particular 
order. 

Here it is clear how teaching how to do something differs from merely 
explaining how something was done: we want the student to be able to 
replicate what he or she observes, to solve similar problems independently. 
This is why mnemonics are useful when justifying a rule. Regarding strat­
egy, we must again address human foibles and preference: we must teach 
a strategy that a human can follow. 

The main points of this section are: 

• MYCIN's strategy is different from a physician's strategy; 

• MYCIN's strategic knowledge is embedded in the rules, indistinguishable 
from screening and problem feature clauses; 

• A domain-independent representation of strategy is useful for teaching 
and for purposes of economy. 

29.4.1 Surface and Deep Structure of MYCIN 

A person ~rying to understand a MYCIN consultation observes that pieces 
of data are requested by the program as shown in Figure 29-11. Concep­
tually, these questions are terminals hanging below an AND node in a 
subgoal tree, as shown in Figure 29-12. Following the terminology of 
Brown and Goldstein ( 1977), a rule node is a method for achieving a goal 
(e.g., "organisms that might be causing the infection") by asking questions 
or pursuing a set of subgoals to achieve. Therefore, the tree of rules and 
subgoals is part of a deep-structured trace that they postulate is constructed 
when the understander makes sense of the surface problem solution. 

It is not sufficient for a student to know all of the possible methods 
he or she can bring to bear on a problem. He or she generally needs a 
plan for solving the problem, that is, needs schemata for kinds of problems 
that can be tackled using different approaches or lines of reasoning. A plan 
sets up a rational sequence of methods that might get you closer to the 
solution, but without guarantees. 

The hypothetico-deductive strategy used in medical problem solving 
constitutes a plan for focusing on hypotheses and selecting confirmatory 
questions (Elstein et al., 1978). However, the methods selected in Figure 
29-12 (Rules 511 through 578) have been applied in a fixed, arbitrary 
order-not planned by the rule author. MYCIN has no "deep structure" 
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31) Has Pt538 ever undergone any type of surgery? 
**YES 
32) Does Pt538 have a history of NEUROSURGERY? 
**NO 
33) Does Pt538 live in a crowded environment? 
**NO 
34) Do you suspect recent alcoholic history in Pt538? 
**NO 
35) Is meningitis a hospital-acquired infection? 
**YES 
36) Is Pt538's clinical history consistent with EPIGLOTTITIS? 
**NO 
37) Is Pt538's clinical history consistent with OTITIS-MEDIA? 
**NO 
38) Has Pt538 ever undergone splenectomy? 
**NO 
39) Is Pt538 a burn patient? 
**YES 

FIGURE 29-11 Excerpt from a MYCIN consultation showing 
requests for relevant data. 

HYPOTHESIS METHOD 

E.COLI (Rule511) 

N.MENINGITIDIS (Rule533) 

(Rule536) 

PNEUMOCOCCUS -[ 

H.INFLUENZA 

PSEUDOMONAS 

(Rule559) 

-{ 

(Rule545) 

(Rule395) 

----(Rule578) 

QUESTION 

032 NEUROSURGERY 

033CROWD 

034 ALCOHOLIC 

038 SPLENECTOMY 

035 NOSOCOMIAL 

036 EPIGLOTTITIS 

-[ 
037 OTITIS-MEDIA 

Q39BURN 

FIGURE 29-12 Portion of the AND/OR tree corresponding to 
the questions shown in Figure 29-11 (reorganized according to 
the hypothesis each rule supports). 



554 Extensions to Rules for Explanation and Tutoring 

RULE092 (The Goal Rule) 

IF: 1) Gather information about cultures taken from the patient and therapy he is receiving, 
2) Determine if the organisms growing on cultures require therapy 
3) Consider circumstantial evidence for additional organisms that therapy should cover 

THEN: Determine the best therapy recommendation 

RULE535 (The Alcohollc Rule) 

IF: 1) The infection which requires therapy is meningitis, 
2) Only circumstantial evidence is available for this case, 
3) The type of meningitis is bacterial, 
4) The age of the patient is greater than 17 years, and 
5) The patient is an alcoholic, 

THEN: There is evidence that the organisms which might be causing the infection are 
diplococcus-pneumoniae (.3) or e.coli (.2) 

FIGURE 29-13 The goal rule and the alcoholic rule. 

plan at this level; the program is simply applying rules (methods) exhaus­
tively. This lack of similarity to human reasoning severely limits the use­
fulness of the system for teaching problem solving. 

However, MYCIN does have a problem-solving strategy above the level 
of rule application, namely the control knowledge that causes it to pursue 
a goal at a certain point in the diagnosis. We can see this by examining 
how rules interact in backward chaining. Figure 29-13 shows the goal rule 
and a rule that it indirectly invokes. In order to evaluate the third clause 
of the goal rule, MYCIN tries each of the COVERFOR rules; the alcoholic 
rule is one of these (see also Figure 29-12). We call the goal rule a task rule 
to distinguish it from inference rules. Clause order counts here; this is 
more a procedure than a logical conjunction. The first three clauses of the 
alcoholic rule, the context clauses, also control the order in which goals are 
pursued, just as is true for a task rule. We can represent this hidden struc­
ture of goals by a tree which we call the inference structure of the rule base 
(produced by "hanging" the rule set from the goal rule). Figure 29-14 
illustrates part of MYCIN's inference structure.9 · 10 

The program's strategy comes to light when we list these goals in the 
order in which the depth-first interpreter makes a final decision about 
them. For example, since at least one rule that concludes "significant" (goal 
4 in Figure 29-14) mentions "contaminant" (goal 3), MYCIN applies all of 
the "contaminant" rules before making a final decision about "significant." 
Analyzing the entire rule set in a similar way gives us the ordering (shown 
in Figure 29-14): 

9Some definitions of terms used in the following discussion: TREATFOR = organisms to be 
treated, based on direct laboratory observation; COVERFOR = organisms to be treated, 
based on circumstantial evidence; SIGNIFICANT = this organism merits therapeutic atten­
tion, based on the patient's degree of sickness and validity of culture results; CONTAMI­
NANT = the finding of this organism is spurious; it was probably introduced during sam­
pling from the cultured site of the body, as a blood culture might include skin organisms. 
10We leave out the goals REGIMEN and TREATFOR because they are just placeholders for 
task rules, like subroutine names. 
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REGIMEN = main goal 

/~ 
cl~~::;REATF~ C?.~ERFO~ .. 

WHAT-INF? SIGNIFICANT? IDENTITY? MENINGITIS? BACTERIAL? 
(2) (4) (5) (7) (8) 

INFECTION? CONTAMINANT? 
(1) (3) 

INFECTION? 
(6) 

FIGURE 29-14 Portion of MYCIN's inference structure. 
(Numbers give the order in which nonplaceholder goals are 
achieved by the depth-first interpreter.) 

I. Is there an infection? 

2. Is it bacteremia, cystitis, or meningitis? 

3. Are there any contaminated cultures? 

4. Are there any good cultures with significant growth? 

5. Is the organism identity known? 

6. Is there an infection? (already done in Step 1) 

7. Does the patient have meningitis? (already done in Step 2) 

8. Is it bacterial? 

9. Are there specific bacteria to cover for? 

MYCIN's diagnostic plan is in two parts, and both proceed by top­
down refinement. This demonstrates that a combination of structural 
knowledge (the taxonomy of the diagnosis space-infection, meningitis, 
bacterial, Diplococcus ... ) and strategic knowledge (traversing the taxon­
omy from the top down) is procedurally embedded in the rules. In other 
words, we could write a program that interpreted an explicit, declarative 
representation of the diagnosis taxonomy and domain-independent form 
of the strategy to bring about the same effect. 

At this level, MYCIN's diagnostic strategy is not a complete model of 
how physicians think, but it could be useful to a student. As the quote from 
Brown and Goldstein would indicate and as has been confirmed in GUI­
DON research, teachers do articulate both the structure of the problem 
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META-RULE002 

IF: 1) The infection is pelvic-abscess, and 
2) There are rules which mention in their premise enterobacteriaceae, and 
3) There are rules which mention In their premise gram-positive rods, 

THEN: There is suggestive evidence (.4) that the former should be done before the latter 

FIGURE 29-15 A MYCIN meta-rule. 

space and the nature of the search strategy to students. This means that 
we need to represent explicitly the fact that the diagnosis space is hierar­
chical and to represent strategies in a domain-independent form. If a strat­
egy is not in domain-independent form, it can be taught by examples, but 
not explained. 

29.4.2 Representing Strategic Knowledge in 
Meta-Rules 

How might we represent domain-independent strategic knowledge in a 
rule-based system? In the context of the MYCIN system, Davis pursued 
the representation of strategic knowledge by using meta-rules to order and 
prune methods (Chapter 28). These meta-rules are invoked just before the 
object-level rules are applied to achieve a goal. An example of an infectious 
disease meta-rule is shown in Figure 29-15 (see Figure 28-12 for other 
examples). Observe that this is a strategy for pursuing a goal. In particular, 
this meta-rule might be associated with the goal "identity of the organism." 
It will be invoked to order the rules for every subgoal in the search tree 
below this goal; in this simple way, the rule sets up a line of reasoning. 
This mechanism causes some goals to be pursued before others, orders 
the questions asked by the system, and hence changes the surface structure 
of the consultation. 

Although meta-rules like this can capture and implement strategic 
knowledge about a domain, they have their deficiencies. Like the perfor­
mance rules we have examined, Davis's domain-dependent examples of 
meta-rules leave out knowledge important for explanation. Not only do 
they leave out the domain-specific support knowledge that justifies the 
rules, they leave out the domain-independent strategic principles that GUI­
DON should teach. In short, meta-rules provide the mechanism for con­
trolling the use of rules, but not the domain-independent language for 
making the strategy explicit. 

The implicit strategic principle that lies behind Meta-Rule 002 is that 
common causes of a disorder should be considered first. The structural 
knowledge that ties this strategy to the object-level diagnostic rules is an 
explicit partitioning of the diagnosis space taxonomy, indicating that the 
group of organisms called Enterobacteriaceae are more likely than gram-
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positive rod organisms to cause pelvic infections. This is what we want to 
teach the student. One can imagine different common causes for different 
infection types, requiring different meta-rules. But if all meta-rules are as 
specific as Meta-Rule 002, principles will be compiled into many rules re­
dundantly and the teaching points will be lost. 

What does a domain-independent meta-rule look like, and how is it 
interfaced with the object-level rules? To explore this question, we have 
reconfigured the MYCIN rule base into a new system, called NEOMYCIN 
(Clancey and Letsinger, 1981). Briefly, meta-rules are organized hierar­
chically (again!) into tasks, such as "group and refine the hypothesis space." 
These rules manage a changing hypothesis list by applying different kinds 
of knowledge sources, as appropriate. Knowledge sources are essentially 
the object-level rules, indexed in the taxonomy of the diagnosis space by 
a domain-independent structural language. 

For example, one meta-rule for achieving the task of pursuing a hy­
pothesis is "If there are unusual causes, then pursue them." 11 Suppose that 
the current hypothesis is "bacterial meningitis." The program will use the 
structural label "unusual causes" to retrieve the nodes "gram-negative 
rods," "enterobacteriaceae," and "listeria," add them to the hypothesis list, 
and pursue them in turn. When there are no "unusual causes" indicated, 
the meta-rule simply does not apply. Pursuing gram-negative rods, the 
program will find that leukopenia is a relevant factor, but will first ask if 
the patient is a compromised host (Figure 29-8), modeling a physician's 
efficient casting of wider questions. 

Other terms in the structural language used by NEOMYCIN's domain­
independent meta-rules are 

1. process features, such as extent and location of disease; 

2. the enabling step of a causal process; 

3. subtype; 

4. cause; 

5. trigger association; 

6. problem feature screen; and structural properties of the taxonomy, such 
as sibling. 

In effect, the layer of structural knowledge allows us to separate out 
what the heuristic is from how it will be used. How domain-specific heuristics 
like MYCIN's rules should be properly integrated with procedural, stra­
tegic knowledge is an issue at the heart of the old "declarative/procedural 

11This rule appears after the rule for considering common causes, and the ordering is marked 
as strategically significant. Domain-independent meta-rules have justifications, organization, 
and strategies for using them. Their justification refers to properties of the search space and 
the processor's capabilities. 
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controversy" (Winograd, 1975). We conclude here that, for purposes of 
teaching, the hierarchies of problem features and of the diagnosis space 
should be represented explicitly, providing a useful means for indexing 
the heuristics by both premise and action. A structural language of cause, 
class, and process can connect this domain-specific knowledge to domain­
independent meta-rules, the strategy for problem solving. 

29.4.3 Self-Referencing Rules 

Self-referencing rules provide an interesting special example of how problem­
solving strategies can be embedded in MYCIN's rules. A rule is self-ref­
erencing if the goal concluded by the action is also mentioned in the prem­
ise. An example is the aerobicity rule shown in Figure 29-16. 12 

RULE086 

IF: 1) The aerobicity of the organism is not known, and 
2) The culture was obtained more than 2 days ago, 

THEN: There is evidence that the aerobicity of the organism is obfigate-aerob (.5) or facultative (.5) 

FIGURE 29-16 The aerobicity rule. 

This rule is tried only after all of the non-self-referencing rules have 
been applied. The cumulative conclusion of the non-self-referencing rules 
is held aside, then the self-referencing rules are tried, using in each rule 
the tentative conclusion. Thus the first clause of Rule 86 will be true only 
if none of the standard rules made a conclusion. The effect is to reconsider 
a tentative conclusion. When the original conclusion is changed by the self­
referencing rules, this is a form of nonmonotonic reasoning (Winograd, 
1980). We can restate MYCIN's self-referencing rules in domain-indepen­
dent terms: 

• If nothing has been observed, consider situations that have no visible manifesta­
tions. For example, the aerobicity rule: "If no organism is growing in the 
culture, it may be an organism that takes a long time to grow (obligate­
aerob and facultative organisms)." 

• The self-referencing mechanism makes it possible to state this rule with­
out requiring a long premise that is logically exclusive from the remain­
der of the rule set. 

12Aerobicity refers to whether an organism can grow in the presence of oxygen. A facultative 
organism can grow with or without oxygen; an anaerobic organism cannot grow with oxygen 
present; anCI an obligate-aerob is aerobic only in a certain stage of growth. Note that the rule 
is self-referencing in that aerobicity is mentioned in both the premise and the conclusion. 
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• If unable to make a deduction, assume the most probable situation. For 
example: "If the gram stain is unknown and the organism is a coccus, 
then assume that it is gram-positive." 

• If there is evidence for two hypotheses, A and B, that tend to be confused, then 
rule out B. For example: "If there is evidence for TB and fungal, and 
you have hard data for fungal, rule out TB." 

Like Meta-Rule 002, self-referencing rules provide a useful mechanism 
for controlling the use of knowledge, but they leave out both the domain­
dependent justification and the general, domain-independent reasoning 
strategy of which they are examples. These rules illustrate that strategy . 
involves more than a search plan; it also takes in principles for reasoning 
about evidence. It is not clear that a teacher needs to state these principles 
explicitly to a student. They tend to be either common sense or almost 
impossible to think about independently of an example. Nevertheless, they 
are yet another example of strategic knowledge that is implicit in MYCIN's 
rules. 

29.5 Implications for Modifiability and 
Performance 

MYCIN achieved good problem-solving performance even without having 
to reason about the structural, strategic, and support knowledge we have 
been considering. However, there are situations in which knowledge of 
justification and strategy allows one to be a more flexible problem solver, 
to cope with novel situations, in ways that MYCIN cannot. Knowing the 
basis of a rule allows you to know when not to apply it, or how to modify 
it for special circumstances. For example, knowing that tetracycline won't 
kill the young patient but the infection might, you may have to dismiss 
social ramifications and prescribe the drug. You can deliberately break the 
rule because you understand the assumptions underlying it. 

There will also be problems that cannot be diagnosed using MYCIN's 
rules. For example, several years ago Coccidioides meningitis strangely ap­
peared in the San Francisco Bay Area. We would say that this "violates all 
the rules." To explain what was happening, one has to reason about the 
underlying mechanisms. The organisms were traveling from the San Joa­
quin Valley to the Bay Area by "freak southeastern winds," as the news­
papers reported. The basic mechanism of disease was not violated, but this 
time the patients didn't have to travel to the Valley to come in contact with 
the disease. A human expert can understand this because he or she can fit 
the new situation to the model. Examples like these make us realize that 
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AI systems like MYCIN can only perform some of the functions of an 
expert. 

Regarding modifiability, the process of reconfiguring MYCIN's rules 
in NEOMYCIN's terms required many hours of consultation with the orig­
inal rule authors in order to unravel the rules. As shown in this paper, the 
lack of recorded principles for using the representation makes it difficult 
to interpret the purposes of clauses and rules. The strategy and overall 
design of the program have to be deduced by drawing diagrams like Figure 
29-14. Imagine the difficulty any physician new to MYCIN would have 
modifying the CSF protein table (Figure 29-9); clearly, he or she would 
first need an explanation from the program of why it is correct. 

We also need a principled representation to avoid a problem we call 
concept broadening. When intermediate problem abstractions are omitted, 
use of goals becomes generalized and weakened. This happened in MY­
CIN as the meaning of "significance" grew to include both "evidence of 
infection" and "noncontaminated cultures." As long as the rule author 
makes an association between the data and some parameter he or she wants 
to influence, it doesn't matter for correct performance that the rule is 
vague. But vague rules are difficult to understand and modify. 

A rule base is built and extended like any other program. Extensive 
documentation and a well-structured design are essential, as in any engi­
neering endeavor. The framework of knowledge types and purposes that 
we have described would constitute a "typed" rule language that could 
make it easier for an expert to organize his or her thoughts. On the other 
hand, we must realize that this meta-level analysis may impose an extra 
burden by turning the expert into a taxonomist of his or her own knowl­
edge-a task that may require considerable assistance, patience, and tools. 

29.6 Application of the Framework to Other 
Systems 

To illustrate further the idea of the strategy, structure, and support frame­
work and to demonstrate its usefulness for explaining how a program 
reasons, several knowledge-based programs are described below in terms 
of the framework. For generality, we will call inference associations such 
as MYCIN's rules knowledge sources (KS's). We will not be concerned here 
with the representational notation used in a program, whether it be frames, 
production rules, or something else. Instead, we are trying to establish an 
understanding of the knowledge contained in the system: what kinds of 
inferences are made at the KS level, how these KS's are structured explicitly 
in the system, and how this structure is used by strategies for invoking 
KS's. This is described in Table 29-1. 



TABLE 29-1 Examples of Various Types of Knowledge Structures in Several Al Systems 

System Domain KS example Strategy Structure Support 

DENDRAL Chemistry, Identification rules Aggregation heuris- Family trees of func- Molecular chemistry 
(Buchanan mass spectro- relating functional tics build superatoms tional groups (ke-
and Feigen- metry analysis groups to spectral and generate all tones, ethers, etc.) 
baum, 1978) peaks plausible interstitial 

structures 

HEARSAY II Speech un- Hypothesizing words Policy KS's control Hierarchy of inter- Grammar identifica-
(Erman et al., derstanding from syllable level hypothesizing words pretation levels with tion properties of 
1980) to generate thresh- links to KS's phonemes, syllables, 

olds (data-directed) and words 

AM Concept for- Rules to create con- Activity heuristics Hierarchy of heuris- Theory of interest-
(Lenat, 1976) mation, math- cepts and fill in facets propose tasks (prior- tics associated with ingness, chiefly based 

ematical dis- ity agenda focuses most general concept/ on generalizing and 
co very heuristics) context to which they specializing 

apply 

MOLGEN Molecular ge- Specific lab tech- Determine differ- Hierarchy of labora- Processes of molecu-
(Stefik, 1979) netics, experi- niques: input objects ences, sketch plan, tory operation types Jar biology 

ment plan- --> molecular changes refine steps (message (used by refinement 
ning and byproducts passing) design operator) 

CENTAUR Medical diag- Disease component --> Hypothesis-directed, Hierarchy of disease Disease patterns, bio-
(Aikins, 1983) nosis, pulmo- evidence for proto- top-down refinement prototypes logical processes 

nary function type (agenda) 

NEOMYCIN Medical diag- Data --> evidence for Grouping and refin- Multiple hierarchies Disease patterns, bio-
(Clancey and nosis, diseases disease process or ing list of hypotheses of etiological pro- logical processes 
Letsinger, causing neu- causal state/category (meta-rules focus cesses 
1981) rological pursuit) 

symptoms 
111 
Q> ... 
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29.6.l The Character of Structural Knowledge 

One product of this study is a characterization of different ways of struc­
turing KS's for different strategical purposes. In all cases, the effect of the 
structural knowledge is to provide a handle for separating out what the 
KS is from when it is to be applied. 13 

The different ways of structuring KS's are summarized here according 
to the processing rationale: 

• Organize KS's hierarchically by hypothesis for consistency in data-directed inter­
pretation. In DENDRAL, if a functional group is ruled out, more specific 
members of the family are not considered during forward-directed, pre­
liminary interpretation of spectral peaks. Without this organization of 
KS's, earlier versions of DENDRAL could generate a subgroup as a plau­
sible interpretation while ruling out a more general form of the 
subgroup, as if to say "This is an ethyl ketone but not a ketone." (Bu­
chanan et al., 1970). 

• Organize KS's hierarchically by hypothesis to eliminate redundant effort in hy­
pothesis-directed refinement. In DENDRAL, the family trees prevent the 
exhaustive structure generator from generating subgroups whose more 
general forms have been ruled out. The same principle is basic to most 
medical diagnosis systems that organize diagnoses in a taxonomy and 
use a top-down refinement strategy, such as CENTAUR and NEOMY­
CIN. 

• Organize KS's by multiple hypothesis hierarchies for efficient grouping (hypoth­
esis-space splitting). Besides using the hierarchy of generic disease pro­
cesses (infectious, cancerous, toxic, traumatic, psychosomatic, etc.), NEO­
MYCIN groups the same diseases by multiple hierarchies according to 
disease process features (organ system involved, spread in the system, 
progression over time, etc.). When hypotheses are under consideration 
that do not fall into one confirmed subtree of the primary etiological 
hierarchy, the group and differentiate strategy is invoked to find a pro­
cess feature dimension along which two or more current hypotheses 
differ. A question will then be asked, or a hypothesis pursued, to dif­
ferentiate among the hypotheses on this dimension. 

• Organize KS's for each hypothesis on the basis of how KS data relates to the 
hypothesis, for focusing on problem features. In NEOMYCIN, additional re­
lations make explicit special kinds of connections between data and hy­
potheses, such as "this problem feature is the enabling causal step for 
this diagnostic process," and meta-rules order the selection of questions 
(invocation of KS's) by indexing them indirectly through these relations. 
For example, "If an enabling causal step is known for the hypothesis to 
be confirmed, try to confirm that problem feature." The meta-rules that 

13In this section, the term hypothesis generally refers to a diagnostic or explanatory interpre­
tation made by a KS (in terms of some model), although it can also be a hypothesis that a 
particular problem feature is present. 
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reference these different relations ("enabling step," "trigger," "most likely 
manifestation") are ordered arbitrarily. Meta-meta-rules don't order the 
meta-rules because we currently have no theoretical basis for relating 
the first-order relations to one another. 

• Organize KS's into data/hypothesis levels for opportunistic triggering at multiple 
levels of interpretation. HEARSAY's blackboard levels (sentence, word se­
quence, word, etc.) organize KS's by the level of analysis they use for 
data, each level supplying data for the hypothesis level above it. When 
new results are posted on a given level, KS's that "care about" that level 
of analysis are polled to see if they should be given processing time. 
Policy KS's give coherence to this opportunistic invocation by affecting 
which levels will be given preference. CRY SALIS (Engelmore and Terry, 
1979) (a program that constructs a three-dimensional crystal structure 
interpretation ofx-ray crystallographic data) takes the idea a step further 
by having multiple planes of blackboards; one abstracts problem fea­
tures, and the other abstracts interpretations. 

• Organize KS's into a task hierarchy for planning. In MOLGEN, laboratory 
operators are referenced indirectly through tasks that are steps in an 
abstract plan. For example, the planning level design decision to refine the 
abstract plan step MERGE is accomplished by indexing laboratory op­
erators by the MERGE task (e.g., MERGE could be refined to using a 
ligase to connect DNA structures, mixing solutions, or causing a vector 
to be absorbed by an organism). Thus tasks in planning are analogous 
to hypotheses in interpretation problems. 

• Organize KS's into a context specialization hierarchy for determining task rele­
vance. In AM, relevant heuristics for a task are inherited from all con­
cepts that appear above it in the specialization hierarchy. Thus AM goes 
a step beyond most other systems by showing that policy KS's must be 
selected on the basis of the kind of problem being solved. Lenat's work 
suggests that this might be simply a hierarchical relationship among 
kinds of problems. 

The above characterizations of different organizations for knowledge are 
a first step toward a vocabulary or language for talking about indirect 
reference of KS's. It is clear that strategy and structure are intimately re­
lated; to make this clearer, we return to the earlier topic of explanation. 

Teaching a strategy might boil down to saying "think in terms of such­
and-such a structural vocabulary in order to get this strategical task 
done"-where the vocabulary is the indexing scheme for calling KS's to 
mind. So we might say, "Think in terms of families of functional subgroups 
in order to rule out interpretations of the spectral peaks." Or, "Consider 
process features when diseases of different etiologies are possible." That 
is, teaching a strategy involves in part the teaching of a perspective for relating 
KS's hierarchically (e.g., "families of functional subgroups" or "disease proc­
ess features") and then showing how these relations provide leverage for man­
aging a large amount of data or a large number of hypotheses. The explanation 
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of the sought-after leverage must be in terms of some task for carrying 
the problem forward, thus tying the structuring scheme to the overall pro­
cess of what the problem solver is trying to do. Thus we say "to rule out 
interpretations" or "to narrow down the problem to one etiological process" 
or (recalling Figure 29-4) "to broaden the spectrum of possibilities.'' In this 
way, we give the student a meta-rule that specifies what kind of vocabulary 
to consider for a given strategical task. 

Davis' study of meta-rules (Chapter 28) suggested a need for a vocab­
ulary of meta-rule knowledge. His examples suggested just a few concep­
tual primitives for describing refinement (ordering and utility of KS's) and 
a few primitives for describing object-level knowledge (KS input and out­
put). All of the strategies in our examples deal with ordering and utility 
criteria for KS's; so we have nothing to add there. All of the examples 
given here reference KS's by the data they act upon, the hypotheses they 
support or the tasks they accomplish, except for AM, which references 
KS's by their scope or domain of applicability. What is novel about the 
analysis here is the focus on relations among hypotheses and among data. 

From our domain-independent perspective, strategical knowledge 
selects KS's on the basis of the causal, subtype, process, or scoping relation 
they bear to hypotheses or data currently thought to be relevant to the 
problem at hand. Thus our meta-rules make statements like these: 

1. "Consider KS's that would demonstrate a prior cause for the best 
hypothesis." 

2. "Don't consider KS's that are subtypes of ruled-out hypotheses.'' 
3. "Consider KS's that abstract known data." 

4. "Consider KS's that distinguish between two competing kinds of 
processes." 

5. "Consider KS's relevant to the current problem domain." 

To summarize, the structural knowledge we have been studying con­
sists of relations that hierarchically abstract data and hypotheses. These 
relations constitute the vocabulary by which domain-independent meta­
rules invoke KS's. The key to our analysis is our insistence on domain­
independent statement of meta-rules-a motivation deriving from our in­
terest in explanation and teaching. 

29.6.2 Explicitness of Strategical Knowledge 

Another consideration for explanation is whether or not the strategy for 
invoking KS's is explicit. To some extent, system designers are not generally 
interested in representing high-level strategies that are always in effect and 
never reasoned about by the program. Instead, they are satisfied if their 
system can be programmed in the primitives of their representation lan­
guage to bring about the high-level effect they are seeking. For example, 
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top-down refinement is "compiled into" CENTAUR's hierarchy itself by 
the control steps that specify on each level what to do next (e.g., "After 
confirming obstructive airways disease, determine the subtype of obstruc­
tive airways disease."). By separating control steps from disease inferences, 
Aikins improved the explanation facility, one of the goals of CENTAUR. 
However, the rationale for these control steps is not represented-it is just 
as implicit as it was in PUFF's contextual clauses. In contrast, NEOMYCIN's 
"explore and refine" task clearly implements top-down refinement through 
domain-independent meta-rules. However, these meta-rules are ordered 
to give preference to siblings before descendents-an example of an im­
plicit strategy. 

One common way of selecting KS's is on the basis of numerical mea­
sures of priority, utility, interestingness, etc. For example, CENTAUR, like 
many medical programs, will first request the data that give the most weight 
for the disease under consideration. Thus the weight given to a KS is 
another form of indexing by which a strategy can be applied. If we wish 
to explain these weights, we should ideally replace them by descriptors that 
"generate" them, and then have the strategy give preference to KS's having 
certain descriptors. NEOMYCIN's meta-rules for requesting data (de­
scribed above) are a step in this direction. 

MOLGEN's "least-commitment" meta-strategy is a good example of 
implicit encoding by priority assignment. The ordering of tasks specified 
by least commitment is "Look first for differences, then use them to sketch 
out an abstract plan, and finally refine that plan .... " This ordering of 
tasks is implicit in the numerical priorities that Stefik has assigned to the 
design operators in MOLGEN. Therefore, an explanation system for 
MOLGEN could not explain the least-commitment strategy but could only 
say that the program performed one task before another because the prior­
ity was higher for the former. 

29.6.3 Absence of Support Knowledge 

We have little to say about support knowledge in these systems because 
none of them represents it. That is, the causal or mathematical models, 
statistical studies, or world knowledge that justifies the KS's is not used 
during reasoning. As discussed in Section 29.5, this limitation calls into 
question the problem-solving flexibility or "creativeness" of these pro­
grams. In any case, the knowledge is not available for explanation. 

29.6.4 Summary 

The strategy/structure/support framework can be applied to any knowl­
edge-based system by asking certain questions: What are the KS's in the 
system, i.e., what kinds of recognition or construction operations are per-
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formed? How are the KS's labeled or organized, by data/constraint or by 
hypothesis/operation? Is this indexing used by the interpreter or by explicit 
strategical KS's, or is it just an aid for the knowledge engineer? What 
theoretical considerations justify the KS's? Is this knowledge represented? 
With this kind of analysis, it should be clear how the knowledge repre­
sented needs to be augmented or decomposed if an explanation facility is 
to be built for the system. Quite possibly, as in MYCIN, the representational 
notation will need to be modified as well. 

29 7 Conclusions • 

The production rule formalism is often chosen by expert system designers 
because it is thought to provide a perspicuous, modular representation. 
But we have discovered that there are points of flexibility in the represen­
tation that can be easily exploited to embed structural and strategic knowl­
edge in task rules, context clauses, and screening clauses. Arguing from a 
teacher's perspective, we showed that hierarchies of problem features and 
diagnoses, in addition to a domain-independent statement of strategy, are 
useful to justify rules and teach approaches for using them. Also, when a 
rule is causal, satisfactory explanations generalize the rule in terms of an 
underlying process model. This same knowledge should be made explicit 
for purposes of explanation, ease of modification, and potential improve­
ment of problem-solving ability. 

Characterizing knowledge in three categories, we concluded that MY­
CIN's rules were used as a programming language to embed strategic and 
structural principles. However, while context and screening clauses are 
devices that don't precisely capture the paths of expert reasoning, the basic 
connection between data and hypothesis is a psychologically valid associ­
ation. As such, the "core rules" represent the experts' knowledge of causal 
processes in proceduralized form. Their knowledge is not necessarily com­
piled into this form, but may be compiled with respect to causal models 
that may be incomplete or never even learned. For this reason, support 
knowledge needs to be represented in a form that is somewhat redundant 
to the diagnostic associations, while structure and strategy can be directly 
factored out and represented declaratively. 

The lessons of this study apply to other knowledge-based programs, 
including programs that do not use the production rule representation. 
The first moral is that one cannot simply slap an interactive front end onto 
a good AI program and expect to have an adequate teaching system. Sim­
ilarly, an explanation system may have to do more than just read back 
reasoning steps and recognize questions: it may be useful to abstract the 
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reasoning steps, relating them to domain models and problem-solving 
strategies. 

Other knowledge bases could be studied as artifacts to evaluate the 
expressiveness of their representation. Is the design of the inference struc­
ture explicit? Can it be reasoned about and used for explanation? Where 
are the choice points in the representation and what principles for their 
use have not been represented explicitly? For rule-based systems one 
should ask: What is the purpose of each clause in the rule and why are 
clauses ordered this way? Why is this link between premise and conclusion 
justified? Under what circumstances does this association come to mind? 

Finally, future knowledge engineering efforts in which the knowledge 
of experts is codified could benefit from an epistemology that distinguishes 
KS's from meta-level knowledge of three kinds-strategy, structure, and 
support knowledge. Relative to that framework, then, it makes sense to ask 
about the appropriateness of representing knowledge using rules, units, 
or other notations. When the system fails to behave properly, changes to 
either the epistemology or the rules should be entertained. In fact, this is 
a cyclic process in which changes are made to the rules that subtly tear at 
the framework, and after incorporating a series of changes, a new, better 
epistemology and revised notation can be arrived at. (For example, a single 
MYCIN rule might seem awkward, but a pattern such as 40 rules having 
the same first 3 clauses suggests some underlying structure to the knowl­
edge.) Thus a methodology for converging on an adequate epistemology 
comes in part from constant cycling and reexamining of the entire system 
of rules. 

The epistemology that evolved from attempts to reconfigure MYCIN's 
rules is NEOMYCIN's etiological taxonomy, multiple disease process hier­
archies, data that trigger hypotheses, etc., plus the domain-independent 
task hierarchy of meta-rules. In our use of terms like "problem feature," 
we have moved very far from MYCIN's too abstract concept of "clinical 
parameter," which did not distinguish between data and hypotheses. Our 
epistemology provides an improved basis for interpreting expert reason­
ing, a valuable foundation for knowledge engineering, as echoed by Swan­
son et al. ( 1977): 

Three aspects of the expert's adaptation are especially important to the 
design of decision support systems: the generative role of basic principles of 
pathophysiology, the hierarchical structure of disease knowledge, and the 
heuristics used in coping with information processing demands. 

These categories of knowledge provide a framework for understanding an 
expert.,;:We ask, "What kind of knowledge is the expert describing?" This 
framew'ork enables us to focus our questions so that we can separate out 
detailed descriptions of the expert's causal model from both the associa­
tions that link symptom to disorder and the strategies for using this knowl­
edge. 



568 Extensions to Rules for Explanation and Tutoring 

29.8 Postscript: How the Rule Formalism Helped 

Despite some apparent shortcomings of MYCIN's rule formalism noted in 
this chapter and throughout the book, we must remember that the pro­
gram has been influential because it works well. The uniformity of rep­
resentation has been an important asset. With knowledge being so easy to 
encode, it was perhaps the simple parameterization of the problem that 
made MYCIN successful. The program could be built and tested quickly 
at a time when little was known about building expert systems. Finally, the 
explicit codification of medical knowledge, now taken for granted in expert 
systems, allows examination of, and improvement upon, the knowledge 
structures. 
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30 
The Problem of Evaluation 

Early in the development of MYCIN we felt the need to assess formally 
the program's performance. By 1973 we had already run perhaps a 
hundred cases of bacteremia through the system, revising the knowledge 
base as needed whenever problems were discovered. At the weekly project 
meetings Cohen and Axline were increasingly impressed by the validity of 
the program's recommendations, and they encouraged the design of an 
experiment to assess its performance on randomly selected cases of bac­
teremic patients. There was a uniform concern that it would be inadequate 
to assess (or report) the work on the basis of anecdotal accolades alone­
an informal approach to evaluation for which many efforts in both AI and 
medical computer science had been criticized. 

30 1 Three Evaluations of MYCIN • 

Shortliffe accordingly designed and executed an experiment that was re­
ported as a chapter in his dissertation (Shortliffe, 1974). Five faculty and 
fellows in the Stanfr>rd Division of Infectious Diseases were asked to review 
and critique 15 cases for which MYCIN had offered therapy advice. Each 
evaluator ran the first of the 15 cases through MYCIN himself (in order 
to get a feeling for how the program operated) and was then given print­
outs showing the questions asked and the advice generated for each of the 
other 14 cases. Questions were inserted at several places in the typescripts 
so that we could assess a variety of features of the program: 

• its ability to decide whether a patient required treatment; 

• its ability to determine the significance of isolated organisms; 

• its ability to determine the identity of organisms judged significant; 

• its ability to select therapy to cover for the list of most likely organisms; 
• its overall consultative performance. 

571 
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The design inherently assumed that the opinions of recognized ex­
perts provided the "gold standard" against which the program's perfor­
mance should be assessed. For reasons outlined below, other criteria (such 
as the actual organisms isolated or the patient's response to therapy) did 
not seem appropriate. Despite the encouraging results of this experiment 
(hereafter referred to as Study 1), several problems were discovered during 
its execution: 

• The evaluators complained that they could not get an adequate "feel" 
for the patients by merely reading a typescript of the questions MYCIN 
asked (and they therefore wondered how the program could do so). 

• Because the evaluators knew they were assessing a computer program, 
there was evidence that they were using different (and perhaps more 
stringent) criteria for assessing its performance than they would use in 
assessing the recommendations of a human consultant. 

• MYCIN's "approval rating" of just under 75% was encouraging but in­
tuitively seemed to be too low for a truly expert program; yet we had 
no idea how high a rating was realistically achievable using the gold 
standard of approval by experts; 

• The time required from evaluators was seen to be a major concern; the 
faculty and fellows agreed to help with the study largely out of curiosity, 
but they were all busy with other activities and some of them balked at 
the time required to thoroughly consider the typescripts and treatment 
plans for all 15 cases. 

• Questions were raised regarding the validity of a study in which the 
evaluators were drawn from the same environment in which the pro­
gram was developed; because of regional differences in prescribing hab­
its and antimicrobial sensitivity patterns, some critics urged a study de­
sign in which MYCIN's performance in settings other than Stanford 
could be assessed. 

Many of these problems were addressed in the design of our second 
study, also dealing with bacteremia, which was undertaken in the mid­
l 970s and for which a published report appeared in 1979 (Yu et al., l 979a). 
This time the evaluators were selected from centers around the country 
(five from Stanford, five from other centers) and were paid a small hon­
orarium in an effort to encourage them to take the time required to fill 
out the evaluation forms. Because the evaluators did not have an oppor­
tunity to run the MYCIN program themselves, we deemphasized the actual 
appearance of a MYCIN typescript in this study (hereafter referred to as 
Study 2). Instead, evaluators were provided with copies of each of the 15 
patients' charts up to the time of the therapy decisions (with suitable pre­
cautions taken to preserve patient anonymity). They once again knew they 
were evaluating a computer program, however. In addition, although the 
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forms were designed to allow evaluators to fill them out largely by using 
checklists, the time required to complete them was still lengthy if the phy­
sician was careful in the work, and there were once again long delays in 
getting the evaluation forms back for analysis. In fact, despite the "moti­
vating honorarium," some of the evaluators took more than 12 months to 
return the booklets. 

Although the MYCIN knowledge base for bacteremia had been con­
siderably refined since Study 1, we were discouraged to find that the results 
of Study 2 once again showed about 75% overall approval of the program's 
advice. It was clear that we needed to devise a study design that would 
"blind" the evaluators to knowledge of which advice was generated by 
MYCIN and that would simultaneously allow us to determine the overall 
approval ratings that could be achieved by experts in the field. We began 
to wonder if the 75% figure might not be an upper limit in light of the 
controversy and stylistic differences among experts. 

As a result, our meningitis study (hereafter referred to as Study 3) 
used a greatly streamlined design to encourage rapid turnaround in eval­
uation forms while keeping evaluators unaware of what advice was pro­
posed by MYCIN (as opposed to other prescribers from Stanford). Study 
3 is the subject of Chapter 31, and the reader will note that it reflects many 
of the lessons from the first two studies cited above. With the improved 
design we were able to demonstrate formally that MYCIN's advice was 
comparable to that of infectious disease experts and that 75% is in fact 
better than the degree of agreement that could generally be achieved by 
Stanford faculty being assessed under the same criteria. 

In the next section we summarize some guidelines derived from our 
experience. We believe they are appropriate when designing experiments 
for the evaluation of expert systems. Then, in the final section of this 
chapter, we look at some previously unpublished analyses of the Study 3 
data. These demonstrate additional lessons that can be drawn and on 
which future evaluative experiments may build. 

30.2 A Summary of Evaluation Considerations 

The three MYCIN studies, plus the designs for ONCOCIN evaluations 
that are nearing completion, have taught us many lessons about the vali­
dation of these kinds of programs. We summarize some of those points 
here in an effort to provide guidelines of use to others doing this kind of 
work. 1 

1 Much of this discussion is based on Shortliffe's contribution to Chapter 8 of Building Expert 
Systems, edited by R. Hayes-Roth, D. Lenat, and D. Waterman (Hayes-Roth, Waterman and 
Lenat, 1983). 
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30.2.1 Dependence on Task, System, Goals, and Stage 
of Development 

Most computing systems are developed in response to some human need, 
and it might therefore be logical to emphasize the system's response to that 
need in assessing whether it is successful. Thus there are those who would· 
argue that the primary focus of a system evaluation should be on the task 
for which it was designed and the quality of its corresponding perfor­
mance. Other aspects warranting formal evaluation are often ignored. It 
must accordingly be emphasized that there are diverse components to the 
evaluation process. We believe that validation is most appropriately seen 
as occurring in stages as an expert system develops over time. 

The MYCIN work, however, has forced us to focus our thinking on 
the evaluation of systems that are ultimately designed to perform a real­
world task, typically to be used by persons who are not computer scientists. 
Certainly one of our major goals has been the development of a useful 
system that can have an impact on society by becoming a regularly used 
tool in the community for which it is designed. Although we have shown 
in earlier chapters that many basic science problems typically arise during 
the development of such systems, in this section we will emphasize the 
staged assessment of the developing tool (rather than techniques for mea­
suring its scientific impact as a stimulus to further research). We have 
organized our discussion by looking at the "what?", "when?", and "how?" 
of evaluating expert systems. 

30.2.2 What to Evaluate? 

As mentioned above, at any stage in the development of a computing 
system several aspects of its performance could be evaluated. Some are 
more appropriate than others at a particular stage. However, by the time 
a system has reached completion it is likely that every aspect will have 
warranted formal assessment. 

Decisions/ Ad vice/Performance 

Since accurate, reliable advice is an essential component of an expert con­
sultation system, it is usually the area of greatest research interest and is 
logically an area to emphasize in evaluation. However, the mechanisms for 
deciding whether a system's advice is appropriate or adequate may be dif­
ficult to define or defend, especially since expert systems tend to be built 
precisely for those domains in which decisions are highly judgmental. It is 
clear that no expert system will be accepted by its intended users if they 
fail to be convinced that the decisions made and the advice given are per­
tinent and reliable. 
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Correct Reasoning 

Not all designers of expert systems are concerned about whether their 
program reaches decisions in a "correct" way, so long as the advice that it 
offers is appropriate. As we have indicated, for example, MYCIN was not 
intended to simulate human problem solving in any formal way. However, 
there is an increasing realization that expert-level performance may require 
heightened attention to the mechanisms by which human experts actually 
solve the problems for which the expert systems are being built. It is with 
regard to this issue that the interface between knowledge engineering and 
psychology is the greatest, and, depending on the motivation of the system 
designers and the eventual users of the expert program, some attention to 
the mechanisms of reasoning that the program uses may be appropriate 
during the evaluation process. The issue of deciding whether or not the 
reasoning used by the program is "correct" will be discussed further below. 

Discourse (I/O Content) 

Knowledge engineers now routinely accept that parameters other than 
correctness will play major roles in determining whether or not their sys­
tems are accepted by the intended users (see Chapter 32). The nature of 
the discourse between the expert system and the user is particularly im­
portant. Here we mean such diverse issues as: 

• the choice of words used in the questions and responses generated by 
the program; 

• the ability of the expert system to explain the basis for its decisions and 
to customize those explanations appropriately for the level of expertise 
of the user; 

• the ability of the system to assist the user when he or she is confused or 
wants help; and 

• the ability of the expert system to give advice and to educate the user in 
a congenial fashion so that the frequently cited psychological barriers to 
computer use are avoided. 

It is likely that issues such as these are as important to the ultimate success 
of an expert system as is the quality of its advice. For this reason such issues 
also warrant formal evaluation. 

Hardware Environment (I/O Medium) 

Although some users, particularly when pressed to do so, can become 
comfortable with a conventional typewriter keyboard to interact with com­
puters, this is a new skill for other potential users and frequently not one 
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they are motivated to learn. For that reason we have seen the development 
of light pen interfaces, touch screens, and specialized keypads, any of 
which may be adequate to facilitate simple interactions between users and 
systems. Details of the hardware interface often influence the design of the 
system software as well. The intricacies of this interaction cannot be ig­
nored in system evaluation, nor can the mundane details of the user's 
reaction to the terminal interface. Once again, it can be difficult to design 
evaluations in which dissatisfaction with the terminal interface is isolated 
as a variable, independent of discourse adequacy or decision-making per­
formance. As we point out below, one purpose of staged evaluations is to 
eliminate some variables from consideration during the evolution of the 
system. 

Efficiency 

Technical analyses of system behavior are generally warranted. Underu­
tilized CPU power or poorly designed methods for accessing disk space, 
for example, may introduce resource inefficiencies that severely limit the 
system's response time or cost effectiveness. Inefficiencies in small systems 
are often tolerable to users, but will severely limit the potential for those 
systems to grow and still remain acceptable. 

Cost Effectiveness 

Finally, and particularly if it is intended that an expert system become a 
widely used product, some detailed evaluation of its cost effectiveness is 
necessary. A system that requires an excessive time commitment by the 
user, for example, may fail to be accepted even if it excels at all the other 
tasks we have mentioned. Few AI systems have reached this stage in system 
evolution, but there is a wealth of relevant experience in other computer 
science areas. Expert systems must be prepared to embark on similar stud­
ies once they reach an appropriate stage of development. 

30.2.3 When to Evaluate? 

The evaluation process is a continual one that should begin at the time of 
system design, extend in an informal fashion through the early stages of 
development, and become increasingly formal as a developing system 
moves toward real-world implementation. It is useful to cite nine stages of 
system development, which summarize the evolution of an expert system.2 

They are itemized in Table 30-1 and discussed in some detail below. 

2These implementation steps are based on a discussion of expert systems in Shortliffe and 
Davis (1975). 
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TABLE 30-1 Steps in the Implementation of an Expert System 

1. Top-level design with definition of long-range goals 

2. First version prototype, showing feasibility 

3. System refinement in which informal test cases are run to generate feedback 
from the expert and from users 

4. Structured evaluation of performance 

5. Structured evaluation of acceptability to users 

6. Service functioning for extended period in prototype environment 

7. Follow-up studies to demonstrate the system's large-scale usefulness 

8. Program changes to allow wide distribution of the system 

9. General release and distribution with firm plans for maintenance and updating 

As mentioned above, it is important for system designers to be explicit 
about their long-range goals and motives for building an expert system. 
Thus the first stage of a system's development (Step 1), the initial design, 
should be accompanied by explicit statements of what the measures of the 
program's success will be and how failure or success will be evaluated. It 
is not uncommon for system designers to ignore this issue at the outset. If 
the evaluation stages and long-range goals are explicitly stated, however, 
they will necessarily influence the early design of the expert system. For 
example, if explanation capabilities are deemed to be crucial for the user 
community in question, this will have important implications for the sys­
tem's underlying knowledge representation. 

The next stage (Step 2) is a demonstration that the design is feasible. 
At this stage there is no attempt to demonstrate expert-level performance. 
The goal is, rather, to show that there is a representation scheme appro­
priate for the task domain and that knowledge-engineering techniques can 
lead to a prototype system that shows some reasonable (if not expert) per­
formance on some subtask of that domain. An evaluation of this stage can 
be very informal and may simply consist of showing that a few special cases 
can be handled by the prototype system. Successful handling of the test 
cases suggests that with increased knowledge and refinement of the rea­
soning structures a high-performance expert system is possible. 

The third stage (Step 3) is as far as many systems ever get. This is the 
period in which informal test cases are run through the developing system, 
the system's performance is observed, and feedback is sought from expert 
collaborators and potential end users. This feedback serves to define the 
major problem areas in the system's development and guides the next 
iteration in system development. This iterative process may go on for 
months or years, depending on the complexity of the knowledge domain, 
the flexibility of the knowledge representation, and the availability of tech­
niques adequate to cope with the domain's specific control or strategic 
processes. One question is constantly being asked: how did this system do 
on this case? Detailed analyses of strengths and weaknesses lead back to 
further research; in this sense evaluation is an intrinsic part of the system 
development process. 



578 The Problem of Evaluation 

Once the system is performing well on most cases with which it is 
presented, it is appropriate to turn to a more structured evaluation of its 
decision-making performance. This evaluation can be performed without 
assessing the program's actual utility in a potential user's environment. 
Thus Step 4 is undertaken if the test. cases being used in Step 3 are found 
to be handled with skill and competence, and there accordingly develops 
a belief that a formal randomized study will show that the system is capable 
of handling almost any problem from its domain of expertise. Only a few 
expert systems have reached this stage of evaluation. The principal ex­
amples are studies of the PROSPECTOR program developed at SRI In­
ternational (Gaschnig, 1979) and the MYCIN studies described earlier in 
this chapter. It should be emphasized that a formal evaluation with ran­
domized case selection may show that the expert system is in fact not 
performing at an expert level. In this case, new research problems or 
knowledge requirements are defined, and the system development returns 
to Step 3 for additional refinement. A successful evaluation at Step 4 is 
desirable before a program is introduced into a user environment. 

The fifth stage (Step 5), then, is system evaluation in the setting where 
the intended users have access to it. The principal question at this stage is 
whether or not the program is acceptable to the users for whom it was 
intended. Essentially no expert systems have been formally assessed at this 
stage. The emphasis in Step 5 is on the discourse abilities of the program, 
plus the hardware environment that is provided. If expert-level perfor­
mance has been demonstrated at Step 4, failure of the program to be 
accepted at Step 5 can be assumed to be due to one of these other human 
factors. 

If a system is formally shown to make good decisions and to be ac­
ceptable to users, it is appropriate to introduce it for extended periods in 
some prototype environment (Step 6). This stage, called field testing, is in­
tended largely to gain experience with a large number of test cases and 
with all the intricacies of on-site performance. Careful attention during 
this stage must be directed toward problems of scale: i.e., what new diffi­
culties will arise when the system is made available to large numbers of 
users outside of the direct control of the system developers? Careful ob­
servation of the program's performance and the changing attitudes of 
those who interact with it are important at this stage. 

After field testing, it is appropriate to begin follow-up studies to dem­
onstrate a system's large-scale usefulness (Step 7). These formal evaluations 
often require measuring pertinent parameters before and after introduc­
ing the system into a large user community (different from the original 
prototype environment). Pertinent issues are the system's efficiency, its cost 
effectiveness, its acceptability to users who were not involved in its early 
experimental development, and its impact on the execution of the task 
with which it was designed to assist. During Step 7 new problems may be 
discovered that require attention before the system can be distributed (Step 
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8). These may involve programming changes or modifications required to 
allow the system to run on a smaller or exportable machine. 

Finally, the last stage in system development is general release as a 
marketable product or in-house tool (Step 9). Inherent at this stage are 
firm plans for maintaining the knowledge base and keeping it current. 
One might argue that the ultimate evaluation takes place at this stage when 
it is determined whether or not the system can succeed in broad use. How­
ever, a system's credibility is likely to be greater if good studies have been 
done in the first eight stages so that there are solid data supporting any 
claims about the quality of the program's performance. 

30.2.4 How to Evaluate? 

It would be folly to claim that we can begin to suggest detailed study 
designs for all expert systems in a single limited discussion. There is a 
wealth of information in the statistical literature, for example, regarding 
the design of randomized controlled trials, and much of that experience 
is relevant to the design of expert system evaluations. Our intention here, 
therefore, is to concentrate on those issues that complicate the evaluation 
of expert systems in particular and to suggest pitfalls that must be consid­
ered during study design. 

We also wish to distinguish between two senses of the term evaluation. 
In computer science, system evaluation often is meant to imply optimiza­
tion in the technical sense-timing studies, for example. Our emphasis, on 
the other hand, is on a system's performance at the specific consultation 
task for which it has been designed. Unlike many conventional programs, 
expert systems do not deal with deterministic problems for which there is 
clearly a right or wrong answer. As a result, it is often not possible to 
demonstrate in a straightforward fashion that a system is "correct" and 
then to concentrate one's effort on demonstrating that it reaches the so­
lution to a problem in some optimal way. 

Need for an Objective Standard 

Evaluations require some kind of "gold standard"-a generally accepted 
correct answer with which the results of a new methodology can be com­
pared. In the assessment of new diagnostic techniques in medicine, for 
example, the gold standard is often the result of an invasive procedure 
that physicians hope to be able to avoid, even though it may be 100% 
accurate (e.g., operative or autopsy results, or the findings on an angio­
gram). The sensitivity and specificity of a new diagnostic liver test based 
on a blood sample, for example, can best be assessed by comparing test 
results with the results of liver biopsies from several patients who also had 
the blood test; if the blood test is thereby shown to be a good predictor of 
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the results of the liver biopsy, it may be possible to avoid the more invasive 
procedure in future patients. The parallel in expert system evaluation is 
obvious; if we can demonstrate that the expert system's advice is compa­
rable to the gold standard for the domain in question, it may no longer 
be necessary to turn to the gold standard itself if it is less convenient, less 
available, or more expensive. 

Can the Task Domain Provide a Standard? 

In general there are two views of how to define a gold standard for an 
expert system's domain: (l) what eventually turns out to be the "correct" 
answer for a problem, and (2) what a human expert says is the correct 
answer when presented with the same information as is available to the 
program. It is unfortunate that for many kinds of problems with which 
expert systems are designed to assist, the first of these questions cannot be 
answered or is irrelevant. Consider, for example, the performance of MY­
CIN. One might suggest that the gold standard in its domain should be 
the identity of the bacteria that are ultimately isolated from the patient, or 
the patient's outcome if he or she is treated in accordance with (or in 
opposition to) the program's recommendation. Suppose, then, that MYCIN 
suggests therapy that covers for four possibly pathogenic bacteria but that 
the organism that is eventually isolated is instead a fifth rare bacterium 
that was totally unexpected, even by the experts involved in the case. In 
what sense should MYCIN be considered "wrong" in such an instance? 
Similarly, the outcome for patients treated for serious infections is not 
100% correlated with the correctness of therapy; patients treated in ac­
cordance with the best available medical practice may still die from ful­
minant infection, and occasionally patients will improve despite inappro­
priate antibiotic treatment. Accordingly, we said that MYCIN performed 
at an expert level and was "correct" if it agreed with the experts, even if 
both MYCIN and the experts turned out to be wrong. The CADUCEUS 
program has been evaluated by comparing the diagnoses against those 
published on selected hard cases from the medical literature (Miller et al., 
1982). 

Are Human Experts Evaluated? 

When domain experts are used as the objective standard for performance 
evaluation, it is useful to ask whether the decisions of the experts them­
selves are subjected to rigorous evaluations. If so, such assessments of hu­
man expertise may provide useful benchmarks against which to measure 
the expertise of a developing consultation system. An advantage of this 
approach is that the technique for evaluating experts is usually a well­
accepted basis for assessing expertise and thus lends credibility to an eval­
uation of the computer-based approach. 
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Informal Standards 

Typically, however, human expertise is accepted and acknowledged using 
less formal criteria, such as level of training, recommendations of previous 
clients, years of experience in a field, number of publications, and the like. 
[Recently, Johnson et al. (1981) and Lesgold (1983) have studied measures 
of human expertise that are more objective.] Testimonials regarding the 
performance of a computer program have also frequently been used as a 
catalyst to the system's dissemination, but it is precisely this kind of anec­
dotal selling of a system against which we are arguing here. Many fields 
(e.g., medicine) will not accept technological innovation without rigorous 
demonstration of the breadth and depth of the new product's capabilities. 
Both we and the PROSPECTOR researchers encountered this cautious 
attitude in potential users and designed their evaluations largely in 
response to a perceived need for rigorous demonstrations of performance. 

Biasing and Blinding 

In designing any evaluative study, considerations of sources of bias are of 
course important. We learned this lesson when evaluating MYCIN, and, 
as mentioned earlier, this explains many of the differences between the 
bacteremia evaluation (Study 2) and the meningitis study (Study 3). Many 
comments and criticisms from Study 2 evaluators reflected biases regarding 
the proper role for computers in medical settings (e.g., "I don't think the 
computer has an adequate sense of how sick this patient is. You'd have to 
see a patient like this in order to judge."). As a result, Study 3 mixed 
MYCIN's recommendations with a set of recommendations from nine 
other individuals asked to assess the case (ranging from infectious disease 
faculty members to a medical student). When national experts later gave 
opinions on the appropriateness of therapeutic recommendations, they did 
not know which proposed therapy (if any) was MYCIN's and which came 
from the faculty members. This "blinded" study design removed an im­
portant source of potential bias, and also provided a sense of where MY­
CIN's performance lay along a range of expertise from faculty to student. 

Controlling Variables 

As we pointed out in the discussion of when to evaluate an expert system, 
one advantage of a sequential set of studies is that each can assume the 
results of the experiments that preceded it. Thus, for example, if a system 
has been shown to reach optimal decisions in its domain of expertise, one 
can assume that the system's failure to be accepted by its intended users 
in an experimental setting is a reflection of inadequacies in an aspect of 
the system other than its decision-making performance. One key variable 
that could account for system failure can be "removed" in this way. 
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Realistic Standards of Performance 

Before assessing the capabilities of an expert system, it is necessary to 
define the minimal standards that are acceptable for the system to be called 
a success. It is ironic that in many domains it is difficult to decide what 
level of performance qualifies as expert. Thus it is important to measure 
the performance of human experts in a field if they are assessed by the 
same standards to be used in the evaluation of the expert system. As we 
noted earlier, this point was demonstrated in the MYCIN evaluations. In 
Studies 1 and 2, MYCIN's performance was approved by a majority of 
experts in approximately 75% of cases, a figure that seemed disappoint­
ingly low to us. We felt that the system should be approved by a majority 
in at least 90% of cases before it was made available for actual clinical use. 
The blinded study design for the subsequent meningitis evaluation (Study 
3), however, showed that even infectious disease faculty members received 
at best a 70-80% rating from other experts in the field. Thus the 90% 
figure originally sought may have been unrealistic in that it inadequately 
reflected the extent of disagreement that can exist even among experts in 
a field such as clinical medicine. 

Sensitivity Analysis 

A special kind of evaluative procedure that is pertinent for work with 
expert systems is the analysis of a program's sensitivity to slight changes in 
knowledge representation, inference weighting, etc. Similarly, it may be 
pertinent to ask which interactive capabilities were necessary for the ac­
ceptance of an expert consultant. One approach to assessing these issues 
is to compare two versions of the system that vary the feature under con­
sideration. An example of studies of this kind are the experiments that we 
did to assess the certainty factor model. As is described in Chapter 10 
(Section 10.3), Clancey and Cooper showed that the decisions of MYCIN 
changed minimally from those reported in the meningitis evaluation 
(Chapter 31) over a wide range of possible CF intervals for the inferences 
in the system. This sensitivity analysis helped us decide that the details of 
the CF's associated with rules mattered less than the semantic and struc­
tural content of the rules themselves. 

Interaction of Knowledge: Preserving Good Performance 
When Correcting the Bad 

An important problem, discussed in Chapter 7, can be encountered when 
an evaluation has revealed system deficiencies and new knowledge has been 
added to the system in an effort to correct these. In complex expert sys­
tems, the interactions of new knowledge with old can be unanticipated and 
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lead to detrimental effects on problems that were once handled very well 
by the system. An awareness of this potential problem is crucial as system 
builders iterate from Step 3 to Step 4 and back to Step 3 (see Table 30-1). 
One method for protecting against the problem is to keep a library of old 
cases available on-line for batch testing of the system's decisions. Then, as 
changes are made to the system in response to the Step 4 evaluations of 
the program's performance, the old cases can be run through the revised 
version to verify that no unanticipated knowledge interactions have been 
introduced (i.e., to show that the program's performance on the old cases 
does not deteriorate). 

Realistic Time Demands on Evaluators 

A mundane issue that must be considered anyway, since it can lead to 
failure of a study design or, at the very least, to unacceptable delays in 
completing the program's assessment, is the time required for the evalu­
ators to judge the system's performance. If expert judgments are used as 
the gold standard for adequate program performance, the opinions of the 
experts must be gathered for the cases used in the evaluation study. A 
design that picks the most pertinent two or three issues to be assessed and 
concentrates on obtaining the expert opinions in as easy a manner as pos­
sible will therefore have a much better chance of success. We have previ­
ously mentioned the one-year delay in obtaining the evaluation booklets 
back from the experts who had agreed to participate in the Study 2 bac­
teremia evaluation. By focusing on fewer variables and designing a check­
list that allowed the experts to assess program performance much more 
rapidly, the meningitis evaluation was completed in less than half that time 
(Chapter 31 ). 

30.3 Further Comments on the Study 3 Data 

When the Study 3 data had been analyzed and published (Chapter 31), 
we realized there were still several lingering questions. The journal editors 
had required us to shorten the data analysis and discussion in the final 
report. We also had asked ourselves several questions regarding the meth­
odology and felt that these warranted further study. 

Accordingly, in 1979 Reed Letsinger (then a graduate student in our 
group) undertook an additional analysis of the Study 3 data. What follows 
is largely drawn from an internal memo that he prepared to report his 
findings. The reader should be familiar with Chapter 31 before studying 
the sections below. 
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30.3.1 Consistency of the Evaluators 

The eight national evaluators in Study 3 could have demonstrated internal 
inconsistency in two ways. Since each one was asked first to indicate his 
own decision, he could be expected to judge as acceptable any of the pre­
scribers' decisions that were identical to his own. The first type of incon­
sistency would occur if this expectation were violated. Among the 800 
judgments in the Study 3 data (8 evaluators x l 0 prescribe rs x l 0 pa­
tients}, 15 instances of this type of inconsistency occurred. Second, since 
several prescribers would sometimes make the same decision regarding a 
patient, another form of inconsistency would occur if an evaluator were 
to mark identical treatments for the same patient differently for different 
prescribers. Since the evaluators had no basis for distinguishing among the 
subjects (prescribers), such discrepancies were inherently inconsistent. 
Twenty-two such instances occurred in the Study 3 data set. 

These numbers indicate that 37 out of the 800 data points (4.6%) could 
be shown to be in need of correction on the basis of these two tests. Such 
a figure tells us something about the reliability of the data-clearly perti­
nent in assessing the study results. We have wondered about plausible 
explanations for these kinds of inconsistencies. One is that the evaluators 
were shown both the drugs recommended by the prescribers and the rec­
ommended doses. They were asked to base their judgment of treatment 
acceptability on drug selection alone, hut we did ask separately for their 
opinion on dosage to help us assess the adequacy of MYCIN's dosing al­
gorithms (see Chapter 19). It appeared in retrospect, however, that the 
evaluators sometimes ignored the instructions and discriminated between 
two therapy prescriptions that differed only in the doses of the recom­
mended drugs. These judgments are thus only inconsistent in the sense 
that they reflect judgments that the evaluators were not supposed to be 
making. The problem reflects the inherent tension between our wanting 
to get as much possible information from evaluators and the risks in in­
troducing new variables or data that may distract evaluators from the pri­
mary focus of the study. Another methodologic point here is that such 
design weaknesses may be uncovered by making some routine tests for 
consistency. 

30.3.2 Agreement Among Evaluators 

The tendency of the experts to agree with one another has a direct impact 
on the power of the study to discriminate good performance from bad. 
Consider two extreme cases. At one end is the case where on the average 
the evaluators agree with each other just as much as they disagree. This 
means that on each case the prescribers would tend to get scores around 
the midpoint-in the case of the MYCIN study, around 4 out of 8. The 
cumulative scores would then cluster tightly around the midpoint of the 
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possible range, e.g., around 40 out of 80. The differences between the 
quality of performance of the various subjects would be "washed out," the 
scores would all be close to one another, and consequently, it would be 
very unlikely that any of the differences between scores would be signifi­
cant. At the other extreme, if the evaluators always agreed with each other, 
the only "noise" in the data would be contributed by the choice of the 
sample cases. Intermediate amounts of disagreement would correspond­
ingly have intermediate effects on the variability of the scores, and hence 
on the power of the test to distinguish the performance capabilities of the 
subjects. 

A rough preliminary indication of the extent of this agreement can be 
derived from the MYCIN data. A judgment situation consists of a partic­
ular prescriber paired with a particular case. Thus there are 100 judgment 
situations in the present study, and each receives a score between 0 and 8, 
depending on how many of the evaluators found the performance of the 
subject acceptable on the case. The range between 0 and 8 is divided into 
three equal subranges, 0 to 2, 3 to 5, and 6 to 8. A judgment situation 
receiving a score in the first of these ranges may be said to be generally 
unacceptable, while those receiving scores in the third range are generally 
acceptable. The situations scoring in the middle range, however, cannot be 
decided by a two-thirds majority rule, and so may be considered to be 
undecided due to the evaluators' inability to agree. It turns out that 53 out 
of the 100 judgment situations were undecided in this sense in the MYCIN 
study. 

For a more accurate indication of the level of this disagreement, the 
evaluators can be paired in all possible combinations, and the percentage 
of judgment situations in which they agree can be calculated. The mean 
of this percentage across all pairs of evaluators reflects how often we should 
expect two experts to agree on the question of whether or not the perfor­
mance of a prescriber is acceptable (when the experts, the prescriber, and 
the case are chosen from populations for which the set of evaluators, the 
set of subjects, and the set of cases used in the study are representative 
samples). In the MYCIN study, this mean was 0.591. Thus, if the evalua­
tors, prescribers, and cases used in this study are representative, we would 
in general expect that if we choose two infectious disease experts and a 
judgment situation at random on additional cases, the two experts will 
disagree on the question of whether or not the recommended therapy is 
acceptable 4 out of every I 0 times! 

Before such a number can be interpreted, more must be known about 
the pattern of agreement. One question is how the disagreement was dis­
tributed across the subjects and across the cases. It turns out that the var­
iation across subjects was remarkably low for the MYCIN data, with a 
standard deviation of less than 6 percentage points. The standard devia­
tion across cases was slightly higher-just under I 0 percentage points. Very 
little of the high level of disagreement among the graders can be attributed 
to the idiosyncracies of a few subjects or of a few cases. If it had turned 
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out that a large amount of the disagreement focused on a few cases or a 
few subjects, they could have been disregarded, and the power of the study 
design increased. 

A second question that can be raised is to what extent the disagree­
ments result from differing tolerance levels among the different evaluators 
for divergent recommendations. A quick and crude measure of this tol­
erance level is simply the percentage of favorable responses the evaluators 
gave. The similarity between the tolerance levels of two graders can be 
measured by the difference between those percentages. It is then possible 
to rank all the pairs of evaluators in terms of the degree of similarity of 
their tolerance levels, just as it is possible to rank pairs of evaluators by 
their agreements. The extent to which the tendency of the evaluators to 
agree or disagree with one another can be explained by the variation in 
their tolerance levels can be measured by the correlation between these 
two rankings. With the MYCIN study, the Spearman rank correlation coef­
ficient turns out to be 0.0353 with no correction for ties. This is not sig­
nificantly greater than 0. If there had been a significant correlation, the 
scores given by the evaluators could have been weighted in order to nor­
malize the effects due to different tolerance levels. The actual disagree­
ment among the evaluators would then have been reduced. 

A third possibility is that different groups of experts represent differ­
ent schools of thought on solving the type of problems represented in our 
sample. If so, there should be clusters of evaluators, all of whose members 
agree with each other more than usual, while members of different clusters 
tend to disagree more than usual. There was some slight clustering of this 
sort in the MYCIN data. Evaluators 1, 3, and 4 all agreed with each other 
more often than the mean of 0.591, as did 2 and 6, and matching any 
member of the first group with any member of the second gives an agree­
ment of less than the mean. However, evaluator 8 agreed with all five of 
these evaluators more than 0.591. These clusterings are probably real, but 
they cannot account for very much of the tendency of the evaluators to 
disagree. If significant clustering had been uncovered, the data could have 
been reinterpreted to treat the different "schools" of experts as additional 
variables in the analysis. Within each of these "schools," the agreement 
would then have been considerably increased. 

In retrospect we now realize that the design of the MYCIN study would 
have permitted several different kinds of patterns to be uncovered, any 
one of which could have been used as a basis for increasing the agreement 
among the evaluators, and hence the power of the test. Unfortunately, 
none of these patterns actually appeared in the MYCIN data. 

30.3.3 Collapsing the Data 

The previous discussion of the tendency of the experts to agree with one 
another is subject to at least one objection. Suppose that, for a particular 
case, four of the ten prescribers made the same recommendation, and 
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expert e I agreed with the recommendation while expert e2 did not. Then 
e I and e2 would be counted as disagreeing four times, when in fact they 
are only disagreeing over one question. If a large number of the cases lead 
to only a few different responses, then it might be worth lumping together 
the prescribers that made the same therapy recommendation. Then the 
experts will be interpreted as judging the responses the subjects made, 
rather than the subjects themselves. As is noted in the next section, this 
kind of collapsing of the data is useful for other purposes as well. 

Deciding whether two treatments are identical may be nontrivial. 
Sometimes the responses are literally identical, but in other cases the re­
sponses will differ slightly, although not in ways that would lead a physician 
with a good understanding of the problem to accept one without also 
accepting the other. One plausible criterion is to lump together two therapy 
recommendations for a case if no evaluator accepts one without accepting 
the other. A second test is available when one of the evaluators gives a 
recommendation that is identical to one of the prescriber's recommenda­
tions. Recommendations that that evaluator judged to be equivalent to his 
own can then be grouped with the evaluator's recommendation, so long as 
doing so does not conflict with the first criterion. In using either of these 
tests, the data should first be made consistent in the manner discussed in 
Section 30.3.1. 

Using these tests, the ten subjects in the ten cases of the MYCIN study 
reduced to an average of 4.2 different therapy recommendations for each 
case, with a standard deviation of l.55 and a range from 2 to 6. This seems 
to be a large enough reduction to warrant looking at the data in this col­
lapsed form. 

30.3.4 Judges as Subjects 

With the collapsing of prescribers into therapies, it may be possible to 
identify an evaluator's recommendation with one or more of the prescri­
bers' recommendations. By then eliminating that evaluator from the rank 
of judges, his recommendation can be considered judged by the other 
evaluators. In this way the evaluators may be used as judges of each other, 
thereby allowing comparisons with the rankings of the original prescribers. 
This does not always work, since sometimes an evaluator's recommendation 
cannot be identified with any of the prescribers'. In Study 3, 9 out of 80 
evaluator-generated therapies could not be judged as identical to any of 
the prescribers' recommendations. 

Measuring the evaluators' performance against each other in this man­
ner provides another indication of the extent of disagreement among 
them. It also produces more scores that can be (roughly) compared to the 
percentage scores of the prescribers. In Study 3, 8 more scores can be 
added to the IO assigned to the prescribers, giving a field of 18 scores. The 
analysis of variance or chi-square was run on this extended population. 

The new analysis showed that the mean score for the evaluators was 
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0.699, which is both higher than the mean agreement (0.591) and higher 
than the mean of the prescribers' scores (0.585). This latter fact is to be 
expected, since the subjects included people who were chosen for the study 
because their level of expertise was assumed to be lower than that of the 
evaluators. Nevertheless, half of the evaluators scored above the highest­
scoring prescriber (while the other half spread out evenly over the range 
between the top-ranking subject and the eighth-ranking subject). The fact 
that agreement between the evaluators looks higher on this measure than 
it does on other measures indicates that much of the disagreement was 
over therapies that none of the evaluators themselves recommended. 

It is interesting to ask why the evaluators ranked higher in this analysis 
than the Stanford faculty members among the prescribers, many of whom 
would have qualified as experts by the criteria we used to select the national 
panel. A plausible explanation is the method by which the evaluators were 
asked to indicate their own preferred treatment for each of the ten cases. 
As is described in Chapter 31, for each case the expert was asked to indicate 
a c:hoice of treatment on the first page of the evaluation form and then to 
turn the page and rank the ten treatments that were recommended by the 
prescribers. There was no way to force the evaluators to make a commit­
ment about therapy before turning the page, however. It is therefore quite 
possible that the list of prescribers' recommendations served as "memory 
joggers" or "filters" and accordingly influenced the evaluators' decisions 
regarding optimal therapy for some of the cases. Since none of the pre­
scribers was aware of the decisions made by the other nine subjects, the 
Stanford faculty members did not benefit from this possible advantage. 
We suspect this may partly explain the apparent differences in ratings 
among the Stanford and non-Stanford experts. 

30.3.5 Summary 

The discussion in this section demonstrates many of the detailed sub­
analyses that may be performed on a rich data set such as that provided 
by Study 3. Information can be gathered on interscorer reliability of the 
evaluation instrument, and statistical techniques are available for detecting 
correlations and thereby increasing the reliability (and hence the power) 
of the test. 
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A number of computer programs have been developed to assist physicians 
with diagnostic or treatment decisions, and many of them are potentially 
very useful tools. However, few systems have undergone evaluation by 
independent experts. We present here a comparison of the performance 
of MYCIN with the performance of clinicians. The task evaluated was the 
selection of antimicrobials for cases of acute infectious meningitis before 
the causative agent was identified. 

MYCIN was originally developed in the domain of bacteremias and 
then expanded to include meningitis. Its task is a complicated one; it must 
decide whether and how to treat a patient, often in the absence of micro­
biological evidence. It must allow for the possibility that any important 
piece of information might be unknown or uncertain. In deciding which 
organisms should be covered by therapy, it must take into account specific 
clinical situations (e.g., trauma, neurosurgery), host factors (e.g., immu­
nosuppression, age), and the possible presence of unusual pathogens (e.g., 
F. tularensis or Candida nonalbicans). In selecting optimal antimicrobial ther­
apy to cover all of the most likely organisms, the system must consider 
antimicrobial factors (e.g., efficacy, organism susceptibility) and relative 
contraindications (e.g., patient allergies, poor response to prior therapy). 

When knowledge about a new area of infectious disease is incorpo­
rated into MYCIN's knowledge base, the system's performance is evaluated 

This chapter is an edited version of an article originally appearing in journal of the American 
M{'(/irnl Association 242: 1279-1282 (1979). Copyright© 1979 by the American Medical As­
sociation. All rights reserved. Used with permission. 
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to show that its therapeutic regimens are as reliable as those that an infec­
tious disease specialist would recommend. An evaluation of the system's 
ability to diagnose and treat patients with bacteremia yielded encouraging 
results (Yu et al., l 979a). The results of that study, however, were difficult 
to interpret because of the potential bias in an unblinded study and the 
disagreement among the infectious disease specialists as to the optimal 
therapeutic regimen for each of the test cases. 

The current study design enabled us to compare MYCIN's perfor­
mance with that of clinicians in a blinded fashion. This study involved a 
two-phase evaluation. In the first phase, several prescribers, including MY­
CIN, prescribed therapy for the test cases. In the second phase of the 
evaluation, prominent infectious disease specialists, the evaluators, assessed 
these prescriptions without knowing the identity of the prescribers or 
knowing that one of them was a computer program. 1 

31 1 Materials and Methods • 

Ten patients with infectious meningitis were selected by a physician who 
was not acquainted with MYCIN's methods or with its knowledge base 
pertaining to meningitis. All of the patients had been hospitalized at a 
county hospital affiliated with Stanford, were identified by retrospective 
chart review, and were diagnostically challenging. Two criteria for case 
selection ensured that the ten cases would be of diverse origin: there were 
to be no more than three cases of viral meningitis, and there was to be at 
least one case from each of four categories, tuberculous, fungal, viral, and 
bacterial (including at least one with positive gram stain of the cerebro­
spinal fluid and at least one with negative gram stain). A detailed clinical 
summary of each case was compiled. The summary included the history, 
physical examination, laboratory data, and the hospital course prior to 
therapeutic intervention. These summaries were used to run the MYCIN 
consultations. Only the information contained in the summaries was used 
as input to MYCIN, and no modifications were made to the program. 

These same summaries were presented to five faculty members in the 
Division of Infectious Diseases in the Departments of Medicine and Pedi­
atrics at Stanford University, to one senior postdoctoral fellow in infectious 
diseases, to one senior resident in medicine, and to one senior medical 
student. The resident and student had just completed a six-week rotation 

1We wish to thank the following infectious diseases specialists who participated in this study: 
Donald Armstrong, M.D.; John E. Bennet, M.D.; Ralph D. Feigin, M.D.; Allan Lavetter, M.D.; 
Phillip J. Lerner, M.D.; George H. McCracken, Jr., M.D.; Thomas C. Merigan, M.D.; James 
J. Rahal, M.D.;Jack S. Remington, M.D.; William S. Robinson, M.D.; Penelope]. Shackelford, 
M.D.; Paul F. Wehrle, M.D.; and Anne S. Yeager, M.D. 
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in infectious diseases. None of these individuals was associated with the 
MYCIN project. The seven Stanford physicians and the medical student 
were asked to prescribe an antimicrobial therapy regimen for each case 
based on the information in the summary. If they chose not to prescribe 
antimicrobials, they were requested to specify which laboratory tests (if any) 
they would recommend for determining the infectious etiology. There 
were no restrictions concerning the use of textbooks or any other reference 
materials, nor were any time limits set for completion of the prescriptions. 

Ten prescriptions were compiled for each case: that actually given to 
the patient by the treating physicians at the county hospital, the recom­
mendation made by MYCIN, and the recommendations of the medical 
student and of the seven Stanford physicians. In the remainder of this 
chapter, MYCIN, the medical student, and the eight physicians will be 
referred to as prescribers. 

The second phase of the evaluation involved eight infectious disease 
specialists at institutions other than Stanford, hereafter referred to as eval­
uators, who had published clinical reports dealing with the management of 
infectious meningitis. They were given the clinical summary and the set of 
ten prescriptions for each of the ten cases. The prescriptions were placed 
in random order and in a standardized format to disguise the identities of 
the individual prescribers. The evaluators were asked to make their own 
recommendations for each case and then to assess the ten prescriptions. 
The 100 prescriptions (IO each by IO prescribers) were classified by each 
evaluator into the following categories: 

Equivalent: the recommendation was identical to or equivalent to the eval­
uator's own recommendation (e.g., treatment of one patient with naf­
cillin was judged equivalent to the use of oxacillin); 

Acceptable alternative: the recommendation was different from the evalua­
tor's, but he considered it to be an acceptable alternative (e.g., the 
selection of ampicillin in one case was considered to be an acceptable 
alternative to penicillin); 

Not acceptable: the evaluator found the recommendation unacceptable or 
inappropriate (e.g., the recommendation of chloramphenicol and am­
picillin in one case was considered to be unacceptable by all evaluators 
who thought the patient had tuberculosis and who prescribed antitu­
berculous therapy). 

The 800 assessments ( 100 each by 8 evaluators) were analyzed as fol­
lows. A one-way analysis of variance (ANOVA) was used to analyze the 
overall difference effects between MYCIN and the other prescribers. The 
Tukey studentized range test was used to demonstrate individual differ­
ences between prescribers following attainment of significance. A similar 
analysis of variance was used to measure evaluator variability. 
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TABLE 31-1 Ratings of Antimicrobial Selection Based on Evaluator Rating and 
Etiologic Diagnosis 

No. (%) of items in No. of cases in 
No. (%) of items in which therapy was which therapy 
which therapy was rated acceptable* failed to cover a 

rated acceptable* by by majority of treatable 
Prescribers an evaluator (n = 80) evaluators ( n = 10) pathogen (n = 10) 

---------

MYCIN 52 (65) 7 (70) 0 
Faculty-I 50 (fi2.!">) 5 (50) 
Faculty-2 48 (60) 5 (50) 
Infectious disease fellow 48 (60) 5 (50) 1 
Faculty-3 46 (57.5) 4 (40) 0 
Actual therapy 46 (57.5) 7 (70) 0 
Faculty-4 44 (55) 5 (50) 0 
Resident 36 (45) 3 (30) 1 
Faculty-5 34 (42.5) 3 (30) 0 
Student 24 (30) 1 ( 10) 3 

----
*Therapy was classified as acceptable if an evaluator rated it as equivalent or as an acceptable 
alternative. 

31 2 Results • 

The evaluators' ratings of each prescriber are shown in the second column 
of Table 31-1. Since there were 8 evaluators and 10 cases, each prescriber 
received 80 ratings from the evaluators. Sixty-five percent of MYCIN's 
prescriptions were rated as acceptable by the evaluators. The correspond­
ing mean rating for the five faculty specialists was 55.5% (range, 42.5% to 
62.5%). A significant difference was found among the prescribers; the 
hypothesis that each of the prescribers was rated equally by the evaluators 
is rejected (standard F test, F = 3.29 with 9 and 70 df; p < 0.01 ). 

Consensus among evaluators was measured by determining the num­
ber of cases (n = 10) in which the prescriber received a rating of acceptable 
from the majority (five or more) of experts (third column of Table 31-1). 
Seventy percent of MYCIN's therapies were rated as acceptable by a ma­
jority of the evaluators. The corresponding mean ratings for the five fac­
ulty prescribers was 44% (range, 30% to 50%). MYCIN failed to win a 
rating of acceptable from the majority of evaluators in three cases. MYCIN 
prescribed penicillin for a case of meningococcal meningitis, as did four 
evaluators. However, four other evaluators prescribed penicillin with chlor­
amphenicol as initial therapy before identification of the organism, and 
they rated MYCIN's therapy as not acceptable. MYCIN prescribed peni­
cillin as treatment for group B Streptococcus; however, most evaluators se­
lected ampicillin and gentamicin as initial therapy. MYCIN prescribed pen­
icillin as treatment for Listeria; however, most evaluators used combinations 
of two drugs. 
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There were seven instances in which prescribers selected antimicrobial 
therapy that failed to cover a treatable pathogen (fourth column of Table 
31-1 ). Five instances involved a case of tuberculous meningitis in which 
ineffective antibacterials (ampicillin, penicillin, and chloramphenicol) or 
no antimicrobials were prescribed. The other two instances included a case 
of meningococcal meningitis where one prescriber failed to prescribe any 
antimicrobial therapy and a case of cryptococcal meningitis where ftucy­
tosine was prescribed in inadequate dosage as the sole therapy. 

31 3 Comment • 

In clinical medicine it may be difficult to define precisely what constitutes 
appropriate therapy. Our study used two criteria for judging the appro­
priateness of therapy. One was simply whether or not the prescribed ther­
apy would be effective against the offending pathogen, which was ulti­
mately identified (fourth column of Table 31-1). Using this criterion, five 
prescribers (MYCIN, three faculty prescribers, and the actual therapy 
given the patient) gave effective therapy for all ten cases. However, this 
was not the sole criterion, since failure to cover other likely pathogens and 
the hazards of overprescribing are not considered. The second criterion 
used was the judgment of eight independent authorities with expertise in 
the management of meningitis (second and third columns of Table 31-1). 
Using this criterion, MYCIN received a higher rating than any of the nine 
human prescribers. 

This shows that MYCIN's capability in the selection of antimicrobials 
for meningitis compares favorably with the Stanford infectious disease spe­
cialists, who themselves represent a high standard of excellence. Three of 
the Stanford faculty physicians would have qualified as experts in the man­
agement of meningitis by the criteria used for the selection of the national 
evaluators. 

Of the five prescribers who never failed to cover a treatable pathogen 
(fourth column of Table 31-1), MYCIN and the faculty prescribers were 
relatively efficient and selective as to choice and number of antibiotics 
prescribed. In contrast, while the actual therapy prescribed by the physi­
cians caring for the patient never failed to cover a treatable pathogen, their 
therapeutic strategy was to prescribe several broad-spectrum antimicro­
bials. In eight cases, the physicians actually caring for the patient pre­
scribed two or three antimicrobials; in six of these eight cases, one or no 
antimicrobial would have sufficed. Overprescribing of antimicrobials is not 
necessarily undesirable, since redundant or ineffective antimicrobial ther­
apy can be discontinued after a pathogen has been identified. However, 
an optimal clinical strategy attempts to limit the number and spectrum of 
antimicrobials prescribed to minimize toxic effects of drugs and superin-
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fection while selecting antimicrobials that will still cover the likely patho­
gens. 

The primary limitation of our investigation is the small number of 
cases studied. This was a practical necessity, since we had to consider the 
time required for the evaluators to analyze 10 complex cases and rate 100 
therapy recommendations. Although only 10 patient histories were used, 
the selection criteria provided for diagnostically diverse and challenging 
cases to evaluate MYCIN's accuracy. The selection of consecutive or ran­
dom cases of meningitis admitted to the hospital might have yielded a 
limited spectrum of meningitis cases that would not have tested fully the 
capabilities of either MYCIN or the Stanford physicians. In addition to 
our evaluation, the program has undergone extensive testing involving 
several hundred cases of retrospective patient histories, prospective patient 
cases, and literature cases of meningitis. These have confirmed its com­
petence in determining the likely identity of the pathogen, selecting an 
effective drug at an appropriate dosage, and recommending further di­
agnostic studies (a capability not evaluated in the current study). 

Because of the diagnostic complexities of the test cases, unanimity in 
all eight ratings in an individual case was difficult to achieve. For example, 
in one case, although the majority of evaluators agreed with MYCIN's 
selection of antituberculous drugs for initial therapy, two evaluators did 
not and rated MYCIN's therapy as not acceptable. Six of the ten test cases 
had negative CSF smears for any organisms, so in these cases antimicrobial 
selection was made on a clinical basis. It is likely that if more routine cases 
had been selected, there would have been greater consensus among eval­
uators. 

The techniques used by MYCIN are derived from a subfield of com­
puter science known as artificial intelligence. It may be useful to analyze 
some of the factors that contributed to the program's strong performance. 
First, the knowledge base is extremely detailed and, for the domain of 
meningitis, is more comprehensive than that of most physicians. The 
knowledge base is derived from clinical experience of infectious disease 
specialists, supplemented by information gathered from several series of 
cases reported in the literature and from hundreds of actual cases in the 
medical records of three hospitals. 

Second, the program is systematic in its approach to diagnosis. A pop­
ular maxim among physicians is "One has to think of the disease to rec­
ognize it." This is not a problem for the program; rare diseases are never 
"forgotten" once information about them has been added to the knowledge 
base, and risk factors for specific meningitides are systematically analyzed. 
For example, the duration of headache and other neurological symptoms 
for one week before hospital admission was a subtle clue in the diagnosis 
of tuberculous meningitis. The program does not overlook relevant data 
but also does not require complete and exact information about the patient. 
For example, in a case involving a patient with several complex medical 
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problems, the presence of purpura on physical examination was an im­
portant finding leading to the diagnosis of meningococcal meningitis. How­
ever, even if the purpura were absent or had been overlooked, MYCIN 
would have treated empirically for meningococcal meningitis on the basis 
of the patient's age and CSF analysis. 

Third, since the program is based on the judgments of experienced 
clinicians, it reflects their understanding of the diagnostic importance of 
various findings. The program does not jump to conclusions on the basis 
of an isolated finding, nor does it neglect to ask for key pieces of infor­
mation. Abnormal findings or test results are interpreted with respect to 
the clinical setting. 

Finally, the system is up to date; frequent additions and modifications 
ensure its currentness. The meningitis knowledge base incorporates infor­
mation from the most recent journal articles and the current experience 
of an infectious diseases division. Therapy selection and dosage calcula­
tions are derived from prescribing recommendations more recent than 
those in any textbook. (This was a factor in a case for which, at the time 
of this study, the recommendation of low-dose amphotericin B therapy 
combined with flucytosine was available only in recent issues of specialty 
journals.) 

Because MYCIN compared favorably with infectious disease experts 
in this study, we believe that it could be a valuable resource for the prac­
ticing physician whose clinical experience for specific infectious diseases 
may be limited. The data demonstrate the program's reliability. However, 
further investigations in a clinical environment are warranted. Questions 
concerning the program's acceptability to practicing physicians and its im­
pact on patient care, as well as issues of cost and legal implications, remain 
to be answered. Other capabilities of MYCIN that may assist the practicing 
physician include the following: 

I. Identifying each of the potential pathogens with an estimate of its like­
lihood in causing the disease (Chapter 5). 

2. Recommending antimicrobial dosages, considering weight, height, sur­
face area, and renal function. Separate dosage regimens are given for 
the neonate, infant, child, and adult. Intrathecal dosage regimens are 
also given (Chapter 19). 

3. Checking for contraindications of specific drugs, including pregnancy, 
liver disease, and age (Chapter 6). 

4. Graphing predicted serum concentrations for aminoglycosides with re­
lation to the expected minimal inhibitory concentration of the organism 
(Chapter 19). 

5. justifying its recommendation in response to queries by the physician 
(Chapter 18). 
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The methodology of the evaluation is of interest because it was de­
veloped in an attempt to analyze clinical decisions for which there is no 
clear right or wrong choice. Since most areas of medicine are characterized 
by a variety of acceptable approaches, even among experts, the technique 
used here may be generally useful in assessing the quality of decision mak­
ing by other computer programs. 



PART ELEVEN 

Designing for Human 
Use 



32 
Human Engineering of 
Medical Expert Systems 

Although we have frequently referred to human engineering issues 
throughout this book and have considered them from the outset in our 
design of MYCIN and its descendents, we have also noted that MYCIN 
was never used routinely in patient-care settings. Yes, the program was able 
to explain its reasoning, and this seemed likely to heighten its acceptability. 
And yes, we spent much time attending to detail so that (a) user aids were 
available at any time through the use of HELP and question mark com­
mands, (b) the system automatically corrected spelling errors when it was 
"obvious" what the user meant, and (c) a physician could enter only the 
first few characters of a response if what was entered uniquely defined the 
intended answer. However, there were still significant barriers that pre­
vented us from undertaking the move to formal implementation. 

Some of these barriers were unrelated to human engineering issues, 
viz., the need for an enhanced knowledge base in other areas of infectious 
disease at a time when both Axline and Yu were departing from Stanford, 
the difficulty of obtaining funding for knowledge base enhancement when 
the program itself had become both large and competent, and our own 
lack of enthusiasm for implementation studies once we had come to iden­
tify some of the computer science inadequacies in MYCIN's design and 
preferred to work on those in a new environment. All of these might have 
been ignored, however, since MYCIN was fully operational and could have 
been tested clinically with relatively little incremental effort. What dis­
suaded us from doing so was the simple fact that we knew the program was 
likely to be unacceptable, for mundane reasons quite separate from its 
excellent decision-making performance. Most of these issues were related 
to logistical and human-engineering problems in the program's introduc­
tion. We have described these pragmatic considerations elsewhere (Short­
liffe, l 982a) and have indicated how they influenced our decision to turn 
our attention to the development of a new system for clinical oncology (see 
Chapter 35). We will briefly summarize these points here. 

First, although there was a demonstrated need for a system like MY­
CI N (see the data on antibiotic use outlined in Chapter 1), we did not feel 
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there was a recognized need on the part of individual practitioners. Most 
physicians seem to be quite satisfied with their criteria for antibiotic selec­
tion, and we were unconvinced that they would be highly motivated to seek 
advice from MYCIN, particularly in light of the other problems noted 
below. 

Our second concern was our inability to integrate MYCIN naturally 
into the daily activities of practitioners. The program required a special 
incremental effort on their part: once they had decided to consider giving 
a patient an antibiotic, it would have been necessary to find an available 
terminal, log on, and then respond to a series of questions (many of which 
were simply transcriptions of lab results already known to be available on 
other computers at Stanford). Linkage of SUMEX (MYCIN's "home" com­
puter) to Stanford lab machines was considered but rejected because of 
lack of resources to do so and the realization that a research machine like 
SUMEX would still have been unable to offer high-quality reliable service 
to physician users. When the machine was heavily loaded, annoying pauses 
between MYCIN's questions were inevitable, and a total consultation could 
have required as long as 30 minutes or an hour. This was clearly unac­
ceptable and would have led to rejection of the system despite its other 
strong features. Slight annoyances, such as the requirement that the phy­
sicians type their answers, would have further alienated users. Adapting 
MYCIN to run on its own machine was an unrealistic answer because of 
the computational resources needed to run a program of that size (at that 
time) and our lack of interest in trying to adapt the code for a non-Interlisp 
environment. 1 

Thus, as of late 1978, MYCIN became a static system, maintained on 
SUMEX for demonstration purposes and for student projects but no 
longer the subject of active research. In addition, in the subsequent five 
years its knowledge base has become rapidly outdated, particularly with 
regard to antimicrobial agents. The "third-generation" cephalosporins 
have been introduced in the intervening years and have had a profound 
effect on antibiotic selection for a number of common problems in infec­
tious disease (because of their broad spectrum and low toxicity relative to 
older agents). This point emphasizes the need for knowledge base main­
tenance mechanisms once expert systems are introduced for routine use 
in dynamic environments, where knowledge may change rapidly over time. 

Even though MYCIN is no longer a subject of active work, the exper­
iments described in this book have been a productive source of new in­
sights. In this final section to the book, we describe related pieces of work 
that show some of the ways in which MYCIN has influenced our research 

1The CONCEN program within DENDRAL had just been recoded from Interlisp to BCPL, 
and we were acutely aware of the manpower investment it took by someone intimately familiar 
with the design and code. This effort could only have been undertaken under the conviction 
that the result would be widely used. 
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activities in the areas of human engineering and user attitudes. Our new 
work on ONCOCIN, for example, has been based on underlying knowl­
edge structures developed for MYCIN but has been augmented and re­
vised extensively because of our desire to overcome the barriers that pre­
vented the clinical implementation of MYCIN. Our attitude on the 
importance of human factors in designing and building expert systems is 
reflected in the title of a recent editorial we prepared on the subject: "Good 
Advice is Not Enough" (Shortliffe, l 982b). 

32.1 The Interface Language for Physicians 

It was never our intention to become enmeshed in the difficult problems 
of understanding unconstrained English. Work in computational linguis­
tics achieved important results during the 1960s and 1970s, but we saw 
the problems as being extremely difficult and were afraid that our progress 
in other areas would be slowed if we became overly involved in building 
language capabilities for MYCIN. We did spend time ensuring that the 
program could express itself in English, but this was not difficult because 
of the stereotypic form of the rules and the power of LISP. We totally 
avoided any need for the program to understand natural language during 
the consultation (depending instead on HOW, WHY, and EXPLAIN com­
mands as described in Chapter 18), but we did build a simple question­
answering (QA) system that was available electively at the end of the advice 
session. Although it was possible to get answers to most questions using 
the QA module, the system was not very robust, and it took new users 
some time to learn how to express themselves so that they would be under­
stood. Once again, the capability that was developed for question answer­
ing (which was borrowed for the TEIRESIAS work; see Chapter 9) was 
greatly facilitated by the highly structured and uniform techniques for 
knowledge representation that we had used. 

It is important to note that our desire to avoid natural language pro­
cessing accounts in large part for the decision to use goal-directed (back­
ward-chained) reasoning in MYCIN. If we had simply allowed the user to 
start a consultation by describing a patient, it would have been necessary 
that MYCIN understand such text descriptions before beginning forward­
chained invocation of rules. By using a backward-chained approach, MY­
CIN controlled the dialogue and therefore could ask specific questions that 
generally required one- or two-word answers. 

From a human-engineering viewpoint, this decision was suboptimal, 
even though, ironically, it was made to avoid language-understanding 
problems that we knew would have annoyed physician users. The problem 
that resulted from having MYCIN control the dialogue was the inability 
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of the user to volunteer information, meaning that he or she had to wait 
for MYCIN to ask about what was known to be a crucial point. Alain 
Bonnet, a postdoctoral fellow from France, was fascinated by this problem 
when he visited our group in the mid-1970s. He decided to look for ways 
in which MYCIN's knawledge structures could be augmented to permit 
volunteered information about a patient at the beginning of a consultation 
session. His work on this subsystem, known as BAOBAB, is described in 
Chapter 33. The complexity of the issues that needed to be addressed in 
building such a capability are clear in that article. Fascinating though the 
work was, BAOBAB never functioned at a performance level sufficiently 
high to justify its incorporation into MYCIN. 

Despite the limitations of its language capabilities, we are generally 
pleased with the ability of MYCIN and the EMYCIN systems to appear to 
converse in English through the use of rather simple techniques of text 
generation and understanding. This conversational appearance of the pro­
gram is due to the combined efforts of several project members and to the 
flexibility of the underlying knowledge structures used. Issues in compu­
tational linguistics in the EMYCIN environment continue to be fruitful 
areas of investigation for student projects. As recently as 1980, a medical 
student and research assistant, Lou Sanner, added code to MYCIN that 
was able to generate prose summaries of patients from our library of old 
cases. His generalized approach to the problem was added to EMYCIN 
and generates prose descriptions of stored cases from any EMYCIN do­
main. An example of one of his MYCIN case translations is shown in Figure 
32-1. 

32.2 Assessing Physicians' Attitudes 

As many of the early papers in this volume indicate, we proceeded through 
the 1970s with the firm conviction that AI techniques offered potential 
solutions to problems that had limited physicians' acceptance of advice­
giving systems. We were especially convinced that explanation capabilities 
were crucial for user acceptance and that this single failing in particular 
largely accounted for the rejection of systems based solely on statistical 
approaches. As is discussed in Chapter 30, we could not prove that expla­
nations would make a difference unless we implemented a consultation 
system in a clinical environment where controlled studies could be under­
taken. Thus we had depended on our intuitions and appealed to others 
to believe in what we felt was an obvious requirement for optimal systems. 

In 1980, however, a combination of events encouraged us to undertake 
a formal analysis of physicians' attitudes. We had toyed with the idea for 
several years but had been discouraged by the time and resources necessary 
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A summary is now being generated: 
[consultation of 7-May-77 6:00PM] 

Pt600 is a 33 year old Caucasian female with clinical evidence 
of otitis media who has neurological signs of 5 hours and symptoms of 1 
day duration. She is febrile and weighs 70 kgm. She has impaired 
renal function. She is 4 + sick (on a scale of 4). The patient is 
thought to have a est infection symptomatic for 1 day. 

TEST RESULTS: 

CBC: 
CSF: 

WBC 
WBC 
glucose 
protein 

recent serum creatinine 1 

25K 
12500 

450 

CULTURES: 

cs! 

When obtained: 

6 hours ago 

DRUGS: 

Erythromycin was started (oral) 30 hours ago. 

25 

PMNS 
PMNS 

85% Bands 
98% 
(blood glucose 140) 

Organisms 

Gramneg rod 
Grampos coccus in pairs 

FIGURE 32-1 Example of a MYCIN case summary. 

12% 

to do such a study well. In August of 1980 Stanford hosted the annual 
Workshop on Artificial Intelligence in Medicine, and we organized a two­
day tutorial program so that local physicians who were interested could 
learn about this emerging discipline. In addition, funding from the Henry 
J. Kaiser Family Foundation allowed us to support a questionnaire-based 
project to assess physicians' attitudes. Finally, a doctoral student in edu­
cational psychology, Randy Teach, joined the project that summer and 
brought with him much-needed skills in the areas of statistics, study design, 
and the use of computer-based statistical packages. 

The resulting study used the physicians who were attending the AIM 
tutorial as subjects, with a control group of M.D.'s drawn from the sur­
rounding community. Chapter 34 summarizes the results and concludes 
with design recommendations derived from the data analysis. The reader 
is referred to that chapter for details; however, it is pertinent to reiterate 
here that a program's ability to give explanations for its reasoning was 
judged to be the single most important requirement for an advice-giving 
system in medicine. This observation accounts for our continued commit­
ment to research on explanation, both in the ONCOCIN program (Lang­
lotz and Shortliffe, 1983) and in current doctoral dissertations from the 
Heuristic Programming Project (Cooper, 1984; Kunz, 1984). Other results 
of the attitude survey reemphasize the importance of human-engineering 
issues (such as ease of use and access) in the design of acceptable consulting 
systems. 
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32.3 Clinical Implementation of an Expert System 

It seems appropriate that we close a book about the MYCIN "experiments" 
with a description of ONCOCIN, MYCIN's most recent descendent. The 
problem domain for this program was selected precisely because it seemed 
to offer an excellent match between the problem-solving task involved and 
the set of pragmatic considerations that we outlined at the beginning of 
this chapter. Chapter 35 describes ONCOCIN's task domain in some detail 
and discusses the knowledge structures and architecture used to heighten 
its clinical effectiveness. However, Chapter 35 does not discuss the logistics 
of implementation that are among the newest lessons learned by our 
group. Thus what follows here is a description of our experience with 
ONCOCIN's implementation. Much of the discussion is drawn from a re­
cent paper written by members of the ONCOCIN project (Bischoff et al., 
1983). The reader may find it useful to study the technical description in 
Chapter 35 before reading this discussion of what has happened since the 
system was introduced for clinical use. 

ONCOCIN assists physicians with the management of patients en­
rolled in experimental plans (called protocols) for treating cancer with 
chemotherapy. The system has been in limited use in the Stanford Oncol­
ogy Clinic since May of 1981. The potential utility of such a system has 
been recognized at several major cancer treatment centers, and other 
groups have been developing systems to assist with similar tasks (Horwitz 
et al., 1980; Blum et al., 1980; Wirtschafter et al., 1980). Since the core of 
knowledge about oncology protocols is defined in protocol documents, the 
domain of cancer chemotherapy has the advantage of having a readily 
available source of structured knowledge of the field. The ongoing involve­
ment of oncologists with ONCOCIN, both as research colleagues and as 
potential users, has provided additional expertise and highly motivated 
collaboration in knowledge base development. We currently have encoded 
the protocols for Hodgkin's disease, non-Hodgkin's lymphoma, breast can­
cer, and oat cell carcinoma of the lung2 and will be adding all of the other 
treatment protocols employed at Stanford. It should be emphasized that 
the resulting computer-based protocols include both the specific rules 
gleaned from the protocol documents and some additional judgmental ex­
pertise from our experts, who have defined the ways in which the system 
ought to respond to unusual or aberrant situations.3 

2The oat cell protocol is the most complex protocol at Stanford. It was implemellled to verify 
that our represemation scheme would apply lo essentially any of the protocols currently in 
use. However, it has not yet been released for routine use, pending its thorough testing. 
:
1In order to design a program that could be operational in the short term, our initial design 
plan was consciously to avoid major theoretical barriers such as management of inexact rea­
soning and generalized methods for temporal reasoning. 
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32.3.1 System Design 

ONCOCIN's system design is a result of the combined efforts of an inter­
disciplinary group of computer scientists, clinicians, statisticians and sup­
port staff, totaling 29 individuals. System design began in July of 1979. 
From the outset, the logistics of how a consultation system could fit into 
the busy oncology clinic were a crucial design consideration; one of our 
first tasks was to study the How of information within the clinic. We asked 
the oncology fellows about their attitudes regarding computers and asked 
them to assess the potential role of such technology in the oncology clinic. 
A Stanford industrial engineer with experience in the area of human fac­
tors was consulted during the iterative phase of interface design. Program­
mers would offer mock demonstrations to those with little or no computer 
expertise. After getting comments and suggestions on the demonstration, 
modifications were made, and a new mock-up was presented. This process 
was repeated until all felt satisfied with the interaction. Design decisions 
of this type were discussed at regular research meetings involving both 
physicians and computer scientists. 

The design of the reasoning program, which is written in Interlisp 
and uses AI representation techniques (see Chapter 35), was affected by 
our desire to create a system that provides rapid response. The original 
ONCOCIN prototype used keyboard-oriented interactive programs bor­
rowed from EMYCIN. As was mentioned earlier in this chapter, we knew 
from our previous work, however, that this type of interaction would be 
too tedious and time-consuming for a busy clinic physician. A physician 
using MYCIN often had to wait while questions were generated and rules 
were tried. The use of the EMYCIN interface, however, enabled us to 
create the program's knowledge base and to evaluate its therapy recom­
mendations while we were concurrently deciding on the interface design. 
The ultimate interface incorporates a fast display program that is separate 
from the AI reasoning program (Gerring et al., 1982). Thus ONCOCIN 
is actually a set of independent programs that run in parallel and com­
municate with each other. 

A m~jor design goal was to have ONCOCIN used directly by physicians 
at the time of a patient's visit to the clinic for chemotherapy. One way to 
encourage physicians' involvement was to make the system easily accessible 
while providing a variety of hard-copy reports that had previously either 
not existed or required manual preparation. A computer-generated sum­
mary sheet is produced in the morning for each scheduled patient enrolled 
in one of the protocols handled by the computer. The summary sheet is 
attached to the patient's chart and serves as a reminder of the patient's 
diagnosis and stage, expected chemotherapy, and any recent abnormal 
laboratory values or toxicities. A centrally located video display terminal is 
used by the oncologist after the patient has been examined. The physician 
interacts with ONCOCIN's high-speed data acquisition program (the In­
ll'rviewer). While the clinician is entering data through the Interviewer, that 
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program is passing pertinent answers to the reasoning program (the Rea­
soner), which uses the current patient data, the past history, and the pro­
tocol assignment to formulate a treatment plan. By the time data entry is 
complete, the Reasoner has generally completed its plan formulation and 
has passed the results back to the Interviewer, which in turn displays the 
recommendation to the user. The physician can then agree with or modify 
the system's treatment recommendation, make adjustments to the labora­
tory and x-ray tests suggested for the patient by ONCOCIN, and end the 
session. Progress notes are produced on a printer near the ONCOCIN 
terminal so they can be easily removed, verified and signed by the physi­
cian, and then placed in the hospital chart. After the session the computer 
also generates an encounter sheet, which lists the tests to be ordered, when 
they should be scheduled, and when the patient should return to the clinic 
for his or her next visit. This information is generated on a second printer 
located at the front desk, where these activities are scheduled. 

The system design attempts to prevent the computer system from 
being perceived as an unwanted intrusion into the clinic. The physician/ 
computer interaction takes the place of a task that the physician would 
otherwise perform by hand (the manual completion of a patient flow sheet) 
and requires only 5 to 7 minutes at the terminal. A training session of 30 
minutes has been adequate for physicians to achieve independent use of 
the system, and the hard-copy reports assist the physicians with their re­
sponsibilities. Because we were eager to make the system as flexible as 
possible and to simulate the freedom of choice available to the physicians 
when they fill out the flow sheets by hand, the program leaves the users 
largely in control of the interaction. Except for the patient's white cell 
count, platelet count, and information about recent radiation therapy (key 
issues in determining appropriate therapy), the physicians may enter what­
ever information they feel is pertinent, leaving some fields blank if they 
wish. An important evaluative issue that we are accordingly investigating 
is whether ONCOCIN encourages more complete and accurate recording 
of the flow sheet data despite the user's ability to skip entries if he or she 
wishes to do so. Users may enter data into the flow sheet format in whatever 
order they prefer, skipping forward or backward and changing current or 
old answers. This approach is radically different from that used in MYCIN 
in that the physician decides what information to enter and the reasoning 
can proceed in a data-directed fashion. Data entry in a flow sheet format 
avoids the problems of natural language understanding that prevented this 
approach in MYCIN. 

32.3.2 Terminal Interface 

The system incorporates a special terminal interface to ensure that a busy 
clinician can find ONCOCIN fast and easy to use, as well as simple to learn. 
The physician interacts with a high-speed (9600 baud) video display ter-
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FIGURE 32-2 ONCOCIN's 21-key pad. 

minal with multiple windows, simulating the appearance of the conven­
tional paper flow sheet. Simulation of the form makes the interaction more 
comfortable and familiar. 

A customized keyboard was designed for data entry. It allows the phy­
sician to enter the flow sheet information using a 21-key pad (Figure 
32-2), which is located to the right of a conventional terminal keyboard. 
We considered light pens and touch screens but felt that they were either 
too expensive or too unreliable at the present time. Furthermore, a simple 
key pad was adequate for our needs. The layout of the key pad is simple 
and self-explanatory. Ten of the keys make up a number pad, which is laid 
out the same way as the numbers on push-button telephones. Our human 
factors consultant recommended this arrangement because we could safely 
assume user experience with push-button telephones, while user experi-
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ence with a calculator-style number pad would be likely to be more limited. 
The other keys on the pad are "Yes" and "No" keys, and cursor control 
keys. The labels on the cursor control keys ~uggest that the user is filling 
in the blanks on a paper form, for example, "Next Blank," "Clear Blank," 
"Jump Ahead," etc. Our human factors consultant suggested using this 
terminology instead of terms including the word "Field" (e.g., "Next 
Field"), which are information-processing terminology and not as intuitive 
for naive computer users. This decision reflects our general effort to avoid 
computer jargon in talking with physicians, printing text on the terminal 
screen, or communicating with them in memos. 

32.3.3 Display Design 

The design of the display is derived from the paper flow sheet used for 
many years for protocol data gathering and analysis. The display screen is 
divided into four sections as indicated in Figure 32-3: 

a. the explanation field, which presents the justification for the recommen­
dation indicated by the user-controlled cursor location (the black block 
in the figure) 

b. the message field, which identifies the patient and provides a region for 
sending pertinent messages from ONCOCIN to the physician 

c. the flow sheet, which displays a region of the conventional hard copy How 
sheet; the display includes columns for past visits, and the physician 
enters data and receives recommendations in the right-hand column 

d. the soft key identifiers, labels that indicate the special functions associated 
with numbered keys across the top of the terminal keyboard 

Note that when the physician is entering patient data, the explanation 
field specifies the range of expected entries for the item with which the 
cursor is aligned. When the system has recommended therapy (as in Figure 
32-3), the explanation field provides a briefjustification of the drug dosage 
indicated by the cursor location. 

32.3.4 Integration into the Clinic 

To make ONCOCIN's integration into the clinic as smooth as possible, we 
scheduled clinic meetings led by the oncology members of our research 
team. At one early meeting to announce that the system would soon be 
available, we gave a system demonstration and held a discussion of our 
project goals. Individual training sessions were then scheduled to teach 
each physician how to use the system. These orientation sessions were brief 
and informative. They stressed that the physician is the ultimate decision 
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maker about the patient's care, and that the computer-based consultant is 
intended to remind the physician about the complex details of the proto­
cols and to collect patient data. Members of our group meet with oncology 
faculty and physicians occasionally to give them progress reports on our 
research. 

We also enlisted the help of a data manager who is responsible for 
training sessions, ensures that on-line patient records are current, and sees 
that the system runs smoothly. The data manager is available whenever 
the system is running in the clinic and offers assistance when necessary. 
This role has proved to be particularly crucial. The data manager is the 
most visible representative of our group in the clinic (other than the col­
laborating oncologists themselves). The person selected for this role there­
fore must be responsible, personable, tactful, intelligent, aware of the sys­
tem's goals and capabilities, and able to communicate effectively with the 
physicians. If the person in this role is unable to satisfy these qualifications, 
he or she can make system use seem difficult, undesirable, and imposing 
to the physician users. 

Integration of the system into the clinic was planned as a gradual 
process. When the system was first released, the program handled a small 
number of patients and protocols. As the program became more familiar 
to the physicians, we added more patients to the system. We are in the 
process of adding new protocols, which in turn will mean additional pa­
tients being handled on the computer. ONCOCIN was initially available 
only three mornings per week. It is now available whenever patients who 
are being followed on the computer are scheduled. This plan for slow 
integration of the system into the clinic has made ONCOCIN's initial re­
lease less disruptive to the clinic routine than it would have been if we had 
attempted to incorporate a comprehensive system that handled all patients 
and protocols from the onset. This method of integration has also allowed 
us to fine-tune our system early in its development, based on responses 
and suggestions from our physician users. 

32.3.5 Responses and Modifications to the System 

After the system's initial release, the data manager and the collaborating 
oncologists collected comments and suggestions from the physicians who 
used the system. We have made numerous program changes in response 
to suggestions for modifications and desirable new features. We have also 
conducted a number of formal studies to evaluate the impact of the system 
on physicians' attitudes, the completeness and accuracy of data collection, 
and the quality of the therapeutic decisions. 

We soon learned that some of our initial design decisions had failed 
to anticipate important physician concerns. For example, if the Reasoner 
needed an answer to a special question not on the regular flow sheet form, 
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our initial approach was to have the Interviewer interrupt data entry to 
request this additional information. The physicians were annoyed by these 
interruptions, so we modified the scheme to insert the question less obtru­
sively on a later section of the flow sheet, and to stop forcing the physician 
to answer such questions. 

Another concern was that ONCOCIN was too stringent about its drug 
dosage recommendations, requesting justifications from the physician even 
for minor changes. We needed to take into account, for example, that a 
different pill size might decrease or increase a dose slightly and yet would 
be preferable for a patient's convenience. We subsequently obtained from 
the oncologists on our team ranges for each chemotherapeutic agent, 
within which any dosage modifications could be considered insignificant. 
Such minor modifications no longer generate requests for justification.4 

We also modified the program to recommend the same dose that the phy­
sician prescribed during a prior visit if that recommendation is within the 
acceptable range calculated by the program. 

Some system users also asked whether the program could generate a 
progress note for the patient's visit. When we developed this feature and 
installed a small printer to prepare these notes in duplicate, use of the 
system was immediately made more desirable because this capability saved 
the physician the time required to dictate a note. This feature also helps 
to encourage the physician to enter relevant data completely and accurately 
because the quality of the resulting progress note is dependent on the data 
entry process. 

When the system was first released, it was available only on the three 
mornings per week when the majority of lymphoma patients were seen 
(the computer, a DEC System 2020, is used at other times by other mem­
bers of our research community). This allowed us to provide rapid re­
sponse time through an arrangement for high-priority use of the com­
puter. Since some lymphoma protocol patients were seen at other times, 
however, there were continuing problems in keeping the computer-based 
files up to date and thus in establishing ONCOCIN's role as a reliable aid 
for the management of that subset of patients. In response to this problem, 
we have made the system available whenever a patient known to the system 
is seen in the clinic. When the physician initiates a consultation, the pro­
gram checks to see if the computer response is likely to be slow and, if so, 
prints out a warning to that effect. The physician may then either abort 
the session or proceed with the anticipation that the interaction will take 
longer than usual. We have found that the physicians understand and 
appreciate this feature and will often continue despite the delays. 

·1Current research is also investigating an adaptation ofONCOCIN's recommendation scheme 
wher·ehy it will cr·itique the physician's own therapy plan and give advice only when specifically 
requested 10 do so (Langlotz and Shortliffe, 1983). 
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32.3.6 Lessons Learned 

It is clear that in order for a computer-based consultant to be effective in 
a clinical setting, the overall system design must take into account both the 
needs of the intended users and the constraints under which they function. 
This is the central theme of the lessons that we have learned from the 
MYCIN and ONCOCIN experiences. The program must be designed to 
satisfy a need for consultation and to provide this assistance in a fast, easy­
to-use, and tactful manner. It should ideally avoid an incremental time 
commitment or an increase in the responsibilities of its users, or they will 
tend to resist its use. We have found that providing extra information­
processing services, such as printing progress notes for the physicians, 
significantly heightens the system's appeal. 

For ONCOCIN to have an effective role as a physician's assistant, pro­
viding both data management functions and consultations on patient treat­
ment, it needs to be part of the daily routine in the clinic. Because of the 
limited number of patients and protocols currently on the system, ON­
COCIN is stiU an exception to the daily routine; this will change as more 
protocols are encoded and the system is transferred to dedicated hardware. 
We are planning to move ONCOCIN to a personal workstation (a LISP 
machine capable of handling large AI programs) so that it will be self­
contained. As it becomes the principal record-keeping system in the on­
cology clinic and enables the oncologists to receive useful advice for essen­
tially all of their patient encounters, ONCOCIN will become successfully 
integrated into the clinic setting. The next stage will be to disseminate the 
system, mounted on single-user workstations, into other settings outside 
Stanford. 

Physician involvement in the design of ONCOCIN has been crucial in 
all aspects of the system development. The collaborating oncologists pro­
vide answers to questions that are unclear from the protocol descriptions, 
evaluate the program's recommendations to ensure they are reasonable, 
offer useful feedback during the development of the user interface, and 
provide advice about how the computer-based consultation system can best 
fit into the clinic setting. Their collaboration and that of the computer 
scientists, medical personnel, and others in our interdisciplinary group (all 
of whom are committed to the creation of a clinically useful consultation 
tool) have combined to create a system for which limited integration into 
a clinical setting has been accomplished. We expect that total integration 
will be feasible within the next few years. 



33 
Strategies for 
Understanding Structured 
English 

Alain Bonnet 

Psychological work on memory, in particular by Bartlett (1932), has led to 
the conclusion that people faced with a new situation use large amounts 
of highly structured knowledge acquired from previous experience. Bart­
lett used the word schema to refer to this phenomenon. Minsky (1975), in 
his famous paper, proposed the notion of a frame as a fundamental struc­
ture used in natural language understanding, as well as in scene analysis. 
I will use the former term in the rest of this chapter, in spite of its general 
connotation. 

The main thesis defended by Bartlett was that the phenomena of 
memorization and remembering are both constructive and selective. The 
hypothesis has more recently been revived by psychologists working on 
discourse structure (Collins, 1978; Bransford and Franks, 1971; Kintsch, 
1976). Various experiments performed on subjects who were told stories 
and then asked to describe what they remembered showed that people not 
only forget facts but add some. Moreover, they are unable to distinguish 
between what they have actually heard and what they have inferred. People 
hearing a story make assumptions, which they might revise or refine as 
more information comes in, either confirmatory or contradictory. Making 
such assumptions entails building (or retrieving) models of the expected 
text contents. A corollary of this process is that if the story adequately fits 
the model people have in mind, the story will be understood more easily. 

Although it is difficult to give a formal definition of what constitutes 
a coherent text, it is an accepted notion that sentences that comprise it are 

This chapter is based on a technical memo (HPP-79-25) from the Heuristic Programming 
Project, lkparlmcnt of Computer Science, Stanford University. Used with permission. 

613 



614 Strategies for Understanding Structured English 

linked by cause-effect relationships, chronological orderings, and the like. 
Flashbacks are not contradictory with coherence, but they can make the 
text more difficult to comprehend. Texts dealing with specific domains 
seem to be structured in terms of topic. Consequently, an important prob­
lem to face is recognizing the different topics and deciding when a shift in 
topic occurs. 

Several frame-based languages, such as KRL (Bobrow and Winograd, 
1977), the "units package" (Stefik, 1979), and FRL (Roberts and Goldstein, 
1977), implement the basic concepts underlying frames, or schemata. A 
schema contains slots. They can be viewed as variables that will be bound 
to data. Each slot contains "facets" (FRL), "aspects" (units package), or 
"descriptors" (KRL), which specify how to fill the slots, for example, spec­
ifying the type of values acceptable (numeric, strings of characters), the 
range of possible values, values to assign by default, or attached procedures 
describing what to do if the slot is filled in (this is a way to make inferences). 
Slots may be organized into hierarchical schemata, in which case values 
may be inherited from one schema to a more specialized one. This hier­
archy and concomitant inheritance avoids any duplication of common 
properties. 

BAOBAB is an experimental natural language interface to the MYCIN 
system and is based on the idea that clusters of topics can be represented 
in framelike structures. Its design has been inspired by observations 
regarding text coherence, shifts in topic, temporal orderings, etc. Figure 
33-1 shows a short dialogue between a physician and the program. The 
English that is generated is somewhat stilted, but its main purpose is to be 
nonambiguous. In this chapter are presented the principles and methods 
that permitted the implementation of a program with these capabilities. 

33 1 Related Work and Goals • 

AI researchers have explored a variety of strategies to recognize shifts in 
topic occurring during dialogues or written texts. One issue faced is the 
necessity to narrow the space of possible referents of a linguistic object by 
focusing at different levels of detail. Thus Grosz (1977) studied the role 
of focus in the interpretation of utterances and its relation to domain 
structure. She used the task structure to resolve definite noun phrases in 
task-oriented dialogues. Sidner ( 1979) extended this work to determine 
the use of focusing in the resolution of pronoun references and other kinds 
of anaphora occurring in dialogues. Rosenberg ( 1977) has studied how 
themes are linked via references in newspaper articles. 

Another m~jor reason for focusing is to avoid combinatorial explosion. 
The fear of such an explosion is mainly motivated by the large number of 
inferences that may be made if all possible frames are activated. In fact, 



I am ready 

•• THIS IS A 26 YEAR OLD MALE PATIENT 

My understanding is: 
The age of the patient is 26 
The sex of the patient is male 

Related Work and Goals 615 

••FIVE DAYS AGO, HE HAD RESPIRATORY-TRACT SYMPTOMS 

What is his name? 

••JO 

My understanding is: 
The name of the patient is Jo 
Respiratory-tract is one of the symptoms that the patient had 

•• A COUPLE OF DAYS BEFORE THE ADMISSION, HE HAD A MALAISE 

Please give me the date of admission 

•• MARCH 12, 1979 

My understanding is: 
The patient was admitted at the hospital 3 days ago 
Malaise is one of the symptoms that the patient had 5 days ago 

FIGURE 33"1 Short sample dialogue. The physician's inputs 
appear in capital letters after the double asterisks. 

some of the frames might rule out others, thus enabling the space of 
possible inferences to be pruned. This issue has also been raised by Char­
niak (1978). Embodying world knowledge in frames (Minsky, 1975) or 
scripts (Abelson, 1973; Schank and Abelson, 1975) led to the development 
of programs that achieved a reasonably deep level of understanding, for 
example, GUS (Bobrow et al., 1977), NUDGE (Goldstein and Roberts, 
1977), FRUMP (De.Jong, 1977) and SAM (Cullingford, 1977). 

BAOBAB and the other programs mentioned so far have a common 
feature: they do not interpret sentences in isolation. Rather, they interpret 
in the context of an ongoing discourse and, hence, use discourse structure. 
BAOBAB also explores issues of (a) what constitutes a model for structured 
texts and (b) how and when topic shifts occur. However, BAOBAB is in­
terested neither in inferring implicit facts that might have occurred tem­
porally between facts explicitly described in a text nor in explaining inten­
tions of characters in stories (main emphases of works using scripts or 
plans). Our program focuses instead on coherence of texts, which is mainly 
a task of detecting anomalies, asking the user to clarify vague pieces of 
information or disappointed expectations, and suggesting omissions. The 
domain of application is patient medical summaries, a kind of text for 
which language-processing research has mainly consisted of filling in for­
matted grids without demanding any interactive behavior (Sager, 1978). 
BAOBAB's objectives are to understand a summary typed in "natural med-
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ical jargon" by a physician and to interact by asking questions or displaying 
what it has understood. 

The program uses a model of the typical structure of medical sum­
maries, which consists of a set of related schemata, described below. 
BAOBAB uses both its medical knowledge and its model of the usual de­
scription of a medical case to interpret the dialogue or the text and to 
produce an internal structure usable by MYCIN. The program then uses 
this information to guide a standard consultation session. 

BAOBAB behaves like a clerk or a medical assistant who knows what 
a physician has to describe and how a malady is ordinarily presented. It 
reacts to violations of the model, such as a description that ignores symp­
toms or that fails to mention results of cultures that have been drawn. It 
does not attempt to use its knowledge to infer any diagnosis but, in certain 
cases, can draw inferences that will facilitate MYCIN's task. BAOBAB uses 
these capabilities to establish relationships between the concepts stated. 
This facilitates interpretations of what is said. For example, BAOBAB 
knows that "semi-coma" refers to the state of consciousness of the patient 
and "hyperthyroidism" to a diagnosis. One use of the program would be 
to allow the physician to volunteer information before or during the con­
sultation. This feature would respond to the common frustration expressed 
by some users who object to having to wait for MYCIN to ask a key question 
before they can tell it about a crucial symptom. 

BAOBAB consists of (a) a parser that maps the surface input into an 
internal representation, (b) a set of schemata that provide a model of the 
kind of information that the program is ready to accept and of the range 
of inferences that it will be able to draw, (c) episode-recognition strategies 
that allow appropriate focusing on particular pieces of the texts, and (d) 
an English-text generator used to display in a nonambiguous fashion what 
has been understood. As described in Chapter 5, this generator was already 
available in MYCIN. The main emphasis here will therefore be on the 
description of schemata and schema-activation strategies. These techniques 
have been successfully implemented, using Interlisp (Teitelman, 1978), in 
a program connected with MYCIN's data base and running on the SUM EX 
computer at Stanford. 

33 2 Schemata and Their Relations • 

Medical summaries can be viewed as sequences of episodes that correspond 
to phrases, sentences, or groups of sentences dealing with a single t:)pic. 
Each such topic may be represented by a schema. Processing and under­
standing a text consist of mapping episodes in the text onto the schemata 
that constitute the model. Matching a schema can be discontinuous; that 
is, two episodes referring to the same schema need not necessarily be jux-
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taposed (they might be separated by an episode referring to another 
schema). We will refer to this phenomenon as a temporary schema-shift. 

A typical scenario is as follows. The medical case is introduced with 
general information, such as the date and the reason for admission to the 
hospital. Then the patient is presented (name, age, ... ). Symptoms (noted 
by the patient) and signs (observed by the physician) are described. A 
physical exam is usually performed, and cultures are taken for which re­
sults are pending or available. The structure of such a text can be captured 
in a sequence of schemata, one of which is shown in Figure 33-2. These 
texts are usually well structured. Redundancies can appear, but discrep­
ancies are rather rare (although they must be detected when they occur). 
Expectations are usually satisfied. 

A typical BAOBAB schema contains domain-specific knowledge and 
resembles a frame (Minsky, 1975) or script (Schank and Abelson, 1975) or 
unit (Stefik, 1979). Relevant slots define expected values, default values, 
and attached procedures. Attributes relating to the same topic are gathered 
into these schemata. There is some overlap between them (such as 
WEIGHT, which can occur in the identification of the patient as well as in 
the results of a physical exam). Each schema contains two types of slots: 
global slots (comments, creation date, author's name, how to recognize the 
schema, what is the preferred position of the schema within summaries) 
and individual slots (which correspond to MYCIN's clinical parameters). 
Each individual slot contains/(1cets specifying how to fill it in or what actions 
to take when it has been filled in (by procedural attachment). 

Global slots are mainly used to decide whether a part of the text being 
analyzed suggests or confirms a schema or how the confirmation of one 
schema causes another one to be abandoned. The slots CONFIRMED-BY 
and SUGGESTED-BY point to lists of slots belonging to the schema. The 
first defines the schema (characteristic slots), whereas the other is nones­
sential for confirming the schema. The slots TERMINATED-BY and 
PREF-FOLLOWED-BY specify relationships of mutual exclusion and par­
tial ordering between schemata. All these slots are described in more detail 
in the section devoted to strategies for activating schemata. Nonglobal slots 
are always attributes grouped within a schema. Each is, in turn, a schema 
whose slots are the facets mentioned above (Roberts and Goldstein, 1977). 

33.2.1 An Example of a Schema 

In the $DESCRIPT schema (Figure 33-2), the first three global slots (AU­
THOR, CREATION-DATE, and COMMENT) are used for documenta­
tion, whereas the next four are used to define strategies for schema-shifts 
(see below). Then six individual slots (corresponding to parameter names) 
define the schema. Each of them is described by subslots, or facets, some 
of which (e.g., EXPECT, TRANS, LEGALVALS, CHECK, PROMPT) al­
ready exist in the structure of MYCIN's knowledge base. Others have been 
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~9~~9fl!~i: 

AUTHOR: BONNET 
CREATION-DATE: OCT-10-78 
COMMENT: Patient identification 
CONFIRMED-BY: (NAME AGE SEX RACE) 
TERMINATED-BY: ($SYMPTOM) 
SUGGESTED-BY: (WEIGHT HEIGHT) 
PREF-FOLLOWED-BY: ($SYMPTOM) 

NAME 

AGE 

SEX 

RACE 

WEIGHT 

HEIGHT 

EXPECT: ANY 
TRANS: ("the name of" ') 
TOBEFILLED: T 
WHENFILLED: DEMONNAME 

EXPECT: POSNUMB 
TRANS: ("the age of" ') 
CHECK: (CHECK VALU 0 100.0 (LIST "Is the patient really" 

VALU "years old?") T) 
TOBEFILLED: T 
WHENFILLED: SETSTATURE 

EXPECT: (MALE FEMALE) 
TRANS: ("the sex of" ') 
TOBEFILLED: T 
WHENFILLED: SEXDEMON 

EXPECT: (CAUCASIAN BLACK ASIAN INDIAN LATINO OTHER) 
TRANS: ("the race of" ') 

EXPECT: POSNUMB 
TRANS: ("the weight of" ') 
CHECK: (CHECK VALU LIGHT HEAVY (LIST "Does the patient 

really weigh" VALU "kilograms?") T) 

EXPECT: POSNUMB 
CHECK: (CHECK VALU SMALL TALL (LIST "Is the patient 

really" VALU "centimeters tall?") T) 

FIGURE 33-2 Schema of a patient description. 

created to allow the program to intervene during the course of the dia­
logue. For example, when the slot TOBEFILLED holds the value T (true), 
it means that the value of the variable must be asked if the physician does 
not provide it. The WHENFILLED feature specifies a procedure to run 
as soon as the slot is filled in. This is the classic way of making inferences. 
For example, SETSTATURE specifies narrower ranges of weight and 
height for a patient according to his or her age. 
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33.2.2 Facets 

ExpPCted and legal values. EXPECT is used for single-valued param­
eters, whereas LEGALVALS is used for multi-valued parameters (see 
Chapter 5). They both give a list of possible values for an attribute. 

Linguistic information. TRANS always contains a phrase in English 
describing the parameter; it is used for generating translations of rules 
and other semantic entities. PROMPT contains a question, in English, that 
asks the user about the corresponding parameter. It is used, in addition to 
the usual way MYCIN asks for information, to clarify a concept recognized 
as "fuzzy." For example, entry of the clause "THE PATIENT DRINKS 6 
CANS OF BEER EVERY MORNING" leads BAOBAB to ask "Is the pa­
tient alcoholic?" since MYCIN has no explicit knowledge about alcoholic 
beverages, but can recognize such keywords as drink or alcohol. CHECK 
contains a question that can be used to request verification whenever a 
value outside the normal range has been given. 

TOBEFILLED. If the TOBEFILLED facet of an attribute is set to T 
(true), it means that the slot has to be filled. Concretely, this means that if 
the slot has not yet been filled when the schema is abandoned, the attached 
request will be carried out. This does not necessarily mean that the param­
eter is essential from a clinical point of view; it may be essential for com­
munication purposes. 

33.2.3 Procedural Attachment 

In BAOBAB, there are two kinds of procedural attachment. The first, 
called WHENFILLED, allows associated actions to be carried out depend­
ing on conditions local to the slot. It is analogous to the "demons" of 
Selfridge ( 1959) or Charniak ( 1972). The second kind of attachment, called 
PREDICATE, is used to specify how to fill a slot and is mentioned last. 
These facets allow BAOBAB to: 

a. Produce inferences. If the attribute of a clause that has just been built has 
an attached procedure, it can trigger the building of another clause; for 
example, INFERFEVER is run as soon as the temperature is known and 
can lead to a clause such as "The patient is not febrile." 

b. Narrow a range of expected values. Consider, for example, the weight of a 
patient. This has a priori limits, by default, of 0 and 120 kilograms. This 
range is narrowed according to the age of the patient as soon as the 
latter is known. 

c. Make predictions. An event like "a lumbar puncture" can cause predic­
tions about "CSF data" (not about their values, but about the fact that 
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they will be mentioned). These predictions will be checked, and appro­
priate questions will be asked if they remain unfulfilled as the dialogue 
proceeds. 

d. Dynamically modify the grammar. A semantic category like <PATIENT> 
can be updated by the name of the patient as soon as it is known. This 
update is done by the procedure DEMONNAME as indicated in Figure 
33-2. 

e. Specify how to fill a slot. Sometimes a procedure expresses the most con­
venient way to match a category. This kind of procedure has been called 
a "servant." For example, the best way to match a <VALUE> is to know 
that it points to its corresponding <ATTRIBUTE>. This is much sim­
pler than examining the list of 500 values in the dictionary. 

33.2.4 Default Values 

BAOBAB distinguishes among three kinds of default values: 

a. Some parameters have default values that are negations of symptoms; 
for example, TEMPERATURE has "98.6 F" as a default value (negation 
of fever), and STATE-OF-CONSCIOUSNESS has "alert" as a default 
value (negation of altered consciousness). 

b. Other parameters depend on the result of a medical exam or procedure, 
and in such cases the default value is simply "unknown." Pointing out 
an unknown value to the physician might remind him or her that the 
procedure has in fact been carried out and that a result should have 
been mentioned. An example of such a default value is that for the 
parameter STATE-OF-CHEST, which depends on an x-ray. 

c. Finally, some parameters inherit a value from another variable; for ex­
ample, the date of a culture might reasonably be the date of admission 
to the hospital (if the infection is not hospital-acquired). 

Note that any default value assumed by the program is explicitly 
stated. This feature allows the user to override the default value when in 
disagreement with it (a mandatory feature because a default value might 
be used later by the consultation program and therefore be taken into 
account in the formation of the diagnosis). 

33 3 The Grammar • 

In a technical domain, where specialists write for specialists, terseness of 
style is widespread (e.g., "T 101.4 rectal"). Thus a syntactic parsing does 
not provide enough additional information to justify its use for text com-
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prehension. Instead, a computer program can use a semantically oriented 
grammar. This grammar makes the parsing process unambiguous and 
therefore efficient. Discussions of this point can be found in Burton (1976) 
and Hendrix ( 1976). 

BAOBAB's parser uses a context-free augmented grammar [cf. the 
augmented transition network of Woods ( 1970)]. A grammar rule specifies 
( l) the syntax, (2) a semantic verification of the parsed tree resulting from 
the syntactic component, and (3) a response expression used to build one 
or several clauses. The grammar is divided into specific and nonspecific 
rules. 

Specific grammar rules are associated with the slots of schemata and 
describe the way these can be mentioned at the surface level. Categories 
used in the rules are things such as <PATIENT>, <SIGN>, and <DI­
AGNOSIS>. This link between the grammar and the schemata provides 
a means to try, by priority, those grammar rules that are appropriate to 
the schema under consideration. Furthermore, it provides a means to post­
pone the risk of combinatorial explosion due to the large number of gram­
mar rules (due to the specificity of the categories used in the productions). 

Nonspecific grammar rules use general concepts such as <ATTRI­
BUTE>, <OBJECT>, and <VALUE>, which are commonly used to rep­
resent knowledge in systems. This kind of rule is general enough to be 
used in other domains; but once the syntax has been recognized, these 
rules must undergo a semantic check in order to verify that, say, values 
and attributes fit together, hence the importance of the augmentation of 
the grammar mentioned above. 

Specific grammar rules enable the system to recognize peculiar con­
structs. For example, "120/98" and "98 F" do not belong to well-known 
syntactic classes but have to be recognized as values for blood pressure and 
temperature. Grammar rules such as 

<VITAL> ---> <BP> <HIGH/LOW> 

<VITAL> ---> <TEMP><TEMPNUM>l<TEMP><NUM>(DEGREES) 

are used to parse "BP 130/94" or "T 98 F." The category <TEMPNUM> 
has an attached procedure, a specific piece of code that recognizes "F" as 
Fahrenheit, detaches it from "98," verifies that 98 is a reasonable value for 
a temperature, and finally returns "98 degrees" as the value of the tem­
perature. 

The following are examples of the "syntax" of purely semantic rules: 

<sentence> ---> <patient> <experience> <symptom> <time> 

<symptom> ---> <modifier> <symptom> 

<patient> ---> patient I <name> 
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<name> ---> (the name of the patient, usually encountered at 
the beginning of the text) 

<experience> ---> complain of I experience I <have> 

<symptom> ---> headache I malaise I chill I ... 
<modifier> ---> severe I painful I ... 

<have> ---> has I had I ... 

<time> ---> <num> <time-unit> ago I on <date> 

<time-unit> ---> day I week I ... 

<num> ---> IJ2l31 ... 
<date> ---> a date recognized by an associated LISP function 

This subset of the grammar enables the program to recognize inputs such 
as the following: 

1. NAPOLEON COMPLAINED OF SEVERE HEADACHE 3 DAYS AGO 
2. BILL EXPERIENCED MALAISE ON SEPT-22-1978 
3. JANE HAD CHILLS ON 10/10178 

Examples of purely syntactic rules are as follows: 

<SENTENCE> ---> <NP> <VP> 

<NP> ---><NOUN> I <ADJ> <NOUN> I <DET> <ADJ> 
<NOUN> I <DET> <NOUN> J ... 

<VP> ---> <VERB> I <VERB> <NP> I <VERB> <PREPP> 

<PREPP>---> <PREP> <NP> 

where <NP> stands for noun phrase, <VP> for verb phrase, <DET> 
for determiner, <PREPP> for prepositional phrase and <PREP> for 
preposition. The set of rules enables the system to recognize input sentence 
1 above (except for the notion of time), as shown in the syntactic tree of 
Figure 33-3. 

When the semantic component interprets such a syntactic tree, it 
checks that <NOUN> is matched by a person (whereas the direct use of 
<PATIENT> would make useless such a verification). Input sentences 
such as the following would thus be rejected: 

4. THE BOAT COMPLAINED OF HEADACHE 
5. BILL COMPLAINED OF A SEVERE LEG 

Numerous systems use a representation based on the notion of object-
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<SENTENCE> 

<NP> <VP> 

~ 
<NOUN> <VERB> <PREPP> 

~ 
<PREP> <NP) 

~ 
<DET> <ADJ> <NOUN> 

NAPOLEON COMPLAINED OF A SEVERE HEADACHE. 

FIGURE 33-3 A conventional syntactic tree. 

attribute-value triples with an optional associated predicate-function. In 
such domains, one can define grammar rules such as: 

<SENTENCE> ---><OBJECT/ATTRIBUTE> <PREDICATE­
FUNCTION> <VALUE> 

<OBJECT/ATTRIBUTE> ---><ATTRIBUTE> OF <OBJECT> I 
<OBJECT> <ATTRIBUTE> 

<OBJECT> ---> PATIENT I CULTURE I ORGANISM I ... 

<ATTRIBUTE> ---> ISATTRIBUTE (attached procedure 
specifying how to recognize an attribute) 

<PREDICATE-FUNCTION> ---> <SAME> I <NOTSAME> I ... 
<SAME> ---> IS I HAS I ... 

<VALUE> ---> ISVALUE (attached procedure specifying how to 
recognize the value of an attribute) 

Such "syntactico"-semantic rules enable the recognition of input sen­
tences such as: 

6. THE TEMPERATURE OF THE PATIENT IS 99 
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7. THE MORPHOLOGY OF THE ORGANISM IS ROD 

The complete form of the <SENTENCE> rule is displayed below. 
The first line is the syntax, the second is the augmentation, and the third 
is the response. CHECKAV (check attribute value) is a function of two 
arguments, <ATTRIBUTE> and <VALUE>, that returns "true" if the 
value matches the attribute, in which case the response expression is pro­
duced; otherwise, the semantic interpretation has failed. 

((<OBJECT/ATTRIBUTE> <PREDICATE-FUNCTION> <VALUE>) 
((CHECKAV <ATTRIBUTE> <VALUE>) 
(LIST <PREDICATE-FUNCTION> <ATTRIBUTE> <VALUE>))) 

It is interesting to note that the predicate function is usually a verb phrase, 
and the <ATTRIBUTE> OF <OBJECT> sequence a noun phrase, as is 
<VALUE>. This means that a syntactic structure is being implicitly used. 

The interpreter progresses in a left-to-right and top-down fashion, 
with backtracking. Whenever a grammar rule is satisfied but a part of the 
input remains to be analyzed, the remaining part is given back to the 
control structure, which then can invoke special processes; for example, a 
conjunction at the head of the remaining input can trigger an attempt to 
resolve it as an elliptical input. Thus in "ENGLISH PEOPLE LOVE 
BLONDS AND DRINK TEA," the second part can be analyzed as "English 
people drink tea." The algorithm implemented for handling elliptical in­
puts has been inspired by LIFER (Hendrix, 1976). When an input fails to 
be recognized, the interpreter assumes that a part of the input is missing 
or implicit, and it looks at the preceding utterance. If parts of the input 
match categories used in the grammar rule satisfied by the earlier input, 
it then assumes that the parts that have no correspondence in the new 
input can be repeated. 

33.4 Schema-Shift Strategies 

A language describing choices between schemata, and therefore schema­
shift strategies, should include an attempt to answer the following ques­
tions: How is a schema focused, confirmed, or abandoned? What are the 
links between schemata (such as exclusive or sequencing relations)? 

33.4.1 Suggest vs. Confirm 

Bullwinkle makes the distinction [Bullwinkle ( 1977); see also Sidner ( 1979)] 
between potential and actual shifts of focus, pointing out that the cues 
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suggesting a new frame must be confirmed by a subsequent statement in 
order to avoid making unnecessary shifts. This phenomenon is handled 
in a different fashion in BAOBAB. Instead of waiting for the suggestion 
to be confirmed, a qualitative distinction is made between the slots of a 
frame. The ones marked as suggesting but not confirming are regarded 
as weak clues and will not lead to a shift of focus, whereas the ones marked 
as confirming (hence suggesting) are sufficiently strong clues to command 
the shift. This distinction can be illustrated by the following two examples: 

I. "The patient was found comatose. She was admitted to the hospital. A 
lumbar puncture was performed. She denied syncope or diplopia ... " 

2. "The patient was found comatose. He was admitted to the hospital. The 
protein from CSF was 58 mg% ... " (CSF = cerebrospinal fluid) 

In Example I, the lumbar puncture suggests CSF results that are not given 
(weak clue). In Example 2, a detail of CSF results (strong clue) is given 
directly ("the protein"). In other words, the physician jumps into detail, 
and the frame is directly confirmed. 

33.4.2 Top-down vs. Bottom-up 

Sometimes the schema is explicitly announced, as in "results of the culture." 
This is a name-driven invocation of the schema. More often, the instantia­
tion of the schema is content-driven. The clues used are the attributes 
associated with the schema, their expected values (if any), and other con­
cepts that might suggest the frame. For example, "skin" is related to "rash," 
which belongs to the physical exam frame. These are indeed very simple 
indices. Research on more sophisticated methods for recognizing the rel­
evant schema, such as discrimination nets, have been suggested (Charniak, 
l 978). 

33.4.3 Termination Conditions 

A simple case in which a schema can be terminated is when all of its slots 
have been filled. This is an ideal situation, but it does not occur very often. 
Another case is when the intervention of a schema implies that another 
schema is out of focus, which could be, but is not necessarily, the result of 
chronological succession. In general, this phenomenon occurs when the 
speaker actually starts the plot after setting the characters of the story. 
There is no standard way to decide when the setting is finished. However, 
as soon as the story actually starts, the setting could be closed and possibly 
completed with default values or with the answers to questions about what­
ever was not clear or omitted. A TERMINATED-BY slot has been created 
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to define which schemata can explicitly terminate others; for example, the 
$SYMPTOM schema usually closes the $DESCRIPT schema (name, age, 
sex, race), as it is very unlikely that the speaker will give the sex of the 
patient in the middle of the description of the symptoms. This fact is due 
to the highly constrained nature of the domain. 

33.4.4 Termination Actions 

When a schema is terminated, the program infers all the default values of 
the unfilled slots. It also checks whether the expectations set during the 
story have been fulfilled. These actions can be performed only when a shift 
has been detected or at the end of the dialogue; otherwise, the program 
might ask too early about information that the user will give later. In the 
case where a schema has been exhausted (all its slots filled), an a priori 
choice with regard to the predicted next schema is made. This choice is 
possible by using a PREFERABLY-FOLLOWED-BY pointer that, in the 
absence of a bottom-up (data-driven) trigger for the next schema, decides 
in a top-down fashion which schema is the most probable to follow at a 
given point. 

33.4.5 Schema-Grammar Links 

Specific grammar rules described earlier are always associated with clinical 
parameters and therefore with schemata. This link is interesting from two 
points of view: 

a. The interpreter takes advantage of this relationship to try specific rules 
in order of decreasing probability of relevance to the schema currently 
in focus. There is no quantitative notion of probability, but the preferred 
sequencing causes the trial according to priority not only of grammar 
rules associated with the activated schema, but also of the ones of the 
preferred successor, in case an unforeseen shift occurs. Rules are reor­
dered whenever a schema-shift occurs, which explains why the more 
disorganized presentations of a text take longer to be parsed. 

b. The parser can examine the content of a schema during the semantic 
interpretation of an input. For example, it can check the correspon­
dence of an attribute and a value. It can also trigger a question whose 
answer is needed to interpret the current input. Therefore, there is a 
two-way connection between schemata and the grammar. This link is 
one of the key ideas underlying the interactive behavior of the program. 
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33.4.6 Comparison with Story-Grammars 

Other methods have been proposed to take advantage of the coherent 
structure of texts. Psychologists and linguists have attempted to draw a 
parallel between the structure linking sentences within a text and the struc­
ture linking words within sentences. The notion of story-grammars, or text­
grammars, grew out of this analogy, leading to the representation as con­
text-free rules of the regularities appearing in such simple texts as fables. 

Rumelhart (1975) describes a story as an introduction followed by 
episodes. An episode is an event followed by a reaction. A reaction is an 
internal response followed by an overt response, etc. A simple observation 
supporting the parallel is that two sentences in sequence usually bear some 
kind of relation to each other (often implicit); otherwise, the juxtaposition 
would be somewhat bizarre. Recognizing a paragraph as a sequence of 
sentences "at a syntactic level" leads to building a tree structure that may 
be further used by a semantic component. 

The limits of the analogy between phrase structure and text structure 
can be easily ascertained. Winograd ( 1977) underlines the limits of a gen­
erative approach by pointing out that "there are interwoven themes and 
changes of scene which create a much more complex structure than can 
be handled with a simple notion of constituency." Furthermore, even if one 
can give an exhaustive list of words satisfying <NOUN>, it is difficult to 
determine how to match a <CONSEQUENCE> or an <OVERT-RE­
SPONSE>. It follows that whether or not the process of a grammar rule 
has been satisfied is not easy to define. Even if we can predict that a de­
terminer will precede an adjective or a noun, it is much more difficult to 
foresee that an emotion will be followed by a reaction, or at least not with 
the same regularity. It also seems that the "syntactic" category of a phrase 
is strongly domain-dependent. A given sentence may be a consequence or a 
reason according to the context. This phenomenon occurs less frequently 
with traditionally syntactic categories. 

In addition, flashbacks are commonly used when people tell stories. 
In particular, a consequence might very well precede an explanation of an 
event. Chronological order is not often respected, as in "Van Gogh had 
difficulties to wake up. He had drunk a lot the night before." Along the 
same lines, elliptical phenomena (incomplete inputs) seem difficult to re­
solve; if one can determine the missing part of a sentence by reference to 
the syntactic structure of the preceding sentence, it is not easy to guess the 
nonstated event that has caused a reaction. The "syntactic" categories of 
text-grammars correspond more or less to schemas. The model defined in 
BAOBAB merely defines a partial ordering, or links of a preferred order­
ing between schemata. It follows that the introduction may be absent or that 
sigm may precede symptoms without the text being regarded as incoherent. 
Violations of the idealistic model only cause requests for clarification or 
additional information. They make the comprehension process more dif­
ficult but do not halt it. 
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33 5 Direction for Future Work • 

The BAOBAB grammar is currently not very large (about 200 rules), and 
only seven schemata have been implemented. In order to be able to parse 
more complicated texts efficiently, ones involving symptoms that might 
imply different infections (with interactions between them), a computer 
program will need more sophisticated clues to determine which schema is 
the most appropriate to apply and in what priority. Furthermore, certain 
concepts are currently ignored because their relevance to medical knowl­
edge is not always straightforward. For example, an infection acquired by 
a member of the patient's family or even the patient's occupation could 
give hints to the physician during the early stages of the diagnostic for­
mulation, but these are not currently used. 

33.6 Sample Sessions 

The following examples demonstrate BAOBAB's capabilities as a natural 
language interface for describing cases to MYCIN. The physician types 
the input in upper case after the double asterisks; BAOBAB's responses 
are in lower case. An actual summary written by a physician has been 
chosen. It is slightly simplified, broken down into inputs, and given as a 
dialogue to facilitate the interactions. A few italicized comments have been 
inserted in parentheses to clarify points. Names of schemata start with the 
symbol$. 

In the first example, the exposition of the summary does not satisfy 
the model (mainly because expectations are not fulfilled), which therefore 
causes interventions from the program. Questions are asked, analogous to 
the way in which MYCI!\i asks them. In the other two examples, the model 
is satisfied; the dialogue follows a normal course. 

33.6.1 First Example 

**A 19 YEAR OLD BOY WITH PETECHIAL RASH, LETHARGY AND POSITIVE 
BRUDZINSKl'S SIGN. 

Patient's name? 

**BILL 

My understanding is: 

(The $DESCRIPT schema has been activated by the beginning of the input. 
Then there is a schema-shift which generates the request for the missing name.) 



The name of the patient is Bill 
The age of the patient is 19 years 
The sex of the patient is male 
Petechial is one of the types of rash which the patient has 
Lethargy is one of the symptoms that the patient had 
Brudzinski is one of the signs that the patient showed 

••HE HAD AN LP 

My understanding is: 
A lumbar puncture has been performed on the patient 

•• BYE 
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(Unfulfilled expectations trigger requests for CSF results.) 

What is the total WBC count of the CSF? 

•• 9500 

What percent of the WBCs in the CSF were polys? 

.. 70 

What is the protein value (mg/100cc) in the CSF? 

•• 32 

What is the glucose value (milligrams percent) in the CSF? 

•• 12 

33.6.2 Second Example 

•• REASONS FOR ADMISSION: CHILLS HEADACHE MALAISE 

So I will expect chill headache malaise as values for symptoms 

••DATE OF ADMISSION: DECEMBER 25 1978 

My understanding is that: 
the patient was admitted at the hospital 4 days ago 

•• HISTORY OF THE PRESENT ILLNESS 

Ok. 

•• PAT IS A 26 YEAR OLD CAUCASIAN FEMALE 

My understanding is that: 
the age of the patient is 26 years 
the race of the patient is Caucasian 
the sex of the patient is female 
the name of the patient is Pat 

•• ONE DAY PRIOR TO ADMISSION SHE EXPERIENCED 
CHILLS AND HEADACHE 

My understanding is that: 
chill is one of the symptoms that the patient had 5 days ago 
headache is one of the symptoms that the patient had 5 days ago 

•• ONE DAY AFTER SHE HAD A MALAISE 

My understanding is that: 

(sets up expectations) 

(announces the $/DENTIFICAT/ON schema) 

(shift to $SYMPTOMS) 

(time inferences) 
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malaise is one of the symptoms that the patient had 4 days ago 

•• A LUMBAR PUNCTURE WAS PERFORMED 

My understanding is that: 
a lumbar puncture has been performed on the patient 

•• SHE DENIED SYNCOPE OR PHOTOPHOBIA 

My understanding is that: 
syncope is not one of the symptoms that the patient had 
photophobia is not one of the symptoms that the patient had 

•• SOCIAL HISTORY: OCCASIONAL ALCOHOL USE 

Do you suspect recent alcoholic history in Pat? 

••NO 

My understanding is that: 
the patient is not an alcoholic 

•• PHYSICAL EXAM 

Ok. 

••WEIGHT 110 POUNDS 

My understanding is that: 
the weight of the patient is 49.9 kgms 

••TEMP 101 DEGREES P 90 BP 110/75 RR 28 

My understanding is that: 
the temperature of the patient is 101 
the pulse of the patient is 90 
the blood pressure of the patient is 110/75 
the respiratory rate of the patient is 28 breaths/minute 

•• SKIN NORMAL 

My understanding is that: 
the patient does not have a rash or cutaneous lesions 

•• NECK: MARKED NUCHAL RIGIDITY 

My understanding is that: 
meningismus is one of the signs that the patient showed 

•• BRUDZINSKl'S SIGN WAS POSITIVE 

My understanding is that: 
Brudzinski is one of the signs that the patient showed 

••LAB DATA 

Ok. 

•• CSF RESULTS 

Ok. 

•• WBC 9500 

My understanding is that: 
the WBC from the CSF is 9500 

••PROTEIN 56 

My understanding is that: 
the CSF protein is 56 

•• GLUCOSE 45 MG% 

My understanding is that: 
the CSF glucose value is 45 

(weak clue to $LABDATA) 

($SYMPTOMS and $SIGNS) 

(clarification) 

(announces $EXAM) 

(leads to a clause via inference) 

(another inference) 

(announces $LABDATA) 

(sets a context) 

(understood in context) 



•• PERIPHERAL CBC 

Ok. 

•• WBC 23.5 

My understanding is that: 
the white count from the patient's peripheral 
CBC (in thousands) is 23.5 

•• THE VALUE OF WBC IS 22.5 

Instead of 23.5 ? 

••YES 

My new understanding is that: The white count from 
the patient's peripheral CBC (in thousands) is 22.5 

••BYE 

I have assumed the following by default: 
the state of consciousness of the patient is alert 
the patient's X-ray is not abnormal 
the patient is not immunosuppressed 
Do you agree? 

•• THE PATIENT IS IMMUNOSUPPRESSED 

My new understanding is that: The patient is immunosuppressed 
Do you agree? 

··YES 

bye. 

33.6.3 Third Example 

•• REASONS FOR ADMISSION: HEADACHE, LETHARGY AND FEVER 

So I will expect HEADACHE LETHARGY FEBRILE as symptoms 

••DATE OF ADMISSION ON MARCH 14 

That was 6 days ago. 
My understanding is 
the patient was admitted at the hospital 6 days ago 

•• BARBARA IS A 3 YAER OLD WHITE FEMALE 

=YEAR 
My understanding is 
the age of the patient is 3 years 
the race of the patient is Caucasian 
the sex of the patient is female 
the name of the patient is Barbara 

•• ONE DAY PRIOR TO ADMISSION, SHE BECAME LETHARGIC 

My understanding is 
lethargy is one of the symptoms that the patient had 7 days ago 
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(sets another context) 

(understood in context) 

(corrects a mistyping) 

(making sure that it was meant) 

(inferences by default) 

(overrides a default value) 

(automatic spelling correction) 

••SHE COMPLAINED OF HEADACHE AND HAD A TEMPERATURE OF 101 DEGREES 

My understanding is 
headache is one of the symptoms that the patient had 
the temperature of the patient is 101 
the patient is febrile 
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•• A PHYSICIAN OBTAINED A COMPLETE BLOOD COUNT 

My understanding is 
the results of a recent CBC of the patient are available 

•• A LUMBAR PUNCTURE WAS PERFORMED 

My understanding is 
a lumbar puncture has been performed on the patient 

•• WEIGHT 39 LBS 

My understanding is 
the weight of the patient is 17.7 kgms 

•• HEIGHT 1.03 METER 

Is the patient really 103.0 centimeters tall? 
(Y or N) ••YES 

(asking for confirmation because that seems tall for 3 years) 

My understanding is 
the height of the patient is 103 ems 

••BP 120/70 P 140 

My understanding is 
the blood pressure of the patient is 120/70 
the pulse of the patient is 140 

••RR 28 T 101 

My understanding is 
the respiratory rate of the patient is 28 

•• SKIN: PETECHIAE ON FACE AND SHOULDERS 

My understanding is 
petechial is one of the types of rash which the patient has 

•• NECK: DEFINITE MENINGISMUS 

My understanding is 
meningismus is one of the signs that the patient showed 

•• LAB DATA: CSF RESULTS 

Ok. 

•• WBC 110 WITH 96% POLYS 

My understanding is 
the WBC from the CSF is 110 
the percent of PMN's in the CSF is 96 

•• PROTEIN 25 MG% AND GLUCOSE 95 

My understanding is 
the CSF protein is 25 
the CSF glucose value is 95 

•• PERIPHERAL CBC 

Ok. 

•• WBC 12300 

(redundancy, the temperature was already known) 

(announces lab results; no clause is built) 

(interpretation in the context of CSF) 

Is the white count from the patient's peripheral CBC (in thousands) really 12300? 

••NO 

Please enter the right value now 

•• 12.3 

My understanding is 

(the physician forgot that a number of thousands was expected) 



the white count from the patient's peripheral CBC (in thousands) is 12.3 

•• WITH 76% POLYS AND 1 % BANDS 

My understanding is 
the percent of PMN's in the CBC is 76 
the percent of peripheral WBC's which are immature in the CBC is 1 

••SIMULTANEOUS BLOOD GLUCOSE: 170 

My understanding is 
the simultaneous blood glucose value is 170 

••BYE 

I have assumed the following by default: 

the state of consciousness of the patient is alert 
the patient has not shown symptoms of mumps 
it is unknown whether the patient's X-ray is abnormal 
the patient does not have a rash or cutaneous lesions 
the patient does not have evidence of ocular nerve dysfunction 
the patient is not an alcoholic 
the patient is not immunosuppressed 
it is unknown whether the patient does have a TB risk factor 
the patient is not a compromised host 
the patient does not live in a crowded environment 
the patient has not been recently exposed to a contagious disease 
the patient has not undergone surgery 
the infection was not acquired while the patient was hospitalized 
the patient has not been seriously burned 
there is not evidence of congenital malformation involving the central nervous system 
the patient is not a diabetic 
the patient is not a premature infant 

Conclusion 633 

it is unknown whether the patient has had an injury or insult to, or defect in the central nervous system 

You can change any of them if you disagree 

•• SHE HAS UNDERGONE SURGERY 

I suppose it should replace the patient has not undergone surgery 
Right? 

••YES 
Ok. 

··GOOD-BYE 

33 7 Conclusion • 

The strategies outlined in this chapter could be applied to a broad range 
of structured texts. The approach rests on the assumption that the texts' 
scenarios can be seen as sequences of episodes, identifiable by the program, 
in order to be integrated into appropriate schemata. Therefore, clustering 
attributes into framelike structures must make sense in the domain of 
application. The episodes could simultaneously refer to several schemata; 
that is, the associated schemata could have slots in common. Furthermore, 
it should be possible to define partial-ordering links between schemata. 
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The relationships could be rather loose, hut the more constrained they are, 
the better this feature would work. 

Expert systems usually need some kind of understanding to commu­
nicate in natural jargorr with their users (expert, consultant, and/or stu­
dent). The technique described here-breaking the knowledge down into 
schemata that correspond to different pieces of texts, associating semantic 
grammar rules with the schemata, and using strategies for recognizing 
episode shifts-should be generally applicable in such domains. 
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An Analysis of Physicians' 
Attitudes 

Randy L. Teach and Edward H. Shortliffe 

Despite the promise of medical computing innovations, many health care 
professionals have expressed skepticism about the computer's role as an 
aid to clinicians. A number of barriers have been noted. For example, 
Friedman and Gustafson ( 1977) have suggested that system designers tend 
to develop systems that are neither convenient for physicians nor respon­
sive to their needs. Glantz ( 1978) has questioned the trade-off in costs and 
benefits for most medical computing applications, including computer­
assisted consultations. Schwartz ( 1970) has noted that physicians are wary 
of formal decision aids because they perceive such tools to be a threat to 
their jobs and to their professional stature. He has also suggested that 
physicians are concerned about their ability to learn how to use computer 
systems (Schwartz, 1979), but that they simultaneously fear the prospect 
of being "left behind" if they fail to keep current. Other observers (Eisen­
berg, 1974; Weizenbaum, 1976) have questioned the role of computers as 
clinical consultation systems, suggesting that computer-based consultants 
may be an inappropriate use of computing technology that will inevitably 
degrade and debase the human function. 

Observations such as these are generally based on personal experience 
without benefit of formal studies of physicians' attitudes. The few available 
studies have sought physicians' opinions regarding computing technology 
in general, but have tended not to specifically examine attitudes regarding 
the clinical introduction of computers. One early study (Mayne et al., 1968) 
found little physician interest or faith in the role of computing technology. 
However, Startsman and Robinson (l 972) and others (Day, 1970; Resnikoff 

This chapter is based on an article originally appearing in Computers in Biomedical Research 
14: 542-558 (December 1981). Copyright© 1981 by Academic Press. All rights reserved. 
Used with permission. 
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et al., 1967) have reported supportive physician attitudes. A follow-up to 
the Startsman and Robinson study by Melhorn and coworkers ( 1979) pro­
duced almost identical results, but also noted that physicians might be 
reluctant to accept the clinical use of computing technology. 

Motivation for the Current Study 

Our study was motivated by the belief that the future of research in medical 
computing, particularly the development of computer-based consultation 
systems, depends on improving our understanding of the needs, expec­
tations and performance demands of clinicians. The previous studies had 
not specifically addressed these issues. Our study used a questionnaire, 
similar in format to the instrument developed by Startsman and Robinson 
( 1972) but different in content. One modification was to limit the scope of 
our survey by focusing only on physicians' attitudes regarding clinical con­
sultation systems. Previous studies had been more general in their focus 
and had surveyed a broader range of opinion. We chose this more limited 
focus because several research groups currently developing medical con­
sultation systems are concentrating on physician users and have recognized 
the need for better information about the concerns and performance de­
mands of clinicians. Another change was the inclusion of statements de­
signed to ascertain the performance capabilities that physicians consider 
necessary for a consultation program to be clinically acceptable. Previous 
studies had not addressed this important aspect. We hoped that with these 
modifications the study would yield results from which guidelines could 
be formulated to help medical computing experts design more acceptable 
clinical consultation systems. 

Relationship Between Physicians' Characteristics and 
Attitudes 

A second objective of the study was to test the common assumption that 
prior experience with computers affects attitudes about the clinical use of 
computing technology. We therefore included measures of both computing 
experience and knowledge of computing concepts in the questionnaire. A 
number of other demographic variables were also included. 

Impact of a Medical Computing Course on Attitudes 

A third objective was to assess the impact of an intensive medical comput­
ing course on physicians' attitudes. The authors of both of the previous 
major studies (Startsman and Robinson, 1972; Melhorn et al., 1979), as 
well as others (Levy, 1977), had speculated that intensive educational ef-
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forts might result in increased acceptance of medical computing by phy­
sicians. Partly to test this assumption, we designed a medical computing 
tutorial and measured its impact on the attitudes of the physician atten­
dees.1 The tutorial faculty consisted of 15 physicians and computer sci­
entists who are active researchers in the development of computer-based 
clinical consultation systems. Presentations encompassed the researcher's 
work, goals, and perspective on the role of computer-assisted decision mak­
ing in clinical medicine. An introductory session was included to introduce 
physicians to general computing concepts and terminology. 

34 1 Methods • 

34.1. l Instrument 

A survey instrument (questionnaire) was developed to measure physicians' 
attitudes regarding computer-based consultation systems. Attitudes were 
measured by the instrument along three dimensions: (1) the acceptability of 
different medical computing applications; (2) expectations about the effect 
of computer-based consultation systems on medicine; and (3) demands re­
garding the performance capabilities of consultation systems. Every effort 
was made to include items representative of the design issues that are 
currently being considered by medical computing experts. We performed 
extensive pilot testing of the questionnaire prior to its use in the study. 

Acceptance was measured by asking physicians about eight real or 
imagined medical computing applications. The applications ranged from 
computer-based medical records to the use of computers as substitutes for 
physicians in underserved areas (Table 34-1). The Expectation- and De­
mand-scales included statements about medical computing, emphasizing 
the potential role of computer-based consultation systems. Each statement 
used a Likert-type scale in which respondents were instructed to mark one 
of five categories: (l) strongly disagree, (2) somewhat disagree, (3) not sure, 
(4) somewhat agree, (5) strongly agree. 

The Expectation-scale (£-scale) included 17 statements and was de­
signed to measure physicians' opinions about how computer-based con­
sultations are likely to affect the practice of medicine (i.e., how computers 
will affect medical practice).2 The Demand-scale (D-scale) of 15 statements 

1The tutorial was offered by the Departments of Medicine and Computer Science at Stanford 
University in August of 1980. It was organized in conjunction with the Sixth Annual Work­
shop 011 Artificial Intelligence in Medicine, which was sponsored by the Division of Research 
Resources of the NI I I. 
~The statements arc shown in 'fable 34-3. For identification purposes in this paper, each is 
identified hy an E followed by a number. The letter E denotes that the statement belongs to 
the Expectation-scale. 



638 An Analysis of Physicians' Attitudes 

sought physicians' opinions regarding the most desirable performance ca­
pabilitien for computer-based consultation systems (i.e., what computers 
should be able to do). 3 The possible range of ratings for statements on both 
the E- and D-scales is - 2 to + 2. On the £-scale a positive rating means 
that respondents felt that the stated effect is not likely to occur, and a 
negative rating means that they felt that the effect is likely. On the D-scale 
a positive rating means that the item was judged to be an important ca­
pability for computer-based clinical systems, and a negative rating means 
that it is judged to be unimportant. 

A set of background questions was also included on the questionnaire. 
These included items about medical specialty, type of practice (academic 
medicine or private practice), number of years since receiving the M.D. 
degree, percentage of time devoted to research, and extent of prior ex­
perience with computers. All questions in this group contained fixed re­
sponse categories. A second set of 22 questions asked respondents to in­
dicate their (self-reported) level of knowledge about computers and 
computer science concepts. 

34.1.2 Participants 

Two samples of physicians were included in the study. One included reg­
istrants for the tutorial mentioned above. The 85 physicians who filled out 
the questionnaire represented 90% of the physicians registered for the 
tutorial. Twenty-nine nonphysician attendees who were engaged in either 
basic medical research or medical computing also returned survey forms. 

By announcing that the course was appropriate for physicians with 
little or no knowledge of medical computing, we hoped to attract a cross 
section of physicians. Although continuing medical education (CME) credit 
was also available, we were aware that the backgrounds and attitudes of 
these physicians might contrast with those who chose not to attend the 
tutorial. Therefore, a second sample of physicians was selected from Stan­
ford Medical School clinical faculty and from Stanford-affiliated physicians 
practicing in the surrounding community. 

34.1.3 Procedure 

The questionnaire was included in the preregistration packet that was 
mailed to all tutorial registrants approximately one month before the 
course. A cover letter asked respondents to complete and return the ques­
tionnaire as soon as possible so that the results could be used to guide the 

3The Demand-scale statements are shown in Table 34-5. Each statement is identified by a D 
followed by a number. 
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speakers' presentations. At the end of the tutorial, participants were asked 
to complete the same questionnaire for a second time. A respondent­
selected code number facilitated matching of pretutorial and posttutorial 
results. To encourage open and unbiased responses, the respondents were 
assured of anonymity. 

The second sample, stratified by medical specialty, was randomly se­
lected from the roster of Stanford Medical School faculty and affiliated 
community physicians. These individuals, 57 faculty members and 92 af­
filiated physicians, received a questionnaire with a cover letter requesting 
their help with the research study and assuring them of anonymity. The 
letter also invited them to participate in the tutorial and instructed them 
to return the registration form instead of the questionnaire if they wished 
to do so. None chose to register.4 A follow-up letter was sent to the entire 
149-member sample three weeks after the original mailing to maximize 
questionnaire return. Sixty-one questionnaires of the original 149 were 
eventually returned (41 %). 

Nonparametric Chi-square analysis was used to compare the tutorial 
and nontutorial samples. Reliability of the attitude scales was determined 
on a subsample of ten subjects (Cronbach, 1970). Internal consistency of 
the scales was calculated by correlating odd and even items and correcting 
the resulting correlations using the Spearman-Brown formula (Cronbach, 
1970). Means and standard deviations were computed for each of the in­
dividual statements included on the three attitude scales. The Expectation­
and Demand-scales were subjected to factor analysis to identify meaningful 
subgroupings of statements. Principal factoring with iteration was em­
ployed (Nie et al., 1975). Simplification of the factor structure was obtained 
by oblique rotation with delta set equal to zero. Analysis of variance was 
used to compare the attitudes of physicians with different backgrounds 
and knowledge of medical computing. Analysis of variance was also used 
to compare pretutorial and posttutorial ratings. 

34 2 Results • 

34.2.l Characteristics of Physicians Studied 

The final sample of 146 physicians included subsamples of 85 tutorial 
participants and 61 physicians who were associated with Stanford Univer­
sity Medical Center but who chose not to participate in the tutorial (control 
group). Of the combined sample, 43% were in medical fields (internal 

·1All r·ecipients had also received an initial announcement for the course several weeks earlier, 
and none had registered in response to the initial mailing. 
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medicine, family practice, pediatrics, general practice), 27% were from 
surgical fields (general surgery, surgical subspecialties, obstetrics/gynecol­
ogy, anesthesiology), and 30% were from other specialties (primarily ra­
diology and pathology). There was no significant difference between the 
two subsamples (Chi-square = 5.16, p > .05). 

Of the combined sample, 44% were academicians, 45% were in private 
practice, and 11 % were Stanford house staff. 5 Differences between the 
subsamples (Chi-square = 6.28, p < .01) were due to the separation of the 
house staff group from the academic subgroup. A separate analysis of 
house staff responses to the questionnaire items revealed that they had 
response patterns almost identical to those of the academicians. Incorpo­
ration of the house staff into the academic category resulted in comparable 
frequencies for the attendees and controls (Chi-square = 4.93, p > .05). 

Of the combined sample, 31 % had fewer than 10 years of experience 
since graduating from medical school, 22% 10 to 20 years, and 4 7% more 
than 20 years. Differences between the attendees and controls were not 
significant (Chi-square = 3.24, p > .20). While 43% of subjects reported 
that they devoted no time to research, 27% devoted less than a third of 
their time, and only 30% devoted more than a third of their time to re­
search. The difference between attendee and control groups was not sig­
nificant (Chi-square = 5.73, p > .05). Finally, 46% reported no computing 
experience, 32% had had some experience (i.e., at least running "canned" 
computer programs), and 22% reported extensive experience including 
the design of computing systems. There was no significant difference be­
tween the tutorial attendees and the controls (Chi-square = 3.17, p > .20). 

34.2.2 Acceptance Ratings 

The options for the Acceptance question are shown in Table 34-1. Physi­
cians had an average Acceptance rating of 5.5 applications' out of the 8 . 
included on the scale. The table shows that support for th~ 5 major ap­
plications exceeded 80% of respondents. 

Medical speciality was the only characteristic that was significantly pre­
dictive of a respondent's Acceptance of computing applications. Table 
34-2 shows that surgeons were less accepting of medical computing appli­
cations than either of the other two subgroups. There was no significant 
difference in the Acceptance rating between tutorial and nontutorial par­
ticipants, private practice and academic physicians, those with several years 
in practice and those who had recently graduated, physicians engaged in 
research and those who were not, or physicians with and without comput­
ing experience. 

''All house-staff subjects were tutorial attendees rather than members of the control group. 



TABLE 34-1 Physicians' Acceptance of Medical Computing Applications 
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TABLE 34-2 Scheffe Comparison of Acceptance 
Ratings for Subgroups of Medical Specialists 

Standard 
Specialty Mean deviation Significance 

l. Medical 6.03 1.55 

2. Surgical 4.35 1.82 
1 vs. 2 ---> p < .01 

3. Other 5.67 1.84 
2 vs. 3 ---> p < .0 l 

~-

Total 5.45 l.84 

34.2.3 Expectation Ratings 

Table 34-3 displays the ratings and standard deviations for each statement 
on the Expectation-scale. The statements are listed in order of their av­
erage ratings, from those outcomes that physicians thought were the most 
likely to occur to those that were expected to occur less frequently. The 
average Expectation rating for physicians was slightly positive (X = .42). 
This was comparable to that of the nonphysician sample, shown in the 
right-hand column. Only 3 of the 17 statements received negative ratings 
(i.e., were judged likely to occur), including fears about the possibility that 
consultation systems will increase government control of medicine, con­
cerns that systems will increase the cost of care, and expectations that pa­
tients will blame the computer program for ineffective treatment decisions. 
On the other hand, physicians felt strongly that consultation systems would 
neither interfere with their efficiency nor force them to adapt their think­
ing to the reasoning process used by the computer program. They also 
felt that the use of consultation systems would not reduce the need for 
either specialists or paramedical personnel. 

Subgroups of physicians displayed significant differences in their Ex­
pectations about how computer-assisted consultations will affect medical 
practice. The means and standard deviations for all the significant findings 
are summarized in Table 34-4. A significance level of .01 was used for each 
analysis in order to maintain an overall significance level of less than .06. 
The Expectations of tutorial registrants were on the average more positive 
than those of the nontutorial group, although neither group thought that 
consultation programs would adversely affect medical practice. Physicians 
in academic settings and those in training indicated overall positive Ex­
pectations, whereas private practice physicians tended to hold slightly neg­
ative Expectations. Young doctors expressed more positive Expectations 
than did physicians with 10 to 20 years of experience, although the recent 
graduates were no more positive than physicians with at least 20 years 
experience. Experience with computers was positively related to Expecta­
tions, as was Knowledge about computing concepts. 
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TABLE 34-3 Means and Standard Deviations (in Parentheses) for Ratings of 
Expectation Statements 

Physicians N onphysicians 
n = 146 n = 29 

El. Will increase government control of -.26 .15 
physicians' practices ( 1.23) (.95) 

E2. Will be blamed by patients for errors in -.23 -.30 
management (1.15) (1.10) 

E3. Will increase the cost of care -.14 .44 
( 1.07) (1.09) 

E4. Will threaten personal and professional .02 .50 
privacy (1.41) (1.45) 

E5. Will result in serious legal and ethical .32 -.04 
problems (e.g., malpractice) ( 1.06) (.98) 

E6. Will threaten the physician's self-image .32 .15 
(l.23) ( 1.0 I) 

E7. Will be hard for physicians to learn .34 .85 
( 1.17) (.95) 

ES. Will result in reliance on cookbook medicine .43 .92 
and diminish judgment ( 1.34) (1.14) 

E9. Will diminish the patient's image of the .45 .74 
physician (l.16) (I.I 0) 

EIO. Will be unreliable because of computer .51 1.07 
"malfunctions" (1.09) (.83) 

El 1. Will dehumanize medical practice .53 1.04 
(l.34) ( 1.09) 

El2. Will depend on knowledge that cannot easily .53 1.00 
be kept up to date (1.20) ( 1.00) 

El3. Will alienate physicians because of electronic .62 .41 
gadgetry (l.03) (1.08) 

El4. Will force physician to think like computer .73 1.19 
(l.15) (l.00) 

El5. Will reduce the need for paraprofessionals .83 .82 
(.91) (1.08) 

El6. Will reduce the need for specialists .99 I.I I 
(1.07) (l.09) 

El7. Will result in less efficient use of physician's 1.05 1.56 
time (.84) (.58) 

Total scale = .42 .68 
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TABLE 34-4 Scheffe Comparisons of Expectations for Physicians with 
Different Characteristics 

Standard 
Characteristic Groups Mean deviation Significance 

Totals .41 .59 

Professional I. Academic .55 .58 I vs. 2 ---> p < .0 I 
orientation 2. Private .22 .59 3 vs. 2 ---> p < .01 

3. Training .64 .48 

Clinical I. < 10 yrs. .59 .52 
experience 2. 10 to 20 yrs. .18 .54 1 vs. 2 ---> p < .01 

3. > 20 yrs. .39 .63 

Computing I. Little or none .24 .62 1 vs. 3 ---> p < .01 
experience 2. Moderate .50 .58 

3. Extensive .63 .47 

34.2.4 Demand Ratings 

Table 34-5 depicts statements on the Demand-scale, ordered from most to 
least important according to the average rating each received. Physicians' 
Demands were significantly less than those of the non physicians, although 
the ranked ordering of each Demand statement was almost the same for 
the two groups. A system's ability to explain its advice was thought to be 
its most important attribute. Second in importance was a system's ability to 
understand and update its own knowledge base. Improving the cost effec­
tiveness of tests and therapies was also important. Physicians did not think 
that a system has to display either perfect diagnostic accuracy or perfect 
treatment planning to be acceptable. On the other hand, they would not 
accept the use of a consultation system as a standard for acceptable medical 
practice, nor would they recommend reducing the amount of technical 
knowledge that physicians have to know just because a consultation system 
is available. The differences found among physician subgroups on the 
Expectation-scale were not evident on the Demand-scale. 

A test-retest reliability coefficient of r = .94 was obtained across two 
administrations of the three scales: Acceptance, Expectations, and De­
mands. The split-half reliability for the D-scale was only r = .70, and that 
of the £-scale was r = .83. These rather modest split-half reliabilities sug­
gested to us that the scales were measuring more than one aspect of phy­
sicians' attitudes. In order to better understand the structure of physicians' 
attitudes measured, these scales were subjected to factor analysis. Five ma­
jor groups of statements (factors) were extracted from the combined scales 
and are described below. Correlations among them were low, ranging from 
.01 to .19, except for Factors 1 and 5, which correlated at .31. The factors 
accounted for 45% of the total variance of the combined scales. 



Results 645 

TABLE 34-5 Means Ratings and Standard Deviations (in Parentheses) for De-
mand Statements 

Physicians N onphysicians 
n = 146 n = 129 

DI. Should be able to explain their diagnostic and 1.42 1.78 
treatment decisions to physician users (.80) (.42) 

02. Should be portable and flexible so that 1.14 1.52 
physician can access them at any time and (.8I) (.5 I) 
place 

03. Should display an understanding of their own .99 1.48 
medical knowledge (.94) (.80) 

04. Should improve the cost efficiency of tests and .85 I.I I 
therapies (.99) (l.58) 

05. Should automatically learn new information .84 1.41 
when interacting with medical experts ( 1.02) (.75) 

06. Should display common sense .75 I.I I 
( 1.20) . (.97) 

D7. Should simulate physicians' thought processes .64 .93 
(l.16) ( 1.07) 

08. Should not reduce the need for specialists .46 .70 
(1.18) ( 1.07) 

09. Should demand little effort from physician to .35 l.19 
learn or use ( 1.20) (.92) 

DIO. Should respond to voice command and not .26 .56 
require typing ( 1.23) (l.05) 

DI l. Should not reduce the need for .26 .85 
paraprofessionals ( 1.06) ( 1.03) 

012. Should significantly reduce amount of -.08 .00 
technical knowledge physician must learn and (1.34) (l.49) 
remember 

013. Should never make an error in treatment -.25 -.22 
planning (1.33) (l.34) 

014. Should never make an incorrect diagnosis -.45 -.26 
(1.31) (l.46) 

DIS. Should become the standard for acceptable -.80 .00 
medical practice ( 1.13) ( 1.07) 

Total scale = .44 .81 
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TABLE 34-6 lntercorrelation of Physicians' Computing 
Knowledge, Acceptance, Expectations, and Demands 

Acceptance 

Knowledge 

Demands 

.27* 

.08 

Expectations .05 

*p < ,001 

Expectations 

.26* 

.26* 

Knowledge 

.27* 

Factor 1 includes statements E7, E8, Ell, El3, and El7 (Table 34-3). 
It relates to Expectations about how physicians might be personally af­
fected by a consultation system. All of these statements received positive 
ratings (i.e., the outcomes were judged to be unlikely) ranging from .34 to 
1.05. Factor loadings for the statements ranged from .43 to .59.6 

Factor 2 includes statements Dl, D2, D3, DS, and D6 from the D-scale 
(Table 34-5). The factor is composed of the performance Demands thought 
by physicians to be the most important. Ratings of the statements ranged 
from . 7 5 to 1.42. Factor loadings for the statements ranged from .41 to 
.65. 

Factor 3 relates to Demands about system accuracy. It includes state­
ments D 13 and D 14, which were rated relatively unimportant by the re­
spondents. Factor loadings were .84 and .89, respectively. 

Factor 4 includes statements from both scales and relates to physicians' 
attitudes regarding the effect of computing systems on the need for health 
care personnel. It includes statements El5, El6, D8, and Dl 1. The factor 
reflects the opinion that consultation systems will not and should not affect 
the need for either specialists or paraprofessionals. 

Factor 5 includes statements El, E4, ES, E6, E8, E9, and El 1 from the 
E-scale. It is similar to Factor 1 because statements E8 and El 1 relate to 
both factors; however, its focus appears to be slightly different. Whereas 
Factor 1 related to the individual practitioner, Factor 5 is concerned with 
the effect of consultation programs on medical practice in general. Factor 
loadings ranged from - . 70 to - .41. 

Nearly the same pattern of differences among physicians was found 
for the factors as was found for the full-scale ratings. Individual differences 
in Expectations on Factors 1 and 5 were related to differences in knowledge 
about computer concepts, experience with computers, time in medical 
practice, professional orientation, and tutorial participation. Individual dif­
ferences were not found on ratings of the other three factors. 

Table 34-6 shows the relationship between the scale ratings and Knowl­
edge about computers and medical computing concepts. Acceptance was 

6 Factor loadings can range from - 1.0 to + 1.0 and indicate the degree of relationship be­
tween each statement and the factor. 
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moderately related to Knowledge, Expectations, and Demands. Knowledge 
was also related to Expectations but not to Demands, and Expectations 
were unrelated to Demands. These results are consistent with the differ­
ences reported above for the analyses of variance. 

34.2.5 Tutorial Findings 

Of the tutorial participants, 50% completed the posttutorial questionnaire. 
The posttutorial sample did not differ from the pretutorial group on any 
of the sample characteristics including medical specialty, professional ori­
entation, years of medical experience, time devoted to research, or com­
puting experience. 

The tutorial affected physicians in two ways. First, it significantly in­
creased their self-reported knowledge about computing concepts from a 
mean of 15.0 concepts to a mean of 25.5 concepts (p < .001). Second, it 
raised the level of their performance Demands from a mean of .44 to a 
mean of .72 (p < .01), although the relative importance of the individual 
statements did not change. Physicians' Expectations did not change overall; 
although Factor 1 did show a slight change in the positive direction (i.e., 
the outcomes were judged less likely than they had been before the course), 
the difference was not enough to be statistically significant. The mean 
posttutorial Acceptance rating of 6.0 was not significantly different from 
the tutorial registrants' pretutorial rating of 5.8. Also, participation in the 
tutorial did not alter the relatively low pretutorial Acceptance ratings of 
the surgical specialists. 

34 3 Discussion • 

The study we have described had three principal goals: (1) to measure 
physicians' attitudes regarding consultation systems, (2) to compare the 
attitudes of subgroups of physicians, including those who chose to attend 
a medical computing tutorial and those who did not, and (3) to assess the 
impact of the continuing education course on the attitudes and knowledge 
of the physicians who enrolled. In this section, we discuss some of the 
results relevant to each of these goals. 

34.3.1 Attitudes of Physicians 

There was no significant difference in demographics or computing knowl­
edge between the tutorial attendees and the control group. The overall 
analysis of physicians' attitudes was therefore based on responses from all 
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physicians surveyed. The respondents were selective in their Acceptance 
of computing applications. Applications that were presented as aids to 
clinical practice were more readily accepted than those that involved the 
automation of clinical activities traditionally performed by physicians 
themselves. The distinction between a clinical aid and a replacement seems 
to be important to physicians and suggests design criteria and preferred 
modes for the introduction of computing innovations. This perspective is 
consistent with historical attitudes regarding the adoption of other kinds 
of technological innovation. For example, computerized axial tomography 
has been widely accepted largely because it functions as a remarkably use­
ful clinical tool, providing physicians with faster and more reliable infor­
mation, but it in no way infringes on the physician's patient-management 
role. In contrast, automated history-taking systems have not received wide­
spread acceptance, despite their accuracy and reliability. We suspect that 
one reason physicians have resisted their use is because they are perceived 
as a threat to a traditional clinical function. 

Some observers have speculated that many physicians oppose com­
puter-based decision aids because they fear a loss of job security and pres­
tige. The study results do not support this viewpoint. The physicians sur­
veyed believe that consultation systems will not reduce the need for either 
specialists or paraprofessionals. Furthermore, they do not feel that either 
a physician's self-image or the respect he or she receives from patients will 
be reduced by the use of this kind of system. They are worried that con­
sultation systems may increase the cost of care, although they believe that 
the programs should be designed to decrease costs. This Expectation may 
reflect past experience with new technologies that have generally increased 
cost, at least initially, but have eventually been accepted because of per­
ceived improvement in patient care. In light of the generally positive Ex­
pectations of physicians, as demonstrated in this study, it is unlikely that 
the acceptance of a medical consultation system will depend solely on its 
ability to reduce the cost of care; the crucial factor, rather, is likely to be 
the system's ability to improve the quality of patient care or to simplify its 
delivery. 

The results from the Demand-scale indicate, however, that for a system 
to improve patient care in an acceptable fashion, it must be perceived as a 
tool that will assist physicians with management decisions. It is clear that 
physicians will reject a system that dogmatically offers advice, even if it has 
impressive diagnostic accuracy and an ability to provide reliable treatment 
plans. Physicians seem to prefer the concept of a system that functions as 
much like a human consultant as possible. 

34.3.2 Comparisons Among Subgroups 

Physicians' Expectations about the effect of computer-assisted consultation 
systems on medical practice were generally positive, although considerable 
differences among physicians were noted. The finding that physicians with 
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prior computing experience have more positive Expectations regarding the 
effects of consultation systems supports the belief of other investigators, 
although even the groups with little or no experience generally had positive 
attitudes. The slightly more positive Expectations of academic physicians 
may be a source of encouragement to medical computing researchers be­
cause this kind of system development typically depends on support from 
the academic community. However, the more negative Expectations of pri­
vate practice physicians and of those who chose not to attend the tutorial 
are worrisome. These groups represent the majority of practitioners in the 
country and are, in particular, the physicians for whom many of the re­
search systems are designed. 7 Furthermore, although many of their con­
cerns, such as worries about increased government control of medical prac­
tice, defy direct attention by the medical computing researcher, an 
increased awareness of them may lead to more sensitive design decisions 
and more tactful introduction of new systems. 

34.3.3 Effect of the Tutorial 

The tutorial experience had a small but significant effect on physicians' 
Demands and also produced a substantial increase in their knowledge 
about computing concepts. The results from the Demand-scale were of 
particular interest. Physicians apparently gained new insights from the 
tutorial into the potential use and capabilities of medical computing and 
increased their performance Demands accordingly. These opinions re­
garding the attributes of acceptable computing systems were surprisingly 
uniform across physician subgroups both before and after the tutorial. Our 
interpretation of this result is that physicians are serious about these De­
mands and that consultation systems are not likely to be clinically effective, 
regardless of the accuracy of their advice, until these capabilities have been 
incorporated. 

On the other hand, the tutorial had no significant effect on physicians' • ., 
Acceptance of computer applications or on their Expectations regarding 
the effect of consultation systems on medical practice. The failure of the 
tutorial to change the Acceptance rating is not surprising because the pre­
tutorial ratings were already very high. It is possible that an expanded set 
of applications on the Acceptance scale, particularly applications that in­
volve the automation of traditional physician functions, would have pro­
duced a different result. Similarly, the Expectations of the tutorial regis­
trants were markedly positive prior to the tutorial and were not 
significantly changed as a result of the course. Before the survey we were 
concerned that the Expectations of the course participants might decline 

i Although our study included physicians with different backgrounds and interests (e.g., med­
ical specialty, time devoted to research), we cannot generalize with certainty from our results 
to the national comnnmity of physicians. Our self-selected tutorial participants were almost 
all academic or academically affiliated, and our nontutorial (control) sample was selected from 
a similar population. 
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on the posttutorial questionnaire; it was possible that the physicians in the 
audience would begin to worry about the effects of certain applications 
after being exposed to the problems and uncertainties experienced by the 
medical computing researchers. Instead, the attendees apparently under­
stood both the potential and the problems associated with designing con­
sultation programs and took a more positive approach by increasing their 
Demands for more humanlike performance from the systems. 

Although physicians with positive Expectations could be distinguished 
from those with negative ones on the basis of their knowledge about com­
puting concepts prior to the tutorial, increasing their knowledge about 
these concepts did not change their Expectations. Since physicians with 
negative Expectations were also the least likely to participate voluntarily in 
our CME program, the effectiveness of CME in increasing the acceptance 
of clinical computing among the most resistant physicians is questionable. 
However, the study results indicate that computing applications have al­
ready obtained a strong core of support among some physicians. This 
support may even be deeper than we had expected because, for the phy­
sicians we surveyed, it extended to the belief that medical computing 
should be considered an area of basic medical research, comparable to 
biochemistry and immunology. In response to a question on this subject 
included at the end of the questionnaire, 7 5% of the pretutorial and control 
group physicians agreed that medical computing should be considered an 
area of basic medical research, and another 14% were undecided. We be­
lieve that this uniformly positive response may have been influenced by 
the administration of the questionnaire, and physicians asked the same 
question without the context provided by the survey instrument might 
respond less favorably. On the other hand, even physicians with minimal 
computing experience seem likely to accept the fundamental research com­
ponent of medical computer science if it is pointed out to them. This 

, suggests a strong educational message that must be conveyed to the medical 
community regarding the research role of the discipline. 

34 4 Recommendations • 

The results of this survey counter the common impression that physicians 
tend to be resistant to the introduction of clinical consultation systems. 
Although we have polled physicians only from the immediate vicinity of 
our medical center, there is no reason to assume that a nationwide survey 
would achieve markedly different results. We have found that a significant 
segment of the medical community believes that assistance from computer­
based consultation systems will ultimately benefit medical practice. How­
ever, a major concern at present is whether system developers can respond 
adequately to physician demands for performance capabilities that extend 
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beyond currently available computer science techniques. In light of these 
results, the following recommendations may be helpful. 

l. Strive to minimize changes to current clinical practices. The system should 
ideally replace some current clinical function, thereby avoiding the need 
for an additive time commitment by the physician. The system should 
ideally be available when and where physicians customarily make de­
c1s1ons. 

2. Concentrate some of the research effort on enhancing the interactive ca­
pabilities of the expert system. The more natural these capabilities, the 
more likely it is that the system will be used. At least four features 
appear to be highly desirable: 

a. Explanation. The system should be able to justify its advice in terms 
that are understandable and persuasive. In addition, it is preferable 
that a system adapt its explanation to the needs and characteristics 
of the user (e.g., demonstrated or assumed level of background 
knowledge in the domain). A system that gives dogmatic advice is 
likely to be rejected. 

b. Common sense. The system should "seem reasonable" as it progresses 
through a problem-solving session. Some researchers argue that the 
program's operation should therefore parallel the physician's reason­
ing processes as much as possible. There is a growing body of knowl­
edge about the psychological underpinnings of medical problem 
solving (Elstein et al., 1978), and systems that draw on these insights 
are likely to find an improved level of acceptance by the medical 
community. 

c. Knowledge representation. The knowledge in the system should be easy 
to bring up to date, and this often seriously constrains the format 
for storing information in the computer. A challenging side issue is 
the automatic "learning" of new knowledge of the domain, either 
through interaction with expert physicians or through "experience" 
once the system is in regular use. 

d. Usability. The system should be easy to learn and largely self-docu­
menting. The mode of interaction may be the key to acceptability, 
and effective methods for understanding text or spoken language 
should dramatically increase the utility of clinical systems. For rou­
tine activities, it is preferable that use of the system be as easy as 
pressing a button. 

3. Recognize that 100% accuracy is neither achievable nor expected. Physicians 
will accept a system that functions at the same level as a human expert, 
as long as the interactive capabilities noted above are a component of 
the consultative process. 

4. Consider carefully the most appropriate criteria for assessing a clinical con­
sultation system. Not all medical computer programs should be judged 
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on the same basis, and cost-effectiveness may appropriately be a sec­
ondary concern when a system can be shown to significantly improve 
the quality of patient care or the efficiency of its delivery. 

5. When designing systems, consider the concerns and demands that physicians 
express about consultation systems. These should be used to guide both 
the development and the implementation of the systems of the future. 
It is increasingly recognized that it takes only one shortcoming to render 
an otherwise well-designed system unacceptable. 

The considerations outlined here place severe demands on current 
computing capabilities. Many of the issues that we have cited, and that 
were included on the Demand-scale in the survey, are capabilities that are 
beyond the current state of the art in computer science. They thus help 
delineate some of the important basic research issues for future work in 
medical computing. 
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This chapter describes an oncology protocol management system, named 
ONCOCIN after its domain of expertise (cancer therapy) and its historical 
debt to MYCIN. The program is actually a set of interrelated subsystems, 
the primary ones being: 1 

1. the Reasoner, a rule-based expert consultant that is the core of the sys­
tem; and 

2. the Interviewer, an interface program that controls a high-speed terminal 
and the interaction with the physicians using the system. 

The Interviewer is described in some detail in Chapter 32. This chapter 
describes the problem domain and the representation and control tech­
niques used by the Reasoner. We also contrast ONCOCIN with EMYCIN 

This chapter is based on an article originally appearing in Proceedings of the Seventh !]CAI, 
1981, pp. 876-881. Used by permission of International Joint Conferences on Artificial 
Intelligence, Inc.; copies of the Proceedings are available from William Kaufmann, Inc., 95 
First Street, Los Altos, CA 94022. 
1 Each program runs in a separate fork under the TENEX or TOPS-20 operating systems, 
thereby approximating a parallel processing system architecture. Another program, the In­
ll'raclor, handles interprocess communication. There is also a process that provides back­
ground utility operations such as file backup. This chapter does not describe these aspects of 
the system design or their implementation. Details are available elsewhere (Gerring et al., 
1982). 
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(Chapter 15), explaining why the EMYCIN formalism was inadequate for 
our purposes, even though it did strongly influence the system's rule-based 
design. 

35 I Overview of the Problem Domain • 

ONCOCIN is designed to assist clinical oncologists in the treatment of 
cancer patients. Because the optimal therapy for most cancers is not yet 
known, clinical oncology research is commonly based on complex formal 
experiments that compare the therapeutic benefits and side effects (tox­
icity) of proposed alternative disease treatments. "Cancer" is a general term 
for many diseases having different prognoses and natural histories. A 
treatment that is effective against one tumor may be ineffective against 
another. Thus a typical cancer research center may conduct many simul­
taneous experiments, each concerned with a different kind of cancer and 
its optimal therapy (i.e., the treatment plan with the best chance of cure, 
remission, or reduction in tumor size and the least chance of serious side 
effects). 

Each of these experiments is termed a protocol. Patients with a given 
tumor must meet certain eligibility criteria before they are accepted for 
treatment on the protocol; ineligible patients are treated in accordance with 
the best state-of-the-art therapy and are therefore not part of a formal 
clinical experiment.2 Patients accepted for protocol treatment, on the other 
hand, are randomly assigned to receive one of two or more possible treat­
ments. The experiment requires close monitoring of each patient's clinical 
response and treatment toxicity. These data are tallied for all patients 
treated under the alternate regimens, and in this way the state of the art 
is updated over time. 

Each protocol is described in a detailed document, often 40 to 60 pages 
in length, which specifies the alternate therapies being compared and the 
data that need to be collected. Therapies may require as many as eight to 
ten drugs, given simultaneously or in sequence, continuously or intermit­
tently. In addition, pharmacologic therapy may be combined with appro­
priate surgery or radiation therapy. No single physician is likely to remem­
ber the details in even one of these protocol documents, not to mention 
the 30 to 60 protocols that may be used in a major cancer center (any one 
of which may be used to guide treatment of the patients under the care 
of a single physician). Although an effort is made to have the documents 
available in the oncology clinics when patients are being treated for their 

2Unfortunately, for many tumors the best state-of-the-art therapy may cause intolerable tox­
icity or be only partially effective. That is why there is a constant search for improved ther­
apeutic plans. 
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tumors, it is often the case that a busy clinic schedule, coupled with a 
complex protocol description, leads a physician to rely on memory when 
deciding on drug doses and laboratory tests. Furthermore, solutions for 
all possible treatment problems cannot be spelled out in protocols. Physi­
cians use their own judgment in treating these patients, resulting in some 
variability in treatment from patient to patient. Thus patients being treated 
on a protocol do not always receive therapy in exactly the manner that the 
experimental design suggests, and the data needed for formal analysis of 
treatment results are not always completely and accurately collected. In 
some cases, patients suffer undue toxicity or are undertreated simply be­
cause protocol details cannot be remembered, located, or are not explicitly 
defined. 

The problems we have described reach far beyond the oncology clinic 
at Stanford Medical Center. There are now several institutions designing 
protocol management systems to make the details of treatment protocols 
readily available to oncologists and to insure that complete and accurate 
data are collected.:{ ONCOCIN is superficially similar to some of the de­
veloping systems, but both its short- and long-term goals are unique in 
ways we describe below. One overriding point requires emphasis: in order 
to achieve its goals, ONCOCIN must be used directly by busy clinicians; 
the implications of this constraint have pervaded all aspects of the system 
design. 

35.2 Research Objectives 

The overall goals of the ONCOCIN project are 

I. to demonstrate that a rule-based consultation system with explanation 
capabilities can be usefully applied and can gain acceptance in a busy 
clinical environment; 

2. to improve the tools currently available, and to develop new tools, for 
building knowledge-based expert systems for medical consultation; and 

3. to establish both an effective relationship with a specific group of phy­
sicians and a scientific foundation, which will together facilitate future 
research and implementation of computer-based tools for clinical de­
cision making. 

:iA memo from the M.l.T. Laboratory for Computer Science (Szolovits, 1979) describes a 
collaboration between M.l.T. and oncologists who have been building a protocol management 
system at Boston University (Horwitz et al., 1980). They are planning to develop a program 
for designing new chemotherapy protocols. To our knowledge, this is the only other project 
that proposes to use Al techniques in a clinical oncology system. However, the stated goals 
of that effort differ from those of ONCOCIN. 
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Hence ONCOCIN's research aims have two parallel thrusts: to per­
form research into the basic scientific issues of applied artificial intelligence, 
and to develop a clinically useful oncology consultation tool. The AI com­
ponent of the work emphasizes the following: 

1. the implementation and evaluation of recently developed techniques 
designed to make computer technology more natural and acceptable to 
physicians; 

2. extension of the methods of rule-based consultation systems so that they 
can interact with a large data base of time-oriented clinical information; 

3. the design of a generalized control structure, separate from the domain 
knowledge, with the hope that the general system can be usefully ap­
plied in other problem areas with similar tasks; 

4. continuation of basic research into mechanisms for making decisions 
based on data trends over time; 

5. the design of a rapid, congenial interface that can bring a high-perfor­
mance AI system to a group of users who are not experienced with AI 
or with computers in general; and 

6. the development of techniques for assessing knowledge base complete­
ness and consistency (see Chapter 8). 

35.3 System Overview 

The ONCOCIN system will eventually contain knowledge about most of 
the protocols in use at the Oncology Clinic at Stanford Medical Center. 
Although protocol knowledge is largely specified in a written document, 
many questions arise in translating the information into a computer-based 
format. Knowledge base development has therefore been dependent on 
the active collaboration of Stanford oncologists. We have started by encod­
ing the knowledge contained in the protocols for treatment of Hodgkin's 
disease and the non-Hodgkin's lymphomas.4 In generating its recommen­
dation, the system uses initial data about the patient's diagnosis, results of 
current laboratory tests, plus the protocol-specific information in its knowl­
edge base. As information is acquired, it is stored on-line in files associated 
with the patient. 

After examining a patient, the physician uses a video display terminal 
to interact with ONCOCIN's data-acquisition program (the Interviewer; 

1We also implemented the complex protocol for treating oat cell carcinoma of the lung. 
Because the oat cell protocol is the most complex at Stanford, and it took only a month to 
encode the relevant rules, we are hopeful that the representation scheme we have devised 
will be able to manage, with only minor modifications, the other protocols we plan to encode 
in the future. 
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FIGURE 35-1 Overview of ONCOCIN. 

see Chapter 32), reviewing time-oriented data from the patient's previous 
visits to the clinic, entering information regarding the current visit, and 
receiving recommendations, generated by the Reasoner, of appropriate 
therapy and tests. The Reasoner and Interviewer are linked with one an­
other as shown in Figure 35-1. Each is able to use a data base of prior 
patient data. In addition, the Reasoner has access to information regarding 
the execution of chemotherapy protocols (control blocks) and specific in­
formation (rules) about the chemotherapy being used to treat the patient. 
Before terminating an interaction, the physician can examine the expla­
nation provided with each recommendation.5 The physician may approve 

''We have chosen a represenlalion that had also facilitated early work to allow ONCOCIN to 
offer a justifica1ion for any intermediary conclusions that the system made in deriving the 
advice (Langlolz and Shortliffe, 1983). 
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or modify ONCOCIN's recommendation; any changes are noted by the 
system and kept available for future review. ONCOCIN also provides hard­
copy backup to complement the on-line interaction and facilitate com­
munication among clinic personnel. 

35 4 The Reasoner • 

35.4.1 Why Not EMYCIN? 

ONCOCIN's Reasoner communicates with the Interviewer during a con­
sultation. Although EMYCIN's interactive routines provided a means for 
us to develop a prototype system quickly, the need to interact eventually 
with a specialized interface program is one of several reasons that we chose 
to build most of ONCOCIN from scratch rather than to implement it as 
a new EMYCIN system (Chapter 15). Other important differences between 
ONCOCIN's application and the domains for which EMYCIN systems have 
been built include the following: 

1. ONCOCIN requires serial consideration of patients at intervals typically 
spread over many months. Each clinic visit is a new data point, and 
conventional EMYCIN context trees and case data tables do not easily 
accommodate multiple measurements of the same attribute over time. 

2. Expert-level advice from ONCOCIN also requires inference rules based 
on assessment of temporal trends for a given parameter.6 Because EMY­
CIN assumes that a consultation is to be given at a single point in time, 
it does not provide a mechanism for assessing trends or interacting with 
a data bank of past information on a case. 

3. ONCOCIN does not require many of the capabilities provided by EMY­
CIN. For example, the simplified interaction mediated through the In­
terviewer allows questions to be answered directly without dealing with 
the complexities of natural language understanding. 

4. Because of the nature of the interaction with the Interviewer, ONCO­
CIN needs to operate in a data-driven mode. Although EMYCIN has 
a limited allowance for forward chaining of rules, it would be incon­
venient to force a largely data-driven reasoning process into the EMY­
CIN format. 

6This same point led to the development of Fagan's VM system (Chapter 22), a rule-based 
program that was influenced by EMYCIN but differed in its detailed implementation because 
of the need to follow trends in patients under treatment in an intensive care unit. The 
development of similar capabilities for ONCOCIN is an active area of research at present. 
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35.4.2 Representation 

Knowledge about the oncology domain is represented using five main data 
structures: contexts, parameters, data blocks, rules, and control blocks. 7 In 
addition, we use a high-level description of each of these structures to serve 
as a template for guiding knowledge acquisition during the definition of 
individual instances. 8 

Contexts represent concepts or entities of the domain about which the 
system needs static knowledge. Individual contexts are classified by type 
(e.g., disease, protocol, or chemotherapy) and can be arranged hierarchi­
cally. During a consultation, a list of "current" contexts is created as infor­
mation is gathered. These current contexts together provide a high-level 
description of the patient in terms of known chemotherapeutic plans. This 
description serves to focus the system's recommendation process. 

Parameters represent the attributes of patients, drugs, tests, etc., that 
are relevant for the protocol management task (e.g., white blood count, 
recommended dose, or whether a patient has had prior radiotherapy). 
Each piece of information accumulated during a consultation is repre­
sented as the value of a parameter. There are three steps in determining 
the value of a parameter. First, the system checks to see if the value can 
be determined by d~finition in the current context. If not, the "normal" 
method of finding the value is used: if the parameter corresponds to a piece 
of laboratory data that the user is likely to know, it is requested from the 
user; otherwise, rules for concluding the parameter are tried. Finally, the 
system may have a (possibly context-dependent) default value that is used 
in the event that the normal mechanism fails to produce a value, or the 
user may be asked to provide the answer as a last resort.9 

Data blocks define logical groupings of related parameters (e.g., initial 
patient data or laboratory test results). A data block directs the system to 
treat related parameters as a unit when requesting their values from the 
Interviewer, storing the values on a patient's file, or retrieving previously 
stored values. 

Rules are the familiar productions used in MYCIN and other rule­
based systems; they may be invoked in either data-driven or goal-directed 
mode. A rule concludes a value for some parameter on the basis of values 
of other parameters. A rule may be designated as providing a definitional 

;There are a few additional data structures designed to coordinate the interaction between 
the Reasoner and the Interviewer. 
8 The knowledge base editor is based on the similar programs designed and implemented for 
EMYCIN. A graphics editor has also been developed for use on the LISP machine worksta­
tions to which we intend to transfer ONCOCIN (Tsuji and Shortliffe, I 983). 
!1This "pure" description of ONCOCIN's technique for assigning values to parameters is 
actually further complicated by the free-form data entry allowed in the Interviewer. The 
details of how this is handled, and the corresponding relationship to control blocks, will not 
be described here. 
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value or a default value as defined above. The rules are categorized by the 
context in which they apply. 

As in EMYCIN systems, rules are represented in a stylized format so 
that they may be translated from Interlisp into English for explanation 
purposes. 10 This representation scheme more generally allows the system 
to "read" and manipulate the rules. It has also facilitated the development 
of programs to check for consistency and completeness of the rules in the 
knowledge base (Chapter 8). 

Below are the English translations of two ONCOCIN rules. Note that 
Rule 78 provides a default value for the parameter "attenuated dose." 11 

RULE075 

To determine the current attenuated dose for all drugs in MOPP or for all drugs in PAVe: 

IF: 1) This is the start of the first cycle after cycle was aborted, and 
2) The blood counts do not warrant dose attenuation 

THEN: Conclude that the current attenuated dose is 75 percent of the previous dose. 

RULE078 

After trying all other methods to determine the current attenuated dose for all drugs: 

IF: The blood counts do warrant dose attenuation 
THEN: Conclude that the current attenuated dose is the previous dose attenuated by the minimum 

of the dose attenuation due to low WBC and the dose attenuation due to low platelets. 

Control blocks serve as high-level descriptions of the system's methods 
for performing tasks. Each contains an ordered set of steps to be used for 
accomplishing a specific task (e.g., formulating a therapeutic regimen or 
calculating the correct dose of a drug). Note that this data structure allows 
us to separate control descriptions explicitly from decision rules, a distinc­
tion that was often unclear in EMYCIN systems. Because we wish to be 
able to explain any action that ONCOCIN takes, control blocks can be 
translated into English using the same translation mechanism that is used 
to translate rules, for example: 

ADVISE 
To make a recommendation about treating the patient: 

1) Formulate a therapeutic regimen. 
2) Determine the tests to recommend. 
3) Determine suggestions about the patient. 
4) Determine the time till the patient's next visit. 

DOSE 
To calculate the correct dosage of the drug: 

1) Determine the current attenuated dose. 
2) Determine the units in which the drug should be measured. 
3) Determine the maximum allowable dose of the drug. 
4) Determine the route of administration. 
5) Determine the number of days for which the drug should be given. 
6) Compute the dose based upon body surface area. 

10In keeping with the philosophy reflected in other systems we have designed, ONCOCIN is 
able to produce natural language explanations for its recommendations. See also the criti­
quing work of Langlotz and Shortliffe ( 1983). 
11 PAVe and MOPP are acronyms for two of the drug combinations used to treat Hodgkins' 
disease. 
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To summarize the differences between ONCOCIN's rules and those 
used in MYCIN and other EMYCIN systems: 

I. Control is separated from domain knowledge, although process infor­
mation is still codified in a modular format using control blocks. 

2. The contextual information, which defines the setting in which a rule 
can be applied, is separated from the main body of the rule and used 
for screening rules when they are invoked (see next section). 

3. Rules are subclassified to distinguish the major mechanisms by which 
the values of parameters can be determined (definitional, normal, and 
default rules). 

35.4.3 Control 

When a user specifies the task that ONCOCIN is to perform, the corre­
sponding control block is invoked. This simply causes the steps in the 
control block to be taken in sequence. These steps may entail the following: 

y 
.~.1 

I. Fetching a data block, either by loading previously stored data or by re­
questing them from the user. This causes parameter values to be set, 
resulting in data-directed invocation of rules that use those parameters 
(and that apply in the current context). 

2. Determining the value of' a parameter. This causes goal-directed invocation 
of the rules that conclude the value of the parameter (and apply in the 
current context). Definitional rules are applied first, then the normal 
rules, and if no value has been found by these means, the default rules 
are tried. If a rule that is invoked in a goal-directed fashion uses some 
parameter whose value is not yet known, that parameter's value is de­
termined so that the rule can be evaluated. In addition, concluding the 
value of any parameter, either by the action of rules or when infor­
mation is entered by the user, may cause data-directed invocation of 
other rules. 

3. Invoking another control block. 

4. Calling a sjJecial-purpose function (which may be domain-dependent). 

The effects of this control mechanism contrast with the largely back­
ward-chained control used in MYCIN and other EMYCIN systems. Figure 
35-2 shows the goal-oriented procedure used in EMYCIN. All invocation 
of rules results because the value of a specific parameter is being sought. 
Rules used to determine the value of that parameter can be referenced in 
any order, although ordering is maintained for the assessment of the pa­
rameters occurring in the conditional statements in each rule's premise. 
Antecedent (data-driven) rules are used when the user's response to a 
question, or (less commonly) the conc;usion from another rule, triggers 
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FC 0 

one of the system's forward-chained rules. These rules can only be used 
as antecedent rules, they typically have single conditions in their premises, 
and repeated forward chaining is permitted only if one rule concludes with 
certainty that the premise of another is true. 

In ONCOCIN (Figure 35-3), on the other hand, initial control is de­
rived from the control block invoked in response to the task selected by 
the user. Forward chaining and backward chaining of rules are intermin­
gled, 12 and any rule can be used in either direction. 

12The broken line in Figure 35-3 outlines the portion of the ONCOCIN control structure 
that is identical to that found in EMYCIN (Figure 35-2). 
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35.5 Why Artificial Intelligence Techniques? 

__ :_j 

We have learned from the MYCIN experience, and in building other EMY­
CIN systems as well, that a major part of each development effort has been 
the encoding of poorly understood knowledge. Enlisting the time and en­
thusiasm of domain experts has often been difficult, yet progress is usually 
impossible without active collaboration. Thus there is great appeal to a 
domain in which much of the needed knowledge is already recorded in 
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thorough, albeit lengthy and complicated, documents (viz., the protocol 
descriptions that are written for every cancer therapy clinical experiment). 
Much of the appeal of the ONCOCIN problem domain is the availability 
of detailed documents that we can study and use for knowledge base de­
velopment. 

As we noted earlier, several other centers have begun to develop pro­
tocol management systems, but none has chosen to use techniques drawn 
from artificial intelligence. Complicated though the chemotherapy proto­
cols may be, they are largely algorithmic, and other groups have been able 
to encode much of the knowledge using less complex representation tech­
niques. Our reasons for choosing an AI approach for encoding the knowl­
edge of oncology chemotherapy are varied. 13 It should be stressed that all 
protocols have important loopholes and exceptions; when an aberrant sit­
uation arises for a patient being treated, the proper management is typi­
cally left unspecified. For example, the lymphoma protocols with which we 
have been most involved to date include several rules of the following form: 

IF: there is evidence of disease extension 
THEN: refer the patient to lymphoma clinic 

IF: there is significant toxicity to vincristine 
THEN: consider substituting velban 

As shown here, the protocols often defer to the opinions of the at­
tending physicians without providing guidelines on which they might base 
their decisions. Hence there is no standardization of responses to unusual 
problems, and the validity of the protocol analysis in these cases is accord­
ingly subject to question. One goal is to develop approaches to these more 
complex problems that characterize the management of patients being 
treated for cancer. It is when these issues are addressed that the need for 
AI techniques is most evident and the task domain begins to look similar 
in complexity to the decision problems in a system like MYCIN. Rules will 
eventually have uncertainty associated with them (we have thus far avoided 
the need for certainty weights in the rules in ONCOCIN), and close col­
laboration with experts has been required in writing new rules that are not 
currently recorded in chemotherapy protocols or elsewhere. In addition, 
however, AI representation and control techniques have already allowed 
us to keep the knowledge base flexible and easily modified. They have also 
allowed us to develop explanation capabilities and to separate kinds of 
knowledge explicitly in terms of their semantic categories (Langlotz and 
Shortliffe, 1983; Tsuji and Shortliffe, 1983). 

13Because we need a high-speed interface to ensure the system's acceptance by physicians, 
we have been forced to design a complex system architecture with asynchronous processes. 
We have also wanted to allow each process to run in whatever computer language seems most 
appropriate for its task. ONCOCIN subprocesses are currently written in Interlisp, SAIL, 
and assembler (Gerring et al., 1982). We have not described the total system or our reasons 
for making these design decisions, but we believe the structure is necessary to achieve accep­
tance of the system in a clinical setting. 
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35 6 Conclusion • 

In summary, the project seeks to identify new techniques for bringing large 
AI programs to a clinical audience that would be intolerant of systems that 
are slow or difficult to use. The design of a novel interface that uses both 
custom hardware and efficient software has heightened the acceptability 
of ONCOCIN. Formal evaluations are underway to allow us to determine 
both the effectiveness and the acceptability of the system's clinical advice. 

For the present we are trying ta build a useful system to which in­
creasingly complex decision rules can be added. We are finding, as ex­
pected, that the encoding of complex knowledge that is not already stated 
explicitly in protocols is arduous and requires an enthusiastic community 
of collaborating physicians. Hence we recognize the importance of one of 
our research goals noted earlier in this report: to establish an effective 
relationship with a specific group of physicians so as to facilitate ongoing 
research and implementation of advanced computer-based clinical tools. 



PART TWELVE 

Conclusions 



36 
Major Lessons from This 
Work 

In this book we have presented experimental evidence at many levels of 
detail for a diverse set of hypotheses. As indicated by the chapter and 
section headings, the major themes of the MYCIN work have many vari­
ations. In this final chapter we will try to summarize the most important 
results of the work presented. This recapitulation of the lessons learned 
should not be taken as a substitute for details in the sections themselves. 
We provide here an abstraction of the details, but hope it also constitutes 
a useful set of lessons on which others can build. The three main sections 
of this chapter will 

• reiterate the main goals that provide the context for the experimental 
work; 

• discuss the experimental results from each of the major parts of the 
book; and 

• summarize the key questions we have been asked, or have asked our­
selves, about the lessons we have learned. 

If we were to try to summarize in one word why MYCIN works as well 
as it does, that word would be flexibility. By that we mean that the designers' 
choices about programming constructs and knowledge structures can be 
revised with relative ease and that the users' interactions with the system 
are not limited to a narrow range in a rigid form. While MYCIN was under 
construction, we tried to keep in mind that the ultimate system would be 
used by many doctors, that the knowledge base would be modified by several 
experts, and that the code itself would be programmed by several program-
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mers. 1 In hindsight, we now see many areas of inflexibility in MYCIN and 
EMYCIN. For example, the knowledge acquisition system in EMYCIN re­
quires that the designer of a new system express taxonomic knowledge in 
a combination of rules and contexts; no facile language is provided for 
talking about such structures. We lose some expressive power because 
MYCIN's2 representation of all knowledge in rules and tables does not 
separate causal links from heuristics. And MYCIN's control structure fore­
closes the possibility of tight control over the sequence of rules and pro­
cedures that should be invoked together. Thus we are recommending that 
the principle of flexibility be pushed even farther than we were able to do 
during the last decade. 

Two important ingredients of a flexible system are sirnplicity and rnod­
ularity. We have discussed the simplicity of both the representation and 
control structure in MYCIN, and the modularity of the knowledge base. 
While simple structures are sometimes frustrating to work with, they do 
allow access from many other programs. For example, explanation and 
knowledge acquisition are greatly facilitated because the rules and back­
ward chaining are syntactically simple (without much additional compli­
cation in their actual implementation). The semantics of the rules also 
appear simple, to users at least, because they have been defined that way 
by persons in the users' own profession. 

The modularity of MYCIN's knowledge representation also contrib­
uted to its success. The rules were meant to be individual chunks of knowl­
edge that could be used, understood, or modified independently of other 
rules. McCarthy, in his paper on the Advice Taker (McCarthy, 1958), set 
as one requirement of machine intelligence that a program be modifiable 
by giving it declarative statements about new facts and relations. It should 
not be necessary to reprogram it. That has been one of the goals of all 
work on knowledge programming, including our own. MYCIN's rules can 
be stated to the rule editor as new relations and are immediately incor­
porated into the definition of the system's behavior. 

Modularity includes separation of individual "chunks" of knowledge 
from one another and from the program that interprets them. But it also 
implies a structuring of the knowledge that allows indexing from many 
perspectives. This facilitates editing, explanation, tutoring, and interpret­
ing the individual chunks in ways that simple separation does not. In the 

1 As mentioned, LISP provided a good starting place for the development of a system like 
MYCIN because its programming constructs need not be fixed in type and size and it allows 
the building of data structures that are executable as code. At the time of system construction, 
a designer often needs to postpone making commitments about data structures, data types, 
sizes of lists, and so forth until experimenting with a running prototype. At the time the 
knowledge base for an expert system is under construction, similar degrees of flexibility are 
required to allow the program to improve incrementally. At the time a system is run, it needs 
flexibility in its I/O handling, for example, to correct mistakes and provide different assistance 
to different users. 
~In much of this chapter, what we say about the design of MYCIN carries over to EMYCIN 
as well. 
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case of MYCIN's rule-based structure, both the elements of data in a rule's 
premises and the elements of the rule's conclusion are separated and in­
dexed. However, it is now clear that more structuring of a knowledge base 
than MYCIN supports will allow indexing chunks of knowledge still fur­
ther, for example to explain the strategies under which rules are inter­
preted or to explain the relationships among premise clauses. 

36 1 Two Sets of Goals • 

It must be emphasized that the MYCIN experiments were inherently in­
terdisciplinary, and we were thus guided by two distinct sets of issues: 
medical goals and artificial intelligence goals. They can be seen as two sides 
of the same coin. We were trying to build an AI system capable of high­
performance problem solving in medicine. Yet each side made its own 
demands, and we were often forced to allocate resources to satisfy one or 
the other set of concerns. 

On the medical side we wanted to demonstrate the sufficiency of sym­
bolic inference rules in medical problems for which statistical and numer­
ical methods had mostly been used previously. We were also trying to find 
methods that would allow programs to focus on therapy, as well as on 
diagnosis. We were explicitly trying to address recognized problems in 
medical practice and found considerable evidence that physicians fre­
quently err in selecting antimicrobial agents. We were trying to develop a 
consultation model with which physicians would be comfortable because it 
mirrored their routine interactions with consultants in practice. And we 
were trying to develop a system that could and would be used in hospitals 
and private practice. 

On the AI side, as we have said, the primary motivation was to explore 
the extent to which rules could be used to achieve expert-level problem 
solving. In DENDRAL, situation-action rules had been used to encode 
much of the program's knowledge about mass spectrometry, but consid­
erably more knowledge resided in LISP procedures. In MYCIN, we wanted 
to use rules exclusively, to see if this could be done in a problem area as 
complex as medicine. The overriding principle guiding us was the belief 
that the flexibility of a program was increased by separating medical knowl­
edge from procedures that manipulate and reason with that knowledge. 
We believed that by making the representation more flexible, it would be 
easier to build more powerful programs in domains where programs grow 
by accretion. 

The previous chapters reflect this duality of goals. It is important to 
recognize the tensions this duality introduced in order to understand ad­
equately both the descriptions of the experimental work in this book and 
the underlying motivations for the individual research efforts. 
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36.2 Experimental Results 

Although we were not always explicitly aware of the hypotheses our work 
was testing, in retrospect a number of results can be stated as consequences 
of the experiments performed. The nature of experiments in AI is not 
well established. Yet, as we said in the preface, an experimental science 
grows by experimentation and analysis of results. The experiments re­
ported here are not nearly as carefully planned as are, for example, clinical 
trials in medicine. However, once some uncharted territory has been ex­
plored, it is possible to review the path taken and the results achieved. 

We have used the phrase "MYCIN-like system" in many places to char­
acterize rule-based expert systems, and we have tried throughout the book 
to say what these are. In summary, then, let us say what we mean by rule­
based systems. They are expert systems whose primary mode of represen­
tation is simple conditional sentences; they are extensions of production 
systems in which the concepts are closer in grain size to concepts used by 
experts than to psychological concepts. Rule-based systems are deductively 
not as powerful as logical theorem-proving programs because their only 
rule of inference is modus ponens and their syntax allows only a subset of 
logically well-formed expressions to be clauses in conditional sentences. 
Their primary distinction from logic-based systems is that rules define facts 
in the context of how they will be used, while expressions in logic-based 
systems are intended to define facts independently of their use. 3 For ex­
ample, the rule A --+ B in a rule-based system asserts only that fact A is 
evidence for fact B. 

Rule-based systems are primarily distinguished from frame-based sys­
tems by their restricted syntax. The emphasis in a rule is on the inferential 
relationship between facts (for example, "A is evidence for B" or "A causes 
B"). In a frame the emphasis is on characterizing concepts by using links 
of many types (including evidential relations). 

Rule-based systems are sometimes characterized as "shallow" reasoning 
systems in which the rules encode no causal knowledge. While this is largely 
(but not entirely) true of MYCIN, it is not a necessary feature of rule-based 
systems. An expert may elucidate the causal mechanisms underlying a set 
of rules by "decompiling" the rules (see Section 29.3.2 for a discussion of 
decompiling the knowledge on which the tetracycline rule is based). The 
difficulties that one encounters with an expanded rule set are knowledge 
engineering difficulties (construction and maintenance of the knowledge 
base) and not primarily difficulties of representation or interpretation. 
However, the causal knowledge thus encoded in an expanded rule set 
would be usable only in the context of the inference chains in which it fits 

3This way of making the distinction was pointed out by John McCarthy in a private com­
munication. 
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and would not be as generally available to all parts of the reasoning system 
as one might like. A circuit diagram and the theoretical knowledge under­
neath it, in contrast, can be used in many different ways. 

Winston ( 1977) summarized the main features of MYCIN as follows: 

1. MYCIN can help physicians diagnose infections. 

2. MYCIN is a backward-chaining deduction system. 

3. MYCIN computes certainty factors. 

4. MYCIN talks with the consulting physician in English. 

5. MYCIN can answer a variety of questions about its knowledge and be­
havior. 

6. MYCIN can assimilate new knowledge interactively. 

While this is a reasonable summary of what the program can do, it stops 
short of analyzing how the main features of MYCIN work or why they do 
not work better. The analysis presented here is an attempt to answer those 
questions. Not all of the experiments have positive results. Some of the 
most interesting results are negative, occasionally counter to our initial 
beliefs. Some experiments were conceived but never carried out. For ex­
ample, although it was explicitly our initial intention to implement and test 
MYCIN on the hospital wards, this experiment was never undertaken. 
Instead the infectious disease knowledge base was laid to rest in 19784 

despite studies demonstrating its excellent decision-making performance. 
This decision reflects the unanticipated lessons regarding clinical imple­
mentation (described in Part Eleven) that would not have been realized 
without the earlier work. 

Finally, a word about the organization of this section on results. We 
have described the lessons mostly from the point of view of what we have 
learned about building an intelligent program. We were looking for ways 
to build a high-performance medical reasoning program, and we made 
many choices in the design of MYCIN to achieve that goal. For the program 
itself, we had to choose ( l) a model of diagnostic reasoning, (2) a repre­
sentation of knowledge, (3) a control structure for using that knowledge, 
and (4) a model of how to tolerate and propagate uncertainty. We also had 
to formulate (5) a methodology for building a knowledge base capable of 
making good judgments. Our working hypothesis, then, was that the 
choices we made were sufficient to build a program whose performance 
was demonstrably good. 5 If we had failed to demonstrate expert-level per­
formance, we would have had reason to believe that one or more of our 
choices had been wrong. In addition, other aspects of the program were 

·1Much of the MYCIN-inspired work reported in this volume was done after this date, how­
ever. 

·5Note that sufficiency is a weak claim. We do not claim that any choice we made is necessary, 
nor do we claim that our choices cannot be improved. 
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also tested: (6) explanation and tutoring, (7) the user interface, (8) vali­
dation, (9) generality, and ( 10) project organization. The following ten 
subsections review these ten aspects of the program and the environment 
in which it was constructed. 

36.2.1 The Problem-Solving Model 

From the point of view of MYCIN's reasoning, the program is best viewed 
as an example of the evidence-gathering paradigm. This can be seen as a form 
of search, in which the generator is not constructing complex hypotheses 
from primitive elements but is looking at items from a predefined list. For 
diagnosis, MYCIN has the names of 120 organisms. (Twenty-five of the 
possible causes are explicitly linked to evidence through rules, the rest can 
be reasoned about through links in tables or links to prior cultures. Prop­
erties of all of them must be known, including their sensitivities to each of 
the drugs.) Logically speaking, MYClN could run down the list one at a 
time and test each hypothesis by asking what evidence there is for or 
against it. This would not produce a pleasing consultation, but it would 
provide the same diagnoses. 

This sort of evidence gathering can be contrasted with heuristic search 
in which a generator of hypotheses defines the search space, as in DEN­
DRAL. It also differs from generate-and-test programs in that hypotheses 
are not considered (or tested) unless there is evidence pointing to them. 

Solutions to problems posed to EMYCIN systems are interpretations 
of the data. EMYCIN implicitly assumes that there is no unique solution 
to a problem, but that the evidence will support several plausible conclu­
sions from a fixed list. (This is partly because of the uncertainty in both 
the data and the rules.) The size of the solution space is thus 2N where N 
is the number of single conclusions on the fixed list. In MYCIN there are 
120 organism names on the list of possible identities. However, it is unlikely 
that more than a half-dozen organism identities will have sufficient evi­
dence to warrant covering for them. If we assume that MYCIN will cover 
for the top six candidate organisms in each case, the number of possible 
combinations6 in a solution is more like 

or about 109 . Obviously, the method of evidence gathering does not gen­
erate all of them. 

6The number of medically meaningful conclusions is actually much fewer because certain 
combinations are implausible or nearly impossible. 
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We have used EMYCIN to build systems in a variety of domains of 
medicine and engineering. An appropriate application of the evidence­
gathering model seems to meet most of the following criteria: 

• a classification problem in which data are explained or "covered" by 
hypotheses from a predefined list; 

• a problem that is partly defined by explaining, once, a snapshot of data 
(as opposed to continuous monitoring problems in which hypotheses are 
revised frequently as more data are collected); 

• a problem of sufficient difficulty that practitioners often turn to text­
books or experts for advice; 

• a problem of sufficient difficulty that experts require time for reason­
ing-their solutions are not instantaneous (but neither do they take doz­
ens of hours); 

• a problem of narrow enough scope that a knowledge base can be built 
and refined in a "reasonable" time (where the resources available and 
the importance of the problem partly define reasonableness); 

• a problem that can be defined in a "closed world," i.e., with a vocabulary 
that covers the problem description space but is still bounded and "rea­
sonably" small. 

Additional characteristics of problems suitable for this kind of solution are 
listed in Section 36.2.9 on the generality of the EMYCIN framework. 

36.2.2 Representation 

One of MYCIN's most encouraging lessons for designers of expert systems 
is the extent to which good perfiJrmance can be attained with the simple 
syntax of fact triples and conditional rules. MYCIN's rules are augmented 
with a context tree around which the dialogue is organized, but other 
EMYCIN systems (e.g., PUFF) use a degenerate tree of only one kind of 
object. Also, many rules were encoded in a "shorthand" form (as entries 
in tables). CF's were added to the simple rule form in MYCIN, but again, 
other EMYCIN systems (e.g., SACON) perform well with categorical rules 
(all CF's = I). For many problems, the simple syntax of fact triples and 
conditional associations among facts is quite appropriate. In Chapter 3 
(Section 3.2) we summarized many additional production system enhance­
ments that were developed for MYCIN. 

On the other hand, our experience using EMYCIN to build several 
expert systems has suggested some negative aspects to using such a simple 
representation for all the knowledge. The associations that are encoded in 
rules are elemental and cannot be further examined (except through the 
symbolic text stored in slots such as JUSTIFICATION or AUTHOR). A 
reasoning program using only homogeneous rules with no internal dis­
tinctions among them thus fails to distinguish among: 
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Chance associations (e.g., proportionally more left-handed than right­
handed persons have been infected by E. coli at our institution) 

Statistical correlations (e.g., meningococcal meningitis outbreaks are corre­
lated with crowded living conditions) 

Heuristics based on experience rather than precise statistical studies (e.g., oral 
administration of drugs is less reliable in children than are injections) 

Causal associations (e.g., streptomycin can cause deafness) 

Definitions (e.g., all E. coli are gram-negative rods) 

Knowledge about structure (e.g., the mouth is connected to the pharynx) 

Taxonomic knowledge (e.g., viral meningitis is a kind of infection) 

The success of MYCIN, which generally does not distinguish among 
these types of associations, demonstrates that it is possible to build a high­
performance program within a sparse representation of homogeneous 
rules (augmented with a few other knowledge structures). Nevertheless, 
limited experience with CENTAUR, WHEEZE, NEOMYCIN, and ON­
COCIN leads us to believe that the tasks of building, maintaining, and 
understanding the knowledge base will be easier if the types of knowledge 
are separated. This becomes especially pertinent during knowledge acqui­
sition (as described in Part Three) and when teaching the knowledge base 
to students (Part Eight). 

Every formalism limits the kinds of things that can be expressed. From 
the start we were trying to balance expressive power against simplicity and 
modularity. As in DENDRAL, in MYCIN we departed from a "pure" pro­
duction rule representation by allowing complex predicates in the left-hand 
sides of rules and complex actions in the right-hand sides. All of the in­
ferential knowledge was still kept in rules, however. Every rule was aug­
mented with additional information, using property lists. We used the 
premise and action properties of rule names for inferential knowledge and 
used the other properties for bookkeeping, literature references, and the 
like.7 Meta-rules can reference the values of any of these slots, to focus 
attention within the backward-chaining flow of control, thereby making it 
more sensitive to global context. 

Many problems require richer distinctions or finer control than 
MYCIN-like rules provide. A more general representation, such as frames, 
allows a system designer to make the description of the world more com­
plex. In frames, for instance, it is easier to express the following: 

7This is the major distinction between our rules and frames. Inference about inheritance of 
values is not handled implicitly in MYCIN, as it would be in a frame-based system, but is 
explicitly dealt with in the action parts of the rules (using the context tree). However, there 
is considerable similarity in the augmented form of MYCIN's rules and frames, and in their 
expressive power. Although frames are typically used to represent single concepts, whereas 
rules represent inferential relationships, the structural similarities between these encoding 
techniques suggest that frame-based and rule-based representations are not a strict 
dichotomy. 
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• Procedural knowledge-sequencing tasks 

• Control knowledge-when to invoke knowledge sources 

• Knowledge of context-the general context in which elements of the 
knowledge base are relevant 

• Inheritance of properties-automatic transfer of values of some slots 
from parent concepts to offspring 

• Distinctions among types of links-parent and offspring concepts may 
be linked as 

o class and instance 

o whole and part 

o set and subset 

The loss of simplicity in the frame representation, however, may complicate 
the inference, explanation, and knowledge acquisition routines. For ex­
ample, inheritance of properties will be handled (and explained) differ­
ently depending on the type of link between parent and offspring concepts. 

There is a trade-off between simplicity and expressive power. A sim­
pler representation is easier to use but constrains the kinds of things a 
system builder might want to say. There is also a trade-off between gen­
erality and the power of knowledge acquisition tools. An unconstrained 
representation may have the expressive power of a programming language 
such as LISP or assembly language, but it can be more difficult to debug. 
There is considerable overlap among the alternative representation meth­
ods, and current work in AI is still experimenting with different ways of 
making this trade-off. 

36.2.3 Control of Inferences 

A strong result from the MYCIN experiment is that simple backward 
chaining (goal-driven reasoning) is adequate for reasoning at the level of 
an expert. As with DENDRAL, it was somewhat surprising that high per­
formance could be achieved with a simple well-known method. The quality 
of performance is the same as (and the line of reasoning logically equiva­
lent to) that of data-driven or other control strategies. The main virtues 
of a goal-driven control strategy are simplicity and ability to focus requests 
for data. It is simple enough to be explained quickly to an expert writing 
rules, so that he or she has a sense of how the rules will be used. And it 
allows explanations of a line of reasoning that are generally easily under­
stood by persons requesting advice. 

Internally, backward chaining is also simple. Rules are checked for 
applicability (i.e., the LHS's are matched against the case data to see if the 
RHS's should be executed) if and only if the RHS's are relevant to the 
subgoal under consideration. Relevance is determined by an index created 
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automatically at the time a rule is created, so rule invocation is highly 
focused. For example, a new rule A ---> B will be added to the UPDATED BY 
list associated with parameter B; then when subgoal B is under consider­
ation only the rules on this list are tried. 

We also needed to focus the dialogue, and we did it by introducing 
the context tree to guide the subgoal selection.8 In addition, we needed to 

overcome some of the sensitivity to the order of clauses in a rule dictating 
the order in which subgoals were pursued and questions were asked. Thus 
the preview mechanism (Chapter 3) was developed to check all clauses of 
a rule to see if any are known to be false before chaining backward on the 
first clause. Once the preview mechanism was implemented, we found we 
could avoid the appearance of stupidity by introducing antecedent rules 
in order to make definitional inferences immediately upon receiving some 
data, for example: 

SEX OF PT IS MALE ---> PREGNANCY OF PT IS NO 

Then, regardless of where a clause about pregnancy occurred in a rule's 
premise, the above antecedent relation would keep the backward-chaining 
control structure from pursuing earlier clauses needlessly for male pa­
tients. Without the antecedent rule, however, nonpregnancy would not be 
known for males until the pregnancy clause caused backward chaining and 
the above relation (as a consequent rule) caused the system to check the 
sex of the patient. Without the preview mechanism, earlier clauses would 
have been pursued (and unnecessary lines of reasoning possibly generated) 
before the relevance of the patient's sex was discovered. 

The main disadvantage of this control strategy is that users cannot 
interrupt to steer the line of reasoning by volunteering new information. 
A user can become frustrated, knowing that the system's present line of 
reasoning will turn out to be fruitless as a result of data that are going to 
be requested later. This human-engineering issue is discussed again in 
Section 36.2.7. 

We carried the idea of separating knowledge from inference proce­
dures a step further when we separated control strategies from the rule 
invocation mechanism. One of the elegant points about this experiment is 
the use of the same rule formalism to encode strategy rules as we use for 
the medical rules, with attendant use of the same explanation procedures. 
In Part Nine we discuss writing meta-rules for controlling inference using 
the same rule formalism, interpreter, and explanation capabilities. There 
is sufficient generality in this formalism to support meta-level reasoning, 
as well as meta-meta-level reasoning and beyond. We needed to add some 
new predicates to talk about rules and rule sets. And we needed one change 
in the interpreter to check for higher-level rules before executing rules 

8 Recall that the context tree was introduced for two other reasons as well: to allow MYCIN 
to keep track of multiple instances of the same kind of object, and to allow the program to 
understand hierarchical relationships among entities. 
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applicable to a subgoal. We did not experiment enough with meta-rules to 
determine how much expressive power they offer. However, both CEN­
TAUR and NEOMYCIN give some indication of the control and strategy 
knowledge we need in medical domains, some of which appears difficult 
to represent in meta-rules because we lack a rich vocabulary for talking 
about sequences of tasks. Although meta-rules were designed to prune or 
reorder the set of rules gathered up by the backward-chaining control 
routine, their implementation is clean because they reference rules at the 
next lower level by content and not by name; i.e., they do not require 
specification of an explicit sequence of rules to be invoked in order (e.g., 
Rule 50 then Rule 71 then Rule 39). 

Meta-rules allow separation of types of knowledge in ways that are 
difficult to capture in medical rules alone. Some diagnostic strategies were 
initially built into the inference procedure, such as exhaustive invocation 
of rules-an inherently cautious strategy that is appropriate for this med­
ical context but not for all. Sometimes, though, we wanted MYCIN to be 
more sensitive to context; the age of the patient, for example, may indicate 
that some rules can be ignored.9 Meta-rules work because they can examine 
the contents of rules at the next lower level and reason about them. This 
is part of the benefit of the flexibility provided by LISP and the simplicity 
of the rule syntax. 

We have little actual experience with meta-rules in MYCIN, however. 
Because of the cautious strategy of invoking all relevant rules, we found 
few opportunities for using them. The one or two meta-rules that made 
good medical sense could be "compiled out" by moving their contents into 
the rules themselves. For example, "do rules of type A before those of type 
B" can be accomplished by manually ordering rules on the UPDATEDBY 
list or manually ordering clauses in rules. The system overhead of deter­
mining whether there are any meta-rules to guide rule invocation is a high 
price to pay if all of the rules will be invoked anyway. So, although their 
potential power for control was demonstrated, their actual utility is being 
assessed in subsequent ongoing work such as NEOMYCIN (Clancey, 1983). 

36.2.4 Inexact Inference 

MYCIN is known partly for its model of inexact inference (the CF model), 
a one-number calculus for propagating uncertainty through several levels 
of inference from data to hypotheses. MYCIN's performance shows that, 
for some problems at least, degrees of evidential support can be captured 
adequately in a single number, 10 and a one-number calculus can be devised 

9This was not done with meta-rules, however, because it could easily be handled by the 
preview mechanism and judicious use of screening clauses. 
10 Although the CF model was originally based on separate concepts of belief and disbelief 
(as defined for MB and MD in Chapter 11), recall that even then the net belief is reflected 
in a single number and only one number is associated with each inferential rule. 
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to propagate uncertainty. The one number we actually use is a combination 
of disparate factors, most importantly strength of inference and utility 
considerations. Theoretically, it would have made good sense to keep those 
separate. Heuristically and pragmatically, we were unable to acquire as 
many separate numbers as we would have needed for Bayesian probability 
calculations followed by calculations of expected values (utilities) associated 
with actions and outcomes. 

The CF in a rule measures the increased strength of the conclusion. In 
effect, we asked the medical experts "How much more strongly do you 
believe the conclusion h after you know the premises e are true than you 
did before?" If we were dealing strictly with probabilities, which we are 
not, then the CF for positive evidential support would be a one-number 
approximation to 

P(hie) - P(h) 

1 - P(h) 

The one-number calculus achieves the goals we sought, although with­
out the precision that many persons desire. The combining of uncertainty 
depends on relatively small numbers of rules being applicable at any point. 
Otherwise, many small pieces of evidence ultimately boost the support of 
every hypothesis to 0.99 and we lose distinctions among strengths of sup­
port for hypotheses. The effect of the propagation is a modestly accurate 
clustering of hypotheses by gross measures of evidential strength (HIGH, 
MEDIUM, LOW, NONE). But within a cluster the ranking of hypotheses 
is too dependent on the subjectiveness of the CF's, as well as on the cer­
tainty propagation scheme, to be taken precisely. 

The focus of a decision-making aid, however, needs to be on recom­
mendations for action. Thus it needs costs and benefits, as well as proba­
bilities, associated with various outcomes. When MYCIN recommends 
treating for Streptococcus, for example, it has combined the likelihood of 
strep with the risk of failing to treat for it. For this reason we now realize 
it is perhaps more appropriate to think of CF's as measures of importance 
rather than of probability or strength of belief. That is, they measure the 
increased importance of acting on the conclusion of a rule in light of new 
evidence mentioned in the premise. For example, self-referencing rules 
mention the same parameter in both premise and action parts: 

A&B&C-.A 

Such a rule is saying, in effect, that if you already have reason to be!ieve 
A, and if B and C are likely in this case, then increase the importance of 
A. In principle, we could have separated probabilities from utilities. In 
practice, that would have required more precision than infectious disease 
experts were willing or able to supply. 
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The discontinuity around the 0.2 threshold is not a necessary part of 
the CF model. It was added to the implementation to keep the backward­
chaining control structure from expending effort for very small gain. In 
a data-driven system the data would all be gathered initially, and the in­
ferences, however weak, could be propagated exhaustively. In a goal-driven 
system, however, the 0.2 threshold is a heuristic that precludes unnecessary 
questions. In the rule 

A&B&C~D 

if any clause is not "true enough," the subsequent clauses will not be pur­
sued. If clause A, after tracing, has not accumulated evidence over the 0.2 
threshold then the system will not bother to ask about clauses B and C. In 
brief, the threshold was invented for purposes of human engineering since 
it shortens a consultation and reduces the number of questions asked of 
the user. 

This value of the threshold is arbitrary, of course. It should simply be 
high enough to prevent the system from wasting its time in an effort to 
use very small pieces of evidence. With a sick patient, there is a little evi­
denc:e for almost every disease, so the threshold also helps to avoid covering 
for almost every possible problem. The threshold has to be low enough, 
on the other hand, to be sure that important conclusions are considered. 
Once the 0.2 threshold was chosen, CF's on rules were sometimes set with 
it in mind. For example, two rules concluding Streptococcus, each at the 
CF= 0.1 level, would not be sufficient alone to include Streptococcus in the 
list of possible causes to consider further. 11 

Because we are not dealing with probabilities, or even with "pure" 
strength of inference alone, our attempt to give a theoretical justification 
for CF's was flawed. We based it on probability theory and tried to show 
that CF's could be related to probabilities in a formal sense. Our desiderata 
for the CF combining function were based on intuitions involving confir­
mation, notjust probabilities, so it is not surprising, in retrospect, that the 
justification in terms of formal probability theory is not convincing (see 
Chapter 12). So the CF model must be viewed as a set of heuristics for 
combining uncertainty and utility, and not as a calculus for confirmation 
theory. As we noted in Chapter 13, the Dempster-Shafer theory of evi­
dence offers several potential advantages over CF's. However, simplifying 
assumptions and approximations will be necessary to make it a computa­
tionally tractable approach. 

In a deductive system the addition of new facts, as axioms, does not 
change the validity of theorems already proved. In many interesting prob­
lem areas, such as medical diagnosis, however, new knowledge can invali­
date old conclusions. This is called nonmonotonic reasoning (McDermott 

11 See the exchange of messages at the end of Chapter I 0 for a discussion of how this situation 
arose in the development of the meningitis knowledge base. 
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and Doyle, l 980) because new inferences are not always adding new con­
clusions monotonically to the accumulating knowledge about a problem. 
In MYCIN, early conclusions are revised as new data are acquired-for 
example, what looked like an infection of one type on partial evidence 
looks like another infection after more evidence is accumulated. The prob­
lems of nonmonotonicity are mostly avoided, though, because MYCIN 
gathers evidence for and against many conclusions, using CF's to adjust 
the strength of evidence of each, and only decides at the end which con­
clusions to retain. As pointed out in Section 29.4.3, self-referencing rules 
can change conclusions after all the evidence has been gathered and thus 
may be considered a form _of nonmonotonic reasoning. 

Quantification of "Soft" Knowledge 

We know that the medical knowledge in MYCIN is not precise, complete, 
or well codified. Although some of it certainly is mathematical in nature, 
it is mostly "soft" in the sense that it is judgmental and empirical, and there 
are strong disagreements among experts about the formulation of what is 
known. Nevertheless, we needed a way of representing the strength of 
associations in rules and of calculating the strength with which numerous 
pieces of evidence support a conclusion. We first looked for a calculus of 
imprecise concepts that did not involve combining numbers. For example, 
a few pieces of weakly suggestive evidence would combine into moderately 
suggestive evidence, and many pieces would be strongly suggestive. But 
how many? And how do the different qualitative degrees combine? We did 
not like the idea of discrete categories of strength since it introduces dis­
continuities in the combinations. So we looked for a continuous function 
that was not overly sensitive to small changes in degrees. 

In working with CF's, we found that quantifying soft knowledge does 
not require fine levels of precision (Chapter 10). That is why this calculus 
can be used in a practical domain. With several rules providing evidence 
for a conclusion, the CF's could be written rather roughly and still give the 
desired effect. We later showed that, for the MYCIN domain, experts did 
not have to use more than four or five degrees of evidential strength, even 
though we provided a continuous scale from 0 to 1. 

We discovered two styles of ruie composition. The first follows our 
initial belief that rules can be written independently of one another. The 
CF's are set by experts based on their accumulated experience of how much 
more likely or important the conclusion is after the premises are known 
than it is before they are known. This assumes that CF's do not need to be 
precisely set because (a) the knowledge itself is not precise and (b) about 
as many rules will have CF's that are "too high" as will have ones that are 
"too low" (in some undefinable, absolute sense). The second style of setting 
CF's is more tightly controlled. Each new empirical association of evidence 
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Conceptual framework (domain-dependent and domain-independent parts): 
Incorrect vocabulary of attributes, predicates, and relations 
Incorrect inference structure 
Incomplete set of concepts 
Incomplete logical structure 

FIGURE 36-1 Sources of uncertainty in rule-based systems. 

with a conclusion, in this view, requires examining rules with similar evi­
dence or similar conclusions to see how strong the association should be, 
relative to the others. For example, to set the CF on a new rule, A ---> Z, 
one would look at other rules such as: 

X---> Z (CF 0.2) 

Y---> Z (CF 0.8) 

Then, if evidence A is about as strong as Y (0.8) and much stronger than 
X (0.2), the new CF should be set around the 0.8 level. The exchange of 
messages at the end of Chapter 10 reflects the controversy that arose in 
our group over these two styles of CF assignment. 

In both cases, the sensitivity analysis mentioned in Chapter 10 con­
vinced us that the rules we were putting into MYCIN were not dependent 
on precise values of CF's. That realization helped persons writing rules to 
see that they could be indifferent to the distinction between 0.7 and 0.8, 
for example, and the system would not break down. 

Corrections for Uncertainty 

There are many "soft" or ill-structured domains, including medical diag­
nosis, 1 ~ in which formal algorithmic methods do not exist (Pople, 1982). 
In diagnostic tasks there are several sources of uncertainty besides the 
heuristic rules themselves. These are summarized in Figure 36-1. 

'~There arc so-called cliniml algorithms in medicine, but they do not carry the guarantees of 
correctness that characterize mathematical or computational algorithms. They are decision 
flow charts in which heuristics have been built into a branching logic so that paramedical 
personnel can use them to provide good care in many commonly occurring situations. 
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In an empirical domain, the measurements, observations, and terms 
used to describe data may be erroneous. Instruments sometimes need re­
calibrating, or electronic noise in the line can produce spurious readings. 
Some tests are notoriously unreliable. Similarly, observers sometimes make 
mistakes in noticing or recording data. Among these mistakes is the failure 
to describe correctly what one sees. This ranges from checking the wrong 
box to choosing words poorly. The data are often incomplete as well. Tests 
with the most diagnostic value and least cost or inconvenience are done 
first, as a matter of general strategy. At any time, there are always more 
tests to be done (if only to redo an old one) and always new observations 
to be made (if only to observe the same variables for a few more hours). 
But some action must eventually be taken on the best available data, even 
in the absence of complete information. 

With the rules, too, it is impossible to guarantee correctness and com­
pleteness (Chapter 8). This is not the fault of the expert supplying the 
rules; it is inevitable in problem areas in which the knowledge is soft. 

Finally, the whole conceptual framework may be missing some critical 
concepts and may contain constructs that are at the wrong level of detail. 
Domain-independent parts of the framework that may introduce errors 
into the problem-solving process include the inference structure and the 
calculus for combining inexact inferences. The domain-dependent aspects 
of the problem-solving framework include the vocabulary and the concep­
tual hierarchies used to relate terms. Some questions of chemistry, for 
example, require descriptions of molecules in terms of electron densities 
and cannot be answered with a "ball and stick" vocabulary of molecular 
structure. Similarly, expert performance in medical domains will some­
times require knowledge of causality or pathophysiologic mechanism, 
which is not well represented in MYCIN-like rules (see Chapter 29). 

The best answer we have found for dealing with uncertainty is redun­
dancy. By that we mean using multiple, overlapping sources of knowledge 
to reach conclusions, and using the overlaps as checks and balances on the 
correctness of the contributions made by different knowledge sources. In 
MYCIN we try to exploit the overlaps in the information contributed by 
laboratory and clinical data, just as physicians must. For example, a high 
fever and a high white cell count both provide information about the se­
verity of an infection. On the assumption that the correct data will point 
more coherently to the correct conclusions than incorrect data will, we 
expect the erroneous data to have very little effect after all the evidence 
has been gathered. The absence of a few data points will also have little 
overall effect if other, overlapping evidence has been found. Overlapping 
inference paths, or redundancy in the rules, also helps correct problems 
of a few incorrect or missing inferences. With several lines of reasoning 
leading from data to conclusions, a few can be wrong (and a few can be 
missing), and the system still ends up with correct conclusions. 
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We recognize that introducing redundant data and inference rules is 
at odds with the independence assumptions of the CF model. We did not 
want the system to fail for want of one or two items of information. When 
we encounter cases with missing evidence, a redundant reasoning path 
ensures the robustness of the system. In cases where the overlapping pieces 
of evidence are all present, however, nothing inside the system prevents it 
from using the dependent information multiple times. We thus have to 
correct for this in the rule set itself. The dependencies may be syntactic­
for example, use of the same concept in several rules-in which case an 
intelligent editor can help detect them. Or they may be semantic-for 
example, use of causally related concepts-in which case physicians writing 
or reviewing the rules have to catch them. 

In the absence of prior knowledge about which data will be available 
for all cases, we felt we could not insist on a vocabulary of independent 
concepts for use in MYCIN's rules. Therefore, we had to deal with the 
pragmatic difficulty of sometimes having too little information and some­
times having overlapping information. Our solution is also pragmatic, and 
not entirely satisfactory: (a) check for subsumed and overlapping rules 
during knowledge entry so that they can be separated explicitly; (b) cluster 
dependent pieces of evidence in single rules as much as possible; (c) orga­
nize rules hierarchically so that general information will provide small evi­
dence and more specific information will provide additional confirmation, 
taking notice of the dependencies involved in using both general and spe­
cific evidence; (d) set the CF's on dependent rules (including rules in the 
hierarchy) to take account of the possibilities of reasoning with redundant 
paths if all data are included and reasoning with a unique path if most data 
are missing. 

The problems of an incomplete or inappropriate conceptual scheme 
are harder to fix. In some cases where we have tried, the EMYCIN frame­
work has appeared to be inappropriate, e.g., a constraint satisfaction prob­
lem (MYCIN's therapy algorithm) and problems involving tight procedural 
control (VM and ONCOCIN). In these instances, we have abandoned this 
approach to the problem because substantial changes to the conceptual 
scheme would have required rethinking the definitions of all parts of EMY­
CIN. The domain-dependent parts are under the control of the experts, 
though, and can be varied more easily. Not surprisingly, experts with whom 
we have collaborated seem to prefer working largely within one frame­
work. In MYCIN, for example, there was not a lot of mixing of, say, clinical 
concepts (such as temperature) and theoretical concepts (such as the effect 
of fever on cellular metabolism). If the conceptual scheme is inappropriate 
for the problem, then there is no hope at present for incorporating a 
smooth correction mechanism. We are always tempted to add more param­
eters and rules before making radical changes in the whole conceptual 
framework and approach to the problem, so we will be slow to discover 
corrections for fundamental limitations. 
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36.2.5 Knowledge Base Construction and 
Maintenance 

One of the major lessons of this and other work on expert systems is that 
large knowledge bases must be built incrementally. In many domains, such 
as medicine, the knowledge is not well codified, so it is to be expected that 
the first attempts to build a knowledge base will result in approximations. 
As noted earlier, incremental improvements require flexible knowledge 
structures that allow easy extensions. This means not only that the syntax 
should be relatively simple but that the system should allow room for 
growth. Rapid feedback on the consequences of changes also facilitates 
improvements. A knowledge base that requires extra compilation steps 
before it can be tried (especially long ones) cannot grow easily or rapidly. 

Knowledge acquisition is now seen as the critical bottleneck in building 
expert systems. We came to understand through this work that the knowl­
edge-engineering process can be seen as a composite of three stages: 

I. knowledge base conceptualization (problem definition and choice of 
conceptual framework); 

2. knowledge base construction (within the conceptual framework); and 
3. knowledge base refinement (in response to early performance). 

In each stage, the limiting factors are (a) the expressive power of the rep­
resentation, (b) the extent to which knowledge of the domain is already 
well structured, (c) the ability of the expert to formulate new knowledge 
based on past experience, (d) the power of the editing and debugging tools 
available, and (e) the ability of the knowledge engineer to understand the 
basic structure and vocabulary of the domain and to use the available tools 
to encode knowledge and modify the framework. 

Our experiments focus largely on the refinement stage. 13 Within this 
stage, the model that we have found most useful is that of debugging in 
context; an expert can more easily critique a knowledge base and suggest 
changes to it in the context of specific cases than in the abstract. Initial 
formulations of rules are often too general since the conceptualization 
stage appropriately demands generality. Such overgeneralizations can 
often best be found and fixed empirically, i.e., by running cases and ex­
amining the program's conclusions. 

One important limitation of our model is its failure to address the 
problem of integrating knowledge from different experts. For some ex­
tensions to the knowledge base there is little difference between refinement 
by one expert or many. For extensions in which different experts use dif­
ferent concepts (not just synonyms for the same concept), we have no tools 

13Some work in progress on the ROGET program (Bennett, 1983) attempts to build an 
intelligent, interactive tool to aid in conceptualization and construction of EMYCIN systems 
in new domains. 
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for reaching a consensus. 14 As suggested in Part Three, the best solution 
we found for this problem was designating a knowledge base "czar" who 
was responsible for maintaining coherence and consistency of the knowl­
edge base. The process is facilitated, however, by techniques for comparing 
new rules with previously acquired knowledge and for performing high­
level analyses of large portions of the knowledge base (Chapter 8). We 
found that this static analysis was insufficient, at least in domains in which 
nonformal, heuristic reasoning is essential. The best test of strength of a 
knowledge base appears to be empirical. Nevertheless, a logical analysis 
can provide important cues to persons debugging or extending a knowl­
edge base, for example, in indicating gaps in logical chains of rules. 

There are other models for transferring expertise to a program be­
sides knowledge engineering. The war horse of AI is programming each 
new performance program using LISP (or another favorite language). This 
is euphemistically called "custom crafting" or, more recently, "procedural 
embedding of knowledge." In general, it is slower and the result is usually 
less flexible than with knowledge engineering, as we learned from DEN­
DRAL. 

Another model is based on a direct dialogue between expert and pro­
gram. This would, if successful, eliminate the need for a knowledge en­
gineer to translate and transform an expert's knowledge. Our attempts to 
reduce our dependence on knowledge engineers, however, have been 
largely unsuccessful. Some of the tools built to aid the maintenance of a 
knowledge base (e.g., the ARL editor; see Chapter 15) have been used by 
both experts and knowledge engineers. TEIRESIAS (Chapter 9) provides 
a model by which experts can refine a knowledge base without assistance 
from a knowledge engineer. For very simple domains such tools can prob­
ably suffice for use by experts with little training. As the complexity of a 
domain grows, however, the amount of time experts can spend seems to 
shrink. So far, the only way we have found around this dilemma is for 
knowledge engineers to act as "transducers" to help transform experts' 
knowledge into usable form. 

Other models of knowledge acquisition that we considered leave the 
expert as well as the knowledge engineer out of the transfer process. Two 
such models are reading and induction. In the reading model, a program 
scans the literature looking for facts and rules that ought to be included 
in the knowledge base. We had considered using the parser described in 
Chapter 33 to read simplified transcriptions of journal articles. But the 
difficulties described in that chapter led us to believe that there was as 
much intellectual effort in transcribing articles for such purposes as in 
formulating rules directly. 15 

HWe do record the aULhor of each rule with elate, justification, and literature citations, but 
these are not used by the program except as text strings to be printed. 
'"More recent work by others al Stanford explores the use of knowledge-based techniques 
for inferring new medical knowledge from a large data base of patient information (Blum, 
1982). 
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We did not have the resources to experiment with induction in the 
MYCIN domain. We kept statistics on rule invocations and found them to 
be somewhat useful in revealing patterns to the knowledge engineers. For 
example, rules that are never invoked over a set of test cases may be either 
covering rare circumstances-in which case they are left unchanged-or 
failing to match because of errors in the left-hand sides-in which case 
they are modified. Learning new rules by induction is a difficult task when 
the performance program chains several rules together to link data to 
conclusions. In these cases, the so-called credit assignment problem-spe­
cifically, the problem of deciding which rules are at fault in case of poor 
performance-demands considerable expertise. In TEIRESIAS, credit as­
signment was largely turned over to the expert for this reason. 

Since knowledge engineering was our primary mode of knowledge 
acquisition, we found that some interactive tools for building, editing, and 
checking the knowledge base gave needed assistance to the system builders. 
This is sometimes referred to as knowledge programming-the construction 
of complex programs by adding declarative statements of knowledge to an 
inference framework. The emphasis is on transferring the domain-specific 
knowledge into a framework and not on building up the framework in the 
first place from LISP programming constructs. At worst, this is accom­
plished by an expert using an on-line text editor. This is primitive, but if 
the expert is comfortable with the syntax and the problem-solving frame­
work, a complex system can still be built more quickly than it could if the 
expert were forced to write new code, keeping track of array indices and 
go-to loops. There are many higher levels of assistance possible. Consid­
erable error checking can be done on the syntax, and even more help can 
be provided by an intelligent assistant that understands some of the seman­
tics of the domain. Knowledge programming, with any level of assistance, 
is one of the powerful ideas to come out of AI work in the 1970s. 

36.2.6 Explanation and Tutoring 

When we began this work, there had been little attempt in AI to provide 
justifications of a program's conclusions because programs were mostly 
used only by their designers. PARRY (Colby, 1981) had a selective trace 
that allowed designers to debug the system and casual users to understand 
its behavior. DENDRAL's Predictor also had a selective trace that could 
explain the origins of predicted data points, but it was used only for de­
bugging. As part of our goal of making MYCIN acceptable to physicians, 
we tried from the start to provide windows into the contents of the knowl­
edge base and into the line of reasoning. Our working assumption was 
that physicians would not ask a computer program for advice if they had 
to treat the program as an unexaminable source of expertise. They nor­
mally ask questions of, or consult, other physicians partly for education to 
help with future cases and partly for clarification and understanding of 
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the present case. We believe that initial acceptance of an advice-giving 
system depends on users being able to understand why it provides the 
advice that it does (Chapter 34). Moreover, physicians are sensitive to well­
established legal guidelines that argue against prescribing drugs without 
understanding why (or whether) they are appropriate. 

The Model 

The model of explanation in MYCIN is to "unwind the goal stack" in 
response to a WHY question. That is, when a user wants to know why an 
item of information is needed, MYCIN's answer is to show the rule(s) that 
caused this item to be requested. Answers to successive WHY questions 
show successively higher rules in the stack. For example, in the reasoning 
chain 

A-> B ->C ->D->E 

MYCIN chains backward from goal E to the primary element A. A user 
who wants to know why A is requested will see the rule A -> B. A second 
WHY question (i.e., "WHY do you want to know B?") will cause MYCIN 
to show the rule B -> C, and so on. Keeping a simple history list of rule 
invocations is adequate for producing reasonable explanations of the 
program's line of reasoning, in part because reasoning is explicitly goal­
directed. The goals and subgoals provide an overall rationale for the in­
vocation of rules. The history list captures the context in which informa­
tion is sought as well as the purpose for which it is sought. 

But questions asking why MYCIN requests a particular piece of infor­
mation provide only a small window on the reasoning process. The com­
plementary HOW questions extend the view somewhat by allowing a user 
to ask how a fact has already been established or will later be pursued. The 
same history list provides the means for answering HOW questions during 
a consultation. For example, a user may be told that item A2 is needed 
because B is the current goal and there is a rule of the form 

where A1 is already known (or believed) to be true. Then the user may ask 
how A1 is known and will then see the rules that concluded it (or be told 
that it is primary information entered at the terminal if no rules were used). 
Similarly, the user may ask how A3 will be pursued if the condition re­
garding A2 is satisfied. 

Explanations can be much richer. For example, they can provide in­
sights into the structure of the domain or the strategy behind the line of 
reasoning. All of these extensions require more sophistication than is em­
bodied in looking up and down a history list. This is a minimal explanation 
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system. It provides reasons that are only as understandable as the rules 
are, and some can be rather opaque. Looking up or down the goal stack 
is not always appropriate, but this is all MYCIN can do. Sometimes, for 
instance, a user would like a justification for a rule in terms of the under­
lying theory but cannot get it. Moreover, MYCIN has no model of the user 
and thus cannot distinguish, say, a student's question from a physician's. 
These issues were discussed at length in Chapters 20 and 29. 

At the end of a consultation, a user may ask questions about MYCIN's 
conclusions (final or intermediate) and will receive answers much like those 
given during the consultation. General questions about the knowledge base 
may also be asked. In order to get·MYCIN to answer WHY NOT questions 
about hypotheses that were rejected or never considered, more reasoning 
apparatus was needed. Since there is no history of rules that were not tried, 
MYCIN needs to read the rules to see which ones might have been relevant 
and then to determine why they were not invoked. 

Tutoring 

We had initially assumed that physicians and students would learn about 
infectious disease diagnosis and therapy by running MYCIN, especially if 
they asked why and how. This mode of teaching was too passive, however, 
to be efficient as a tutorial system, so we began to investigate a more active 
tutor, GUIDON. The program has two parts: (a) the knowledge base used 
by MYCIN, and (b) a set of domain-independent tutorial rules and pro­
cedures. 

We originally assumed that a knowledge base that is sufficient for high­
performance problem solving would also be sufficient for tutoring. This 
assumption turned out to be false, and this negative result spawned revi­
sions in our thinking about the underlying representation of MYCIN's 
knowledge. We concluded that, for purposes of teaching, and for expla­
nation to novices, the facts and relations known to MYCIN are not well 
enough grounded in a coherent model of medicine (Chapter 29). MYCIN's 
knowledge is, in a sense, compiled knowledge. It performs well but is not 
very comprehensible to students without the concepts that have been left 
out. For example, a MYCIN rule such as 

A-> B 

may be a compilation of several associations and definitions: 
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If A 1 and A2 are not observable phenomena or quantities routinely mea­
sured, the only association that matters for clinical practice is A ---+ B. A 
student would gain some benefit from remembering MYCIN's compiled 
knowledge, but the absence of an underlying model makes it difficult to 
remember a scattered collection of rules. Additional knowledge of the 
structure of the domain, and of problem-solving strategies, provides the 
"glue" by which the rules are made coherent. Recent work at M.l.T. by 
Swartout (1983) and Patil et al. (1981) has further emphasized this point. 

We also believe that an intelligent tutoring program can be devised 
such that medical knowledge and pedagogical knowledge are explicitly 
separated. The art of pedagogy, however, is also poorly codified and evokes 
at least as much controversy as the art of medicine. GUIDON has directed 
meaningful dialogues with both the MYCIN and SACON knowledge bases, 
so its pedagogical knowledge (tutoring rules; see Chapter 26) is not specific 
to medical education. Some of the knowledge about teaching is procedural 
because the sequence of actions is often important. Thus the pedagogical 
knowledge is a mixture of rules and stylized procedures. 

36.2.7 The User Interface 

Consultation Model 

We chose to build MYCIN on the model of a physician-consultant who 
gives advice to other physicians having questions about patient care. Was 
it a good choice? 

Here the answer is ambiguous. From an AI point of view, the consul­
tation model is a good paradigm for an interactive decision-making tool 
because it is so clear and simple. The program controls the dialogue, much 
as a human consultant does, by asking for specific items of data about the 
problem at hand. Thus the program can understand short English re­
sponses to its questions because it knows what answers are reasonable at 
each point in the dialogue. Moreover, it can ask for as much-and only as 
much-information as is relevant. Also, the knowledge base can be highly 
specialized because the context of the consultation can be carefully con­
trolled. 

A disadvantage of the consultation model as implemented in MYCIN, 
however, is that it prevents a user from volunteering pertinent data. 16 

Although the approach avoids the need for MYCIN to understand free­
text data entry, physicians can find it irritating if they are unable to offer 
key pieces of information and must wait for the program to ask the right 
question. 17 In addition, MYCIN asks a lot of questions (around 50 or 60, 

u;Our one attempt to permit volunteered information (Chapter 33) was of limited success, 
largely because of the complexity of getting a computer to understand free text. 
17The ability to accept volunteered information is a major feature of the PROSPECTOR 
model of interaction embodied in KAS (Reboh, 1981 ). 
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usually), and the number increases as the knowledge base grows. Few phy­
sicians want to type answers to that many questions-in fact, few of them 
want to type anything. With current technology, then, the consultation 
model increases the cost of getting advice beyond acceptable limits. Clini­
cians would rather phone a specialist and discuss a case verbally. Moreover, 
the consultation model sets up the program as an "expert" and leaves the 
users in the undesirable position of asking a machine for help. In some 
professions this may be acceptable, but in medicine it is difficult to sell. 

One way to avoid the need for typing so many answers is to tap into 
on-line patient data bases. Many of MYCIN's questions, for example, could 
be answered by looking in automated laboratory records or (as PUFF now 
does) could be gathered directly from medical instruments (Aikins et al., 
1983). Another way is to wait for advanced speech understanding and 
graphical input. 

The consultation model assumes a cooperative and knowledgeable 
user. We attempted to make the system so robust that a user cannot cause 
an unrecoverable error by mistake. But the designers of any knowledge 
base still have to anticipate synonyms and strange paths through the rules 
because we know of no safeguards against malice or ignorance. Some med­
ically impossible values are still not caught by MYCIN. 18 If users are co­
operative enough to be careful about the medical correctness of what they 
type, MYCIN's implementation of the consultation model is robust enough 
to be helpful. 

Other Models of Interaction 

DENDRAL does not engage a user in a problem-solving dialogue as MY­
CIN does. Instead, it accepts a set of constraints (interactively defined) that 
specify the problem, then it produces a set of solutions. This might be 
called the "hired gun" model of interaction: specify the target, accept the 
results, and don't ask questions. 

Recently we have experimented with a critiquing model for the ON­
COCIN program, an attempt to respond to some of the limitations of the 
traditional consultation approach. In the critiquing model, a user states his 
or her own management plan, or diagnosis, and the program interrupts 
only if the plan is judged to be significantly inferior to what the program 
would have recommended (Langlotz and Shortliffe, 1983). 

The monitoring model of the VM program (Chapter 22) follows much 
the same interactive strategy as that of ONCOCIN-offering advice only 
when there is a need. In addition, it periodically updates and prints a 
summary and interpretation of the patient's condition. 

18For example, John McCarthy (maliciously) told MYCIN that the site of a culture was am­
niotic fluid-for a male patient-and MYCIN incorrectly accepted it (McCarthy, 1983). 
Nonmedical users (including one of the authors) have found similar "far-out bugs" as a 
consequence of sheer ignorance of medicine. 
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English Understanding 

We attempted to design a satisfactory 1/0 package without programming 
extensive capabilities for understanding English. One of the pleasant sur­
prises was the extent to which relatively simple sentence parsing and gen­
erating techniques can be used. In ELIZA, Weizenbaum (1967) showed 
that a disarmingly natural conversation can be produced by a program 
with no knowledge of the subject matter. We wanted to avoid the extensive 
effort of designing a program for understanding even a subset of unre­
stricted English. Thus we used roughly the same techniques used in ELIZA 
and in PARRY (Colby, 1981 ). Our main concern at the beginning was that 
the subset of English used by physicians was too broad and varied to be 
handled by simple techniques. This concern was unfounded. Subsequently, 
we have come to believe that the more technical the domain, the more 
stylized the communication. Then keyword and phrase matching are suf­
ficient for understanding responses to questions and for parsing questions 
asked by users. As long as the program is in control of the dialogue, there 
is little problem with ambiguity because the types of responses a user can 
give are determined by the program's questions. Even in a mode in which 
a user asks questions about any relevant topic (Chapter 18), simple parsing 
techniques are usually adequate because (a) the range of relevance is rather 
restricted and (b) terms with ambiguity within this range are few in number 
and are disambiguated by other terms with unique meanings that serve to 
fix the context. 

We did find, however, that our simple parser was not sufficient for 
understanding many facts presented at once in a textual description of a 
patient (Chapter 33). The facts picked out of the text were largely correct, 
but we missed many. We could successfully restrict the syntax of questions 
a person can ask without overly restricting the nature of the questions. But 
we found no general forms for facts that gave us assurance that the pro­
gram could understand the wide variety of verbs used in case descriptions. 

There are several shortcomings in MYCIN'S interface that could an­
tagonize physicians. 19 First, it requires that a user type. There is a tantalizing 
possibility of speech-understanding interfaces that accept sentences in 
large vocabularies from multiple speakers. But these are not here yet, and 
certainly were only glimmers on the horizon in 1975. Second, MYCIN 
requires users to provide information that they know is stored on other 
computers in the same building. We were prepared to string cables among 
the computers, but the effort and expense were not justified as long as 
MYCIN was only a research program. Third, as we have noted, MYCIN 
does not accept volunteered information. Although we experimented with 

19The lessons learned regarding the limitations of MYCIN's interface have greatly influenced 
the design of our recent ONCOCIN system (Chapters 32 and 35). That system's domain was 
selected largely because it provides a natural mechanism for allowing the physician to vol­
unteer patient information (i.e., the flow sheet), and because data can be entered using a 
special keypad rather than the full terminal keyboard. 
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programs to permit this kind of interaction (Chapter 33), the theoretical 
issues involved prevented robust performance and discouraged us from 
incorporating the facility on a routine basis. Besides, eventually MYCIN 
asks all questions that it considers relevant, so, in a logical sense, volun­
teered information is unnecessary. From the users' point of view, however, 
MYCIN is often too fully in control of the dialogue. Users would like to 
be able to steer the line of reasoning and get the program to focus on a 
few salient facts at the beginning. Fourth, as mentioned above, we believe 
it is important to provide a window into the line of reasoning and the 
knowledge base. The window that we provide is narrow, however, and lacks 
the flexibility and clarity that would let a physician see quickly why MYCIN 
reasons as it does. Part of the difficulty is that the rules provided as expla­
nations often mix strategy and tactics and thus are difficult to understand 
in isolation. Our more recent work on explanation has begun to look at 
issues such as these (Chapter 20). 

36.2.8 Validation 

There are many dimensions to the question "How good is MYCIN?" We 
have looked in detail at two: (a) How good is MYCIN's performance? and 
(b) What features would make such systems acceptable to physicians? 

Decision-Making Performance 

We experimented with three evaluations of MYCIN, each refined in light 
of our experience with the previous one, and believe that something much 
like Turing's test can demonstrate the level of performance of an expert 
system. In the third evaluation, we asked outside experts to rate the con­
clusions reached by MYCIN, several Stanford faculty, house staff, and stu­
dents-on the same set of randomly selected, hard cases. Then, as in 
Turing's test (Turing, 1950), we looked at the statistics of how the outside 
experts rated MYCIN's performance relative to that of the Stanford faculty 
and the others. The conclusion from these studies is that MYCIN recom­
mends therapeutic actions that are as appropriate as those of experts on 
Stanford's infectious disease faculty-as judged by experts not at Stanford. 
(More precisely, the outside experts disagreed with MYCIN's recommen­
dation no more often than they disagreed with the recommendations of 
the Stanford experts.) 

Although they are reasonably conclusive, studies such as this are ex­
pensive. Considerable research time was consumed in the design and ex­
ecution of the MYCIN studies, and we required substantial contributed 
time from Stanford faculty, house staff, and students and from outside 
experts. Moreover, we learned from the earlier studies that we needed to 
separate the quality of advice from other factors affecting the utility and 
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acceptance of the program. Thus the final study provides no information 
about whether the system would be used in practice, what the cost-benefit 
trade-offs would be, etc. However, we believe that high performance is a 
sine qua non for an expert system and thus deserves separate evaluation 
early in a program's evolution (see Chapter 8 of Hayes-Roth et al., 1983). 

Acceptability 

Unfortunately, we still have not fully defined the circumstances under 
which physicians will use a computer for help with clinical decision making. 
Only in the recent ONCOCIN work (Chapters 32 and 35) have we shown 
that physicians can be motivated to use decision aids in carefully selected 
and refined environments. In the original MYCIN program we had hoped 
to provide intelligent assistance to clinicians and to be able to demonstrate 
that the use of a computer reduced the number (and severity of conse­
quences) of inappropriate prescriptions for antibiotics. Physicians in a 
teaching hospital, however, may not need assistance with this problem to 
the same extent as others-or, even if they do, they do not want it. So we 
found ourselves designing a program largely for physicians not affiliated 
with universities, with whom we did not interact daily. 

In a survey of physicians' opinions (Chapter 34), we confirmed our 
impression that explanations are necessary for acceptance. If an assistant 
is unable to explain its line of reasoning, it will not gain the initial confi­
dence of the clinicians who have to take responsibility for acting on its 
therapy recommendations. There is an element of legal liability here and 
an element of professional pride. A physician must understand the alter­
native possible causes of a problem and the alternative treatments, or else 
he or she may be legally negligent. Also, professionals will generally believe 
they are right until given reason to think otherwise. We also found that 
high performance alone was not sufficient reason for a practicing physician 
(or engineer or technician) to use a consultation program (Shortliffe, 
I 982a). We thought that finding a medical problem that is not solved well 
(and finding documentation of the difficulties) was the right starting place. 
What we failed to see was that adoption of a new tool is not based solely 
on demonstrated need coupled with demonstrated high performance of 
the tool. In retrospect, that was naive. Acceptability is different from high 
performance (Shortliffe, l 982b). 

36.2.9 Generality 

One of the most far-reaching sets of experiments in this work involved the 
generalizability of the MYCIN representation scheme and inference en­
gine. We believed the skeletal program could be used for similar problem­
solving tasks in other domains, but no amount of analysis and discussion 
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could have been as convincing as the working demonstrations of EMYCIN 
in several different areas of medicine, electronics, tax advising, and soft­
ware consulting. Making the inference engine domain-independent meant 
we had to write the rule interpreter so that it manipulates only the symbols 
named in the rules and makes no semantic transformations except as spec­
ified in the knowledge base. 

However, there are a number of assumptions about the type of problem 
being solved that are built into EMYCIN. We assume, for instance, that the 
problem to be solved is one of analyzing a static collection of data (a "snap­
shot"), weighing all relevant evidence for and against competing hy­
potheses, and recommending some action. The whole formalism loses 
strength when it is stretched outside the limits of its design. We see parallels 
with earlier efforts to build a general problem solver; however, the gen­
erality of EMYCIN is intended to be strongly bounded. 

There is no mystery to how a system (such as MYCIN) can be gener­
alized (to EMYCIN) so that it is applicable to many problems in other 
domains: keep the reasoning processes and the knowledge base separate. However, 
some of the limiting characteristics of the data, the reasoning processes, 
the knowledge base, and the solutions are worth repeating. 

The Data 

EMYCIN was designed to analyze a static collection of data. The data may 
be incomplete, interdependent, incorrect ("noisy"), and even inconsistent. 
A system built in EMYCIN can, if the knowledge base is adequate, resolve 
ambiguities and cope with uncertainty and imprecision in the data. EMY­
CIN does assume, however, that there is only one set of data to analyze 
and that new data will not arrive later from experiments or monitoring. 
The number of elements of data in the set has been small-roughly 20-
100-in the cases analyzed by MYCIN and other EMYCIN systems. But 
there seems to be no reason why more data cannot be accepted. 

Reasoning Processes 

EMYCIN is set up to reason backward from a goal to the data required to 
establish it. It can also do some limited forward reasoning within this con­
text. It thus requests the data it needs when they are not otherwise avail­
able. 

It is an evidence-gathering system, collecting evidence for and against 
potentially relevant conclusions. It is not set up to reason in other ways, 
for example, by generating hypotheses from primitive elements and testing 
them, by instantiating a template, or by refining a high-level description 
through successive abstraction levels. It can propagate uncertainty from 
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the data, through uncertain inference rules, to the conclusions. Backtrack­
ing is not supported because the system follows all relevant paths. 

Overall, the reasoning is assumed to be analytic and not synthetic. 
Diagnostic and classification tasks fit well; construction and planning tasks 
do not. The piece of MYCIN that constructs a therapy plan within con­
straints, for example, was coded as a few rules that call for evaluating 
specialized procedures (Chapter 6). It is a complex constraint satisfaction 
problem, with symbolic expressions of constraints. It was not readily coded 
in MYCIN-like rules because of the numerous comparison operations (for 
example, "minimizing"). 

An interpretation of the data, for instance "the diagnosis of the prob­
lem," is the usual goal in EMYCIN systems. In at least one case (SACON; 
see Chapter 16), however, a solution can have a somewhat more prescrip­
tive flavor. Given a description of a problem, SACON does not solve it 
directly but rather describes what the user should do to solve it. The pre­
scription of what to do "covers" the data in much the same way as a di­
agnosis covers the data. Because the evidence-gathering model fit this 
problem, it was not necessary to treat it as a constraint satisfaction problem. 

Knowledge Base 

The form of knowledge is assumed primarily to be situation-action rules 
and fact triples (with CF's). Other knowledge structures, such as tables of 
facts and specialized procedures, are included as well. Since the knowledge 
base is indexed and is small relative to the rest of the program, the size of 
the knowledge base should not be a limiting factor for most problems. 
MYCIN's knowledge base of 450 rules and about 1000 additional facts (in 
tables) is the largest with which we have had experience, although ON­
COCIN is almost that large and is growing rapidly. 

Solutions 

As mentioned in the discussion of evidence gathering, the solutions are 
assumed to be subsets of elements from a predefined list. There are 120 
organisms in MYCIN's list of possible causes. In this problem area, the 
evidence is generally considered insufficient for a precise determination 
of a unique solution or a strictly ordered list of solutions. Because the 
evidence is almost certainly incomplete in the first 24-48 hours of a severe 
infection, both MYCIN and physicians are expected to "cover for" a set of 
most likely and most risky causes. It is not expected that someone can 
uniquely identify "the cause" of the problem when the data are suggestive 
but still leave the problem underdetermined. 
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36.2.10 Project Organization 

Funding 

Funding for the research presented here was not easy to find because of 
the duality of goals mentioned above. Clinically oriented agencies of the 
government were looking for fully developed programs that could be sent 
to hospitals, private practices, military bases, or space installations. They 
saw the initial demonstration with bacteremia as a sign that ward-ready 
programs could be distributed as soon as knowledge of other infections 
was added to MYCIN. And they seemed to believe that transcribing sen­
tences from textbooks into rules would produce knowledge bases with clin­
ical expertise. Other funding agencies recognized that research was still 
required, but we failed to convince them that both medical and AI research 
were essential. We felt that the kinds of techniques we were using could 
help codify knowledge about infectious diseases and could help define a 
consensus position on issues about which there are differences of medical 
opinion. But we also felt that the AI techniques themselves needed analysis 
and extension before they could be used for wholesale extensions to med­
ical knowledge. More generally, we saw medicine as a difficult real-world 
domain that is typical of many other domains. Failing to find an agency 
that would support both lines of activity, we submitted separate proposals 
for the dual lines. After the initial three years of NIH support for MYCIN, 
only the AI line was funded by the NSF, ONR, and DARPA (in the efforts 
that produced EMYCIN, GUIDON, and NEOMYCIN). By 1977 our med­
ical collaborators were in transition for other reasons anyway, so we largely 
stopped developing the infectious disease knowledge base. 20 

Technology Transfer 

When we began, we believed in the "better mousetrap" theory of technol­
ogy transfer: build a high-performance program that solves an important 
problem, and the world will transfer the technology. We have learned that 
several elements of this naive theory are wrong. First, there is a bigger 
difference between acceptability and performance than we appreciated, as 
mentioned above. Second, there has to be a convenient mechanism of 
transfer. MYCIN ran only in Interlisp under the TENEX and TOPS-20 

20That is not to say, however, that all medical efforts stopped. Shortliffe rejoined the project 
in 1979 and began defining and implementing ONCOCIN. Clancey needed to reformulate 
MYCIN's knowledge base in a form more suitable for tutoring (NEOMYCIN) and enlisted 
the help of Dr. Tim Beckett. Several medical problem areas were investigated and prototype 
systems were built using EMYCIN. These include pulmonary function testing (PUFF), blood 
clotting disorders (CLOT), and complications of pregnancy (GRAVIDA). And several masters 
and doctoral students have continued to use medicine as a test-bed for ideas in Al and 
decision making, causal reasoning, representation and learning. Several projects undertaken 
after 1977 are included in the present volume. 
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operating systems. Since hospital wards and physicians' offices do not have 
access to the same equipment that computer science laboratories do, we 
would have had to rewrite this large and complex system in another lan­
guage to run on smaller machines. We were not motivated to undertake 
this task. Now, however, smaller, cheaper machines are available that do 
run Interlisp and other dialects of LISP, so technology transfer is much 
more feasible than when MYCIN was written. 

Stability 

We were fortunate with MYCIN in finding stability in (a) the goals of the 
project, (b) the code, and (c) the system environment. 

The group of researchers defining the MYCIN project changed as 
students graduated, as interests changed, and as career goals took people 
out of our sphere. Shortliffe, Buchanan, Davis, Scott, Clancey, Fagan, Aik­
ins, and van Melle formed a core group, however, that maintained a certain 
continuity. Even with a fluid group, we found stability in the overall goal 
of trying to build an AI system with acknowledged medical expertise. 
Those who felt this was too narrow a goal moved on quickly, while others 
found this sharp focus to be an anchor for defining their own research. 
Another anchor was the code itself. Much of any individual's code is 
opaque to others, and MYCIN contains its share of "patches" and "hacks." 
Yet because the persons writing code felt a responsibility to leave pieces of 
program that could be maintained and modified by others, the program­
ming practices of most of the group were ecologically sound.21 Finally, the 
stability of Interlisp, TENEX, and the SUMEX-AIM facility contributed 
greatly to our ability to build a system incrementally. Without this outside 
support, MYCIN could not have expanded in an orderly fashion and we 
would have been forced to undertake massive rewrites just to keep old 
code running. 

36.3 Key Questions and Answers 

We realize that a book of this size, describing several experiments that are 
interrelated in complex and sometimes subtle ways, may leave the reader 
asking exactly what has been learned by the research and what lessons can 
be borrowed by others already working in the field or about to enter it. 
This final chapter has attempted to summarize those lessons, but we feel 
the need to dose with a brief list of frequently asked questions and our 

21 Bill van Melle, Carli Scott, and Randy Davis especially enforced this ethic. In particular, 
van Melle's system-building tools helped maintain the integrity of a rapidly changing, complex 
system. 
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answers to them. The responses are drawn from the work described in 
earlier chapters but are also colored by our familiarity with other work in 
AI (particularly research on expert systems). Despite the brevity and sim­
plicity of the questions and answers, we feel that they do summarize the 
key lessons learned in the MYCIN experiments. For those readers who like 
to start at the end when deciding whether or not to read a book, we hope 
that the list will pique their curiosity and motivate them to start reading 
from the beginning. 

• Is a production rule formalism sufficient for creating programs that can reason 
at the level of an expert? 

Yes, although we discovered many limitations and modified the "pure" 
production rule formalism in several ways in order to produce a program 
that met our design criteria. 

• Is backward chaining a good model of control for guiding the reasoning and the 
dialogue in consultation tasks? 

Yes, particularly when the input data must be entered by the user, al­
though for efficiency and human-engineering reasons it is desirable to 

augment it with forward chaining and meta-level control as well. 

• Is the evidence-gathering model useful in other domains? 

Yes, there are many problems in which evidence must be gathered and 
weighed for a set of possible hypotheses. Infectious disease diagnosis is 
typical of many problems in having a prestored list of hypotheses that 
defines the search space. It is not the only useful model for hypothesis 
formation, however. In other problem areas, hypotheses can be synthe­
sized from smaller elements and then evidence gathered for them in a 
manner closer to the generate-and-test approach. Or evidence can be 
gathered during the generation of hypotheses, as in the heuristic search 
model used in DENDRAL. 

• Is the CF model of inexact reasoning sufficiently precise for expert-level perfor­
mance? 

Yes, at least in domains where the evidence weights are used to cluster 
sets of most likely hypotheses rather than to select the "best" from among 
them. Some domains demand, and supply, finer precision than the CF 
model supports, but we felt we lost little information in reasoning with 
the infectious disease rules using the CF model. We would need to per­
form additional experiments to determine the breadth of the model's 
applicability, but we recognize that a calculus of more than one number 
allows finer distinctions. 

• What is the best way to build a lwxe knowledge base? 

Knowledge engineering is, for now. Because the problem areas we con­
sider most appropriate for plausible reasoning are those that are not 
already completely structured (e.g., in sets of equations), constructing a 
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knowledge base requires defining some new structures. Filling out a 
knowledge base, then, requires considerable testing and refinement in 
order to forge a robust and coherent set of plausible rules. Knowledge 
engineering requires a substantial investment in time for both the knowl­
edge engineer and domain expert, but there are currently no better 
methods for transferring expertise to expert systems. 

• Were we successful in generalizing the problem-solving framework beyond the 
domain of infectious diseases? 

Yes, EMYCIN has been demonstrated in many different problem areas. 
It has limitations, but its value in system building is more dependent on 
the structural match of the problem to the task of diagnosis than it is on 
the specific knowledge structures of the subject area. 

• Can the contents of an EMYCIN knowledge base be effectively used alone for 
tutoring students and trainees? 

No, the knowledge base does not contain a rich enough model of the 
causal mechanisms, support knowledge, or taxonomies of a domain to 
allow a student to build a coherent picture of how the rules fit together 
or what the best problem-solving strategies are. 

• ls the consultation model of interaction a good one for a decision-making aid for 
physicians? 

For physicians the tradeoff between time and benefit is the key consid­
eration. A lengthy consultation will only be acceptable if there are major 
advantages for the patient or physician to be gained by using the system. 
For most applications, therefore, a decision-making aid should be inte­
grated with routine activities rather fuan called separately for formal 
consultations. For practitioners in other fields, however, the consultation 
model may be quite acceptable. 

• Is a simple key word and phrase parser powerful enough for natural language 
interaction between users and a system in a technical domain? 

Yes, as long as the user can tolerate a stylized interaction and tries to 
phrase responses and requests in understandable ways. The approach is 
probably not sufficient, however, for casual users who seldom use a sys­
tem and accordingly have no opportunity to learn its linguistic idiosyn­
crasies. 

• Can we prove the correctness of conclusions from MYCIN? 

No, because the heuristics carry no guarantees. However, we can dem­
onstrate empirically how well experts judge the correctness of a pro­
gram's conclusions by using a variant of Turing's test. 

• Why is MYCIN not used routinely and why are the rules not published? 

Although MYCIN gives good advice and has been a marvelous source 
of new knowledge about expert systems and their design, computers 
that run Interlisp are still too expensive, and there are enough deficien-
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cies in MYCIN's breadth of knowledge and user interface that it would 
not be a cost-effective tool for physicians to use on such narrow problem 
areas as meningitis and bacteremia. We have been asked why we have 
not published MYCIN's rules about infectious diseases as a service to 

physicians and medical students, even though the system itself is not 
available. The long answer is in Chapter 29, but the short answer is that 
it would not be a service. The rules, as written, do not separate the "key" 
factors from the context-setting factors, they omit many causal mecha­
nisms that relate key factors with conclusions, and they (together with 
the rule interpreter) embody a strategy of medical diagnosis that is never 
explicit. They are not readable as text, nor were they intended to be. 
They make more sense in the context of use than they do in isolation. 

• Why does MYCIN work so well? 

There are many reasons. First, the task was carefully chosen to increase 
the likelihood of success: infectious disease therapy selection is a com­
binatorial problem within a restricted (and relatively small) vocabulary, 
with time available for several seconds of reasoning, and with available 
local expertise. Also, there is not just one unique solution to a problem, 
but a set of acceptable conclusions. Second, the simple, modular knowl­
edge structures we used were designed to be easily understood and 
changed. Thus the knowledge base could be built incrementally with 
rapid feedback, i.e., without losing much time to radical changes in 
underlying data structures and access functions. (In addition, the knowl­
edge structures could be used for multiple interrelated purposes, 
thereby exploiting and further demonstrating the power and utility of 
a modular representation scheme.) Third, the research team was dedi­
cated and highly motivated to make MYCIN work. Six doctoral disser­
tations on MYCIN and related programs resulted from these efforts, 
with at least as much effort expended by others not working for degrees. 



Epilog 

Although the "MYCIN gang" has disbanded, the excitement of creating 
the constellation of programs described in this book is still evident. The 
legacy of this group is a set of results that others can build on. We are 
proud to have been active in the definition and development of MYCIN 
and are enriched by having worked with such an outstanding group of 
individuals. 
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Appendix: Annotated 
Typescript of a Sample 
MYCIN Consultation 

A.I Instructions for Users at the Start of an 
Infectious Disease Consultation (Optional) 

[Here, as elsewhere, the responses typed by the user follow a double-asterisk prompt.] 

MYCIN 3-Jun-78 ... 

Special options (type ? for help): 

Instructions? (Y or N) 
••YES 

This is a computer program named MYCIN that has been designed to advise you regarding an appropriate 
choice of infectious disease therapy. It is understood that you have a patient who may have an infection. Please 
answer the following questions, terminating each response with RETURN. To correct typing errors, use the 
DELETE key to delete single characters, <ctrl>W to delete a word, and <ctrl>Q to delete the whole line. 

If you are not certain of your answer, you may modify the response by inserting a certainty factor (a number 
from 1 to 10) in parentheses after your response. Absolute certainty (10) is assumed for every unmodified answer. 
It is likely that some of the following questions cannot be answered with certainty. 

You may change an answer to a previous question in two ways. If the program is waiting for a response from 
you (that is, has typed .. ), enter CHANGE followed by the number(s) of the question(s) whose answers will be 
altered. You may also change a previous answer at any time (even when the program is not waiting for a 
response from you) by typing <ctrl>F (Fix), which will cause the program to interrupt its computation and ask 
what you want to change. (If the response to <ctrl>F is not immediate, try typing the RETURN key in addition.) 
Try to avoid going back because the process requires reconsidering the patient from the beginning and therefore 
may be slow. 

Note that you may also enter UNK (for UNKnown) if you do not know the answer to a question, ? if you wish to 
see a more precise definition of the question or some examples of recognized responses, ?? if you want to see all 
recognized responses, the word RULE if you would like to see the decision rule which has generated the question 
being asked, the word WHY if you would like to see a more detailed explanation of the question, or the letters QA 
if you would like to interrupt the consultation in order to ask questions regarding the decisions made so far in the 
consultation. If you are ever puzzled about what options are available to you during a consultation, enter the word 
HELP and a list of options will be listed for you. 

Sample Response [user input follows the .. ] 
Does the patient have a risk factor for tuberculosis? 
.. ? 
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One or more of the following are considered risk factors for TB: a) positive PPD (5TU), b) history of close contact 
with a person having active TB, c) household member with a past history of active TB, d) chest X-ray showing 
apical scarring, e) granulomas seen on biopsy of any organ tissue. 

expected responses are: YES NO 
Enter HELP for user options. 
"YES 

SUMMARY: 
(type ctrl-0 to abort printout) 
UNK - Answer not known. 
? - Rephrases the question and gives examples of recognized responses. 
?? - Prints a list of all recognized responses. 
RULE - Prints the current decision rule. 
QA - Program enters question-answering mode. 
CHANGE# - Go back and re-request answer to question number#. 
COMMENT - Enter comments about any aspect of the system's performance. Your comments will be 

forwarded to those in charge of the MYCIN program. 
WHY­
HOW#-

Gives high-level explanation of the current reasoning chain that provoked this question. 
Explains HOW the system will achieve a goal referred to by number # in a previous 
explanation. 

EXPLAIN -
FORGET-

Provides a more detailed explanation of a previous answer given by a WHY command. 
Resets the explanation of the reasoning chain back to lowest level, as if you never used the 
WHY/EXPLAIN commands. 
Halts the program without completing the consultation. STOP­

SAVE­
HELP-

Halts the program, saving the current patient on a disk file, retrievable at a later date. 
Prints this list. 

A.2 Infectious Disease Consultation Session 

{This is a typescript of a MYCIN consultation on an actual patient treated at Stanford. MYCIN was not used 
to suggest treatment. Spaces have been added for readability, and comments (in italics) have been 
inserted. Otherwise it is a verbatim transcript. User's responses follow double asterisks.] 

--------PATI ENT-538--------
1) Patient's name: 
** PT538 [Name, age, sex, and race are always asked because they are INITIALDATA.} 
2) Age: 
** 34 YEARS 

{MYCIN corrects misspellings.] 

3) Sex: 
** MAEL 
=MALE 
4) Race: 
**WHY [The user asks for an explanation. In this instance it is trivial.] 

[i.e. WHY is it important to determine the race of PATIENT-538?] 

[1.0] The race of a patient is one of the 5 standard parameters that identify 
a patient. 
This may be useful later in the consultation. For example, it is 
relevant in determining the organisms (other than those seen on cultures 
or smears) which might be causing the infection. 

[back to question 4 ... ] 
** CAUCASIAN [This is the answer to the question about race.] 

Please supply one answer under each heading. If your response is not 
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understood, you will be prompted by the standard questioning method. 
(enter ? for normal prompting, • for questions that are not applicable.) 

Please enter the results of positive cultures using the following table. 
site culture date date I 

number collected positive 

5)"DONE 

method I 
of collection 
[urine.sputum only] 

[The next question asks for several items in tabular form 
since they are found together in the hospital record.] 

Please enter the results of pending cultures in the following table. 
site culture date stain I 

number collected examined 
method ofl 
collection 
[urine.sputum only] 

6)" CSF 1234 30-Jan-77 YES' 

stain of 
smear 

morph I [MYCIN follows up on the stain of 
the smear and the morphology.] 

[type DONE if no organism was seen on the smear] 

?)"DONE 

[No information about stain or morphology is available. MYCIN now 
follows up question 6, asking about other positive cultures.] 

site cul# date coll. smear 
examined?! 

coll. method! 

8)"DONE {There are no more positive cultures.] 

Please enter negative cultures in the following table. 
site culture date I 

number collected 
method ofl 
collection 
[urine.sputum 
only] 

9)"DONE {There are no negative cultures.] 

10) Do you suspect Pt538 may have an infection at a site from which you 
have not obtained culture specimens? 

.. NO 

Please enter information on current antimicrobials. 

drug 
name 

11)" CEPHALOTHIN 
12)"DONE 

route of 
administration 

IV 

Please enter information on prior antimicrobials. 
drug route of 
name 

13)"DONE 
administration 

datel 
started 

datel 
started 

23-Jan-77 

[Considering organisms (other than those isolated from cultures) which might 
be present. .. ] 

14) Has Pt538 recently had symptoms of persistent headache or other 
abnormal neurologic symptoms (dizziness, lethargy, etc.)? 

"YES 
15) Has Pt538 recently had objective evidence of abnormal neurologic signs 

(nuchal rigidity, coma, seizures, etc.) documented by physician 
observation or examination? 

"YES 

The CSF cultures will be considered to be associated with MENINGITIS. 

date I 
stopped 
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16) Please give the date on which clinical evidence (symptoms, signs, or 
laboratory tests) of the meningitis first appeared. 

** 29-Jan-77 22:15 
17) Does Pt538 have an abnormal chest X-ray? 
**NO 
18) Does Pt538 have one or more of the following risk factors for TB: a) 

positive intermediate strength PPD, b) history of close contact with a 
person with active TB, c) a household member with a past history of 
active TB, d) apical scarring on chest X-ray, e) history of granulomas 
on biopsy of liver, lymph node, or other organs? 

**NO 
19) Does Pt538 have any cutaneous lesions or rash on physical examination? 
**NO 
20) Does Pt538 have evidence of ocular nerve dysfunction? 
**NO 
21) Is Pt538 a compromised host (e.g. alcoholic, sickle-cell-disease, 

immunosuppressed)? 
**YES 
22) Is Pt538 immunosuppressed (e.g. corticosteroid therapy, cytotoxic drug 

therapy, radiation therapy, leukemia, lymphoma)? 
**NO 
23) For how many days has Pt538 had abnormal neurologic signs? 

** 7.2 HOURS [Note that the answer was given in hours. 

24) For how many days has Pt538 had neurologic symptoms? 
** 1 DAYS 

MYCIN has to be flexible enough to convert units.] 

25) Has Pt538 had recent evidence of tender or enlarged salivary glands? 
**NO 
26) Has Pt538 been exposed to any contagious disease recently (e.g. 

meningococcal disease, mumps) ? 
**NO 

Please enter CSF findings in the following table 
CSF Percent Protein 
WBC PMN 

27)** 100 99 280 

28) Do you know the results of a recent CBC of Pt538? 
**YES 

Please enter CBC results in the following table 

WBC Percent 
in 1000's PMN 

CSF 
Glucose 
5 

29)** 1.9 UNKNOWN 
30) Has Pt538 had any injury or insult to, or defect in the central-

nervous-system (excluding neurosurgery)? 
**NO 
31) Has Pt538 ever undergone any type of surgery? 
**YES 
32) Does Pt538 have a history of NEUROSURGERY? 
**NO 
33) Does Pt538 live in a crowded environment? 
**NO 
34) Do you suspect recent alcoholic history in Pt538? 
**NO 
35) Is meningitis a hospital-acquired infection? 

**WHY 

Peripheral I 
Glucose 
UNKNOWN 

[Note that some information is missing.] 

Percent! 
BANDS 
UNKNOWN 

[This is a more interesting question, requiring presentation of the rule that caused question 35 to be 
asked. Note that the first five clauses of the rule have been investigated and question 35 is motivated 
by the last clause. MYCIN first rephrases the question to give the user its interpretation of the WHY.] 
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[i.e. WHY is it important to determine whether the infection was acquired 
while the patient was hospitalized?] 

[2.0] This will aid in determining the organisms (other than those seen on 
cultures or smears) which might be causing the infection. 
It has already been established that 

[2.1] the infection which requires therapy is meningitis, and 
[2.2) organisms were not seen on the stain of this pending CSF culture, 

and 
[2.3) the type of the infection is bacterial, and 
[2.4) neurosurgery is not one of the relevant items from the history 

of Pt538, and 
[2.5) the age of Pt538 is greater than 1 O days 

Therefore, if 
[2.6) the infection was acquired while the patient was hospitalized 

then 
there is evidence that the organisms (other than those seen on 

cultures or smears) which might be causing the infection is e.coli 
(.75) staphylococcus-coag-pos (.3) pseudomonas-aeruginosa (.3) 
klebsiella-pneumoniae (.5) 

Author: Yu 
[RULE545] 

[back to question 35 ... ] 

{MYCIN now requests the answer to question 35 again. 
Instead of answering, the user asks how clause 2.3 was confirmed.] 

••HOW 2.3 

[i.e. HOW was it established that the type of the infection is bacterial?) 

[Rather than printing the contents of the rules, MYCIN shows the rule 
numbers and the strength of positive and negative evidence from each rule.] 

The following rules concluded about: 
the likelihood that the type of the infection is bacterial 

Rule Yes No 

[2.7) RULE148 (.19) 
[2.8) RULE500 (.51) 
[2.9] RULE501 (.95) 
[3.0] RULE502 (.97) 
[3.1] RULE526 (.98) 
[3.2] RULE504 (.97) 
[3.3] RULE524 (.98) 

Thus, it has been established that the type of the infection is bacterial. 

[back to question 35 ... J 
••HOW 2.5 

[i.e. HOW was it established that the age of pt538 is greater than 10 days?) 

In answer to question 2 you said that the age of pt538 is 34 years 

Thus, it has been established that the age of pt538 is greater than 1 o days. 

[back to question 35 ... ] 
··y 
36) Is Pt538's clinical history consistent with EPIGLOTTITIS? 
••NO 
37) Is Pt538's clinical history consistent with OTITIS-MEDIA? 
••NO 
38) Has Pt538 ever undergone splenectomy? 
••NO 
39) Is Pt538 a burn patient? 
··wHY [Another explanation is requested.] 
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[i.e. WHY is it important to determine whether PATIENT-538 has been seriously 
burned?] 

[4.0] This will aid in determining the organisms (other than those seen on 
cultures or smears) which might be causing the infection. 
It has already been established that 
[4.1] the infection which requires therapy is meningitis, and 
[4.2] organisms were not seen on the s!ain of this pending CSF culture, 

and 
[4.3] the type of the infection is bacterial 

Therefore, if 

then 
[4.4] pt538 has been seriously burned 

there is suggestive evidence (.5) that pseudomonas-aeruginosa is one 
of the organisms (other than those seen on cultures or smears) 
which might be causing the infection 

Author: Yu 
[RULE578] 

[back to question 39 ... ] 
**WHY fin this case, the user asks another WHY question, backing up the subgoal tree.] 

[i.e. WHY is it important to determine the organisms (other than those seen 
on cultures or smears) which might be causing the infection?] 

[5.0] ... in order to determine the therapeutic regimen of PATIENT-538. 
If 

[5.1] information has been gathered about organisms isolated from the 
patient, organisms noted on smears of the patient, negative 
cultures of the patient, suspected infections without 
microbiological evidence, current drugs of the patient and prior drugs of the patient, and 

[5.2] an attempt has been made to deduce the organisms which require 
therapy, and 

[5.3] You have given consideration to organisms (other than those 
seen in cultures or smears) which might be present, and found 
at least one organism which requires therapy. 

then 
determine the best therapy recommendation from among the drugs likely 

to be effective against the significant organisms 
[RULE092] 

[back to question 39 ... ] 
**Y 

[MYCIN now prints its intermediate conclusions about the likely causes of the infection.] 

I have found evidence (RULE545 RULE557) that treatment should cover for E.coli 
causing meningitis. 

I have found evidence (RULE545 RULE557 RULE578) that treatment should cover 
for Pseudomonas-aeruginosa causing meningitis. 

I have found evidence (RULE545 RULE557) that treatment should cover for 
Klebsiella-pneumoniae causing meningitis. 

I have found evidence (RULE507) that treatment should cover for Diplococcus­
pneumoniae causing meningitis. 

[Now MYCIN begins to ask questions related to appropriate therapy.] 

40) Does Pt538 have focal neurological signs? 
**UNKNOWN 

[Some questions are motivated by the organism under consideration. Thus 
the following lines sometimes provide useful contextual information to a user.] 

[Determining which drugs are desirable for use against the E.coli. .. ] 
[Determining which drugs are desirable for use against the Pseudomonas-

aeruginosa ... ) 
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[Determining which drugs are desirable for use against the Klebsiella­
pneumoniae ... ] 

[Determining which drugs are desirable for use against the Diplococcus­
pneumoniae ... ] 

My therapy recommendations will be designed to treat for organisms that either are very likely or, although less 
likely, would have a significant effect on therapy selection if they were present. It is important to cover for the 
following probable infection(s) and associated organism(s): 

INFECTION-1 is MENINGITIS 

+ <ITEM-1 > E.COLI [from clinical evidence only] 
+ <ITEM-2> PSEUDOMONAS-AERUGINOSA [from clinical evidence only] 
+ <ITEM-3> KLEBSIELLA-PNEUMONIAE [from clinical evidence only] 
+ <ITEM-4> DIPLOCOCCUS-PNEUMONIAE [from clinical evidence only] 

41) Does Pt538 have a clinically significant allergic reaction to any 
antimicrobial agent? 

••NO 
[Considering AMPICILLIN-AND-GENTAMICIN for use against INFECTION-1...] 
42) Do you have reason to suspect that Pt538 may have impaired renal 

function? 
••NO 

43) Pt538's weight in kilograms (or <number> POUNDS): 
•• 70 

[Finally, MYCIN prints the best therapy it has found to maximize the chances of effective coverage 
of the cause(s) of the infection while minimizing the number of drugs, their toxicity, and side effects.] 

[REC-1] My preferred therapy recommendation is as follows: 
In order to cover for Items <1 2 3 4>: 

Give the following in combination: 
1) AMPICILLIN 
Dose: 3.5g (28.0 ml) q4h IV [calculated on basis of 50 mg/kg] 

2) GENTAMICIN 
Dose: 119 mg (3.0 ml, 80mg/2ml ampule) q8h IV [calculated on basis of 

1. 7 mg/kg plus consider giving 5 mg q24h lntrathecal 
Comments: Monitor serum concentrations 

Since high concentrations of penicillins can inactivate 
aminoglycosides, do not mix these two antibiotics in the same IV 
bottle. 

Do you wish to see the next choice therapy? 

••YES 

Which, if any, of the above drugs do you wish eliminated from consideration? 
•• AMPICILLIN 

[Considering GENTAMICIN for use against INFECTION-1...] 
[Considering PENICILLIN for use against INFECTION-1 ... ] 

[REC-2] Next best therapy recommendation: 
In order to cover for Items <1 2 3>: 

Give: GENTAMICIN 

[Other therapies can be examined.] 

Dose: 119 mg (3.0 ml, 80mg/2ml ampule) q8h IV [calculated on basis of 
1.7 mg/kg] plus consider giving 5 mg q24h lntrathecal 

Comments: Monitor serum concentrations 

In order to cover for Item <4>: 
Give: PENICILLIN 
Dose: 3.5 million units (7.0 ml) q4h IV [calculated on basis of 50000 

units/kg] 
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RECOMMENDATION-2 is equivalent to RECOMMENDATION-1. 

Would you like to see details of this comparison? 
**YES 

Looking at the coverage of the 'most likely' items, we see that: 

RECOMMENDATION-1 consists of 1 first choice drug (AMPICILLIN for ITEM-1 
and ITEM-4) and 1 third choice drug (GENTAMICIN for ITEM-1, ITEM-2 and 
ITEM-3) 

RECOMMENDATION-2 consists of 1 first choice drug (PENICILLIN for ITEM-4) 
and 1 third choice drug (GENTAMICIN for ITEM-2, ITEM-1 and ITEM-3) 

ORGANISMS RECOMMENDATION-1 RECOMMENDATION-2 
'most likely' 
ITEM-1 
ITEM-2 
ITEM-3 
ITEM-4 

Drug -- Choice Ranking 
AMPICILLIN-AND-GENTAMICIN--1 st 
GENTAMICIN--2nd 
GENTAMICIN--3rd 

Drug -- Choice Ranking 
GENTAMICIN--3rd 
GENTAMICIN--2nd 
GENTAMICIN--3rd 
PENICILLIN--1st AMPICILLIN--1st 

(The desirability of a drug is defined to be its lowest ranking for the items 
it covers.) 

Do you wish to see the next choice therapy? 
••NO 

A.3 Answers to User's Questions About This 
Consultation and About the Knowledge Base 

Please ask any simple-English questions regarding the above consultation session or the overall 
knowledge of the consultation system. When discussing the consultation above, please refer to organisms, 
cultures, etc. by their numeric names (e.g., ORGANISM-1). Questions which were asked during the consultation 
may be specified by thtt numbers that preceded them above, (e.g., WHY DID YOU ASK QUESTION 1 ?). 
Control-0 will abort type-out, or cancel the current question. Type HELP for a list of the options available. Enter 
the word STOP when you have no further questions. 

Type HELP for the list of question options. 

**HELP 

QA-OPTIONS: 
(Type ctrl-0 to abort printout) 

ADVICE--
QT--
EQ <numbers> --

LP <object type> --

PR <numbers> -­
EXPLTHER -­
REC--

RX <infection> <organism identities> --

JUSTIFICATION -­
LITERATURE -­
NOJUST -­
TERSE-­
VERBOSE-­
STOP--
HELP--

Prints suggestions for using the QA system effectively. 
Prints examples of question types recognized by the system. 
Prints an explanation of the specified question(s) from the 
consultation, e.g., EQ B 13. 
Prints list of attributes associated with object type, e.g., LP 
CULTURE. (Object types are patient, infection, culture, organism, 
and drug.) 
Prints specified rule(s), e.g., PR 373 49 87 2. 
Prints a short description of the therapy program. 
Prompts user for alternative therapy RECommendation and 
compares it to MYCIN's recommendation. 
Prints treatment lists for specified organisms causing the indicated 
infection, e.g., RX MENINGITIS ENTEROCOCCUS. 
When rules are printed out, include their justifications. 
When rules are printed out, include their literature references. 
Stop giving justification and/or literature with rules. 
Print rules in terse format. 
Turns off terse printing of rules. 
Escape from QA-module. 
Prints this list. 
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•• JUSTIFICATION 

•• LITERATURE 

•• WHY DID YOU TREAT E.COLI? 

ITEM-1 is E.coli associated with meningitis. I decided to treat ITEM-1 on 
the basis of clinical evidence only. 

The following rules concluded about: 
the likelihood that e.coli is one of the organisms (other than those 

seen on cultures or smears) which might be causing the infection 

RULE545 was used to conclude that e.coli is one of the organisms (other than 
those seen on cultures or smears) which might be causing the infection 
(.74). The last question asked before the conclusion was made was 35. 

RULE557 was used to conclude that e.coli is one of the organisms (other than 
those seen on cultures or smears) which might be causing the infection 
(.93). The last question asked before the conclusion was made was 37. 

[A summary of why E. coli was treated shows the parameters associated with E. coli 
as a likely cause of the infection.] 

The parameters most frequently used in these rules were: 
the infection which requires therapy 
whether a smear of the culture was examined 
whether organisms were seen on the stain of the culture 
the type of the infection 

Would you like a summary of ALL the parameters used by these rules? 
••YES 

Parameter (rules with this parameter) 

the white count from the patient's peripheral CBC (in thousands) (557) 
whether the results of a recent CBC of the patient are available (557) 
whether the infection was acquired while the patient was hospitalized (545) 
the age of the patient (545) 
the relevant items from the history of the patient (545) 
the type of the infection (545, 557) 
whether organisms were seen on the stain of the culture (545, 557) 
whether a smear of the culture was examined (545, 557) 
the infection which requires therapy (545, 557) 

{The next question is about MYCIN's knowledge in general, not about the conclusions 
drawn for the case just discussed.] 

•• HOW DO YOU USE THE TYPE OF THE INFECTION? 
The following rules use: 

the type of the infection 

154,578, 574, 572, 570, 565, 564, 559, 557, 553, 551,549, 547, 545, 543, 541, 
539, 537, 535, 533, 531, 529, 523, 520, 519, 517, 515,513, 511,507, 300, 
289,288,287, 280, 174, 167 

The parameter most frequently concluded by these rules is: 
the organisms (other than those seen on cultures or smears) which might 

be causing the infection 

Would you like a summary of ALL the parameters concluded by these rules? 
••NO 

Which of the rules do you wish to see? 
•• 280 
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RULE280 

[This rule applies to all cultures, and is tried in order to find out about 
the organisms (other than those seen on cultures or smears) which might 
be causing the infection] 

If: 1) The infection which requires therapy is meningitis, and 
2) The type of the infection is fungal, and 
3) Organisms were not seen on the stain of the culture, and 
4) The patient is not a compromised host, and 
5) The patient has been to an area that is endemic for coccidiomycoses, and 
6) The race of the patient is one of: black asian indian, and 
7) The cryptococcal antigen in the CSF was not positive 

Then: There is suggestive evidence (.5) that cryptococcus is not one of the 
organisms (other than those seen on cultures or smears) which 
might be causing the infection 

Author: YU 
Justification: Dark-skinned races, especially Filipino, Asian, and Black (in 

that order) have an increased susceptibility to coccidiomycoses 
meningitis. 

Literature: Stevens, D.A. et al. Miconazole in Coccidiomycosis. Am J Med, 
60:191-202, Feb 1976. 

A.4 Therapy Recommendation Consultation 
Session 

MYCIN 3-Jun-78 ... 

Special options (type? for help): 
**REC 

Instructions? (Y or N) 
**YES 

[If the infection and organism identities are known, MYCIN can still be helpful in 
recommending appropriate therapy.] 

This program recommends therapy for a patient with infectious diseases. You will be asked a few facts about 
the patient which will be used to determine the dosages and appropriateness of giving certain antibiotics. Then 
you will be prompted for the infection(s) that you want treated and the organism(s) which you feel may be 
responsible for each infecton. 

MYCIN cannot make a recommendation without knowing the infection(s) and organism(s) to be treated. Other 
information is requested for the purpose of refining therapy selection, but is not essential; you may answer 
UNKNOWN to any of these questions. 

Case 2, AA, 47-24-31, VMC, A 3 year old female with one day history of headache, lethargy, fever to 104. LP.: 
Protein 25, glucose 95 110 cells with 96% polys. Pe: Meningismus, petechiae on arms and shoulders. 

28-NOV-77 11 :05:51 
[consultation of 23-JUN-76 12:00] 

--------PATIENT-683--------
1) Patient's name: (first-last) 
"PT683 
2) Age: 
** 3.5 
3) Sex: 
**FEMALE 
4) Is Pt683 currently receiving therapy with any antimicrobial agent? 
**NO 
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5) During the present illness, has Pt683 been treated with an 
antimicrobial agent which is no longer being administered? 

••NO 

Infection: MENINGITIS 
Organism: VIRUS 

[Determining which drugs are desirable for use against the Virus ... ] 
Are there any other organisms which might be causing this meningitis? 

••YES 
Organism: HEMOPHILUS-INFLUENZAE 

6) Has the lab reported the in-vitro antibiotic sensitivities of the 
hemophilus-influenzae causing the meningitis (ITEM-2)? 

•• N 

[Determining which drugs are desirable for use against the Hemophilus­
influenzae ... ] 

7) Does Pt683 have a clinically significant allergic reaction to any 
antimicrobial agent? 

••NO 

Are there any other organisms which might be causing this meningitis? 
••YES 
Organism: NEISSERIA-MENINGITIDIS 
8) Has the lab reported the in-vitro antibiotic sensitivities of the 

neisseria-meningitidis causing the meningitis (ITEM-3)? 
•• N 

[Determining which drugs are desirable for use against the Neisseria-
meningitidis ... ] 

Are there any other organisms which might be causing this meningitis? 
.. NO 

Are there additional infections for which you want therapy recommendations? 
••NO 

INFECTION-1 is MENINGITIS 

+ 
+ <ITEM-2> 
+ <ITEM-3> 

VIRUS Supportive therapy. 
HEMOPHILUS-INFLUENZAE 
NEISSERIA-MENINGITIDIS 

[Considering AMPICILLIN-AND-CHLORAMPHENICOL for use against INFECTION-1 ... ] 
9) What is the most recent creatinine clearance in ml/min which you feel 

is a true representation of Pt683's renal function? 
••UNKNOWN 
10) What is the most recent serum creatinine of Pt683 (in mg/100ml)? 
••UNKNOWN 

11) Pt683's weight in kilograms (or <number> POUNDS): 
•• 17.7 

[REC-1] My preferred therapy recommendation is as follows: 
In order to cover for Items <2 3>: 

Give the following in combination: 
1) AMPICILLIN 
Dose: 886 mg (7.0 ml) q4h IV [calculated on basis of 50 mg/kg] 
[The dose should be modified in SEVERE renal failure. I can adjust 

the dose only if a creatinine clearance or a serum creatinine 
is obtained, and the patient's weight is known.] 

2) CHLORAMPHENICOL 
Dose: 443 mg (4.4 ml) q6h IV [calculated on basis of 25 mg/kg] 

Please ask any simple-English questions regarding the above consultation session or the overall knowledge of 
the consultation system. When discussing the consultation above, please refer to organisms, cultures, etc. by their 
numeric names (e.g. ORGANISM-1). Questions which were asked during the consultation may be specified by the 
numbers that preceded them above, (e.g., WHY DID YOU ASK QUESTION 1?). Control-0 will abort type-out, or 
cancel the current question. Type HELP for a list of the options available. Enter the word STOP when you have no 
further questions. 
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Type HELP for the list of question options. 

" JUSTIFICATION 

•• LITERATURE 

[MYCIN can compare its recommendation against one that the user would like to consider.] 

"REC 
For each item in turn, enter the drug you would have prescribed in 
RECOMMENDATION-1. 
In order to minimize the number of drugs in your recommendation, you may not 
want to prescribe therapy for every item. Items which represent the most 
likely organisms are indicated with a plus sign ( + ). 

+ ITEM-1-the virus" 
+ ITEM-2-the hemophilus-influenzae " CARBENICILLIN 
+ ITEM-3-the neisseria-meningitidis " CARBENICILLIN 

[Checking for contraindications ... ] 
[Considering CARBENICILLIN for use against INFECTION-1 ... ] 
[No contraindications found ... ] 

[Now comparing your prescription to MYCIN's ... ] 

ORGANISMS 
"most likely" 
ITEM-2 
ITEM-3 

MYCIN's regimen 
Drug -- Choice Ranking 
AMPICILLIN-AND-CHLORAMPHENICOL--1 st 
AMPICILLIN--1st 

(The desirability of a drug is defined to be its lowest ranking for the items 
it covers.) 

Your regimen 
Drug -- Choice Ranking 
CARBENICILLIN--3rd 
CARBENICILLIN--2nd 

[Giving one drug is often preferable to giving two. In this case, however, 
the one would not be as effective.] 

Your recommendation for the most likely organism(s) is not optimal, since 
your prescription of 1 third choice drug (CARBENICILLIN for ITEM-3 and ITEM-2) 
should be avoided. 

[You may refer to your regimen as RECOMMENDATION-2 in later questions.] 

"STOP 
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constraint satisfaction, 133, 313, 685, 697 
consultation, 3, 201, 302, 360, 422, 426, 457, 

610, 635ff, 671, 691, 701 
example of, 691', 298ff, 3 l 9f, 323f, 427-

430, 533, 553, 704-711 
subprogram in MYCIN, 5, 10, 67-73, 78-

132, 184 
content-directed invocation (see control) 
contexts, 60, 64, 70-71, 82, 99, 163, 297, 

344, 353, 360,493, 670 
context tree, 60, 62, 79, 82-86, 99 104, 

112, I 18ff, 128, 132, 295, 324, 494-
503, 675, 678 

context types, 82ff, 495ff 
instantiation, 62, l 18ff, 495ff 
in ONCOCIN's rules, 163ff, 659 

contextual information, 179, 185-198, 201, 
203, 335, 393f, 396, 398, 410, 421 ff, 
471, 477, 677 

contradictions (see consistency) 
contraindications (see drugs, 

contraindications), 543 
control (see also control knowledge), 28, 32, 

33, 43-45, 48-50, 60-65, 103-112, 
220f, 358, 416, 435ff, 441-452, 493, 
495, 526, 53lf, 670, 673, 677ff, 696f 

backward chaining, 5, 27, 40, 57, 60, 7lff, 
104, 176, 187, 304, 346, 376, 395, 426, 
447, 465, 511, 532, 539, 601, 659ff, 
677, 681, 700 

blocks, 659f 
content-directed invocation, 527, 539 
data-directed (see control, forward 

chaining) 
demons, 29, 619 
of dialogue, 71 
exhaustive search, 56, 521 
forward chaining, 4f, 13, 27, 57, 60, 195, 

387, 419, 426, 449, 456, 461, 511, 539, 
561, 60 l, 606, 626, 658, 659, 661 ff, 
677, 681 

goal-directed (see control, backward 
chaining) 

hypothesis-directed (see control, backward 
chaining) 

message passing, 561 
model-directed, 195 
MONITOR function (see MONITOR) 
prototypes for (see prototypes) 
of search, 57, 220, 04, 521, 674 
select-execute loop, 24 

control knowledge (see also rules, meta-rules), 
134, 394ff, 677 

explicitness, 394 
correctness (see evaluation) 
cost-benefit analysis, 62, 215, 217, 235, 246, 

522, 565, 576, 578, 680 
COVERFOR, 222, 223, 474ff, 486, 554 
credit assignment (see also knowledge base, 

refinement), 177, 688 
critiquing model, 467, 692 
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data: 
acceptable values (see expectations) 
collection, 398, 409f, 655 
snapshop of, 313, 393, 675 
time varying, 409f, 655ff 
uncertainty in, 674, 684, 696 

data base (see also patient data), 22, 112, 386, 
655, 692 

data-directed reasoning (see control, forward 
chaining) 

data structures (see representation) 
debugging (see also knowledge base, 

refinement), 51, 152, 159 
decision analysis (see also utilities), 217, 234, 

332 
decision trees, 23f, 311 
declarative knowledge (see knowledge; 

representation) 
deep knowledge (see knowledge, causal) 
defaults (see knowledge) 
definitional rules (see rules) 
definitions (see knowledge, support) 
demand ratings, 637, 644-647 
demons (see control) 
Dempster-Shafer theory of evidence, 215, 

272ff, 681 
depth-first reasoning (see control) 
design considerations, 3ff, 10, 19, 51, 57-59, 

67, 78, 176, 238, 30~ 331, 340, 3421', 
349, 397f, 403f, 417, 42lff, 458, 467f, 
505, 531, 576ff, 603, 605f, 636, 648, 
649ff, 671 ff 

diagnosis, 13-16, 234, 312, 441, 461, 545 
strategies for, 426, 448f, 537, 552ff, 673, 

679, 702 
dialogue (see also human engineering), 335, 

467ff, 615, 670, 687 
evaluation, 575 
management of, 9, 60, 71, 105, 110, 119, 

127, 260, 374, 395,4391', 447,456, 
459, 465, 470ff, 480ff, 483ff, 601, 
606ff, 613f, 618, 651, 656 

mixed initiative, 455, 458 
dictionary (see also human engineering), 68, 

73, 99, 193, 306, 349, 620 
disbelief (see also inexact inference), 24 7ff, 

273 
disconfirmation (see confirmation) 
discourse (see dialogue) 
discrimination nets, 625 
disease hierarchies (see inference structure) 
documentation, 529 
domain independence (see generality) 
drugs: 

allergies to (see drugs, contraindications) 
antibiotics, 13ff, 122ff, 234, 363ff, 372, 

395, 593, 600 
contraindications, 15ff, 135 
dosing, 17, 125f, 137, 163-170, 334, 363-

370 
optimal therapy (see also therapy), 137 
overprescribing, 16ff 
prophylactic use, 17 



sensitivities, 15, 133, 135 
toxicity (see drugs, contraindications) 

editor (see also rule editor; rule language), 
180, 307, 391,670 

education (see also tutoring), 337, 450, 575 
efficiency, 48, 576, 578 
electronics, 396 
ELSE clauses, 61, 79ff, 115 
English understanding (see dialogue; human 

engineering; natural language) 
entrapment, 483ff 
error checking (see rule checking) 
EVAL, 71 
evaluation, 67, 137, 155ff, 337, 439f, 450, 

571-588, 589ff, 602, 651, 674, 694f, 701 
of acceptability, 575, 578, 602, 636 
of attitudes, 610f, 635-652 
gold standard, 572, 579 
methodology, 573, 579, 581, 588, 590 
of MYCIN, 571-577, 583-588, 589-596 
of ONCOCIN, 606, 610 
of performance, 218, 574, 644 
sensitivity analysis, 217-219, 582 

events, representation of, 500 
evidence, 498, 550 

evidence gathering (see also control; 
confirmation), 5, 176, 460, 469, 674f, 
696, 700 

evidential support (see inexact inference) 
hard and soft evidence, 152 

exhaustive search, 505, 534 
EXPECT (attribute of parameters), 88ff, 350 
expectations, 177, 182f, 188, 195, 203, 40lf, 

411, 417-419, 450, 511, 637ff 
expertise, 580ff, 636 

nature of, 233, 373, 456, 459f, 467f 
transfer of (see knowledge acquisition) 
use in explanation, 378ff 

experts, 158, 170, 234, 236, 242, 262, 264, 
580, 686 

agreement among, 584ff, 592 
disagreement among, 582, 584-588, 682 
evaluations of, 582, 584-588 
interactions with (see knowledge 

engineering) 
expert systems, 3ff, 7, 25, 247, 272, 282, 385, 

455f, 460, 530, 568, 574, 577ff, 634 
building (see also knowledge acquisition), 

150, 387, 577, 670, 686ff 
validating (see evaluation) 

explanation (see also question-answering; 
reasoning status checker; natural 
language), 27, 31, 42, 65, 133, 161, 171, 
233, 331-337,338-362,363-370, 371-
388, 394, 451, 457, 465, 475, 493, 531-
568, 575, 599f, 644, 651, 664, 670, 674, 
677, 688ff, 693, 695, 705, 707f 

of drug dosing, 363-370 
of meta-rules, 526, 528 
of rules, 38, 72, 132, 133, 238, 305f 
subprogram in MYCIN, 4, 7, 10, 57, 67, 

73ff, 79, Ill, 112, 339, 37lf, 458, 532, 
537 

of therapy (see therapy, explanation of) 
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user models in (see user models) 
WHY?/HOW?, 75f, Ill, 173, 310, 373, 

533f, 60 I, 689f 
explicitness (see also knowledge; transparency; 

understandability; modularity), 545, 564f 
extensibility (see flexibility) 

facets, 617, 619 
facts (see representation, of facts) 
fear of computers, 648 
feedback, 9f, 204, 459, 513, 551, 577, 686, 

702 
FINDOUT (see aLrn rule interpreter), 105-

110, l 16f, 121, 125f, 130, 132 
flexibility (see also knowledge base, 

refinement), 3, 6, 50, 149, 296, 311, 342, 
450, 465, 470, 488, 493, 559f, 565, 669f, 
687 

inflexibility, 503, 520 
focus of attention (see also control), 179, 186, 

441, 447, 471, 479 
FOREACH, 223 
formal languages, 6 
formation problems (see synthesis problems) 
forward chaining (see control) 
frames, 60, 63, 394ff, 425, 43lff, 437, 441-

452, 505, 613f~ 617, 633, 672, 676 
function templates (see templates; predicates) 
funding, 599, 698 
fuzzy logic, 210, 214, 245-247 

game-playing, 150 
generality (see also EMYCIN), 451, 465, 656, 

674, 677, 695f, 701 
generate and test, 135ff, 145, 674, 697 
geography (see SCHOLAR) 
geology (see PROSPECTOR) 
glaucoma (see CASNET) 
global criteria, 135 
goal-directed reasoning (see control) 
goal rule, 104, 554f 
goal tree (see rule invocation, record of) 
gold standard (see evaluation; certainty 

factors) 
grain size (see modularity) 
grammar, 22, 80f, 620-624 
graphics and graphical presentations, 336, 

368, 399f, 419, 608ff 
GRID/GRIDVAL, 102f 

handcrafting (see knowledge acquisition) 
hardware, 575, 578, 612, 659, 665 
help facilities, 64, lllf, 310, 474, 480f, 599, 

704f 
HERSTORY list (see rule invocation, record 

of) 
heuristics, 3, 48, 50, 133, 144, 150, 211, 482, 

524, 550f, 676, 681 
heuristic search (see control) 
hierarchical organization of knowledge (see 

knowledge) 
Hodgkin's disease (see also ONCOCIN), 656 
HOW? (see explanation) 
human engineering, 19, 42, 146, 156, 308, 

309f, 331-337, 338, 349, 411, 439, 599-



612, 674, 678, 688ff, 691ff 
acceptance, 332f, 337, 371ff, 578, 595, 599, 

637, 688, 695 
dictionary of terms and synonyms (see 

dictionary) 
English understanding (see aLm natural 

language), 67, 73, 76, 693f, 701 
1/0 handling (see also dialogue), 68, I !Of, 

297, 600 
models of interaction, 671, 69 lf, 701 
preview (see preview mechanism) 
unity path (see unity path) 

hypothesis-directed reasoning (see control) 
hypothesis formation, 8 
hysteresis, 406, 422 

1/0 (see dialogue) 
!CAI (see tutoring) 
!DENT, 93, 107, I 16, 123, 222, 223 
ill-structured problems, 9, 209, 683, 686 
importance (see aLrn CF's), 335, 375, 377ff, 

387, 432, 438, 442, 449 
incompleteness (see completeness) 
inconsistency (see consistency) 
independence, 258f, 263, 267, 270, 386, 685 
indexing, 13, 416, 441, 524, 538f, 557, 562, 

565, 670, 677, 679, 697 
indirect referencing (see aLw control, content­

directed invocation), 563 
induction, 174, 201, 687f 
inexact inference (see also certainty factors), 

50, 56, 63, 162, 209, 233ff, 255f, 392, 
416, 433, 442ff, 482, 664, 679-685 

vs. categorical reasoning, 56, 295, 317 
combining function, 93, 116, 211, 216, 277 
one-number calculus, 214 
precision, 210, 680, 682, 700 

inexact knowledge (see knowledge) 
infectious diseases, 13ff, 55, 104, 214, 217, 

234, 260, 370, 591 
inference (see also control): 

deductive (see logic) 
engine (see aLw rule interpreter), I 75f, 

295ff 
structure (see al.so contexts, context tree), 

55, 314, 316f, 321f, 326f, 374ff, 392, 
407f, 448f, 485f, 534ff, 542ff, 554f, 
567 

inheritance, 515, 563, 6761' 
INITIALDATA (MAINPROPS), 56, 60, 119, 

120, 705 
intensive care unit (ICU), 393, 397-423 
interaction (see models of interaction) 
interdisciplinary research, 8ff 
interface (see human engineering) 
Interlisp (set' LISP) 
Interviewer (in ONCOCIN), 605, 653, 656 
iteration, 313 

jaundice, 273ff 

key factors, in rules, 4 77, 543, 550, 702 
keyword matching (m• parsing) 
knowledge: 

algorithmic, 57, 66, 124 
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causal, 335, 374ff, 377ff, 385ff, 396, 460, 
503, 552ff, 672, 676, 702 

common sense, 73, 150, 540, 559, 651 
compiled, 503f, 541, 551, 566, 679, 690 
default, 61, 164f, 376, 432, 509, 559, 620, 

659 
domain-specific (see also vocabulary), 149 
hierarchic organization (see also contexts, 

context tree), 274f, 292, 403f, 515ff, 
678 

inexact (see also certainty factors), 67, 209ff, 
416f, 673, 683ff 

interactions, 582 
intermediate concepts, 551, 560 
judgmental, 3, 236ff, 316, 525, 540, 663, 

682 
about knowledge (see meta-level knowledge) 
meta-level (see also rules, meta-rules), 172-

205, 328, 336, 342, 396, 458, 461, 464, 
474, 476ff,488, 493-506, 507-530 

multiple uses of, 468f, 477, 507, 529, 673 
pedagogical (see also tutoring), 464, 691 
procedural, 57, 64, 341, 446, 528, 554, 

557, 619, 677 
separation from inference procedure, 6, 

174, 175, 295-301,464,527,678,696 
separation of types, 134, 437, 457, 460f, 

493, 506, 508, 531, 670, 676, 679, 691 
strategy (see also rules, meta-rules), 19, 56, 

73, 315, 336, 407, 467, 470, 503, 
504ff, 508, 521ff, 531, 537ff, 551-
559, 564f, 678, 691, 702 

structural, 316, 496, 504ff, 516, 538ff, 
562ff, 676, 691 

support, 126, 372, 385, 464, 469, 474, 
475f, 504ff, 539, 556, 565 

of syntax (see templates) 
taxonomic, 396, 425, 670, 676 
temporal, 406f, 416, 420, 658 
textbook, 456 

knowledge acquisition (see also ROGET; 
TEIRESIAS; knowledge engineering), 
33, 50f, 55f, 59, 76f, 149-158, 159ff, 
159f, 168, 171-205, 225ff, 297ff, 306ff, 
314, 318, 325ff, 372, 387, 411, 461, 462, 
493, 507, 510ff, 517ff, 560, 670, 673, 
676f, 682, 686ff, 700 

advice taking, 670 
conceptualization, 155, 161, 170, 314, 326f, 

503, 686 
debugging (see knowlege base, refinement), 

160ff 
hand crafting, 151, 171, 513, 687 
learning, 33, 52, 152f, 186f, 203, 205, 513, 

644,651 
models of, 150ff, 687f 
subprogram in MYCIN, 4, 7, IO, 67, 76f 

knowledge base, 342, 343, 465, 697, 700 
completeness, 156, 159ff, 159-170 
conflicts in, 162, 559, 582 
construction (see knowledge acquisition) 
czar, 221-228, 687 
display of (see also explanation), 160, 169 
maintenance, 309, 519, 521, 582, 644, 

686ff 



refinement, 9, 72, 137, 150, 152ff, 159, 
161, 172ff, 187f, 297ff, 310f, 327f, 
331, 337, 391, 439, 528, 582, 644, 686 

structure of, 493-506 
validation (see also evaluation), 129, 152, 

594 
knowledge-based system (see expert system) 
knowledge engineering, 5-7, 55f, l 45f, 149-

158, 159f, 170, 202, 567, 672, 686, 700 
tools for, 152-158, 170, 171, 295-301, 

302-313, 324, 655, 686ff, 699 
knowledge sources, 557, 560ff 
KNOWN (see predicates) 

LABDATA (see ASKFIRST) 
language: 

formal, 22 
understanding (see natural language) 

learning (see knowledge acquisition) 
least commitment, 565 
lesson plan, 4 71, 4 79 
LHS (see also rules), 4 
linguistic variables (see fuzzy logic) 
logic, 65, 392, 212, 343, 345, 672, 681 

completeness, 156 
conflict, 162 
consistency, 41, 42, 43, 238 
contradiction, 41, 230, 238 
modus ponens, 21, 65 
nonmonotonic (see also backtracking), 558, 

681 
predicate calculus, 28, 233 
quantification, 62, 65 
redundancy, 162 
subsumption, 41, 156, 162, 230, 259 

LOOKAHEAD, 89f, 115, 355 
LTM (see also memory), 33 

MAINPROPS (see INITIALDATA) 
maintenance (see knowledge-base 

maintenance) 
management (see project management) 
man-machine interface (see dialogue) 
mass spectrometry (see DENDRAL) 
matching (see also predicates), 186 
mathematical models, 316, 334, 335, 396 
mathematics, 151 
MB/MD (see also certainty factors), 211, 215, 

247ff, 265ff, 288, 679 
medicine, use of computers in, 304, 640, 652 
memory, 22, 26, 31, 33, 44, 613 
meningitis, 217 
message passing (see control) 
meta-rules (see rules) 
mineral exploration (see PROSPECTOR) 
missing rules (see also knowledge base, 

completeness), 162f, 511 
models (see rule models) 
models of interaction (see also consulation; 

critiquing model; monitoring), 30ff, 692 
modifiability (see design considerations; 

flexibility) 
modularity, 10, 47f, 56, 305, 361, 458, 529, 

670, 676, 684, 702 
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chunks of knowledge, 27, 39, 42, 52, 55, 
71, 72, 85, 154, 224, 238, 242, 438 

global, 30, 32 
grain size, 503f, 672 

modus ponens (see logic) 
MONITOR (see also rule interpreter), 105-

110, !16f, 12lf, 125f, 130, 132 
monitoring, 9, 393, 397-423, 675 
MYCIN gang, 222-232, 699, 703 

natural language (see also human 
engineering), 57, 67, 73, 76, 144, 176, 
179f, 182, 188-196, 202, 210, 306, 331, 
333, 335, 340, 342, 348ff, 422, 458, 601, 
605, 613-634, 693f 

nonmonotonic reasoning (see logic) 

object-centered programming, 56 
oncology (see ONCOCIN) 
opportunistic control (see blackboard model) 
optimization (see alw constraints, satisfaction), 

133 
ordering (see also control): 

of clauses/questions (see also dialogue, 
management of), 61, 63, 72, 130f, 395, 
535, 554, 678f 

of rules (see also rules, meta-rules), 130, 
535, 679 

organisms (see infectious diseases) 
overlay model (see student models) 

parallel processing, 82 
parameters, 70, 86-90, 118, 163f, 297, 298ff, 

321, 353, 374, 376, 407ff, 496, 659 
multi-valued, 87, I 08, 283, 534, 619 
properties of, 88-90, 408 
single-valued, 87, 282, 619 
symbolic values for, 403, 418f 
types, 87, 408 
typical values for, 445 
yes-no, 87, 93f, 534 

parsing, 73, 76, 188, l 93ff, 333, 349-354, 
412, 480, 511, 616, 620ff, 693, 701 

part-whole relations (see also contexts, context 
tree), 498, 545, 677 

patient data, 65, 79, 112-115, 127-129, 
445f, 583 

pattern matching, 73 
patterns, in rules (see rule models) 
pedagogical knowledge (see knowledge) 
performance (see evaluation) 
pharmacokinetics, 334, 363ff 
philosophy of science, 210, 239ff 
planning, 136, 313, 336, 534, 563 
poker, 8, 46 
precision, 210, 680, 682, 700 
predicates (see also templates), 37, 62, 65, 70, 

72, 80, 87, 93-99 182, 192, 324, 412-
415, 420, 510 

presentation methods (see dialogue) 
preview mechanism, 61, 63, 72, 131, 395, 

493, 678, 679 
probabilities (see also inexact reasoning; Bayes' 

Theorem), 70, 79, 91, 234ff, 239-242, 
259, 263-271, 385-387, 680 



problem difficulty, 675 
problem solving (see control; evidence 

gathering) 
production systems, 6ff, 12f, 20ff, 672, 675, 

700 
appropriate domains, 28 
pure, 20, 30 
taxonomy, 21, 45 

programming: 
environment, 306-311 
knowledge programming, 153, 670, 688 
style, 529f 

program understanding, 528 
project management, 674 
PROMPT, 88, 110, 118, 210, 617, 619 
prompts, 64, 88 
propagation of uncertainty (see certainty 

factors; knowledge, inexact) 
protocols, 604ff, 654 
prototypes (see also frames; rule models), 56, 

189~ 424-440, 505 
prototypical values (see knowledge, default) 
psychology, 25, 47, 52, 210, 338, 388, 439, 

448,451,461, 566,613, 651 
psychopharmacology (see BLUEBOX; 

HEAD MED) 
pulmonary physiology (see PUFF; VM) 

QA (see question-answering) 
quantification (see logic) 
question-answering (s1'e aLm explanation), 73, 

138ff, 198ff, 306, 333, 340, 342, 348-
362, 457, 601 

examples, 74, 143, 348, 349, 350f, 355ff, 
361, 7 1 I - 713 

randomized controlled trials, 579 
Reasoner (in ONCOCIN), 606, 653, 657 
reasoning network, 103ff, 108 
reasoning status checker (RSC) (see also 

explanation), 73, 75, 340ff, 346ff 
recursion, 524 
redundancy, 157, 162, 684f 
refinement (see control; knowledge 

acquisition) 
reliability (see robustness) 
relevancy tags, 377 
renal failure (see also drugs, dosing), 332, 

365ff 
representation (see also frames; logic; 

prototypes; rules; schemata; semantic 
networks),8, 19, 161, 173,323ff,39lff, 
406f, 424-440, 441-452, 5 l 4ff, 527ff, 
531-568, 651, 673, 675ff, 697 

associative triples, 23, 68, 76, 86, 87, 190, 
20~ 282, 304, 509, 516 

explicitness of (see explicitness) 
expressive power of, 134, 670, 676f, 686 
of facts (see alrn representation, associative 

triples), 431, 434 
lists, 99 
procedures, 20, 28, 57, 64, 392, 446, 557, 

566 
tabular knowledge, 99f 
uncertainly (see knowledge, inexact) 
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uniform, 52, 396, 441, 526, 532, 568, 675 
REPROMPT, 210 
resource allocation, 505 
response time (see human engineering) 
restart (see also backtracking), 129 
RHS (see also rules), 4 
risks (see utilities) 
robustness, 67, 685, 692 
rule-based system, 672 
rule checking (see also knowledge base, 

completeness), 180, 183, 197f, 307f, 324, 
513 

rule compilation, 311 
rule editor, 180, 195f, 493, 512 
rule interpreter (see also inference engine), 

24, 31, 61, 7lff, 212, 304f, 310, 341, 
524, 534 

rule invocation, record of, 65, 74, 115, 133, 
138ff, 160, 187, 333, 345, 354, 358, 458, 
469 

rule language, 153, 297 
rule model, 76, 156, 165, 168, 189-200, 202, 

355, 477, 508, 509ff, 520, 539 
rule network (see inference structure) 
rule pointers, 374 
rules, 4, 6, 12f, 55-66, 79-103, 134, 209, 

297, 305, 375-377,410-413,431-434, 
675-677 

advantages, 72, 238, 669f 
annotations in, 62, 367 
antecedent, 60, 678 
Babylonian, 12f 
causal, 383, 540f 
circular (see circular reasoning) 
consequent, 49, 103 
default, 164 
definitional, 164, 295, 383, 541, 676, 678 
domain fact, 541 
examples of, 71, 100, 164, 238, 296, 317, 

322, 344, 432, 447, 543ff, 660 
grain size (see modularity) 
identification, 540 
independence of (see modularity) 
indexing, 164 
initial, 164 
justifications for, 367, 475, 506, 531ff, 

540ff, 675, 690 
mapping, 62 
meta-rules, 19, 48, 56, 63, 65, 73, 130, 212, 

383, 395, 521-527, 535, 556ff, 676, 
678f 

ordering of clauses in (see ordering) 
predictive, 462 
premises of, 496 
production rules, 2 lff, 55ff, 59ff, 70ff, 70f, 

136, 161, 39lf, 700 
refinement rules, 434 
restriction clauses, 550 
schemata (see schemata) 
screening, 661 
screening clauses in, 61, 394f, 544f, 549, 

566, 679 
self-referencing, 42, 61, 115, 130, 383, 385, 

394, 558~ 680, 682 
statistics, 157f, 218, 688 



strategy, 47, 56, 387, 396, 556ff 
syntax of (see also predicates), 4, 35, 46f, 

70, 76, 79, 157, 212, 392, 401, 410-
412 

summary rules, 434ff 
tabular, 62, 217, 546ff 
therapy, 136, 140 
translations of, 71, 90, 102f, 238 
triggering, 434, 441, 444 
tutoring (see tutoring) 
uncertainty in, 674 
world fact, 540 

rule types, 383 

SAME (see predicates) 
scene analysis (see vision) 
schemata, 476, 508, 514-520, 613ff, 616ff, 

624, 627, 633 
screening clauses (see rules) 
scripts, 548ff, 615, 617 
search (see control) 
second-guessing (see expectations) 
semantic nets, 9, 55, 374, 392, 425, 545 
sensitivity analysis (see evaluation, sensitivity 

analysis) 
signal understanding, 343 
simplicity, 323f, 392, 670, 676f 
simulation, of human problem solving, 313, 

315, 327, 439, 461 
smart instruments, 345 
Socratic dialogue, 455, 484 
speech understanding (see also HEARSAY), 

201, 692f 
spelling correction (see human engineering, 

I/O handling) 
spirometer (see PUFF) 
state transition network (see also 

representation), 134, 138, 404-407, 421 
statistics (see also rules, statistics) 209, 210, 

234, 239, 509, 591, 603, 639 671 
STM (see also memory), 22ff 
strategies (see knowledge, strategy) 
structural analysis (see SACON) 
structured programming, 35 
student models, 466, 471, 473, 478, 483ff 
subsumption, 156, 162, 308, 324, 685 
summaries of conclusions, 399, 419, 430 
symbolic reasoning (see artificial intelligence) 
synonyms (see dictionary) 
syntax (see also rules, syntax of), 35, 508, 521, 

529, 620ff 

tabular data, 62, 482 
tabular knowledge (see representation) 
TALLY (see also certainty factors), 98, 114, 

211 
taxonomy (see knowledge, taxonomy) 
teaching (see tutoring) 
technology transfer, 395, 698f 
templates, for functions or predicates, 37, 72, 

157, 164f, 188, 194, 305, 344 477, 508, 
520£ 

terse mode, 64 
test cases (see case library) 
testing (see evaluation) 
theorem proving (see logic) 
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theory of choice, 246 
therapy, 9, 13-18, 57, 133-146, 234, 336, 

399-407, 411, 593, 671, 713-715 
algorithm, 57, 63, 66, 122ff, 132, 133ff, 

261-262,685 
comparison, 141-144 
explanation of, 133, 138-141, 144f, 333, 

715 
protocols, 163-170, 654£ 

threshold, in CF model (see also certainty 
factors), 211, 216, 220, 222-232, 681 

time (see knowledge, temporal) 
top-down refinement (see also control), 555, 

562, 565 
topic shifts, 615ff 
toxicity (see contraindications) 
trace, of reasoning (see rule invocation, 

record of) 
tracing, of parameters, 64, 108, 304, 345 
TRANS, 90, l02f, 119, 210, 617, 619 
transfer of expertise (see knowledge 

acquisition) 
transition network, 138ff, 145, 348, 404ff, 

421 
transparency (see understandability) 
trigger (see control, forward chaining), 387 
triples (see representation) 
Turing machines, 21, 52 
Turing's test (see evaluation) 
tutoring (see also GUIDON), 19, 58, 126, 145, 

238, 328, 335, 371, 372,396,455-463, 
464-489,494, 531-568,670,674,676, 
688ff, 701 

case method, 457, 467ff 
rules, 372, 463, 472ff, 690 

uncertainty (see certainty factors; knowledge, 
inexact) 

understandability (see also explanation), 3, 9, 
41,56, 150, 174, 176,33lf,334,337, 
403, 437-440, 450~ 493, 503, 506 

uniformity, of representation (see 
representation) 

unity path, 63, 73, 130, 377, 396, 493 
UPDATED-BY, 90, 105, 229, 231, 355, 679 
user interaction (see human engineering) 
user models (see also student models), :l35, 

373ff, 387, 466 
utilities (see cost-benefit analysis) 

validation (see evaluation) 
verification/checking, 159, 161, 184 
vision, 189, 201, 613 
vocabulary, of a domain, 73, 150, 210, 442ff, 

467, 503, 564, 684, 686, 702 
volunteered information (see also control, 

forward chaining), 602, 613ff, 678, 691, 
693 

examples, 628ff 

weight of evidence (see inexact inference) 
what-how spectrum, 315 
WHY? (see explanation) 
workstations (see hardware) 
world knowledge (see knowledge, common 

sense) 
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