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Preface 

In August of 1980, Stanford University was the site of the annual workshop 
on artificial intelligence in medicine (AIM). This specialized area of medical 
computer science research had been born almost ten years earlier with the 
near-simultaneous development of AIM research groups at Massachusetts 
Institute of Technology (in collaboration with physicians from the Tufts
New England Medical Center), the University of Pittsburgh, Rutgers Uni
versity, and Stanford. These small groups of computer scientists working 
in the field were drawn together naturally by their common interests and 
by the establishment of the SUMEX-AIM network (Stanford University 
Medical EXperimental Computer for Artificial Intelligence in Medicine). 
This computing resource was established by the Biotechnology Resources 
Program of the NIH in 1974 and consisted of a pair of computers, one at 
Rutgers and one at Stanford, linked by a communications network. The 
funding for SUMEX-AIM not only provided computing power for re
searchers exploring the potential of artificial intelligence techniques in 
medicine but also established a series of annual workshops so that the 
investigators could gather to .share their insight, results, and ideas regard
ing approaches to the difficulties they encountered. 

The 1980 workshop was the first at Stanford; the five earlier sessions 
had been held at Rutgers University in New Jersey. Because of a growing 
interest in computers generally, and in artificial intelligence in particular, 
among local physicians and medical faculty, we decided to organize a public 
AIM tutorial to be held immediately following the small workshop. Most 
of the field's leaders were going to be there, and it seemed logical to extend 
their stay so that a public series of lectures could be held to acquaint a 
medical audience with the progress, current status, and potential of the 
emerging discipline. We were delighted by the interest in the program, by 
the excellent attendance at the two-day tutorial, and by the positive atti
tudes of the attendees (Teach and Shortliffe, 1981 ). 

One of the lessons of that tutorial was the need for a readily available 
collection of readings to describe the first decade's work in the field. Those 
articles that had appeared were scattered in a number of publications, some 
from the medical literature and others from computer science journals. 
There had been no effective effort either to bring together the key articles 
or to describe the historical progression of work in the field. 

As the word spread about the 1980 tutorial, we received increasing 
numbers of requests for such a collection, and the idea for this volume 
emerged. There was a clear need for a survey of key AIM activities, par-

vii 
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ticularly in light of the success and visibility of the early efforts and because 
of the frequent failure to appreciate the significant barriers that remain to 
be overcome before widespread clinical impact will be achieved. This book 
is, accordingly, an attempt to address those issues. The authors and pub
lishers of the original articles have kindly permitted us to reproduce them 
here, generally with only minor modifications to correct any inaccuracies 
that were discovered in retrospect. We have, in addition, included a new 
introductory chapter that defines the field of artificial intelligence, outlines 
its relevance to medicine, and identifies the key research issues that have 
guided AIM work and continue to do so. Each chapter is preceded by a 
brief introduction that outlines our view of its contribution to the field, 
the reason it was selected for inclusion in this volume, an overview of its 
content, and a discussion of how the work evolved after the article ap
peared and how it relates to other chapters in the book. 

It is important to note that this book is by no means an exhaustive 
review of all AIM work during the period 1971-1981. Several fine pieces 
of work could not be included because of space limitations. We have ac
cordingly tried to provide references to additional key articles throughout 
the volume. Those included were selected to provide a broad coverage of 
issues, as well as to exemplify what we consider to be some of the best and 
most influential work in the field. 

The papers here tend to be more technical and detailed than those 
that appeared in a recent shorter volume on the subject (Szolovits, 1982). 
We have also provided a comprehensive index, a name index, and a bib
liographical listing of all references cited throughout the volume. These 
additions have been designed to make the issues accessible to interested 
readers, particularly physicians, who may not have had previous experi
ence with artificial intelligence. The chapters are organized in a loosely 
chronological way, with surveys and general system descriptions near the 
beginning and more recent work toward the end. The title of the volume 
has been selected to make it clear that we see the AIM field as a young 
and emerging discipline. Our views of the future, with an emphasis on the 
challenges as well as the promise that lies ahead, are the subject of the 
closing chapter. 

This preface would be incomplete if we did not acknowledge and ex
press our gratitude for the remarkable assistance we have had in preparing 
the book. The authors of the individual chapters dug through their ar
chival records and provided us with copies of original manuscripts (often 
in electronic form) and the original figures that are reproduced in some 
of the chapters. Chapter introductions have been in large part adapted 
from the original abstracts; the authors helped us greatly by reviewing this 
material and correcting and augmenting the historical information (and 
we thank Paul Feltovich especially for providing his interesting sketch of 
the DIAGNOSER project). 

We are also grateful to Michael Morgan of Addison-Wesley for his 
encouragement in bringing the volume to print, to Christopher Lane for 
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his patient assistance in writing special programs for document formatting, 
to Darlene Vian for her reliable managerial assistance, to Joan Differding 
for her help preparing new figures when the originals were not available, 
and to Jane Hoover for her meticulous care in reviewing and copyediting 
the submitted manuscript. It is to Barbara Elspas, however, that special 
thanks are due. She worked many long hours editing the chapters, com
piling the bibliography, and generating an excellent manuscript that 
greatly facilitated the publication process. We are extremely grateful for 
the conscientious assistance she provided. 

Stan[ ord University 
May 1984 

W. J.C. 
E. H. S. 



1 
Introduction: Medical 
Artificial Intelligence 
Programs 

William J. Clancey and Edward H. Shortliffe 

1.1 Approaching Medical Artificial Intelligence 

In approaching most fields of scientific inquiry, it is useful to consider two 
basic questions: 

• What methodologies and assumptions do the researchers share? 

• What issues and concerns distinguish the research projects from one 
another? 

This introduction sketches out answers to these questions for the field 
of artificial intelligence applied to medicine (AIM), as viewed in the early 
1980s, approximately a decade after the field's initial development. Our 
intent is to provide a common ground for appreciating what makes the 
work reported in this book special as a whole and for understanding the 
diverse terminology and research emphases of the individual chapters. In 
contrast with the history-oriented discussion one can find in Szolovits 
(1982), we discuss the dimensions by which one can recognize and study 
AIM programs. Thus we have two important goals: introducing the reader 
to a programming approach and relating the programs to one another 
through recurring research issues. 

After a brief historical introduction, we define knowledge-based pro
gramming, provide dimensions for characterizing and comparing these 
programs, and outline the state of the art. 

1 



2 Introduction: Medical Artificial Intelligence Programs 

1.2 What Is Medical Artificial Intelligence? 

Artificial intelligence (Al) is the part of computer science concerned with 
designing intelligent computer systems, that is, systems that exhibit the char
acteristics we associate with intelligence in human behavior-understanding 
language, learning, reasoning, solving problems, and so on (Barr et al., vol. 
1, 1981, p. 3). 

Medical artificial intelligence is primarily concerned with the construction 
of AI programs that perform diagnosis and make therapy recommenda
tions. Unlike medical applications based on other programming method
ologies, such as purely statistical and probabilistic methods, medical Al 
programs are based on symbolic models of disease entities and their rela
tionships to patient factors and clinical manifestations. 

In the early 1960s researchers in AI had focused on problem solving 
in game playing, image recognition, speech understanding, and language 
understanding (Feigenbaum and Feldman, 1963). During this time some 
general problem-solving principles were formalized, such as reducing a 
complex problem to a network of subgoals. However, it was discovered that 
most of the difficulty in achieving intelligent behavior was in collecting and 
storing a large knowledge base of facts specific to the problem area. This 
result was confirmed by the success of a few large programs in scientific 
(Lindsay et al., 1980) and mathematical (MATHLAB, 1974) areas. At this 
time, the explosion in medical knowledge was forcing physicians to spe
cialize increasingly and was often overwhelming to those who tried to re
main generalists. Medicine was therefore a logical field in which to apply 
practically the developing knowledge-based techniques. 

Large domain-specific problem solvers came to be known as consulta
tion programs, for they fit the image of an expert-specialist who is asked to 
provide advice about some difficult problem. In medicine, the "problem" 
would typically be a patient with an illness to be diagnosed. By the late 
1970s, these programs became known as expert systems, although that re
mains a somewhat generous characterization in light of the limitations of 
these programs (as de.scribed in the following chapters). 

Four major systems were developed by 1975-PIP, CASNET, MYCIN, 
and INTERNIST-all described in this book. As early efforts, they are 
prototypes directed at two questions: What are the issues involved in de
signing a consultation program (e.g., what would make such a program 
acceptable to physician users)? What is the nature of the expertise to be 
formalized (e.g., how can factual and judgmental knowledge be inte
grated)? 

Most AIM programs are directed at serious practical applications, but 
there are other reasons for doing the research. Some AIM researchers 
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have constructed programs for the sake of better understanding human 
problem solving in general. In this respect some of the most important 
results from this work are in the area of psychology (e.g., Chapter 12; 
Kassirer and Corry, 1978; Kuipers and Kassirer, 1983; Swanson et al., 
1979). On the other hand, constructing an AIM program is also funda
mental medical research. The knowledge that is formalized in these pro
grams does not come straight from textbooks; some is heuristic, developed 
through experience and passed down by apprenticeship. Thus, in their 
collaboration with physicians, medical AI researchers are helping to for
malize medical knowledge. Importantly, the formalization process goes be
yond accumulating facts to include new ways of structuring medical knowl
edge in general, such as formulating a language for describing diseases on 
multiple levels of detail (see Chapter 14). There is good reason to believe 
that such research will ultimately be of benefit to medical educators (Short
liffe, 1983). 

Almost all AIM programs have been developed at universities, either 
in a medical school or in collaboration with a nearby school of medicine. 
The projects typically involve teams of collaborating computer scientists 
and physicians. On rare occasions, the computer scientist is also a physician 
and so can easily understand the medical issues or supply his or her own 
expertise (see Blum's work in Chapter 17). In many cases, the research has 
benefited by having computer scientists, initially unfamiliar with the med
ical field, approach the problem areas freshly, serving as "investigative re
porters" who study what physicians know and how they solve problems. 

How has the research advanced over the past decade? Most of the 
progress centers on the problem of representing medical knowledge. The 
first efforts concerned both the formalization of specific disease knowledge 
(e.g., how to distinguish between bacterial and viral meningitis) and the 
kinds of relations that physicians make among findings and diseases (e.g., 
that one disease is a complication of another). Two other areas of research 
are knowledge acquisition-interacting with an expert to formalize his or her 
knowledge and problem-solving procedures-and explanation-tracing 
back conclusions to the data and justifying the reasoning process. The 
capability of a program to perform these operations is now understood to 
depend very much on the adequacy of the underlying knowledge repre
sentation. Finding the right kinds of distinctions (for example, how to 
accurately model a causal process or how to state a diagnostic procedure) 
has been the focus of much of this research. Given finer-grained, more 
detailed models, the emphasis then shifts to formulating improved diag
nostic operations for manipulating the knowledge to solve problems [the 
thrust of CADUCEUS (Pople, 1982) and developments from ABEL (Patil 
et al., 1982)]. 

We have briefly outlined how medical AI grew out of new directions 
in AI research. It is fair to say that the contributions have been at least as 
strong in the other direction. Efforts such as INTERNIST (Chapter 8) and 
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MYCIN (Chapter 5) led to a generalization of techniques that became 
known as knowledge-based programming. The idea of building expert systems 
like MYCIN has spread to almost every imaginable application (e.g., ge
ology, structural analysis, and tax law), thereby making expert systems cur
rently the largest subarea in the field of artificial intelligence. Moreover, 
even AI researchers specializing in subareas such as natural language un
derstanding have come to realize that a knowledge base must be the foun
dation of any reasoning system (Carbonell, 1979). The wave of results is 
now flowing back to medical applications, as representation and design 
ideas developed in other scientific areas are picked up and adapted. Within 
AI, knowledge representation has b'ecome an area of study in its own right. 

Finally, we should point out that just as AI takes in diverse areas such 
as signal understanding, image processing, and robotics, medical AI has 
parallel subfields corresponding to patient-monitoring systems, x-ray and 
ultrasound imaging systems, and prosthetic devices. In order to focus the 
collection of papers in this book, we have chosen to restrict the topic to 
systems concerned primarily with diagnosis and therapy-medical expert 
systems. 

1.3 What Is a Knowledge Base? 

The programs described in this book exemplify knowledge-based pro
gramming applied to medicine. The goals and techniques of knowledge
based programming are considerably different from other kinds of pro
gramming. Ways of analyzing and comparing traditional programs are not 
always relevant. Moreover, if the basic foundations of these programs are 
not understood, it is difficult to understand their limitations and potential. 

One way to start is to understand that researchers in this field draw a 
distinction between knowledge and data (e.g., see Chapter 3). Data consist 
of records of information, such as patient records in a hospital, equipment 
maintenance records, or scientific measurements such as weather data. 
Data can be either symbolic (e.g., the names of patients) or numeric (e.g., 
temperatures). In computer science, the term record has generally become 
synonymous with the pattern that defines what might be recorded for each 
entry, such as the patient's name, his or her location in the hospital, date 
of entry, etc. A data base contains a set of such records. 

By common usage, knowledge is anything you know, so it surely includes 
what we find in data bases. But knowledge also includes how things are 
related, what general patterns exist, why there are relations and patterns, 
as well as procedures for solving problems. For example, a data base might 
record information for a particular patient population from which corre
lations between drug therapy and adverse reactions or side effects could 
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be derived statistically. A related knowledge base might have the general rule 
"If the patient is a child without a full set of adult teeth, don't prescribe 
tetracycline," as well as a causal model that explains how the process of 
chelation occurs, and perhaps a procedure that says "Consider contrain
dication rules after making a diagnosis and before prescribing therapy." 
So in an important sense, a knowledge base is general. Its records are about 
disease processes, diagnosis, and therapy in general, not about particular 
patients. Some knowledge can be derived analytically from data bases, but 
some is based on experience and is judgmental or heuristic. 

Certain concerns about data bases, such as organization and accuracy, 
carry over to knowledge-based programming. But a knowledge base is 
different because it is never complete. A knowledge base is a kind of model: 
it can be interpreted to predict or explain behavior in the world. Thus 
diagnosis is based on a causal explanation of what is happening to the 
patient, and therapy is based on predictions about how the disease proc~ss 
can be modified. As models, knowledge bases are incomplete in that they 
are approximate and omit levels of detail. 

Simple knowledge bases, like simplified models, might apply only to 
simple versions of problems; for example, a medical system might not be 
designed to handle multiple diseases. Handling multiple diseases might 
require modeling how one disease could cause another. A medical model 
might also be incomplete because it is based on empirically observed cor
relations rather than on well-understood causal processes. Since medical 
science is continuously evolving, new understanding will modify the rules 
for interpreting symptoms and prescribing therapy. Finally, because med
ical knowledge bases contain judgmental knowledge relating to social costs 
and benefits, they always reflect the values of their designers, which might 
change over time. In general, knowledge bases are incomplete, approxi
mate, and biased models of the world. 

Knowledge bases are also incomplete with respect to level of detail as 
a model. We can always ask why a statement is true; in medicine we would 
then delve successively into biology, chemistry, and physics. Since we do 
not represent everything we know on all levels of explanatory detail (and 
at some level of detail everyone experiences a failure of detailed mechanistic 
understanding of biologic processes), the knowledge bases we build are 
necessarily incomplete. One reason for this incompleteness is that there is 
no practical way to build systems today that know more than a fraction of 
what any physician knows about the body and how it works. There is just 
too much knowledge, and we are still struggling to formalize even small 
portions of it. A second reason for leaving out levels of detail is that useful 
problem-solving performance can usually be produced even if we leave out 
pathophysiological knowledge about disease. However, when we push a 
program to resolve multiple diseases or to deal with an unusual presen
tation of a disease (one that tends to "violate the rules"), these simplistic 
models break down. 
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1.4 Design Criteria for Medical Knowledge Bases 

The incompleteness of medical knowledge bases requires that they be built 
incrementally, both to allow for the difficulty of building a complete model 
at any time and to allow for improvements to the knowledge base as human 
experts learn and social judgments change. Perhaps the most important 
design feature that makes a knowledge base easy to maintain over time is 
modularity: ideally, there should be no side effects or complex interactions 
among parts of the knowledge base. 

Modularity in a sense boils down to a matter of indexing. The level at 
which we wish to change the system should be easily accessible, so we do 
not have to wade through complex code to make a change. In knowledge
based systems, one solution is to index knowledge according to how it is 
used and modified during reasoning. For example, in a rule-based system, 
it is convenient to index rules by the disease diagnoses they support. 

Modularity and indexing suggest that the knowledge base be structured 
according to dimensions that make it easy to use and maintain. To have 
an indexing scheme, you need primitives for the dimensions of indexing, 
just as we have the idea of alphabetic ordering for assembling phone books. 
In medical AI we are led to study and formalize primitives such as subtype, 
cause, etiology, and specialization. An important open question is to deter
mine the set of primitives that could be used to describe the temporal 
properties of any disease. 

Of course, creating a well-structured knowledge base is just part of 
building a consultation system. How will the knowledge be applied to solve 
problems? To give a very practical example, suppose you want to confirm 
the presence of a particular disease. Should you seek evidence for all of 
its manifestations? In what order should you consider them? When should 
you focus on another hypothesis? You need a procedure for doing diagnosis. 
This procedure is often called control knowledge because it controls how the 
specific knowledge about diseases is applied to solve problems. 

The primitives for representing control knowledge are different from 
those for representing disease knowledge. Concepts like iteration, steps, sub
routines, and conditional actions are useful. Stating control knowledge explic
itly and separately from the disease knowledge offers a big bonus-the dis
ease knowledge can be used in multiple ways; different procedures can be 
used to interpret it. For example, a knowledge base might be used both to 
provide consultative advice and to tutor a student (see Chapters 5 and 11). 
Such a separation also enhances the ability of a program to explain its 
reasoning, an important concern for the acceptability of the system to its 
ultimate users. But not all systems are designed this way. 

To summarize the important points we have made about the design 
of knowledge bases: 
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• A knowledge base is inherently incomplete; it is common for only one 
level of knowledge to be represented. 

• To allow for incremental development, easy maintenance is important. 

• Maintenance and explanation are enhanced by modular, well-structured, 
explicit statements of disease relations and diagnostic procedures. 

• A well-structured knowledge base can be used in multiple ways. 

1. 5 Basic Concepts of Knowledge Representation 

In the study of knowledge-based programs, such as the dozen or so systems 
described in this book, it is useful to consider a number of representation 
issues. 

First, it is important to make a distinction between what kind of knowl
edge is represented and the representation language itself. A researcher is in
dicating what kind of knowledge is represented when she says, "CEN
TAUR's knowledge base contains descriptions of prototypical patterns of 
diseases" (Aikins, 1980; 1983). She is describing the representation lan
guage when she says, "Disease manifestations are represented as 'prototype 
components,' as slots in a 'frame.'" In general, it is most helpful to under
stand what kind of knowledge is represented in a system before trying to 
grasp the representation language. For example, we can compare CASNET 
(Chapter 7), ABEL (Chapter 14), and RX (Chapter 17) in terms of the 
kinds of causal facts about diseases that each represents. The implications 
for problem solving can then be considered: how might RX use ABEL's 
multiple-hierarchical representation to better explain data base correla
tions, for example? 

A representation language is just a notational device. The important 
properties of a representation language include the brevity and the explic
itness with which certain kinds of facts can be stated. For example, when 
approaching a system for the first time, it is useful to ask how causal, 
taxonomic, and temporal relations of disease are represented. In a system 
like MYCIN, such facts are stored only implicitly, but problem-solving be
havior can be modified in a direct, concise way. It is also important to ask 
how the diagnostic procedure is represented. Can the knowledge base be 
thought of as a network that is interpreted by a separate diagnostic pro
cedure (as in ABEL, CASNET, INTERNIST, NEOMYCIN, PIP, RX, and 
XPLAIN)? Or is the procedure implicit, inseparable from the knowledge 
base (as in the original Digitalis Therapy Advisor, MDX, MYCIN, PUFF, 
and VM)? 

It is important not to get confused about external representations (dia
grams linking findings and diseases), technical arguments about formalism 
(rules versus causal networks), and the description of the kind of knowl-
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FIGURE 1-1 MYCIN rule viewed as nodes and links. 

edge represented (e.g., disease prototypes). All of the jargon aside, what 
kinds of knowledge are factored out and represented explicitly? A begin
ner first studying this field should try to understand what the drawings 
and figures are showing about the kind of knowledge represented before 
worrying about the technical AI terms (such as production rule and frame). 
For example, Figures 7-1, 13-1, 14-7, 15-2, and 16-5 describe the kind of 
knowledge represented. When an internal name is mentioned (such as 
MYCIN's LABDATA), the important thing to understand is when the label 
is applied and how it is interpreted by the program (if a finding is marked 
as LABDATA, MYCIN will ask the user to supply a value before trying to 
make inferences from what it already knows). 

In thinking about an internal knowledge representation, remember 
that at a basic level a knowledge base is completely describable in terms of 
nodes and links. You might first figure out what can be a node and how 
the' nodes are linked, then try to pin down how the links are used by the 
control knowledge. To give a simple example, in a rule-based system such 
as MYCIN each rule is a conditional expression, which can be represented 
as a node linking an antecedent (IF part) to a consequent (THEN part) 
(Figure 1-1). (The rule represented in the figure allows MYCIN to conclude 
that an organism is almost certainly a streptococcus if it is a gram-positive 
coccus growing in long chains.) That is the static description. During prob
lem solving, if MYCIN determines that the antecedent of a rule is satisfied, 
it asserts (adds to its data base) what is specified by the consequent. That 
is how a rule node and its links are interpreted. The next step is to un
derstand when this operation would be performed on a particular rule 
node (i.e., when a rule is invoked), what else happens when a new assertion 
is made, and so on. 

· It is almost always useful in computer science to think in terms of 
processes. Ask yourself: 
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What is the input? 
(In MYCIN, a rule); 

What is the process? 

Dimensions for Comparing Knowledge-Based Systems 9 

(Determining if the antecedent is satisfied and making assertions); 
What is the output? 

(An updated data base of facts and beliefs about the patient). 

In AIM knowledge bases, a node corresponds in general to medical 
concepts, for example, patient data and diseases. It is important to under
stand how the nodes are "marked" as a consultation proceeds. If a partic
ular patient has a disease manifestation, for example, the internal repre
sentation is marked to indicate this fact. Furthermore, a link might be 
added to a particular disease node, indicating that, in this patient, this 
manifestation is believed to be caused by the disease. In this way a patient
specific model (see Chapter 14) is constructed as a constellation of possible 
findings, diseases, and connections among them. An example of a patient
specific model for the MYCIN domain is shown in Figure 1-2. 

Another helpful consideration is to remember that a node might stand 
for an object (such as a CSF culture), a disease process (an infection), a 
patient-state description (increased brain pressure), an event (the onset of 
a headache), or a hypothesis (the belief that the patient has meningitis). 
Also, a node might stand for a concrete entity, such as a particular CSF 
culture, or an abstract one, such as the concept of cultures in general. In 
this way, general classes or categories can be described in a knowledge base. 

A link is a relation between nodes. A causal link between two disease 
nodes indicates that one disease causes the other. From a simple perspec
tive, links are labeled pointers that group findings and diseases into net
works. For example, a taxonomy of diseases might be constructed by link
ing diseases with a subtype link. Links can also indicate spatial relations, 
levels of detail, examples of a general concept, etc. An issue of major 
concern is the interpretation of a link during problem solving. If a link 
indicates that a finding is "caused by" a disease, for example, does this 
mean that the program will list this disease as a diagnosis in its output? Is 
the link annotated in some way to indicate the conditions under which the 
causal process holds? If there are other causal links (and hence explana
tions) for this finding, how are they taken into account? The complexity 
of links and how belief about diseases is propagated through a network 
are major AIM issues. 

Dimensions for Comparing 
Knowledge-Based Systems 

Knowledge-based systems can be studied and compared along the follow
ing dimensions (with illustrative systems indicated in parentheses): 
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• Content: What kind of medical knowledge does the knowledge base con
tain? Programs typically contain (heuristic) links between findings and 
diseases (MYCIN). They sometimes contain pathophysiological descrip
tions of disease processes (CASNET). They rarely contain anatomical 
descriptions (CADUCEUS). 

• Structure: How are the nodes and links organized? Programs typically 
contain hierarchies of various kinds (CENTAUR, INTERNIST, MDX, 
NEOMYCIN). They sometimes contain levels of abstraction (ABEL). No 
current programs contain multiple models or perspectives describing a 
single disease process. 

• Hypothesis formation and evaluation: How does the program use links to 
make inferences (the reasoning strategy)? Most programs generate hy
potheses from given data and use a hypothesis-directed questioning strat
egy (CASNET, INTERNIST, MDX, PIP). Many consider diagnoses in a 
focused, nonexhaustive way (INTERNIST, NEOMYCIN, PIP). A few 
attempt to model human reasoning (MDX, NEOMYCIN, PIP). 

• Management of uncertainty: How does the program represent and cope 
with uncertain information? Most programs represent hypotheses with 
some degree of uncertainty, using a scoring mechanism for combining 
evidence and comparing hypotheses (CASNET, INTERNIST, MYCIN). 
No current programs cope with inconsistent evidence by reasoning about 
the justification for inferences. 

• Data collection: How does the program acquire information about the 
problem? Most programs ask questions of the user, requiring keyboard 
input. No current programs allow a true mixed-initiative interaction. No 
current consultation programs can accept data from on-line medical data 
bases, although some data interpretation systems have been interfaced 
with patient monitoring devices (PUFF, VM) and other analytic devices 
(EXPERT/Electrophoresis). 1 

• Explanation and knowledge acquisition: What methods are available for 
building and testing the knowledge base? Some programs have a means 
of displaying the network in English form (MYCIN). Many have some 
form of "audit trail" so the reasoning can be traced back in debugging 
(MYCIN, NEOMYCIN, XPLAIN). Only a few programs have a user 
model to facilitate the interaction (GUIDON, XPLAIN). None of the 
programs truly learn from experience, but several detect patterns in the 
knowledge base (MYCIN), a patient data base (RX), or a case library 
(SEEK) as an aid in knowledge acquisition. 

• Meta-knowledge: What is implicit in the knowledge base? What does the 
program know about its own design? Most programs attempt to separate 

1The HELP system (Pryor et al., 1982) is a good example of a non-AI program that assists 
a physician by accessing an on-line data base. A recent AI system named ONCOCIN (Short
liffe et al., 1981) uses an on-line data base of patient information, but requires that current 
data be entered by the user. 
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1.7 

out disease knowledge from the diagnostic procedure. Some programs 
have explicit knowledge about the principles underlying the network 
(ABEL). A few programs have abstract, nonmedical knowledge about 
their procedures and representation (MYCIN, NEOMYCIN). 

The list above is meant to illustrate features to look for when studying 
medical systems. The progression from typical to rare parallels what many 
researchers would hold to be desirable and helps identify many of the key 
research areas for the next decade. 

Are Knowledge-Based Systems Textbooks of 
the Future? 

How is an ideal medical knowledge-based system different from a medical 
textbook? Understanding the differences might help the reader under
stand what researchers are trying to do in these programs, what makes 
their task difficult, and what they might potentially achieve for humanity. 

We proceed by describing medical textbooks according to the dimen
sions for comparing knowledge-based systems given above: 

• Content: A medical textbook typically contains all kinds of anatomic, dis
ease process, and heuristic knowledge. As stated above, AIM systems 
currently tend to model only high-level associations between findings 
and diseases. 

• Structure: Organization of textbooks is always of paramount concern. 
Different textbooks might organize the same knowledge along different 
dimensions (e.g., either by disease entity or by presenting complaints). 
However, sharp distinctions are generally not made about the kinds of 
knowledge being presented; diagnostic procedures tend to be inter
woven with medical facts. Knowledge is usually not clearly stated on 
multiple levels of detail; a given textbook generally adopts one viewpoint. 
There is little discussion of the epistemological terms used, such as caus
ality and subtype-they might even be used in a confused way. While 
this can also be true of programs, the requirements and trend for new 
systems is to articulate and be precise about these kinds of distinctions. 

• Hypothesis formation and evaluation: Medical textbooks tend to give dis
ease-specific relations for considering and confirming the presence of a 
disease. Consideration of the practical problems of diagnosing multiple 
diseases, separating complication from cause, ruling out diseases, weigh
ing evidence-all of which must be formalized in a knowledge-based 
system-is generally not treated in a general way in textbooks. Typically, 
only tips and rules of thumb are given. Most importantly, knowledge-
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based systems are programs that can solve problems. Textbooks sit there 
inertly, relying on you to search for the relevant facts and then to infer 
solutions on your own. 

• Management of uncertainty: Books are often vague about how to interpret 
evidence, using words such as often, suggest, and rarely seen, without spec
ifying a consistent interpretation for these terms or how to use them to 
solve problems. Programs require the discipline of at least some kind of 
"scoring function" for assigning weights and combining evidence, al
though this is often an ad hoc scheme that is adjusted until it works well 
enough. Resolving multiple diagnoses with a large number of 
findings requires information about importance, frequency, risk, cost, 
discomfort, etc., as well as the development of a more precise under
standing of the conditions of causal processes (as in Chapter 14)-crucial 
information for successful knowledge-based programs, but often ig
nored in textbooks. 

• Data collection: Some medical textbooks have very good discussions of 
the problem of interviewing a patient. But given all of the commonsense 
knowledge involved, current knowledge-based programs cannot help the 
consultation user to supply accurate information. For example, they can
not explain how to recognize lethargy in a patient or how to distinguish 
between coccus in long chains and rods. Certain assumptions about the 
user population are generally not stated explicitly, so the systems are 
missing meta-knowledge about their own design. But knowledge-based 
systems can actually use their knowledge to collect data from a data base 
or to conduct an interview; a textbook obviously must leave these tasks 
to the physician. 

• Explanation and knowledge acquisition: Textbooks use graphic techniques, 
as well as prose, to explain complex relations and disease processes. 
While a textbook might have a good glossary, you cannot ask it for clar
ifications. You cannot pose hypothetical questions or give it new knowl
edge and see how the answer changes (see Chapter 11). 

• Meta-knowledge: Some authors do a good job of describing the organi
zation of their book. Arbitrary perspectives are possible for making a 
physician self-aware, for example, about how to speak to a patient, how 
to interpret culture results, and how to organize multiple problems on 
paper. However, medical AI is contributing new meta-knowledge about 
the structure of disease knowledge and the abstract character of diag
nostic procedures. These topics are typically sacrificed in books to an 
emphasis on facts and are also often ignored in formal medical educa
tion. 

So, while textbooks and knowledge-based systems are both knowledge 
repositories, a program has many potential advantages. Because knowl
edge can be represented independently from its use, a given knowledge 
base can be interpreted for multiple applications. Of course, in talking 
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about knowledge-based systems above, we are referring to the knowledge 
base plus the interpretive procedures. These include procedures for doing 
diagnosis, for teaching, for learning, etc. In most cases, developing such 
procedures is at least as difficult as developing the knowledge base itself. 
The construction process usually goes on in parallel, even when the knowl
edge is represented independently from how it is to be used. Developing 
these procedures involves substantial research. For example, consider the 
difficulties of developing the domain-independent teaching rules of GUI
DON (Chapter 11) and how this involves basic research in education, and 
consider how developing the domain-independent diagnostic rules of 
NEOMYCIN (Chapter 15) involves basic research in psychology and med
icine. Each of these is an expert system-building task in its own right. 

Taking an optimistic point of view, a knowledge base might be the 
basis of any intelligent agent-a consultant, tutor, librarian, or decision ana
lyst-responding actively to the needs of its user, capable of explaining 
itself, and, most importantly, capable of learning from experience (Clancey, 
l 983a). A well-designed knowledge-based program can be easily revised 
and cheaply copied. With the refinement of knowledge-based systems, text
books might become like parchments, as antiquated as a mechanical cal
culator when compared to a personal computer. 

1. 8 Implementation of Medical AI Systems 

Implementation includes the programming language (software) and the 
computer (hardware) upon which a system is constructed. With only one 
exception, the programs described in this book are written in the LISP 
(LISt Processing) programming language. A good introduction to LISP for 
the layperson is Winston ( 1977). LISP is chosen by AI researchers as much 
for its natural capabilities for representing knowledge networks (a list is a 
linked set of nodes) as for the powerful environment for building large 
programs that is offered by most LISP dialects [e.g., Interlisp (Teitelman 
an·d Masinter, 1981)]. 

The exception described here is EXPERT (Chapter 20), which is im
plemented in FORTRAN. FORTRAN was chosen because it is faster and 
runs on many different kinds of machines. However, it should be noted 
that FORTRAN cannot easily be used directly. Encoding meta-knowledge 
about the knowledge network design and interpretive procedures requires 
building a language on top of FORTRAN that makes it easier to reference 
a node by its name or by the kinds of links it has. Thus some key features 
of the LISP language must be added to FORTRAN to make it useful. 

Medical AI programs generally run on machines with large address 
spaces. With one exception (INTERNIST, Chapter 8) it is currently the 
interpretive and maintenance software, not the knowledge bases, that takes 
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up the space. This is likely to change as AIM systems grow in size and 
complexity. The current situation reflects both the youth of the field and 
the tediousness of building large knowledge bases. The software for these 
systems includes not only the program for interacting with the user during 
a consultation, but also knowledge acquistion and explanation programs. 
The address limitation makes it impractical to develop these programs on 
a 16-bit machine, typical of the small personal computers of the early 
1980s. However, a system might be "downloaded" after development, par
ticularly if user interaction is minimized (see Chapter 19). Over the past 
decade hardware costs have plummeted, and new personal machines have 
become available. The 32-bit "professional workstations" that run LISP and 
are just appearing on the market provide insight into the kinds of com
puting environments that will bring AIM systems to physicians in a cost
effective manner in the decades ahead. 

1 9 What Is the State of the Art? • 

The dimensions for comparing programs are descriptive,. but can be 
adapted to characterize the best that programs can do today. The following 
list gives some dimensions of quality with short descriptions of what rep
resentative programs have accomplished: 

• Performance: Several systems that have been formally evaluated in sta
tistical studies of their performance are CASNET, INTERNIST, MY
CIN, and PUFF (Duda and Shortliffe, 1983). A typical finding is that 
program behavior is acceptable to 80% of the evaluators, but evaluators 
usually disagree as much among themselves. INTERNIST currently has 
by far the best capability to deal with a wide variety of problems. 

• User interaction: MYCIN set the standards for user interaction in terms 
of providing spelling correction, a nicely laid-out question-answer for
mat, and English input of simple questions. The ONCOCIN program 
(Shortliffe et al., 1981; Bischoff et al., 1983) is adapting standard ways 
of filling out a patient's chart to the demands of a consultation program. 

• Explanation: MYCIN was the first consultation program to provide an 
explanation facility. The therapy program was redesigned to enable it to 
present concise explanations of the optimization process (Buchanan and 
Shortliffe, 1984). The tutorial features of GUIDON (Chapter 11) pro
vide more individualized display of reasoning. XPLAIN (Chapter 16) 
deals with explanation of procedures and methods for providing mul
tiple levels of detail. Structuring the knowledge representation for the 
purpose of explanation is the focus of NEOMYCIN research (Chapter 
15). 
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• Representational adequacy: While representation is at the heart of all med
ical AI research, some programs have been constructed specifically to 
solve problems with earlier representations. Perhaps the most complex 
examples are the multiple disease relations of CADUCEUS (Pople, 
1982), the levels of causal detail of ABEL (Chapter 14), the abstract meta
rules of NEOMYCIN (Chapter 15), and the refinement structure of 
XPLAIN (Chapter 16). 

• Actual use: Of the AIM systems with which we are familiar, only PUFF 
(Chapter 19), EXPERT/Electrophoresis (Chapter 20), and ONCOCIN 
(Bischoff et al., 1983) are developed to the point of being used routinely 
by physicians. 

• Psychologfral model: Programs developed specifically as models of human 
reasoning include PIP (Chapter 6), MDX (Chapter 13), NEOMYCIN 
(Chapter 15), and CADUCEUS (Pople, 1982). The program reported by 
Johnson et al. ( 1981) has been evaluated to determine its accuracy as a 
model. 

• Knowledge acquisition: The state of the art is represented by the packages 
of EMYCIN/TEIRESIAS (Davis, 1979; van Melle, 1980) and the inter
active features of SEEK (Chapter 18). 

1.10 Organization of This Book 

We close this introductory chapter with a brief discussion of the papers we 
have selected for the book. Because many excellent projects and papers 
could not be included, we urge the reader to make use of the extensive 
bibliography we have provided. The papers cited there will provide valu
able additional insights regarding many of the issues raised in this volume. 

, The first chapter, by Gorry, introduces the rationale and advantages 
of applying AI approaches to medical problem solving. This is followed 
by an extensive survey of computer-based clinical decision aids; of partic
ular interest is the description of traditional algorithmic, statistical, pattern 
recognition, and decision-theory approaches. 

Kulikowski then provides an introductory overview to the early AIM 
systems, placing them in the context of the expert systems subarea of AI 
that partially grew out of them. These classic systems are then described: 
MYCIN (known for its use of rules), PIP (use of frames), CASNET (use 
of a causal-associational network), and INTERNIST (handling of multiple 
problems). The chapter by Szolovits and Pauker makes detailed compari
sons of representation issues handled by these four programs. 

The next chapters describe two medical developments from the MY
CIN program: VM and GUIDON. [Buchanan and Shortliffe (1984) pro
vide a complete survey of the MYCIN project and its spinoffs.] 
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Representation issues in modeling physicians' reasoning are consid
ered by Feltovich's psychological study, MDX, and ABEL. 

NEOMYCIN and XPLAIN are contemporaneous, second-generation 
systems designed to enhance explanatory capability. The approaches are 
complementary, so it is useful to consider these programs together. 

Knowledge acquisition in the form of partially automated learning is 
considered by RX (based on statistical analysis of a data base) and SEEK 
(based on analysis of case experience). 

The development of two practical, routinely used programs is de
scribed: the implementation of PUFF in BASIC running on a minicom
puter and of the EXPERT/Electrophoresis system running on a micropro
cessor. 

In the last chapter, we take a step back to consider some of the practical 
issues regarding the AIM field. To what extent will the complicated systems 
we are developing ever be used? What are the principal research challenges 
that remain? Will medical expert systems be viewed as beneficial tools, or 
as threats to physicians or to the sanctity of the physician-patient relation
ship? Difficult questions such as these can be answered more realistically 
now that we have had a decade of solid experience with AIM research and 
have had more time to observe the evolution of society's attitudes toward 
computers and the remarkable revolution in hardware technology. Both 
of these developments are changing our predictions about the future, and 
they permit an optimistic view of medical AI and its potential for beneficial 
clinical use. 



2 
Computer-Assisted Clinical 
Decision Making 

G. Anthony Gorry 

In the early 1970s, a small number of medical computing research groups 
simultaneously realized that the field of artificial intelligence offered poten
tial solutions to problems that had previously constrained the effectiveness 
and acceptance o_f medical decision-making programs. At Rutgers Univer
sity, this arose when Kulikowski, a computer scientist who had previously 
worked with statistical pattern-recognition 5ystems (Nordyke et al., 1971 ), 
noted that a consultation system for the diagnosis management o_f glaucoma 
would significantly benefit from enhanced knowledge of physiology and 
causality. At Stanford Universit_v, the new approaches arose from earlier 
work applying AI to chemistry in the DENDRAL program (Lindsay et al., 
1980) and from Shortliffe's and Buchanan's disenchantment with the in
teractive features o_f traditional diagnostic programs that were based on 
statistical techniques (Slwrtliffe and Buchanan, 1975). At the University 
o_f Pittsburgh, Pople's previous work with computer models of neuroanatorny 
and abductive logic (Pop le and Werner, 19 7 2; Pop le, 19 7 3) led to the 
symbolic models used in INTERNIST. Meanwhile, at the Massachusetts 
Institute o_f Technology and Tufts-New England Medical Center, Corry, 
Schwartz, and others had undertaken notable work applying formal deci
sion theory to medical problems. A pair of landmark papers appeared in 
the American Journal of Medicine in 1973 (Cony et al., 1973; 
Schwartz et al., 197 3 ). Those researchers were not totally sati~fied with the 
decision-theory approach, however, and Corry in particular was impressed 
by simultaneous work that was underway at M.I. T. 's Project MAC (now 
the Laboratory for Computer Science and the Artificial Intelligence Lab
oratory). 

From Method;, of Information in Medicine, 12: 45-51 (1973). Used with permission. 

18 
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We present here Corry's insigh~ful paper, which resulted from those dis
sati~f actions and from his observations about the potential utility <d- AI 
techniques. The paper discusses his group's experience with formal decision
theory models and their limitations. Corry outlines briefly the motivation 
for the group's new work based on AI techniques, summarizes their earl_'Y 
results, and outlines their plans for pursuing the research in the future. 
The Present Illness Program (Chapter 6) was the first result of this early 
work. Although the plan for future research was not completely clear at the 
time the article appeared in 197 3, the issues outlined and the recognition 
that artificial intelligence techniques offered some potential solutions to the 
problems of representation and the human interface make this article an 
important early "bridge piece" between work using the traditional normative 
models and the newer approaches that are the subject of the rest of this 
book. 

2 1 Motivation for the Research • 

In the past few years, there have appeared in the literature many discus
sions of the use of computers in the health care system and of the way in 
which they might improve the efficiency of that system. Such improve
ments are seen as arising from a wide variety of computer-based activities, 
such as scheduling of hospital admissions, control of laboratories, and 
maintenance of medical records. Although these activities (and others as 
well) can undoubtedly benefit from the introduction of well-designed com
puter systems, more fundamental problems remain. There is an increasing 
shortage of medical personnel and a geographical maldistribution because 
new doctors are reluctant to practice in rural or depressed urban com
munities. Also these discussions fail to indicate how a high level of physi
cian competence can be maintained in the face of a continued expansion 
of medical knowledge. The gap between what a doctor should know and 
what can be retained and utilized is continually widening. 

As Schwartz (1970) has noted, "The computer thus remains (in the 
light of conventional projections) as an adjunct to the present [health care] 
system, serving a palliative function, but not really solving the major prob
lems of that system." 

There is, in fact, little reason to believe that any of the current pro
posals for solving these problems, technological or other, will do more than 
mitigate their severity. Despite plans to reorganize patterns of medical care 
and efforts to enlarge medical school capacity and create new classes of 
"doctors' assistants," the physician shortage promises to be with us for dec
ades and to pose a serious obstacle to health planning. The problem of 
maintaining and improving quality appears equally knotty since there is 
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little indication that current programs in postgraduate education will be 
adequate to the challenge. 

If conventional remedies will not meet the demands imposed by so
ciety's broad commitment to extensions of health care, it is clear that new, 
even heretical strategies must be devised. One intriguing possibility is to 
use the computer as an "intellectual" or "deductive" instrument-a con
sultant that is built into the very structure of the health care system and 
augments or replaces many of the traditional activities of the physician. 
One can envision an ongoing dialogue between the physician and the com
puter with the latter continuously taking note of history, physical findings, 
laboratory data, and the like, alerting the physician to probable diagnoses, 
and suggesting possible courses of action. One may hope that the com
puter, well-equipped to store a large volume of information and ingen
iously programmed to assist in decision making, will help free the physician 
to concentrate on the application of bedside skills, the management of the 
emotional aspects of disease, and the exercise of good judgment in the 
nonquantifiable aspects of clinical care. 

The computer, used in this manner, might also open the way to quite 
different means of employing nonphysician personnel. Use of the com
puter as an intellectual resource in diagnosis and treatment might well be 
coupled to the development of new types of highly specialized allied health 
personnel who could perform functions of a scope well beyond that cur
rently considered feasible for doctors' assistants. Computer-supported 
"health care specialists," aided by a variety of automated devices for history 
taking, blood analysis, and other procedures, and trained to perform a 
careful physical examination, might take over a large segment of the re
sponsibility for the delivery of primary medical care. Guided by the com
puter, constrained from exceeding their capacities by instructions built into 
the computer programs, and linked to regional consulting centers by ap
propriate display devices, the new breed of "health care specialists" could 
make a major contribution to the resolution of the seemingly insoluble 
problem of maldistribution and shortage of physicians. 

While such visions of the future are heady stuff, a serious considera
tion of the problems to be solved is immediately sobering. Clearly, consid
erable intellectual and technological resources must be marshaled and a 
long-term research commitment must be made if such a scenario is to 
become a reality. 

The work discussed in the next section constitutes a very modest in
vestigation of one aspect of this problem. The focus of this work is on the 
decision-making aspects of clinical medicine. The original hope was to 
embody in a computer program a normative procedure for diagnostic and 
therapeutic decision making that could be applied to a variety of clinical 
problems (Gorry, 1968). Although this work was only a partial success, it 
proved a very valuable exercise from which a number of new ideas were 
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gained. A discussion of these ideas will be postponed until the discussion 
of the new research plan. The discussion in the next section has not been 
"edited" to reflect the new (and hopefully better) view of the problem. 

2 2 Review of Past Research • 

2.2.1 Introduction 

The purpose of this section is to review our own research on the use of a 
computer to solve diagnostic and treatment problems in medicine. A major 
result of this research has been the development of a computer program 
that is intended to serve as a consultant in a number of medical problem 
areas. Here the considerations that underlie the program are discussed. 
The basic functions of the program are outlined in a nontechnical way, 
and an example of the use of the program is given. Then the results of 
the use of the program for several different medical problems are re
viewed. Finally, an attempt is made to ascertain the potential of programs 
such as this in the delivery of appropriate medical care. Detailed reports 
on various aspects of this research are available in the literature (Gorry, 
1967; 1968; Gorry and Barnett, 1968a; 1968b), and so the emphasis here 
will be on providing a general overview of the work and results obtained 
to date. 

2.2.2 Modeling the Diagnostic and Treatment Problem 

The use of digital computers in the selection of good diagnostic and treat
ment strategies has received increased attention in recent years. One reason 
for this interest is the general desire to improve the ability of the clinician 
to deal with the difficult problems that can arise in the management of a 
'patient. A significant portion of the difficulty stems from the fact that the 
physician must sort out numerous possibilities and develop hypotheses 
about the state of health of the patient. The ability of the computer to 
store extremely large amounts of data, to enumerate many possibilities, 
and to perform complex logical operations suggests its potential value in 
this problem-solving process. Before a computer can be used to significant 
advantage in analyzing diagnostic and treatment strategies, however, pre
cise procedures must be formulated for the means of inference required 
to deduce the clinical state of the patient from observed signs and symp
toms, and a formalized capability must be developed for the prediction 
and assessment of possible therapeutic measures. In other words, the prob-
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lem of performing diagnostic inference and weighing therapeutic strate
gies must be reduced to a problem of computation. 

In order to better understand the requirements, a model of the di
agnostic-treatment problem was formulated. The model is a mathematical 
one, but its principal characteristics can be discussed in terms of the way 
a physician deals with this problem, although it should be noted that the 
model was not developed as a description of the way in which physicians 
operate. The purpose of the model is to permit the exploitation of the 
particular capabilities of a computer. Hence, in the next several para
graphs, when I am discussing the way in which a physician or doctor deals 
with the problem, I am using physician or doctor instead of model for con
venience, and I am not presenting a theory of human problem solving in 
the medical area. [The relationship of the model to the actual problem
solving behavior of the physicians is discussed in Gorry (1970).] 

In general, a physician confronted with a potentially ill patient initially 
does not have sufficient information about the patient to decide on a di
agnosis or on a therapeutic policy. The information the physician does 
have, however, in addition to his or her general medical knowledge and 
experience, enables formulation of some tentative hypotheses about the 
state of health of the patient. This opinion will exert a considerable effect 
on the strategy the physician will employ in dealing with the patient. For 
convenience, let us say that the options available to the physician are tests 
and treatments. By test we mean any means for obtaining additional infor
mation about the patient ranging from simple questions to laboratory pro
cedures or certain surgical procedures. The physician employs those tests 
that are expected to provide results of significant value in improving the 
current view of the patient's problem. The term treatment will be used to 
refer to any means at the doctor's disposal to correct the health state of 
any patient. Treatments range from drugs to a variety of surgical proce
dures. The selection of an appropriate treatment for a given problem is 
strongly dependent on the correctness of the doctor's opinion about the 
patient's problem. The selection of the wrong treatment, for whatever rea
son, can have very serious consequences for the patient. 

The value of the information obtained from a test is determined by 
the contribution this information makes to improving the doctor's current 
view of the patient's problem and hence to reducing the risk of misdi
agnosis with its associated cost. Hence the doctor is inclined to perform 
many tests. On the other hand, the tests available generally are not without 
some cost in terms of patient discomfort, time of skilled persons, money, 
etc. Thus there is a conflicting tendency to hold the number of diagnostic 
tests to a minimum. 

As is discussed in Gorry and Barnett (l 968b), the doctor resolves these 
conflicting tendencies by performing sequential diagnosis. At a particular 
point in time, given the current view of the patient's problem, the physician 
can evaluate the choices available. The basic choice is to employ a test to 



Review of Past Research 23 

obtain more information or to select a treatment in the hopes of curing 
the patient. 

1 

If the physician elects to cease testing and to make a diagnosis, the 
choice of a treatment implies a certain risk of mistreatment through a 
misdiagnosis. On the other hand, the doctor can perform some test in the 
hopes of gaining additional information on which to base a diagnosis and 
the resulting choice of treatment. In this case, the doctor incurs the cost 
(in some terms) of the test selected. When the results of the test are known, 
and when they have been incorporated into the current view of the prob
lem, the physician is faced with a decision problem of exactly the same 
form as the one just solved. Thus a doctor can be thought of as solving a 
sequence of similar decision problems. At each stage of the process, the 
cost of further testing is balanced against the expected reduction in the 
cost of treatment due to the test results. When, in the opinion of the 
physician, no test possesses the property that is expected to reduce the risk 
of treatment by an amount that exceeds its cost, the physician will cease 
testing, make a diagnosis, and treat the patient. If the physician repeatedly 
updates the current view of the problem in keeping with the latest infor
mation available, and if the physician has sufficient knowledge, effective 
diagnostic and therapeutic strategies may be developed. 

Although this description of the manner in which a physician deals 
with diagnosis-treatment problems is simplified and somewhat artificial, it 
does emphasize the fundamental role that sequential decision making plays 
in the process. It seemed clear that it was necessary for a computer pro
gram to exploit an analogous capability (framed in terms suitable for a 
machine) in solving more general problems of the type. 

2.2.3 The Development of the Computer Program 

In this section, the basic components of a computer program to assess 
diagnostic and therapeutic strategies are discussed. These components di
rectly reflect the view of the required problem-solving process outlined in 
the preceding section. The discussion of the program is nontechnical. 
Readers interested in the technical details are referred to Corry (1967; 
1968). 

The program has three basic components. The first is called the in
formation structure, and it constitutes the medical experience of the pro
gram. By changing the information structure, one can convert the program 
for use in a new problem area. This is the only part of the program that 
changes from one application to the next. 

In addition to the diseases, signs, symptoms, tests, and treatments, the 
information structure contains two types of information: probabilities and 
utilities. The probabilities relate signs and symptoms to diseases. For ex
ample, one probability might be the conditional probability of red blood 
cell casts in the urine given that the patient has acute tubular necrosis. The 



24 Computer-Assisted Clinical Decision Making 

program's understanding of various diseases is entirely in terms of the 
conditional probabilities that relate to the variety of signs and symptoms 
and treatment consequences to those diseases. 

The utilities of the tests, treatments, and treatment consequences are 
thought of as the subjective preferences of an expert. The utility of a test 
reflects the pain associated with the test, the cost of the test, the time of a 
skilled person required for the test, the risk of the test to the patient, etc. 
Similar factors are reflected in the utilities of the treatments and the treat
ment consequences. Utility can be thought of as the common denominator 
in terms of which all these diverse factors are measured. Utility assessment 
will be considered in more deiail later. Here we simply note that if the 
program is to make comparisons of factors such as risk and cost, a common 
scale must be established for seemingly diverse outcomes. 

The second major segment of the program is called the inference func
tion. Basically the task of the inference function is to establish the diagnostic 
significance of a particular test result. In a typical situation, a doctor con
fronted with a particular diagnostic problem must interpret the available 
evidence (observed signs and symptoms, etc.) in terms of past personal 
medical experience. In other words, the doctor employs a method of de
duction that can accommodate both a general understanding of diseases 
and the individual instance represented by the current patient. The infer
ence function of the program is the analogue of this capability in the 
physician. It uses probabilistic inference based on Bayes' Rule (Corry, 1967; 
Corry and Barnett, l 968a) to obtain a probability distribution for the like
lihood of each disease given the evidence to date and general medical 
experience. The latter is incorporated in the information structure of the 
program. It is this probability distribution, then, that constitutes the cur
rent view taken by the program of the given problem. This view is updated 
whenever any new evidence is made available to the program. The updated 
probability distribution is one of the major factors that influence the strat
egy chosen by the program for dealing with a given patient. 

The third component of the program is called the test/treatment selection 
function. Its purpose is to select at each stage in the problem-solving process 
an appropriate test or treatment for use on the patient. By considering the 
probability distribution associated with the current view of the problem 
and the utilities of the various treatment consequences, this function can 
determine the best treatment to perform, assuming that no further tests 
are to be used. The treatment chosen is the one that minimizes the ex
pected risk, and it provides the standard used in evaluating the potential 
value of further testing. 

In evaluating the potential usefulness of a particular test, the program 
considers the current view, the utilities of the various tests, and the likeli
hood of the possible test results. For each possible result of a test, the 
program can simulate the change in the current distribution that would 
occur if this result were obtained. The expected risk of treatment can be 
estimated for this new distribution. For each result of a test, the expected 
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FIGURE 2-1 Example of a decision tree. 

risk of treatment given the result is weighted by the likelihood of obtaining 
that result, and the sum of these products is added to the utility of the test 
to obtain the overall measure. A schematic representation of the factors 
considered in evaluating a test is presented in Figure 2-1. By analyzing 
decision trees such as the one shown, the program attempts to select the 
best test or treatment at each stage of the analysis. 
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In Figure 2-2, an actual dialogue between a user and the program is 
presented. 1 The problem being considered is the diagnosis of a case of 
congenital heart disease. At the outset of the discussion, the program is 
essentially passive, simply accumulating whatever evidence the user offers 
and using the inference function to update its current view of the problem. 
When the user has completed the initial description of the patient, the test/ 
treatment function is invoked to determine the best diagnosis-treatment 
policy. In this case, no treatments were considered, and the problem was 
merely one of diagnosis. The example, however, does give a basic impres
sion of the use of the program. 

2.2.4 Experience with the Program 

The program has performed extremely well in the medical problems to 
which it has been applied. It was used as a diagnostic program (no treat
ments were considered) in two areas: primary bone tumors and congenital 
heart disease. The bone tumor problem involved the classification of pa
tients into one of nine disease groups based on radiographic evidence and 
other physical findings. Studies made with the program indicated that it 
performed at the level of an experienced radiologist given the same evi
dence (Gorry, 1967). The second medical problem considered was the di
agnosis of congenital heart disease. Here there are 35 diseases in question. 
Again the results showed that the program performed at the level of an 
expert (Garry, 1967; 1968). Both the bone tumor problem and the con
genital heart disease problem had certain characteristics that made them 
unsatisfactory tests of the program's capability, however. First, in neither 
area were the costs of the tests sufficiently high to make the sequential 
aspect of the program particularly important. Because tests were so cheap, 
it mattered little how many were performed or in what order. Second, the 
treatrpent problem was not considered because the doctors needed to help 
define these treatments and their consequences were not available. 

Because of these difficulties, a third medical area was considered, the 
diagnosis and treatment of acute renal failure. The management of the 
acute renal failure syndrome is an important medical problem. Although 
the incidence of the problem is relatively small in the context of all disease 
treatment problems, the potential risk to the patient's life is sufficiently 
great to give the problem special significance. In dealing with this problem, 
the physician must account for this risk factor as well as the possibility that 
the tests that could be employed to gain further information about the 
patient can contribute to the medical problem if improperly used. 

The definition of the acute renal failure problem used in this study 
included 15 diseases. As in the previous problems of bone tumors and 

1The ELIZA program, developed by Professor Joseph Weizenbaum of M.I.T., was used to 
facilitate user input. 
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PLEASE TELL ME ABOUT THE PATIENT. 
Well he is about 65 years old. 
PLEASE CONTINUE. 
No cyanosis. 
0.K. PLEASE GO ON. 
What is your opinion of the 3 most probable diseases now. 

2 WITH PROBABILITY .68 
18 WITH PROBABILITY .10 
24 WITH PROBABILITY .04 

ALL RIGHT. GO ON PLEASE. 
Name four diseases for me. 
ATRIAL SEPTAL DEFECT WITH PULMONARY HYPERTENSION. 
PLEASE CONTINUE. 
I meant the name of disease 24. 
VENTRICULAR SEPTAL DEFECT WITH PULMONARY FLOW LE. 1.4 SYSTEMIC FLOW. 
0.K. PLEASE GO ON. 
What more do you need to know. 
CHECK THE HILAR VESSELS. ARE THEY INCREASED OR DECREASED. 
That information is not available. 
LOOK FOR A LEFT SECOND SYSTOLIC MURMUR. 
What is your current view. 
MY CURRENT VIEW IS 

DISEASE PROB 
2 .68 
18 .10 
24 .04 
25 .04 

NOW LET'S GO ON. 
LOOK FOR A LEFT SECOND SYSTOLIC MURMUR. 
Say there is a left second systolic murmur. 
I SEE. 

DISEASE 
34 
5 
12 

IS THE AXIS IN THE ECG RIGHT, LEFT, OR NORMAL. 
What is the probability of atrial septal defect now. 
IT IS 85. 
ALL RIGHT. GO ON PLEASE. 
IS THE AXIS IN THE ECG RIGHT, LEFT, OR NORMAL. 
Left. 
ALL RIGHT. 
CHECK FOR A LEFT FOURTH SYSTOLIC MURMUR. 
What are the 3 most probable diseases now. 

5 WITH PROBABILITY .43 
2 WITH PROBABILITY .39 

18 WITH PROBABILITY .05 
PLEASE CONTINUE. 
CHECK FOR A LEFT FOURTH SYSTOLIC MURMUR. 
What is the medical name of disease 5. 
ATRIO-VENTRICULAR COMMUNIS. 
O.K. PLEASE GO ON. 
CHECK FOR A LEFT FOURTH SYSTOLIC MURMUR. 
Say there is one. 
0.K. 
IS THERE AN ACCENTUATED OR DIMINISHED P2. 
What is the probability of disease 5 now. 
IT IS 71. 
ALL RIGHT. GO ON PLEASE. 

PROB 
.03 
.03 
.02 

FIGURE 2-2 Example of a session with the program. (Pro
gram's responses and questions are in capital letters.) 



28 Computer-Assisted Clinical Decision Making 

IS THERE AN ACCENTUATED OR DIMINISHED P2. 
Not available. 
I RECOMMEND A DIAGNOSIS OF DISEASE 5. 
What are the 3 most probable diseases. 

5 WITH PROBABILITY .71 
2 WITH PROBABILITY .23 

24 WITH PROBABILITY .01 
I'm finished. Thanks for your help. 
I HOPE THAT I HAVE BEEN OF SERVICE. GOODBYE. 

FIGURE 2-2 continued 

cgngenital heart disease, the information structure for the program in
cluded the relevant probabilities. In this case, however, no attempt was 
made to obtain these probabilities from an analysis of historical data. 
Rather, the opinion of an expert was used in establishing each probability. 
In addition, special attention was paid to the assessment of the required 
utilit~es. Again, the opinion of an expert renal specialist served as the basis 
for these numbers. 

The precise manner in which these judgments were obtained from the 
expert and the way in which they were converted to utilities are discussed 
in Betaque and Gorry (1971). Here I want to outline the procedure briefly. 
The renal expert was given a series of hypothetical decision problems. Each 
problem required that a choice be made between a particular event for 
certain (such as curing the patient by performing a certain operation) and 
accepting a chance in a lottery. If the expert chose the lottery, a given event 
would be chosen for him with probability P, and some other event would 
be chosen with probability 1 - P. Before making a choice, the expert is 
told exactly what the two events in the lottery are and what the value of P 
is. With the theory discussed in Betaque and Corry ( 1971 ), a series of these 
decision problems can be used to establish the utilities of tests, treatments, 
and consequences required by the program. 

With the information structure for the renal failure problem devel
oped in this way, the program duplicated the diagnostic-treatment deci
sions of expert renal specialists in over 90% of the cases tested. Further
more, when the information structures from two experts were used, the 
program agreed more closely with the expert whose judgments it was using 
than did the other expert. 

2 .3 Plan for Further Research 

To provide a context for a discussion of our plan for further research in 
this area, I want to offer a criticism of the work to date. Without going 
into detail, let me say that the evaluations of the program were strongly 
biased in favor of the program. The number of diseases, their rigid defi-
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nitions, and the types of tests and treatments used all combined to make 
simple, exhaustive search an effective strategy. Thus the program did quite 
well compared to the experts, but the method it employed differed from 
the ones they used. Although we cannot characterize precisely the methods 
used by the experts, it is clear that these methods can accommodate the 
greater complexity of real clinical situations. The potential usefulness of 
exhaustive search as the primary decision procedure for the program, how
ever, is open to question. In this regard, it is instructive to consider some 
of the failures of the program in the experiments described above. 

One such case was a patient with acute glomerulonephritis (AGN), a 
common cause of acute renal failure. Patients with AGN seldom have se
vere hypertension, but the patient presented to the physicians and the 
program did. The program obtained the correct diagnosis, but the treat
ment it recommended differed from that proposed by the doctors. Al
though both the physicians and the program chose the same treatment for 
AGN, the physicians recognized the need to deal with the patient's hyper
tension and hence recommended a second treatment as well. 

Clearly, the program could be modified to check for this problem and 
to make the appropriate decisions. The same could be done for several 
other problems of this type that were identified. Similar modifications 
would be required to obtain the appropriate interpretation of certain signs 
and symptoms. For example, hematuria (red blood cells in the urine) is an 
important diagnostic finding in acute renal failure. On the other hand, a 
patient with an indwelling catheter will generally have hematuria regard
less of his or her intrinsic disease. Hence the interpretation of this finding 
should reflect this fact. Again, either the program or the data it uses must 
be changed. Although these particular problems could easily be solved 
within the context of the existing problem, they raise an important ques
tion. How many such "minor" modifications will be required for the pro
gram to have practical use in the clinical management of acute renal fail
ure? 

For a period of several months, we have investigated the amount and 
type of knowledge possessed by two acknowledged renal experts. Although 
much more work needs to be done, I can offer certain tentative conclu
sions. These conclusions provide motivation for a change of direction in 
this research. 

1. Although detailed knowledge of physiology and pathophysiology is 
sometimes useful in clinical decision making, gross knowledge of this 
kind coupled with a large number of experiential facts and mini-deci
sion procedures forms the primary basis of clinical judgment in renal 
disease. 

2. The knowledge used by the experts is both factual and procedural. 
Their experience has provided them with a rich repertoire of ideas of 
the form "if x is present and y is absent, then a good trial hypothesis is 
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D." Such rules allow them to focus their attention on relatively few 
diagnoses or treatments. Of course, these rules are heuristics, but many 
of them are of considerable value in dealing with experts' decision
making problems. By remembering large numbers of such patterns or 
rules, they avoid search to a large extent. 

3. This experiential knowledge is not framed in deterministic terms, but 
is associated with various degrees of certainty. 

4. The renal experts can specify only part of this knowledge a priori. A 
large part of this knowledge can be elicited only in response to apparent 
misconceptions on my part (or as embodied in the program). 

5. Although there are very many "pieces" of knowledge involved, these 
experts seem able to state them clearly when the occasion arises. 

The physicians with whom I have been working are acknowledged 
experts in renal disease, and their performance in this field far surpasses 
that of a very large fraction of the doctors who treat patients with this 
problem. 2 It is important, then, to get as much of their knowledge as 
possible in distributable form (i.e., a program). 

The original program was based on a particular normative view of 
clinical decision making. The judgments of experts could be added only 
to the extent that these judgments could be expressed as simple probabi
listic relationships or as utilities. Procedural knowledge was added through 
reprogramming. Thus the addition of knowledge was either implicit (set
ting probabilities or utilities to cause the program to arrive at a conclusion 
that a physician could obtain more directly) or laborious (reprogramming). 
Unfortunately, I am convinced that, for the foreseeable future, the desire 
to add knowledge will be great, and an attempt to maintain the program 
(perhaps for its simple, aesthetic appeal) will prove frustrating at best. 

Although this discussion has been brief, it indicates the general tenor 
of the problems I foresee with the approach we had been using. Decision 
analysis is a useful tool when the problem has been reduced to a small, 
well-defined one of action selection. It cannot be the sole basis of a program 
to assist clinicians generally in an area such as renal disease. 

2.3.1 A New Program for Renal Disease 

Several months ago, we began the development of a prototype program 
for use in the problem of acute renal disease. This program is currently 
in a most rudimentary form. Therefore I will be discussing here not so 
much an existing program as some goals toward which we are working. 
Our short-term goal is to produce a version of this prototype that can be 

2This is not a condemnation of the latter group. It is a simply a reflection of the fact that 
most people with kidney disease do not have access to the experts and resources of a m<~jor 
teaching hospital. 
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used by renal specialists in an informal way as a means to assess the po
tential of the ideas on which it is based. 

Recent developments by people in the Artificial Intelligence Labora
tory at M.I.T. have opened the way for the exploration of new approaches 
to computer assimilation of knowledge. The developments comprise both 
a way of looking at the problem of machine knowledge and some very 
high-level programming systems (Sussman et al., 1971; Winograd, 1971). 
The prototype system incorporates some of these new ideas and as a result 
is better able to accept experiential knowledge directly from the user. The 
details of the new program are beyond the scope of this paper (and may 
change significantly over time). Here, I will restrict myself to the conceptual 
framework within which this program is being built. 

A simple language has been implemented to permit renal experts to 
give advice to the program regarding facts or ways to proceed in a partic
ular circumstance. Examples of such statements are the following: 

a. In acute glomerulonephritis, if hematuria is gross then red blood cell 
casts are very likely; 

b. If proteinuria is heavy and hematuria is gross and red blood cell casts 
are present and diagnosis is acute renal failure, then diagnosis of glo
merulonephritis is very likely. 

The basic functions of the program are ( 1) to accept such statements, 
(2) to note appropriate associations among various statements, and (3) to 
use the statements deductively when appropriate to draw conclusions about 
diagnosis or management. 

It must be emphasized that the new program is very primitive as yet. 
The new technology mentioned above has greatly facilitated its develop
ment, however, and it seems likely that a much improved program can be 
implemented. The real question is whether sufficient improvement can be 
realized to make the program useful. At present, we cannot answer this 
question, but I can indicate the chief problem areas to be explored. 

2.3.2 Problems for Investigation 

Concept Identification 

We intend to continue to try to identify the important concepts in renal 
disease. By this, I mean the identification of the central, problem-specific 
ideas in terms of which the experts organize their knowledge. One example 
is the concept of renal function. There are several approaches to inferring 
renal function and assessing whether it is stable or changing. This deter
mination is very important in diagnosis and in choosing management strat
egies. It is possible to obtain from the experts the procedure by which they 
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infer a value for renal function. Further, many statements about the in
terpretation of changes in renal function can be made. To capture the 
knowledge embodied in these statements, some computer realization of 
the concept of renal function must be developed. 

Already it is clear that there are many such concepts. We will be trying 
to identify the most important ones and to develop reasonable ways to 
represent them in the program. Needless to say, a major question will be 
how many such concepts are required in the program and the complexity 
of their realization. One possibility is that the number is so large as to be 
impossible to deal with at present. Another is that the individual concepts 
are based on an implicit assumption of enormous knowledge about the 
world. We believe that the number of important concepts is indeed large, 
but not beyond our capabilities. For example, a very large portion of the 
basic knowledge about kidney disease is contained in one book (admittedly 
a large one). Further, the expert clinicians believe that big chunks of that 
book are unnecessary for the support of clinical activities. 

The issue of how much common sense is assumed in these concepts 
is also important. On the one hand, it could be argued that to understand 
these concepts a program must understand a tremendous amount about 
the world. On the other hand, the relatively precise language of medicine 
may be the key here. The program may know many facts about strepto
coccal infection and its role in acute renal failure without understanding 
the concept of germs. The physician using the program may have little 
need to ask the program for the latter. More generally, the user will have 
considerable knowledge organized in terms of fairly well-defined words 
and phrases. The knowledge of the program can be expressed in these 
terms to assist the physician. More detailed knowledge on the part of the 
program may be unnecessary. 

Already it is clear that there are many concepts, but that not all are of 
great importance. We will be trying to identify the most important ones 
and to develop reasonable ways to represent them in a program. 

Language Development 

Because we believe that the continual addition of knowledge is critical, we 
will be working on the development of a language within which experts 
can express this knowledge to the program. An understanding of the im
portant concepts in renal disease, of course, is a prerequisite for the design 
of such a language. In general terms, what we are seeking is an automatic 
programming capability so experts can program the machine directly. At 
present, we can envision three languages involved in this process. 

First, at the lowest level there will be the computer language in which 
the concepts are realized. At a higher level will be a language in which 
statements concerning these concepts are made without explicit recogni-
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tion of the details of the lower-level realization. Such a language may well 
be an extension of the simple IF/THEN-type language already imple
mented. Maintaining this separation may lessen the problems arising from 
changes in the particular realization of the concepts in the machine. The 
third-level language will be English. We are hoping to use Winograd's pro
gram (Winograd, 1971) to translate statements made by the experts (in a 
subset of English) into the intermediate language mentioned. The second
level language can be viewed as a canonical representation of the subset 
of English that can be accepted. Such a translation will require an inter
action with both of the lower-level languages, but we can say little in detail 
about this process. We do believe, however, that, whatever the realization, 
language will be critical if the knowledge of experts is to be captured. Also, 
we believe that they must be given some form of English for input and 
inquiry. Hence the tasks of concept identification and language develop
ment will have highest priority. 

One question is worth raising here, although at present we do not 
know the answer. This question concerns the necessity for English. With 
experts dedicated to the project being the sole source of knowledge input, 
there might be little need for English; they could be taught to use the 
second-level language. On the other hand, if interaction with other clini
cians proves to be important (and we believe it will) then English may be 
very important. The question of how much is to be gained from English 
is one that will be considered carefully. 

Explanation 

The other side of the coin is explanation. If experts are to use and improve 
the program directly, then it must be able to explain the reasons for its 
actions. Furthermore, this explanation must be in terms the physicians can 
understand. The steps in a deduction and the facts employed must be 
identified for the expert so that he or she can correct one or more of them 
if necessary. As a corollary, the user must be able to easily find out what 
the program knows about a particular subject. 

2.3.3 A Comment on Goals 

The original aim of this research was to produce a decision-making pro
gram. Although this is still the long-term goal, we believe the time required 
to achieve this goal is sufficiently long to necessitate the establishment of 
some short-term goals. Presently, we consider a reasonable (but somewhat 
vague) goal to be the construction of a program that can accept knowledge 
and answer simple requests for parts of that knowledge. Because there will 
be many cases where the program will lack knowledge relevant to a par-
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ticular clinical situation, it should make not pronouncements but rather 
suggestions of things to consider and the assumptions on which its sug
gestions are based. 
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Knowledge Engineering for 
Medical Decision Making: 
A Review of 
Computer-Based Clinical 
Decision Aids 

Edward H. Shortliffe, Bruce G. Buchanan, 
and Edward A. Feigenbaum 

We now jump ahead to 1979 when Shortliffe, Buchanan, and Feigenbaum 
published a review article that more broadly surveys the field of computer
based medical decision making. Like Corry's paper, this article focuses on 
the limitations of early work that had made artificial intelligence techniques 
and knowledge-engineering research particularly attractive. However, the 
coverage of other models is more detailed and comprehensive, and the dis
cussion of AI benefits from another five years of work to which the authors 
were able to refer. We include this article early in this volume to help set 
the scene for the discussions of AI systems that follow. Many of the systems 
subsequently described in detail are referenced here in describing the evo
lution of computer-based approaches to medical advice giving. 

The article reviews representative examples from each of several major 
medical decision-making paradigms: (1) clinical algorithms, (2) clinical 
data banks that include analytic functions, (3) mathematical models of 
physical processes, (4) pattern recognition, (5) Bayesian statistics, (6) de
cision analysis, and (7) the symbolic reasoning approaches of AI. Because 
the topic is too broad to provide exhaustive discussions of the techniques 
and systems in each category, the approach used here is to undertake case 
studies as a basis for analyzing general strengths and limitations. It should 

©1979 IEEE. Used with permission. From Proceedings of the IEEE, 67: 1207-1224 (1979). 
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be noted that the authors do not claim that any one method is best for all 
applications and they stress that considerable basic research in medical 
computing remains to be done. They also suggest that powerful new ap
proaches may lie in the melding of two or more established techniques, a 
trend that is already characterizing some of the AIM work of the 1980s. 

3 1 Introduction • 

As early as the 1950s, physicians and computer scientists recognized that 
computers could assist with clinical decision making (Lipkin and Hardy, 
1958) and began to analyze medical diagnosis with a view to the potential 
role of automated decision aids in that domain (Ledley and Lusted, 1959). 
Since that time a variety of techniques have been applied, accounting for 
at least 800 references in the clinical and computing literature (Wagner et 
al., 1978). In this article we review several decision-making paradigms and 
discuss some issues that account for both the multiplicity of approaches 
and the limited clinical success of most of the systems developed to date. 
Because other authors have reviewed computer-aided diagnosis (Jacquez, 
1972; Schoolman and Bernstein, 1978; Wardle and Wardle, 1978) and the 
potential impact of computers in medical care (Schwartz, 1970), our em
phasis here will be somewhat different. We will focus on the representation 
and use of knowledge, termed knowledge engineering, and the inadequacies 
of data-intensive techniques, which have led to the exploration of novel 
symbolic reasoning approaches during the last decade. 

3.1.1 Reasons for Attempting Computer-Aided 
Medical Decision Making 

Because of the accelerated growth in medical knowledge, physicians have 
tended to specialize and to become more dependent on assistance from 
other experts when presented with a complex problem outside their own 
area of expertise. The primary care physician who first sees the patient 
has thousands of tests available with a wide range of costs (both fiscal and 
physical) and potential benefits (i.e., arrival at a correct diagnosis or optimal 
therapeutic management). Even the experts in a specialized field may reach 
very different decisions regarding the management of a specific case (Yu 
et al., l 979a). Diagnoses that are made, on which therapeutic decisions are 
based, have been shown to vary widely in their accuracy (Garland, 1959; 
Prutting, 1967; Rosenblatt et al., 1973). Furthermore, medical students 
usually learn about decision making in an unstructured way, largely 
through observing and emulating the thought processes they perceive to 
be used by their clinical mentors (Kassirer and Garry, 1978). 
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Thus the motivations for attempts to understand and automate the 
process of clinical decision making have been numerous (Wardle and War
dle, 1978). They are directed both at diagnostic models and at assisting 
with patient-management decisions. Among the reasons for introducing 
computers into such work are the following: 

1. to improve the accuracy of clinical diagnosis through approaches that 
are systematic, complete, and able to integrate data from diverse 
sources; 

2. to improve the reliability of clinical decisions by avoiding unwarranted 
influences of similar but not identical cases (a common source of bias 
among physicians), and by making the criteria for decisions explicit and 
hence reproducible; 

3. to improve the cost efficiency of tests and therapies by balancing the expenses 
of time, inconvenience, or funds against benefits and risks of definitive 
actions; 

4. to improve our understanding of the structure of medical knowledge, with the 
associated development of techniques for identifying inconsistencies 
and inadequacies in that knowledge; and 

5. to improve our understanding of clinical decision making, in order to im
prove medical teaching and to make computer programs more effective 
and easier to understand. 

3.1.2 The Distinction Between Data and Knowledge 

The models on which computer systems base their clinical advice range 
from data-intensive to knowledge-intensive approaches. There are at least 
four types of knowledge that may be distinguished from pure statistical 
data: 

1. knowledge derived from data analysis (largely numerical); 

2. judgmental or subjective knowledge; 

3. scientific or theoretical knowledge; 

4. high-level strategic knowledge or "self-knowledge." 

If there is a chronology to the field over the last 20 years, it is that 
there has been progressively less dependence on "pure" observational data 
and more emphasis on higher-level symbolic knowledge inferred from pri
mary data. We include with domain knowledge a category of judgmental 
knowledge that reflects the experience and opinions of an expert regarding 
an issue about which the formal data may be fragmentary or nonexistent. 
Since many decisions made in clinical medicine depend on this kind of 
judgmental expertise, it is not surprising that investigators should begin to 
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look for ways to capture and use the knowledge of experts in decision
making programs. Another reason to move away from purely data-inten
sive programs is that in medicine the primary data available to decision 
makers are far from objective (Feinstein, 1970; Komaroff, 1979). They 
include subjective reports from patients and error-prone observations (Gill 
et al., 1973). Also, the terminology used in the reports is not standardized 
(Croft, 1972), and the classifications often overlap. Thus decision-making 
aids must be knowledgeable about the unreliability of the data as well as 
the uncertainty of the inference. 

For example, data-intensive programs include medical record systems 
that accumulate large data banks to assist with decision making. There is 
little knowledge per se in the data bank, but there are large amounts of data 
that can help with decisions and be analyzed to provide new knowledge. 
A program that retrieves a patient's record for review or even one that 
retrieves the records of several patients (matching some set of descriptors) 
is performing a data-management task with little reasoning involved 
(Greenes et al., 1970; Rodnick and Wiederhold, 1977). Although there is 
statistical "knowledge" contained in the conditional probabilities generated 
from such a data bank and utilized for Bayesian analysis, it is all numeric. 
At the other extreme are systems that encode and use the kind of expert 
knowledge that cannot be easily gleaned from data banks or literature 
review (as described in subsequent chapters in this volume). Systems that 
model human reasoning or emphasize the education of users tend to fall 
toward this end of the data-knowledge continuum. 

In addition to judgmental and statistical knowledge, there are other 
forms of information that can play an important role in computer-based 
clinical decision aids. For example, underlying scientific theories and re
lationships are often ignored by diagnostic programs but provide the foun
dation for decisions made by human experts. Consider, for example, the 
potential utility of techniques that could effectively represent and use the 
basic knowledge of biochemistry, biophysics, or detailed human physiology. 
Biomedical modeling research offers some mathematical techniques for 
encoding such knowledge in certain domains, but symbolic approaches and 
clinically useful applications are still largely unrealized. 

Finally, there is another kind of knowledge used by human decision 
makers-an understanding of reasoning processes and strategies them
selves. This kind of high-level or meta-level knowledge, if incorporated 
into computer programs, may not only heighten their decision-making 
performance but also augment their acceptability to users by making them 
appear to be more aware of their own power, strategies, and limitations. 

We use the term knowledge engineering, then, to refer to computer-based 
symbolic reasoning issues such as knowledge representation, acquisition, 
explanation, and "self-awareness" or self-modification (Feigenbaum, 1977). 
It is along these dimensions that knowledge-based programs differ most 
sharply from conventional calculations. For example, such programs can 
solve problems by pursuing a line of reasoning; the individual inference 
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steps and the whole chain of reasoning may also form the basis for expla
nations of decisions. A major concern in knowledge engineering is clear 
separation of the medical knowledge in a program from the inference 
mechanism that applies that knowledge to the data of individual cases. 
One goal of this chapter is to identify the strengths and weaknesses of 
earlier work, those issues that have motivated several current researchers 
to investigate the automation of clinical decision aids through knowledge 
engineering. 

3.1.3 Parameters for Assessing Work in the Field 

Barriers to successful implementation of computer-based diagnostic sys
tems have been analyzed on several occasions (Croft, 1972; Friedman and 
Gustafson, 1977; Startsman and Robinson, 1972) and need not be reviewed 
here. However, in assessing programs it is pertinent to examine several 
parameters that affect the success and scope of a particular system in light 
of its intended users and application. Unfortunately, the medical comput
ing literature has few descriptions of systems for which all the following 
issues can be assessed: 

1. How accurate is the program? 1 

2. What is the nature of the knowledge in the system, and how is it gen
erated or acquired? 

3. How is the clinical knowledge represented, and how does it facilitate 
the performance goals of the system described? 

4. How are knowledge and clinical data used, and how does this impact 
on system performance? 

5. Is the system accepted by the users for whom it is intended? Is the 
interface with the user adequate? Does the system function outside of 
a research setting, and is it suitable for dissemination? 

6. What are the limitations of the approach? 

An issue we have chosen not to address is the cost of a system, includ
ing the size of the required computing resource. Not only is information 
on this question scanty for most of the programs, but expenses generated 
in a research and development environment do not realistically reflect the 
costs one expects from a system once it is operating for service use. 

1 Although this is important, it is not the only measure of clinical effectiveness. For example, 
the effects on morbidity, mortality, and length of hospital stay may also be important param
eters. As we shall show, few systems have reached a stage of implementation where these 
parameters can be assessed. Moreover, because of the complexity of the interacting influences 
that affect the usual measures of outcome, it may be difficult ever to define the marginal 
benefit of such systems. 
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3.1.4 Overview of This Chapter 

An exhaustive review of computer-aided diagnosis will not be attempted 
in light of the vastness of the field, and we have therefore chosen to present 
the prominent paradigms by discussing representative examples. In sepa
rate sections we give an overview, example, and discussion of (1) clinical 
algorithms, (2) data bank analysis, (3) mathematical models, (4) pattern 
recognition, (5) Bayesian analysis, (6) decision theory, and (7) symbolic 
reasoning. We close each section by identifying the range of applications 
for which the approach appears most appropriate, the limitations of the 
approach, and the ways in which symbolic reasoning techniques may 
strengthen the approach by improving its performance or acceptability. 

The seven principal examples we have selected are not necessarily the 
best nor the most successful; however, they illustrate the issues we wish to 
discuss within the major paradigms. We have also referenced other closely 
related systems, so the bibliography should guide the reader to more details 
on particular topics. Any attempt to categorize programs in this way is 
inherently fraught with problems in that several systems draw upon more 
than one paradigm. Thus we have occasionally felt obligated to simplify a 
topic for clarity in light of the overall purposes of this review and the 
limitations of the space available to us. 

Because we are only interested here in decision-making tools for use 
by clinicians, we have chosen to disregard systems that are designed pri
marily for use by researchers (Groner et al., 1971; Johnson and Barnett, 
1977; Mabry et al., 1977; Rubin and Risley, 1977). Furthermore, we shall 
not discuss biomedical engineering applications of computers, such as ad
vanced automated instrumentation techniques [e.g., computerized tomog
raphy (Kak, 1979)] or signal processing techniques [e.g., programs for EKG 
analysis (Pi pberger et al., 197 5) or patient monitoring (Warner, 1968)]. 
Because they do not explicitly make inferences, we have also omitted pro
grams designed largely for data storage and retrieval that leave the actual 
analysis and decision making to the clinician (Greenes et al., 1970; Korein 
et al., 1971; Weed, 1973). We have also chosen to discuss working computer 
programs rather than unimplemented theories or early reports of work in 
progress. 

3 .2 Clinical Algorithms and Automation 

3.2.1 Overview 

Clinical algorithms, or protocols, are flow charts to which a diagnostician 
or therapist can refer when deciding how to manage a patient with a spe
cific clinical problem (Sherman et al., 1973). Such protocols usually allow 
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decisions to be made by carefully following the simple branching logic, 
although there are built-in safeguards whereby referrals to experts are 
made if a case is unusually complex. The value of a protocol depends on 
the infrequency with which such referrals are made, so it is important to 
design algorithms that reflect an appropriate balance between safety and 
efficiency. In general, algorithms have been designed by expert physicians 
for use by paramedical personnel who have been entrusted with the per
formance of certain routine clinical-care tasks. 2 The methodology has been 
developed in part because of a desire to define basic medical logic concisely 
so that detailed training in pathophysiology would not be necessary for 
ancillary practitioners. Experience has shown that intelligent high school 
graduates, selected in large part because of poise and warmth of person
ality, can provide excellent care guided by protocols after only four to eight 
weeks of training. This care has been shown to be equivalent to that given 
by physicians for the same limited problems and to be accepted by physi
cians and patients alike for such diverse clinical situations as diabetes man
agement (Komaroff et al., 1974; McDonald et al., 1975), pharyngitis 
(Grimm et al., 1975), headache (Greenfield et al., 1976), and other disease 
categories (Sox et al., 1973; Vickery, 1974). 

The role of the computer in such applications has been limited, how
ever. In fact, several groups initially experimented with computer repre
sentation of the algorithms but have since abandoned the efforts and re
sorted to prepared paper forms (Komaroff et al., 1974; Vickery, 1974). In 
these cases the computer had originally guided the physician assistant's 
collection of data and had specified precisely what decisions should be 
made or actions taken, in accordance with the clinical algorithm. However, 
since the algorithmic logic is generally simple and can often be represented 
on a single sheet of paper, the advantages of an automated approach over 
a manual system have not been clearly demonstrated. In one study Vickery 
(1974) showed that supervising physicians could detect no significant dif
ference between the performance of physicians' assistants using automated 
versus manual systems, although the computer system entirely eliminated 
errors in data collection (since it demanded all relevant data at the appro
priate time). Furthermore, the computer could not, of course, decide 
whether the actual observations entered by the physician's assistant 
were correct; yet this kind of inaccuracy was one of the most common 
reasons why supervisors occasionally found an assistant's performance un- · 
satisfactory. 

There are two other ways in which the computer has been used in the 
setting of clinical algorithms. First, mathematical techniques have been 
used to analyze signs and symptoms of diseases and thereby to identify 

2Clinical algorithms have also been prepared for use by physicians themselves, but Grimm 
has found that they are generally less well accepted by doctors (Grimm et al., 197 5 ). He 
showed, however, that physician performance could improve when protocols were used in 
certain settings. 
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those that should most appropriately be referenced in corresponding clin
ical algorithms (Glesser and Collen, 1972; Knapp et al., 1977; Walsh et al., 
1975). The process for distilling expert knowledge in the form of a clinical 
algorithm can be an arduous and imperfect one (Sherman et al., 1973); 
formal techniques to assist with this task may prove to be very valuable. 

Some researchers in this area also use computers to assist with clinical 
care audit, comparing actual actions taken by a physician's assistant with 
those recommended by the algorithm itself. Sox et al. (1973) have de
scribed a system in which the assistant's checklist for a patient encounter 
was sent to a central computer and analyzed for evidence of deviation from 
the accepted protocol. Computer-generated reports then served as feed
back to the physician's assistant and to the supervising physicians. 

3.2.2 Example 

We have selected for discussion a project that differs from those previously 
cited in that (1) computer techniques are still being utilized, and (2) the 
clinical algorithms are designed for use by primary care physicians them
selves. This is the cancer chemotherapy system developed in Alabama by 
Mesel et al. ( 1976). The algorithms were developed in response to a desire 
to allow private practitioners, at a distance from the regional tertiary-care 
center, to manage the complex chemotherapy for their cancer patients 
without routinely referring them to the central oncologists. Mesel et al. 
have described a "consultant-extender system" that enables the primary 
physician to treat patients with Hodgkin's disease under the supervision of 
a regional specialist. Five oncologists developed a care protocol for the 
treatment of Hodgkin's disease, and this algorithm was placed on-line. 
Once patients had been entered in the study, their private physicians would 
prepare "encounter forms" at the time of each office visit. These forms 
would document pertinent interval history, physical findings, and lab data, 
as well as the chemotherapy administered. The form would then be sent 
to the regional center, where it was analyzed by the computer and a cus
tomized clinical algorithm was produced to assist the private physician with 
the management of that patient during the next appointment. Thus the 
computer program would take into account the ways in which the individ
ual patient's disease might progress or improve and would prepare an 
appropriate clinical algorithm. This protocol was sent back to the physician 
in time for it to be available at the next office visit. The private practitioner 
was encouraged to call the regional specialist directly if the protocol seemed 
in some way inadequate or if additional questions arose. The authors pre
sent data suggesting that their system was well accepted by physicians and 
patients, and that excellent care was delivered. 3 Retrospective review of 

3This is an interesting result in the light of Grimm's experience mentioned earlier. One 
possible explanation is that physicians were more accepting of the algorithmic approach in 
Mesel's case because it allowed them to perform tasks that they would previously not have 
been able to undertake. 
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cases that were treated at the referral center, but without the use of the 
protocols, showed a 16% rate of variance from the management guidelines 
specified in the algorithms; there was no such variance when the protocols 
were followed. Thus algorithms may be effective tools for the administra
tion of complex specialized therapy in circumstances such as those de
scribed.4 

3.2.3 Discussion of the Methodology 

3.3 

3.3.1 

Although clinical algorithms are among the most widespread and accepted 
of the decision aids described in this chapter, the simplicity of their logic 
makes it clear why the technique cannot be effectively applied in most 
medical domains. Decision points in the algorithms are generally binary 
(i.e., a given sign or symptom is either present or absent), and there tend 
to be many circumstances that can arise for which the user is advised to 
consult the supervising physician (or specialist). Thus the difficult decision 
tasks are left to experts, and there is generally no formal algorithm for 
managing the case from that point on. It is precisely the simplicity of the 
algorithmic logic and the safeguard of the supervising expert that have 
permitted many algorithms to be represented on one or two sheets of 
paper and have obviated the need for direct computer use in most of the 
systems. The contributions of clinical algorithms to the distribution and 
delivery of health care, to the training of paramedics, and to quality care 
audit have been impressive and substantial. However, the approach is not 
suitable for extension to the complex decision tasks to be discussed in the 
following sections. 

Data Bank Analysis for Prognosis and 
Therapy Selection 

Overview 

Automation of medical record keeping and the development of computer
based patient data banks have been major research concerns since the 
earliest days of medical computing. Most such systems have attempted to 
avoid direct interaction between the computer and the physician recording 
the data, with the systems of Weed (1968; 1973) and Greenes et al. (1970) 
being notable exceptions. Although the earliest systems were designed 
merely as record-keeping devices, there have been several recent attempts 
to create programs that could also provide analyses of the information 

4More recently the Alabama group has reported similar success implementing a consultant
extender system for adjuvant chemotherapy in breast carcinoma (Wirtschafter, 1979). 
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stored in the computer data bank. Some early systems (Greenes et al., 1970; 
Karpinski and Bleich, 1971) had retrieval modules that identified all pa
tient records matching a Boolean combination of descriptors; however, 
further analysis of these records for decision-making purposes was left to 
the investigator. Weed has not stressed an analytical component in his au
tomated problem-oriented record (Weed, 1973), but others have developed 
decision aids that use medical record systems fashioned after his (Slamecka 
et al., 1977). 

The systems for data bank analysis all depend on the development of 
a complete and accurate medical record system. Once such a system is 
developed, a number of additional capabilities can be provided: (1) cor
relations among variables can be calculated; (2) prognostic indicators can 
be measured; and (3) the response to various therapies can be compared. 
A physician faced with a complex management decision can look to such 
a system for assistance in identifying patients who had similar clinical prob
lems in the past and can then see how those patients responded to various 
therapies. A clinical investigator who keeps the records of his study patients 
on such a system can use the program's statistical capabilities for data anal
ysis. Hence, although these applications are inherently data-intensive, the 
kinds of "knowledge" generated by specialized retrieval and statistical rou
tines can provide valuable assistance for clinical decision makers. For ex
ample, they can help avoid the inherent biases of anecdotal experience, 
such as those that occur when an individual practitioner bases decisions 
primarily on personal encounters with one or two patients having a rare 
disease or complex of symptoms. 

There are many excellent programs in this category, one of which is 
discussed in some detail in the next section. Several others warrant men
tion, however. The HELP system at the University of Utah (Warner et al., 
l 972a; 197 4; Warner, 1978) utilizes a large data file on patients from the 
Latter-Day Saints Hospital. Clinical experts formulate specialized "HELP 
sectors," which are collections of logical rules that define the criteria for a 
particular medical decision. These sectors are developed by an interactive 
process; the expert proposes important criteria for a given decision and is 
provided with actual data regarding each criterion (based on relevant pa
tients and controls from the computer data bank). The criteria in the sector 
are thus adjusted by the expert until adequate discrimination is made to 
justify using the sector's logic as a decision tool. 5 The sectors are then used 
for a variety of tasks throughout the hospital. 

Another system of interest is that of Feinstein et al. at Yale ( 1972), in 
which physicians interact with the system to request assistance in estimating 
prognosis and guiding management for patients with lung cancer. Simi
larly, Rosati et al. ( 197 5) have developed a system at Duke University that 

5This process might be seen as a tool to assist with the formulation of clinical algorithms as 
discussed in the previous section. Another approach using data bank analysis for algorithm 
development has also been described (Glesser and Collen, 1972). 
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uses a large data bank of patients who have undergone coronary arteri
ography. New patients can be matched against those in the data bank to 
help determine patient prognosis under a variety of management alter
natives. 

3.3.2 Example 

One of the most successful projects in this category is the ARAMIS system 
(Fries, 1972). The approach was designed originally for use in an outpa
tient rheumatology clinic and then broadened to a general clinical data 
base system (TOD) (Weyl et al., 1975; Wiederhold et al., 1975) so that it 
could be transferred to clinics in oncology, metabolic disease, cardiology, 
endocrinology, and certain pediatric subspecialties. All clinic records are 
kept in a large tabular format in which a column indicates a specific clinic 
visit and the rows indicate the relevant clinical parameters that are being 
followed over time. These charts are maintained by the physicians seeing 
the patient in a clinic, and the new column of data is later transferred to 
the computer data bank by a transcriptionist; in this way time-oriented 
data on all patients are kept current. The defined data base (clinical pa
rameters to be followed) is determined by clinical experts and in the case 
of rheumatic diseases has now been standardized on a national scale (Hess, 
1976). 

The information in the data bank can be used to create a prose sum
mary of the patient's current status, and there are graphical capabilities 
that can plot specific parameters for a patient over time (Weyl et al., 1975). 
However, it may be in the analysis of stored clinical experience that the 
system has its greatest potential utility (Fries, 1976). In addition to per
forming search and statistical functions such as those developed in data 
bank systems for clinical investigation (Johnson and Barnett, 1977; Mabry 
et al., 1977), ARAMIS offers a prognostic analysis for a new patient when 
a management decision is to be made. Using the consultative services of 
the Stanford Immunology Division, an individual practitioner may select 
clinical indices for a patient and have them matched against those of other 
patients in the data bank. Based on two to five such descriptors, the com
puter locates relevant prior patients and prepares a report outlining their 
prognoses with respect to a variety of endpoints (e.g., death, development 
of renal failure, arthritic status, pleurisy). Therapy recommendations are 
also generated on the basis of a response index that is calculated for the 
matched patients. A prose case analysis for the physician's patient can also 
be generated; this readable document summarizes the relevant data from 
the data bank and explains the basis for the therapeutic recommendation. 

The rheumatologic data bank generated under ARAMIS has now 
been expanded to involve a national network of immunologists who are 
accumulating time-oriented data on their patients. This national project 
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seeks in part to obtain enough data so that groups of retrieved patients 
will be sizable, thereby controlling for some observer variability and making 
the system's recommendations more statistically defensible. 

3.3.3 Discussion of the Methodology 

Data bank analysis systems have powerful capabilities to offer to the indi
vidual clinical decision maker. Furthermore, medical computing research
ers recognize the potential value of large data banks in supporting many 
of the other decision-making approaches discussed in subsequent sections. 
There are important additional issues regarding data bank systems: 

1. Data acquisition remains a major problem. Many systems have avoided 
direct physician-computer interaction but have then been faced with 
the expense and errors of transcription. The developers of one well
accepted record system still express their desire to implement a direct 
interface with the physician for these reasons, although they recognize 
the difficulties encountered in encouraging direct use of a computer 
system by doctors (Stead et al., 1977).6 

2. Analysis of data in the system can be complicated by missing values that 
frequently occur, outlying values, and poor reproducibility of data over 
time and among physicians. Conversely, the system can itself be used 
to identify questionable values of tests or observations. 

3. The decision aids provided tend to emphasize patient management 
rather than diagnosis. Feinstein's system (Feinstein et al., 1972) is only 
useful for patients with lung cancer, for example, and the ARAMIS 
prognostic routines, which are designed for patient management, as
sume that the patient's rheumatologic diagnosis is already known. 

4. There is no formal correlation between the way expert physicians ap
proach patient-management decisions and the way the programs arrive 
at recommendations. Feinstein and Koss felt that the acceptability of 
their system would be limited by a purely statistical approach, and they 
therefore chose to mimic human reasoning processes to a large extent 
(Koss and Feinstein, 1971 ), but their approach appears to be an excep
tion. 

5. Space requirements for data storage can be large since the decision aids 
of course require a comprehensive medical record system as a basic 
component. 

Slamecka has distinguished between structured and empirical ap
proaches to clinical consulting systems (Slamecka et al., 1977), pointing out 

6Bischoff et al. ( 1983) have recently described ONCOCIN, an oncology decision advice system 
that has successfully required direct physician intPraction and is based on the TOD patient 
record format. 
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that data banks provide a largely empirical basis for advice whereas struc
tured approaches rely on judgmental knowledge elicited from the litera
ture or from experts. It is important to note, however, that judgmental 
knowledge is itself based on empirical information. Even an expert's in
tuitions are based on observations and "data collection" over years of ex
perience. Thus one might argue that large, complete, and flexible data 
banks could form the basis for large amounts of judgmental knowledge 
that we now have to elicit from other sources. Some researchers have in
dicated a desire to experiment with methods for the automatic generation 
of medical decision rules from data banks, and one component of the 
research on Slamecka's MARIS system is apparently pointed in that direc
tion (Slamecka et al., 1977). Indeed, some of the most exciting and practical 
uses of large data banks may be found precisely at the interface with those 
knowledge-engineering tasks that have most confounded researchers in 
medical symbolic reasoning (Blum and Wiederhold, 1978). 7 

3.4 Mathematical Models of Physical Processes 

3.4.1 Overview 

Pathophysiologic processes can be well described by mathematical formulas 
in a limited number of clinical problem areas. Such domains have lent 
themselves readily to the development of computer-based decision aids 
since the issues are generally well defined. The actual techniques used by 
such programs tend to reflect the details of the individual applications, the 
most celebrated of which have been in pharmacokinetics (particularly dig
italis dosing), acid-base/electrolyte disorders, and respiratory care (Menn 
et al., 1973). 

It is important that cooperating experts assist with the definition of 
pertinent variables and the mathematical characterization of the relation
ships among them. The computer program requests the relevant data, 
makes the appropriate computations, and provides a clinical analysis or 
recommendation for therapy. Some of the programs have also incorpo
rated branched-chain logic to guide decisions about what further data are 
needed for adequate analysis. 8 

Programs to assist with digitalis dosing have gradually introduced 
broader medical knowledge over the last ten years. The earliest work was 

7See also Chapter 17. 
8Branched-chain logic refers to mechanisms by which portions of a decision network can be 
considered or ignored depending on the data on a given case. For example, in an acid-base 
program the anion gap might be calculated and a branch point could then determine whether 
the pathway for analyzing an elevated anion gap would be required. If the gap were not 
elevated, that whole portion of the logic network could be skipped. 
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J elliffe's (J elliffe et al., 1970) and was based on his considerable experience 
studying the pharmacokinetics of the cardiac glycosides. His computer 
program used mathematical formulations based on parameters such as 
therapeutic goals (e.g., desired predicted blood levels), body weight, renal 
function, and route of administration. In one study he showed that com
puter recommendations reduced the frequency of adverse digitalis reac
tions from 35% to 12% (Jelliffe and Jelliffe, 1972). Later, another group 
revised the J elliffe model to permit a feedback loop in which the digitalis 
blood levels obtained with initial doses of the drug were considered in 
subsequent therapy recommendations (Peck et al., 1973; Sheiner et al., 
1975). More recently, a third group in Boston, noting the insensitivity of 
the first two approaches to the kinds of nonnumeric observations that 
experts tend to use in modifying digitalis therapy, augmented the phar
macokinetic model with a patient-specific model of clinical status (Garry 
et al., 1978). Running their system in a monitoring mode, in parallel with 
actual clinical practice on a cardiology service, they found that each patient 
in the trial in whom toxicity developed had received more digitalis than 
would have been recommended by their program. 

3.4.2 Example 

Perhaps the best known program in this category is the interactive system 
developed at Boston's Beth Israel Hospital by Bleich. Originally designed 
as a program for assessment of acid-base disorders (Bleich, 1969), it was 
later expanded to consider electrolyte abnormalities as well (Bleich, 1971; 
1972). The knowledge in Bleich's program is a distillation of his own ex
pertise regarding acid-base and electrolyte disorders. The system begins 
by collecting initial laboratory data from the physician seeking advice on 
a patient's management. Branched-chain logic is triggered by abnormalities 
in the initial data so that only the pertinent sections of the extensive de
cision pathways created by Bleich are explored. The approach is therefore 
similar to the flowcharting techniques used by the clinical algorithms de
scribed earlier, but it involves more complex mathematical relationships 
than algorithms typically do. Essentially all questions asked by the program 
are numerical laboratory values or yes-no questions (e.g., "Does the patient 
have pitting edema?"). Depending on the complexity and severity of the 
case, the program eventually generates an evaluation note that may vary 
in length from a few lines to several pages. Included are suggestions re
garding possible causes of the observed abnormalities and suggestions for 
correcting them. Literature references are also provided with the recom
mendations. 

Although the program was made available at several east coast insti
tutions, few physicians accepted it as an ongoing clinical tool. Bleich points 
out that part of the reason for this was the system's inherent educational 
impact; physicians simply began to anticipate its analysis after they had 
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used it a few times (Bleich, 1971).9 The system's lack of sustained accep
tance by physicians is probably due to more than its educational impact, 
however. For example, there is no feedback in the system; every patient is 
seen as a new case, and the program has no concept of following a patient's 
response to prior therapy. Furthermore, 0 the program generates differen
tial diagnosis lists but does not pursue specific etiologies; this can be par
ticularly bothersome when there are multiple coexistent disturbances in a 
patient and the program simply suggests parallel lists of etiologies without 
noting or pursuing the possible interrelationships. Finally, the system is 
highly individualized in that it contains only the parameters and relation
ships that Bleich specifically thought were important to include in the logic 
network. Of course, human consultants also give personalized advice that 
may differ from that obtained from other experts. However, a group of 
researchers in Britain (Richards and Goh, 1977) who compared Bleich's 
program to four other acid-base/electrolyte systems, found total agreement 
among the programs in only 20% of test cases when these systems were 
asked to define the acid-base disturbance and the degree of compensation 
present. Their analysis does not reveal which of the programs reached the 
correct decision, however, and it may be that the results are more an in
dictment of the other four programs than a valid criticism of the advice 
from Bleich's acid-base component. 

3.4.3 Discussion of the Methodologies 

The programs mentioned in this section are very different in several re
spects, and each tends to overlap with other methodologies we have dis
cussed. Bleich's program, for example, is essentially a complicated clinical 
algorithm interfaced with mathematical formulations of electrolyte and 
acid-base pathophysiology. As such, it suffers from the weaknesses of all 
algorithmic approaches, most importantly its highly structured and inflex
ible logic, which is unable to contend with unforeseen circumstances not 
specifically included in the algorithm. The digitalis dosing programs all 
draw on mathematical techniques from the field of biomedical modeling 
(Groth, 1977) but have recently shown more reliance on methods from 
other areas as well. In particular, these have included symbolic reasoning 
methods that allow clinical expertise to be encoded and used in conjunc
tion with mathematical techniques (Gorry et al., 1978). The Boston group 
that developed this most recent digitalis program is interested in similarly 
developing an acid-base/electrolyte system so that judgmental knowledge 
of experts can be interfaced with the mathematical models of pathophys
iology.10 

9Subsequently, Bleich experimented with the program operating as a monitoring system, 
thereby avoiding direct interaction with the physician. 
10See Chapter 14. 
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There is also a large research community of mathematicians who at
tempt to understand and characterize physical processes by devising sim
ulation models (Groth, 1977). Although such models are largely empirical 
and have generally not found direct application in clinical medicine, their 
research role may eventually be broadened to provide practical decision 
aids through interfaces with the other paradigms described in this review. 

The major strength of mathematical models is their ability to capture 
mathematically sound relationships in a concise and efficient computer 
program. However, the major limitation, as with most of the paradigms 
discussed here, is that few areas of medicine are amenable to firm, quan
titative description. Because the accuracy of the results depends on correct 
identification of relevant parameters, the precision and certainty of the 
relationships among them, and the accuracy of the techniques for mea
suring them, mathematical models have limited applicability at present. 
Furthermore, those domains that do lend themselves to mathematical de
scription may still benefit from interactions with symbolic reasoning tech
niques, as has been demonstrated in the Digitalis Therapy Advisor (Corry 
et al., 1978). 

3.5. Statistical Pattern-Matching Techniques 

3.5.1 Overview 

Pattern-recognition techniques define the mathematical relationship be
tween measurable features and classifications of objects (Duda and Hart, 
1973; Kanai, 1974). In medicine, the presence or absence of each of several 
signs and symptoms in a patient may be definitive for the classification of 
the patient as abnormal or into the category of a specific disease. Pattern
recognition techniques are also used for prognosis (Armitage and Gehan, 
1974) or predicting disease duration, time course, and outcomes. These 
techniques have been applied to a variety of medical domains, such as 
image processing and signal analysis, in addition to computer-assisted di
agnosis. 

In order to find the diagnostic pattern, or discriminant function, the 
method requires a training set of objects for which the correct classification 
is already known, as well as reliable values for their measured features. If 
the form and parameters are not known for the statistical distributions 
underlying the features, then they must be estimated. Parametric techniques 
focus on learning the parameters of the probability density functions, while 
nonparametric (or "distribution-free") techniques make no assumptions 
about the form of the distributions. After training, then, the pattern can 
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be compared to new, unclassified objects to aid in deciding the category to 
which the new object belongs. 11 

There are numerous variations on this general methodology, most 
notably in the mathe~natical techniques used to extract characteristic mea
surements (the features) and to find and refine the pattern classifier during 
training. For example, linear regression analysis is a commonly used tech
nique for finding the coefficients of an equation that defines a recurring 
pattern or category of diagnostic or prognostic interest. A class of patients 
can be described by a feature vector X = [xi. x2, •.. , xn] (where xi is one 
of n descriptive variables). The goal is to produce an equation relating the 
posterior probabilities 12 of each diagnostic class to the feature vector 
through a set of n coefficients (ai): 13 

Recent work emphasizes structural relationships among sets of features 
more than statistical ones. 

Three of the best known training criteria for the discriminant function 
are the following: 

a. least squared error criterion: choose the function that mm1mizes the 
squared differences between predicted and observed measurement val
ues; 

b. clustering criterion: choose the function that produces the tightest clus
ters; 

c. Bayes' criterion: choose the function that has the minimum cost associ
ated with incorrect diagnoses. 14 

Ten commonly used mathematical models based on these criteria have 
been shown to produce remarkably similar diagnostic results for the same 
data (Croft, 1972). 

11 It is possible to detect patterns, even without a known classification for objects in the training 
set, with so-called unsupervised learning techniques. Also, it is possible to work with both 
numerical and nonnumerical measurements. 
12The posterior probability of a diagnostic class, represented as P(D;IX), is the probability 
that a patient falls in diagnostic category D; given that the feature vector X has been observed. 
13See Levi et al. (1976) for a study in which the coefficients are reported because of their 
medical import. 
14This is one of many uses of Bayes' Theorem, a definitional rule that relates posterior and 
prior probabilities. For an overview of its use as a diagnostic rule (as opposed to a training 
criterion) and a definition of the formula, see Section 3.6. 



52 Knowledge Engineering for Medical Decision Making 

3.5.2 Example 

There are numerous papers on the use of pattern-recognition methods in 
medicine. Armitage and Gehan (1974) discuss three examples of prognos
tic studies, with an emphasis on regression methods. Goldwyn et al. ( 1971) 
discuss uses of cluster analysis. One diagnostic application by Patrick ( 1977) 
uses Bayes' criterion to classify patients having chest pains into three cat
egories: Di. acute myocardial infarction (MI); D 2, coronary insufficiency; 
and D3 , noncardiac causes of chest pain. The need for early .diagnosis of 
heart attacks without laboratory tests is a prevalent problem, yet physicians 
are known to misclassify about one-third of the patients in categories D 1 
and D2 and about 80% of those in D3. In order to determine the correct 
classification, each patient in the training set was classified after three days, 
based on laboratory data including electrocardiogram (ECG) and blood 
data (cardiac enzymes). There remained some uncertainty about several 
patients with "probable Ml." Seventeen variables were selected from many: 
nine features with continuous values (including age, heart rates, white 
blood count, and hemoglobin) and eight features with discrete values (sex 
and seven ECG features). 

The training data were measurements on 24 7 patients. The decision 
rule was chosen using Bayes' Theorem to compute the posterior probabil
ities of each diagnostic class given the feature vector X (X = [x 1, x2 , ••• , 

x17]). Then a decision rule was chosen to minimize the probability of error 
by adjusting the coefficients on the feature vector X such that for the 
correct class Di: 

The class conditional probability density functions must be estimated ini
tially, and the performance of the decision rule depends on the accuracy 
of the assumed model. 

Using the same 24 7 patients for testing the approach, the trained 
classifier averaged 80% correct diagnoses over the three classes, using only 
data available at the time of admission. Physicians, using more data than 
the computer, averaged only 50.5% correct over these three categories for 
the same patients. Training the classifier with a subset of the patients and 
using the remainder for testing produced results that were nearly as good. 

3.5.3 Discussion of the Methodology 

The number of reported medical applications of pattern-recognition tech
niques is large, but there are also numerous problems associated with the 
approach. The most obvious difficulties are choosing the set of features in 
the first place, collecting reliable measurements on a large sample, and 
verifying the initial classifications among the training data. Current tech-
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niques are inadequate for problems in which trends or movement of fea
tures are important characteristics of the categories. Also the problems for 
which existing techniques are accurate are those that are well characterized 
by a small number of features ("dimensions of the space"). 

As with all techniques based in statistics, the size of the sample used 
to define the categories is an important consideration. As the number of 
important features and the number of relevant categories increase, the 
required size of the training set also increases. In one test (Croft, 1972) 
pattern classifiers trained to discriminate among 20 disease categories from 
50 symptoms were correct 51-64% of the time. The same methods were 
used to train classifiers to discriminate between 2 of the diseases from the 
same 50 symptoms and produced correct diagnoses 92-98% of the time. 

The context in which a local pattern is identified raises problems related 
to the issue of using medical knowledge. It is difficult to find and use 
classifiers that are best for a small decision, such as whether an area of an 
x-ray is inside or outside the heart, and to integrate those into a global 
classifier, such as one for abnormal heart volume. 

Accurate application of a classifier in a hospital setting also requires 
that the measurements in that clinical environment be consistent with the 
measurements used to train the classifier initially. For example, if diseases 
and symptoms are defined differently in the new setting, or if lab test 
values are reported in different ranges, or if different lab tests are used, 
then decisions based on the classification are not reliable. 

Pattern-recognition techniques are often misapplied in medical do
mains in which the assumptions are violated. Some of the difficulties noted 
above are avoided in systems that integrate structural knowledge into the 
numerical methods and in systems that integrate human and machine ca
pabilities into single, interactive systems. These modifications will overcome 
one of the major difficulties seen in completely automated systems, that of 
providing the system with good "intuitions" based on an expert's a priori 
knowledge and experience (Kanai, 1974). 

3 • 6 Bayesian Statistical Approaches 

3.6.1 Overview 

More work has been done on Bayesian approaches to computer-based 
medical decision making than on any of the other methodologies we have 
discussed. The appeal of Bayes' Theorem 15 is clear: it potentially offers 
an exact method for computing the probability of a disease based on ob
servations and data regarding the frequency with which these observations 

15 Also often referred to as Bayes' Rule, discriminant, or criterion. 
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are known to occur for specified diseases. In several domains the technique 
has been shown to be exceedingly accurate, but there are also several lim
itations to the approach, which we discuss below. 

In its simplest formulation, Bayes' Theorem can be seen as a mecha
nism to calculate the probability of a disease, in light of specified evidence, 
from the a priori probability of the disease and the conditional probabilities 
relating the observations to the diseases in which they may occur. For ex
ample, suppose disease Di is one of n mutually exclusive diagnoses under 
consideration and E is the evidence or observations supporting that diag
nosis. Then if P (D;) is the a priori probability of the ith disease: 16 

II 

. 2i P(Dj) P(EID1 ) 
1= I 

The theorem can also be represented or derived in a variety of other 
forms, including an odds/likelihood ratio formulation. We cannot in
clude such details here, but any introductory statistics book or Lust
ed's volume ( 1968) presents the subject in detail. 

Among the most commonly recognized problems with the use of 
a Bayesian approach is the large amount of data required to deter
mine all the conditional probabilities needed in the rigorous appli
cation of the formula. Chart review or computer-based analysis of 
large data banks occasionally allows most of the necessary conditional 
probabilities to be obtained. A variety of additional assumptions must 
be made, for example: ( 1) the diseases under consideration are as
sumed mutually exclusive and exhaustive (i.e., the patient is assumed 
to have exactly one of the n diseases); (2) the clinical observations are 
assumed to be conditionally independent over a given disease; 17 and (3) 
the incidence of the symptoms of a disease is assumed to be stationary (i.e., 
the model generally does not allow for changes in disease patterns over 
time). 

One of the earliest Bayesian programs was the system of Warner 
et al. (1964) for the diagnosis of congenital heart disease. They com
piled data on 83 patients and generated a symptom-disease matrix 
consisting of 53 symptoms (attributes) and 35 disease entities. The 
diagnostic performance of the computer, based on the presence or 
absence of the 53 symptoms in a new patient, was then compared to 
that of two experienced physicians. The program was shown to reach 

16Here, P(D;jE) is the probability of the ith disease given that evidence E has been observed; 
P (EjD;) is the probability that evidence E will be observed in the setting of the i th disease. 
1 7The purest form of Bayes' Theorem allows conditional dependencies and the order in 
which evidence is obtained to be explicitly considered in the analysis. However, the number 
of required conditional probabilities is so unwieldy that conditional independence of ob
servations and nondependence on the order of observations are generally assumed (see 
Chapter 9). 
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diagnoses with an accuracy equal to that of the experts. Furthermore, 
system performance was shown to improve as the statistics in the 
symptom-disease matrix stabilized with the addition of increasing 
numbers of patients. 

In 1968 Gorry and Barnett ( l 968a) pointed out that Warner's 
program required making all 53 observations for every patient to be 
diagnosed, a situation that wouid not be realistic for many clinical 
applications. They therefore used a modification of Bayes' Theorem 
in which observations are considered sequentially. 18 Their computer 
program analyzed observations one at a time, suggested which test 
would be most useful if performed next, and included termination 
criteria so that a diagnosis could be reached, when appropriate, with
out a need to make all the observations. Decisions regarding tests and 
termination were made on the basis of calculations of expected costs 
and benefits at each step in the logical process. 19 Using the same 
symptom-disease matrix developed by Warner, they were able to at
tain equivalent diagnostic performance using only 6.9 tests on aver
age. 20 They pointed out that, because the costs of medical tests may 
be significant (in terms of patient discomfort, time expended, and 
financial expense), the use of inefficient testing sequences should be 
regarded as ineffective diagnosis. Warner has also more recently in
cluded Corry's and Barnett's sequential diagnosis approach in an ap
plication regarding structured patient history-taking (Warner et al., 
l 972b). 

The medical computing literature now includes many examples 
of Bayesian diagnosis programs, most of which have used the non
sequential approach, in addition to the necessary assumptions of 
symptom independence and mutual exclusiveness of disease as dis
cussed above. One particularly successful research effort has been 
chosen for discussion. 

3.6.2 Example 

Since the late 1960s de Dombal and associates, at the University of Leeds, 
England, have been studying the diagnostic process and developing com
puter-based decision aids using Bayesian probability theory. Their area of 
investigation has been gastrointestinal diseases, originally acute abdominal 

18A similar approach was devised in the Soviet Union at approximately the same time by 
Vishnevskiy and associates. Their analyses and a summary of the impressive amount of sta
tistical data they have amassed are contained in Vishnevskiy et al. ( 1973). 
19See the decision theory discussion in Section 3.7. 
20Tests for determining attributes were defined somewhat differently than they had been by 
Warner. Thus the maximum number of tests was 31 rather than the 53 observations used in 
the original study. 
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pain (de Dombal et al., 1972) with more recent analyses of dyspepsia (Hor
rocks and de Dombal, 1975) and gastric carcinoma (Zoltie et al., 1977). 

Their program for assessment of acute abdominal pain was evaluated 
in the emergency room of their affiliated hospital (de Dombal et al., 1972). 
Emergency room physicians filled out data sheets summarizing clinical and 
laboratory findings on 304 patients presenting with abdominal pain of 
.acute onset. The data from these sheets became the attributes that were 
subjected to Bayesian analysis; the required conditional probabilities had 
been previously compiled from a large group of patients with one of seven 
possible diagnoses.21 Thus the Bayesian formulation assumed each patient 
had one of these diseases and selected the most likely on the basis of 
recorded observations. Diagnostic suggestions were obtained in batch 
mode and did not require direct interaction between physician and com
puter; the program could generate results within 30 seconds to 15 minutes 
depending on the level of system use at the time of analysis (Horrocks et 
al., 1972). Thus the computer output could have been made available to 
the emergency room physician, on average, within 5 minutes after the data 
form was completed and handed to the technician assisting with the study. 

During the study (de Dombal et al., 1972), however, these computer
generated diagnoses were simply saved and later compared to (a) the di
agnoses reached by the attending clinicians and (b) the ultimate diagnosis 
verified at surgery or through appropriate tests. Although the clinicians 
reached the correct diagnosis in only 65-80% of the 304 cases (with ac
curacy depending on the individual's training and experience), the pro
gram was correct in 91.8% of cases. Furthermore, in six of the seven disease 
categories the computer was shown to be more likely to assign the patient 
to the correct disease category than was the senior clinician in charge of a 
case. Of particular interest was the program's accuracy regarding appen
dicitis-a diagnosis that is often made incorrectly. In no cases of appen
dicitis did the computer fail to make the correct diagnosis, and in only six 
cases were patients with nonspecific abdominal pain incorrectly classified 
as having appendicitis. Based on the actual clinical decisions, however, 
more than 20 patients with nonspecific abdominal pain were unnecessarily 
taken to surgery for appendicitis, and in six cases patients with appendicitis 
were "watched" for more than eight hours before they were finally taken 
to the operating room. 

These investigators also performed a fascinating experiment in which 
they compared the program's performance based on data derived from 
600 real patients with the accuracy the system achieved using "estimates" 
of conditional probabilities obtained from experts (Leaper et al., 1972).22 

21 Appendicitis, diverticulitis, perforated ulcer, cholecystitis, small bowel obstruction, pan
creatitis, and nonspecific abdominal pain were the seven possibilities. 
22Such estimates are referred to as "subjective" or "personal" probabilities, and some inves
tigators have argued that they should be utilized in Bayesian systems when formally derived 
conditional probabilities are not available (Lusted, 1968). 
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As discussed above, the program was significantly more effective than the 
unaided clinician when real-life data were utilized. However, it performed 
significantly less well than did clinicians when expert estimates were used. 
The results supported what several other observers have found, namely 
that physicians often have very little idea of the "true" probabilities for 
symptom-disease relationships. 

Another study of note at the University of Leeds was an analysis of 
the effect of the system on the performance of clinicians (de Dombal et 
al., 1974). The trial we have mentioned involving 304 patients was even
tually extended to 552 before termination. Although the computer's ac
curacy remained in the range of 91 % throughout this period, the perfor
mance of clinicians was noted to improve markedly over time. Fewer 
negative laparotomies were performed, for example, and the number of 
acute appendices that perforated (ruptured) also declined. However, these 
data reverted to baseline after the study was terminated, suggesting that 
the constant awareness of computer monitoring and feedback regarding 
system performance had temporarily generated a heightened awareness 
of intellectual processes among the hospital's surgeons. 

3.6.3 Discussion of the Methodology 

The ideal matching of the problem of acute abdominal pain and Bayesian 
analysis must be emphasized; the technique cannot necessarily be as effec
tively applied in other medical domains where the following limitations of 
the Bayesian approach may have a greater impact: 

1. The assumption of conditional independence of symptoms usually does 
not apply and can lead to substantial errors in certain settings (Norusis 
and Jacquez, 197 Sa). This has led some investigators to seek new nu
merical techniques that avoid the independence assumption (Cumber
batch and Heaps, 1976). If a pure Bayesian formulation is used without 
making the independence assumption, however, the number of re
quired conditional probabilities becomes prohibitive for complex real
world problems (see Chapter 9). 

2. The assumption of mutual exclusiveness and exhaustiveness of disease 
categories is usually false. In actual practice concurrent and overlapping 
disease categories are common. In de Dombal's system, for example, 
many of the abdominal pain diagnoses missed were outside the seven 
"recognized" possibilities; if a program starts with an assumption that 
it need consider only a small number of defined likely diagnoses, it will 
inevitably miss the rare or unexpected cases (precisely the ones with 
which the clinician is most apt to need assistance). 

3. In many domains it may be inaccurate to assume that relevant condi
tional probabilities are stable over time (e.g., the likelihood that a par-
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ticular bacterium will be sensitive to a specific antibiotic). Furthermore, 
diagnostic categories and definitions are constantly changing, as are 
physicians' observational techniques, thereby invalidating data previ
ously accumulated. 23 A similar problem results from variations in a 
priori probabilities depending on the population from which a patient 
is drawn.24 Some observers feel that these are major limitations to the 
use of Bayesian techniques (Edwards, 1972). 

In general, then, a purely Bayesian approach can so constrain problem 
formulation as to make a particular application unrealistic and hence un
workable. Furthermore, even when diagnostic performance is excellent, 
such as in de Dombal's approach to abdominal pain evaluation, clinical 
implementation and system acceptance will generally be difficult. Forms of 
representation that allow explanation of system performance in familiar 
terms (i.e., a more congenial interface with physician users) will heighten 
clinical acceptance; it is at this level that Bayesian statistics and symbolic 
reasoning techniques may most beneficially interact. 

3. 7 Decision Theory Approaches 

3.7.1 Overview 

Bayes' Theorem is only one of several techniques used in the larger field 
of decision analysis, and there has recently been increasing interest in the 
ways in which decision theory might be applied to medicine and adapted 
for automation. Several excellent surveys of the field are available in basic 
reviews (Howard, 1968), textbooks (Raiffa, 1968), and medically oriented 
journal articles (McNeil et al., 1975; Schwartz et al., 1973; Taylor, 1976). 
In general terms, decision analysis can be seen as any attempt to consider 
values associated with choices, as well as probabilities, in order to analyze 
the processes by which decisions are made or should be made. Schwartz 
identifies the calculation of "expected value" as central to formal decision 
analysis (Schwartz et al., 1973). Ginsberg contrasts medical classification 
problems (e.g., diagnosis) with broader decision problems (e.g., "What 
should I do for this patient?") and asserts that most important medical 
decisions fall in the latter category and are best approached through de
cision analysis (Ginsberg, 1972). 

23 Although gradual changes in definitions or observational techniques may be statistically 
detectable by data base analysis, a Bayesian analysis that uses such data is inevitably prone to 
error. 
24de Dombal has examined such geographic and population-based variations in probabilities 
and has reported early results of his analysis (de Dombal and Gremy, 1976). 
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The following topics are among the central issues in the field: 

1. Decision trees. The decision-making process can be seen as a se
quence of steps in which the clinician selects a path through a network of 
plausible events and actions. Nodes in this tree-shaped network are of two 
kinds: decision nodes, where the clinician must choose from a set of actions, 
and chance nodes, where the outcome is not directly controlled by the cli
nician but is a probabilistic response of the patient to some action taken. 
For example, a physician may choose to perform a certain test (decision 
node) but the occurrence or nonoccurrence of complications may be 
largely a matter of statistical likelihood (chance node). By analyzing a dif
ficult decision process before taking any actions, it may be possible to de
lineate in advance all pertinent chance and decision nodes, all plausible 
outcomes, plus the paths by which these outcomes might be reached. Fur
thermore, data may exist to allow specific probabilities to be associated with 
each chance node in the tree. 

2. Expected values. In actual practice physicians make sequential de
cisions based on more than the probabilities associated with the chance 
node that follows. For example, the best possible outcome is not necessarily 
sought if the costs associated with that "path" far outweigh those along 
alternate pathways (e.g., a definitive diagnosis may not be sought if the 
required testing procedure is expensive or painful and patient manage
ment will be unaffected; similarly, some patients prefer to "live with" an 
inguinal hernia rather than undergo a surgical repair procedure). Thus 
anticipated costs (financial expenditures, complications, discomfort, patient 
preference) can be associated with the decision nodes. Using the proba
bilities at chance nodes, the costs at decision nodes, and the "values"25 of 
the various outcomes, an "expected value" for each pathway through the 
tree (and in turn each node) can be calculated. The ideal pathway, then, 
is the one that maximizes the expected value. 

3. Eliciting values. Obtaining from physicians and patients the cost and 
values they associate with various tests and outcomes can be a formidable 
problem, particularly since formal analysis requires expressing the various 
costs in standardized units. One approach has been simply to ask for value 
ratings on a hypothetical scale, but it can be difficult to get physicians or 
patients to keep the values separate from their knowledge of the proba
bilities linked to the associated chance nodes. An alternate approach has 
been the development of lottery games. Inferences regarding values can 
be made by identifying the odds, in a hypothetical lottery, at which the 
physician or patient is indifferent regarding taking a course of action with 
certain outcome or betting on a course with preferable outcome but with 
a finite chance of significant negative costs if the "bet" is lost. In certain 

25 Also termed "utilities" in some references; hence the term "utility theory" (Raiffa, 1968). 
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settings this approach may be accepted and may provide important guide
lines in decision making (Pauker and Pauker, 1977). 

4. Test evaluation. Since the tests that lie at decision nodes are central 
to clinical decision analysis, it is crucial to know the predictive value of tests 
that are available. This leads to consideration of test sensitivity, specificity, 
disease prevalence, receiver operator characteristic curves, and sensitivity 
analysis (Komaroff, 1979; McNeil and Adelstein, 1977). 

Many of the major studies of clinical decision analysis have not spe
cifically involved computer implementations. Schwartz et al. examined the 
workup of renal vascular hypertension, developing arguments to show that 
for certain kinds of cases a purely qualitative theoretical approach was 
feasible and useful (Schwartz et al., 1973). However, they showed that for 
more complex, clinically challenging cases the decisions could not be ad
equately sorted out without the introduction of numerical techniques. 
Since it was impractical to assume that clinicians would ever take the time 
to carry out a detailed quantitative decision analysis by hand, they pointed 
out the logical role for the computer in assisting with such tasks and ac
cordingly developed the system we discuss as an example below (Gorry et 
al., 1973). 

Other colleagues of Schwartz at Tufts-New England Medical Center 
have been similarly active in applying decision theory to clinical problems. 
Pauker and Kassirer have examined applications of formal cost-benefit 
analysis to therapy selection (Pauker and Kassirer, 1975), and Pauker has 
also looked at possible applications of the theory to the management of 
patients with coronary artery disease (Pauker, 1976). An entire issue of the 
New England Journal of Medicine has also been devoted to papers on this 
methodology (Inglefinger, 1975). 

3. 7 .2 Example 

Computer implementations of clinical decision analysis have appeared with 
increasing frequency since the mid-l 960s. Perhaps the earliest major work 
was that of Ginsberg at the Rand Corporation (Ginsberg, 1971), with more 
recent systems reported by Pliskin and Beck ( 1976) and Safran et al. ( 1977). 

We will briefly describe here the program of Garry et al., developed 
for the management of acute renal failure (Garry et al., 1973). Drawing 
upon Garry's experience with the sequential Bayesian approach previously 
mentioned (Garry and Barnett, l 968a), the investigators recognized the 
need to incorporate some way of balancing the dangers and discomforts 
of a procedure against the value of the information to be gained. They 
divided their program into two parts: phase I considered only tests with 
minimal risk (e.g., history, examination, blood tests), and phase II consid
ered procedures involving more risk and inconvenience. The phase I pro-
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gram considered 14 of the most common causes of renal failure and used 
a sequential test selection process based on Bayes' Theorem and omitting 
more advanced decision theory methodology (Garry and Barnett, l 968a). 
The conditional probabilities utilized were subjective estimates obtained 
from an expert nephrologist and were therefore potentially as problematic 
as those discussed by Leaper et al. ( 1972). The researchers found that they 
had no choice but to use expert estimates, however, since detailed quan
titative data were not available either in data banks or in the literature. 

It is in the phase II program that the methods of decision theory were 
employed because it was in this portion of the decision process that the 
risks of procedures became important considerations. At each step in the 
decision process, this program considers whether it is best to treat the 
patient immediately or to first carry out an additional diagnostic test. To 
make this decision the program identifies the treatment with the highest 
current expected value (in the absence of further testing) and compares 
this with the expected values of treatments that could be instituted if an
other diagnostic test were performed. Comparison of the expected values 
are made in light of the risk of the test in order to determine whether the 
overall expected value of the test is greater than that of immediate treat
ment. The relevant values and probabilities of outcomes of treatment were 
obtained as subjective estimates from nephrologists in the same way that 
symptom-disease data had been obtained. All estimates were gradually re
fined as Garry and his colleagues gained experience using the program, 
however. 

The program was evaluated on 18 test cases in which the true diagnosis 
was uncertain but two expert nephrologists were willing to make manage
ment decisions. In 14 of the cases the program selected the same thera
peutic plan or diagnostic test as was chosen by the experts. For 3 of the 4 
remaining cases the program's decision was the physicians' second choice 
and was, they felt, a reasonable alternative plan of action. In the last case 
the physicians also accepted the program's decision as reasonable, although 
it was not among their first two choices. 

3. 7 .3 Discussion of the Methodology 

The excellent performance of Garry's program, despite its reliance on 
subjective estimates from experts, may serve to emphasize the importance 
of the clinical analysis that underlies the decision-theory approach. The 
reasoning steps in managing clinical cases have been dissected in such detail 
that small errors in the probability estimates are apparently much less im
portant than they were for de Dombal's purely Bayesian approach (Leaper 
et al., 1972). Garry suggests this may be simply because the decisions made 
by the program are based on the combination of large aggregates of such 
numbers, but this argument should apply equally for a Bayesian system. 
It seems to us more likely that distillation of the clinical domain in a formal 
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decision tree gives the program so much more knowledge of the clinical 
problem that the quantitative details become somewhat less critical to over
all system operation. The explicit decision network is a powerful knowl
edge structure; the "knowledge" in de Dombal's system lies in conditional 
probabilities alone, and there is no larger scheme to override the propa
gation of error as these probabilities are mathematically manipulated by 
the Bayesian routines. 

The decision theory approach is not without problems, however. Per
haps the most difficult problem is assigning numerical values (e.g., dollars) 
to a human life or a day of health, etc. Some critics feel this is a major 
limitation to the methodology (Warner, 1978). Overlapping or coincident 
diseases are also not well managed, unless specifically included in the anal
ysis, and the Bayesian foundation for many of the calculations still assumes 
mutually exclusive and exhaustive disease categories. Problems of symp
tom-conditional dependence still remain, and there is no easy way to in
clude knowledge regarding the time course of diseases. 26 Gorry points out 
that his program was also incapable of recognizing circumstances in which 
two or more actions should be carried out concurrently. Furthermore, de
cision theory per se does not provide the kind of focusing mechanisms that 
clinicians tend to use when they assume an initial diagnostic hypothesis in 
dealing with a patient, then discard it only if subsequent data make that 
hypothesis no longer tenable. Other similar strategies of clinical reasoning 
are becoming increasingly well recognized (Kassirer and Gorry, 1978) and 
account in large part for the applications of symbolic reasoning techniques 
to be discussed in the next section. 

3.8 Symbolic Reasoning Approaches 

3.8.1 Overview 

In the early 1970s researchers at several institutions simultaneously began 
to investigate the potential clinical applications of symbolic reasoning tech
niques drawn from the branch of computer science known as artificial 
intelligence (AI). The field is introduced in a recent book by Winston 
(1977). The term artificial intelligence is generally accepted to include those 
computer applications that involve symbolic inference rather than strictly 
numerical calculation. Examples include programs that reason about min
eral exploration, organic chemistry, or molecular biology; programs that 
converse in English and understand spoken sentences; and programs that 
generate theories from observations. 

26Ed. note: More recently, Markov modeling techniques have been introduced to allow con
sideration of the temporal aspects of disease progression for decision analysis approaches. 



Symbolic Reasoning Approaches 63 

Such programs gain their power from qualitative, experiential judg
ments, codified in so-called rules of thumb or heuristics, in contrast to 
numerical calculation programs whose power derives from the analytical 
equations used. The heuristics focus the attention of the reasoning pro
gram on parts of the problem that seem most critical and parts of the 
knowledge base that seem most relevant. They also guide the application 
of the domain knowledge to an individual case by deleting items from 
consideration as well as focusing on items. The result is that these programs 
pursue a line of reasoning, as opposed to following a sequence of steps in 
a calculation. Among the earliest symbolic inference programs in medicine 
was the diagnostic interviewing system of Kleinmuntz and McLean ( 1968). 
Other early work included Wortman's information processing system, the 
performance of which was largely motivated by a desire to understand and 
simulate the psychological processes of neurologists reaching diagnoses 
(Wortman, 1972). 

It was the landmark paper by Gorry in 1973, however, that first crit
ically analyzed conventional approaches to computer-based clinical deci
sion making and outlined his motivation for turning to newer symbolic 
techniques (see Chapter 2). He used the acute renal failure program dis
cussed above (Gorry et al., 1973) as an example of the problems arising 
when decision analysis is used alone. In particular, he analyzed some of 
the cases on which the renal failure program had failed but the physicians 
considering the cases had performed well. His conclusions from these ob
servations include the following four points: 

1. Clinical judgment is based less on detailed knowledge of pathophysiol
ogy than it is on gross chunks of knowledge and a good deal of detailed 
experience from which rules of thumb are derived. 

2. Clinicians know facts, of course, but their knowledge is also largely 
judgmental. The rules they learn allow them to focus attention and 
generate hypotheses quickly. Such heuristics permit them to avoid de
tailed search through the entire problem space. 

3. Clinicians recognize levels of belief or certainty associated with many of 
the rules they use, but they do not routinely quantitate or use these 
certainty concepts in any formal statistical manner. 

4. It is easier for experts to state their rules in response to perceived 
misconceptions in others than it is for them to generate such decision 
criteria a priori. 

In the renal failure program medical knowledge was embedded in the 
structure of the decision tree. This knowledge was never explicit, and ad
ditions to the experts' judgmental rules generally required changes to the 
tree itself. 

Based on observations such as those above, Gorry identified at least 
three important problems for investigation: 



64 Knowledge Engineering for Medical Decision Making 

1. Medical concepts. Clinical decision aids traditionally had no true "un
derstanding" of medicine. Although explicit decision trees had given 
the decision theory programs a greater sense of the pertinent associa
tions, medical knowledge and the heuristics for problem solving in the 
field had never been explicitly represented or used. So-called common 
sense was often clearly lacking when the programs failed, and this was 
often what most alienated potential physician users. 

2. Conversational capabilities. Garry argued that further research on the 
development of computer-based linguistic capabilities was crucial both 
for capturing knowledge from collaborating experts and for commu
nicating with physician users. 

3. Explanation. Diagnostic programs had seldom emphasized an ability to 
explain the basis for their decisions in terms understandable to the 
physician. System acceptability was therefore inevitably limited; the phy
sician would often have no basis for deciding whether to accept the 
program's advice and might therefore resent what could be perceived 
as an attempt to dictate the practice of medicine. 

Garry's group at M.I.T. and Tufts developed new approaches to examining 
the renal failure problem in light of these observations (see Chapter 6). 

Because of the limitations of the older techniques, it was perhaps inev
itable that some medical researchers would turn to the AI field for new 
methodologies. Major research areas in AI include knowledge represen
tation, heuristic search, natural language understanding and generation, 
and models of thought processes-all topics clearly pertinent to the prob
lems we have been discussing. Furthermore, AI researchers were begin
ning to look for applications in which they could apply some of the tech
niques they had developed in theoretical domains. This community of 
researchers has grown in recent years, and a recent issue of Artificial Intel
ligence was devoted entirely to applications of AI to biology, medicine, and 
chemistry (Sridharan, 1978). 

Among the programs using symbolic reasoning techniques are several 
systems that have been particularly novel and successful. At the University 
of Pittsburgh, Pople, Myers, and Miller have developed a system called 
INTERNIST that assists with test selection for the diagnosis of all diseases 
in internal medicine (Pople et al., 1975). This awesome task has been re
markably well attacked to date, with the program correctly diagnosing a 
large percentage of the complex cases selected from clinical pathologic 
conferences in the major medical journals (see Chapter 8). The program 
utilizes a hierarchical disease categorization, an ad hoc scoring system for 
quantifying symptom-disease relationships, plus some clever heuristics for 
focusing attention, discriminating between competing hypotheses, and di
agnosing concurrent diseases (Pople, 1977). The system currently has an 
inadequate human interface, however, and is not yet implemented for clin
ical trials. 
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Weiss, Kulikowski, and Amarel (Rutgers University) and Safir (Mt. 
Sinai Hospital, New York City) have developed a model of reasoning re
garding disease processes in the eye, specifically glaucoma (see Chapter 7). 
In this specialized application area it has been possible to map relationships 
between observations, pathophysiologic states, and disease categories. The 
resulting causal-associational network (termed CASNET) forms the basis 
for a reasoning program that gives advice regarding disease states in glau
coma patients and generates management recommendations. The system 
currently has a limited human interface, however, and is not yet imple
mented for clinical trials. 

For AI researchers the question of how best to manage uncertainty in 
medical reasoning remains a central issue. All the programs mentioned 
have developed ad hoc weighting programs and avoided formal statistical 
approaches. Others have turned to the work of statisticians and philoso
phers of science who have devised theories of approximate or inexact rea
soning. For example, Wechsler ( 1976) describes a program that is based 
on Zadeh's fuzzy set theory (Zadeh, 1965), and Shortliffe and Buchanan 
( 197 5) have turned to confirmation theory for their model of inexact rea
soning. 

3.8.2 Example 

The symbolic reasoning program selected for discussion is the MYCIN 
system at Stanford University (Shortliffe, 1976; Buchanan and Shortliffe, 
1984). The researchers cited a variety of design considerations that moti
vated the selection of AI methodologies for the consultation system they 
were developing (Shortliffe et al., 1974). They primarily wanted it to be 
useful to physicians and therefore emphasized the selection of a problem 
domain in which physicians had been shown to err frequently, namely the 
selection of antibiotics for patients with infections. They also cited human 
issues that they felt were crucial to make the system acceptable to 
physicians: 

I. the system should be able to explain its decisions in terms of a line of 
reasoning that a physician can understand; 

2. the system should be able to justify its performance by responding to 
questions expressed in simple English; 

3. the system should be able to "learn" new information rapidly by inter
acting directly. with experts; 

4. the system's knowledge should be easily modifiable so that perceived 
errors can be corrected rapidly before they recur in another case; and 

5. the interaction should be engineered with the user in mind (in terms 
of prompts, answers, and information volunteered by the system as well 
as by the users). 
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All these design goals were based on the observation that previous 
computer decision aids had generally been poorly accepted by physicians, 
even when they were shown to perform well on the tasks for which they 
were designed. MYCIN's developers felt that barriers to acceptance were 
largely conceptual and could be counteracted in large part if a system were 
perceived as a clinical tool rather than a dogmatic replacement for the 
primary physician's own reasoning. 

Knowledge of infectious diseases is represented in MYCIN as produc
tion rules, each containing a "packet" of knowledge obtained from collab
orating experts (Shortliffe, 1976). 27 A production rule is simply a condi
tional statement that relates observations to associated inferences that may 
be drawn. For example, a MYCIN rule might state that "if a bacterium is 
a gram-positive coccus growing in chains, then it is apt to be a streptococ
cus." MYCIN's power is derived from such rules in a variety of ways: 

1. it is the program that determines which rules to use and how they 
should be chained together to make decisions about a specific case; 28 

2. the rules can be stored in a machine-readable format but translated into 
English for display to physicians; 

3. by removing, altering, or adding rules, we can rapidly modify the sys
tem's knowledge structures without explicitly restructuring the entire 
knowledge base; and 

4. the rules themselves can often form a coherent explanation of system 
reasoning if the relevant ones are translated into English and displayed 
in response to a user's question. 

Associated with all rules and inferences are numerical weights reflect
ing the degree of certainty associated with them. These numbers, termed 
certainty factors, form the basis for the system's inexact reasoning (Shortliffe 
and Buchanan, 1975). They allow the judgmental knowledge of experts to 
be captured in rule form and then utilized in a consistent fashion. 

The MYCIN system has been evaluated regarding its performance at 
therapy selection for patients with either septicemia (Yu et al., l 979b) or 
meningitis (Yu et al., l 979a). The program performs comparably to experts 
in these two task domains, but it has no rules regarding the other infectious 
disease problem areas. Further knowledge base development would there
fore be required before MYCIN could be made available for clinical use; 
hence questions regarding its acceptability to physicians cannot be fully 
assessed. However, the required implementation stages have been deline
ated (Shortliffe and Davis, J975), attention has been paid to all the design 
criteria mentioned above, and the program does have a powerful expla
nation capability (Scott et al., 1977). 

27Production rules are a methodology frequently employed in Al research (Davis and King, 
1977) and effectively applied to other scientific problem domains (Buchanan and Feigen
baum, 1978). 
28The control structure utilized is termed goal-oriented and is similar to the consequent
theorem methodology used in PLANNER (Hewitt, 1972). 
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3.8.3 Discussion of the Methodology 

Whereas the computations used by the other paradigms mostly involve 
straightforward application of well-developed computing techniques, ar
tificial intelligence methods are largely experimental; new approaches to 
knowledge representation, language understanding, heuristic search, and 
the other symbolic reasoning problems we have mentioned are still needed. 
Thus the AI programs tend to be developed in research environments, 
where short-term practical results are unlikely to be found. However, out 
of this research are emerging techniques for coping with many of the 
problems encountered by other paradigms we have discussed. AI research
ers have developed promising methods for handling concurrent diseases 
(Pople, 1977) (see also Chapter 8), assessing the time course of disease 
(Fagan et al., 1979), and acquiring adequate structured knowledge from 
experts (Davis and Buchanan, 1977). Furthermore, inexact reasoning tech
niques have been developed and implemented (Shortliffe and Buchanan, 
197 5 ), although they tend to be justified largely on intuitive grounds. In 
addition, the techniques of artificial intelligence provide a way to respond 
to many of Corry's observations regarding the three major inadequacies 
of earlier paradigms described above: ( 1) the medical AI programs all stress 
the representation of medical knowledge and an "understanding" of the 
underlying concepts; (2) many of them have conversational capabilities that 
draw on language processing research; and (3) explanation capabilities 
have been a primary focus of systems such as MYCIN. 

Szolovits and Pauker have recently reviewed some applications of AI 
to medicine and have attempted to weigh the successes of this young field 
against the very real problems that lie ahead (see Chapter 9). They identify 
several deficiencies of current systems. For example, termination criteria 
are still poorly understood. Although INTERNIST can diagnose simul
taneous diseases, it also pursues all abnormal findings to completion, even 
though a clinician often ignores minor unexplained abnormalities if the 
rest of a patient's clinical status is well understood. In addition, although 
some of these programs now cleverly mimic some of the reasoning styles 
observed in experts (Elstein et al., 1978; Kassirer and Corry, 1978), it is 
less clear how to keep the systems from abandoning one hypothesis and 
turning to another one as soon as new information suggests another pos
sibility. Programs that operate this way appear to digress from one topic 
to another-a characteristic that decidedly alienates a user regardless of 
the validity of the final diagnosis or advice. 

Still largely untapped is the power of an AI program to understand 
its own knowledge base, i.e., the structure and content of the reasoning 
mechanisms as well as of the medical facts. In effect, AI programs have 
the ability to "know what they know," the best working example of which 
can be found in the prototype system named TEIRESIAS (Davis, 1976). 
Because such programs can reason about their own knowledge, they have 
the power to encode knowledge about strategies, e.g., when to use and 
when to ignore specific items of medical knowledge and which leads to 
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follow up on. Such meta-level knowledge offers a new dimension to the 
design of "intelligent assistant" programs, which we predict will be ex
ploited in medical decision-making systems of the future. 

3 9 Conclusions • 

This review has shown that there are two recurring questions regarding 
computer-based clinical decision making: 

I. Performance: How can we design systems that reach better, more reliable 
decisions in a broad range of applications? 

2. Acceptability: How can we more effectively encourage the use of such 
systems by physicians or other intended users? 

We shall summarize these points separately by reviewing many of the issues 
common to all of the paradigms discussed in this chapter. 

3.9.1 Performance Issues 

Central to ensuring a program's adequate performance is a matching of 
the most appropriate technique with the problem domain. We have seen 
that the structured logic of clinical algorithms can be effectively applied to 
triage functions and other primary care problems but would be less nat
urally matched with complex tasks such as the diagnosis and management 
of acute renal failure. Good statistical data may support an effective Bayes
ian program in settings where diagnostic categories are small in number, 
nonoverlapping, and well defined, but the inability to use qualitative med
ical knowledge limits the effectiveness of the Bayesian approach in more 
difficult patient management or diagnostic environments. Similarly, math
ematical models may support decision making in certain well-described 
fields in which observations are typically quantified and related by func
tional expressions. These examples, and others, demonstrate the need for 
thoughtful consideration of the technique most appropriate for managing 
a clinical problem. In general, the simplest effective methodology is to be 
preferred,29 but acceptability issues must also be considered, as discussed 
below. 

29It is also always appropriate to ask whether computer-based approaches are needed at all 
for a given decision-making task. For all but the most complex clinical algorithms, for ex
ample, the developers have tended to discard computer programs. Similarly, Schwartz et al. 
pointed out that the decision analyses can often be successfully accomplished in a qualitative 
manner using paper and pencil (Schwartz et al., 1973). 
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As researchers have ventured into more complex clinical domains, a 
number of difficult problems have tended to degrade the quality of per
formance of computer-based decision aids. Significant clinical problems 
require large knowledge bases that contain complex interrelationships in
cluding time and functional dependencies. The knowledge of such do
mains is inevitably open-ended and incomplete, so the knowledge base 
must be easily extensible. Not only does this require a flexible represen
tation of knowledge, but it encourages the development of novel tech
niques for the acquisition and integration of new facts and judgments. 
Similarly, the inexactness of medical inference must somehow be repre
sented and manipulated within effective consultation systems. As we have 
discussed, all these performance issues are important knowledge-engi
neering research problems for which artificial intelligence already offers 
promising new methods. 

It is also important to consider the extent to which a program's "un
derstanding" of its task domain will heighten its performance, particularly 
in settings where knowledge of the field tends to be highly judgmental and 
poorly quantified. We use the term understanding here to refer to a pro
gram's ability to reason about, as well as reason with, its medical knowledge 
base. This implies a substantial amount of judgmental or structural knowl
edge (in addition to data) contained within the program. Analyses of hu
man clinical decision making (Elstein et al., 197 8; Kassirer and Corry, 
1978) suggest that as decisions move from simple to complex, a physician's 
reasoning style becomes less algorithmic and more heuristic, with qualita
tive judgmental knowledge and the conditions for evoking it coming in
creasingly into play. Furthermore, the performance of complex decision 
aids will also be heightened by the representation and utilization of high
level meta-knowledge that permits programs to understand their own lim
itations and reasoning strategies. In order to design medical computing 
programs with these capabilities, the designers themselves will have to be
come cognizant of knowledge-engineering issues. It is especially important 
that they find effective ways to match the knowledge structures that they 
use to the complexity of the tasks their programs are designed to under
take. 

3.9.2 Acceptability Issues 

A recurring observation as one reviews the literature of computer-based 
medical decision making is that essentially none of the systems has been 
effectively utilized outside of a research environment, even when its perfor
mance has been shown to be excellent! This suggests that it is an error to 
concentrate research primarily on methods for improving the computer's 
decision-making performance when clinical impact depends on solving 
other problems of acceptance as well. There are some data (Startsman and 
Robinson, 1972) to support the extreme view that the biases of medical 
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personnel against computers are so strong that systems will inevitably be 
rejected, regardless of performance. 30 However, we are beginning to see 
examples of applications in which initial resistance to automated techniques 
has gradually been overcome through the incorporation of adequate sys
tem benefits (Watson, 1974). 

Perhaps one of the most revealing lessons on this subject is an obser
vation regarding the system of Mesel et al. described in the section on 
clinical algorithms (Mesel et al., 1976). Despite documented physician re
sistance to clinical algorithms in other settings (Grimm et al., 1975), the 
physicians in Mesel's study accepted the guidance of protocols for the man
agement of chemotherapy in their cancer patients. It is likely that the key 
to acceptance in this instance is the fact that these physicians had previously 
had no choice but to ref er their patients with cancer to the tertiary care 
center some distance away where all complex chemotherapy was admin
istered. The introduction of the protocols permitted these physicians to 
undertake tasks that they had previously been unable to do. It simultaneously 
allowed maintenance of close doctor-patient relationships and helped the 
patients avoid frequent long trips to the center. The motivation for the 
physician to use the system is clear in this case. It is reminiscent of Rosati's 
assertion that physicians will first welcome computer decision aids when 
they become aware that colleagues who are using them have a clear advan
tage in their practice (Rosati et al., 1973). 

A heightened awareness of human-engineering issues among medical 
computing researchers will also make computers more acceptable to phy
sicians by making the program easier and more pleasant to use. Fox has 
recently reviewed this field in detail (Fox, 1977). The issues range from 
the mechanics of interaction at the computer (e.g., using display terminals 
with such features as light pens, special keyboards, color, and graphics) to 
the features of the program that make it appear as a helpful tool rather 
than a complicating burden. Also involved, from both the mechanical and 
global design sides, is the development of flexible interfaces that tailor the 
style of the interaction to the needs and desires of individual physicians. 

Adequate attention must also be given to the severe time constraints 
perceived by physicians. Ideally, they would like programs to take no more 
time than they currently spend when accomplishing the same task on their 
own. Time and schedule pressures are similarly likely to explain the greater 
resistance to automation among interns and residents than among medical 
students or practicing physicians in Startsman's study (Startsman and Rob
inson, 1972). 

The issue of a program's "self-knowledge" impacts on the acceptance 
of consultation systems in much the same way as it does on program per
formance. Decision makers, in general, and physicians, in particular, will 
place more trust in systems that appear to understand their own limitations 

30Ed. note: More recent studies have shown m,irked improvement in attitudes in the past 
decade, however (Teach and Shortliffe, 1981 ). 
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and capabilities and that know when to admit ignorance of a problem area 
or inability to support any conclusion regarding an individual patient. 
Moreover, physicians will have a means for checking up on these auto
mated assistants if the programs have an ability to explain not only the 
reasoning chain leading to their decisions but their problem-solving strat
egies as well. High-level knowledge, including a sense of scope and limi
tation, may thus allow a program to know enough about itself to prevent 
its own misuse. Furthermore, since systems that are not easily modifiable 
tend not to be accepted, meta-level knowledge about representation and 
interconnections \vithin the knowledge base may help overcome the prob
lem of programs becoming tied too closely to a store of knowledge that is 
regionally or temporally specific. It is therefore important to stress that 
considerations such as those we have mentioned here may argue in favor 
of using symbolic reasoning techniques even when a somewhat less com
plex approach might have been adequate for the decision task itself. 

3.10 Summary 

In summary, the trend toward increased use of knowledge-engineering 
techniques for clinical decision programs stems from the dual goals of 
improving the performance and increasing the acceptance of such systems. 
Both acceptability and performance issues must be considered from the 
outset in a system's design because they indicate the choice of methodology 
as much as the task domain itself does. As greater experience is gained 
with these techniques and as they become better known throughout the 
medical computing community, it is likely that we will see increasingly 
powerful unions between symbolic reasoning and the alternative para
digms we have discussed. One lesson to be drawn lies in the recognition 
that much basic research remains to be done in medical computing, and 
that the field is mor~ than the application of established computing tech
niques to medical problems. 
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4 
Artificial Intelligence 
Methods and Systems for 
Medical Consultation 

Casimir A. Kulikowski 

Shortly after the preceding review article appeared, Kulikowski published 
the following more detailed analysis of the knowledge-engineering ap
proach. Focusing mostly on the medical Al systems of the 1970s, he con
siders the major problems that arise in designing a consultation program. 
These problems center about choosing diagnostic interpretation and treat
ment-planning strategies and the knowledge representations for formalizing 
them. In choosing a knowledge representation, Kulikowski notes that ex
planation and knowledge acquisition are just as important as efficient and 
effective performance (Shortliffe, 1982b). Indeed, these concerns are in
terrelated: justifying decisions and updating the knowledge base, as the 
system is built incrementally or new information becomes available, place 
a premium on the modularity of a representation and the ease with which 
its reasoning procedures can be explained. 

In both diagnosis and treatment decisions, schemes for quantifying the 
uncertainty of inferences raise difficult issues of both an empirical and a 
formal logical nature (see also Chapter 9). In addition, many specific prac
tical problems of system design arise. Achieving robust performance despite 
uncertain relationships is a crucial requirement; an important insight re
sulting from the design of several systems is that robust performance can 
largely be achieved by a rich network of deterministic relationships that 
interweave the space of hypotheses. 

Kulikowski also discusses several knowledge-based representational 
schemes that generalize the results of the early consultation programs 

© 1980 IEEE. Used with permission. From IEEE Transactions on Pattern Analysis and Machine 
Intelligence, PAMI-2: 464-476 (1980). 
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[EMYCIN (van Melle et al., 1981), EXPERT (Weiss and Kulikowski, 
1979), AGE (Nii and Aiello, 1979)}. By providing an environment for 
encoding knowledge, editing the evolving knowledge base, and testing pro
grams, these systems provide techniques and tools that promise to be very 
versatile in helping to design new medical expert systems. 

While the earlier chapters in this volume provide motivation for applying 
artificial intelligence techniques to medicine, comparing the methods to those 
of traditional algorithmic programming and statistics, in this paper Kuli
kowski presents the knowledge-based perspective as a whole. This serves as 
a prelude to detailed discussions of particular consultation systems (Chap
ters 5, 6, 7, and 8) and to Szolovits and Pauker's analysis of medical 
reasoning in the context of these programs (Chapter 9). 

4 1 Introduction • 

4.1.1 The Need for Computer-Based Medical 
Consultation 

Expert medical consultation is a scarce, expensive, yet critical component 
of any health care system. Making the knowledge and expertise of human 
experts more widely available through computer consultation systems has 
been recognized as an important mechanism for improving the access to 
high-quality health care (Schoolman and Bernstein, 1978; Schwartz, 1970). 
The simulation of clinical cognition by the computer raises important sci
entific questions about the structure, consistency, completeness, and un
certainty of medical knowledge. These considerations are of particular in
terest to researchers in artificial intelligence (Minsky, 1968; Newell and 
Simon, 1972; Nilsson, 1980), cognitive psychology (Elstein, 1976), and 
medical science and education (Feinstein, 1967; Komaroff, 1979; School
man and Bernstein, 1978). These matters are also important if we are to 
assess the performance and understand the role of computer consultation 
systems in medical practice. 

In a recent bibliography of automated medical decision-making meth
ods and systems (Wagner et al., 1978) over 800 references are cited, and 
these do not include many of the simplest state-of-the-art applications or 
the most complex AI methods. If all of these are taken into account, it is 
likely that closer to 2,000 articles have been written describing medical 
decision-making and consultation systems. Yet the effect of automated de
cision making on medical practice after 20 years of fairly intense activity 
has not been very dramatic. There have been some notable successes, such 
as automated EKG interpretation, which is now routinely available, and a 
few institutions have on-line consultative decision capabilities, but on bal
ance, remarkably few systems have gone beyond the prototype stage. 



7 4 Artificial Intelligence Methods and Systems for Medical Consultation 

There are many reasons for the slow introduction of computer-based 
decision systems into medical practice. Some are social, some technological, 
yet ultimately there is a simple pragmatic reason: such systems have rarely 
been shown to fill an indispensable need in the clinical setting. This picture 
may be beginning to change: with the proliferation of new special-purpose 
biochemical tests and the accelerated specialization of medicine, the de
mand for easy reference to up-to-date consultative advice and medical 
information is beginning to be increasingly recognized. Medical data bases 
that pool information from national networks of collaborating researchers 
(Fries, 1976), record-keeping systems with capabilities for retrieving gen
eral medical information and references (Schultz and Davis, 1979), and 
computer-based medical instruction and testing systems have gradually 
grown and spread during the past decade. The National Library of Med
icine has recently moved in the direction of supporting research into the 
structure and organization of medical knowledge bases and the method
ologies by which they can be kept up to date and disseminated to practi
tioners (Schoolman and Bernstein, 1978). This complements the ongoing 
support programs of research and computing resources for artificial in
telligence in medicine (AIM) by the Biotechnology Resources Program of 
the Division of Research Resources of the NIH (Ciesielski, 1978; Freiherr, 
1979). 

Another technological impetus for change can be expected to come 
from the increased availability of microprocessors, which will make inex
pensive computing readily available to practitioners in their own offices. 
Many are already experimenting with methods of encoding their decision 
logic in the form of simple algorithms, and there has been a notable pro
liferation of small medical-computing groups and societies in the past few 
years that have served to focus these activities. The automated interpre
tation of laboratory instrument results, particularly in clinical pathology, is 
also becoming more prevalent (Bieman, 1979; Speicher, 1978; Young, 
1976). It is likely to stimulate a need for more extensive clinical decision 
systems that will back up and integrate the results from several different 
instruments, ranging over various systems of the body. The scope of an 
AI model of internal medicine, such as that developed for INTERNIST 
(Pople et al., 1975), the modularity and explanatory capabilities of MYCIN 
(Shortliffe, 1976), and the pathophysiological reasoning and efficiency of 
compiled expert knowledge available in EXPERT (Weiss and Kulikowski, 
1979) will all be useful for such tasks. 

Not all work on consultation methods and systems needs to be ulti
mately justified in terms of their application in clinical practice. Contrib
uting to help organize medical knowledge and research and supporting 
medical education are two other important fundamental objectives. The 
AI systems are particularly relevant in both these regards, since they have 
concentrated not only on achieving good performance, but on justifying 
and explaining this performance based on models of diseases and patients. 
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Three recent reviews of medical decision methods and systems have 
included the artificial intelligence approaches (see Schoolman and Bern
stein, 1978; and Chapters 3 and 9). An article by Szolovits and Pauker 
(Chapter 9) describes the four earliest AIM systems, contrasting categorical 
(deterministic) with probabilistic components of their reasoning strategies. 
A review by Shortliffe, Buchanan, and Feigenbaum (Chapter 3) emphasizes 
the symbolic reasoning nature of the AI programs and highlights the 
importance of explanation and updating facilities, as well as good conver
sational capabilities for interacting with consultation programs; the authors 
draw mainly on their experience with the MYCIN system for illustrative 
examples. The present paper takes a somewhat different approach in that 
it suggests a set of characteristic representational, reasoning, and control 
features for describing consultation programs, and then uses these as the 
basis for its comparisons. 

4.1.2 Goals and Approaches of Artificial Intelligence 
in Medicine 

In reviewing artificial intelligence approaches to medical consultation, it is 
important to characterize the concerns and goals of AI research that have 
influenced the work in this field. 

The spectrum of research in AI can be described as ranging between 
two extreme approaches. The first stresses the development of theories of 
cognition through computer-based experimentation. Michie (1974) has 
given a definition of AI consonant with this view: "the development of a 
systematic theory of intellectual processes." In contrast, a more pragmatic 
concern of imitating or approximating the behavior of human problem 
solvers is expressed in the definition given by Minsky ( 1968): "The science 
of making machines do things that would require intelligence if done by 
men." The first approach shares many concerns with cognitive psychology. 
The major aspect of computer programs from this viewpoint is that their 
reasoning procedures must exhibit capabilities of understanding that imi
tate those used by human problem solvers. At the other extreme, the cor
respondence with human behavior can be viewed strictly in terms of the 
output performance of a computer system, regardless of whether the rea
soning leading up to this performance simulates that of humans. Much of 
the problem solving done in robotics takes this approach (Winston, 1972). 
In a similar vein, research in pattern recognition, developing from engi
neering and the mathematical disciplines (Duda and Hart, 1973; Fuku
naga, 1972), has stressed the importance of achieving accurate perfor
mance in detecting and classifying patterns, usually by mathematical and 
statistical techniques that do not attempt to parallel human reasoning. 

Despite the contrast between the performance-oriented and under
standing-oriented work in AI in the past, it can be recognized that these 



76 Artificial Intelligence Methods and Systems for Medical Consultation 

represent complementary approaches that are open to researchers seeking 
to develop computer-based problem-solving programs. Recent work in the 
automated recognition of human speech (Lesser et al., 1975; Lesser and 
Erman, 1979) exemplifies the maturity of AI in developing systems that 
are oriented to both understanding and performance. 

Expert medical consultation is a problem-solving process that draws on a 
rich, though incomplete, body of knowledge that is both empirical and 
conceptual in nature. Until the introduction of artificial intelligence meth
ods, the reasoning of computer-based consultation programs relied pri
marily on normative knowledge (prescribed as norms or rules of reasoning) 
that is used directly in medical decision making. The major emphases of 
the AI approaches have been: 

I. to clearly separate the domain-specific knowledge base of a consultation 
model from the reasoning and control strategies used by the consulta
tion programs (this facilitates modification of the knowledge base, which 
is likely to require frequent changes for incorporating new results from 
medical research and practice); 

2. to capture the expert medical knowledge about specific inferences or 
decisions in the form of modular rules that reference the concepts and 
facts of the medical domain, also organized in a modular fashion (this 
facilitates the explanation of a consultation program's reasoning proc
esses, which is crucial to the acceptability of a computer-based system); 

3. to develop logically powerful and expressive representations for de
scribing medical concepts and facts (such as disease hierarchies and 
mechanisms and the corresponding courses of illness) that serve to sup
port and justify the decision rules in terms of knowledge structures that 
are commonly used by physicians; 

4. to experiment with a variety of reasoning and evaluation methods and 
to develop general strategies to control the reasoning (this introduces 
flexibility and the ability to recover from mistakes through alternative 
means of reasoning, hence giving a fail-soft capability); 

5. to develop methods of facilitating user interaction with the programs, 
either by specialized natural language interpretation capabilities or by 
flexible command languages. 

By incorporating many of the attributes described above, computer 
consultation programs are beginning to display some of the scope, depth, 
and flexibility of reasoning that characterizes expert human consultants. 
At the same time, the process of building these systems is uncovering new 
problems in the representation, application, and validation of medical 
knowledge. 
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Decision-Making Problems and Styles in 
Medical Consultation 

Medical Consultation Tasks 

The tasks involved in medical consultation depend on the nature of the 
advice that is being sought from the consultant. Whether it is feasible to 
capture some of the reasoning and problem-solving processes employed 
by a consultant within computer programs depends largely on the relative 
role of reasoning versus perceptual skills used by the human expert. If 
expertise in performing a specialized physical examination, involving the 
detection of subtle signs through visual, tactile, and other sensory cues, 
constitutes a crucial element of the expert's consultation, it is not reasonable 
to expect any current computer system to perform such a consultation. 
[Nevertheless, computer-based systems may provide valuable new modes 
of extracting perceptual information on the patient, such as by tomography 
(Kak, 1979).] If, on the contrary, the scope and definition of items in a 
review of systems and the elicitation of a medical history have been well 
determined for a given diagnostic or treatment selection problem and the 
major role of the human consultant is to provide a sophisticated interpre
tation of the findings, then it is not unreasonable to investigate such proc
esses of interpretation and attempt to simulate their performance by com
puter-based systems. If, in addition, it is possible to build a knowledge base 
that incorporates both descriptive models of pathophysiological mecha
nisms as well as the normative components of expert reasoning, and if 
strategies of explanation can be formulated that permit the program to 
answer questions about its own reasoning, then it is not unreasonable to 
claim that such a system demonstrates certain elements of "understanding" 
not unlike those manifested by human problem solvers. 

The major tasks of medical consultation that must be performed by a 
computer system can be summarized as follows: 

1. the sequential elicitation of findings and the assessment of their relia
bility and internal consistency; 

2. the interpretation of the findings in terms of a model of diagnostic 
classes and their relationships; 

3. the extrapolation of the natural course that the illness is likely to follow 
(prognosis); 

4. the formulation of various plans for therapeutic management and the 
selection of an initial treatment; 

5. the explanation and justification of the above; 
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6. the reassessment of the patient's status on return visits and the reeval
uation and possible modification of diagnostic, prognostic, and thera
peutic conclusions. 

At any given point in the course of a consultation, one of the tasks 
described above will be the main goal of the reasoning of the human or 
computer-based consultant. In a generalized consultation scheme these 
goals and their various subgoals (such as eliciting a specific finding or 
formulating a specific treatment for a given disease) must be explicitly 
represented if their sequencing is to be easily modifiable by the control 
strategy just as it is by the human consultant's strategy decisions. The prin
cipal types of medical facts and concepts and some of the reasoning links 
among them are shown in Figure 4-1. 

EVIDENCE 

(SIGNS. SYMPTOMS 
TEST RESULTS) 

HYPOTHESES 
ABOUT 
PATIENT 

ABOUT OTHER EVIDENCE. 
HOW TO OBTAIN IT. 
HOW TO BELIEVE IN IT. 
HOW TO RELATE IT ... 

ABOUT POSSIBLE DIAGNOSES 
HOW TO BELIEVE THEM 
HOW TO RELATE THEM ... 

ABOUT POSSIBLE PROGNOSES 

ABOUT POSSIBLE TREATMENTS 

TREATMENTS/ Management Plans 

FIGURE 4-1 Problem solving in medical consultation. 
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The medical facts about an individual patient (findings) can be viewed 
as the direct evidence from which hypotheses about possible diagnoses, 
prognoses, and treatments are generated and tested. This evidence com
prises the history and symptoms reported by the patient, the signs elicited 
by the physician during the course of an examination, and the results of 
specialized tests for detecting specific pathophysiological states or condi
tions. A data structure used for describing a finding can include details 
about its measurement technique, its range of values, its reliability, its tim
ing, its cost, and its logical relation to other measurements. It will be as
sociated by various relational links and rules of reasoning to the hy
potheses. 

Hypotheses usually require a very different descriptive structure. They 
stand for the major medical concepts used in reasoning, such as the di
agnostic and prognostic categories applicable to the patient, but may also 
include a variety of intermediate constructs, such as syndromes, patho
physiological and clinical states, courses of illness, and clusters of clinical 
evidence. These intermediate concepts can be used to define the higher
level concepts. Although the major type of hypothesis is one that refers 
directly to the clinical condition of the patient, it is also possible that we 
may want to explicitly represent hypotheses that are assertions about re
lated contexts (such as the environment of the patient, a relative of the 
patient, etc.). Some hypotheses may be subconcepts of others, in which 
case they may inherit properties of the parent concept; others may be 
causal antecedents, which implies that they must also occur in temporal 
sequence before their consequents. 

A consultation system must also represent the various treatments that 
are potentially able to control the patient's illness. The treatments are in
terrelated in terms of applicability and risk/benefit factors: therapeutic ef
fectiveness, toxicity, potential for undesirable interactions, and other con
straints. To manage a patient with a complex or prolonged illness, a 
management plan must be formulated. The plan must consist of the var
ious potential sequences of treatments that are available to control the 
alternative courses that may be followed by the illness after an initial treat
ment. In computer-based consultation schemes, it is important to represent 
a realistically large scope of alternatives and their relations to the hy
potheses and findings of patients. On the basis of these relationships, rules 
for selecting treatments can be derived and explained. 

A significant component of human consultative reasoning is often 
characterized as being judgmental. In designing computer-based systems, 
an immediate question arises as to how best to simulate such judgments, 
if indeed they are to be simulated at all. One school of thought holds that 
it would be best if they could be replaced by more objective methods, 
usually of a statistical decision-theory type (Gremy, 1976). But even with 
this approach, judgmental knowledge is needed to choose decision thresh
olds. Others have attempted to capture the expertise of human consultants 
in the form of reasoning rules that directly incorporate judgmental ele-
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ments (Shortliffe and Buchanan, 1975). Regardless of the approach, the 
relative value of alternative reasoning outcomes (misdiagnoses, inadequate 
treatments, etc.) clearly enters into consultative reasoning. Thus computer
based schemes must include a representation of these values (also called 
utilities) to be used by their decision strategies. The exact manner in which 
such values are to be used depends on the structure of knowledge in the 
program, the overall strategies of reasoning, and the nature of the values 
involved. Values on outcomes will be very different if they are those of the 
patient rather than of the physician, and both will differ from any "aver
age" or societal values for comparing outcomes. Pauker ( 1978) has recently 
discussed these problems from a decision-theory viewpoint. In addition, 
different experts may well disagree on how to treat a given patient, each 
giving a justification for his or her point of view. Such sources of variability 
ensure that in most situations there will be no single "correct" or "optimal" 
mode of treating a patient, and the role of a consultation system must be 
seen as one of presenting the alternatives, with a clear indication of the 
source for the value judgments that enter into each decision. 

4.2.2 Types of Medical Consultation 

The kinds of reasoning involved in medical consultation depend on the 
specific type of problem presented to the consultant. In the past, computer
aided methods have been used in the following consultative situations: 

1. interpreting a single test and listing possible diagnoses; 

2. screening the patient for a particular disease (or group of related dis
eases) from multiple tests and clinical findings; 

3. performing some of the tasks of a primary care physician in acquiring 
information on the present illness of the patient, proceeding to a dif
ferential diagnosis, and making treatment recommendations if appro
priate; 

4. simulating the role of a specialist who is asked to provide interpretation 
and management suggestions for com pl ex cases ref erred by primary 
care physicians. 

The artificial intelligence consultation programs developed to date have 
simulated the last two types of consultation. They have been research pro
totypes, and it is not unreasonable to expect that if programs of this type 
are to become widely used in clinical practice, connections between them 
and the more basic types of single-test and screening programs will have 
to be developed. 
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4.2.3 Evolution of Formal Methods of Decision 
Making in Consultation 

The applications of formal methods of decision making have concentrated 
on problems of diagnostic reasoning, though decision-analysis techniques 
have been applied to treatment-selection problems. The sequence in which 
different techniques have been introduced is approximately as follows: 

mid-l 940s: Statistical hypothesis-testing methods [mostly for screening 
and radiology (Yerushalmy, 194 7); computations by calculator] 

1954: Logical scheme for matching symptoms to diagnoses [slide rule 
(Nash, 1954) or hollerith cards used for sorting and matching] 

1958: Statistical and logical techniques combined (Lipkin and Hardy, 
1958) [computers introduced and used in most subsequent 
work] 

1960: Bayesian and discriminant methods (Ledley and Lusted, 1959) 

1968: Sequential Bayesian methods, and decision-theory approaches 
applied to treatment selection (McNeil et al., 1975; Schwartz et 
al., 1973) (also see Chapter 2) 

1969: Pattern-recognition methods (Kulikowski, 1970; Patrick et al., 
1977) 

1970: Information-processing models for diagnosis (Wortman, 1972) 

1971: Knowledge:.based artificial intelligence systems (Kulikowski and 
Weiss, 1972; Pople et al., 1975; Shortliffe, 1976; see also Chap
ter 6) 

Ledley and Lusted ( 1959) gave the first overview of the applicable 
methods from logic and probability, and the 1960s saw the introduction of 
various statistical, logical, and pattern-recognition techniques for diagnos
tic decision making. These methods, relying on large data bases of reliably 
diagnosed case histories, performed well in narrowly defined medical do
mains using a clearly specified (or standardized) set of patient findings. 
Lack of adequate statistics and problems of consistently introducing value 
judgments about possible misdiagnoses into the decision framework have 
proven to be important limitations of these methods. 

A very different manner of encoding medical reasoning in a computer 
program has also been available: the sequence of decisions performed by 
a physician in reaching a diagnosis or choosing a treatment can be flow
charted and directly implemented as an algorithm. But insofar as the same 
conclusions may be reached by many different pathways and it is quite 
usual for experts to differ in their preferred sequences of tests and inter
mediate decisions for a given type of case, such a flow chart algorithm ap
proach is usually too rigid and idiosyncratic to be widely accepted. However, 
characterizing the reasoning of an expert in a specialty can be useful for 
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teaching, for comparison with medical practice, and for guiding the deci
sions of physicians' assistants (Komaroff et al., 1974). Simple decision al
gorithms for patient self-help have been proposed recently as a technique 
of preventive medicine (Vickery and Fries, 1978), which may also reduce 
the burden on health care facilities. A mixed algorithm scheme is charac
teristic of one of the best-known consultation programs-Bleich's system 
for acid-base and electrolyte balance (Bleich, 1969). It intermingles the 
direct logical assessment of patient findings with calculations from math
ematical formulas that describe the underlying biochemical changes. 

To provide information about past experiences with prognosis and 
treatment, several different groups have relied on the logfral matching of 
current patient profiles to prior stored cases in a large data base. The 
ARAMIS system in rheumatology at Stanford University (Fries, 1972; 
1976) and similar ones in lung cancer at Yale University (Feinstein et al., 
1972) and cardiovascular diseases at Duke University (Rosati et al., 1975) 
are well-known examples. The major methodological question for these 
systems is the form in which patient profiles are to be specified and the 
choice of query types that can be easily supported by the data base struc
ture. Although they have not addressed the problems of how to incorporate 
their results into the broader interpretation of a patient's condition, they 
represent an important step in the direction of standardizing knowkdge 
about the time course of diseases within a data base. And insofar as all 
interpretation is left to the physician using the system, they have been more 
readily accepted than many of the consultation programs. 

In the late 1960s and early 1970s various pattern-recognitivn methods 
began to be applied to medical decision making (Kulikowski, 1970; Patrick 
et al., 197 7). In some instances they provided the means of overcoming 
the limitations of small-sized statistical samples through the use of well
chosen heuristics; in others they enabled the summarization of large num
bers of findings through synthetic "features" (Kulikowski, 1970), but in 
common with the statistical approaches, they suffered from being a "black 
box" approach to medical reasoning. That is, the patient's findings would 
be transformed mathematically into some heuristic score or weight, which 
would then become the sole basis for ranking diagnoses or treatment rec
ommendations. 

Figure 4-2 shows a schematic diagram of a typical pattern-recognition 
or statistical system for medical consultation. The sequence of operations 
specified by algorithm typically consists of a preprocessing, or filtering, to 
extract the set of patient findings relevant to the clinical problem under 
consideration, and the extraction of features (logical or mathematical trans
formations) that when selected for best discriminatory performance enable 
the classifier to be both simple and effective. The domain-specific knowl
edge base used by the algorithm is composed of various patterns of asso
ciation between findings and hypotheses (for statistical methods), profiles 
of correctly diagnosed cases (for nonparametric sample-based methods, 
such as the nearest-neighbor technique), or explicit sequences of decisions 
(for the flowcharting methods). Most programs implementing these meth-
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FIGURE 4-2 Statistical or pattern-recognition system for con
sultation. 

Decision 
Outcomes 

ods intermingle elements of domain knowledge and reasoning mechanisms 
under algorithm control in a relatively fixed manner. The outcome, rather 
than the process of reasoning, is the main concern, so considerations of 
computational efficiency often override the possibility of introducing more 
flexible or general modes of reasoning that would come closer to imitating 
human expert behavior. 

In designing such a system, the knowledge acquisition phase usually 
consists of analyzing the data base of clinical cases that have well-established 
diagnostic and treatment endpoints. The decision rules to be used by the 
classifier can be "learned" by various techniques (Chilanski et al., 1976; 
Duda and Hart, 1973; Fukunaga, 1972). The medical expert defines the 
scope of the problem by specifying the variables that are to be examined 
in the data base. If a decision-analysis method is to be used, the expert 
must also provide the utility or cost factors (and prior probabilities of 
hypotheses for subjectively estimated situations) to be used as part of the 
decision rule thresholds (McNeil et al., 197 5). 

The application of artificial intelligence methods sought to remedy the 
"black box" situation by introducing a structure of knowledge familiar to 
the physician into the decision-making schemes. The approach of using a 
computer-based model to study the decision making of clinicians was be
gun by researchers interested in cognitive processes. Kleinmuntz and 
McLean ( 1968) developed a program for simulating a consultation session 
in neurology, and Wortman ( 1972) developed an information-processing 
model for medical reasoning (including conceptual hierarchies and mem
ory mechanisms). Initial prototype consultation programs using AI con-
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4.3 

4.3.1 

cepts were developed in ophthalmology [CASNET (Weiss et al., 1978)], 
infectious diseases [MYCIN (Shortliffe, 1976)], internal medicine [IN
TERNIST (Pople et al., 1975)], and renal disease [PIP (Pauker et al., 
1976)], while an article by Corry (see Chapter 2) advocated the introduc
tion of conceptual structures, language development, and explanation into 
medical decision-making systems. 

All of the AI approaches use heuristic measures for scoring the weight 
of confidence or credibility that they assign to a hypothesis as an expla
nation of the patient's condition. These measures are typically computed 
from uncertainty weights attached by the human experts to the various 
reasoning rules in the consultation model. The reasoning strategies of all 
of the systems, however, rely as much on the structure of connectivities 
among concepts and between concepts and facts as on the scoring mech
anisms themselves. This provides the systems with a natural way of sup
porting explanations, and often allows alternative and sometimes redun
dant lines of reasoning to be pursued, giving a measure of flexibility to 
their behavior. 

Contemporary with the evolution of the AI approaches, several other 
investigators have introduced constraints and intermediate reasoning con
structs into probabilistic frameworks. These include Bayesian approaches 
(Patrick, 1977; Warner, 1978) and a latent factor method (Woodbury and 
Clive, 1980). Fuzzy logic has also been applied to diagnostic problems 
(Wechsler, 1976). 

The subsequent sections review the early AI systems and trace the 
evolution of the knowledge-based schemes that have been developed to 
the present. 

Artificial Intelligence Methods in 
Consultation 

A Comparative Overview of Early AI 
Consultation Systems 

In this section we discuss the first major AIM systems-CASNET, MYCIN, 
INTERNIST, and PIP, each of which is described in greater detail in later 
chapters. 

CASNET/Glaucoma Consultation System 

A causal-associational network (CASNET) was developed as a means of 
representing the pathogenesis of a disease, in terms of which the patient's 
findings are interpreted. The causal relations, with associated degrees of 
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strength, express not only the mechanisms of a disease but also their mod
ifications under various regimens of treatment. Different patterns over the 
causal network are associated with the various elements in a classification 
scheme of diagnostic hypotheses, which can include degrees of severity 
and progression of a disease. Appropriate treatment plans can be associ
ated with the diagnostic hypotheses, and specific treatments within the 
plans are related to each other by constraints of how they cover for par
ticular illnesses, how they may interact, etc. Normative knowledge is in the 
form of inferential rules linking patient findings to the intermediate hy
potheses about pathophysiological states and preference rules linking find
ings to treatments. Uncertainty measures on these links range from + I 
for full confirmation to - I for full disconfirmation. 

The reasoning control strategy of CASNET can be characterized as 
mainly event-driven: the incoming clinical data trigger the inference rules 
that assign weights to the pathophysiological states. A thresholding eval
uation mechanism then yields a logical status of "confirmed," "discon
firmed," or "undetermined" to each causal state. The subgraph of con
firmed and undetermined states forms a patient-specific interpretation model 
at every stage of the consultation. The system uses the causal model to 
constrain the search for possible hypotheses by guiding the requests for 
further patient data. This is carried out by first propagating direct and 
inverse causal weights throughout the net every time a data item is entered. 
Such a global assessment is made efficient by the partially ordered and 
precompiled nature of the causal net. Once the weights are computed, the 
choice of next question is hypothesis-driven: a criterion of maximal diag
nostic information for a given cost range guides the selection that will add 
to the weight of evidence of the most likely intermediate hypothesis (state). 
This strategy may be superseded by domain-specific strategies for data 
acquisition, which can encode prespecified protocols given by experts; this 
was the case in the specialized CASNET/Glaucoma system. When all the 
data having a bearing on the consultation have been accumulated, the 
system carries out a final evaluation over the entire causal net, producing 
a weighting of the root nodes (primary causes). These trigger the higher
level diagnostic, prognostic, and treatment categories in a purely deter
ministic fashion. The choice of specific treatment, including the dosage, 
mode of administration, and time course, is then carried out by evaluation 
over the preference rules. These contain the various restrictions on the 
applicability of treatments, such as allergies, past history of treatment ef
fectiveness, drug interactions, and so on. 

A knowledge-base acquisition program for building CASNET-type 
models was developed at Rutgers University (see Chapter 20), and an in
depth model for consultation in the glaucomas was built incorporating the 
knowledge of clinical experts from five major ophthalmology research cen
ters. The consultation model was tested with many cases of disease (from 
the U.S. and Japan) and participated in a national symposium on glau
coma, performing at an expert level (Lichter and Anderson, 1977). 
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MYCIN/Infectious Disease Therapy Consultant 

A system of production rules with associated uncertainty weights serves to 
capture most of the expert knowledge in MYCIN (Shortliffe et al., 1973; 
Shortliffe, 1976). Rules are of the following form: IF premise assertions 
are true, THEN consequent assertions are true with confidence weight X. 
The assertions can be Boolean combinations of clauses, each of which 
consists of a predicate statement about an <attribute, object, value> triple. 
The triples represent medical facts and hypotheses about the patient and 
related objects or contexts, such as infections, cultures, and organisms. For 
example, <GRAMSTAIN, E.COLI, GRAMNEG> stands for "the gram 
stain of the E. coli organism is gram-negative." Goals and subgoals of the 
consultation process, such as "select therapies to cover for all diagnosed 
infections," can also be explicitly represented by the predicate structure of 
an assertion. 

The uniformity of representation for both domain-specific inferences 
and reasoning goals makes it possible for MYCIN to use a very general 
and simple control strategy: a-goal-directed backward chaining of rules. In 
this approach, the first rule to be evaluated is one containing the highest
level goal-to select treatments for all the infections of the patient. This 
requires that the infections be known. But since they are usually unknown, 
the system must then try to satisfy subgoals that will allow the infections 
to be inferred. Discovering the results of cultures or other clinical param
eters of the patient would be the most direct subgoals. These in turn may 
be deduced from other rules, but eventually the attempt to satisfy rule 
premises will end with assertions that can only be confirmed by directly 
questioning the user for the appropriate information. Once this happens, 
the system can begin to reason deductively by successively satisfying 
subgoals that it had previously unwound. A hierarchical tree of contexts 
(patient-infections-cultures-organisms) anchors and constrains the order in 
which the rules are invoked. This, together with a network of links among 
clinical parameter values and the templates for the parameters, constitutes 
the descriptive component of the MYCIN knowledge base. 

The reasoning evaluation mechanisms include a fuzzy logic function 
for combining the effect of uncertain assertions within a rule (a minimum 
for conjunctive and a maximum for disjunctive combinations) and a heu
ristic cumulative function to add the confidence weights from rules with 
different sources of evidence in their premises (Shortliffe and Buchanan, 
1975). The confidence weights (or factors) are expressed on a scale from 
- 1 for complete disbelief in an assertion to + 1 for complete belief. Sep
arate measures of belief and disbelief are used in updating hypothesis 
weights, because of the need to avoid the probabilistic constraint that an 
assignment of probability P to a hypothesis implies a probability of 1-P 
for its negation. Shortliffe developed his scheme of confidence factors to 
provide physicians with a means of expressing their belief or disbelief in 
a hypothesis independently of one another. Although the MYCIN reason-
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ing strategy is almost entirely based on the rule evaluation procedures, the 
final selection of therapy is carried out by a specialized algorithm, which 
uses the deduced knowledge of the patient's infections, the causative or
ganisms, and the ranking of drugs by sensitivities and preference cate
gories (of effectiveness). 

The MYCIN system places special emphasis on the modular nature of 
its knowledge and on the ease that this modularity entails for generating 
explanations. A question-answering program interacts with the perfor
mance program to find out about the reasoning sequences leading to a 
given conclusion and the reasons behind the latter's requests for patient 
data. The user interface of the system has been developed with careful 
attention to its "friendliness" and the capability to express its rules in En
glish. The system is able to understand a domain-specific vocabulary of 
commands and descriptions of patient-related facts, using a keyword-rec
ognition scheme. Various Interlisp facilities are used to advantage in giving 
the system a good "conversational style." There have been formal evalua
tions of the MYCIN system by a number of independent consultants that 
demonstrated that the program performed at a level comparable to that 
of experts (Yu et al., l 979a; l 979b). 

INTERNIST/Diagnostic Consultant in Internal Medicine 

One of the principal aims of INTERNIST system development has been 
to explore the manner in which expert clinicians reason about diagnosis 
when the space of possibilities is large and hierarchically structured, as in 
internal medicine (Pople, 1975; 1977; Pople et al., 1975). The program 
uses a knowledge base in the form of a hierarchy of diseases, from the 
general (liver disease, heart disease, etc.) to the specific (hepatocellular 
infection, aortic stenosis, etc.), with the typical findings linked to the most 
specific form of each disease group. Other links include finding-to-disease 
evocation and disease-to-disease causal connections. A cost-related speci
fication (history-questions, signs, or the more expensive tests) and global 
weights of import are attached to the findings. There are uncertainty 
weights associated with most of the links, expressed on a scale that ranges 
from 1 (for least confirmation) to 5 (for maximum confirmation). The 
weights are subjectively estimated by the medical expert. 

The reasoning strategy of INTERNIST begins in an event-driven 
fashion: the initial data presented to the system evoke a set of related 
disease hypotheses. For each of the evoked diseases, the system builds a 
patient-specific model, consisting of four lists: observed findings consistent 
with the disease, those unexplained by the disease, findings as yet unob
served that would be consistent with the disease, and those that ought to 
be observed if the disease is the correct diagnosis. Each disease model is 
scored positively for explained findings and negatively for the unexplained 
ones, with the individual findings weighted according to their importance. 
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Bonuses are added to hypotheses that are linked causally to other con
firmed diseases. A partitioning heuristic then splits the space of hypotheses 
into those that compete and those that complement the most highly ranked 
one. For example, if thyroid carcinoma is found to be the most likely dis
ease from the first evaluation, diseases like a thyroid cyst would be com
peting hypotheses, whereas a heart disease would be complementary in 
that it accounts for other findings largely unrelated to the thyroid problem. 

Once the partitioning is completed, a number of different strategies 
may be pursued by the system, depending on the size of the competing 
hypothesis set. If there are more than four competitors, the system will try 
to rule them out by asking questions about the findings that are expected 
to be present in the disease. If the number of alternatives ranges from two 
to four, a discriminatory strategy is followed that consists of seeking results 
that are strongly indicated by one disease but only weakly indicated by the 
other. Finally, if there are no competitors, the strategy will ask for data 
that will strongly confirm the highest-ranking hypothesis. When this proc
ess has been completed by the confirmation of the first major disease (or 
one of its competitors), the program repeats the cycle with the next most 
highly ranked hypothesis in order to account for findings that remain 
unexplained. This process continues until all findings have been accounted 
for. The reasoning of INTERNIST is therefore strongly focused around 
the highly ranked hypotheses once the initial phase of data entry is com
pleted. 

The INTERNIST system has been reported to cover a large propor
tion of the field of internal medicine and is routinely tested with complex 
cases from clinical-pathological conference case reports in the major med
ical journals (Pople, 1977). Once its knowledge base has been expanded 
sufficiently, it is expected to be tested outside the University of Pittsburgh 
in a formal manner. The system is also being used for educational pur
poses, and it is expected to be linked to other diagnostic systems (Freiherr, 
1979). 

PIP/ Present Illness Program 

To develop an understanding of the problem-solving methods used by 
physicians for patients who present with a varied and potentially large set 
of complaints was the underlying motivation of the project in clinical cog
nition (see Chapter 6). The system, developed at M.I.T. and Tufts-New 
England Medical Center, evolved from Garry's proposal to introduce con
ceptual structure to guide and support reasoning in diagnosis (see Chapter 
2). The representation chosen for the system was the frame scheme de
veloped by Minsky (1975). A frame is a prototypical description, which in 
PIP is centered around disease categories. Each frame is a structure with 
a name and a number of slots, which can be filled by various properties, 
logical and semantic relations, and associated inference rules. The disease 
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frames in PIP contain slots for descriptive relations (causal, complemen
tary, complicational, etc.), logical conditions (necessary and sufficient find
ings), and reasoning rules of various types (suggestive, discriminatory, or 
conclusive rules). The most important slots are those containing a listing 
of evocative or triggering findings, and a listing of expected findings. Like 
CASNET and INTERNIST, PIP initiates its reasoning in an event-driven 
fashion: the initial data trigger a number of hypotheses, which are then 
considered to be "activated." PIP maintains a three-level status for its hy
potheses during a consultation. All start out in long-term memory, with 
inactive status. Once a hypothesis is activated, it brings along all hypotheses 
that are directly complementary to it into "semiactive" status. A semiactive 
hypothesis is eligible to become active if any one of its typical findings is 
found to be true, whereas "inactive" hypotheses can only be activated by 
their triggering findings. 

Once the reasoning process begins by triggering, the system attempts 
to "fill in the frame" by asking questions that will tend to confirm it or rule 
it out. This may be done categorically by matching findings that are logi
cally sufficient or necessary (MUST-HAVE or MUST-NOT-HAVE rela
tions) or probabilistically by thresholding a local score evaluated for the 
hypothesis. This score is computed from the uncertainty rules associated 
with the frames and has two components: a measure of the fit of observed
to-expected findings for the hypothesis and a ratio of the number of find
ings explained by the hypothesis to the total number of observed findings. 
PIP also propagates scores so that the effect of findings that are explained 
by lower-level hypotheses-the clinical or pathophysiological states, such 
as "nephrotic syndrome"-can be taken into account in the likelihood 
computations of hierarchically or causally related hypotheses (such as 
"glomerulonephritis"). The sequential questioning of the system is there
fore hypothesis-directed in that the filling of a frame results in asking about 
its expected findings or those that will discriminate it from other hy
potheses. Focus is shifted to other frames once the truth value of the 
original one has been established with a sufficiently high level of certainty. 
The process continues until all reported findings have been accounted for. 

PIP was an experimental system, and it was tested with a knowledge 
base of about 70 hypothesis frames in renal disease and related disorders 
(see Chapter 9). Problems were uncovered in maintaining a sufficiently 
focused and clinically acceptable line of reasoning, and this contributed to 
a shift in emphasis toward more tightly structured and physiologically de
termined domains (acid-base balance and digitalis therapy) on the part of 
its developers (Garry et al., 1978; Patil, 1979; Silverman, 1975). It has been 
suggested that one major reason for the difficulty of generating lines of 
reasoning that parallel those of clinical experts lies in the use of generalized 
scoring functions and in termination criteria that lead to exhaustive expla
nations of the observed findings (Szolovits and Pauker, 1979) (also see 
Chapter 9). When several top-ranking hypotheses have scores that are close 
in value, reflecting a very ambiguous case, the interpretation of additional 
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data may often result in rapid changes in the focus of the reasoning, as 
one piece of evidence pushes the score of one hypothesis above that of its 
competitors, and then another finding elevates the score of an alternative 
hypothesis above that of the first. To avoid an overdependence on scoring 
functions, all AIM systems have tried to incorporate into their knowledge 
bases as many categorical reasoning links as possible. 

4.3.2 Characteristic Elements of AIM Consultation 
Systems 

The four initial AIM systems and their successors all share certain char
acteristic properties. Figure 4-3 illustrates some of the principal compo
nents of the systems and the resulting consultation process. 

In contrast to the pattern-recognition and statistical approaches, there 
is a deliberate separation of the domain-specific knowledge base, the gen
eral mechanisms of evaluation, and the control strategies of the system. 
The reasoning evaluation and control components are sometimes called 
the inference engine (Davis, 1979; Feigenbaum, 1977). The knowledge base 
is often also clearly divided between a descriptive component of data struc
tures linked by domain-specific relations (hierarchical categorizations, sub
component membership, causal precedence or antecedence, etc.) and a 
normative component of prescriptive reasoning rules that operates over the 
descriptive component using the evaluation mechanisms in a manner spec
ified by the control strategies. This organization can be viewed as a spe
cialized variant of the structure used in generalized production systems in 
AI (Newell and Simon, 1972; Nilsson, 1980). 

In CASNET, INTERNIST, and PIP the reasoning process is centered 
around an explicit, structural descriptive component. The causal nets and 
hierarchical taxonomies can be viewed as special cases of semantic networks 
(Quillian, 1968), which were the first and most widely used means of rep
resenting knowledge for natural language interpretation. The frame (or 
unit) schemes offer a very natural alternative way of representing knowl
edge, which emphasizes the "chunking" or partitioning used by human 
experts to separate different topics, concepts, or hypotheses. The norma
tive or reasoning knowledge in these systems is expressed as decision rules 
or procedures attached to the nodes of the semantic net, or as logical 
constraint conditions contained in the frames. 

In contrast, MYCIN centers its knowledge around the normative com
ponent: the production rules. Its descriptive component is deemphasized, 
although the context tree and network for updating values of clinical pa
rameters are crucial to the effective invocation of rules. This approach may 
facilitate the acquisition of the strictly inferential knowledge, but leaves 
open the question of how to relate the specific productions to prototypical 
concepts in the medical domain. The context tree does this, but in a very 
specific and understated manner. It has been suggested that the operation 
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of MYCIN could be turned "inside out" (see Chapter 9), with the contexts 
represented by frames, which will be filled up as the production rules that 
are attached to them are evaluated. The recent implementation of a mixed 
frame-and-production-rule representation [the CENTAUR system (Aikins, 
1979; 1983)] has shown this to be a feasible approach. 

Methods for quantifying uncertainty vary from system to system but 
share certain common properties: they treat confirmation and disconfir
mation of hypotheses as independent processes (although combining func
tions are needed to produce measures of overall confidence for guiding 
the course of reasoning); the number of distinct uncertainty levels subjec
tively estimated by the experts is usually five or six; and they use fuzzy 
logic combining functions for evaluating the uncertainty of a Boolean com
bination of assertions. 

Depending on the complexity of the consultation task, reasoning 
mechanisms may include: focus-of-attention heuristics to concentrate on a 
subspace of the space of possible hypotheses; pattern-matching mecha
nisms to actively scan incoming data for patterns that will trigger a hy
pothesis; goal generators to specify how sequences of subgoals ought to be 
pursued; global evaluation heuristics to piece together the results of several 
partial interpretations; and explanation mechanisms for tracing the rea
soning. The control strategies specify how the different reasoning mech
anisms ~re to be invoked, either automatically or in response to interactive 
commands given by the user. 

The characteristic flow of information illustrated in Figure 4-3 shows 
that after an initial set of clinical data has been presented to the program, 
the control strategies can lead it to generate local interpretations (such as 
deciding on the normality, abnormality, or consistency of findings, or their 
interpretation in terms of directly related hypotheses), request more data 
as suggested by the initial interpretation, proceed to a global interpretation 
over the entire knowledge base (evaluating and comparing the partial in
terpretations, and selecting the most likely and coherently structured 
groupings of hypotheses), generate conclusions (integrating the various 
hypotheses into a final statement), and produce explanations for any of 
the preceding stages. The ability to recycle through previous stages of 
reasoning, allowing the user to request explanations and possibly changing 
the focus of reasoning by selectively introducing new data, introduces a 
significant degree of flexibility and generality that is characteristic of the 
AI approaches. It is interesting, however, that those consultation systems 
that give advice on treatment have done so without resorting to general 
methods of planning (Sacerdoti, 1977). This may reflect the fact that many 
treatment plans in medicine are short in length and center around the 
control of a limited number of clinical or physiological variables, making 
it possible to use relatively simple strategies of selection over prespecified 
alternative plans. 
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In building an AI consultation system, we rely more heavily on the 
knowledge of medical experts than in building probabilistic or pattern
recognition systems. The variety of structures employed by experts results 
in a much more complex knowledge acquisition process than must be faced 
by designers of the traditional systems, and a considerable effort has been 
devoted to these problems by subsequent AI system developers. 

Evolution of AIM Systems and Knowledge 
Engineering 

While the initial AIM systems were still evolving, several other systems were 
designed, taking advantage of the experiences and results obtained in the 
first cycle of development. The Digitalis Therapy Advisor (Corry et al., 
1978; Silverman, 1975) combined a single-compartment mathematical 
model for the effects of digitalis treatment with symbolic reasoning meth
ods for the interpretation of patient-specific findings. After arriving at an 
initial determination of digitalis dosage based on the mathematical model, 
the system uses feedback information about the patient's clinical response 
to the dose (including both quantitative aspects, such as serum digoxin 
level, and qualitative cardiac signs and symptoms) to modify its recom
mendations for subsequent digitalis levels. The system was subjected to 
careful formal evaluation (Corry et al., 1978), which demonstrated that its 
recommendations were comparable in effect to those of the clinical experts, 
suggesting that the system might be useful in health care situations where 
expert cardiac consultation is unavailable. 

A generalization of the CASNET representational structures was in
cluded in the IRIS system, which used a semantic net to represent the 
descriptive knowledge of disease processes, reasoning primitives, and con
trol states (Trigoboff and Kulikowski, 1977). IRIS was designed as a tool 
for experimenting with different reasoning and control strategies, rather 
than as a complete consultation system. It provided the user with a general 
mechanism for instantiating domain-specific facts and hypotheses and a 
mechanism for propagating inferences between them based on production 
rules. Specific control strategies could be written in Interlisp making use 
of the knowledge-base structure and reasoning elements of IRIS. Parts of 
the control strategies of MYCIN, INTERNIST, PIP, and CASNET were 
easily emulated in this manner. The MEDICO system, also applied in oph
thalmology, used semantic and inference networks for knowledge acqui
sition (Walser and McCormick, 1976) and the design of a consultation 
system. 

The PROSPECTOR system similarly combined the modularity of a 
rule-based scheme [using subjective Bayesian inferencing (Duda et al., 
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1976) rather than the confidence-weight method of MYCIN] with a se
mantic network representation (Hart and Duda, 1977). Although this is a 
mineral exploration consultant rather than a medical consultant, PROS
PECTOR is important in that it introduced the concept of a partitioned 
semantic net (Hendrix, 1975) to facilitate the attachment of rules to the 
appropriate set of semantic categories. 

The facilitation of knowledge acquisition from experts and the up
dating of MYCIN-type models were the goals of the TEIRESIAS system 
(Davis, 1979). The system works mainly by analyzing mistakes of the con
sultation program, displaying the facts of the specific consultation case, the 
rules used by MYCIN, and its trace of reasoning. It then engages in a high
level dialogue (in a restricted set of natural language) with the expert 
builder of the knowledge base to try to discover the procedures by which 
the errors can be avoided. This knowledge is interpreted by TEIRESIAS 
so as to suggest possible changes in the rules of the consultation program. 
Taken together with the consultation model, TEIRESIAS represents an 
important example of a system that "knows what it knows," at least in the 
sense that one part of the representation can be used to represent prop
erties and reasoning about another part. A different application of MYCIN 
techniques led to a consultant to help in the analysis of cases in the data 
base, which was implemented for use with ARAMIS (see Blum and Wie
derhold, 1978; and Chapter 17). 

The need to emulate the sequence of expert reasoning more accurately 
led to a new formulation of INTERNIST. The main concern was to de
velop a representation that would support strategies for handling multiple 
or composite hypotheses and would yield performance that converged 
more rapidly to the correct conclusions. Some of the elements introduced 
in the INTERNIST-II (Pople, 1977) system were constrictor relationships for 
describing very specific associations between findings and higher-level hy
potheses, a multiproblem hypothesis generator with a modified scoring 
heuristic for taking advantage of the constrictor links, and control strate
gies for evaluating complexes of hypotheses rather than the individual 
hypothesis structures of the original system. Most recently, a knowledge
acquisition front end for INTERNIST has been adapted from the ZOG 
system, permitting the domain experts to enter their knowledge in a more 
natural manner (Freiherr, 1979). The problem of representing groups of 
related hypotheses in such a manner that they are "aggregated" in a natural 
way during inferencing has been a topic of concern for all of the research
ers who deal with large hypothesis spaces. This question is a major consid
eration in the design of a new program for acid-base balance diagnosis 
and treatment (Patil, 1979). 

A major problem that has not been adequately dealt with in the current 
consultation schemes is that of reasoning over temporal sequences of events 
and hypotheses. One approach to this problem, based on a real-time rule 
reevaluation within a MYCIN-like scheme, has been applied in the VM 
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system (Fagan, 1979) for ventilator management. In this application, the 
goal-directed strategy of MYCIN was not used, since the system must re
spond in an event-driven way to the changes in physiological status of the 
patient on the respirator. The inference of changes in hypotheses over the 
long-term course of chronic disease states was modeled in the CASNET/ 
Glaucoma system by specialized time-dependent functions, and feedback 
of physiological parameter values is used in the reasoning of the Digitalis 
Therapy Advisor (Garry et al., 1978). These examples represent special
ized applications, and a general scheme for reasoning over time is still 
needed. 

The explanation of reasoning has been a major concern of AIM systems, 
which has been extended recently to include tutorial advice in the GUI
DON system (Clancey, l 979a; l 979c) for MYCIN-like consultants. An ex
planation scheme that is based on physiological and frame-based models 
has been developed for the Digitalis Therapy Advisor (Swartout, 1981). 

A perennial problem for the designers of knowledge-based consulta
tion programs has been to balance the mixture of declarative and proce
dural knowledge forms in their representations. In general, this has been 
alleviated by combining frames or semantic nets with production rules, as 
in IRIS (Trigoboff and Kulikowski, 1977), PROSPECTOR (Hart and Duda, 
1977), CENTAUR (Aikins, 1979), NEUREX (Reggia, 1978), and NEU
ROLOGIST (Catanzarite and Greenburg, 1979), and in the knowledge
based schemata of EXPERT (Weiss and Kulikowski, 1979) and AGE (Nii 
and Aiello, 1979). Refc:tted to this are questions of modifying the control 
strategies so that the right kind of knowledge is applied to each problem
solving task, which have not as yet been explored in depth. A first attempt 
in this direction is the MDX system (Chandrasekaran et al., 1979), which 
develops a hierarchy of different "procedural experts" within a consulta
tion system, with strict transfer of control protocols between them. The 
structure of experts in MDX directly parallels the links among the subspe
cialties of medicine. More research is needed to study not only this but 
other more flexible ways in which the control of concurrently operating 
experts can be coordinated. 

As the number of examples of consultation programs and schemes 
increases, some common sets of techniques are beginning to emerge, which 
has led to the building of general tools for the construction of knowledge
based expert systems. This work has been characterized recently as knowledge 
engineering (Feigenbaum, 1978). Some of the general schemes for helping 
to build knowledge-based systems are EMYCIN, EXPERT, and AGE. The 
EMYCIN (van Melle, 1979) scheme is an outgrowth of MYCIN and permits 
the creator of a knowledge base to organize it so that it can be run with 
the MYCIN consultation control structure. Consultation programs in psy
chopharmacology (Brooks and Heiser, 1979) and structural analysis (Ben
nett and Englemore, 1979) illustrate the range of applications modeled 
with this representational scheme. 
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The EXPERT system (Kulikowski and Weiss, 1982; Weiss and Kuli
kowski, 1979) draws primarily on the CASNET experience and also pro
vides a generalized consultation program that can be fitted with a knowl
edge base in any chosen medical specialty. Its representational scheme 
includes a hierarchical-causal network for hypotheses and treatments, a 
structured scheme for findings, and a set of production rules that permit 
the specification of contexts in terms of these elements. Models in rheu
matology, neuro-ophthalmology, and endocrinology are being developed 
using this scheme (Freiherr, 1979). The system is designed so that physi
cians with some computer experience can construct models by writing them 
onto a file (with any system editor) using a simple descriptive language. 
The file is then compiled by a special program that checks for syntactical 
errors and produces a compiled model that can be efficiently run by the 
consultation program. Data-base updating and knowledge acquisition are 
also available to help in the process of debugging the model as it is tested 
against cases with reliable conclusions (Weiss and Kulikowski, 1979). A 
version of the system has been implemented on a minicomputer, thereby 
facilitating its dissemination to clinical environments. 

The AGE (attempt to generalize) system (Nii and Aiello, 1979) pro
vides a general set of technical tools for modeling consultative situations 
using the "blackboard" model (Lesser et al., 1975; Lesser and Erman, 
1979), which was developed for handling the representation and process
ing of information from multiple sources of lmowledge in speech under
standing. Building a consultation model in AGE requires knowledge of 
Interlisp facilities, so this system is designed primarily for use by computer 
scientists working with medical specialists. Since the development of 
models that perform at an expert level has been shown to call for intensive 
interdisciplinary collaborations, such an approach is likely to continue as 
the main mode of research, at least until there are more experts who 
combine advanced training in both fields. Thus the current stage of de
velopment of knowledge engineering for medical consultation is one of 
constructive expansion in a number of varied applications. The next few 
years are likely to see many efforts at validation and application of these 
systems in realistic clinical environments. 

The practical advances in developing knowledge-engineering tools 
continue to uncover new problems of a formal nature concerning repre
sentation, inference, and control in consultative problem solving. There is 
no lack of candidates for the title of "most difficult problem" when we 
attempt to study or emulate aspects of expert human reasoning on the 
computer. If a single set of problems qualifies for major attention, it might 
be those centered around the properties of concept abstraction and self
ref erencing that we associate strongly with "knowing what we know." Issues 
of concurrency in reasoning and related questions of whether and how to 
maintain logical and semantic consistency of the knowledge bases also pre
sent crucial open questions. These and other problems will continue to 
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off er sufficient challenges of an epistemological and formal nature and are 
likely to encourage active research that will parallel the engineering efforts 
for many years to come. 
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5 
Production Rules as a 
Representation for a 
Knowledge-Based 
Consultation Program 

Randall Davis, Bruce G. Buchanan, and 
Edward H. Shortliffe 

Among the early AIM systems, MYCIN was one of the most influential. 
Initially developed as a thesis project by Edward Shortliffe at Stanford 
University, the system spawned an active research group, which refined the 
program's capabilities and added some of the features described in this 
chapter. At Stanford, MYCIN served as a basis for several new experiments 
as well, some of which are described in other chapters in this book (viz., 
Chapters 10, 11, 15, and 19). Although MYCIN was never implemented 
for routine clinical use, its decision-making performance was validated in 
formal experiments, and it was shown to reach decisions at the level of an 
expert in the field (Yu et al., l 979a; l 979b). Its appeal, however, largely 
rests in the clarity of the representation and control techniques that it uses 
and in the human-engineering features that make it an easy system to learn 
to use and to demonstrate. The results of the MYCIN work and of its 
associated experiments have recently been described in a book about the 
project (Buchanan and Shortliffe, 1984). 

Randall Davis joined the MYCIN group during its early days, and his 
own thesis research on knowledge acquisition, meta-level reasoning, and 
explanation evolved in that setting (Davis and Lenat, 198 2). In 19 77 
Davis joined with Bruce Buchanan and Shortliffe to publish the following 
technical paper describing MYCIN and its capabilities. By the time this 

From Artificial Intelligence, 8: 15-45 (1977). Used with the permission of North-Holland Pub
lishing Company. 
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paper appeared, MYCIN had begun to exhibit a high level of pe1.formance 
as a consultant in the task of selecting antibiotic therapy for bacteremia. 
The report discusses issues of representation and design for the system. It 
also describes thP basic task and discusses the constraints involved in the 
use of a program as a consultant. The control structure and knowledge 
representation of the system are examined in this light, and special attention 
is given to the impact of production rules as a representation. There is also 
bri~f discussion of the model of inexact reasoning developed for MYCIN, 
a numerical scheme that is further discussed in the review of AIM systems 
by Szolovits and Pauker (Chapter 9). Emphasis is also placed on the ~[fort 
to maintain a separation between the knowledge in the system and its control 
mechanism, or inference engine. The domain-independent portions of 
MYCIN became known as EMYCIN ("Essential MYCIN") and have been 
used to develop other expert systems, one of which is currently in use in a 
medical setting (PUFF-see Chapter 19). 

5 1 Introduction • 

Two recent trends in artificial intelligence research have been applications 
of AI to real-world problems and the incorporation in programs of large 
amounts of task-specific knowledge. The former is motivated in part by 
the belief that artificial problems may prove in the long run to be more a 
diversion than a base to build on and in part by the belief that the field 
has developed sufficiently to provide techniques capable of tackling real 
problems. 

The move toward what have been called knowledge-based systems rep
resents a change from previous attempts at generalized problem solvers 
(for example, GPS). Earlier work on such systems demonstrated that while 
there was a large body of useful general-purpose techniques (e.g., problem 
decomposition into subgoals, heuristic search in its many forms), these did 
not by themselves offer sufficient power for high performance. Rather 
than nonspecific problem-solving power, knowledge-based systems have 
emphasized both the accumulation of large amounts of knowledge in a 
single domain and the development of domain-specific techniques, in or
der to develop a high level of expertise. 

There are numerous examples of systems embodying both trends, in
cluding efforts at symbolic manipulation of algebraic expressions (MATH
LAB Group, 1974), speech understanding (Lesser et al., 1975), chemical 
inference (Buchanan and Lederberg, 1971), and the creation of computer 
consultants as interactive advisors for various tasks (Hart, 1975; Shortliffe 
et al., 1975), as well as several others. 

In this paper we discuss issues of representation and design for one 
such knowledge-based application program-the MYCIN system <level-
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oped over the past three years as an interdisciplinary project at Stanford 
University and discussed elsewhere (Shortliffe, 1976; Shortliffe et al., 1973; 
1975; Shortliffe and Buchanan, 1975). Here we examine in particular how 
the implementation of various system capabilities is facilitated or inhibited 
by the use of production rules as a knowledge representation. In addition, 
the limits of applicability of this approach are investigated. 

We begin with a review of features that were seen to be essential to 
any knowledge-based consultation system and suggest how these imply 
specific program design criteria. We note also the additional challenges 
offered by the use of such a system in a medical domain. This is followed 
by an explanation of the system structure and its fundamental assumptions. 
The bulk of the paper is then devoted to a report of our experience with 
the benefits and drawbacks of production rules as a knowledge represen
tation. 

5 • 2 System Goals 

The MYCIN system was developed originally to provide consultative advice 
on diagnosis of and therapy for infectious diseases-in particular, bacterial 
infections in the blood. 1 From the start, the project has been shaped by 
several important constraints. The decision to construct a high-perfor
mance AI program in the consultant model brought with it several re
quirements. First, the program had to be useful if we expected to attract 
the interest and assistance of experts in the field. The task area was thus 
chosen partly because of a demonstrated need: in a recent year, for ex
ample, one of every four people in the U.S. was given penicillin and almost 
90% of those prescriptions were unnecessary (Kagan et al., 1973). Problems 
such as these indicate the need for more (or more accessible) consultants 
to physicians selecting antimicrobial drugs. Usefulness also implies com
petence, consistently high performance, and ease of use. If advice is not 
reliable or is difficult to obtain, the utility of the program is severely im
paired. 

1We have recently begun investigating extensions to the system. The next medical domain 
will be the diagnosis and treatment of meningitis infections. This area is sufficiently different 
to be challenging and yet similar enough to suggest that some of the automated procedures 
we have developed may be quite useful. (Ed. note: This extension was successfully completed.) 
A paper by van Melle ( 1974) reports on an interesting effort at inserting an entirely different 
knowledge base into the body of the current system. A small part of an automobile repair 
manual was translated into production rules, and the appropriate attributes, objects, contexts, 
and vocabulary were provided. It then required relatively little effort to plug this new knowl
edge base into the standard system code, and a small but completely functional automobile 
consultant program resulted. [Ed. note: The general framework is now known as EMYCIN 
(van Melle et al., 1981).] 
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A second constraint was the need to design the program to accom
modate a large and changing body o.f technical knowledge. It has become clear 
that large amounts of task-specific knowledge are required for high per
formance and that this knowledge base is subject to significant changes 
over time (Buchanan and Lederberg, 1971; Green et al., 1974). Our choice 
of a production rule representation was significantly influenced by such 
features of the knowledge base. 

A third demand was for a system capable of handling an interactive 
dialogue and one that was not a "black box." This meant that it had to be 
capable of supplying coherent explanations of its results, rather than sim
ply printing a collection of orders to the user. This was perhaps the major 
motivation for the selection of a symbolic reasoning paradigm, rather than 
one that, for example, relied totally on statistics. It meant also that the flow 
of dialogue (the order of questions) should make sense to a physician and 
not be determined by programming considerations. Interactive dialogue 
required, in addition, extensive human-engineering features designed to 
make interaction sim pie for someone unaccustomed to computers. 

The choice of a medical domain brought with it additional demands 
(Shortliffe et al., 1974). Speed, access, and ease of use gained additional 
emphasis, since a physician's time is typically limited. The program also 
had to fill a need well recognized by the clinicians who would actually use 
the system, since the lure of pure technology is usually insufficient. Finally, 
the program had to be designed with an emphasis on its supportive role 
as a tool for the physician, rather than as a replacement for his or her own 
reasonmg process. 

Any implementation selected had to meet all these requirements. Pre
dictably, some have been met more successfully than others, but all have 
been important factors in influencing the system's final design. 

5.3 System Overview 

5.3.1 The Task 

The fundamental task is the selection of therapy for a patient with a bac
terial infection. Consultative advice is often required in the hospital be
cause the attending physician may not be an expert in infectious diseases, 
as, for example, when a cardiology patient develops an infection after heart 
surgery. Time considerations compound the problem. A specimen (of 
blood, urine, etc.) drawn from a patient may show some evidence of bac
terial growth within 12 hours, but 24 to 48 hours (or more) are required 
for positive identification. The physician must therefore often decide, in 
the absence of complete information, whether or not to start treatment 
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and what drugs to use if treatment is required. Both of these may be 
difficult questions. 

The task is made clearer by the initial and final parts of a sample 
dialogue with the MYCIN system, shown in Figures 5-1 and 5-2 (italicized 
comments toward the right are for explanatory purposes and are not part 
of the actual dialogue). A great deal of attention has been paid to making 
the interaction easy and natural. Questions have been carefully worded, 
for example, so as to set up expectations of responses without making them 
as uninteresting as multiple-choice questions. Currently, the dialogue is 
directed primarily by the system; patient information can be entered only 
by answering each question in turn. 

There are several options available to make the interaction more in
formative. The user can, for instance, ask for a rephrasing of the question 
or a display of some (or all) of the acceptable responses. If a requested 
item of information is unavailable, he or she can respond with UNKNOWN 
(UNK or U, for short). The user can also modify any answer of which he 
or she is unsure by attaching a number indicating a degree of certainty 
(as, for example, in questions 13 and 15). 

The main purpose of the system is to provide advice, and it does so 
via the consultation program (Figure 5-3). In addition to this performance 
program, there are three adjunct programs that increase system utility and 
flexibility: (a) a question-answering program that handles simple natural lan
guage inquiries about either the specific consultation or the general knowl
edge base of the program, (b) an explanation program for giving reasons 
why the performance program has requested an item of information or 
has drawn a particular conclusion, and (c) a knowledge-acquisition program 
for extending the knowledge base through a dialogue with an expert. 

The system is written in Interlisp, runs on a DEC KI-10 with approx
imately 130K words of nonshared code, and is fast enough to permit con
venient n~al-time interaction. The consultation program (with the required 
data structures) requires approximately SOK, the explanation program 
1 OK, the question-answering program l SK, the rule-acquisition program 
20K, and the rules themselves approximately SK (the remainder includes 
a dictionary, information on drug properties, and various system utility 
features). 

As is described below, each of these four interrelated programs aids 
in meeting one or more of the goals outlined above. 

5.3.2 The Rules 

The primary source of domain-specific knowledge is a set of some 450 
rules, each with a premise and an action (Figure 5-4). The premise is a 



--------PATI ENT-1--------
1) Patient's name: (first-last) 
**FRED SMITH 

2) Sex: 
**MALE 
3) Age: 
**55 
4) Have you been able to obtain positive cultures from a site 

at which Fred Smith has an infection? 
**YES 
--------INFECTION-1--------

5) What is the infection? 
**PRIMARY-BACTEREMIA 
6) Please give the date and approximate time when signs or symptoms of 

the primary-bacteremia (INFECTION-1) first appeared. (mo/da/yr) 
**MAY 5, 1975 
The most recent positive culture associated with the primary
bacteremia (INFECTION-1) will be referred to as: 

--------CUL TU RE-1--------
7) From what site was the specimen for CULTURE-1 taken? 
**BLOOD 
8) Please give the date and time when this blood culture 

(CULTURE-1) was obtained. (mo/da/yr) 
**MAY 9, 1975 
The first significant organism from this blood culture (CULTURE-1) 
will be referred to as: 

--------ORGANISM-1--------
9) Enter the identity of ORGANISM-1: 
**UNKNOWN 
10) Is ORGANISM-1 a rod or coccus (etc.): 
**ROD 
11) The gram stain of ORGANISM-1: 
**GRAM NEG 
12) Have there been POSITIVE cultures from sites which are NOT 

associated with infections about which you are seeking 
advice? 

**NO 
13) Did ORGANISM-1 grow aerobically? 
**YES (8) 
14) Did ORGANISM-1 grow anaerobically? 
**YES 
15) What is the suspected portal of entry of ORGANISM-1 into 

this sterile site? 
**Gl(6) 

System Overview I 03 

{background data} 

{typically the identity is not known 
and must be inferred} 

{more questions follow, to gather 
sufficient information on possible 
identities of the infecting organisms} 

FIGURE 5-1 Initial segment of a session with the consultation 
system. User responses are in boldface capital letters and follow 
the double asterisks. Italicized comments at the right are not 
part of the actual dialogue. 
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My therapy recommendation will be based on the following probable 
infection(s) and potential causative organism(s): 

INFECTION-1 is PRIMARY-BACTEREMIA 

<Item 1 > The identity of ORGANISM-1 may be PSEUDOMONAS-AERUGINOSA 
<Item 2> The identity of ORGANISM-1 may be KLEBSIELLA-PNEUMONIAE 
<Item 3> The identity of ORGANISM-1 may be E.COLI 
<Item 4> The identity of ORGANISM-1 may be BACTEROIDES-FRAGILIS 
<Item 5> The identity of ORGANISM-1 may be ENTEROBACTER 
<Item 6> The identity of ORGANISM-1 may be PROTEUS-NON-MIRABILIS 
46) On a scale of 0 to 4, where higher numbers indicate increasing 

severity, how would you rate Fred Smith's degree of sickness? 
**3 
47) Does Fred Smith have a clinically significant allergic reaction to any 

antimicrobial agent? 
**NO 
48) Fred Smith's weight in kilograms (or <number> POUNDS): 
**70 

{possible identities} 

{note that 2 drugs cover for 6 potential organisms} 
[Rec 1] My preferred therapy recommendation is as follows: 

In order to cover for Items < 1 2 3 5 6>: 
Give: GENTAMICIN 
Dose: 119 mg (1.7 mg/kg) q8h IV [or IM] for 10 days 
Comments: Modify dose in renal failure 

In order to cover for Item <4>: 
Give: CLINDAMYCIN 
Dose: 595 mg (8.5 mg/kg) q6h IV [or IM] for 14 days 
Comments: If diarrhea or other GI symptoms develop, patient 

should be evaluated for possible pseudomembranous colitis. 
Do you wish to see the next choice therapy? 

**Y 
Which, if any, of the above drugs do you wish eliminated from 
consideration? 
**CLINDAMYCIN 

[Rec 2] Next best therapy recommendation: 
In order to cover for Items <2 3 4 5 6>: 

Give: CHLORAMPHENICOL 
Dose: 1 gm (15 mg/kg) q6h IV for 14 days 
Comments: Monitor patient's white count 

In order to cover for Item <1 >: 
Give: GENTAMICIN 
Dose: 119 mg (1.7 mg/kg) q8h IV [or IM] for 10 days 
Comments: Modify dose in renal failure 

{alternative choices are available} 

FIGURE 5-2 Final segment of a consultation. Alternative 
choices for therapies are generated if requested. 

Boolean combination of predicate functions on associative triples. Thus 
each clause of a premise has the following four components: 

<predicate function> <object> <attribute> <value> 
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CONSULTATION 

/ 
PROGRAM 

"' EXPLANATION 

~ PROGRAM <-----
PATIENT DATA KNOWLEDGE 

BASE BASE 

----> QUESTION ANSWERING 

/ ~ 
PROGRAM 

KNOWLEDGE ACQUISITION 

PROGRAM 

FIGURE 5-3 The six components of the system: Four pro
grams, the knowledge base, and the patient data base. All of the 
system's knowledge of infectious disease is contained within the 
knowledge base. Data about a specific patient collected during 
a consultation are stored in the patient data base. Arrows indi
cate the direction of information flow. 

There is a standardized set of 24 predicate functions (e.g., SAME, 
KNOWN, DEFINITE), some 80 attributes (e.g., IDENTITY, SITE, SEN
SITIVITY), and 11 objects (e.g., ORGANISM, CULTURE, DRUG) cur
rently available for use as primitives in constructing rules. The premise is 
always a conjunction of clauses, but may contain arbitrarily complex con
junctions or disjunctions nested within each clause. Instead of writing rules 
whose premise would be a disjunction of clauses, we write a separate rule 

PREMISE: ($AND (SAME CNTXT INFECT PRIMARY-BACTEREMIA) 
(MEMBF CNTXT SITE STERILESITES) 
(SAME CNTXT PORTAL GI)) 

ACTION: (CONCLUDE CNTXT IDENT BACTEROIDES TALLY .7) 

IF: 1) The infection is primary-bacteremia, and 
2) The site of the culture is one of the sterile sites, and 
3) The suspected portal of entry of the organism is the gasfro-intestinal tract, 

THEN: There is suggestive evidence (.7) that the identity of the organism is bacteroides. 

FIGURE 5-4 A rule from the knowledge base. $AND and $OR 
are the multi-valued analogues of the standard Boolean AND 
and OR. 
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for each clause. The action part indicates one or more conclusions that can 
be drawn if the premises are satisfied; hence the rules are (currently) purely 
inferential in character. 

It is intended that each rule embody a single, modular chunk of knowl
edge and state explicitly in the premise all necessary context. Since the rule 
uses a vocabulary of concepts common to the domain, it forms, by itself, 
a comprehensible statement of some piece of domain knowledge. As will 
become clear, this characteristic is useful in many ways. 

Each rule is, as is evident, highly stylized, with the IF/THEN format 
and the specified set of available primitives. While the LISP form of each 
is executable code (and, in fact, the premise is simply evaluated by LISP 
to test its truth, and the action evaluated to make its conclusions), this 
tightly structured form makes possible the examination of the rules by 
other parts of the system. This in turn leads to some important capabilities, 
to be described below. For example, the internal form can be automatically 
translated into readable English, as shown in Figure 5-4. 

Despite this strong stylization, we have not found the format restric
tive. This is evidenced by the fact that of nearly 450 rules on a variety of 
topics, only 8 employ any significant variations. The limitations that do 
arise are discussed below. 

5.3.3 Judgmental Knowledge 

Since we want to deal with real-world domains in which reasoning is often 
judgmental and inexact, we require some mechanism for being able to say 
"A suggests B" or "C and D tend to rule out E." The numbers used to indicate 
the strength of a rule (e.g., the .7 in Figure 5-4) have been termed certainty 
factors (CF's). The methods for combining CF's are embodied in a model 
of approximate implication. Note that while these are derived from and 
are related to probabilities, they are distinctly different [for a detailed re
view of the concept, see Shortliffe and Buchanan (1975)]. For the rule in 
Figure 5-4, then, the evidence is strongly indicative (.7 out of 1), but not 
absolutely certain. Evidence confirming a hypothesis is collected separately 
from that disconfirming it, and the truth of the hypothesis at any time is 
the algebraic sum of the current evidence for and against it. This is an 
important aspect of the truth model, since it makes plausible the simulta
neous existence of evidence in favor of and against the same hypothesis. 
We believe this is an important characteristic of any model of inexact rea
sonmg. 

Facts about the world are represented as quadruples, with an associ
ative triple and its current CF (Figure 5-5 ). Positive CF's indicate a pre
dominance of evidence confirming a hypothesis; negative CF's indicate a 
predominance of disconfirming evidence. 

Note that the truth model permits the coexistence of several plausible 
values for a single attribute, if they are suggested by the evidence. Thus, 



(SITE CULTURE-1 BLOOD 1.0) 
(IDENT ORGANISM-2 KLEBSIELLA .25) 
(IDENT ORGANISM-2 E.COLI .73) 
(SENSITIVS ORGANISM-1 PENICILLIN -1.0) 
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FIGURE 5-5 Samples of information in the patient data base 
during a consultation. 

for example, after attempting to deduce the identity of an organism, the 
system may have concluded (correctly) that there is evidence both that the 
identity is E. coli and that it is Klebsiella, despite the fact that they are 
mutually exclusive possibilities. 

As a result of the program's medical origins, we also refer to the attri
bute part of the triple as a clinical parameter and use the two terms inter
changeably here. The object part (e.g., CULTURE-I, ORGANISM-2) is 
referred to as a context. This term was chosen to emphasize its dual role as 
both part of the associative triple and as a mechanism for establishing the 
scope of variable bindings. As explained below, the contexts are organized 
during a consultation into a tree structure whose function is similar to those 
found in "alternate world" mechanisms of languages like QA4. 

5.3.4 Control Structure 

The rules are invoked in a backward-unwinding scheme that produces a 
depth-first search of an AND/OR goal tree (and hence is similar in some 
respects to PLANNER's consequent theorems): given a goal to establish, 
we retrieve the (precomputed) list of all rules whose conclusions bear on 
the goal. The premise of each is evaluated, with each predicate function 
returning a number between - 1 and 1. $AND (the multi-valued analogue 
of the Boolean AND) is a minimization operation, and $OR (similar) takes 
the maximum. 2 For rules whose premise evaluates successfully (i.e., greater 
than .2, an empirical threshold), the action part is evaluated, and the con
clusion made with a certainty that is equal to: 

<premise value> * <certainty factor> 

2Note that, unlike standard probability theory, $AND does not involve any multiplication 
over its arguments. Since CF's are not probabilities, there is no a priori reason why a product 
should be a reasonable number. There is, moreover, a long-standing convention in work with 
multi-valued logics which interprets AND as min and OR as max. It is based primarily on 
intuitive grounds: if a conclusion requires all of its antecedents to be true, then it is a relatively 
conservative strategy to use the smallest of the antecedent values as the value of the premise. 
Similarly, if any one of the antecedent clauses justifies the conclusion, one is safe in taking 
the maximum value. 
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Those that evaluate unsuccessfully are bypassed, while a clause whose 
truth cannot be determined from current information causes a new 
subgoal to be set up, and the process recurses. Note that evaluating here 
means simply invoking the LISP EVAL function-there is no additional 
rule interpreter necessary, since $AND, $OR, and the predicate functions 
are all implemented as LISP functions. 

Variations from the Standard Depth-First Search 

Unlike PLANNER, however, the subgoal that is set up is a generalized 
form of the original goal. If, for example, the unknown clause is "the 
identity of the organism is E. coli," the subgoal that is set up is "determine 
the identity of the organism." The new subgoal is therefore always of the 
form "determine the value of the <attribute>" rather than "determine 
whether the <attribute> is equal to <value>." By setting up the gener
alized goal of collecting all evidence about an attribute, the program ef
fectively exhausts each subject as it is encountered and thus tends to group 
together all questions about a given topic. This results in a system that 
displays a much more focused, methodical approach to the task, which is 
a distinct advantage where human-engineering considerations are impor
tant. The cost is the effort of deducing or collecting information that is 
not strictly necessary. However, since this occurs rarely-only when the 
<attribute> can be deduced with certainty to be the <value> named in 
the original goal-we have not found this to be a problem in practice. 

A second deviation from the standard rule-unwinding approach is that 
every rule relevant to a goal is used. The premise of each rule is evaluated, 
and if successful, its conclusion is invoked. This continues until all relevant 
rules have been used or until one of them has given the result with cer
tainty. This use of all rules is motivated in part by the model of judgmental 
reasoning and the approximate implication character of rules-unless a 
result is obtained with certainty, we should be careful to collect all positive 
and negative evidence. It is also appropriate to the system's current domain 
of application, clinical medicine, where a conservative strategy of consid
ering all possibilities and weighing all the evidence is preferred. 

If after trying all relevant rules (referred to as tracing the subgoal), the 
total weight of the evidence about a hypothesis falls between - .2 and .2 
(again, empirically determined), the answer is regarded as still unknown. 
This may happen if no rule were applicable, if the applicable rules were 
too weak, if the effects of several rules off set each other, or if there were 
no rules for this subgoal at all. In any of these cases, when the system is 
unable to infer the answer, it asks the user for the value (using a phrase 
that is stored along with the attribute itself). Since the legal values for each 
attribute are also stored with it, the validity (or spelling) of the user's re
sponse is easily checked. (This also makes possible a display of acceptable 
answers in response to a ? input from the user.) 
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The strategy of always attempting to deduce the value of a subgoal 
and asking only when that fails would ensure the minimum number of 
questions. It would also mean, however, that work might be expended 
searching for a subgoal, arriving perhaps at a less than definite answer, 
when the user already knew the answer with certainty. In response to this, 
some of the attributes have been labeled as LABDATA, indicating that they 
represent entities that are often available as results of laboratory tests. In 
this case the deduce-then-ask procedure is reversed, and the system will 
attempt to deduce the answer only if the user cannot supply it. Given a 
desire to minimize both tree search and the number of questions asked, 
there is no guaranteed optimal solution to the problem of deciding when 
to ask for information and when to try to deduce it. But the LABDATA 
distinction used here has performed quite well and seems to embody an 
appropriate criterion. 

Three other recent additions to the tree-search procedure have helped 
improve performance. First, before the entire list of rules for a subgoal is 
retrieved, the system attempts to find a sequence of rules that would es
tablish the goal with certainty, based only on what is currently known. Since 
this is a search for a sequence of rules with CF = 1, we have termed the 
result a unity path. Besides efficiency considerations, this process offers the 
advantage of allowing the system to make "commonsense" deductions with 
a minimum of effort (rules with CF = 1 are largely definitional). Since it 
also helps minimize the number of questions, this check is performed even 
before asking about LABDATA attributes. Because there are few such rules 
in the system, the search is typically very brief. 

Second, a straightforward bookkeeping mechanism notes the rules 
that have failed previously and avoids trying to reevaluate any of them. 
(Recall that a rule may have more than one conclusion, may accordingly 
conclude about more than a single attribute, and hence may get retrieved 
more than once). 

Finally, we have implemented a partial evaluation of rule premises. 
Since many attributes are found in several rules, the value of one clause 
(perhaps the last) in a premise may already have been established, even 
while the rest are still unknown. If this clause alone would make the prem
ise false, there is clearly no reason to do all the search necessary to try to 
establish the others. Each premise is thus "previewed" by evaluating it on 
the basis of currently available information. This produces a Boolean com
bination of TRUEs, FALSEs, and UNKNOWNs, and straightforward sim
plification (e.g., F /\ U = F) indicates whether the rule is guaranteed to 
fail. 

Templates 

The partial evaluation is implemented in a way that demonstrates the utility 
of stylized coding in the rules. It is also forms an example of what was 
alluded to earlier when we noted that the rules may be examined by various 
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Function 
SAME 

Template 
(SAME CNTXT PARM VALUE) 

Sample function call 
(SAME CNTXT SITE BLOOD) 

FIGURE 5-6 PARM is shorthand for clinical parameter (attri
bute); VALUE is the corresponding value; CNTXT is a free 
variable that references the context in which the rule is invoked. 

elements of the system, as well as executed. We require a way to tell if any 
clause in the premise is known to be false. We cannot simply EVAL each 
individually, since a subgoal that had never been traced before would send 
the system off on its recursive search. However, if we can establish which 
attribute is referenced by the clause, it is possible to determine (by refer
ence to internal flags) whether or not it has been traced previously. If so, 
the clause can be EVALed to obtain the value. A template (Figure 5-6) 
associated with each predicate function makes this possible. 

The template indicates the generic type and order of arguments to 
the predicate function, much like a simplified procedure declaration. It is 
not itself a piece of code, but is simply a list structure of the sort shown 
above and indicates the appearance of an interpreted call to the predicate 
function. Since rules are kept in interpreted form (as shown in Figure 
5-4), the template can be used as a guide to dissect a rule. This is done by 
retrieving the template for the predicate function found in each clause and 
then using that as a guide to examining the clause. In the case of the 
function SAME, for instance, the template indicates that the attribute 
(PARM) is the third element of the list structure that comprises the function 
call. The preview mechanism uses the templates to extract the attribute 
from the clause in question and can then determine whether or not it has 
been traced. 

There are two points of interest here. First, part of the system is "read
ing" the code (the rules) being executed by another part; and second, this 
reading is guided by the information carried in components of the rules 
themselves. The ability to read the code could have been accomplished by 
requiring all predicate functions to use the same format, but this is ob
viously awkward. By allowing each function to describe the format of its 
own calls, we permit code that is stylized without being constrained to a 
single form and hence is flexible and much easier to use. We require only 
that each form be expressible in a template built from the current set of 
template primitives (e.g., PARM, VALUE, etc.). This approach also ensures 
that the capability will persist in the face of future additions to the system. 
The result is one example of the general idea of giving the system access 
to and an "understanding" of its own representations. This idea has been 
used and discussed extensively by Davis ( 1976). 

We have also implemented antecedent-style rules. These are rules that 
are invoked if a conclusion is made that matches their premise condition. 
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PREMISE: ($AND (MEMBF SITE CNTXT NONSTERILESITES) 
(THEREARE OBJRULES (MENTIONS CNTXT PREMISE SAMEBUG)) 

ACTION: (CONCLIST CNTXT UTILITY YES TALLY -1.0) 

IF: 1) The site of the culture is one of the nonsterile sites, and 
2) There are rules which mention in their premise a previous organism 

which may be the same as the current organism 
THEN: It is definite (1.0) that each of them is not going to be useful. 

FIGURE 5-7 A meta-rule. A previous infection that has been 
cured (temporarily) may reoccur. Thus one of the ways to de
duce the identity of the current organism is by reference to 
previous infections. However, this method is not valid if the 
current infection was cultured from one of the nonsterile cul
ture sites. Thus this meta-rule says, in effect, "If the current 
culture is from a nonsterile site, don't bother trying to deduce 
the identity of the current organism from identities of previous 
organisms." 

They are currently limited to commonsense deductions (i.e., CF = 1) and 
exist primarily to improve system efficiency. Thus, for example, if the user 
responds to the question of organism identity with an answer of which he 
or she is certain, there is an antecedent rule that will deduce the organism 
gram stain and morphology. This saves the trouble of deducing these an
swers later via the subgoal mechanism described above and allows rejection 
of rules using the preview mechanism described above. 

5.3.5 Meta-Rules 

With the system's current collection of 450 rules, exhaustive invocation of 
rules would be quite feasible, since the maximum number of rules for a 
single subgoal is about 30. We are aware, however, of the problems that 
may occur if and when the collection grows substantially larger. It was 
partly in response to this that we developed an alternative to exhaustive 
invocation by implementing the concept of meta-rules; These are strategy 
rules that suggest the best approach to a given subgoal. They have the 
same format as the clinical rules (Figure 5-7), but can indicate that certain 
clinical rules should be tried first, last, before others, or not at all. Thus 
before the entire list of rules applicable to any subgoal is processed, the 
meta-rules for that subgoal are evaluated. They may rearrange or shorten 
the list, effectively ordering the search or pruning the tree. By making 
them specific to a given subgoal, we can specify precise heuristics without 
imposing any extra overhead in the tracing of other subgoals. 

Note, however, that there is no reason to stop at one level of meta
rules. We can generalize this process so that, before invoking any list of 
rules, we check for the existence of rules of the next higher order to use 
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in pruning or rearranging the first list. Thus, while meta-rules are strate
gies for selecting clinical rules, second-order meta-rules would contain in
formation about which strategy to try, third-order meta-rules would sug
gest criteria for deciding how to choose a strategy, etc. These higher-order 
meta-rules represent a search by the system through strategy space, and 
appear to be powerful constraints on the search process at lower levels. 
(We have not yet encountered higher-order meta-rules in practice, but 
neither have we actively sought them.) 

Note also that since the system's rule unwinding may be viewed as tree 
search, we have the appearance of a search through a tree with the inter
esting property that each branch point contains information on the best 
path to take next. Since the meta-rules can be judgmental, there exists the 
capability of writing numerous, perhaps conflicting, heuristics and having 
their combined judgment suggest the best path. Finally, since meta-rules 
ref er to the clinical rules by their content rather than by name, the method 
automatically adjusts to the addition or deletion of clinical rules, as well as 
to modifications to any of them. 

The capability of meta-rules to order or prune the search tree has 
proved to be useful in dealing with another variety of knowledge as well. 
For the sake of human engineering, for example, it makes good sense to 
ask the user first about the positive cultures (those showing bacterial 
growth) before asking about negative cultures. Formerly, this design choice 
was embedded in the ordering of a list buried in the system code. Yet it 
can be stated quite easily and explicitly in a meta-rule, yielding the signif
icant advantages of making it both readily explainable and modifiable. 
Meta-rules have thus proved capable of expressing a limited subset of the 
knowledge formerly embedded in the control structure code of the system. 

Meta-rules may also be used to control antecedent rule invocation. 
Thus we can write strategies that control the depth and breadth of con
clusions drawn by the system in response to a new piece of information. 

An overview of these mechanisms is shown in Figure 5-8, and indicates 
the way they function together to ensure an efficient search for each 
subgoal. 

The final aspect of the control structure is the tree of contexts (recall 
the dual meaning of the term) constructed dynamically from a fixed hi
erarchy as the consultation proceeds (Figure 5-9). This serves several pur
poses. First, bindings of free variables in a rule are established by the 
context in which the rule is invoked, with the standard access to contexts 
that are its ancestors. Second, since this tree is intended to reflect the 
relationships of objects in the domain, it helps structure the consultation 
in ways familiar to the user. In the current domain, a patient has one or 
more infections, each of which may have one or more associated cultures, 
each of which in turn may have one or more organisms growing in it, and 
so on. 



Procedure FINDVALUEOF (item GOAL) 
begin item X; list L; rule R; premise-clause P; 
if (X +--- UNITYPATH(GOAL)) then return (X); 
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if LABDATA(GOAL) and DEFINITE-ANSWER(X +--- ASKUSER(GOAL)) then return(X); 
L +--- RULES-ABOUT(GOAL); 
L +--APPLY-METARULES(GOAL,L,0); 

for REL do 
unless PREVIEW(R) = false do 

begin "evaluate-rule" 
for P E PREMISES•OF(R) do 

begin "test-each-premise-clause" 
if not TRACED(ATTRIBUTE-IN(P)) then FINDVALUEOF(ATTRIBUTE-IN(P)); 
if EVALUATION-OF(P) < .2 then next(R); 
end "test-each-premise-clause"; 

CONCLUDE(CONCLUSION-IN(R)); 
if VALUE-KNOWN-WITH-CERTAINTY(GOAL) then 

begin MARK-AS-TRACED(GOAL); return(VALUEOF(GOAL)); end; 
end "evaluate-rule"; 

MARK-AS-TRACED(GOAL); 
if VALUEOF(GOAL) = u.nknown and NOT-ALREADY-ASKED(GOAL) 

then return(ASKUSER(GOAL)) 
else return(VALUEOF(GOAL)); 

end; 

Procedure APPLY-METARULES(item GOAL; list L; integer LEVEL); 
begin list M; rule Q; 
if (M +--- METARULES-ABOUT(GOAL,LEVEL + 1 )) 

then APPLY-METARULES(GOAL,M,LEVEL+ 1); 
for Q EM do USE-METARULE-TO-ORDER-UST(Q,L); 
return(L); 
end; 

Procedure CONCLUOE(action-clause CONCLUSION); 
begin rule T; list L; 
UPDATE-VALUE-OF(ATTRIBUTE-IN(CONCLUSION), VALUE-IN(CONCLUSION)); 
L +--- ANTECEDENTRULES-ASSOCIATED-WITH(CONCLUSION); 
L <-- APPLY-METARULES(ATTRIBUTE-IN(CONCLUSION),L,O); 
for T E I do CONCLUDE(CONCLUSION-IN(T)); 
end; 

FIGURE 5-8 The control structure as it might appear in an 
ALGOL-like language. 

5 4 Relation to Other Work • 

We outline briefly in this section a few programs that relate to various 
aspects of our work. Some of these have provided the intellectual basis 
from which the present system evolved, others have employed techniques 
that are similar, while still others have attempted to solve closely related 
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PATIENT-1 

~ 
INFECTION-1 INFECTION-2 

/ A 
CULTURE-1 CULTURE-2 CULTURE-3 

/ A ~ 
ORGANISM-1 ORGANISM-2 ORGANISM-3 ORGANISM-4 

FIGURE 5-9 A sample of the contexts that may be sprouted 
during a consultation. 

problems. Space limitations preclude detailed comparisons, but we indicate 
some of the more important distinctions and similarities. 

There have been a large number of attempts to aid medical decision 
making (see Chapter 3 for an extensive review). The basis for some pro
grams has been simple algorithmic processes, often implemented as deci
sion trees (Meyer and Weissman, 1973; Warner et al., l 972a) or more 
complex control structures in systems tailored to specific disorders (Bleich, 
1971 ). Many have based their diagnos.tic capabilities on variations of Bayes' 
Theorem (Gorry and Barnett, l 968a; Warner et al., 1964) or on techniques 
derived from utility theory in operations research (see Chapter 2). Models 
of the patient or disease process have also been used successfully (Silver
man, 1975; Kulikowski et al., 1973) (see also Chapter 6). A few recent 
efforts have been based on some form of symbolic reasoning. In particular, 
the glaucoma diagnosis system described in Chapter 7 and the diagnosis 
system of Pople et al. (Chapter 8) can also be viewed as rule-based systems. 

Carbonell's work ( 1970) represents an early attempt to make uncertain 
inferences in a domain of concepts that are strongly linked, much as MY
CIN's are. Although the purpose of Carbonell's system was computer-aided 
instruction rather than consultation, much of our initial design was influ
enced by his semantic net model. 

The basic production rule methodology has been applied in many 
different contexts, in attempts to solve a wide range of problems [see, for 
example, Davis and King (1977) for an overview]. The most directly rele
vant of these is the DENDRAL system (Buchanan and Lederberg, 1971), 
which has achieved a high level of performance on the task of mass spec
trum analysis. Much of the initial design of MYCIN was influenced by the 
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experience gained in building and using the DENDRAL system, which in 
turn was based in part on the work of Waterman ( 1970). 

There have been numerous attempts to create models of inexact rea
soning. Among the more recent is LeFaivre (1974), which reports on the 
implementation of a language to facilitate fuzzy reasoning. It deals with 
many of the same issues of reasoning under uncertainty that are detailed 
in Shortliffe and Buchanan (1975). 

The approach to natural language used in our system has thus far 
been quite elementary, primarily keyword-based. Some of the work re
ported by Colby et al. ( 197 4) suggested to us initially that this might be a 
sufficiently powerful approach for our purposes. This has proven generally 
true because the technical language of this domain contains relatively few 
ambiguous words. 

The chess-playing program of Zobrist and Carlson (1973) employs a 
knowledge representation that is functionally quite close to ours. The 
knowledge base of that system consists of small sequences of code that 
recognize patterns of pieces and then conclude (with a variable weighting 
factor) the value of obtaining that configuration. These workers report 
quite favorably on the ease of augmenting a knowledge base organized 
along these lines. 

The natural language understanding system of Winograd ( 1972) had 
some basic explanation capabilities similar to those described here and 
could discuss its actions and plans. 

As noted, part of our work has involved making it possible for the 
system to understand its own operation. Many of the explanation capabil
ities were designed and implemented with this in mind and it has signifi
cantly influenced design of the knowledge-acquisition system as well. These 
efforts are related in a general way to the long sequence of attempts to 
build program-understanding systems. Such efforts have been motivated 
by, among other things, the desire to prove correctness of programs [as in 
Waldinger and Levitt (1974) or Manna (1969)] and as a basis for automatic 
programming [as in Green et al. (1974)]. Most of these systems attempt to 
assign meaning to the code of some standard programming language like 
LISP or ALGOL. Our attempts have been oriented toward supplying 
meaning for the terms used in MYCIN's production rules (such as SAME). 
The task of program understanding is made easier by approaching it at 
this higher conceptual level, and the result is correspondingly less power
ful. We cannot, for instance, prove that the implementation of SAME is 
correct. We can, however, employ the representation of meaning in other 
useful ways. It forms, for example, the basis for much of the knowledge
acquisition program (see Section 5.6.3) and permits the explanation pro
gram to be precise in explaining the system's actions [see Davis ( 1976) for 
details]. 

Finally, similar efforts at computer-based consultants have recently 
been developed in different domains. The work detailed by Nilsson (1975) 
and Hart ( 197 5) has explored the use of a consultation system similar to 
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the one described here as part of an integrated vision, manipulation, and 
problem-solving system. Recent work on an intelligent terminal system 
(Anderson and Gillogly, 1977) has been based in part on a formalism that 
grew out of early experience with the MYCIN system. 

5. 5 Fundamental Assumptions 

We attempt here to examine some of the assumptions that are explicit and 
implicit in our use of production rules. This will help to suggest the range 
of application for these techniques and to indicate some of their strengths 
and limitations. 

There are several assumptions implicit in both the character of the 
rules and the ways in which they are used. First, it must be possible to 
write such judgmental rules. Not every domain will support this. Writing 
such rules appears to require a field that has attained a certain level of 
formalization, that includes perhaps a generally recognized set of primi
tives and at least a minimal understanding of basic processes. It does not 
seem to extend to one that has achieved a thorough, highly formalized 
level, however. Assigning certainty factors to a rule should thus be a rea
sonable task whose results are repeatable, but not a trivial one in which all 
rules are assigned a certainty of 1.0. 

Second, we require a domain in which there is a limited sort of inter
action between conceptual primitives. Our experience has suggested that 
a rule with more than about six clauses in the premise becomes concep
tually unwieldy. The number of factors interacting in a premise to trigger 
an action therefore has a practical (but no theoretical) upper limit. Also, 
the AND/OR goal tree mechanism requires that the clauses of a rule prem
ise can be set up as nonconfticting subgoals for the purposes of establishing 
each of them Uust as in robot problem solving; see Fahlman (1974) and 
the comment on side effects in Siklossy and Roach (1973)]. Failure of this 
criterion causes results that depend on the order in which evidence is 
collected. We are thus making fundamental assumptions concerning two 
forms of interaction-we assume (a) that only a small number of factors 
(about six) must be considered simultaneously to trigger an action, and (b) 
that the presence or absence of each of those factors can be established 
without adverse effect on the others. 

Also, certain characteristics of the domain will influence the continued 
utility of this approach as the knowledge base grows. Where there are a 
limited number of attributes for a given object, the growth in the number 
of rules in the knowledge base will not produce an exponential growth in 
search time for the consultation system. Thus, as newly acquired rules 
begin to reference only established attributes, use of these rules in a con
sultation will not produce further branching, since the attributes men-
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tioned in their premises will have already been traced. In addition, we 
assume that large numbers of antecedent rules will not be necessary, thus 
avoiding very long chains of forward deductions. 

There are essential assumptions as well in the use of this formalism as 
the basis for an interactive system. First, our explanation capabilities (re
viewed in Section 5.6.2) rest on the assumption that display of either a rule 
or some segment of the control flow is a reasonable explanation of system 
behavior. Second, much of the approach to rule acquisition is predicated 
on the assumption that experts can be "debriefed," that is, that they can 
recognize and then formalize chunks of their own knowledge and expe
rience and express them as rules. Third, the IF/THEN format of rules 
must be sufficiently simple, expressive, and intuitive that it can provide a 
useful language for expressing such formalizations. Finally, the system's 
mode of reasoning (a simple modus ponens chaining) must appear natural 
enough that a user can readily follow along. 

There is an important assumption, too, in the development of a system 
for use by two classes of users. Since the domain experts who educate the 
system so strongly influence its conceptual primitives, vocabulary, and 
knowledge base, we must be sure that the naive users who come for advice 
speak the same language. 

The approach we describe does not, therefore, seem well suited to. 
domains requiring a great deal of complex interaction between goals, or 
to those for which it is difficult to compose sound judgmental rules. As a 
general indication of potentially useful applications, we have found that 
cognitive tasks are good candidates. In one such domain, antibiotic therapy 
selection, we have met with encouraging success. 

Production Rules as a Knowledge 
Representation Scheme 

In Section 5.2 we outlined three design goals for the system we are devel
oping: utility (including competence), maintenance of an evolutionary 
knowledge base, and support of an interactive consultation. Our experi
ence has suggested that production rules offer a knowledge representation 
that greatly facilitates the accomplishment of these goals. Such rules are 
straightforward enough to make feasible many interesting features beyond 
performance, yet powerful enough to supply significant problem-solving 
capabilities. Among the features discussed below are the ability for expla
nation of system performance and for acquisition of new rules, as well as 
the general "understanding" by the system of its own knowledge base. In 
each case we indicate the current performance levels of the system and 
evaluate the role of production rules in helping to achieve this perfor
mance. 
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5.6.1 Competence 

The competence of the system has been evaluated in two studies in the 
past few years. In mid-1974, a semiformal study was undertaken, employ
ing five infectious disease experts not associated with the project (Shortliffe, 
1976). They were asked to evaluate the system's performance on 15 cases 
of bacteremia selected from current inpatients. We evaluated such param
eters as the presence of extraneous questions, the absence of important 
ones, the system's ability to infer the identity of organisms, and its ability 
to select appropriate therapy. The principal problem discovered was an 
insufficient number of rules concerned with evaluating the severity of a 
patient's illness. Nevertheless, the experts approved of MYCIN's therapy 
recommendation in 72% of the evaluations. (There were also considerable 
differences of opinion regarding the best therapy as selected by the experts 
themselves.) 

A more formal study is currently under way. Building on our expe
rience gained in 1974, we designed a more extensive questionnaire and 
prepared detailed background information on a new set of 15 patients. 
These were sent to five experts associated with a local hospital and to five 
others across the country. This will allow us to evaluate performance and, 
in addition, to measure the extent to which the system's knowledge base 
reflects regional trends in patient care. 3 

Advantages of Production Rules 

Recent problem-solving efforts in AI have made it clear that high perfor
mance of a system is often strongly correlated with the depth and breadth 
of the knowledge base. Hence the task of accumulation and management 
of a large and evolving knowledge base soon poses problems that dominate 
those encountered in the initial phases of knowledge-base construction. 
Our experience suggests that giving the system itself the ability to examine 
and manipulate its knowledge base provides some capabilities for confront
ing these problems. These are discussed in subsequent sections. 

The selection of production rules as a knowledge representation is in 
part a response to this fact. One view of a production rule is as a modular 
segment of code (Winograd, 1975) that is heavily stylized (Waterman, 1970; 
Buchanan and Lederberg, 1971). Each of MYCIN's rules is, as noted, a 
simple conditional statement: the premise is constrained to be a Boolean 
expression, the action contains one or more conclusions, and each is com
pletely modular and independent of the others. Such modular, stylized coding 
is an important factor in building a system that is to achieve a high level 
of competence. 

3Ed. note: This formal evaluation of the bacteremia rules was subsequently published (Yu et 
al., l 979b), as was a third study of the system's meningitis performance (Yu et al., l 979a). 
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For example, any stylized code is easier to examine than is unstylized 
code. This is used in several ways in the system. Initial integration of new 
rules into the knowledge base can be automated, since their premise and 
action parts can be systematically scanned, and the rules can then be added 
to the appropriate internal lists. In the question-answering system, inquir
ies of the form "Do you recommend clindamycin for bacteroides?" can be 
answered by retrieving rules whose premise and action contain the relevant 
items. Similarly, the detection of straightforward cases of contradiction and 
subsumption is made possible by the ability to examine rule contents. Styl
ized code also makes feasible the direct manipulation of individual rules, 
facilitating automatic correction of such undesirable interactions. 

The benefits of modularized code are well understood. Especially sig
nificant in this case are the ease of adding new rules and the relatively 
uncomplicated control structure that the modular rules permit. Since rules 
are retrieved because they are relevant to a specific goal (i.e., they mention 
that goal in their action part), the addition of a new rule requires only that 
it be added to the appropriate internal list according to the clinical param-

. eters found in its action. A straightforward depth-first search (the result 
of the backward chaining of rules) is made possible by the lack of inter
actions among rules. 

These benefits are common to stylized code of any form. Stylization 
in the form of production rules in particular has proved to be a useful 
formalism for several reasons. In the domain of deductive problems es
pecially, it has proven to be a natural way of expressing knowledge. It also 
supplies a clear and convenient way of expressing modular chunks of 
knowledge, since all necessary context is stated explicitly in the premise. 
This in turn makes it easier to ensure proper retrieval and use of each 
rule. Finally, in common with similar formalisms, one rule never directly 
calls another. This is a significant advantage in integrating a new rule into 
the system-it can simply be "added to the pot" and no other rule need 
be changed to ensure that it is called (compare this with the addition of a 
new procedure to a typical ALGOL-type program). 

Shortcomings of Production Rules 

Stylization and modularity also result in certain shortcomings, however. It 
is, of course, somewhat harder to express a given piece of knowledge if it 
must be put into a predetermined format. The intent of a few of the rules 
in our system is thus less than obvious to the naive user even when trans
lated into English. The requirement of modularity (along with the uni
formity of the knowledge base) means all necessary contextual information 
must be stated explicitly in the premise, and this at times leads to rules 
that have awkwardly long and complicated premises. 

Another shortcoming in the formalism arises in part from the back
ward-chaining control structure. It is not always easy to map a sequence 
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of desired actions or tests into a set of production rules whose goal-directed 
invocation will provide that sequence. Thus, while the system's perfor
mance is reassuringly similar to some human reasoning behavior, the cre
ation of appropriate rules that result in such behavior is at times nontrivial. 
This may in fact be due more to programming experience that is oriented 
primarily toward ALGOL-like languages rather than to any essential char
acteristic of production rules. After some experience with the system we 
have improved our skill at "thinking backward." 

A final shortcoming arises from constraining rule premises to contain 
"pure" predicates.4 This forces a pure problem reduction mode in the use 
of rules: each clause of a premise is set up as an independent goal, and 
execution of the action should be dependent solely on the success or failure 
of the premise evaluation, without referencing the precise value of that 
evaluation. It is at times, however, extremely convenient to write what 
amounts to a "for each" rule, as in "for each organism such that ... con
clude .... " A few rules of this form are present in the system (including, 
for example, the meta-rule in Figure 5-7), and they are made to appear 
formally like the rest by allowing the premise to compute a value (the set 
of items that satisfy the premise) that is passed to the action clause via a 
global variable. While this has been relatively successful, the violation of 
the basic formalism results in other difficulties-in particular, in the ex
planation system, which produces somewhat murky explanations of such 
rules. We are working toward a cleaner solution of this problem. 

5.6.2 Explanation 

Augmentation or modification of any knowledge base is facilitated by the 
ability to discover what knowledge is currently in the system and how it is 
used. The system's acceptance (especially to a medical audience) will be 
strongly dependent on the extent to which its performance is natural (i.e., 
humanlike) and transparent. Lack of acceptance of some applications pro
grams can be traced to their obscure reasoning mechanisms, which force 
the user to accept or reject advice without a chance to discover its basis. 
One of our original design criteria, then, was to give the system the ability 
to provide explanations of its behavior and knowledge. It soon became 
evident that an approach relying on some form of symbolic reasoning 
(rather than, for example, statistics) would make this feasible. This was one 
of the primary reasons behind the choice of the production rule represen
tation, and it has continued to influence the program's development. 

4That is, a predicate that returns a value indicating only success or failure. Since we use a 
multi-valued logic, the predicate functions in rule premises return a number between 0 and 
I. The alternative approach is to allow any non-NIL value to indicate success (e.g., the MEM
BER function in LISP). 
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(a) ** HOW DID YOU DECIDE THAT ORGANISM-1 MIGHT BE AN E.COLI? 
I used RULE021 to conclude that the identity of ORGANISM-1 is e.coli. 

This gave a cumulative CF of (.47). 
Then I used RULE084 to conclude that the identity of ORGANISM-1 is e.coli. This gave a cumulative CF of 

(.55). 
Finally, I used RULE003 to conclude that the identity of ORGANISM-1 is e.coli. This gave a cumulative CF 

of (.74). 

(b) **DID YOU USE RULE 163 TO FIND OUT ANYTHING ABOUT ORGANISM-1? 
RULE163 was tried in the context of ORGANISM-1, but it failed because it is not true that the patient has 

had a genito-urinary tract manipulative procedure (clause 3). 

(c) **DID RULE 116 TELL YOU ANYTHING ABOUT INFECTION-1? 
No. RULE116 would be relevant to the primary-bacteremia when applied to ORGANISM-1. 
But clause 2 ("the gram stain of the organism is not known") was already known to be false for 

ORGANISM-1, so the rule was never tried. 

(d) ** WHY DIDN'T YOU CONSIDER STREPTOCOCCUS AS A POSSIBILITY FOR ORGANISM-1? 
The following rule could have been used to determine that the identity of ORGANISM-1 was streptococcus: 

RULE033 
But clause 2 ("the morphology of the organism is coccus") was already known to be false for 

ORGAN ISM-1, so the rule was never tried. 

(e) ** DO YOU RECOMMEND CLINDAMYCIN FOR BACTEROIDES? 
Yes. 
RULE060 
If the identity of the organism is bacteroides 
Then I recommend therapy be chosen from among the following: 

CHLORAMPHENICOL, CLINDAMYCIN, RIFAMPIN, ERYTHROMYCIN, CARBENICILLIN 
TETRACYCLINE, LINCOMYCIN 

(f) ** IS BLOOD A STERILE SITE? 
Yes, blood is one of those sites that are normally sterile. 

(g) ** WHAT ARE THE ORGANISMS ASSOCIATED WITH THE GASTRO-INTESTINAL TRACT? 
The likely pathogens associated with the gastro-intestinal tract are: ENTEROCOCCUS, CLOSTRIDIUM

GANGRENE, BACTEROIDES, KLEBSIELLA, PSEUDOMONAS, E.COLI, ENTEROBACTER, PROTEUS. 

FIGURE 5-10 Examples of natural language question-answer
ing capabilities. Questions (a)-(d) reference a specific consul
tation, while (e)-(g) are general inquiries answered from the 
system's knowledge base. 

Our initial efforts at explanation and question answering were based 
on three capabilities: (1) to display on demand during the consultation the 
rule currently being invoked, (2) to record rules that were invoked, and, 
after the consultation, to be able to associate specific rules with specific 
events (questions and conclusions) to explain why each of them happened, 
and (3) to search the knowledge base for a specific type of rule in answer 
to inquiries from the user. The first of these could be easily implemented 
via the single-word command format described below. 

The latter two were intended for use after the consultation and hence 
were provided with a simple natural language front end. Examples are 
shown in Figure 5-10 [additional examples can be found in Shortliffe et 
al., ( 197 5)]. Note that the capability for answering questions of type (2) 
has been extended to include inquiries about actions the program failed to 
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take [question (d), Figure 5-10]. This is based on the ability of the expla
nation system to simulate the control structure of the consultation system 
and can be extremely useful in deciphering the program's behavior. For 
questions of type (3) [question (e) in Figure 5-10] the search through the 
knowledge base is directed by a simple parsing of the question into a re
quest for a set of rules, with constraints on premise and/or action contents. 
The retrieval of relevant rules is guided primarily by preestablished (but 
automatically generated) lists that indicate premise and action contents. 

Some generalization of and extensions to the methodology of ( 1) and 
(2) have been motivated by two shortcomings. Displaying the current rule 
is not particularly informative if the rule is essentially definitional and 
hence conceptually trivial. The problem here is the lack of a good gauge 
for the amount of information in a rule. Recording individual rule invo
cations, questions, and conclusions is useful, but, as a record of individual 
events, it fails to capture the context and ongoing sequence. It is difficult 
therefore to explain any event with reference to anything but the specific 
information recorded with that event. 

Two related techniques were developed to solve these problems. First, 
to provide a metric for the amount of information in a rule, we use (in a 
very rough analogy with information theory) the function ( - log CF). Rules 
that are definitional (CF = 1) have by this measure no information, while 
those that express less obvious implications have progressively more infor
mation. The measure is clearly imperfect, since, first, CF's are not proba
bilities, and there is thus no formal justification that ( - log CF) is a mean
ingful measure. Second, any sophisticated information content measure 
should factor in the state of the observer's knowledge, since the best ex
planations are those that are based on an understanding of what the ob
server fails to comprehend. Despite these shortcomings, however, this heu
ristic has proved to be quite useful. 

To solve the second problem (explaining events in context) the process 
of recording individual rule invocations has been generalized: all the basic 
control functions of the system have been augmented to leave behind a 
history of each of their executions. This internal trace is then read by 
various parts of the explanation system to provide a complete, in-context 
explanation of any part of the system's behavior. 

Because the consultation process is essentially one of search through 
an AND/OR goal tree, inquiries during the course of a consultation fall 
quite naturally into two types: WHY a question was asked, and HOW a 
conclusion was (or will be) reached. The first of these looks "up" the goal 
tree, in examining higher goals, while the second looks "down" in exam
ining rules that may help achieve a goal. This part of the system's expla
nation capability can thus be viewed in general as a process of tree traversal. 
By combining this concept with the information content metric, we make 
possible explanations in varying levels of detail: the tree may be traversed 
in steps whose information content size is specified by the user, rather than 
simply stepping from goal to goal. At the start of the traversal process, 
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In this series, how many of the cultures were positive for the e.coli 
(ORGANISM-1)? 

{typical system prompt} 

**WHY {request from user to determine motivation for question} 

[i.e. WHY is it important to determine the number of cultures which were 
positive for the organism?] 

[1.0] This will help to determine whether there is significant disease 
associated with this occurrence of the organism. 

It has already been established that 
[1.1] the culture was taken from a sterile source 
[1.2] the number of cultures in the series is greater than 2 

Therefore, if 
[1.3] the number of cultures which were positive for ORGANISM-1 

is greater than 2 
Then there is suggestive evidence (.5) that there is significant disease 

associated with this occurrence of the e.coli (ORGANISM-1). 
[RULE049] 

{system's rephrasing of the WHY 
question, and answer} 

**WHY {repeated WHY to determine relevance of previous explanation} 

[i.e. WHY is it important to determine if there is significant disease 
associated with this occurrence of the organism?] 

[2.0] This will help to determine a diagnosis for which the infection should 
be treated. 

It has already been established that 
[2.1] the infection is not one of: primary-bacteremia, meningitis 
[2.2] for some current culture of the patient it is true that the site 

of the culture is blood 
Therefore, if 

[2.3] there is significant disease associated with this occurrence of 
the organism 

Then 
it is definite (1.0) that the diagnosis for which the infection should 
be treated is secondary-bacteremia 
[RULE103] 

FIGURE 5-11 Examples of explanation capabilities. User in
put is in boldface capital letters and follows the double aster
isks. Expansion of each WHY (or HOW) question (enclosed in 
square brackets) is produced by the system to ensure that the 
user is aware of the system's interpretation of the query. 

"information distance" from the current goal to the top of the tree is nor
malized to 9. The argument to the WHY command (an integer between 1 
and 10, assumed to be 1 if absent) is then taken to indicate some part of 
that distance. Thus WHY indicates an explanation that encompasses ap
proximately one-third of the total "conceptual" distance. Repeated WHY 
questions have the effect of stepping "up" the goal tree. Examples are 
shown in Figure 5-11; additional examples are found in Davis and Lenat 
(1982). Similarly, HOW commands step "down" the tree. This can result 
in examining either branches that have already been traversed (as in Figure 
5-12) or those that have yet to be tried (in which case the question becomes 
"HOW will you determine ... "). 
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**HOW 1.1 

[i.e. HOW was it determined that the culture was taken from a sterile 
source?] 

{the 1.1 refers to the information in 
the line labeled [1. 1] in Figure 5-11} 

[3.1] RULE001 was used to conclude that there is suggestive evidence 
(.7) that the culture was taken from a sterile source. 

[3.2] RULE022 was used to conclude that there is strongly 
suggestive evidence (.8) that the culture was taken from a 
sterile source. 

**HOW 3.1 
[i.e. HOW was RULE001 used?] 

It has already been established that 
[4.1] the site of the culture is one of: those sites from which the 

sterility of cultures depends upon the method of collection 
[4.2] the method of collection of the culture is one of: the 

recognized methods of collection associated with the site of 
the culture, and 

[4.3] it is not known whether care was taken in collecting the 
culture 

Therefore 
there is strongly suggestive evidence (.8) that the culture was 
taken from a sterile source 
[RULE022] 

{another request from the user} 

FIGURE 5-12 Examples of explanation capabilities-HOW 
questions. 

The system's fundamental approach to explanation is thus to display 
some recap of its internal actions, a trace of its reasoning. The success of 
this technique is predicated on the claim that the system's basic approach 
to the problem is sufficiently intuitive that a summary of those actions is 
at least a reasonable basis from which to start. While it would be difficult 
to prove the claim in any formal sense, there are several factors that suggest 
its plausibility. 

First, we are dealing with a domain in which inference, and decision 
making in the face of uncertainty, is a primary task. The use of production 
rules in an IF/THEN format seems therefore to be a natural way of ex
pressing things about the domain, and the display of such rules should be 
comprehensible. Second, the use of such rules in a backward-chaining 
mode is, we claim, a reasonably intuitive scheme. Modus ponens is a well 
understood and widely (if not explicitly) used mode of inference. Thus the 
general form of the representation and the way it is employed should not 
be unfamiliar to the average user. More specifically, however, consider the 
source of the rules. They have been given to us by human experts who 
were attempting to formalize their own knowledge of the domain. As such, 
they embody accepted patterns of human reasoning, implying that they 
should be relatively easy to understand, especially for those familiar with 
the domain. As such, they will also attack the problem at what has been 
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judged an appropriate level of detail. That is, they will embody the right 
size "chunks" of the problem to be comprehensible. We are not, therefore, 
recapping the binary bit-level operations of the machine instructions for 
an obscure piece of code. We claim instead to be working with primitives 
and a methodology whose substance, level of detail, and mechanism are 
all well suited to the domain and to human comprehension, precisely be
cause they were provided by human experts. This approach provides what 
may plausibly be an understandable explanation of system behavior. 

This use of symbolic reasoning is one factor that makes the generation 
of explanations an easier task. For example, it makes the display of a back
trace of performance comprehensible (as, for example, in Figure 5-11). 
The basic control structure of the consultation system is a second factor. 
The simple depth-first search of the AND/OR goal tree makes HOW, 
WHY, and the tree traversal approach natural (as in Figures 5-11 and 
5-12). We believe several concepts in the current system are, however, fairly 
general in purpose and would be useful even in systems that did not share 
these advantages. Whatever control structure is employed, the mainte
nance of an internal trace will clearly be useful in subsequent explanations 
of system behavior. The use of some information metric will help to ensure 
that those explanations are at an appropriate level of detail. Finally, the 
explanation-generating routines require some ability to decipher the ac
tions of the main system. 

By way of contrast, we might try to imagine how a program based on 
a statistical approach could explain itself. Such systems can, for instance, 
display a disease that has been deduced and a list of relevant symptoms, 
with prior and posterior probabilities. No more informative detail is avail
able, however. When the symptom list is long, it may not be clear how each 
of the symptoms (or some combination of them) contributed to the con
clusion. It is more difficult to imagine what sort of explanation could be 
provided if the program were interrupted with interim queries while in 
the process of computing probabilities. The problem, of course, is that 
statistical methods are not good models of the actual reasoning process [as 
shown in the psychological experiments of Edwards (1968) and Tversky 
and Kahneman (1974)], nor were they designed to be. While they are 
operationally effective when extensive data concerning disease incidence 
are available, they are also for the most part "shallow," one-step techniques, 
which capture little of the ongoing process actually used by expert problem 
solvers in the domain. 5 We have found the presence of even the current 

5However, the reasoning process of human experts may not be the ideal model for all knowl
edge-based problem-solving systems. In the presence of reliable statistical data, programs 
using a decision-theory approach are capable of performance surpassing those of their human 
counterparts. In domains like infectious disease therapy selection, however, which are char
acterized by judgmental knowledge, statistical approaches may not be viable. This appears to 
be the case for many medical decision-making areas. See Chapter 2 and Shortliffe and 
Buchanan (1975) for further discussion of this point. 
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basic explanation capabilities to be extremely useful, and they have begun 
to pass the most fundamental test: it has become easier to ask the system 
what it did than to trace through the code by hand. The continued devel
opment and generalization of these capabilities is one focus of our present 
research. 

5.6.3 Knowledge Acquisition 

Since the field of infectious disease therapy is both large and constantly 
changing, it was apparent from the outset that the program would have to 
deal with an evolving knowledge base. The domain size made writing a 
complete set of rules an impossible task, so the system was designed to 
facilitate an incremental approach to competence. New research in the 
domain produces new results and modifications of old principles, so that 
a broad scope of capabilities for knowledge-base management was clearly 
necessary. 

As suggested above, a fundamental assumption is that the expert 
teaching the system can be "debriefed," thus transferring his or her knowl
edge to the program. That is, presented with any conclusion he or she 
makes during a consultation, the expert must be able to state a rule indi
cating all relevant premises for that conclusion. The rule must, in and of 
itself, represent a valid chunk of clinical knowledge. 

There are two reasons why this seems a plausible approach to knowl
edge acquisition. First, clinical medicine appears to be at the correct level 
of formalization. That is, while relatively little of the knowledge can be 
specified in precise algorithms (at a level comparable to, say, elementary 
physics) the judgmental knowledge that exists is often specifiable in rea
sonably firm heuristics. Second, on the model of a medical student's clinical 
training, we have emphasized the acquisition of new knowledge in the 
context of debugging (although the system is prepared to accept a new 
rule from the user at any time). We expect that some error on the system's 
part will become apparent during the consultation, perhaps through an 
incorrect organism identification or therapy selection. Tracking down this 
error by tracing back through the program's actions is a reasonably 
straightforward process that presents the expert with a methodical and 
complete review of the system's reasoning. He or she is obligated to either 
approve of each step or correct it. This means that the expert is faced with 
a sharply focused task of adding a chunk of knowledge to remedy a specific 
bug. This makes it far easier for the expert to formalize his or her knowl
edge than would be the case if he or she were told, for example, "tell me 
about bacteremia." 

This methodology has the interesting advantage that the context of 
the error (i.e., which conclusion was in error, what rules were used, what 
the facts of this case were, etc.) is of great help to the acquisition system 
in interpreting the expert's subsequent instructions for fixing the bug. The 
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error type and context supply the system with a set of expectations about 
the form and content of the anticipated correction, and this greatly facil
itates the acquisition process [details of this and much of the operation of 
the acquisition system are found in Davis and Lenat ( 1982)]. 

The problem of educating the system can be usefully broken down 
into three phases: uncovering the bug, transferring to the system the 
knowledge necessary to correct the bug, and integrating the new (or re
vised) knowledge into the knowledge base. As suggested above, the expla
nation system is designed to facilitate the first task by making it easy to 
review all of the program's actions. Corrections are then specified by add
ing new rules (and perhaps new values, attributes, or contexts) or by mod
ifying old ones. This process is carried out in a mixed-initiative dialogue 
using a subset of standard English [an early example is found in Shortliffe 
et al. (197 5 )]. 

The system's understanding of the dialogue is based on what may be 
viewed as a primitive form of "model-directed" automatic programming. 
Given some natural language text describing one clause of a new rule's 
premise, the system scans the text to find keywords suggesting which pred
icate function(s) are the most appropriate translations of the predicate(s) 
used in the clause. The appropriate template for each such function is 
retrieved, and the parsing of the remainder of the text is guided by the 
attempt to fill this in. 

If one of the functions were SAME, the template would be as shown 
in Figure 5-6. CNTXT is known to be a literal, which should be left as is; 
PARM signifies a clinical parameter (attribute); VALUE denotes a corre
sponding value. Thus the phrase "the stain of the organism is negative" 
would be analyzed as follows: the word stain in the system dictionary has 
as part of its semantic indicators the information that it may be used in 
talking about the attribute gram stain of an organism. The word negative is 
known to be a valid value of gram stain (although it has other associations 
as well). Thus one possible (and in fact the correct) parse is 

(SAME CNTXT GRAM GRAMNEG) 

or "the gram stain of the organism is gram-negative." 
Note that this is another example of the use of higher-level primitives 

to do a form of program understanding. It is the semantics of PARM and 
VALUE that guide the parse after the template is retrieved, and the se
mantics of the gram stain concept that allow us to ensure the consistency 
of each parse. Thus by providing semantics and treating such concepts as 
conceptual primitives at this level we make possible the capabilities shown, 
using relatively modest amounts of machinery. 

Other, incorrect parses are, of course, possible and are generated, too. 
There are three factors, however, that keep the total number of parses 
within reasonable bounds. First, and perhaps most important, we are deal
ing with a very small amount of text. The user is prompted for each clause 
of the premise individually, and while he or she may type an arbitrary 
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amount of text at each prompt, the typical response is less than a dozen 
words. Second, there is a relatively small degree of ambiguity in the semi
formal language of medicine. Therefore a keyword-based approach pro
duces only a small number of possible interpretations for each word. Fi
nally, ensuring the consistency of any given parse (e.g., that VALUE is 
indeed a valid value for PARM) further restricts the total number gener
ated. Typically, between 1 and 15 candidate parses result. 

Ranking of possible interpretations of a clause depends on expectation 
and internal consistency. As noted above, the context of the original error 
supplies expectations about the form of the new rule, and this is used to 
help sort the resulting parses to choose the most likely. 

As the last step in educating the system; we have to integrate the new 
knowledge into the rest of the knowledge base. We have only recently 
begun work on this problem, but we recognize two important general prob
lems. First, the rule set should be free of internal contradictions, sub
sum ptions, or redundancies. The issue is complicated significantly by the 
judgmental nature of the rules. While some inconsistencies are imme
diately obvious (two rules that are identical except for differing certainty 
factors), indirect contradictions (resulting from chaining rules, for exam
ple) are more difficult to detect. Inexactness in the rules means that we 
can specify only an interval of consistent values for a certainty factor. 

The second problem is coping with the secondary effects that the ad
dition of new knowledge typically introduces. This arises primarily from 
the acquisition of a new value, clinical parameter, or context. After the 
information required to specify the new structure has been requested, it is 
often necessary to update several other information structures in the sys
tem, and these in turn may cause yet other updating to occur. For example, 
the creation of a new value for the site of a culture involves a long sequence 
of actions: the new site must be added to the internal list ALLSITES; it 
must then be classified as either sterile or nonsterile and then be added to 
the appropriate list; if the site is nonsterile, the user has to supply the 
names of the organisms that are typically found there, and so forth. While 
some of this updating is apparent from the structures themselves, much 
of it is not. We are currently investigating methods for specifying such 
interactions and a methodology of representation design that minimizes 
or simplifies the interactions to begin with. 

The choice of a production rule representation does impose some 
limitations in the task of knowledge transfer. Since rules are simple con
ditional statements, they can at times fail to provide power sufficient to 
express more complex concepts. In addition, while expressing a single fact 
is often convenient, expressing a larger concept via several rules is at times 
somewhat more difficult. As suggested above, mapping from a sequence 
of actions to a set of rules is not always easy. Goal-directed chaining is 
apparently not currently a common human approach to structuring larger 
chunks of knowledge. 

Despite these drawbacks, we have found the production rule formal
ism a powerful one. It has helped to organize and build, in a relatively 
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short period, a knowledge base that performs at an encouraging level of 
competence. The rules are, as noted, a reasonably intuitive way of express
ing simple chunks of inferential knowledge, and one that requires no ac
quaintance with any programming language. While it may not be imme
diately obvious how to restate domain knowl_edge in production rule 
format, we have found that infectious disease experts soon acquire some 
proficiency in doing this with relatively little training. We have had expe
rience working with five different experts over the past few years, and in 
all cases had little difficulty in introducing them to the use of rules. While 
this is a limited sample, it does suggest that the formalism is a convenient 
one for structuring knowledge for someone unfamiliar with programming. 

The rules also appear capable of embodying appropriately-sized 
chunks of knowledge and of expressing concepts that are significant state
ments. They remain, however, straightforward enough to be built from 
relatively simple compositions of conceptual primitives (the attributes, val
ues, etc.). While any heavily stylized form of coding of course makes it 
easier to produce code, stylizing in the form of production rules in partic
ular also provides a framework that is structurally simple enough to be 
translatable into simple English. This means that the experts can easily 
comprehend the program's explanation of what it knows, and can equally 
easily specify knowledge to be added. 

5 7 Conclusions • 

The MYCIN system has begun to approach its design goals of competence 
and high performance, flexibility in accommodating a large and changing . 
knowledge base, and ability to explain its own reasoning. Successful appli
cations of our control structure with rules applicable to other problem areas 
have been (a) fault diagnosis and repair recommendations for bugs in an 
automobile horn system (van Melle, 1974), (b) a consultation system for 
industrial assembly problems (Hart, 1975), and (c) part of the basis for an 
intelligent terminal system (Anderson and Gillogly, 1977). 

A large factor in this work has been the production rule methodology. 
It has proved to be a powerful, yet flexible, representation for encoding 
knowledge and has contributed significantly to the capabilities of the sys
tem. 

ACKNOWLEDGMENTS 

The work reported here was funded in part by grants from the Bureau of 
Health Sciences Research and Evaluation (grant HS01544) and NIH (grant 
GM 29662), from the Advanced Research Projects Agency under ARPA 



130 Production Rules for a Knowledge-Based Consultation Program 

contract DAHCIS-73-C-8435, and from the Medical Scientist Training Pro
gram (NIH grant GM-81922). 

The MYCIN system has been developed by the authors in collabora
tion with: Drs. Stanley Cohen, Stanton Axline, Frank Rhame, Robert Illa, 
and Rudolpho Chave!-Pardo, all of whom provided medical expertise; Wil
liam van Melle, who made extensive revisions to the system code for effi
ciency and to introduce new features; Carlisle Scott, who (with William J. 
Clancey) designed and implemented the expanded natural language ques
tion-answering capabilities. 



6 
Towards the Simulation of 
Clinical Cognition: Taking 
a Present Illness by 
Computer 

Stephen G. Pauker, G. Anthony Gorry, 
Jerome P. Kassirer, and William B. Schwartz 

Remarkably little is known about the cognitive processes employed in the 
solution of clinical problems. This paucity of information is probably ac
counted for in large part by the lack of suitable analytic tools for the study 
of the physician's thought processes. In the following early work, which 
arose from Corry's observations outlined in Chapter 2, Pauker and his 
colleagues report on the use of the computer as a laboratory for the study 
of clinical cognition. 

Their experimental approach consisted of several elements. First, cog
nitive insights gained from the study of clinicians' behavior were used to 
develop PIP, a computer program designed to take the present illness of a 
patient with edema. The program was then tested with a series of prototyp
ical cases, and the present illnesses generated by the computer were com
pared to those taken by the clinicians in their group. Discrepant behavior 
on the part of the program was taken as a stimulus for further refinement 
of the evolving cognitive theory of the present illness. Corresponding re
finements were made in the program, and the process of testing and revision 
was continued until the program's behavior closely resembled that of the 
clinicians. 

The advances in computer science that made this kind of effort possible 
included goal-directed programming, pattern matching, and a large as
sociative memory, all of which were products of research in the AI field. 

From American journal of Medicine, 60: 981-996 (1976). Used with permission. 
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The iriformation used by the program is organized in a highly connected 
set of associations, which are then used to guide such activities as checking 
the validity of facts, generating and testing hypotheses, and constructing a 
coherent picture of the patient. As the program pursues its interrelated goals 
of information gathering and diagnosis, it uses knowledge of diseases and 
pathophysiology, as well as limited "common sense," to assemble dynamically 
many small problem-solving strategies into an integrated history-taking 
process. 

Although the work was preliminary and aimed more at understanding 
cognitive processes and the related computer science issues than at short
term development of a clinical tool, PIP provided important new insights 
regarding the links among cognitive psychology, computer science, and the 
expertise of clinical problem solving. The article is also noteworthy because 
it represented the first time that the concepts of artificial intelligence ap
peared in a clinical medical journal. In addition, the research challenges 
that grew out of the PIP work have to a large extent defined the research 
directions of the AIM researchers at Tufts-New England Medical Center 
and M.l. T. in subsequent years. 

6 I Introduction • 

During the last decade there has been increasing interest in the use of the 
computer as an aid to both clinical diagnosis and management. Programs 
have been written that can carry out a review of systems (Slack et al., 1966), 
guide in the evaluation of acid-base disorders (Bleich, 1969; 1972), rec
ommend the appropriate dose of digitalis (Peck et al., 1973; J elliffe et al., 
1972), and weigh the risks and benefits of alternative modes of treatment 
(Corry et al., 1973). Some of these programs have been used to a limited 
extent in clinical practice, whereas others are prototypes that, although not 
yet of practical value, offer promise for the future. All, however, have the 
underlying characteristics that they are highly structured and that they 
deal with well-defined, sharply constrained problems. In nearly all in
stances, the use of a formalism, such as a flow chart (Slack et al., 1966; 
Bleich, 1969; 1972), decision analysis (Corry et al., 1973), or a mathemat
ical algorithm (Peck et al., 1973; Jelliffe et al., 1972), is the guiding prin
ciple used to capture clinical expertise in the computer. 

There are, however, aspects of clinical medicine that cannot be reduced 
to formalisms, that is, situations in which a fixed recipe cannot provide the 
skilled guidance of the experienced clinician. To deal with this class of 
problems, new and more flexible strategies are under development, but 
work on such strategies is still in its embryonic phase (Shortliffe et al., 
1973; Kulikowski et al., 1973; Pople and Werner, 1972). 
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In this paper, we report on the development of a computer program 
that uses unstructured problem-solving techniques to take the history of 
the present illness of a patient with edema. 1 We have chosen the problem 
of present illness for investigation because it is prototypical of clinical prob
lems that demand complex problem-solving strategies. The present illness 
is, furthermore, the keystone on which a physician builds his or her di
agnosis and bases many subsequent management decisions. Although we 
have examined only a limited range of issues in the present program, we 
believe that our effort is a first step toward a full urnJerstanding of the way 
in which a physician carries out the history-taking process. 

Computer Science in the Study of Clinical 
Cognition 

Our attempt to simulate the unstructured problem-solving processes of the 
present illness falls into the domain of computer science known as artificial 
intelligence. Research in this field is concerned with producing computer 
programs that exhibit behavior that would be termed intelligent if such 
behavior were that of a person. Examples of such work are programs that, 
to a limited extent, understand English, make sense of certain kinds of 
visual scenes, and control the operations of robots (Winston, 1974). Such 
research has been underway for 20 years (Feigenbaum, 1963) and, during 
this time, some major lessons have been learned. Perhaps the most impor
tant discovery has been that formalisms alone, for example, cybernetics 
(Bell, 1962), mathematical logic (McCarthy, 1968), and information theory 
(Shannon and Weaver, 1949), cannot produce intelligent behavior in com
plex, real-world situations. It has become abundantly clear that no single, 
formal approach can accommodate the knowledge of first principles and 
the experience, common sense,2 and guesswork (Minsky, 1975) required 
for "intelligent" activities. 

Because of the obvious competence of people in carrying out activities 
that formalisms cannot, artificial intelligence researchers have turned more 
recently to the study of human problem solving (Winston, 1974; Minsky, 
1968). The study of natural intelligence, in fact, has become the central 
activity of artificial intelligence, and the experimental method of the field 
now emphasizes the use of computer systems as laboratories in which the-

1The program described here should be contrasted with the well-bounded "present illness 
algorithms" (Stead et al., 1972), which rely on flow charts for their implementation and which 
refer the patient to the physician for further questioning whenever the situation appears to 
be complex or serious. 
2By common sense, we mean all the ordinary, rather pedestrian knowledge about everyday 
occurrences that is possessed by reasonably intelligent people. 
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ories of human problem solving can be represented and tested (Newell 
and Simon, 1972). 

Conventional computer-programming concepts and structures have 
proven inadequate to express complex theories of human problem solving; 
however, new techniques have been developed that ameliorate these tech
nological difficulties. Greatly improved systems have been created for man
aging very large collections of facts, and new goal-directed programming 
languages have been designed for utilizing these facts in the solution of 
difficult problellls· Through the appropriate statement of goals, it is pos
sible to construct a program that brings knowledge to bear when it is re
quired. As new facts are obtained, such programs can dynamically organize 
many small problem-solving techniques into a coherent strategy that can 
respond flexibly to the changing picture of the world. 3 Equally important, 
as we shall discuss, is that these new languages provide means for giving 
a program advice as to when a particular piece of knowledge may be useful 
and how that knowledge should be applied to particular situations. 

We believe that the ideas and technology now emerging from artificial 
intelligence research should make possible realistic simulations of human 
problem-solving strategies. In assessing the feasibility of building an "in
telligent" program, however, some vital questions must be answered: 

What is expert knowledge? 

How much knowledge is required? 

How sh0uld it be organized and how should it be applied? 

The answers to these questions will come only from the careful study of 
real problem domains, and the success of such studies will be determined 
in large part by the boundedness of the problem domain under considera
tion. We believe that medicine, with its highly developed taxonomy, its 
codified knowledge base, the generally repetitive natu,re of the problem
sol ving encounters, and the existence of acknowledged experts, constitutes 
a promising problem domain because of its relatively well-bounded char
acter. We therefore believe that, building on the technology at hand, ac
ceptable progress can be made toward the development of sophisticated 

3Expressed in technical terms, these languages do not require a detailed, rigid program 
because of pattern-directed invocation. Each subroutine contains a statement of what it po
tentially can accomplish, so the programmer need not specify which subroutines (or even that 
any subroutine) should carry out a desired action. Rather, he or she can specify the desired 
effect or goal and ask the computer to identify and use those subroutines that appear relevant. 
This type of program organization has many applications, such as offering heuristic advice 
and generating hypotheses. As an example of one class of problem that is very difficult to 
solve with conventional techniques, but that is trivial with this type of language, consider the 
problem of logical deduction. The program is told "All Greeks are poets" and "Anyone born 
in Athens is a Greek." We then tell the program that "Constantine was born in Athens" and 
ask "Is Constantine a poet?" The program automatically deduces the answer, basically using 
the same process we would. That is, it sets about to find out if Constantine is a poet. It realizes 
that the way to answer this question is to determine if he is a Greek, and therefore it asks if 
Constantine was born in Athens. When it discovers that he was, the original question is 
answered. 
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systems that can deal competently with complex clinical problems. To 
achieve such progress, however, the essential first step is to examine in 
depth the nature of the clinician's cognitive processes. 

6 3 Methods of Procedure • 

6.4 

Our first efforts were directed toward elucidating a number of the prob
lem-solving strategies that physicians use in taking the history of the 
present illness of a patient with edema. This analytic effort was carried out 
through introspection and through direct observations of clinicians' prob
lem-solving behavior. The insights gained in this way were represented as 
a computer program [using the CONNIVER programming system (Suss
man and McDermott, 1972)] that incorporates the goal-directed techniques 
described in Section 6.2. The program was then tested with a series of 
prototypical cases in which edema was the presenting problem, and the 
questioning strategy followed by the program was compared to that of the 
physicians whom it was intended to simulate. 

It immediately became apparent that the program's behavior differed 
markedly from that of the physicians, but, by examining specific discrep
ancies, we were able to recognize components of the clinicians' reasoning 
process that had been misunderstood or neglected in our initial analysis. 
With these new insights, we revised the program and evaluated its history
taking performance again. With each iteration of this process, the perfor
mance of the program improved and our insights into the cognitive process 
deepened. The study was terminated when the program closely simulated 
the manner in which the physician members of the team take the present 
illness of a patient with edema.4 

Examples of Computer-Generated Analyses 
of Present Illnesses 

Figure 6-1 presents a portion of a typical dialogue between a user (a phy
sician) and the program. The language of both the questions and the com
puter-generated summaries (Figures 6-2 through 6-5) is rather stilted be
cause most of our effort has been devoted to examining the history-taking 
process, not to producing a polished output. Each case demonstrates the 
program's use of somewhat different overall strategies of history taking. 

40ur program simulates the behavior of the particular physicians in our group. The question 
of differences in problem-solving behavior among physicians is one we intend to pursue 
further. 
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PRESENTING PROBLEM: A YOUNG MAN WITH MASSIVE PEDAL EDEMA 

1A IS PEDAL EDEMA, WHICH IS MASSIVE, 
1. FOR-DAYS? 
2. FOR-WEEKS? 
3. FOR-MONTHS? 
4. FOR-YEARS? 

18 IS IT, 
1. FIRST-TIME? 
2. INFREQUENT? 
3. OCCASIONAL? 
4. FREQUENT? 

1C IS IT, 
1. WITHOUT-TEMPORAL-PATTERN? 
2. WORSE-IN-MORNING? 
3. WORSE-IN-EVENING? 

10 IS IT, 
1. SYMMETRICAL? 
2. ASYMMETRICAL? 

1E IS IT, 
1. PITTING? 
2. NON-PITTING? · 

IF IS IT, 
1. ERYTHEMATOUS? 
2. NOT ERYTHEMATOUS? 

1G IS IT, 
1. PAINFUL? 
2. NOT PAINFUL? 

2 WELL, IS THERE DYSPNEA? 

3 BY THE WAY, IS THERE HEAVY ALCOHOL CONSUMPTION? 

3A IS ALCOHOL CONSUMPTION, 
1. NONE? 
2. RARE? 
3. SOCIAL? 

4 TELL ME, IS THERE JAUNDICE? 

5 TELL ME, WAS THERE PROTEINURIA IN THE PAST? 

5A IS THERE A LARGE-POLICY LIFE INSURANCE? 

5A1 IS LIFE INSURANCE, 
1. NONE? 
2. UNABLE-TO-OBTAIN? 
3; SMALL-POLICY? 

5B IS THERE SERVED-IN ARMED FORCES? 

6 WELL, IS THERE VARICOSE VEINS? 

7 WAS THERE EDEMA IN THE PAST? 

8 WELL, IS THERE ANY HEMATURIA? 

BA IS THERE ... 

>>1 

>>1 

>>3 

>>1 

>>1 

>>2 

>>2 

>>NO 

>>NO 

>>3 

>>NO 

>>UNKNOWN 

>>NO 

>>3 

>>YES 

>>NO 

>>NO 

>>NO 

>>NO 

FIGURE 6-1 Case 1. Initial portion of a representative present 
illness dialogue. The questions were asked by the computer, and 
the responses (preceded by > >) are those of the user. The com
plete present illness analysis, as generated by the computer, is 
shown in Figure 6-2. 
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PRESENTING PROBLEM: A YOUNG MAN WITH MASSIVE PEDAL EDEMA 

THIS CASE CAN BE SUMMARIZED AS FOLLOWS: 

THIS IS A YOUNG MAN WHO HAS PEDAL EDEMA WHICH IS NOT-PAINFUL, NOT-ERYTHEMATOUS, 
PITTING, SYMMETRICAL, WORSE-IN-EVENING, FIRST-TIME, FOR-DAYS AND MASSIVE. HE DOES NOT 
HAVE DYSPNEA. HE HAS SOCIAL ALCOHOL CONSUMPTION. HE DOES NOT HAVE JAUNDICE. IT IS NOT 
EXPLICITLY KNOWN WHETHER IN THE PAST HE HAD PROTEINURIA, BUT HE HAS SMALL-POLICY LIFE 
INSURANCE, AND HE HAS SERVED IN ARMED FORCES. HE DOES NOT HAVE VARICOSE VEINS. IN THE 
PAST HE DID NOT HAVE EDEMA. HE DOES NOT HAVE HEMATURIA. HE HAS NORMAL BUN. 
HE HAS NORMAL CREATININE. HE HAS PERI-ORBITAL EDEMA, WHICH IS WORSE-IN-MORNING, FIRST
TIME, FOR-DAYS AND SYMMETRICAL. HE HAS LOW ALBUMIN CONCENTRATION. HE HAS HEAVY 
PROTEINURIA, WHICH IS >5GRAMS/24HRS. HE HAS MODERATELY-ELEVATED, RISING WEIGHT. IN THE 
RECENT PAST HE DID NOT HAVE PHARYNGITIS. IN THE RECENT PAST HE HAD NOT-ATTENDED 
SCHOOL. IN THE RECENT PAST HE HAD NOT-ATTENDED SUMMER CAMP. IN THE RECENT PAST HE HAD 
NOT BEEN EXPOSED TO STREPTOCOCCI. IN THE RECENT PAST HE DID NOT HAVE FEVER. IT IS SAID, 
BUT HAS BEEN DISREGARDED, THAT HE HAS RED-CELL-CASTS-IN URINARY SEDIMENT. HE DOES NOT 
HAVE JOINT PAIN. HE DOES NOT HAVE RASH. HE HAS NEGATIVE ANA. HE DOES NOT HAVE FEVER. HE 
HAS NOT-RECEIVED ANTIBIOTIC. HE DOES NOT HAVE ANEMIA. IN THE PAST HE DID NOT HAVE 
HEMATURIA. 

DIAGNOSES THAT HAVE BEEN ACCEPTED ARE: NEPHROTIC SYNDROME AND SODIUM RETENTION. 

THE LEADING HYPOTHESIS IS IDIOPATHIC NEPHROTIC SYNDROME. 

HYPOTHESES BEING CONSIDERED: 

IDIOPATHIC NEPHROTIC SYNDROME 
ACUTE GLOMERULONEPHRITIS 
HENOCH-SCHOENLEIN PURPURA 

A. 
fit of case 

to hypothesis 

0.80 
0.22 
0.07 

B. 
fraction 

of findings 
explained by 
hypothesis 

0.37 
0.27 
0.10 

FIGURE 6-2 Case 1. Computer-generated summary of present 
illness of a patient with idiopathic nephrotic syndrome. Note 
that the diagnosis was not available to the computer; the pro
gram was provided only with the description of the presenting 
problem. The ranking at the bottom of the figure is based on 
the average of the "fit" of the case of the hypothesis (column 
A) and the fraction of the findings explained by the hypothesis 
(column B). For details of the evaluation (scoring) procedure) 
see text. 

average 
of A and B 

0.58 
0.24 
0.09 

Case 1. Figure 6-2 shows the computer-generated summary of Case 
1, a patient with idiopathic nephrotic syndrome. The computer was given 
as the chief complaint "a young man with massive pedal edema." The 
behavior of the program can be briefly summarized as follows. The com
puter characterized the edema in detail and, in light of the specific find
ings, turned to questions designed to elucidate etiology. After quickly de
termining that there was no history suggestive of congestive heart failure, 
alcoholic cirrhosis, varicosities, or renal failure, it noted that the patient 
had several findings strongly suggestive of nephrotic syndrome. The pro
gram then initiated a search for causes of the nephrotic syndrome, first 
exploring the possibility that the patient was suffering from poststrepto-
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PRESENTING PROBLEM: A MIDDLE-AGED WOMAN WITH PEDAL EDEMA 

THE CASE CAN BE SUMMARIZED AS FOLLOWS: 

THIS IS A MIDDLE-AGED WOMAN, WHO HAS PEDAL EDEMA, WHICH IS NOT-PAINFUL, NOT
ERYTHEMATOUS, PITTING, SYMMETRICAL, 4 +, WITHOUT-TEMPORAL-PATTERN, OCCASIONAL AND FOR
WEEKS. SHE DOES NOT HAVE DYSPNEA. SHE HAS HEAVY ALCOHOL CONSUMPTION. SHE HAS 
JAUNDICE. SHE HAS PAINFUL HEPATOMEGALY. SHE HAS SPLENOMEGALY. SHE HAS ASCITES. SHE HAS 
PALMAR ERYTHEMA. SHE HAS SPIDER ANGIOMATA. SHE DOES NOT HAVE PAROTID ENLARGEMENT. SHE 
HAS PROLONGED PROTHROMBIN TIME. SHE HAS MODERATELY-ELEVATED SGPT. SHE HAS 
MODERATELY-ELEVATED SGOT. SHE HAS MODERATELY-ELEVATED LOH. SHE HAS NOT RECEIVED 
BLOOD TRANSFUSIONS. SHE HAS NOT EATEN CLAMS. SHE DOES NOT HAVE ANOREXIA. SHE HAS 
MELENA. SHE DOES NOT HAVE HEMATEMESIS. SHE HAS LOW SERUM IRON. SHE HAS ESOPHAGEAL 
VAR ICES. 

DIAGNOSES THAT HAVE BEEN ACCEPTED ARE: ALCOHOLISM AND GI BLEEDING. 
THE LEADING HYPOTHESIS IS CIRRHOSIS. 

HYPOTHESES BEING CONSIDERED: 
A. B. 

fit of case fraction 
to hypothesis of findings 

explained by 
hypothesis 

CIRRHOSIS 0.72 0.78 
HEPATITIS 0.75 0.30 
PORTAL HYPERTENSION 0.72 0.17 
CONSTRICTIVE PERICARDITIS 0.17 0.13 

FIGURE 6-3 Case 2. Computer-generated summary of the 
present illness of a patient with cirrhosis of the liv~r. The for
mat is identical to that of Figure 6-2. 

average 
of A and B 

0.75 
0.53 
0.45 
0.15 

coccal glomerulonephritis and then looking for evidence of a systemic dis
ease such as lupus erythematosus. Finding no evidence of a systemic dis
order, the program made the diagnosis of nephrotic syndrome, probably 
idiopathic in character, but indicated that acute glomerulonephritis re
mained as a second, albeit much less likely, possibility. Note, incidentally, 
that the program disregarded the statement that red cell casts had been 
seen because it concluded that in the absence of hematuria the report of 
red cell casts was almost certainly in error. Also note that the questions 
about life insurance and military service were utilized because normal ear
lier physical examinations can suggest that proteinuria had not been 
present in the past. 

Case 2. Figure 6-3 summarizes the present illness of a patient with 
Laennec's cirrhosis. The computer was given as the chief complaint "a 
middle-aged woman with pedal edema." In response, it obtained a detailed 
description of the character of the edema and then undertook an explo
ration of possible etiologies. On finding that the patient drank large quan- · 
tities of alcohol, it turned to cirrhosis as a working hypothesis and quickly 
uncovered many stigmata of liver disease. The program also briefly ex-
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PRESENTING PROBLEM: A YOUNG MAN WITH PEDAL EDEMA AND OLIGURIA 

THE CASE CAN BE SUMMARIZED AS FOLLOWS: 

THIS IS A YOUNG MAN, WHO HAS OLIGURIA. HE HAS PEDAL EDEMA, WHICH IS NOT-PAINFUL, NOT
ERYTHEMATOUS, PITTING, SYMMETRICAL, WITHOUT-TEMPORAL-PATTERN, FIRST-TIME AND FOR-DAYS. 
IT HAS BEEN DENIED THAT HE HAS RECENT SCARLET FEVER. IN THE RECENT PAST HE DID NOT HAVE 
PHARYNGITIS. IN THE RECENT PAST HE HAD NOT-ATTENDED SUMMER CAMP. IN THE RECENT PAST HE 
HAD NOT-BEEN-EXPOSED-TO STREPTOCOCCI. HE HAS NOT-RECEIVED RADIOGRAPHIC CONTRAST 
MATERIAL. HE HAS NOT-RECEIVED NEPHROTOXIC DRUGS. IN THE RECENT PAST HE DID NOT HAVE 
HYPOTENSION. HE HAS MODERATELY-ELEVATED URINE SODIUM. HE HAS URINE SPECIFIC GRAVITY 
WHICH IS ISOSTHENURIC. HE HAS NO-RED-CELLS-IN, NO-WHITE-CELLS-IN, RENAL-CELLS-IN, NO
RENAL-CELL-CASTS-IN, HYALINE-CASTS-IN URINARY SEDIMENT. IT IS NOT EXPLICITLY KNOWN 
WHETHER HE HAS BEEN-EXPOSED-TO A CLEANING FLUID. HE DOES NOT HAVE HYPOTENSION. HE 
DOES NOT HAVE TACHYCARDIA. HE HAS NORMAL TURGOR-AND-PERFUSION-OF SKIN. HE HAS 
MODERATELY-ELEVATED, RISING WEIGHT. 

DIAGNOSES THAT HAVE BEEN ACCEPTED ARE: SODIUM RETENTION, EXPOSURE TO NEPHROTOXINS, 
EXPOSURE TO HEPATOTOXINS AND ACUTE RENAL FAILURE. 

THE LEADING HYPOTHESIS IS ACUTE TUBULAR NECROSIS. 

HYPOTHESES BEING CONSIDERED: 
A. B. 

fit of case fraction 
to hypothesis of findings 

explained by 
hypothesis 

ACUTE TUBULAR NECROSIS 0.50 0.37 
ACUTE GLOMERULONEPHRITIS 0.20 0.21 
IDIOPATHIC NEPHROTIC SYNDROME 0.18 0.16 
CHRONIC GLOMERULONEPHRITIS 0.19 0.11 

FIGURE 6-4 Case 3. Computer-generated summary of the 
present illness of a patient. with acute tubular necrosis. The 
format is identical to that of Figure 6-2. 

average 
of 

A and B 

0.43 
0.20 
0.17 
0.15 

plored other etiologies of liver disease, such as the hepatitis induced by 
transfusions or by the ingestion of raw shellfish, but could find no evidence 
in support of these diagnoses. It then returned to the primary hypothesis 
of cirrhosis and, in searching for possible complications, noted the pres
ence of both esophageal varices and chronic gastrointestinal bleeding. It 
concluded that the patient had alcoholic cirrhosis and that hepatitis was 
an alternative, but much less likely, possibility. 

Case 3. Figure 6-4 shows the computer-generated summary of a pa
tient with acute tubular necrosis produced by carbon tetrachloride expo
sure. The computer was given as the chief complaint "a young man with 
edema and oliguria." The program immediately undertook a search for 
causes of acute renal failure. It first focused on the diagnosis of acute 
glomerulonephritis but could find no evidence of streptococcal exposure. 
It next explored the possibility of acute tubular necrosis but was unable to 
find an etiological factor. When the program later assessed the character
istics of the urine sediment, however, it noted many hallmarks of tubular 
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PRESENTING PROBLEM: A MIDDLE-AGED MAN WITH ASCITES AND PEDAL EDEMA 

THE CASE CAN BE SUMMARIZED AS FOLLOWS: 

THIS IS A MIDDLE-AGED MAN WHO HAS ASCITES. HE HAS PEDAL EDEMA, WHICH IS NOT-PAINFUL, NOT
ERYTHEMATOUS, PITTING, SYMMETRICAL, WORSE-IN-EVENING, OCCASIONAL AND FOR-MONTHS. HE 
HAS SOCIAL ALCOHOL CONSUMPTION. HE HAS HEPATOMEGALY. HE DOES NOT HAVE JAUNDICE.~HE 
DOES NOT HAVE PALMAR ERYTHEMA. HE DOES NOT HAVE SPIDER ANGIOMATA. HE DOES NOT HAVE 
PAROTID ENLARGEMENT. HE DOES NOT HAVE GYNECOMASTIA. HE DOES NOT HAVE TESTICULAR 
ATROPHY. HE HAS NORMAL BILIRUBIN. HE HAS NORMAL PROTHROMBIN TIME. HE HAS NORMAL SGPT. 
HE HAS NORMAL SGOT. HE HAS CHEST PAIN WHICH IS RELIEVED-BY-SITTING-UP, WITHOUT-RADIATION, 
MODERATE, OCCASIONAL, FOR-SECONDS AND SHARP. HE HAS EXERTIONAL DYSPNEA. HE HAS 
ORTHOPNEA. HE DOES NOT HAVE PAROXYSMAL NOCTURNAL DYSPNEA. HE HAS ELEVATED NECK 
VEINS. HE HAS KUSSMAUL'S SIGN. HE HAS PERICARDIAL KNOCK. HE HAS DISTANT HEART SOUNDS. HE 
HAS PERICARDIAL-CALCIFICATION-ON, NORMAL-HEART-SIZE-ON, CLEAR-LUNG-FIELDS-ON CHEST XRAY. 

THE LEADING HYPOTHESIS IS CONSTRICTIVE PERICARDITIS. 

HYPOTHESES BEING CONSIDERED: 

CONSTRICTIVE PERICARDITIS 
CONGESTIVE HEART FAILURE 

A. 
fit of 

case to 
hypothesis 

0.78 
0.44 

B. 
fraction of 

findings 
explained by 
hypothesis 

0.50 
0.21 

FIGURE 6-5 Case 4. Computer-generated summary of the 
present illness of a patient with constrictive pericarditis. The 
format is identical to that of Figure 6-2. 

average 
of 

A and B 

0.64 
0.32 

injury. Pursuing this lead, it soon uncovered an exposure to a cleaning 
fluid that it presumed contained carbon tetrachloride. It then explored the 
possibility that acute hypotension had also contributed to the development 
of the oliguria but could obtain no evidence in support of this hypothesis. 
Finally, it determined that body weight was increasing, and from this fact 
concluded that the patient was retaining sodium. Because the data base 
does not currently include the distinction between the retention of salt and 
the retention of free water, the program could not arrive at the correct 
interpretation of the weight gain, namely, that the overhydration was due 
to water retention per se. 

Case 4. Figure 6-5 gives the summary of the present illness of a man 
with constrictive pericarditis secondary to tuberculosis. The program was 
given as the chief com plaint "a middle-aged man with ascites and pedal 
edema." After further characterizing the edema, the computer focused on 
a hepatic etiology and found that the patient had an enlarged liver. Al
though subsequent questioning revealed only social alcohol consumption, 
the program persisted in its search for stigmata of cirrhosis. When none 
was found, it turned to a possible cardiac etiology and noted that chest 
pain was a prominent complaint; the pain was, however, more characteristic 
of pleural or pericardia! than of myocardial disease. It next found that 
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there was both neck vein distention and orthopnea, but that there was no 
paroxysmal nocturnal dyspnea. These clinical findings, in combination 
with the ascites, suggested the diagnosis of pericardia! disease. Further 
questioning then revealed many of the stigmata of constrictive pericarditis. 

Because even the experienced clinician often confuses constrictive per
icarditis with cirrhosis, it is understandable why the diagnosis of cirrhosis 
was pursued with such vigor. Note, however, that the program was deficient 
in that it failed to explore other etiologies of predominantly right-sided 
cardiac failure, such as cor pulmonale and multiple pulmonary emboli; 
this shortcoming is explained by the fact that the current knowledge base 
does not include information about these latter diagnoses. 

Nature of the Underlying Computer 
Programs 

In this section we shall first discuss the overall behavior of the program in 
terms of its major components and the way that these components interact. 
We shall then consider in detail the underlying processes used by the pro
gram. 

6.5.1 An Overview of the Present Illness Program 

In taking a history of the present illness, the program, much like the phy
sician, tries to develop a sufficient "understanding" of the patient's com
plaints to form a reasonable basis on which to evaluate the clinical problem 
and to lay the groundwork for subsequent management decisions. It ac
complishes this goal by undertaking two processes: information gathering 
and diagnosis. Although these two threads of the problem-solving process 
are interwoven, for clarity of exposition we shall consider them separately. 

By information gathering, we mean the accumulation of a profile of data 
concerning the patient. Because there are innumerable facts that could be 
gathered, one needs a sharp focus for this activity. This focus is obtained 
through the pursuit of a small set of diagnostic hypotheses that are sug
gested by the presenting complaints. 

The process of diagnosis, in contrast, is an attempt to infer the meaning 
of a constellation of given findings and does not involve the acquisition of 
additional information about the patient; rather, it is concerned with the 
processing of the available facts. When additional findings are required, 
the diagnostic process turns again to the information-gathering process. 
Thus the history-taking process is directed both at establishing what the facts 
are and at establishing what the facts mean (Feinstein, 1967). 
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In taking a present illness, our program uses the chief complaint to 
generate hypotheses about the patient's condition. It also actively seeks 
additional clinical information to accomplish a number of different tasks, 
including testing hypotheses and eliminating unlikely ones. Any of these 
activities may spawn further tasks, such as checking the validity of a newly 
discovered fact or asking about related findings. As will become evident, 
however, this brief description understates both the complexity of the pro
gram's behavior and the differences between this program and others pre
viously reported. 

6.5.2 The Basic Components of the Program 

The complexity of the program's behavior is the result of the interaction 
of the four factors schematically shown in Figure 6-6: (1) the patient-spe
cific data, (2) the supervisory program, (3) the short-term memory, and (4) 
the long-term (associative) memory. 

1. The patient-specific data. These are the facts provided by the user 
either spontaneously or in response to questions asked by the program. 
These data comprise the computer's knowledge about the patient. 

2. The supervisory program. The supervisory program guides the com
put~r in taking the present illness and oversees the operation of various 
subprocesses, such as selecting questions, seeking and applying relevant 
advice, and processing algorithms (such as flow charts). The principal goal 
of this supervisor is to arrive at a coherent formulation of the case, by 
quickly g~nerating and testing hypotheses and by excluding competing 
hypotheses. At the present time, there are about 300 potential questions 
that relate to over 150 different concepts that the program can employ in 
its information-gathering activities. 

3. The short-term memory. The short-term memory is the site in which 
data about the patient interact with general medical knowledge that is kept 
in long-term memory (see below). The supervisory program determines 
which aspects of this general knowledge enter the short-term memory and 
how such knowledge is melded with the patient-specific data that are under 
consideration. The amount of information in short-term memory is quite 
variable, depending on the complexity of the case and the number of active 
hypotheses. For a simple case, the short-term memory might contain only 
two or three hypotheses and the knowledge and deductions associated with 
them. In a complex or puzzling case, it might contain five or ten hy
potheses. 

4. The long-term (associative) memory. The long-term memory contains 
a rich collection of knowledge, organized into packages of closely related 
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A. 

PATIENT SPECIFIC 

DATA 

facts about 

patient 

8. 

questions 

SUPERVISORY PROGRAM 

facts knowledge 

D. 

SHORT-TERM 

MEMORY 

hypotheses 
LONG-TERM 

(ASSOCIATIVE) 
knowledge 

MEMORY 

FIGURE 6-6 Overview of program organization. Clinical data 
(A) are presented to the supervisory program (B), which places 
them in short-term memory (C). The supervisory program, after 
consulting both short-term (C) and long-term memories (D), 
generates hypotheses and moves the information associated 
with these hypotheses from long-term to short-term memory. 
The supervisory program then asks for additional patient-spe
cific data relevant to its hypotheses. At every stage, each hy
pothesis is evaluated (scored) by the program to determine 
whether it should be rejected, accepted, or considered further. 

facts called frames (Minsky, 1975). Frames are centered around diseases 
(such as acute glomerulonephritis), clinical states (such as nephrotic syn
drome), or physiologic states (such as sodium retention). Within each frame 
is a rich knowledge structure that includes prototypical findings (signs, 
symptoms, laboratory data), the time course of a given illness, and rules 
for judging how closely a given patient might match the disease or state 
that the frame describes. A typical example of a frame (nephrotic syn
drome) is shown in Figure 6-7. 

As shown in Figure 6-8, the frames are linked into a complex network. 
In the figure each frame is represented as a shaded sphere (diseases are 
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NAME: NEPHROTIC SYNDROME 
IS-A-TYPE-OF: CLINICAL STATE 
FINDING: LOW SERUM ALBUMIN CONCENTRATION 
FINDING: HEAVY PROTEINURIA 
FINDING: >5GRAMS/24HRS PROTEINURIA 
FINDING: MASSIVE SYMMETRICAL EDEMA 
FINDING: EITHER FACIAL OR PERI-ORBITAL AND SYMMETRICAL EDEMA 
FINDING: HIGH SERUM CHOLESTEROL CONCENTRATION 
FINDING: URINE LIPIDS PRESENT 
MUST-NOT-HAVE: PROTEINURIA ABSENT 
IS-SUFFICIEN.T: BOTH MASSIVE PEDAL EDEMA AND >5GRAMS/24HRS PROTEINURIA 
MAJOR SCORING: 

SERUM ALBUMIN CONCENTRATIONS 
LO: 1.0 
HIGH: -1.0 

PROTEINURIA: 
>5GRAMS/24HRS: 1.0 
HEAVY: 0.5 
EITHER ABSENT OR LIGHT: -1.0 

EDEMA: 
MASSIVE AND SYMMETRICAL: 1.0 
NOT MASSIVE BUT SYMMETRICAL: 0.5 
ERYTHEMATOUS: -0.2 
ASYMMETRICAL: -0.5 
ABSENT: -1.0 

MINOR SCORING: 
SERUM CHOLESTEROL CONCENTRATION: 

. HIGH: 1.0 
NOT HIGH: -1.0 

URINE LIPIDS: 
PRESENT: 1.0 
ABSENT: -0.5 

MAY-BE-CAUSED-BY: 
ACUTE GLOMERULONEPHRITIS, 
CHRONIC GLOMERULONEPHRITIS, 
NEPHROTOXIC DRUGS, 
INSECT BITE, 
IDIOPATHIC NEPHROTIC SYNDROME, 
SYSTEMATIC LUPUS ERYTHEMATOUS, OR 
DIABETES MELLITUS 

MAY-BE-COMPLICATED-BY: 
HYPOVOLEMIA 
CELLULITIS 

MAY-BE-CAUSE-OF: SODIUM RETENTION 
DIFFERENTIAL DIAGNOSIS: 

IF NECK VEINS ELEVATED, CONSIDER: CONSTRICTIVE PERICARDITIS 
IF ASCITES PRESENT, CONSIDER: CIRRHOSIS 
IF PULMONARY EMBOLI PRESENT, CONSIDER: RENAL VEIN THROMBOSIS 

FIGURE 6-7 A typical frame. Information about a disease, a 
physiologic state, etc., is stored in the form of a frame within 
the long-term memory. Included in a typical frame, as shown 
here for nephrotic syndrome, are descriptions of typical find
ings, numerical factors to be used in scoring, and links to other 
frames (e.g., MAY-BE-CAUSED-BY, MAY-BE-COMPLICATED
BY). There are also rules for excluding (MUST-NOT-HAVE) 
and satisfying (IS-SUFFICIENT) the fit of the frame to the case 
at hand. For further details, see text. 
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FIGURE 6-8 The long-term (associative) memory. The long
term memory consists of a rich collection of knowledge about 
diseases, signs, symptoms, pathologic states, real-world situa
tions, etc. Each point of entry into the memory allows access to 
many related concepts through a variety of associative links 
shown as rods. Each rod is labeled to indicate the kind of as
sociation it represents. Note that the dark gray spheres denote 
disease states, medium gray spheres denote clinical states (e.g., 
nephrotic syndrome) and light gray spheres denote physiologic 
states (e.g., sodium retention). Abbreviations used in this figure 
are Acute G.N. = acute glomerulonephritis, Chronic G.N. = 
chronic glomerulonephritis, VA~C = vasculitis, CIRR = cir
rhosis, Constr. Perie. = constrictive pericarditis, ARF = acute 
rheumatic fever, Na Ret. = sodium retention, SLE = systematic 
lupus erythematosus, i BP = acute hypertension, Glom. = 
glomerulitis, Strep. Inf. = streptococcal infection, Neph. 
Synd. = nephrotic syndrome. 

d a rk gr ay, clinical sta tes are m edium gray, and ph ysio logic sta tes a re light 
g ray), a nd the links be tween the frames a re re presented as labe led rod s. 
T hese links d epict a vari e ty of re lation s, such as MAY-BE-CAUS ED-BY 
and MAY-B E-COMPLI CAT ED-BY. 
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In addition to information about diseases and physiology, the network 
contains knowledge of the real world. This information is also organized 
into frames and is linked to areas of the associative memory in which such 
commonsense knowledge is relevant. 

The present program contains over 70 frames related to some 20 dif
ferent diseases and to a variety of clinical and physiologic states that are 
associated with these diseases. Frames typically contain 5 to 10 findings, 3 
or 4 exclusionary rules, 10 to 20 scoring parameters, and 5 to 10 links to 
other frames in the network. Because the frames are presented to the 
computer as separate descriptions, which the program links into the net
work, the addition of frames to the system is a relatively simple task. 

6.5.3 The Operation of the Program 

In this section, we shall consider in detail the individual processes by which 
the program combines patient-specific data and knowledge from the as
sociative memory to produce the behavior shown in the illustrative cases. 
Basically, the program alternates between asking questions to gain new 
information and integrating this new information into a developing picture 
of the patient. A typical cycle consists of ( 1) characterizing findings, (2) 
seeking advice on how to proceed, (3) generating hypotheses, (4) testing 
hypotheses, and (5) selecting questions. 

Characterizing Findings 

After being presented with the chief complaint, the supervisor retrieves 
from the associative memory a procedure that characterizes that complaint 
in detail. This procedure is a flow chart that follows a set pattern in eliciting 
such features as the location, severity, and duration of the complaint. The 
program uses this detailed description of the complaint to limit the number 
of hypotheses that it will later have to consider. 

Seeking Advice on How to Proceed 

One of the most important features of our program is its ability to assemble 
small history-taking strategies into an overall approach that is tailored to 
the case at hand. This ability is critically dependent on the availability of 
appropriate advice about efficient methods for the exploration and orga
nization of the case. Here we shall present three examples of the program's 
use of this facility: 

1. Advice can be given that alerts the supervisor to ask one or more ques
tions that will "zero in" on the presenting problem and thus, at the stage 
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of hypothesis generation (see below), limit the number of diagnostic 
possibilities that must be evaluated. 

2. Advice can be given that guides the supervisor in its evaluation of in
formation that is being presented. Such validity checks can be of several 
types. First, the program might point out that a finding itself is clearly 
in error, e.g., a weight gain of 50 pounds in 48 hours. Second, it might 
note that new information is inconsistent with other facts known about 
the patient, e.g., the presence of red cell casts in the absence of hema
turia. Finally, it might indicate that a new finding contradicts a conclu
sion already drawn about the case. 5 

3. Advice can be given that alerts the supervisor to errors that might stem 
from a patient's misinterpretation of a particular sign or symptom. For 
example, if a patient complains of "blood in the urine," the supervisor 
is told that dark urine, which is attributed by the patient to blood, may 
be caused by the presence of bile, myoglobin, or anthocyanins (from 
beets). 

Hypothesis Generation 

After the complaint has been characterized and all relevant advice has been 
acted upon, the supervisory program proceeds to generate working hy
potheses. Hypothesis generation consists of moving frames from long-term 
memory to short-term memory, where each frame plays a special role in 
guiding further exploration of the patient's problem. Frames can exist in 
one of four states: dormant, semiactive, active, and accepted. Initially, the 
short-term memory contains no frames; all frames are in the long-term 
memory and are said to be in the dormant state. In this nascent condition, 
however, some of the findings in the frames are associated with small, 
independent computer programs called daemons. A few of these daemons 
extend like tentacles from the frame into the short-term memory (see Fig
ure 6-9, BEFORE); these are primarily the daemons of those findings that 
are strongly suggestive of their associated frames. When the matching fact 
for a daemon is added to the short-term memory, the entire frame attached 
to the daemon is added to the short-term memory (see Figure 6-9, 
AFTER). As pointed out, this process is synonymous with forming a hy
pothesis. Those frames that have entered short-term memory as hy
potheses are called active. As is reflected in the AFTER half of Figure 
6-9, frames one link away from an active frame are also affected in that 
during the activation process they are pulled closer to short-term memory. 
Consequently, more tentacles from such frames can reach into memory 
where they can now watch for their matching facts. These related frames, 

5The latter two kinds of advice would not be provided in the initial cycle, which deals with 
the chief complaint, because, at such an early stage, the short-term memory would not contain 
any detailed information about the patient. 
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SHORT-TERM MEMORY 

FIGURE 6-9 Hypothesis generation. (The abbreviations are 
the same as those used in Figure 6-8.) BEFORE: in the nascent 
condition (when there are no hypotheses in short-term mem
ory), tentacles (daemons) from some frames in long-term mem
ory extend into the short-term memory, where each constantly 
searches for a matching fact. 
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~ 
SHORT-TERM MEMORY 

~ 

AFTER: the matching of fact and daemon causes the movement 
of the full frame (in this case, acute glomerulonephritis) into 
short-term memory. As a secondary effect, frames immediately 
adjacent to the activated frame move closer to short-term mem
ory and are able to place additional daemons therein. Note that, 
to avoid complexity, the daemons on many of the frames are 
not shown. 
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such as streptococcal infection (Strep. Inf. in Figure 6-9, AFTER), are not 
allowed, however, to enter short-term memory. Moreover, their relatives, 
that is, frames two links removed from the newly active frame (e.g., acute 
rheumatic fever), are not permitted to add more daemons on their own 
behalf. This two-stage limitation on hypothesis generation prevents an ex
plosive expansion of the number of hypotheses that the program must 
consider at one time. 

Those frames that have moved nearer to short-term memory and have 
added daemons to it are called semiactive. This state can be viewed as sort 
of thinking about something in the back of one's mind. If one of the 
daemons belonging to a semiactive frame finds a fact in short-term memory 
corresponding to its pattern, it of course causes the parent frame to be 
placed in short-term memory as a hypothesis and causes frames closely 
related to the new hypothesis to be pulled nearer to short-term memory. 

Hypothesis Testing 

Hypotheses generated by the program are evaluated to determine the ex
tent to which they constitute reasonable explanations for the patient's con
dition. There are two aspects of this process. First, the fit of the case to 
the hypothesis (i.e., to a given frame) is appraised to determine whether 
the hypothesis can be accepted or rejected or whether more facts should 
be collected. Second, each hypothesis is examined to determine the extent 
to which it can account for all of the facts in the case. 

The problem faced by the program in evaluating hypotheses is illus
trated in Figure 6-10. In case A, we have represented schematically a per
fect match between patient and disease prototype. An example of this 
situation would be a patient who has all the classic features of acute glom
erulonephritis and no other abnormal findings. More typically, however, 
findings are present that are not ordinarily seen in the state under consid
eration (case B, Figure 6-10), or findings characteristic of the state are 
missing from the patient (case C, Figure 6-10). The program uses numer
ical scores (to be discussed) to measure the degree of fit under each of 
these circumstances. 

The _fit of the case to the hypothesis serves to determine, as already men
tioned, whether an active hypothesis can be accepted or rejected on the 
basis of the facts at hand or whether more information should be obtained. 
To help with this decision, each frame contains specific rules. For example, 
if idiopathic nephrotic syndrome is the hypothesis under consideration, 
and the program then learns that the patient has had gross hematuria, 
an exclusionary rule rejects the hypothesis and permanently removes the 
nephrotic syndrome from short-term memory. On the other hand, if the 
patient has both edema and massive proteinuria (protein excretion of 
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A B c 

FIGURE 6-10 Schematic representation of pattern matching. 
Two wafers are shown in each instance, the lower one denoting 
the prototype being sought and the upper one denoting the case 
being tested. Case A: an exact match. Every important feature 
of the prototype is found in the case, and there are no features 
of the case that are not explained by the prototype. Case B: there 
are features of the case that are not explained by the prototype. 
Case C: there are features in the prototype that are not found 
in the case. 

greater than 5 g/24 hours), a sufficienc_v rule immediately accepts the 
nephrotic syndrome hypothesis. 6 

In this accepted state, the hypothesis is asserted as if it were a fact. 
This new "fact" then is added to the short-term memory where it, in turn, 
can be found by daemons belonging to other frames. We should emphasize, 
however, that if later facts contradict the original conclusion, the accep
tance is revoked. 

In many instances, of course, there is no simple rule that can serve 
either to exclude or to establish a given hypothesis, and a scoring process is 
required. This scoring process uses numerical values (contained in the 
frame) that reflect the likelihood that various clinical findings will occur in 

6 Not only can disease frames be accepted or rt:jected, but frames corresponding to physiologic 
and clinical states can be similarly accepted or rejected. 
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the given disorder. 7 Major features are given more weight in the final 
scoring process than are the minor features. 

Consider, for example, the nephrotic syndrome frame shown in Figure 
6-7. Those features of the frame that can be readily identified as present 
or absent (e.g., low serum albumin concentration or heavy proteinuria) are 
given a numerical value. The remaining features are not initially assigned 
values; instead their contribution to the scoring process is determined by 
affiliated frames, e.g., hypovolemia is evaluated by means of a specific 
hypovolemia frame. Once such an affiliated frame has carried out its scor
ing function, the resulting value is passed on to the central frame. For 
example, acute glomerulonephritis receives a score for "elevated blood 
pressure in the absence of signs of chronic hypertension" from the acute 
hypertension frame to which it is related by a "may be complicated by" 
link. Similarly, the acute hypertension frame itself depends on affiliated 
frames (e.g., hypertensive encephalopathy) for its own score. In some in
stances, such propagation of scoring proceeds through several levels. 

If the score for a hypothesis exceeds a defined threshold, the frame 
is accepted by the supervisor. Similarly, if the score falls below a given 
threshold (i.e., if the hypothesis no longer fits the patient "well enough"), 
the supervisor forces the hypothesis into a semiactive state. The ability of the 
hypothesis to account for the findings of the case is the extent to which all the 
facts of the case are explained by the hypothesis and its affiliated frames. 
The hypothesis of acute glomerulonephritis can explain, for example, both 
"lo'Y serum complement" and "oliguria"; the former finding is a part of 
the acute glomerulonephritis frame itself, and the latter is a part of a 
closely linked frame, "acute renal failure." It cannot, however, account for 
the finding of long-standing hypertension. The program computes for 
each frame a value equal to the fraction of all findings in the patient profile 
that are explained by the hypothesis. This value and the measure of the 
fit of the case to the hypothesis are averaged, and the hypotheses are 
assigned a rank order based on the average. 

Selecting Questions 

After the .supervisor has ranked the hypotheses, it seeks to gather more 
information about the patient in order to improve its understanding of the 
clinical problem. The hypothesis that has received the highest overall score 
is explored first, with the initial inquiries directed to the classic findings of 
the disorder. The answer to each question that is posed causes the re
evaluation of all hypotheses; as new information is obtained, the supervisor 
determines whether the leading hypothesis being pursued is still plausible, 
should now be accepted, or should be discarded from active consideration. 

7The weights associated with those features of the frame known to be present in the patient 
are summed and then normalized by the maximum attainable score. 
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After the program has gathered information on prototypical features 
of the frame, it turns to questions about minor features of the disorder 
and then to inquiries about complications, etiological factors, and differ
ential diagnoses. A change in the train of questioning usually indicates 
that, as the result of the continuous process of reevaluation, a new hy
pothesis has moved into the leading position. 8 

Repeating the Cycle 

Any new finding obtained in the course of the questioning process sets 
into motion a cycle that is the same as that just described for the chief 
complaint: each new sign or symptom is characterized, advice is sought, 
hypotheses are generated and tested, and additional questions are asked. 
In its cycle of response to new findings, the program will, however, make 
use of the information acquired earlier (and hypotheses already generated) 
and will thus focus its questioning more sharply than if such a context were 
not available. 

Controlling the Proliferation of Hypotheses 

As discussed, the information gathering and the diagnostic competence of 
the present illness program depend critically on its ability to quickly gen
erate hypotheses to account for the patient's condition. For this reason, 
"aggressive" hypothesis generation occurs even when only a few rather 
isolated facts are available. To avoid the excessive computational burden 
that is often produced by such an aggressive strategy, the program employs 
several methods to restrict the number of hypotheses under active consid
eration. 

Two of these methods have already been mentioned-the "zeroing-in" 
on a complaint and the two-stage process of hypothesis generation. A third 
method is the application of the principle of parsimony. Let us take, as an 
example, a patient with edema and massive proteinuria who is hypothe
sized to have nephrotic syndrome with sodium retention. If the program 
discovers that the patient has a positive test for antinuclear antibody, it 
does not simply add a new hypothesis, "systematic lupus erythematosus." 
Instead, it incorporates the hypothesis of "nephrotic syndrome with so
dium retention" into a new, overall hypothesis of "lupus erythematosus 

8Sometimes the program considers a new hypothesis because of advice stored in the frame 
currently under consideration. For example, if nephrotic syndrome is the current hypothesis 
and symptoms suggestive of pulmonary emboli are reported, advice in the nephrotic syn
drome frame will suggest that attention be shifted to renal vein thrombosis. The supervisor 
will then call up the questions designed to explore this latter possibility. 
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with nephrotic syndrome." If at a later time the more parsimonious hy
pothesis is rejected, the subhypotheses are again given independent status 
as active frames or, alternatively, are returned to a dormant state. 

6 6 Comments • 

The present report demonstrates that insight derived from the study of 
clinical cognition can be combined with advanced techniques for computer 
simulation to create computer programs that possess a powerful problem
solving capability. The major technological advance embodied in our pro
gram is the capacity to retrieve and apply knowledge when that knowledge is 
required, thus freeing the programmer from the virtually impossible task 
of specifying all contingencies in advance [as would be necessary, for ex
ample, in a branching flow chart (Slack et al., 1966; Bleich, 1969; 1972; 
Stead et al., 1972)]. The key to implementation of the present system lies 
in the goal-directed nature of its operation. It is this goal-directed character 
that permits the supervisory program to select pertinent medical and real
world knowledge from the computer's memory and to dynamically assem
ble many small problem-solving techniques that efficiently guide the ac
quisition of additional clinical information. Another central feature of the 
program is the organization of its data base into an associative memory in 
which clusters of closely related facts about diseases and clinical states are 
stored in a fashion analogous to a richly cross-referenced encyclopedia. 
These groups of facts, called frames (Figure 6-7), are further organized into 
a network (Figure 6-8) that facilitates efficient retrieval of closely related 
blocks of information. When the supervisory program is presented with a 
clinical problem (that is, a chief complaint), it generates hypotheses. about 
the case by moving frames from the long-term (associative) memory into 
short-term memory, where the frames interact with a profile of the patient's 
clinical data. When a hypothesis is generated, the supervisory program 
becomes "aware" of all the etiologies, complications, and other features of 
the hypothesized condition because the frames describing such related 
facts are drawn into close proximity to short-term memory. 

The goal of the program is to arrive at the best possible diagnostic 
appraisal by evaluating these hypotheses. To accomplish this purpose, the 
computer characterizes each finding in detail, seeks relevant advice from 
the associative memory, and tests the hypotheses. The set of hypotheses 
under consideration also provides a framework within which additional 
information, both medical and real-world, is sought and interpreted. 
Throughout the questioning process, the supervisory program searches 
for inconsistencies in the information that it has obtained. When such 
inconsistencies arise, the program consults the memory for specific advice 
on how to deal with the conflicting information. 
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As new facts are obtained, additional hypotheses may be generated. 
From time to time, the supervisory program may also combine several 
hypotheses to form a more coherent diagnostic picture. As the questioning 
proceeds, all hypotheses under consideration are repetitively tested and 
scored to measure the "goodness of fit" between the description of the 
disease or physiologic state and the profile of facts about the patient. This 
testing provides the basis for either the acceptance or rejection of each 
hypothesis. At the termination of the questioning, the accepted hypotheses 
are listed, and the other hypotheses are rank ordered on the basis of the 
final score calculated for each. 

The fundamental principles embodied in the present illness program 
are, we believe, applicable not solely to the problem of edema but are 
broadly relevant to the history-taking process. It is obvious, however, that 
many strategies other than those we have employed must be uncovered if 
a system such as we have described is to deal effectively with a wide range 
of clinical problems. In addition, numerous medical and real-world facts 
must be added to the program, and ingenious new techniques must be 
devised that can deal with multiple coexisting diseases, that can draw ap
propriate inferences about the temporal aspects of a patient's history, and 
that can choose the point at which the questioning process should be ter
minated. The solutions to such problems obviously will require many years 
of intensive work. 

6.6.1 The Problem of Scale 

We believe that, over the long term, computer programs can be developed 
that should be capable not only of taking the present illness but also of 
assisting in virtually all aspects of patient management. If this view is cor
rect, one must then ask whether the existing technology will be able to 
cope with the volume of information that might be required by such a 
system; that is, will it be possible to store the requisite number of facts at 
a reasonable cost and to retrieve them in an efficient and effective manner? 
To answer this question we must first ask how much a computer program 
must "know" before it knows all of general internal medicine. Obviously, 
any calculation of this sort must be highly speculative, but it seems certain 
that the program must have available at least that body of information that 
is contained in a standard textbook of medicine. As shown in section A of 
Table 6-1, it appears that each of the two most widely used textbooks of 
medicine contains on the order of 200,000 facts. 9 This estimate far un-

9This estimate was arrived at by the crude technique of estimating the number of facts on 
several pages (not only basic facts, but the relationships between them) and multiplying this 
average by the total number of pages in the book. The major source of variability in such an 
estimate is the definition of what constitutes a single fact, because such a definition is to a 
certain extent arbitrary. In our calculations, we have used as a yardstick the amount of 
information that is treated as a single fact by our program; however, the choice of any other 
reasonable yardstick would not have changed our results appreciably. 
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TABLE 6-1 Estimate of total number of facts contained in standard textbooks of med-
icine and in representative subspecialty texts* 

Facts 
Pages per page Total 

Title (approx.) (approx.) facts 

A. GENERAL INTERNAL MEDICINE 
Principles of Internal Medicine (Wintrobe, 2,035 100 200,000 

1974b) 
Textbook of Internal Medicine (Beeson and 1,892 100 190,000 

McDermott, 197 5) 
B. SPECIALTY TEXTS 

Diseases of the Kidney (Strauss, 1971) 1,456 40 60,000 
The Heart (Hurst, 1974) 1,755 50 90,000 
Clinical Hematology (Wintrobe, 197 4a) 1,788 40 70,000 

*Estimated as described in Footnote 9. 

derstates, however, the total amount of information that is relevant to the 
practice of internal medicine. It is clear, for example, that there is a fund 
of basic science information used by the clinician that does not appear in 
such a textbook of medicine. To account for this body of data, we will 
double our estimate to a total of 400,000 facts. Finally, there is a consid
erable body of information about the real world (life insurance examina
tions, army physicals, time of day, seasons of the year), which, we will 
estimate, requires knowledge of still another I 00,000 facts. 10 This brings 
us to a total of 500,000 facts. If we now double this value to take cognizance 
of possible underestimates, we arrive at an upper bound of approximately 
I million facts as the core body of information in general internal medicine. 

The core knowledge embodied in the approximately ten separate sub
specialties of internal medicine is, of course, considerably larger. To esti
mate the volume of clinical information basic to the entire domain of sub
specialty medicine, we first have estimated the number of facts in textbooks 
of n'ephrology, cardiology, and hematology. As shown in section B of Table 
6-1, each of the subspecialty treatises contains on the order of 60,000 facts. 
From this we estimate that the core body of information in all medical 
subspecialty texts combined is about 600,000 facts. If we assume that ap
proximately one-third of this information represents duplications among 
the specialty fields, we arrive at a total body of 400,000 facts, a value 
approximately twice that estimated for general internal medicine. Using 
the same ratio between facts and other kinds of relevant information as 
we used in the case of general medicine, we calculate, correcting again for 
any possible underestimate, that the core of information in the subspe
cialties of internal medicine does not exceed 2 million facts. 

10Note that we are only concerned with real-world knowledge that is relevant to medicine, 
not with all such knowledge possessed by the average person. 
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Can 2 million facts be stored in a computer system at a reasonable cost? If 
we assume that each fact requires for its representation an average of I 0 
words of computer memory, 11 a computer storage capacity of 20 million 
words would be necessary. A memory of this size is certainly large, and, if 
core storage were required, the cost would at present be prohibitive. Be
cause only a small part of the data is used at any one time, an inexpensive 
mass storage device (such as a magnetic disc or drum) would be a practical 
alternative storage medium; even at present prices, the cost would probably 
be no more than $20,000. 12 

We should note, furthermore, that even with rapid progress in the 
development of "expert" consulting programs, it is unlikely that a system 
could reach the size we have envisioned in a period of less than ten years. 
By that time, given the rapid evolution of computer technology, it is almost 
certain that a memory capable of storing 2 million facts could be purchased 
at a very low cost. From these considerations, it can reasonably be con
cluded that data storage will not be the limiting factor in the development 
of consulting capability within the computer. Indeed, even the storage of 
an additional large body of specialized information drawn from the liter
ature, should, some years hence, pose no great technological difficulties. 

6.6.3 Can the Data Base of Internal Medicine Be 
Efficiently Managed? 

The problems of organizing, retrieving, and applying the relevant data are 
far more formidable than is the problem of data storage. We believe, how
ever, that the task is probably not insuperable, because in any given case 
only a very small fraction of the available knowledge needs to be retrieved. 
Furthermore, the retrieval of whatever information is required will be 
greatly eased by the fact that pertinent information can be dealt with in 
the highly organized clusters known as frames. Assuming that the average 
frame will contain on the order of I 00 facts, only 20,000 frames would be 
required for the postulated data base of 2 million facts. 

Probably the most difficult aspect of data management will be the 
problem of coding, the process of ensuring that each fact is properly as
sociated with other facts. Only if the large data base of internal medicine 

11 We are considering this representation in a computer language such as LISP, which is quite 
efficient at storing and retrieving the type of symbolic data that we envision will be used. 
12Ed. note: This cost estimate, accurate in 1976 when this article appeared, is excessive in 1984 
due to technological advances. 
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can be transferred automatically from English to the appropriate repre
sentation within the computer is there hope that serious errors, omissions, 
and contradictions can be avoided. Current efforts to develop computer 
programs that understand English give promise that this fundamental 
problem will eventually be solved (Schank and Colby, 1973). 

The arguments we have considered here have led us to the conclusion 
that, over the long term, there are not likely to be intrinsic technological 
constraints on the realization of a system capable of coping with all of 
internal medicine. In fact, the availability of increasingly powerful tech
nology suggests a future in which computer programs may well "know" 
far more than any individual physician. For the short term, however, we 
look toward the development of programs that know a great deal, but not 
all, of internal medicine. 

6.6.4 Some Reflections on the Cognitive Process 

As discussed earlier, the present illness simulation described here is based 
on insight derived from introspection and from observation of the prob
lem-solving behavior of experienced clinicians. Here we offer a brief dis
cussion of certain key ideas that we believe merit further study by inves
tigators interested either in computer-aided decision making or in clinical 
cognition. 

Our study clearly illuminates an important difference between the 
expert in practice and the expert as often pictured in literature or folklore. 
The epitome of the expert in fiction is the detective who, through superior 
deductive powers and by sheer force of logic, organizes the facts at hand 
in such a way that they lead to a single, inevitable conclusion. By contrast, 
the real-world clinician seems to rely much more heavily upon "guessing," 
the initial hypothesis typically being based on precious little data. These 
guesses are apparently prompted by patterns of clinical findings or by 
specific complaints that bring to mind particular diseases. The physician 
then tries to demonstrate the correctness of his or her guesses, moving to 
new hypotheses only if the initial impressions prove untenable. 

The rapidity with which the initial hypotheses are generated and the 
ostensibly fragile basis of the guessing process together constitute the most 
striking feature of the behavior of experienced clinicians. Often with only 
the age, sex, and presenting complaint of the patient, the clinician unhes
itatingly selects a single working hypothesis. Even in ambiguous situations, 
he or she rarely begins with more than a few hypotheses. 

Another characteristic of the experienced physician is the fashion in 
which he or she continually pares the list of diagnostic possibilities. The 
physician discards some, accepts others, and often combines individual 
possibilities into a single, new, integrated hypothesis. In this way, he or she 
is generally able to limit sharply the number of diagnoses which must 
actively be considered. We can understand the value of such a sharp focus 
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when we consider that, in taking a present illness, the physician can gather 
only a small fraction of the potential set of facts concerning the patient 
and must therefore seek information very selectively. In consequence, the 
clinician must find a context within which to properly focus his or her 
questioning and to organize the information that is obtained. 

Because the initial hypotheses are usually generated on the basis of 
relatively few facts, they will often later prove to be incorrect. In such cases, 
how does the experienced clinician proceed to undo any "damage" done 
by aggressive hypothesis generation? Our observations suggest that he or 
she often employs the rather efficient strategy of associating one hypothesis 
with others with which it may be readily confused (e.g., "multiple pulmo
nary emboli are often confused with cardiomyopathy"). By explicitly re
membering such situations, the physician can move directly from a hy
pothesis that has become suspect to one that offers another plausible 
explanation for the presenting findings. 

Unlike the seasoned clinician, the medical student or young physician 
does not have an extensive knowledge of such relations and so is unlikely 
to move from one hypothesis to another in such a skillful fashion. There
fore, the novice who acts aggressively in hypothesis generation risks making 
serious errors. We have observed that the student or house officer, appar
ently to counter this problem, often approaches the diagnostic process in 
a highly structured, methodical fashion. Similarly we have noted that the 
experienced physician performing outside his or her area of expertise uses 
a far more structured approach than is his or her usual custom. The sea
soned clinician's expertise in taking a present illness thus appears to derive 
in considerable part from a complex set of associations and from a famil
iarity with many alternative scenarios within that individual's "frames." 

We believe that the experimental methods utilized in the present study, 
if extensively employed, will provide important new insights into the proc
ess of clinical problem-solving. Furthermore, as our understanding of 
problem-solving processes grows, it seems likely that the study of clinical 
cognition will assume a significant place in the medical curriculum. Such 
increased attention to this neglected aspect of medical education should 
eventually make an important contribution to improving the quality of 
physician performance. 
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7 
A Model-Based Method for 
Computer-Aided Medical 
Decision Making 

Sholom M. Weiss, Casimir A. Kulikowski, 
Saul Amarel, and Aran Safir 

While MYCIN and PIP were under development at Stanford and Tufts/ 
M.I. T., a group of computer scientists at Rutgers University was devel
oping a system to aid in the evaluation and treatment of patients with 
glaucoma. The group was led by Professor Casimir Kulikowski, a researcher 
with extensive background in mathematical and pattern-recognition ap
proaches to computer-based medical decision making (Nordyke et al., 
1971 ), working within the Rutgers Research Resource on Computers in 
Biomedicine headed by Professor Saul Amarel. Working collaboratively 
with Dr. Arin Safir, Professor of Ophthalmology, ·who was then based at 
the Mt. Sinai School of Medicine in New York City, Kulikowski and Sholom 
Weiss (a graduate student at Rutgers who ·went on to become a research 
scientist there) developed a method of computer-assisted medical decision 
making that was based on causal-associational network (CASNET) models 
of disease. Although the work was inspired by the glaucoma domain, the 
approach had general features that were later refined in the development 
of the EXPERT system-building tool (see Chapters 18 and 20). 

A CASNET model consists of three main components: observations of a 
patient, pathophysiological states, and disease classifications. As observa
tions are recorded, they are associated with the appropriate intermediate 
states. These states, in turn, are typically causally related, thereby forming 
a network that summarizes the mechanisms of disease. It is these patterns 
of states in the network that are linked to individual disease classes. Strat-

From Artifirial lntelligen((', 11: 145-172 (l 978). Copyright © 1978 by North-Holland Publish
ing Company. All rights reserved. Used with permission. 
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egies of sjJeri/ic treatment selection are guided as 11111ch by the iJU!i-uidual 
pattern of observations and diag11ostic co11clusions as !ht)! are by the disease 
rlass~firation itself. 

Unlike 111athematirnl models of disnlSe jJrocesses, a CASNET model is 
inherently ,\)'mbolic and focuses on causality and temporal sequences of 
events. Although not all 111edirnl topics are well understood at this lnwl, 
CASNET demonstrated that there ore areas of medici11e in 10/iich exjJlicit 
model representations permit powe1ful reasoning strategies that go beyond 
simple matching of treatments with diseases. It is this ability to match treat
ment plans ·with the jJatient's current stage i 11 the Jrrogression of a disease 
process and with expertations offuture ewnts that set CASNET apartfrom 
the other early AIM ,\ystems. More rerentl_v ABEL (Chapter 14) and VM 
(Chapter 10) have extensively studied similar issues, and PojJ/e has dis
cussed at length the need to inc01pomte raus(d reasoning and a sense of 
temporal progression into future versions of INTERNIST (Pople, 1982). 

7 1 Introduction • 

In the present paper, a general approach to structuring medical knowledge 
for computer-aided diagnosis and therapy is presented. We have developed 
a representation that models disease processes as a causal-associational net
work (CASNET). This model-based method has been used successfully in 
designing a consultation program for the diagnosis and long-term treat
ment of the glaucomas. The consultation program uses a set of general 
decision-making strategies in conjunction with a class of causal-associa
tional models (Kulikowski and Weiss, 1971; Weiss, 1974). In this paper, 
examples will be given from a CASNET model of glaucoma. However, the 
model representation and decision-making procedures are generalizable 
to other medical domains. 

Diagnostic problems have often been cast into a pattern-recognition 
or statistical decision-theory framework. Computer representation is not 
difficult, and as a result many well-known methods such as those based on 
Bayes' Theorem have been used (Brodman et al., 1959; Warner et al., 
1964; Gorry and Barnett, l 968a). The difficulties with applying these 
methods (such as scarcity of statistics and the use of invalid approxima
tions) are also sufficiently persistent that alternative approaches have been 
sought. In many medical areas, existing knowledge could enhance the de
cision-making capabilities of a diagnostic system. There are many useful 
decision rules specific to a given medical application that the physician 
directly applies in his or her reasoning. 

In the past few years, there has been increased interest in the appli
cation of artificial intelligence (Al) techniques to medical decision making. 
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AI techniques attempt to capture decision-making rules explicitly, while 
statistical methods may extract them implicitly from accumulated sample 
experience. The AI approaches intend to overcome some of the limitations 
of purely statistical methods by developing a more structured representa
tion of the diagnostic and therapy selection problems. A program that uses 
decision strategies based on explicit representations of medical knowledge 
can more easily incorporate evolving changes in its knowledge base, in
dependently of the reasoning strategies. It can also incorporate the results 
of clinical experience by matching the more explicit patterns of reasoning 
to the decisions and opinions of physicians. Such systems are more likely 
to be accepted because they are expressed in a decision-making context 
familiar to the clinidan. A structured representation can also permit the 
formulation of complex hypotheses that express progression and severity 
of disease. Some researchers have attempted to increase the scope, accu
racy, and explanation capabilities of their systems by increasing structure, 
while still preserving a statistical framework (Patrick et al., 1974). Others 
have relied on logical and semantic encodings of coii.textual knowledge 
within an artificial intelligence framework (Pop le et al., 197 5; Shortliffe et 
al., 1973; Wortman, 1972) (see also Chapter 6). 

Several fundamental AI issues are raised by medical decision-making 
problems. One important issue concerns the development of representa
tions that are powerful enough to capture a complex and changing knowl
edge base in a realistic task domain. There has been an increased interest 
in recent years in developing AI systems that use expert knowledge in a 
variety of application areas (Buchanan et al., 1969; Duda et al., 1977; 
Reddy, 1977; Sridharan and Schmidt, 1977). Methods of acquiring knowl
edge from experts, the choice of appropriate levels of abstraction and 
resolution for describing a given problem, and the choice of computer 
representation of the knowledge base are all problems that immediately 
arise in developing such systems. They are closely linked to the control 
strategies or methods used to produce interpretations for individual cases. 
Fundamental to most such control strategies is the capability of approxi
mate reasoning. This is needed to manage the multiple hypotheses that 
can be generated from a large and complex knowledge base, which in
cludes statements at different levels of uncertainty. Once decisions are 
reached, producing explanations becomes an important task if the accept
ability of the system is to be enhanced. Practical issues of implementation 
for these large knowledge-based systems include ease of knowledge man
agement (updating), efficiency, choice oflanguages, and transferability into 
practical use in both the original domain and other similar ones. 

The present paper describes the methods of representation and in
terpretation developed while building a knowledge-based system for med
ical consultation. In the course of describing these methods, specific so
lutio:ns to some of the issues raised above are offered. 
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Causal-Associational Network (CASNET) 
Models 

A causal-associational network is a particular type of semantic network 
(Woods, 1975) designed to: 

a. describe dynamic processes in terms of (loop-free) causal relationships 
among a set of internal variables; 

b. relate this description to external variables that are considered to be 
manifestations of the internal processes; and 

c. describe various classifications imposed on the dynamic processes. 

CASNET models can be used to describe many different complex 
processes, but we have developed them to describe pathophysiological 
processes of disease (Weiss, 1974). Knowledge, in our scheme, is repre
sented by three types of data elements, corresponding to the three kinds 
of description outlined above: observations of the patient; pathophysio
logical states; and diagnostic, prognostic, and therapeutic categories. 
Observations are the direct evidence obtained about a patient. Pathophys
iological states are intermediate constructs that describe internal conditions 
assumed to take place in the patient; they summarize results from many 
different observations. Categories of disease are conceptually at the highest 
level of abstraction, summarizing patterns of states and observations. In 
Figure 7-1 we summarize this three-level description of disease processes. 
Considerations of all three levels enter into the recommendation of ther
apy. Bonner et al. ( 1964) developed a single-level model with causal and 
associational relations intermingled. When diagnosis is to be modeled in a 
domain of knowledge where mechanisms of disease are understood, the 
cause-and-effect model can be used to significantly improve the basis on 
which decisions are made. When, however, less information is available, 
associations between findings must be relied on to a greater extent, and 
the goals of reaching structured and well-explained conclusions and rec
ommendations may not be fully satisfied. 

7.2.1 Causal Network of States 

In our model of disease, the pathogenesis and mechanisms of a disease 
process are described in terms of cause-and-effect relationships between 
pathophysiological states. States are summary descriptions of events that 
are deviations from normality. Strict causality (Bunge, 1963) is not as-
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Disease 
Categories 
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Observations 
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~ ANGLE CLOSURE 
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FIGURE 7-1 Three-level description of a disease process. 

Causal L mks 

sumed-there may be multiple causes and effects, and in a given patient, 
a cause may be present without any of its effects occurring at the same 
time. Various effects can follow from a given cause, each produced with a 
different strength of causation. Examples of states would be "increased 
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intraocular pressure" or "glaucomatous visual field loss." Many such states 
may occur simultaneously in any disease process. A state thus defined may 
be viewed as a set of values of a state variable as used in control systems 
theory. It does not correspond to one of the mutually exclusive states that 
could be used to describe a probabilistic system. This definition was chosen 
to correspond to the basic entities physicians use when they describe disease 
mechanisms. A somewhat simplified graph model of glaucoma is illustrated 
in Figure 7-2, where each node, n1, is a pathophysiological state, and each 
edge is a causal connection. Disease processes may be characterized by 
pathways through the network. A complete pathway from a starting to a 
terminal node usually represents a complete disease process, while partial 
pathways, from starting to nonterminal nodes, represent various degrees 
of evolution within the disease process. Progression along a causal pathway 
is usually associated with increasing seriousness of the disease. For example, 
in Figure 7-2 a complete pathway is traversed from n35 (PRIMARY OPEN 
ANGLE MECHANISM) to n31 (GLAUCOMATOUS VISUAL FIELD 
LOSS): (n35 n25 n 25 n2 7 n 28 n 29 n 30 n:~ 1 ). A partial pathway is traversed from 
n35 (PRIMARY OPEN ANGLE MECHANISM) to n26 (ELEVATED IN
TRAOCULAR PRESSURE): (n35 n2s n25). 

When a set of cause-and-effect relationships between states is specified, 
the resulting structure is a network, or directed acyclic graph of states. The 
state network is defined by (S, F, N, X), where S is the set of starting states, 
those states with no antecedent causes; F is the set of final states, those 
states with no effects; N is the total set of states; X is the set of mappings 
between states indicating causal relationships. 

The mappings are of the form 

where aij is the strength of causation (interpreted in terms of frequency of 
occurrence) and n1 and n1 are states. This rule is interpreted as follows: 
state n 1 causes state n1, independently of other events, with frequency aij. 
Starting states are also assigned a frequency measure indicating a prior or 
starting frequency. The strengths of causation are represented by numer
ical values, fractions between 0 and 1 that correspond to qualitative ranges 
such as sometimes, often, usually, or always. 

States are summary statements. Many events and many complex re
lationships may be summarized by a single state. For example, in Figure 
7-2, "neural tissue loss and cupping of the nerve head" is a summary of a 
much more complex situation. If a higher-resolution description is desired, 
several different types of nerve loss and cupping could be specified. The 
resolution of states should be maintained at a level consistent with the 
objective of efficient decision making. A state network can be thought of 
as a streamlined model of disease that unifies several important concepts 
and guides us in our goal of diagnosis. It is not meant to be a complete 
model of disease. 
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FIGURE 7-2 Partial causal network for glaucoma. States with 
no antecedent causes are indicated by asterisks (*). The circled 
numbers correspond to the state labels (ni) used in examples in 
the text. 
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7 .2.2 Rules for Associating States with Observations 

Observations (tests)-the history, signs, symptoms, and laboratory tests
are the form in which information about a patient is presented. These 
clinical features, however, must be unified into some coherent framework 
for explanation and diagnosis. Observations about a patient are used to 
confirm or deny certain states in the network that describe the disease 
process. A single state may be associated with many observations. These 
states can then be related by causal pathways that explain the mechanisms 
of disease in a patient. The relationship between tests and states is non
causal; it is associational. For a given observation, confidence measures are 
used to indicate a degree of belief in the presence of specific states. 

The rules for associating tests with states are represented as 

where l; is the ith observation (or Boolean combination of observations), 
nj is the jth node, and Q11 ( - 1 :::; Q;1 :::; + 1) is the confidence in nf given 
that t; is observed to be true. Positive values of Qif correspond to an in
creased confidence in n1, and negative values correspond to a decreased 
confidence in nj when t; is observed. Associated with each observation are 
costs C(t;) that reflect the cost of obtaining the result t;. 

Example 1. Two different instruments may be used to measure intra
ocular pressure (tension): a Schiotz tonometer and an applanation tonom
eter. A high Schiotz tension reading may indicate an elevated intraocular 
pressure with a confidence of 0.5. A high applanation tension reading, 
which is usually more reliable, may be assigned a higher confidence, such 
as 0. 7. If by ophthalmoscopy it is further demonstrated that the appear
ance of the optic disc indicates damage to the optic nerve (with a confidence 
of 0.3), these results may be combined and assigned a confidence of 0.8 
that the pressure has been and is truly elevated. Figure 7-3 illustrates these 
relationships, with circular nodes standing for states and square nodes for 
observations. The number on the link that connects a test to a state is the 
confidence with which a test supports a state. 

7 .2.3 Rules for Associating Disease Categories with 
States 

Diagnostic and prognostic categories of disease are defined in terms of 
ordered patterns of rules, which we refer to as classification tables. The 
tables contain rules of the form 
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FIGURE 7-3 Examples of rules for associating states with observations. 
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where D; is the ith diagnostic and prognostic category, which is implied by 
the given ordered pattern of states, n 1 /\ n2 ••• /\ n;. For this chosen form 
and ordering of rules, the tables can be ref erred to by using an abbreviated 
notation of ordered pairs: 

The classification tables can be augmented to include therapy recommen
dations. These tables are ordered triples of the form 

where T; are treatments (or treatment plans) for patients falling into par
ticular diagnostic categories. 

In the following sections, clinical decision making will be considered 
as a problem of using a CASNET model for (a) selecting and interpreting 
observations, (b) analyzing and resolving conflicts and contradictions in the 
observations, (c) selecting diagnostic and prognostic categories, and (d) 
recommending treatments. 

7. 3 Test Result Interpretation 

A test result has the following form: observation l; is true, false, or uncer
tain. Based on a given result for l;, a measure of confidence, Qij, may be 
assigned to state ni. More than one test may confirm or deny a single state 
with varying degrees of confidence. The total confidence in the presence 
or absence of a state is derived from all local mappings from tests to states 
occurring for a given patient. Each node, ni, in the state network is assigned 
a measure, Cf(nj). Initially, the Cf of all nodes is undetermined; i.e., 
Cf(nj) = 0. 

Q·· 
Rule 1. When a test result is received and a rule l; _J nj is found ap-

plicable, the Cf(nj) is affected as follows: 

a. If ICf(nj)I < !Qui. then Cf(nj) is reset to QiJ· 
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b. If Cf(ni) = - Qif• then Cf(nj) is set to 0 (and the conflict is rioted) 
until another result th is received such that IQ/iii > IQijl· 

c. Otherwise, Cf(nj) is unchanged. 

Thus, of all the test results that are evidence for a given state, we 
choose the result in which we have the greatest confidence. When a new 
test result is received with a confidence measure equal but counter to the 
previously accumulated evidence, the conflict is noted, and the status of 
the node is reset to be undetermined. 

A Cf measure is used to evaluate whether the status of a node is 
assumed to be confirmed, denied, or undetermined. Let 8 be a nonneg
ative integer that serves as a threshold fixed in advance for a specific model. 
(The threshold for test selection may be fixed at a level different from that 
used for classification.) 

Rule 2. 

a. If Cf(n7) > 8, then nj is assumed confirmed. 

b. If Cf(n7) < - 8, then n7 is assumed denied. 

c. Otherwise, the status of nj is assumed undetermined. 

In this way, the designer of a model can assign confidence to the test 
results. Whenever the status of a node n7 exceeds (or is less than) a uniform 
and consistent threshold, node n1 is assumed confirmed (or denied). At 
some point there is enough confidence in these findings to draw at least 
tentative conclusions about some specific aspects of the disease, which are 
summarized in the states. These conclusions can change when other test 
results, in which we have greater confidence, are received. 

The initial state network graph is a static structure. However, based 
on a series of observations, a configuration, or labeled subnet, of the state 
network can be generated that is applicable to a given patient. For a given 
patient, a configuration of the state network is described by assigning each 
node either a confirmed, denied, or undetermined status. The state net
work dynamically evolves into different configurations, each determined 
by the interpretation of the test results. Tentative diagnostic conclusions 
and decisions can be reached for each configuration of the state network. 

7 .4 Strategies for Test Selection 

A configuration of the state network can be used not only to reach conclu
sions, but also to select questions. An interactive sequential questioning 
procedure that is guided by the results of previously asked questions can 
usually reduce the number of questions that must be asked, often elimi-
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nating irrelevant and redundant questions. Asking the right questions in 
an intelligent order is an important aspect of the diagnostic process. 

The strategies for test selection that have been developed for CAS
NET-type models can be categorized as those emphasizing (a) local logical 
constraints among questions, (b) categories of causal pathways, and (c) 
likelihood measures over the states. 

These strategies are not mutually exclusive, and all three may be com
bined into a single overall strategy. The simplest strategy, yet perhaps the 
most effective for a well-circumscribed domain of application, is the strat
egy that emphasizes local logical constraints among the questions. For this 
strategy, questions on related topics are organized into small local tree 
structures. Each group of questions is asked only when a fixed set of logical 
conditions is satisfied. 

The second strategy depends on isolating the causal pathways that 
potentially explain the observations that have already been ~ecorded. The 
strategy would then pursue observations that are related to the states found 
on these pathways. The identification of pathways that may explain the 
current observations and related processes of disease is discussed in Section 
7.5. 

A likelihood strategy for the CASNET model is based on the assign
ment of weights to each of the nodes in the state network. Tests that can 
produce results having greater measures of confidence than are currently 
held for the states are considered possible candidates for further testing. 
Of these tests, the one that relates to the highest-weighted node is selected. 

A number of characteristics of the state network are important for the 
specification of inference strategies: 

a. No loops may exist in the network because all transitions between nodes 
are unidirectional under the assumption of causal production. 

b. Starting nodes have no antecedent causes (or predecessors in the net
work) and represent events taken as the starting events in the causal 
chains. These nodes are assigned (prior) weights, ai, based on their 
relative frequency of occurrence. 

c. Each transition weight has a maximum value of unity. The sum of tran
sition weights leaving node ni is not necessarily unity, because the suc
cessors of ni are not necessarily mutually exclusive. In addition, the 
model incorporates only consequences of events that are of interest to 
the process being described, leaving unspecified any other possible out
comes. 

a·· 
d. The transition weight, ay, in a link ni _J ni is assigned on the assumption 

that n1 is caused by n1 with frequency au, independently of the way in 
which n1 was entered from other nodes of the network. For a given 
model, a consistent interpretation must be given to the transition 
weights throughout the network. 
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During a procedure of sequential test selection, a given node of the 
network can be in one of three status conditions: confirmed, denied, or 
undetermined. Initially, all nodes are undetermined, but as tests are se
lected and results obtained, some of the nodes will be confirmed and others 
denied. 

At every stage of the selection procedure, each node in the network is 
assigned a weight that is determined by the current configuration of con
firmed and denied nodes of the network. The derivation of these weights 
is given below. The weights serve as an index for the selection of further 
nodes to be queried. In a model of disease, where the nodes represent 
states of the disease process, the weights are used to choose the sequence 
of states to be tested. The assignment of weights in a causal network has 
a superficial similarity to a Markov chain (Gheorghe et al., 1976). The 
important differences are found in the lack of mutual exclusivity between 
successors of a node and in the assumption of causal production between 
successor nodes. A model could be designed as a Markov network, but it 
would require the specification of a much larger number of nodes and 
transitions for the many possible combinations of events that can occur in 
a complex process. 

7.4.1 Forward Weights for Test Selection 

An admissible pathway is said to exist from node n1 to node n1 when none of 
the intermediate nodes in the pathway are denied. For the remainder of 
the discussion on the calculation of weights, a reference to a pathway refers 
to an admissible pathway. Also, it is assumed that successive nodes on a 
pathway are numbered consecutively. 

The weight of entering node nj from a single admissible pathway start
ing at node n; is defined as the product of the transition weights between 
all pairs of successive nodes (nk, nk + 1) in the pathway: 

j- I 

wF(jli) = II akk+ 1 
k=l ' 

The total forward weight of node nj is computed as the sum of the weights 
wF(jji) for those admissible pathways entering n1, starting at the nearest 
confirmed or starting nodes, ni, of the network. A nearest confirmed node 
within a pathway is a node such that there are no other confirmed nodes 
in the pathway between it and nj. In the case that n; is an unconfirmed 
starting node, the weight of this pathway is multiplied by the starting 
weight. 

Let µ 1 a; when n 1 is an unconfirmed starting state, 

1 otherwise. 
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The total weight of ni is then 

Wp(j) 

ai when r:j is a starting node 

where i ranges over the set of nearest confirmed or starting nodes. 

Example 2. (See Figure 7-2.) Assume that n7 is confirmed, n 17 and n20 
are denied, and the other nodes are of undetermined status. The forward 
weight of n 1!1 = (0.5)(0.8) + (0.01)(0.20) = 0.402. The weight is calculated 
from pathways beginning at n7 (the nearest confirmed node) and at n 14 
(the only undenied starting node that leads to n 19). 

The rationale for choosing the product of successive transition weights 
in a pathway lies in the assumption that each transition weight, aii• is inde
pendent of all preceding transitions. If ny- 1 is a confirmed node, the weight 
wF(j- l ji) = 1, so all previous transition weights within the pathway need 
not be computed. Hence the weight of the end node of a pathway is cal
culated only from the nearest confirmed or starting node. 

When there is only one admissible pathway leading to a node, ignoring 
the possibility of overlapping causal events introduces no error in the com
putation of weights. If the network is defined with mutual exclusivity be
tween all successors of any given node, the problem can be operationally 
treated as a Markov chain calculation. That is, all confirmed nodes do in 
reality lie on a unique pathway. In our representation, when overlap be
tween pf:lthways does occur, some nodes in the network may be given a 
greater weight by the above computations than would result from exact 
frequency assignments over disjointly defined pathways. Yet, because a 
pathway to a node, ni, represents the manner in which ny is produced, this 
greater weighting is acceptable and even helpful. The tendency toward 
overweighting is related to the number of pathways that lead tony and the 
strength of transitions between the nodes in these pathways. But it is pre
cisely those nodes that have many possible ways of occurring and that have 
strong causal and frequency connections that are the most likely to occur 
for the patient. Since a product of fractions not greater than unity is em
ployed for the computation of weights, weights computed on the basis of 
few observations will result in relatively small weight assignments to the 
nodes. For some nodes, this weight assignment may be an accurate measure 
of frequency. Even without exact frequency assignments, the manner in 
which confirmation or denial of nodes is included in the weight calculation 
can be quite effective in guiding the selection of tests. The confirmation 
of a given node, n;, will usually greatly increase the weight of all of its 
effects. Many fewer fractional multiplications will be used in computing 
the necessary pathways from n;, since for the successors of ni the weight 
of n; can be assumed to be unity. Similarly, the weights resulting from a 
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denied node, ni, will decrease, since ni cannot lie on any admissible path
way to another node. This is precisely the response needed to guide the 
search for information to topics suggested by the accumulated evidence. 

In general, the overall effect of forward weight calculation is to in
crease the weights of those nodes resulting from confirmed nodes while 
decreasing the weights of those from denied nodes. 

7.4.2 Inverse Weights for Test Selection 

The forward weight of a node, ni, summarizes the weight of evidence 
carried from the causes of ni. The weight of ni can also take into account 
the confirmed nodes that are effects of ni. For this we must define some 
inverse weight of confirmed effect ni on the cause ni. In analogy to Bayes' 
formula for inverse probability, an inverse weight can be defined as 

where confirmed nodes are ignored in the pathways (and forward weights 
are, therefore, computed from starting states). Because an admissible path
way cannot contain a denied node, an inverse weight is proportional to the 
weight of pathways passing through nj that also pass through ni divided by 
the weight of all currently possible pathways to nj. 

Example 3. (See Figure 7-2.) Assume that all pathwan are denied, ex
cept those beginning with n35 and n37 . Let n31 be confirmed and the re
maining nodes undetermined. The inverse weights for n35 and n37 are 
calculated as follows: 

WF(3ll35) 

WF(3ll37) 

W1(35l31) 

0.30, wF(37) = 0.01 (starting weights) 

(0.3)(0.9)(0.8)(.05 )(0.9)(0.9)(0.8)(0.9) + (0.01 )(0.5 )(0.8)(0.9) 
0.067 

(0. 9)(0.8)(0.5 )(0. 9)(0. 9)(0.8)(0. 9) 

(0.5)(0.8)(0.9) = 0.360 

wF(35) · wF(3ll35)/wF(31) 
(0.30)(0.210)/0.067 = 0.940 

wF(37) · wF(3 l l37)/wF(3 l) 
(0.01)(0.36)/0.067 = 0.054 

0.210 

Since several effects may follow from a single cause, it is desirable to 
choose some function of all the inverse weights to represent the overall 
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inverse weight of a node, n;. A reasonable choice is the maximum of the 
inverse weights for each ni: 

wJ(i) max {w;(il _j)} 
j 

This function was selected because we are searching the network for strong 
evidence that n; is present. For the important situations where nodes lie 
on a single pathway to a confirmed node or nodes lie on every pathway to 
a confirmed node, the inverse weight for those nodes will be correctly 
assigned as unity. Where there are two or more mutually exclusive path
ways to a confirmed node, the inverse weight remains a relatively accurate 
frequency measure. However, the pathways to a confirmed node need not 
be mutually exclusive. Therefore, the maximum of the inverse weights is 
used as an overall measure of inverse weight. The inverse weight for a 
confirmed node assigns weight on a fractional basis to the node's potential 
causes, even when more than one cause is strongly indicated. The maxi
mum weight compensates for the lack of mutual exclusivity by considering 
evidence other than a single confirmed node. Since several confirmed 
nodes may in fact be unrelated, an average or sum would appear to be less 
effective. The maximum is effective because it preserves the weight of a 
strong piece of confirmatory evidence without dilution from other nonex
clusive causes, because it recognizes the possible multiplicity of confirmed 
effects from a single cause, and because it generally provides a reasonable 
basis of comparison with the forward weights. 

The calculation of inverse weights is strongly influenced by evidence 
for the confirmation or denial of nodes. The weight of a node may be 
increased when its effects are confirmed. Initially, a pathway may be an 
unlikely alternative, but after some testing it may become the only feasible 
pathway to a particular confirmed node. This results in increased weight 
assignments to the remaining causes of the confirmed node. 

7.4.3 Overall Weight for Test Selection 

In order to choose a node for testing, a single function of the forward and 
inverse weights of the node is needed as an overall measure. The maximum 
of these two weights has been chosen: 

This choice reflects the need to have a measure of strong confirmatory 
evidence for the potential presence of a node, n;. Evidence of the denial 
of n; is included in both wF(i) and w1(i). These forward and inverse weights 
represent the contribution from different parts of the network toward the 
likelihood of confirmation of n;. The maximum is thus a measure of strong 
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confirmatory evidence toward ni throughout the network. It should usually 
provide good testing candidates. Relatively efficient algorithms can be spec
ified for the computation of weights (Weiss, 1974). These algorithms take 
advantage of the acyclic nature of the state network so that the states may 
be topologically sorted. 

7.4.4 Test Selection with Cost Assignment 

7.5 

A weight is a measure of likelihood, based on the evidence gathered for 
the possible causes of a node. The weight does not take into account the 
cost of performing a test that may confirm or deny the node. Let ti be a 
test for node n1 and Ci be the cost oft;. Wi is the currently assigned (non
zero) weight of node ni. 

Two cost strategies have been used for test selection: 

a. Maximum weight-to-cost ratio: select t; such that W/C; = max(W11/C1J. 
111,11 

b. Maximum weight within a certain range of costs: select ti such that Wj 
max(Wn,) for all tn with C11 < C. 

m 

A strategy of maximum weight selection is a special case of strategy a 
when the costs are equal or are ignored. A minimum cost strategy is a 
special case of strategy b where en is taken as the minimum cost (for the 
remaining tests) and Wi is any nonzero weight. 

The stopping rule for the likelihood strategy consists of terminating 
test selection when no weight exceeds a fixed threshold. For an in-depth 
consultation in an application such as glaucoma, where all topics must be 
covered thoroughly, all questions are asked that have not been logically 
excluded by prior responses. This corresponds to setting t.he threshold to 
zero. 

A form of hypothesis-driven test selection has also been formulated. 
A hypothesis corresponds to a class of likely causal pathways that explain 
the patient's observations and related but as yet unknown findings. The 
strategy then selects tests that support the hypotheses. The following sec
tion describes methods of identifying the likely hypotheses (classes of path
ways) for a patient. 

Interpretation of Disease Processes Within 
the State Network 

The state network is a general structure that implicitly contains large num
bers of both complete and partial causal state pathways, representing proc
esses of disease. Several general classes of pathways can be described that 
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are useful for decision making and explanation. These classes of pathways 
are characterized by (a) their starting nodes, and (b) their terminal nodes. 

Starting nodes or states are those states in the network for which no 
causes have been defined. The starting nodes are explicitly determined by 
the structure of the state network; the complete set of possible starting 
states is independent of any configuration of confirmed states. In Figure 
7-2, n 14 is a starting state and n 19 is not; n 19 will never be a starting state, 
even when all of its causes (n 18, n17, n 14, n20) are denied. Within the model, 
a starting state is the most antecedent cause of further progression of 
disease in a patient. It represents a basic causal mechanism that character
izes a disease process. Any causal pathway that explains the disease process 
involved in a particular patient can be characterized by its starting state. 
When a nonstarting state has all of its antecedent clauses denied, this state 
will not appear on any pathway that attempts to explain the manifestation 
of disease in a patient. The nonstarting states represent events that should 
be explained by the events that cause them. 

The clinician is usually most concerned with the most likely causes of 
disease found in a patient. The most likely starting node is taken as the 
node that explains the greatest number of states of disease. This is the 
starting state from which pathways (containing no denied nodes) are gen
erated that traverse the greatest number of confirmed nodes. If two or 
more starting states are found, a likelihood measure is computed for the 
srates, and the starting node with the greatest weight is selected. If a single 
starting state does not explain all of the confirmed nodes, then another 
starting state is found that explains the greatest number of remaining 
states. The procedure is continued until all of the confirmed nodes are 
explained, and the complete set of most likely starting nodes is identified. 
The pathways generated from these nodes represent the most likely ex
planations of the disease processes manifested in the patient. 

The physician may also wish to discover alternative though less likely 
causes that potentially explain the disease mechanisms present in a patient. 
Potential explanations of the disease processes for a patient can be found 
by generating all pathways that reach confirmed states, without traversing 
any denied states. In addition, since a state network is usually designed for 
a restricted domain of diseases, the clinician may wish to determine those 
causes of disease that have not yet been eliminated. These may be observed 
by generating all undenied pathways in the state network. 

Observations of a patient are often gathered sequentially. History ques
tions are asked before the physical examination, which precedes the lab
oratory tests. For a given configuration of the state network, pathways may 
be generated that, by necessity, are based on an incomplete set of obser
vations. For a specific patient the physician is often interested in determin
ing those disease processes that have not yet been ruled out and may be 
uncovered by additional observations. Pathways that explain disease proc
esses for a specific patient are usually terminated at a confirmed node. This 
provides the direct explanation of the events that have been observed. By 
continuing causal pathways beyond this usual termination point of a con-
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firmed node and extending them to include all nodes with an undeter
mined status, those aspects of the disease process that remain possible can 
be indicated. 

Many diseases are (irreversibly) progressive. Once the particular proc
esses are determined, the physician is concerned with identifying the stages 
of the disease to which the patient may subsequently proceed. The partic
ular pathways that have been generated to explain observations for a 
patient may be continued to the terminal nodes of the state network, even 
if they traverse currently denied nodes. These pathways will give an indi
cation of possible future events, and provide the basis for prognostic 
assessment. 

Example 4. (See Figure 7-2.) Assume that nodes n 15 and n 19 are con
firmed and the remaining nodes are undetermined; n 14 will be selected as 
the most likely mechanism, because it explains both n 15 and n 19. The path
ways emanating from n 14 (n 14 n 15 n 16 n 4 n 5 n5 n1 n1s n 1g and n 14 n 19) directly 
explain the current observations of the patient. However, for future ex
aminations, more observations may be recorded, and one will probably be 
interested in continuing the pathways, to check for elevations of intraocular 
pressure (n 10 or n26). There are also other mechanisms that are less likely, 
but that may potentially explain n 19 (e.g., n2o). 

7 6 Conflicts and Contradictions • 

The diagnostician is sometimes faced with the task of interpreting test 
results that are seemingly conflicting and in some cases contradictory. It is 
possible to recognize and resolve many conflicts and contradictions because 
the test results for a patient are interpreted through a model of disease 
that expresses the meaning of these observations. The model may be 
viewed as containing an implicit set of consistency conditions that must be 
satisfied for each patient. 

The procedures for interpreting test results have been designed to 
resolve explicit conflicts in these results. As described earlier, the test result 
that is held with greatest confidence is taken as the accepted result. If 
conflicting results are received with equal confidence, then the conflict is 
noted, and the status of the state of disease remains undetermined until 
additional results, with greater confidence, resolve the conflict. 

A typical contradictory situation occurs when a state is confirmed, yet 
all of its potential causes in the network are denied. For example, in Figure 
7-2, a contradiction would result if n 19 is confirmed, and n 18 , n 17 , n 14 , and 
n20 are all denied. There is not an admissible pathway to confirmed node 
n 19, because all of the pathways contain a denied node. One potential 
explanation for this difficulty is that the model of disease may be incom-
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plete and some causes (of confirmed node n 19) are missing from the net
work. For example, although it is not indicated in Figure 7-2, n33 (OCU
LAR TRAUMA) may in fact cause n 19 (PERIPHERAL ANTERIOR 
SYNECHIAS). The model designer may intentionally not specify all po
tential causes; instead, he or she may indicate that for some nodes no 
contradiction should be assumed because the model of causes for these 
nodes is incomplete. Either the model is incomplete or a contradiction has 
been found. 

Based on a configuration of confirmed and denied nodes in the state 
network, pathways of disease are generated to explain the processes of 
disease found in a given patient. Some of the nodes in these pathways may 
have an undetermined status, with ICf(ni)I < 8. When the Cf of a node 
generated in a pathway is undetermined but in the direction of denial, i.e., 
- 8 < Cf(n;) < 0, then the explanation of disease is inconsistent. The 
explanation provided by the model may be valid, but it indicates that fur
ther, more conclusive evidence is needed. If any inconsistencies are found 
in these pathways, it is important to check for any alternative explanation 
that, while not the most likely, is entirely consistent with the states that are 
explained. This can be accomplished by changing the threshold 8 to zero 
and then finding the most likely starting node. Now all nodes that have 
been tested with any degree of confidence will be assumed either confirmed 
or denied. Either the same most likely starting nodes will be selected or 
alternative mechanisms will be found. 

Example 5. (See Figure 7-2.) Assume that n35 is the most likely starting 
node and the pathway n 35 n 25 n20 n21 n28 n29 n3o n3 1 is generated. If, 
however, the status of n25 is undetermined in the direction of denial, an 
inconsistency is indicated. If a search is made for alternative but consistent 
explanations and n25 is assumed denied, then n36 is selected as the most 
likely starting node, and the consistent pathway n36 n26 n21 n28 n29 n3o n31 
is generated. 

7 7 Classification of Diseases • 

Recognition of the basic mechanisms of disease for a patient often is in
sufficient for diagnostic classification. An evaluation of the status of a pa
tient must also determine the degree of progression and severity of disease. 
Patients with the same disease may exhibit different degrees of dysfunc
tion. For example, glaucoma may lead to total blindness, but many cases 
will be encountered with little or no loss of vision, and these cases must be 
treated quite differently. 

The CASNET system differentiates between two important categories 
of classification: (a) the mechanism of disease, and (b) the severity and the 
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degree of progression of disease. The cause or mechanism of disease is 
described in terms of the state network by the starting nodes. For a given 
patient, a set of most likely starting nodes will be found that identifies the 
underlying causal mechanism of disease. Implicit in the most likely path
ways that follow from these starting nodes is a description of the progres
sion of the disease. Statements are needed to summarize significant find
ings that take into account such factors as the current severity of disease 
and the prognosis for the patient. Additionally, specific and well-estab
lished disease labels often exist to give diagnostic descriptions. While each 
name may directly correspond to a specific mechanism of disease, several 
mechanisms of disease are frequently summarized by a single name. 

The classification tables, (n 1, Di), (n'b D2), ••. (ni, D;), enable us to 
produce such descriptions of the status of the patient. These tables contain 
ordered sets of diagnostic statements interpreting the significance of the 
various findings and pathways of disease. When the processes of disease 
found in the patient are known, as displayed by the most likely pathways 
generated for the patient, classification tables will be searched to determine 
the appropriate statements. 

Each starting state has pointers to the particular classification tables 
that contain diagnostic statements that evaluate this disease mechanism. 
Several starting states may refer to the same table, since several causal 
mechanisms may be included in the same diagnostic category. For a given 
patient, the most likely starting states point to the appropriate tables. The 
classification tables contain a series of rules ordered by seriousness of dis
ease. The appropriate diagnostic statement corresponds to the single rule 
that is satisfied in the table. This rule will correspond to the deepest con
firmed state in the pairs (nk, Dk) that is reached from any of the most likely 
pathways that refer to this table. In most instances, an additional constraint 
will be added to the search of the classification table: when a state, n;, within 
a table is confirmed, it must be traversed by a pathway generated from a 
most likely starting node that refers to this table. Otherwise, the statement 
for ni is inappropriate; other pathways may refer to ni in a different table. 
The deepest state is appropriate since any statement that is found earlier 
in the table is for a less serious stage of disease and can be ignored. 

Example 6. A classification table for the primary open angle mecha
nism, n35 , from Figure 7-2, is given as 

where 

D 1 mild risk of open angle glaucoma 
D2 high risk of open angle glaucoma 
D3 very high risk of open angle glaucoma; 

significant risk of visual field loss 
D 4 open angle glaucoma 
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If n35 is selected as a most likely starting state, and n25 and n26 are con
firmed but not n30, then D2 is appropriate. If n 25 , n26, n3<» and n31 are 
confirmed, then D4 is appropriate. 

Within a table, differing intensities of a disease process can be deter
mined by differences in the magnitude or intensity of the states. In glau
coma, different intensities of pressure may be distinguished by defining 
states of moderately elevated pressure or extremely elevated pressure. 
These states, when found in classification tables, may then lead to different 
conclusions. 

In some instances, it is necessary to have classification rules that indi
cate that specific states are denied. The same notation and interpretation 
for a classification table is used, where each entry in the table is not a 
confirmed state, but rather the required truth value (confirmed, denied, 
or undetermined) for that state. Multiple causes for a particular patient's 
disease may be either independent or related. If they are independent, 
separate classification tables are required. If they are related, the same 
classification tables are referenced for each of the multiple causes. Rules 
that are based on truth values (and not confirmation alone) are used to 
distinguish situations where multiple causes cannot be classified indepen
dently. 

We can now summarize our diagnostic method as a series of transfor
mations. As test results are received, they are related to individual states. 
These states are then organized into pathways inferred from configura
tions of a state network. The generated pathways are then related to clas
sification tables containing the detailed diagnostic categories. 

7 8 Treatment Recommendations • 

In some cases a therapy recommendation can be explicitly linked to a 
specific diagnostic conclusion. There may be a unique treatment for a given 
condition. In other instances, a category of treatments may be described 
(for example, the class of miotic medications) without an indication of a 
specific medication. For these simplified situations, the recommendation 
of a treatment is a continuation of the diagnostic statement found in a 
classification table. 

Example 7. The classification table of Example 6 may be augmented to 
include treatment recommendations as follows: 
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where the treatment recommendations are 

T 1 = return visit in 6 months 
T2 = careful follow-up with repeated tension readings 
T3 = careful follow-up or a therapeutic trial with pilocarpine 1 % QID 
T4 = miotic therapy (or, if medically uncontrolled, surgery) 

The pairs (D;, Ti) are linked together for this table; they may n:ot always 
be found together for other tables and other mechanisms of disease. 

A recommendation for therapy is usually a more complex problem 
than is described above. While the number of potential treatments that are 
applicable to a patient may be greatly reduced by the precision of the 
diagnosis, many treatments may still remain feasible. One of these treat
ments must then be selected. In addition, once a treatment is recom
mended and given to the patient, it is important to evaluate and monitor 
the effectiveness of that treatment. 

While the purpose of therapy is to control and if possible to cure 
disease, the recommendation of treatment often introduces factors that are 
external to the original diagnosis. Specific treatments may be contraindi
cated because of particular conditions of the patient that do not relate 
directly to the diseases that are modeled. These factors must be considered 
before a treatment is recommended. For example, age, allergies, and his
tory of other illnesses may all play an important role in the recommen
dation of a medication. A treatment for disease may in itself cause new 
processes of dysfunction that are unrelated to the original diagnosis. Many 
medications are known to cause side effects, and unwanted complications 
may ensue from surgical procedures. 

A plan of action can be designed to select treatments for patients who 
fall into a particular diagnostic category. A strategy of treatment selection 
adapts the general treatment plan to the specific circumstances of a patient. 
The treatment plan must take into account (a) the effectiveness of the 
current treatment, and (b) indications or contraindications for various ther
apies. 

Diagnostic conclusions for a patient are found by interpreting the spe
cific observations within the model of disease. These diagnostic conclusions 
will consider severity and progression of disease. The diagnostic statements 
may then point to one or more treatment plans. These are shown in Figure 
7-4. Each plan consists of an ordered list of treatments, Ti 1, Ti2, ..• , Tiw 
The list is ordered by preference: treatment 1 is tried before treatment 2, 
which will be tried before treatment 3, etc. This plan represents a proto
typical sequence of treatments for patients in the appropriate diagnostic 
categories, as agreed to in advance by the experts in the domain. A strategy 
for recommending treatment for an individual will usually follow the order 
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of treatment preferences. However, the ordering may be changed in re
sponse to particular observations noted in the individual patient. Within a 
treatment plan, deviations from the prototype result from changes in the 
degrees of preference or contraindications for specific treatments. In cer
tain situations, no well-established set of preferences exists, and the selec
tion of a treatment from within the general plan is almost completely de
termined by the pattern of observations for each patient. 

The strategy for treatment selection is described as follows: within a 
treatment plan, Tk, each specific treatment, Tkj has associated with it a 
preference measure, Pf(Tk), which is assigned from direct observations of 
the patient. Each observation, ti, that affects the preference of Tkj contrib
utes a measure, Pfij( - 1 ~ Pfij ~ + 1), which is assigned in a manner similar 
to the Qim for relating observations to the disease states, nrw For example, 
a drug intolerance may associate a negative preference with a particular 
treatment. For glaucoma, a very high tension reading after treatment 
would indicate ineffective control of the disease and contribute a negative 
preference to the current treatment. Being in a particular age group may 
increase the preference measure of one treatment over another. The over
all preference measure, Pf, is computed by the same rules used to compute 
the confidence measure, Cf, for the disease states. Once the Pf values have 
been computed, the rule for selecting a specific treatment, Tkf• from within 
its plan, Tk, can be summarized as follows: 

a. Select Tkj such that Pf(Tkj) = max [Pf(T!;i)]. 

h. If there is more than a single treatment with maximum Pf, select the 
one with smallest index j in the a priori prototypical ordering. 

Example 8. A treatment plan T4 corresponding to a confirmed case of 
open angle glaucoma (D4 ), as indicated in Example 7, is shown in Figure 
7-4. The Pf(T4j) are computed from the observations of a patient, some of 
which are illustrated in the figure. The patient shown is currently under 
treatment T41 , yet the observed tension of 27 mm of Hg indicates an un
controlled intraocular pressure. This assigns a decreased preference mea
sure of - 0.5 to the current treatment T41 and the related treatment T42 . 

The patient also showed progression of field loss, which decreases the 
preference ( - 0.8) for the current medication T41 even more strongly. Be
cause the patient is under 30, a systemic medication such as Diamox is less 
preferred ( - 0.3). The relatively higher risk of surgery versus medication 
results in the assignment to T48 of a decreased preference, - 0. 7. As a 
result of comparing these and other Pf's derived from the observations, 
the treatment with the maximum preference for this patient is T45 , which 
is recommended. 
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7 9 Results and Discussion • 

A general method for solving a class of diagnostic and therapy selection 
problems has been presented. These ideas on model-based interpretation 
have been put into practice through the implementation of a computer 
system for medical decision making. Much experience has been gained in 
the development of a model for the diagnosis and treatment of glaucoma, 
which has led to the design of a system with a high level of "expertise." 
This has influenced our general approach toward knowledge representa
tion and reasoning procedures. The consultation system, however, is not 
specific to glaucoma. Other models of disease have been developed for the 
anemias, thyroid dysfunction, diabetes, and hypertension. Glaucoma, how
ever, is the one application that has been pursued in depth and has under
gone clinical testing. 

The design of a consultation system can be broken down into two 
important tasks. These are the design and representation of models and 
the design of general problem-solving algorithms that use a suitably de
fined model for decision making. In the general CASNET system, a med
ical expert describes or modifies a model, but does not alter the reasoning 
procedures that select diagnostic interpretation and treatment plans. Two 
separate computer programs have been developed: the modeling program 
for designing application models (Kulikowski and Weiss, l 973b), and the 
consultation program that uses models for reaching diagnoses and rec
ommending therapies (Weiss et al., 1978). 

The current glaucoma consultation system has more than 100 states, 
400 tests, 7 5 classification tables, and 200 diagnostic and treatment state
ments. Results must be interpreted for each eye, so that, in effect, twice 
the number of rules are involved in any ophthalmological model. There 
are also many special rules for binocular comparisons of states, tests, and 
diagnostic and treatment statements. A set of the program's conclusions 
for a sample case is given in Figure 7-5. This session illustrates the level 
of performance that the program has attained in reasoning about complex 
cases of glaucoma. 

The consultation program has been designed for efficient perfor
mance. Human-engineering aspects of program design have also been em
phasized. The program has been developed primarily as a tool for the 
research of medical decision making by computer. However, our approach 
to program development involved the collaboration of a network of phy
sicians with minimal prior experience in the use of computers. Their active 
participation in the project required careful attention to programming de
tails that would allow our collaborators and other ophthalmologists to use 
the programs with little difficulty. This implies that only limited typing 
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VISIT 1: 

RIGHT EYE: 

(1) PRESENT DIAGNOSTIC STATUS: 

PIGMENTARY GLAUCOMA. OPEN ANGLE GLAUCOMA. CHARACTERISTIC VISUAL 
FIELD LOSS WITH CORRESPONDING DISC CHANGES. EARLY FIELD LOSS. 

(2) TREATMENT RECOMMENDATIONS: 

PILOCARPINE 2% QID. 

RESEARCH STUDIES 

ALTERNATIVE INTERPRETATIONS OF PIGMENTARY GLAUCOMA: 
. SECONDARY GLAUCOMA 
. PRIMARY OPEN ANGLE GLAUCOMA 

REFERENCES: 

1. "WHEN PIGMENTARY GLAUCOMA WAS FIRST DESCRIBED IT WAS THOUGHT TO 
BE A FORM OF SECONDARY GLAUCOMA CAUSED BY PLUGGING OF THE TRABECULAR 
MESHWORK BY THE SAME PIGMENT THAT FORMED THE KRUKENBERG'S 
SPINDLES. HOWEVER, AN INCREASING NUMBER OF OBSERVERS NOW BELIEVE 
THAT IT IS A VARIANT OF PRIMARY OPEN ANGLE GLAUCOMA ... " (WILENSKY, 
PODOS 1975, TRANSACTIONS NEW ORLEANS ACAD. OPTH.) 
2. "MORE RECENT EVIDENCE SUGGESTS THAT PIGMENTARY GLAUCOMA IS A 
SEPARATE ENTITY. .. " (ZINK, PALMBERG, ET AL, A.J.O., SEPT. 1975) 

VISIT7: 

RIGHT EYE: 

(1) PRESENT DIAGNOSTIC STATUS: 

PIGMENTARY GLAUCOMA. OPEN ANGLE GLAUCOMA. CHARACTERISTIC VISUAL 
FIELD LOSS WITH CORRESPONDING DISC CHANGES. ADVANCED FIELD LOSS. 
CURRENT MEDICATION HAS NOT CONTROLLED IOP IN THE EYE. (AS INDICATED 
BY PROGRESSION OF CUPPING) (AS INDICATED BY VISUAL FIELD LOSS 
PROGRESSION) 

(2) TREATMENT RECOMMENDATION: 

FILTERING SURGERY IS INDICATED. AS AN ALTERNATIVE, PHOSPHOLINE MAY 
BE TRIED (BUT NOT USED 2 WEEKS BEFORE SURGERY). 

FIGURE 7-5 Examples of program-generated decisions for a 
case of pigmentary glaucoma, abstracted from a sequence of 
seven visits. 

would be required and that quick response time, even for complex diag
nostic interpretations, would be essential. 

Initially, we designed and built a prototype model that was demon
strated to a select audience of ophthalmologists. At this point, the program 
was far from being expert. However, rapid progress in the development 
of a decision-making system can be made by building a small simplified 
prototype and modifying and improving the prototype. 
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A very significant event in the development of the program has been 
the formation of ONET-the Ophthalmological Network. Using the 
SUMEX-AIM computer, 1 we have put together a nationwide group of 
ophthalmological clinician-researchers who have participated in the devel
opment of the program's knowledge base. They enter cases and suggest 
improvements. Their suggestions have not been based on a comprehensive 
review of the logical rules contained in the program. Rather, we have con
centrated on entering realistic cases and comparing the program's ques
tioning sequence and conclusions with those of the experts. 

Within a period of approximately a year and a half of ONET collab
oration, the program achieved an expert level in the long-term diagnosis 
and treatment of many types of glaucoma. The program's performance 
has been validated by our group of experts and by the system's participa
tion in panel discussions of glaucoma cases at ophthalmological symposia. 
In November 1976 a scientific exhibit of the program was presented at the 
annual meeting of the American Academy of Ophthalmology and Otolar
yngology. Ophthalmologists were invited to present difficult cases to the 
computer. The program did well, with 77% of the ophthalmologists who 
entered cases describing the program as performing at an expert or very 
competent level (Weiss et al., 1978). 

In comparing the experiences of modeling glaucoma and other dis
eases, we have obtained some insight into the advantages and limitations 
of the CASNET representation and its associated decision-making meth
ods. When an understanding of the mechanisms of disease serves as a basis 
for decision making, the CASNET approach is most valuable. When rea
soning is mostly judgmental and based more on empirical information than 
knowledge of the disease mechanisms, other decision models may prove 
more appropriate (Patrick et al., 1974; Shortliffe et al., 1973). 

In the MYCIN system (see Chapter 5), descriptive domain knowledge 
is implicitly contained within the system of production rules that encode 
the clinical judgment of an expert consultant. Therapy selection for infec
tious diseases is a medical domain in which empirical knowledge plays a 
predominant part in the problem-solving process, and it is not surprising 
that this domain has been successfully modeled in terms of judgmental 
rules alone. In glaucoma, as in other diseases where mechanisms of dys
function are reasonably well known and have an important effect on the 
selection of treatments, we have developed a more structured representa
tion for causal knowledge. And yet, since strict Aristotelian causality is 
hardly applicable in medicine, the causal representation is embedded 
within an associational structure of observations that accounts for the un
certainties of clinical findings. 

In questions of hypothesis generation and approximate reasoning, the 

1This computer was established at Stanford University with NIH support to provide a national 
shared resource for research in AIM (AI in medicine). 
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CASNET approach is quite distinctive in its use of the causal-associational 
structuring of knowledge. An overall diagnostic hypothesis for a patient is 
usually a composite of several hypotheses. It is not uncommon to find five 
or six hypotheses included in the final diagnostic statement. Many of these 
hypotheses include statements of uncertainty within them, as, for example, 
"very high risk of glaucoma" or "mild risk of glaucoma." 

Approximate reasoning takes place at several levels. Measures of un
certainty are used to interpret observations in terms of the most elementary 
subhypotheses: the pathophysiological states of the causal network. A 
thresholding of the measures of uncertainty for all observations that are 
relevant to a given state determines whether that state is to be considered 
a "confirmed," "denied," or "undetermined" subhypothesis for the patient. 
At this level the method corresponds to the usual approach of assigning a 
likelihood or degree of belief to a hypothesis. At a higher level of abstrac
tion these subhypotheses of states are grouped together in a more deter
ministic fashion. Measures of uncertainty are less important at this stage 
because the hypotheses themselves include qualifying statements as de
scribed above. Thus the greatest reduction of uncertainty takes place be
tween the observations and the states, which serve as local and relatively 
simple summaries of events in the course of a disease. The detailed struc
tural relationships among states allows a fine-resolution encoding of the 
possible patterns of the disease. Because statements of uncertainty are as
sociated with these patterns, they can be related to final hypotheses in a 
deterministic logical manner without losing the soundness of the outcome. 
It is often advantageous to do this, in so far as it corresponds more closely 
to the conclusions expressed by an expert physician. 

The explanations produced by the CASNET/Glaucoma system also 
appear to correspond more closely to those of the physician. Instead of 
tracing all the rules involved in arriving at the final diagnosis, the composite 
hypothesis includes certain key subhypotheses that the physician recog
nizes as necessary elements in justifying the conclusions or recommenda
tions. For example, in glaucoma, a typical subhypothesis would be "cor
responding disc and visual field changes," which is both explanatory and 
supportive of a higher-level hypothesis of "open angle glaucoma." The 
subhypothesis is itself the summary of many different observations. In 
building the CASNET system, we have found that exhaustive tracing of 
rules is much more valuable as a debugging tool than as an explanation 
for the physician. 

The CASNET/Glaucoma system has proved to be highly efficient and 
sufficiently expert to be accepted as such by many ophthalmologists. Its 
solutions to many of the representational and strategy questions have been 
shown to be effective in a realistic problem domain. Nevertheless, the role 
of such large knowledge-based consultation systems in routine clinical prac
tice remains an open question. 
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8 
INTERNIST-I, 
An Experimental 
Computer-Based Diagnostic 
Consultant for General 
Internal Medicine 

Randolph A. Miller, Harry E. Pople, Jr., and 
Jack D. Myers 

One of the best-known AIM systems is the large diagnostic program con
structed by researchers at the University of Pittsburgh during the 1970s. 
The work developed out of a collaboration between Harry Pople r a computer 
scientist with an interest in AI, logic programming, and medical applica
tions) and Jack Myers, university professor (medicine) and prominent cli
nician, who was eager to try to encode some of his diagnostic expertise in 
a high-per[ ormance computer program. Rather than selecting a small sub
topic in medicine for the work, Pople and Myers decided to consider the 
entire field of internal medicine. This necessarily required approaches that 
quickly narrowed the search space of possible diseases and also permitted 
case analyses in which two or more diseases could coexist and interact. The 
resulting program, now known as INTERNIST-1 (or INTERNIST, for 
short), is capable of making multiple and complex diagnoses in internal 
medicine. It differs from other programs for computer-assisted diagnosis in 
the generality of its approach and in the size and diversity of its knowledge 
base. 

The knowledge base was developed over several years by Myers and 
medical student assistants. One of these students, Dr. Randolph Miller, 
became involved in the programming as well and, as a clinical faculty 

Used with permission of the New England journal of Medicine. From vol. 307, pp. 468-476; 
1982. All rights reserved. 
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member at the University of Pittsburgh, continues as a principal collabo
rator on the project. Those building the knowledge base would study the 
major diseases in medicine one by one, identifying both their major and 
minor clinical man~festations and developing weights that link each finding 
with the diseases in which it can occur. The resulting ad hoc scoring scheme 
proved to be capable ~f guiding excellent diagnostic reasoning. To test the 
program during its development, Myers and his students would select es
pecially difficult cases for consideration, often ones drawn from published 
clinical pathological conferences in medical journals. 

After several years of testing and rf:finement of the knowledge base, the 
study outlined in the following chapter was performed. To document the 
strengths and weaknesses of the program, the group performed a systematic 
evaluation of the program's capabilities. Its performance on a series of 19 
clinicopathological exercises ("Case Records ~f the Massachusetts General 
Hospital"), published in the New England Journal of Medicine, ap
peared qualitatively similar to that ~f the hospital clinicians but inferior to 
that ~f the case discussants. As a result, Miller, Pople, and M_vers believe 
that the evaluation demonstrated that the present form of the program is 
not sufficiently reliable for clinical applications. They cite specific deficien
cies that must be overcome before the program is ready for clinical use: an 
ability to construct differential diagnoses spanning multiple problem areas, 
new methods to avoid occasional attribution ~f findings to improper causes, 
and human-engineering enhancements to allow the program to explain its 
"thinking." A more detailed discussion of the serious limitations in the 
underlying representation and control methods used in INTERNIST-I has 
recently been presented by Pople (1982). In that article Pople explains the 
contemplated enhancements that will be the basis for the next version of 
INTERNIST, to be known as CADUCEUS. 

8 1 Introduction • 

INTERNIST-I, an experimental program for computer-assisted diagnosis 
in general internal medicine, differs considerably in scope from other med
ical diagnostic computer programs. In the past, techniques including math
ematical modeling, use of Bayesian statistics, pattern recognition, and other 
approaches (Wardle and Wardle, I 978; Wagner et al., I 978) (see also Chap
ter 3), have been shown to be useful in circumscribed areas such as the 
differential diagnosis of abdominal pain ( deDombal et al., I 972) and the 
diagnosis and treatment of meningitis (Yu et al., I 979a). However, no pro
gram developed for use in a limited domain has been successfully adapted 
for more generalized use. From its inception, INTERNIST-I has addressed 
the problem of diagnosis within the broad context of general internal med
icine (Pople et al., I 975; Myers et al., I 982; Pople, I 982). Given a patient's 
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initial history, results of a physical examination, or laboratory findings, 
INTERNIST-I was designed to aid the physician with the patient's work
up in order to make multiple and complex diagnoses. The capabilities of 
the system derive from its extensive knowledge base and from heuristic 
computer programs that can construct and resolve differential diagnoses. 

The INTERNIST-I program represents an example of applied sym
bolic reasoning (artificial intelligence). A variety of such techniques have 
been developed by computer scientists in an attempt to model the thought 
processes and problem-solving methods employed by human beings (Win
ston, I977; Nilsson, I980). An important aspect of the INTERNIST-I 
approach to computer-assisted diagnosis is that the program attempts to 
form an appropriate differential diagnosis in individual problem areas. A 
problem area is defined as a selected group of observed findings, the dif
ferential diagnosis of which forms what is assumed to be a mutually exclu
sive, closed (i.e., exhaustive) set of diagnoses. Physicians routinely construct 
such closed differential diagnoses on the basis of causal considerations 
(e.g., bacterial pneumonias) or pathoanatomic considerations (e.g., causes 
of obstructive jaundice). By constructing specific differential diagnoses to 
address identified problem areas, a physician or computer program can 
narrow the set of possible diagnoses from all known diseases to well-defined 
collections of competing diagnoses in a small number of categories. Heu
ristic principles, such as diagnosis by exclusion, can then be employed to 
resolve each differential diagnosis. The use of such strategies in INTER
NIST-I represents an attempt to model the behavior of physicians. 

Reported below is the first systematic evaluation of INTERNIST-I. 
The purpose of the study was to illustrate the strengths and weaknesses 
of the program and to provide a rough estimate of its clinical acumen. The 
trial was conducted with clinicopathological conferences (CPC's) that had 
been published in the New England journal of Medicine (NEJM) but had not 
previously been analyzed by the system. The CPC's fulfill the criteria of 
being diagnostically challenging cases and of containing sufficiently de
tailed information to allow computer analysis. The evaluation was not in
tended to validate INTERNIST-I for clinical use. CPC's should not be used 
for such a purpose, and as the trial demonstrated, the program does not 
yet possess sufficient reliability for clinical application. Nevertheless, IN
TERNIST-I performed remarkably well, considering the simple, ad hoc 
nature of its algorithms. 

8.2 The INTERNIST-I Knowledge Base 

A medical knowledge base must meet the needs of any associated diag
nostic programs. In particular, the INTERNIST-I knowledge base was 
designed to permit the consultant program to construct and resolve dif
ferential diagnoses. The knowledge base incorporates individual disease 
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profiles, which list findings that can occur in patients with each illness. By 
inverting the disease profiles with use of a computer program, an exhaus
tive differential diagnosis for each finding is obtained; these manifestation
based differential-diagnosis lists are retained as part of the knowledge base. 
The diagnostic program can use these lists to construct differential diag
noses in clinical cases. 

How to group potential diagnoses into relevant problem areas is a 
separate consideration. The individual diseases in the INTERNIST-I 
knowledge base are part of a disease hierarchy that is organized from the 
general to the specific. For example, acute viral hepatitis is classified as an 
hepatocellular infection, hepatocellular infection is a subclass of diffuse 
hepatic parenchymal disease, and diffuse hepatic parenchymal disease falls 
into the category of hepatic parenchymal disease, which is a major subclass 
of diseases of the hepatobiliary system. Initially, it was thought that access 
to the disease hierarchy would allow INTERNIST-I to construct appro
priate differential diagnoses (i.e., problem areas) based on higher-level 
concepts such as hepatocellular infection. If several diagnoses representing 
types of hepatocellular infection were under consideration, it would be 
simple to create a problem area for hepatocellular infection. However, 
early experience with the system showed that a rigid hierarchical classifi
cation scheme was inadequate, since a single disease often merits simulta
neous categorization under more than one heading. Infectious mononu
cleosis is both a hepatocellular infection and a type of infectious 
lymphadenopathy. Hierarchical classification would require that it be listed 
as one or the other, but not both. An additional concern is that diseases 
may present differently in different patients. For example, alcoholic hep
atitis may occur with predominance of intrahepatic cholestasis in one pa
tient and with massive hepatocellular necrosis in another. Solution of the 
classification problem entailed development of algorithms (discussed be
low) that permit INTERNIST-I to construct problem areas in a:n ad hoc 
manner. 

The building block for the INTERNIST-I data base is the individual 
disease. For each diagnosis entered into the system, a disease profile is 
constructed. The disease profile consists of findings (historical items, symp
toms, physical signs, and laboratory abnormalities) that have been reported 
to occur in association with the disease, including demographic data and 
predisposing factors. Two clinical variables are associated with each man
ifestation in an INTERNIST-I disease profile: an evoking strength and a 
frequency. The evoking strength answers the question "Given a patient 
with this finding, how strongly should I consider this diagnosis to be its 
explanation?" The frequency is an estimate of how often patients with the 
disease have the finding. In addition, each manifestation is assigned a dis
ease-independent import. The import is the global importance of the man
ifestation-that is, the extent to which one is compelled to explain its pres
ence in any patient. Although the evoking strengths, frequencies, and 
imports are expressed as numbers (on a scale of 0 to 5 or I to 5) in the 
INTERNIST-I knowledge base, it is important to remember that they rep-
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resent a shorthand for judgmental information, as their suggested inter
pretations in Tables 8- I through 8-3 indicate. True quantitative informa
tion does not exist in the medical literature in most cases; the numbers 
used by INTERNIST-I are judgmental in that they are compiled after a 
review of the available knowledge. 

The current INTERNIST-I knowledge base, which represents I5 per
son-years of work, encompasses over 500 individual disease profiles (an 
example appears in Figure 8-I) and approximately 3550 manifestations of 
disease. The disease profiles have been generated by review of the litera
ture and by consultation with expert clinicians. In addition to the disease 
profiles, the knowledge base details relations among diagnoses and among 
manifestations. Within INTERNIST-I, important high-level pathophysio
logic states (such as acute left ventricular failure, chronic congestive left 
heart failure, prerenal azotemia, and chronic uremia) are profiled as if they 
were diseases. The knowledge base contains links between such "diseases" 
and other diseases. The links are used to express causality or a predispo
sition of patients with one disease to have another. Because INTERNIST
I formulates and resolves problem areas serially, it can piece together inter
dependent components of a multisystem illness one by one, using the links 
in the data base to promote consideration of diseases related to previously 
concluded diagnoses. The total number of links among the 500 diagnoses 
in the data base is about 2600. The 3550 manifestations in the INTER
NIST-I knowledge base are not independent. Men do not have oligomen
orrhea, and a patient with oligomenorrhea must be presumed to be female. 
The knowledge base includes the properties of each manifestation that 
specify how its presence or absence may influence the presence or absence 
of other manifestations. There are roughly 6500 such interrelationships 
detailed in the knowledge base. 

8.3 The Diagnostic Algorithms 

The problem-solving algorithms represent the intellectual core of the IN
TERNIST-I system. Although the scoring mechanism described below ma
nipulates probabilistic data (evoking strengths, frequencies, and imports), 
it must be emphasized that the behavior of INTERNIST-I results primarily 
from application of two heuristic principles: formation of problem areas 
via a partitioning algorithm, and conclusion of diagnoses within problem 
areas using strategies such as diagnosis by exclusion. 

The steps on pages I 97-200 are taken during an INTERNIST-I diag
nostic consultation. [Please refer to Section 8.6 for an annotated sample 
case analysis taken from a CPC published in the New England Journal of 
Medicine (Castleman, I 969).] 



The Diagnostic Algorithms 195 

TABLE 8-1 Interpretation of Evoking Strengths 

Evoking strength Interpretation 

0 Nonspecific-manifestation occurs too commonly to be 
used to construct a differential diagnosis. 

Diagnosis is a rare or unusual cause of listed manifestation. 

2 Diagnosis causes a substantial minority of instances of listed 
manifestation. 

3 Diagnosis is the most common but not the overwhelming 
cause of listed manifestation. 

4 Diagnosis is the overwhelming cause of listed manifestation. 

5 Listed manifestation is pathognomonic for the diagnosis. 

TABLE 8-2 Interpretation of Frequency Values 

Frequency Interpretation 

Listed manifestation occurs rarely in the disease. 

2 Listed manifestation occurs in a substantial minority of cases of 
the disease. 

3 Listed manifestation occurs in roughly half the cases. 

4 Listed manifestation occurs in the substantial majority of cases. 

5 Listed manifestation occurs in essentially all cases-i.e., it is a 
prerequisite for the diagnosis. 

TABLE 8-3 Interpretation of Import Values 

Import Interpretation 

Manifestation is usually unimportant, occurs commonly in normal 
persons, and is easily disregarded. 

2 Manifestation may be of importance, but can often be ignored; 
context is important. 

3 Manifestation is of medium importance, but may be an unreliable 
indicator of any specific disease. 

4 Manifestation is of high importance and can only rarely be 
disregarded, as, for example, a false-positive result. 

5 Manifestation absolutely must be explained by one of the final 
diagnoses. 
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DISPLAY WHICH MANIFESTATION LIST? 
ALCOHOLIC HEPATITIS 

AGE 16 TO 25 ... 0 1 
AGE 26 TO 55 ... 0 3 
AGE GTR THAN 55 ... 0 2 
ALCOHOL INGESTION RECENT HX ... 2 4 
ALCOHOLISM CHRONIC HX ... 2 4 
SEX FEMALE ... 0 2 
SEX MALE ... 0 4 
URINE DARK HX ... 1 3 
WEIGHT LOSS GTR THAN 10 PERCENT ... 0 3 
ABDOMEN PAIN ACUTE ... 1 2 
ABDOMEN PAIN COLICKY ... 1 1 
ABDOMEN PAIN EPIGASTRIUM ... 1 2 
ABDOMEN PAIN NON-COLICKY ... 1 2 
ABDOMEN PAIN RIGHT UPPER QUADRANT ... 1 3 
ANOREXIA ... 0 4 
DIARRHEA ACUTE ... 1 2 
MYALGIA ... 0 3 
VOMITING RECENT ... 0 4 
ABDOMEN BRUIT CONTINUOUS RIGHT UPPER QUANDRANT ... 1 2 
ABDOMEN TENDERNESS RIGHT UPPER QUADRANT ... 2 4 
CONJUNCTIVA AND/OR MOUTH PALLOR ... 1 2 
FECES LIGHT COLORED ... 1 2 
FEVER ... 0 4 
HAND(S) DUPUYTRENS CONTRACTURE(S) ... 1 2 
JAUNDICE ... 1 3 
LEG(S) EDEMA BILATERAL SLIGHT OR MODERATE ... 1 2 
LIVER ENLARGED MASSIVE ... 1 2 
LIVER ENLARGED MODERATE ... 1 3 
LIVER ENLARGED SLIGHT ... 1 2 
PAROTID GLAND(S) ENLARGED ... 1 2 
SKIN PALLOR GENERALIZED ... 0 2 
SKIN PALMAR ERYTHEMA ... 1 3 
SKIN SPIDER ANGIOMATA ... 2 3 
SKIN TELANGIECTASIA ... 1 1 
ALKALINE PHOSPHATASE BLOOD GTR THAN 2 TIMES NORMAL ... 1 2 
ALKALINE PHOSPHATASE BLOOD INCREASED NOT OVER 2 TIME NORMAL ... 1 4 
BILIRUBIN BLOOD DECREASED ... 2 2 
BILIRUBIN URINE PRESENT ... 2 4 
CHOLESTEROL BLOOD DECREASED ... 2 2 
CHOLESTEROL BLOOD INCREASED ... 1 2 
HEMATOCRIT BLOOD LESS THAN 35 ... 1 3 
HEMOGLOBIN BLOOD LESS THAN 12 ... 1 3 
KETONURIA ... 1 2 
PROTEINURIA ... 1 2 
SGOT 120 TO 400 ... 2 3 
SGOT 40 TO 119 ... 2 3 
SGOT GTR THAN 400 ... 1 2 
UREA NITROGEN BLOOD LESS THAN 8 ... 2 2 
UROBILINOGEN URINE ABSENT ... 1 1 
UROBILINOGEN URINE INCREASED ... 2 4 

FIGURE 8-1 A sample manifestations list. The first number 
after each manifestation is its evoking strength for the diagno
sis; the second is the frequency of the manifestation in the dis
ease. 



WBC 14000 TO 30000 ... 0 3 
WBC 4000 TO 139000 PERCENT NEUTROPHIL(S) INCREASED ... 0 3 
WBC LESS THAN 4000 ... 1 1 
ACTIVATED PARTIAL THROMBOPLASTIN TIME INCREASED ... 1 3 
ANTIBODY MITOCHONDRIAL ... 1 1 
ANTIBODY SMOOTH MUSCLE ... 2 3 
BSP RETENTION INCREASED ... 1 5 
ELECTROPHORESIS SERUM ALBUMIN DECREASED ... 2 4 
ELECTROPHORESIS SERUM GAMMA GLOBULIN INCREASED ... 2 4 
FACTOR VII PROCONVERTIN DECREASED ... 1 2 
LOH BLOOD INCREASED ... 1 3 
MAGNESIUM BLOOD DECREASED ... 2 2 
PROTHROMBIN TIME INCREASED ... 2 3 
SGPT 200 TO 600 ... 1 2 
SGPT 40 TO 199 ... 2 3 
SGPT GTR THAN 600 ... 1 1 
LIVER BIOPSY BILE PLUGGING ... 1 2 
LIVER BIOPSY FATTY METAMORPHOSIS ... 2 4 
LIVER BIOPSY FOCAL NECROSIS AND INFLAMMATION ... 2 5 
LIVER BIOPSY HEPATOCELLULAR NECROSIS MARKED ... 2 3 
LIVER BIOPSY MALLORY BODIES ... 3 3 
LIVER BIOPSY PERIPORTAL FIBROSIS MILD ... 1 3 
LIVER BIOPSY PERIPORTAL INFILTRATION NEUTROPHIL(S) ... 3 5 
LIVER BIOPSY PERIPORTAL INFILTRATION ROUND CELL(S) ... 1 2 
LIVER BIOPSY SMALL BILE DUCT(S) PROMINENT ... 1 2 

LINKS FOR ALCOHOLIC HEPATITIS: 
Predisposes to MALLORTY WEISS SYNDROME ... 1 1 
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Causes SINUSOIDAL OR POSTSINUSOIDAL PORTAL HYPERTENSION ... 1 2 
Causes HEPATIC ENCEPHALOPATHY ... 2 2 
Causes RENAL FAILURE SECONDARY TO LIVER DISEASE 

<HEPATORENAL SYNDROME> ... 2 2 
Coincident with PANCREATITIS ACUTE ... 2 2 
Precedes MICRONODAL CIRRHOSIS <LAENNECS> ... 2 3 

FIGURE 8-1 continued 

1. Initial positive (present) and negative (absent) patient findings are en
tered by the user. As each new positive manifestation is encountered, 
the program retrieves its complete differential diagnosis from the in
verted disease profiles in the knowledge base. A disease hypothesis is 
created for each item on the manifestation's differential-diagnosis list. 
A master list of all such disease hypotheses is maintained. Higher-level 
concepts from the classification hierarchy are retained on the differ
ential-diagnosis list as long as the diagnoses that they subsume are 
indistinguishable in their ability to explain the observed data. The 
master differential list therefore comprises all possible diagnoses that 
can explain any of the observed findings (taken either individually or 
in groups). 

2. For each disease hypothesis, four lists are maintained: all positive man
ifestations in the patient that are explained by the disease hypothesis 
(i.e., findings matching the disease profile stored in the data base); all 
manifestations that might occur in a patient with the disease but are 
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known to be absent in the patient being considered; all manifestations 
present in the patient but not explained by the disease hypothesis, that 
is, not found on the disease profile (these manifestations represent 
either "red herrings" or items that would have to be explained by a 
second disease present in the patient); and manifestations on the dis
ease's profile about which nothing is known (this list is used in deter
mining which questions to ask). 

3. Each hypothesis on the master list of diagnoses is given a score. Scores 
are calculated as the sum of a positive and a negative component as 
follows. The positive component includes the weights of all manifes
tations explained by the hypothesis, based on the evoking strengths of 
the observed manifestations for the diagnosis. A nonlinear weighting 
scheme is used: an evoking strength of 0 counts as I point; a strength 
of I counts as 4 points; a 2 counts as IO points; a 3 counts as 20; a 4 
as 40; and a 5 as 80. Any disease hypothesis related to a previously 
concluded diagnosis (through links in the data base) is given a bonus 
score. The bonus awarded is 20 points times the frequency number 
listed for the hypothesized diagnosis in the disease profile of the con
cluded diagnosis. The negative component includes the weight of all 
manifestations that are expected to occur in patients with the disease 
but are absent in the patient under consideration. A nonlinear scale 
based on the expected frequency of the manifestation in the disease 
is used: a frequency of I counts as - I point; a 2 as -4 points; a 3 as 
- 7 points; a 4 as - IS points; and a 5 as - 30 points. Also included 
are the weights of all manifestations present in the patient but not 
explained by the hypothesized diagnosis. The import (clinical signifi
cance) of each manifestation is used to assess this penalty: an import 
of I counts as - 2 points; a 2 as - 6 points; a 3 as - I 0 points; a 4 as 
- 20 points; and a 5 as -40 points. The net score for any disease 
hypothesis is thus the sum of the above four component weights. 

4. After all disease hypotheses have been scored, the master list of all 
hypotheses is sorted by descending score. Diagnoses whose scores fall 
a threshold number of points below the topmost diagnosis are tem
porarily discarded as unattractive. They may be reconsidered, how
ever, if further evidence obtained during the case analysis raises their 
scores above the threshold (relative to the topmost diagnosis). 

5. At this point, the sorted master differential-diagnosis list is a hetero
geneous grouping of many disease hypotheses. A critical step in the 
diagnostic logic of INTERNIST-I is to delineate a set of competitors 
for the topmost diagnosis (i.e., to create a problem area containing the 
topmost disease hypothesis). Only one of the set of diseases in a prop
erly defined problem area is likely to be present in a patient. Problem 
area construction is carried out by the INTERNIST-I partitioner, 
which employs a remarkably powerful yet simple heuristic rule. The 
rule states, "Two diseases are competitors if the items not explained 
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by one disease are a subset of the items not explained by the other; 
otherwise, they are alternatives (and may possibly coexist in the pa
tient)." To paraphrase, if Disease A and Disease B taken together ex
plain no more observed manifestations than does either one taken 
alone, then the diseases are classified as competitors. Competitors for 
the likeliest diagnosis are identified from the master differential list 
using the partitioning rule; including the topmost diagnosis, they con
stitute the current problem area. Because INTERNIST-I defines prob
lem areas in this ad hoc manner, its differential diagnoses will not always 
resemble those constructed by clinicians. 

6. Once the problem area containing the most attractive diagnosis has 
been selected, criteria for establishing a definitive diagnosis can be 
applied. If the problem area contains only the topmost diagnosis, IN
TERNIST-I will immediately decide on (conclude) that diagnosis. If 
there is more than one diagnosis in the problem area, INTERNIST-I 
directly concludes the leading diagnosis when its score is 90 or more 
points higher than the nearest competitor. The value of 90 was chosen 
because it slightly exceeds the weight carried by a pathognomonic find
ing (80 points). This method of concluding a diagnosis is a hallmark 
of INTERNIST-I. The absolute score of the diagnosis does not matter. 
The only point of importance is whether the diagnosis is sufficiently 
higher in score than its reasonable competitors (other diagnoses that 
explain the same set of findings). 

7. If it is not possible to conclude a diagnosis (which by default means 
that the current problem area contains more than one hypothesis), one 
of three questioning strategies is selected: pursuing, ruling out, or 
discriminating. The pursuing mode is selected if the second-best con
tender is 46 to 89 points behind the topmost diagnosis. In the pursuing 
mode, questions are asked to establish the topmost diagnosis, since it 
is close to fulfilling criteria for conclusion. The questions asked are 
those that are most specific for the leading diagnosis (i.e., those with 
high evoking strengths). If there are five or more diagnoses within 45 
points of the topmost diagnosis, the ruling-out mode is used. Ques
tions that have high frequency numbers under the contenders are 
asked, with the expectation that several negative responses will remove 
some of the diagnoses from contention. The discriminating mode is 
used when there are two to four diagnoses within 45 points of the 
leading diagnosis. The questions asked attempt to maximize the spread 
m scores. 

8. In order to improve the efficiency of computations, questions are 
asked in small groups. The level of questioning is escalated (from 
history to physical-examination findings to gradations of laboratory 
results) only after the useful questions in a previous category have 
been exhausted. After the answers are processed, the disease hy
potheses are again scored and partitioned. A new differential diagnosis 
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is formed on the basis of the (possibly) new topmost diagnosis. This 
ad hoc method for constructing a differential diagnosis gives INTER
N !ST- I seemingly intelligent behavior, since the program will often 
change focus from one problem area to another when questioning in 
the first area has been counterproductive. 

9. When a diagnosis is concluded, all observed manifestations explained 
by the diagnosis are removed from future consideration. The program 
then recycles using the remaining unexplained positive findings. Sub
sequent findings are marked as explained when a previously con
cluded diagnosis can account for them. However, it is not possible to 
undo a previous diagnostic conclusion when contradictory evidence 
becomes available. 

10. When a problem area contains more than one disease hypothesis and 
all useful lines of questioning have been exhausted (without meeting 
criteria for concluding the topmost diagnosis), the program will defer 
making a diagnosis in that problem area. Diagnoses in the problem 
area are then displayed by descending score, along with an explanation 
that the differential diagnosis cannot be resolved. 

11. When all remaining manifestations have an import of 2 or less, the 
program stops. 

8 4 An Evaluation of INTERNIST-I • 

We have completed a preliminary evaluation of INTERNIST-I. The pro
gram was evaluated to compare its clinical acumen to that of human 
experts and to highlight its strengths and weaknesses. CPC's published in 
the New England Journal of Medicine (NEJM) as "Case Records of the Mas
sachusetts General Hospital" were used for the computer analysis. During 
the trial, only the published findings available to the case discussant were 
presented to INTERNIST-I (i.e., only findings mentioned before the pre
sentation of the pathological findings). The knowledge base of INTER
NIST-I was not altered during the course of the evaluation. 

During the development of INTERNIST-I, hundreds of miscella
neous individual cases, both simple and complex, have been presented to 
the system in order to evaluate and improve the data base and the diag
nostic computer program. Since many of these test cases included NEJM 
CPC's, cases for the trial were selected from 1969, a year from which no 
previous NEJM cases had been presented to INTERNIST-I. Before en
tering any cases, project members serially reviewed the published final 
anatomic diagnoses. All cases in which one or more of the major diagnoses 
were not represented in INTERNIST-1 's still incomplete knowledge base 
were rejected. The diagnostic program cannot conclude a diagnosis that is 
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missing from the knowledge base; such a case would not be a fair test for 
the system. The excluded diagnoses were neither more rare nor more 
complex than the diagnoses chosen for analysis. Cases I-I969 through 
42-I 969 (inclusive) were reviewed, and I 9 cases were obtained in which all 
major CPC diagnoses were included in the data base. That only I 9 of the 
42 cases reviewed qualified for the study is not unexpected. It is estimated 
that the current INTERNIST-I knowledge base includes roughly 70-75% 
of the major diagnoses of internal medicine. If each case on the average 
contained three major diagnoses, the probability that all three diagnoses 
would be included in the knowledge base is (0.75) x (0.75) x (0.75) or 
42%. 

In establishing criteria for evaluating performance on the NE JM 
CPC's, one must classify final anatomic or clinical diagnoses as major or 
minor. Major diagnoses are defined as those central to the problem. Clas
sified as minor Oiagnoses are diseases that were present in the patient but 
were clinically less relevant, including those diseases only partially de
scribed in the published case protocol, as well as conditions that were suc
cessfully managed and that subsequently resolved. Diagnostic decisions 
made by the clinicians at the Massachusetts General Hospital (MGH), by 
the case discussants, and by INTERNIST-I were classified as correct when 
they were confirmed by the pathologists or when a clinical syndrome was 
universally agreed to be present. When either the physicians or INTER
NIST- I introduced an incorrect diagnosis, a separate notation was made 
because an incorrect diagnosis has a different . meaning from that of a 
failure to make a correct diagnosis. We recognize two ways for a program 
or a clinician to make a correct diagnosis in the setting of a CPC: to state 
unequivocally that the patient has the disease (definitive diagnosis) or to offer 
an unresolved differential diagnosis that includes the correct diagnosis as 
its topmost element (tentative diagnosis). INTERNIST-I makes definitive 
diagnoses by conclusion and tentative diagnoses by deferral (see above). 
The hospital clinicians and the case discussants also made both types of 
diagnoses. A tentative diagnosis was counted as incorrect if its topmost 
element was not the correct diagnosis, even if the associated differential 
diagnosis included the correct diagnosis. 

Table 8-4 summarizes the results for the I 9 trial cases. There were 43 
possible correct major diagnoses. INTERNIST-I, the clinicians at the 
MGH, and the case discussants made I 7, 23, and 29 correct definitive 
diagnoses, respectively. A correct tentative diagnosis was offered 8, 5, and 
6 times, respectively. Thus, of 43 anatomically verified diagnoses, IN
TERNIST-I failed to make a total of I8, whereas the clinicians failed to 
make I 5 such diagnoses, and the discussants missed only 8. Of the I 8 
situations in which INTERNIST-I failed to make an anatomically correct 
diagnosis, the clinicians or the discussant or both failed to make the correct 
diagnosis I I times. INTERNIST-I made a correct diagnosis in 7 circum
stances in which the clinicians or the case discussant failed to do so. IN
TERNIST-I made 5 incorrect definitive diagnoses and 6 incorrect tentative 
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TABLE 8-4 Summary of results for major diagnoses in 19 cases used in the 
INTERNIST-I evaluation 

No. of instances 

Category. INTERNIST-1 Clinicians Discussants 

Definitive, correct 17 23 29 
Tentative, correct 8 5 6 
Failed to make correct diagnosis 18 15 8 
Definitive, incorrect 5 8 11 
Tentative, incorrect 6 5 2 
Total no. of incorrect diagnoses 11 13 13 
Total no. of errors in diagnosis 29 28 21 
Total possible diagnoses 43 43 43 

diagnoses (naming diseases that were not present in the patients). The 
MGH clinicians made 8 incorrect definitive diagnoses and 5 incorrect ten
tative diagnoses. The case discussants made 11 incorrect definitive diag
noses and 2 incorrect tentative diagnoses. Of the 5 situations in which 
INTERNIST- I made an incorrect definitive diagnosis, 4 were situations in 
which the discussants also made a wrong diagnosis. 

The shortcomings of the program, which were highlighted by the eval
uation, fall into two general categories. The first type are limitations due 
to the structure or content of the knowledge base. Examples include the 
absence of a manifestation required to describe an important finding; the 
use of overly simplistic manifestations for some circumstances; the inad
vertent omission of a finding from a disease profile; the assignment of an 
incorrect evoking strength, frequency, or import; and the failure of a man
ifestation to convey adequate anatomic information. The second type of 
limitation resulted from deficiencies in the design or implementation (or 
both) of the computer program. Included in this category were failure to 
incorporate temporal reasoning capabilities; problems resulting from use 
of the scoring algorithm; the inability to take a broad overview in attacking 
a complex problem; and the improper attribution of findings to concluded 
diagnoses (i.e., invoking the wrong explanation for a finding). Specific rea
sons for INTERNIST-l's incorrect diagnoses (made both by omission and 
by commission) are listed in Table 8-5. 

8 5 Discussion • 

Experience with INTERNIST-I has reinforced our impression of medical 
diagnosis as a complex process. Diagnosis consists of two fundamental ac
tivities: the generation of one or more differential diagnoses (each for a 
separate problem area), and the resolution of individual differential di-
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TABLE 8-5 Classification of errors made by INTERNIST-I 
during the evaluation 

Type of error 

Knowledge-base errors 

Data base incomplete/omission 

Data base incorrect 

Lack of anatomic knowledge 

Failure to represent degree of severity 

Computer-program faults 

Lack of temporal reasoning 

Failure of scoring algorithm 

Failure to seek global overview 

Improper attribution of finding 
to a concluded diagnosis 

No. of occurrences 

2 

2 

2 

3 

3 

6 

agnoses. The surprising ability of the program to make multiple and com
plex diagnoses in the broad field of internal medicine emphasizes the 
power of its underlying heuristic methods. 

Several important shortcomings of the INTERNIST-1 approach to 
diagnosis merit further investigation. Feinstein ( l 977b) has emphasized 
the importance of explanation as part of diagnostic reasoning. INTER
NIST-1 's greatest failing during the evaluation (occurring in 6 instances) 
was its inability to attribute findings to their proper causes. Because of the 
ad hoc, serial nature of INTERNIST-1 's formation of problem areas, the 
program cannot synthesize a general overview in complicated multisystem 
problems. The structure of the knowledge base, especially the form of the 
disease profiles, limits the program's ability to reason anatomically or tem
porally. The program cannot recognize subcomponents of an illness, such 
as specific organ-system involvements or the degree of severity of patho
logic processes. 

A diagnostic program must be able to recognize the appropriate cause 
or causes of observed findings in a patient. A justification for each diagnosis 
must be developed on a pathophysiologic or causal framework that is 
consistent with established medical knowledge. To its detriment, INTER
N IST-1 's handling of explanation is shallow. When the program concludes 
a diagnosis, that diagnosis is allowed to explain any observed manifesta
tions that are listed on its disease profile. Once explained, a manifestation 
is no longer used to evoke new disease hypotheses or to participate in the 
scoring process. This situation is compounded by the inadequate repre
sentation of causality in the INTERNIST- I knowledge base. Disease pro
files contain, in an undifferentiated manner, factors predisposing to the 
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illness as well as findings that result from the disease process itself. An 
example of this problem occurred in analysis of Case I 7-I969, when IN
TERNIST-I allowed hepatic encephalopathy to explain the finding of hy
pokalemia. The program should have recognized hypokalemia as a pre
disposing factor for hepatic encephalopathy and initiated a search for an 
independent cause of the finding. At present, the limitations of the knowl
edge base prohibit such activity. 

What is required is a restructuring of the knowledge base to include 
intermediate-level pathophysiologic states and the segregation of predis
posing factors from findings actually caused by a disease. Diseases should 
be profiled in terms of their intermediate states, rather than as exhaustive 
lists of manifestations. If the program had such a feature, the presence or 
absence of each state would be independently determined, and a disease 
would be allowed to explain a finding only when the state causing the 
finding was confirmed. 

A related problem not handled well by· INTERNIST-I is the inter
dependency of manifestations. For example, persons with elevated conju
gated bilirubin levels in their blood usually have bilirubinuria. At present, 
the evoking strengths of each finding count redundantly toward any di
agnosis that can explain them. This phenomenon causes INTERNIST-I 
to favor disproportionately the most common explanation for a set of find
ings. A solution would be the creation of an intermediate-level state, "ab
normal bilirubin metabolism and transport,'' which would explain both 
conjugated hyperbilirubinemia and bilirubinuria. Appropriate weight for 
the intermediate state (rather than for the interdependent manifestations) 
could be given to any diseases that cause it. Thus creation of a causal 
network of pathophysiologic states, interposed between observable mani
festations and final diagnoses, would allow a diagnostic program to attrib
ute findings to causes accurately and would help to diminish the influence 
of interdependent manifestations of disease. 

INTERNIST-I constructs differential diagnoses in an ad hoc manner, 
using a scoring algorithm to define the topmost (best) diagnosis and an
other program, the partitioner, to define reasonable competitors for the 
topmost diagnosis. By formulating and focusing attention on only one 
problem domain at any given time, the program is able to disregard "red 
herrings" and to set aside-temporarily-findings caused by disease proc
esses falling outside the selected pro_blem domain. By creating and proc
essing problem domains serially, the program is able to make multiple 
diagnoses. But INTERNIST-I cannot formulate a broad perspective in 
complicated multisystem patient problems. It is constrained to working 
with tunnel vision, discriminating among diagnoses within each problem 
area, unable to look at several problem areas simultaneously. Only after a 
specific diagnosis is concluded can INTERNIST-I use the links in its data 
base to give bonus weight to interrelated diagnoses in separate problem 
domains. New programming approaches to complex reasoning processes 
have been developed (Pople, I 982) to enable CADUCEUS, the successor 
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to INTERNIST-I, to synthesize a broad overview incorporating causal re
lationships into an approach to a patient's problems. 

INTERNIST-I is unable to reason anatomically or temporally. The 
program could not differentiate gastric compression due to pancreatic 
mass effect from that due to hepatic mass effect in Case 23-1969, and as 
a result it erroneously concluded that the patient had a hepatoma rather 
than pancreatitis. Nor can INTERN IST-1 recognize the degree of severity 
of a finding or process in all instances. Two of INTERNIST-l's failures 
during the evaluation resulted from its inadequate recognition of the de
gree of severity of an individual manifestation (a decreased blood potas
sium level) and of an organ-system involvement by a pathologic process 
(disseminated vasculitis). Reorganization of the data base to allow repre
sentation of these concepts is also being undertaken. 

INTERNIST-I is only one of many computer-based tools with the 
purpose of extending the capabilities of the physician. Such programs can 
broaden the clinician's scope and awareness of data for the diagnosis and 
treatment of illness. For the present, INTERNIST-I remains a research 
tool. After refinement of the knowledge base and diagnostic programs, a 
prospective clinical trial will be required to compare the program's behavior 
with that of clinicians in terms of diagnostic accuracy, cost effectiveness, 
and danger to the patient. 

8.6 A Sample Case Analysis 

The transcript of an INTERNIST- I case analysis given in Figure 8-2 il
lustrates the operation of the diagnostic programs. The case was taken 
from a CPC published in the New England journal of Medicine in 1969 
(Castleman, 1969). The laboratory values are reported as measured in 
1969. The bracketed paragraphs labeled "Comment" have been interpo
lated for clarification; they are not part of the actual consultation. Places 
where the transcript has been abridged are indicated by ellipses. 

INTERNIST-1 consultation 
15-May-81 07:31 :39 
ENTER CLASS NAME: NEJM-CASE-30-1969-ADMISSION-1 

SUMEX-AIM Version 

[Comment: Here the user enters the initial positive findings (present in the patient) and negative findings 
(absent). The specialized INTERNIST-1 vocabulary of some 3550 manifestations must be used in describing 
the case. The plus (+)prompt precedes each positive finding entered by the user. Because INTERNIST-1 
has no mechanism for the representation of time, all findings have been collapsed into a single list, 
independently of their order of appearance in the patient.) 

FIGURE 8-2 Transcript of an INTERNIST-I case analysis. 
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INITIAL POSITIVE MANIFESTATIONS: 
+AGE GTR THAN 55 
+ARTHRITIS HX 
+DEPRESSION HX 
+SEX FEMALE 
+ THYROIDECTOMY HX 
+ULCER PEPTIC HX 
+URINE DARK HX 
+WEIGHT INCREASE RECENT HX 
+ANOREXIA 
+CHEST PAIN LATERAL EXACERBATION WITH BREATHING 
+CHEST PAIN LATERAL SHARP 
+ DYSPNEA ABRUPT ONSET 
+ABDOMEN DISTENTION 
+ABDOMEN FLUID WAVE 
+ASTERIXIS 
+FECES LIGHT COLORED 
+JAUNDICE 
+JOINT(S) PERIARTICULAR THICKENING 
+JOINT(S) RANGE OF MOTION DECREASED 
+LIVER ENLARGED MODERATE 
+PLEURAL FRICTION RUB 
+PULSE PRESSURE INCREASED 
+SKIN PALMAR ERYTHEMA 
+SKIN SPIDER ANGIOMATA 
+SPLENOMEGALY SLIGHT 
+TACHYCARDIA 
+TACHYPNEA 
+THYROID ENLARGED ASYMMETRICAL 
+ALKALINE PHOSPHATASE BLOOD GTR THAN 2 TIMES NORMAL 
+BILI RUBIN BLOOD CONJUGATED INCREASED 
+BILI RUBIN URINE PRESENT 
+FECES GUAIAC TEST POSITIVE 
+GLUCOSE BLOOD 130 TO 300 
+ SGOT 120 TO 400 
+AMMONIA BLOOD INCREASED 
+ ASCITIC FLUID PROTEIN 3 GRAM(S) PERCENT OR LESS 
+ASCITIC FLUID WBC 100 TO 500 
+ELECTROPHORESIS SERUM ALBUMIN DECREASED 
+ELECTROPHORESIS SERUM BETA GLOBULIN INCREASED 
+ELECTROPHORESIS SERUM GAMMA GLOBULIN INCREASED 
+GLUCOSE TOLERANCE DECREASED 
+ IMMUNOELECTROPHORESIS SERUM IGA INCREASED 
+ IMMUNOELECTROPHORESIS SERUM IGM INCREASED 
+ IMMUNOELECTROPHORESIS SERUM IGG INCREASED 
+ LDH BLOOD INCREASED 
+LE TEST POSITIVE 
+LIVER RADIOISOTOPE SCAN IRREGULAR UPTAKE 
+ PROTHROMBIN TIME INCREASED 
+RHEUMATOID FACTOR POSITIVE 
+STOMACH BARIUM MEAL HIATAL HERNIA 
+DENY 

[Comment: The keyword DENY indicates to INTERNIST-1 that the user now wants to enter negative findings. 
The minus(-) prompt precedes each negative finding entered.] 

FIGURE 8-2 continued 



INITIAL NEGATIVE FINDINGS: 
-ALCOHOLISM CHRONIC HX 
-DIARRHEA CHRONIC 
-FECES BLACK TARRY 
-FEVER 
-PRESSURE VENOUS INCREASED ON INSPECTION 
-HEMATOCRIT BLOOD LESS THAN 35 
-UREA NITROGEN BLOOD 30 TO 59 
-URIC ACID BLOOD INCREASED 
-ASCITIC FLUID AMYLASE INCREASED 
-ASCITIC FLUID CYTOLOGY POSITIVE 
-ASCITIC FLUID LOH GTR THAN 500 
-ESOPHAGUS BARIUM MEAL VARICES 
-STOMACH BARIUM MEAL ULCER CRATER 
-T3 RESIN UPTAKE INCREASED 
-T4 TOTAL BLOOD INCREASED 
-GO 

A Sample Case Analysis 207 

[Comment: The user enters GO to indicate that all relevant positive and negative findings have been entered. 
The INTERNIST-1 consultant programs guide the user through the rest of the diagnostic work-up by asking 
questions. For clarity, all reponses typed by the user from this point will be in italics.] 

DISREGARDING: DEPRESSION HX, WEIGHT INCREASE RECENT HX, CHEST PAIN LATERAL 
EXACERBATION WITH BREATHING, CHEST PAIN LATERAL SHARP, DYSPNEA ABRUPT 
ONSET, ABDOMEN FLUID WAVE, ASTERIXIS, JOINT(S) PERIARTICULAR THICKENING, 
PLEURAL FRICTION RUB, THYROID ENLARGED ASYMMETRICAL, FECES GUAIAC TEST 
POSITIVE, GLUCOSE BLOOD 130 TO 300, AMMONIA BLOOD INCREASED, ASCITIC FLUID 
WBC 100 TO 500, GLUCOSE TOLERANCE DECREASED 

CONSIDERING: AGE GTR THAN 55, SEX FEMALE, URINE DARK, ANOREXIA, FECES LIGHT 
COLORED, JAUNDICE, LIVER ENLARGED MODERATE, SKIN PALMAR ERYTHEMA, SKIN 
SPIDER ANGIOMATA, SPLENOMEGALY SLIGHT, ALKALINE PHOSPHATASE BLOOD GTR 
THAN 2 TIMES NORMAL, BILIRUBIN BLOOD CONJUGATED INCREASED, BILIRUBIN URINE 
PRESENT, SGOT 120 TO 400, ELECTROPHORESIS SERUM ALBUMIN DECREASED, 
ELECTROPHORESIS SERUM GAMMA GLOBULIN INCREASED, IMMUNOELECTROPHORESIS 
SERUM IGA INCREASED, IMMUNOELECTROPHORESIS SERUM IGG INCREASED, 
IMMUNOELECTROPHORESIS SERUM IGM INCREASED, LOH BLOOD INCREASED, LE TEST 
POSITIVE, LIVER RADIOISOTOPE SCAN IRREGULAR UPTAKE, PROTHROMBIN TIME 
INCREASED, RHEUMATOID FACTOR POSITIVE. 

DISCRIMINATE: HEPATITIS CHRONIC ACTIVE, BILIARY CIRRHOSIS PRIMARY 

[Comment: At this point, INTERNIST-1 has constructed a master differential-diagnosis list, ordered its 
members with a scoring algorithm, and then focused attention on the most promising problem area, which 
appropriately contains two liver diseases. The DISREGARDING list consists of all findings that are 
inconsistent with the topmost (first-listed) diagnosis; the CONSIDERING list includes all findings explained by 
the topmost diagnosis (i.e., chronic active hepatitis). The number of plausible contenders in the problem area 
determines the strategy for questioning. Questions are asked to discriminate between the two diagnoses.] 

Please Enter Findings of LIPID(S) BLOOD 
GO 
CHOLESTEROL BLOOD DECREASED? 
NIA 

[Comment: INTERNIST-1 asks questions in two forms. A question of the style "Please Enter Findings of ... " 
asks about a generic class of findings, such as serum lipids or chest x-ray films. The user enters specific 
(positive or negative) findings and when finished types GO. If there are no positive or negative findings to 
enter, typing GO will cause the programs to ask the original single item that prompted the generic question. 

FIGURE 8-2 continued 
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For example, an elevated cholesterol level would favor primary biliary cirrhosis over chronic active hepatitis, 
whereas the converse situation would apply if the cholesterol were decreased. Thus, INTERNIST-1 asked a 
generic question about serum liquids. The second form of questioning is direct. INTERNIST-1 simply prints a 
manifestation name followed by a question mark. The user can then respond by typing YES {present), NO 
(absent), or NIA (not available-either unknown or not performed). The published CPC did not mention the 
serum cholesterol value, so the user entered NIA.] 

Please Enter Findings of INSPECTION AND PALPITATION SKIN 
GO 
SKIN XANTHOMATA? 
NO 
Please Enter Findings of BLOOD COUNT AND SMEAR 
GO 
RBC TARGET(S)? 
NO 

[Comment: INTERNIST-1 uses information about the type of each manifestation-history, symptoms, signs, 
and laboratory tests, both routine and two gradations of more expensive or invasive laboratory procedures. 
The types of manifestations determine which questions are asked. Although the greatest discriminating power 
for resolving a differential diagnosis often resides in an invasive test, such as a liver biopsy, INTERNIST-1 
has been programmed to exhaust the useful history and physical-examination findings before escalating its 
questioning to more expensive or dangerous laboratory tests.] 

Please Enter Findings of KIDNEY FUNCTION TEST(S) 
GO 
UREA NITROGEN BLOOD 60 TO 100? 
NO 
UREA NITROGEN BLOOD GTR THAN 100? 
NO 
Please Enter Findings of LIVER FUNCTION TEST(S) 
GO 
UROBILINOGEN URINE ABSENT? 
NIA 

[Comment: INTERNIST-1 did not seek to investigate renal function itself in the passage above. It was 
programmed to recognize that the urinary urobilinogen value may be unreliable in the presence of marked 
azotemia, so it first asked about the blood urea nitrogen.] 

CONCLUDE: HEPATITIS CHRONIC ACTIVE 

(Comment: It is likely that INTERNIST-1 had nearly made the diagnosis of chronic active hepatitis before it 
asked any questions. The negative answers favored chronic active hepatitis, and therefore INTERNIST-1 
concluded the diagnosis.] 

DISREGARDING: DEPRESSION HX, CHEST PAIN LATERAL EXACERBATION WITH 
BREATHING, CHEST PAIN LATERAL SHARP, DYSPNEA ABRUPT ONSET, ASTERIXIS, 
JOINT(S) PERIARTICULAR THICKENING, PLEURAL FRICTION RUB, THYROID ENLARGED 
ASYMMETRICAL, FECES GUAIAC TEST POSITIVE, GLUCOSE BLOOD 130 TO 300, AMMONIA 
BLOOD INCREASED, GLUCOSE TOLERANCE DECREASED 

CONSIDERING: WEIGHT INCREASE RECENT HX, ABDOMEN DISTENTION, ABDOMEN 
FLUID WAVE, ASCITIC FLUID OBTAINED BY PARACENTESIS, ASCITIC FLUID WBC 100 
TO 500, ASCITIC FLUID PROTEIN 3 GRAM(S) PERCENT OR LESS ... 
CONCLUDE: TRANSUDATIVE ASCITES 
DISREGARDING: ... 
CONSIDERING: ASTERIXIS, PULSE PRESSURE INCREASED, TACHYCARDIA, AMMONIA 
BLOOD INCREASED 
PURSUING: HEPATIC ENCEPHALOPATHY 

FIGURE 8-2 continued 
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[Comment: The links in the INTERNIST-1 knowledge base between chronic active hepatitis and hepatic 
encephalopathy have resulted in a bonus weight's being given to hepatic encephalopathy here; previously, 
links had promoted the consideration of transudative ascites, since it can also be caused by chronic active 
hepatitis.] 

CSF FLUID OBTAINED? 
NIA 

[Comment: Here INTERNIST-1 was about to ask about the glutamine level in the cerebrospinal fluid. Since no 
lumbar puncture was performed, the result is not available.] 

CONCLUDE: HEPATIC ENCEPHALOPATHY 

[Comment: In the above situation, there were no diagnostically helpful tests remaining for INTERNIST-1 to 
ask. INTERNIST-1 has been programmed to relax its criteria for concluding a diagnosis when all useful lines 
of questioning have been blocked. Since INTERNIST-1 had been close to making the diagnosis of hepatic 
encephalopathy, the program now concludes the diagnosis. The case analysis was intentionally stopped at 
this point, because all relevant major diagnoses had been covered. Without such intervention, INTERNIST-1 
would try to explain any remaining important findings, such as the arthritis and pleurisy.] 

FIGURE 8-2 continued 
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9 
Categorical and 
Probabilistic Reasoning in 
Medical Diagnosis 

Peter Szolovits and Stephen G. Pauker 

In the mid-1970s, when Corry left M.I. T. to go to Baylor College of 
Medicine, Peter Szolovits took over as head of the Clinical Decision-Making 
Group at Project MAC (now known as the Laboratory for Computer Sci
ence). He renewed ties with the collaborators at Tufts University with whom 
Corry had previously worked (Pauker, Schwartz, and Kassirer). The fol
lowing chapter is an early result of those developing ties. It was written for 
a special issue of Artificial Intelligence that dealt solely with applications 
of AI in biomedicine (Sridharan, 197 8). In the article Szolovits and Pauker 
review the lessons of the major four AIM programs of the early 1970s. 

The review begins by noting that medical decision making can be viewed 
along a spectrum, with categorical (or deterministic) reasoning at one ex
treme and probabilistic (or evidential) reasoning at the other. The authors 
discuss classical flow charts as the prototype of categorical reasoning and 
decision analysis as the prototype of probabilistic reasoning. Within that 
context they compare MYCIN, PIP, CASNET, and INTERNIST-the 
four systems described in Chapters 5 through 8. They note that, although 
all four systems can exhibit impressive expertlike behavior, none of them is 
capable of truly expert reasoning. They argue that a program that can 
demonstrate expertise in the area of medical consultation will have to use 
a judicious combination of categorical and probabilistic reasoning-the 
former to establish a sufficiently narrow context and the latter to make 
comparisons among hypotheses and eventually to recommend therapy. We 
include the paper here because it nicely summarizes and integrates the 

FromArtificiallntelligence, 11: 115-144 (1978). Copyright© 1978 by North-Holland Publish
ing Company. All rights reserved. Used with permission. 
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discussions of the systems in the four preceding chapters. By citing the 
limitations of the early systems, this article helped define and clarify some 
of the research issues that evolved later in the decade and are discussed in 
subsequent chapters. 

9 1 Introduction • 

How do practicing physicians make clinical decisions? What techniques can 
we use in the computer to produce programs that exhibit medical exper
tise? Our interest in these questions is motivated by our desire: 

1. to provide (by computer) expert medical consultation to general prac
titioners or paramedical personnel in communities where such consul
tation is normally unavailable; 

2. to come to understand the reasoning processes of expert doctors so that 
we may improve the teaching of their skills to medical students; and 

3. to advance the techniques of artificial intelligence, especially as applied 
to medicine (AIM), to support our other goals. 

In other publications, we have described research by our group on 
programs to take the history of the present illness of a patient with renal 
disease (Pauker and Corry, 1976; Szolovits and Pauker, 1976) and to advise 
the physician in the administration of the drug digitalis to patients with 
heart disease (Corry et al., 1978; Silverman, 1975; Swartout, 1977). Here, 
we would like to review the reasoning mechanisms 1 used by our own pro
grams, by other AI programs with medical applications, and, by inference, 
by physicians. 

9.2 Categorical and Probabilistic Decisions 

Most decisions made in medical practice are straightforward. Whether the 
physician is taking a history of a patient's illness, performing a routine 
physical examination, or ordering a standard battery of laboratory tests, 
he or she makes few real decisions. To a large extent his or her expertise 

1 ln this discussion, we take reasoning to be synonymous with decision making. Although the 
former is a broader term, we are specifically concerned with that aspect of reasoning that 
yields medical decisions. An earlier review of work in this area was made by Pople et al. 
(1975). 
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consists of mastery of the appropriate set of routines with which he or she 
responds to typical clinical situations. 

This view is corroborated, in part, by the observed differences between 
the diagnostic approach of a medical student or newly minted doctor and 
that of a practicing expert. The novice struggles "from first principles" 
initially to propose plausible theories and then to rule out unlikely ones, 
whereas the expert simply recognizes the situation and knows the appro
priate response. We might say that the expert's knowledge is compiled 
(Rubin, 1975; Sussman, 1973). Similar differences have even been noted 
among expert consultants in different specialties when they are presented 
the same case, and even between the performance of the same consultant 
on cases within compared to cases outside his or her specialty. The expert 
doctor dealing with a case within his or her own specialty approaches the 
case parsimoniously; the expert less familiar with the case resorts to the 
more general diagnostic style associated with the nonexpert (Miller, 1975). 

An important characteristic of expert decision making, then, is the use 
of an appropriate set of routines or rules that apply to the great majority 
of clinical situations. We shall identify this as categorical reasoning. 2 A cat
egorical medical judgment is one made without significant reservations: if 
the patient's serum sodium is less than 110 mEq./l., administer sodium 
supplements; if the patient complains of pain on urination, obtain a urine 
culture and consider the possibility of a urinary tract infection. These rules, 
as applied by the physician, are not absolutely deterministic. Although their 
selection and use do not involve deep reasoning, the doctor may withhold 
his or her full commitment from conclusions reached by even such cate
gorical rules. The doctor thereby establishes the flexibility to modify his or 
her conclusions and rethink the problem if later difficulties arise. 

A categorical decision typically depends on a relatively few facts; its 
appropriateness is easy to judge, and its result is unambiguous. A categor
ical decision is simple to make, and the rule that forms its basis is usually 
simple to desc:ribe (although its validity may be complicated to justify). 
Physicians most often work with categorical decisions, and, to whatever 
extent possible, computer experts should do the same. 

Unfortunately, not every decision can be categorical. No simple rule 
exists for deciding whether to perform a bone marrow biopsy or when to 
discharge a patient from the cardiac intensive care unit. Those decisions 
must be made by carefully weighing all the evidence. Although we know 
that doctors do so, we do not understand just how they weigh the evidence 
that favors and that opposes various hypotheses or courses of action; this 
is an important unsolved problem for both AI and cognitive psychology 
(Newell and Simon, 1972; Tversky and Kahneman, 1974). 

2Webster's defines rntegorirnl as "unqualified; unconditional; absolute; positive; direct; 
explicit; ... " 
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A number of formal schemes for the weighing of evidence are used, 
and we shall concentrate on one of them, the probabilistic, to contrast with 
the categorical mode of reasoning3 discussed above. We do not believe or 
suggest that formal probabilistic schemes are naturally used in decision 
making by physicians untrained in the use of such schemes. Indeed, there 
is convincing evidence that people are very poor at prob~bilistic reasoning 
(Tversky and Kahneman, 1974). Yet we believe that, with appropriate lim
itations as discussed below, probabilistic reasoning can be an appropriate 
component of a computerized medical decision-making system, especially 
for the difficult decisions for which categorical reasoning is inappropriate.4 

In this paper we examine prototypical categorical and probabilistic 
reasoning systems, their limitations, and their successful applications, and 
then describe and analyze the reasoning mechanisms of some current AIM 
programs in terms of these schemes. We conclude with some comments 
and speculations on the requirements for reasoning mechanisms in future 
AIM programs. 

9.2.1 Purely Categorical Decision Making-The Flow 
Chart 

Categorical reasoning is exemplified by the simplest flow chart programs 
for guiding frequent decisions based on a well-accepted rationale. The flow 
chart is a finite state acceptor in which every nonterminal node asks a 
question whose possible answers are the labels of the arcs leaving that node. 
The machine has a unique initial state corresponding to initial contact with 
the user and a number of possible terminal states, each labeled by an 
outcome-a diagnosis, patient referral, selected therapy-relevant in its 
domain of application. 5 Every answer to every question is decisive; the 
formalism is simple and attractive. 

30th er potentially appropriate schemes include the theory of belief functions (Shafer, 1976) 
and the application of fuzzy set theory (Gaines, 1976; Zadeh, 1965 ). All share the characteristic 
that arithmetic computations are performed to combine separate beliefs or implications to 
determine their joint effect. We are not convinced of the uniform superiority of any of these 
formalisms. Because we are most familiar with the probabilistic scheme, we have chosen to 
examine it in detail. 
4 Although our approach to the construction of expert medical systems has been, in general, 
to follow the way we think expert physicians reason, the known deficiencies in people's abilities 
to make correct probabilistic inferences suggest that this is one area in which the computer 
consultant could provide a truly new service to medicine. However, it is not universally ac
cepted in medicine that probabilistic techniques are a valid way to make clinical decisions 
(Feinstein, I 977b). 
5 In some flow chart schemes, the structure of the acceptor is a tree. In that case, every terminal 
node can be reached only by a unique path. In other flow charts, the acceptor is augmented 
to retain information collected during questioning (e.g., in history-taking systems). Even in 
those systems, it is uncommon for a piece of information to be used to select a branch in the 
flow chart in any place except where it is determined. Thus that augmentation does not 
provide the program with any additional state information. 
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Perhaps the most successful use of categorical decision-making pro
grams is in patient-referral triage.6 Nurse-practitioners using standardized 
information-gathering and decision-making protocols can effectively han
dle routine orders for noninvasive laboratory tests and the scheduling of 
emergency or routine vis.its with a doctor. Such a system is now used in 
the walk-in clinic at the Beth Israel Hospital in Boston (Perlman et al., 
1974), actually employing pen and printed forms rather than computer
generated displays and keyboard input. 

Although every decision in a flow chart is categorical, the development 
of that flow chart may have been based on extensive probabilistic compu
tations. Optimal test selection studies (Peters, 1976) and treat versus no
treat decision models (Pauker and Kassirer, 1975) are examples of proba
bilistic means of generating categorical decision models. 

Whereas patient referral deals with a broad problem domain that may 
require only shallow knowledge, the problem of providing the physician 
with advice about the administration of digitalis requires a great deal of 
knowledge about a narrow medical domain. That domain is, in fact, suf
ficiently well understood at the clinical (although not the physiological) 
level that a reasonably straightforward program has been implemented 
(Silverman, 197 5) that gathers relevant clinical parameters about the pa
tient, projects digitalis absorption and excretion rates, adjusts for patient 
sensitivities, and monitors the patient's clinical condition for signs of ther
apeutic benefit or toxic effect. Although the numerical models used by the 
program are complex, its data-gathering strategy and its heuristic tech
niques for adjusting dosages are simple enough that most parts of the 
program can be explained to the user by simply translating the computer's 
routines into English (Swartout, 1977). This program relies largely on cat
egorical reasoning. 

Why are categorical decisions not sufficient for all of medicine? Be
cause the world is too complex! Although many decisions may be made 
straightforwardly, many others are too difficult to be prescribed in any 
simple manner. When many factors may enter into a decision, when those 
factors may themselves be uncertain, when some factors may become un
important depending on other factors, and when there is a significant cost 
associated with gathering information that may not actually be required 
for the decision, then the rigidity of the flow chart makes it an inappro
priate decision-making instrument. 7 

0Triage is "the medical screening of patients to determine their priority for treatment; the 
separation of a large number of casualties, in military or civilian disaster medical care, into 
three groups: those who cannot be expected to survive even with treatment; those who will 
recover without treatment; and the priority group of those who need treatment in order to 
survive" (Stedman, 1961). 
70f course, one could, in principle, anticipate every complication and degree of uncertainty 
to every answer in the flow chart. If medical diagnosis is a finite process, then a gigantic How 
chart could capture it all. This is, however, the equivalent of playing chess by having precom
puted every possible game; it is probably equally untenable. It suffers similarly from losing 
all of the parsimony of the underlying model that the physician must have, from which the 
giant flow chart would be produced. 
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9.2.2 Purely Probabilistic Decision Making-Bayes' 
Rule and Decision Analysis 

In a typical probabilistic decision problem,8 we are to find the true state 
of the world, HT' which is one of a fixed, finite set of exhaustive and 
mutually exclusive hypotheses, Hr. H 2, ... , H n- We start with an initial 
estimate of the probability that each Hi is the true state. We then perform 
a series of tests on the world and use the results to revise the probability 
of each hypothesis. Formally, we have a probability distribution, P, that 
assigns to each Hi a prior probability, PH;· The available tests are T1, T2, 

... , Tm, and for each test, Ti, we may obtain one of the results, 

Ri, i, Ri,2' · · · , Ri,r;· 
Consider the case where we perform a series of the tests. We define 

the test history of the patient after the ith test to be the list of <test, result> 
pairs performed so far: 

Qi = (<Tscl(l)' Rscl(l),ksel(l) >, · · ·' <Tscl(i)' Rscl(i).ksel(i) >) (1) 

where sel is the test selection function. 
If for every Hi and for every possible testing sequence, Q;, we can 

assess how likely we would be to observe Qi in the situation where H1 were 
known to be the true state, then we may apply Bayes' Rule to estimate, 
after any possible test history, the likelihood that Hi is HT. In other words, 
if we know the conditional probability of any test history given any hypoth
esis, P Q;IH;' for each j and Qi, then we can apply Bayes' Rule to compute 
the posterior probability distribution over H: 

PH,IQ; II 

~ PQ;IHk . PHH 
k=I 

(2) 

A straightforward application of the above methodology would be to 
perform every test for every patient in a fixed order, obtaining Qn, and 
then to use formula (2) to compute the posterior probabilities. Less naive 
applications of the methodology involve sequential diagnosis, in which the 
order of tests selected depends on previous results and in which diagnosis 
may terminate before all tests are performed. In sequential diagnosis, the 
next test to be performed may be selected by an expected information
maximizing function (Gorry et al., 1973) or a classical decision analysis that 
maximizes expected utility. The diagnostic process may terminate when 
the likelihood of the leading hypothesis exceeds some threshold9 or when 

8 Here we follow Gorry ( 1967). This is the Bayesian approach to probabilistic decision prob
lems. 
9Sometimes, it is the ratio of the likelihood of the leading hypothesis to that of the next 
hypothesis that must exceed a threshold. 
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the expected cost of obtaining further information exceeds the expected 
cost of misdiagnosis due to missing those further data. Each of these tech
niques has been applied in diagnosis. 

The failure of the pure probabilistic decision-making schemes lies in 
their voracious demand for data. Consider the size of the data base that 
would be needed for a direct implementation of the Bayesian methodology 
described above. In performing i of m possible tests, we can choose mpi 

( = m!/(m - i)!) possible test sequences. If every test has r possible results, 
then there will be ri mpi possible test histories after i tests. If we want to 
know the probability distribution over the Hi after each test (to help to 
select the next one), then we need to sum over test histories of every length 
and to multiply by the number of hypotheses, n, to get a total of 

m 

n · I ri · mpi 
i=I 

(3) 

conditional probabilities. For even a relatively small problem-e.g., n = 10 
hypotheses, m = 5 binary tests (r = 2)-the analysis requires 63,300 con
ditional probabilities. 10 

Although the methodology described above is a complete view of med
ical diagnosis, it is certainly not an efficient one. To improve the scheme's 
efficiency, researchers typically make a series of assumptions about the 
problem domain that permit the use of a more parsimonious version of 
this decision method. First, it is usually assumed that two tests will yield 
the same results if we interchange the order in which they are performed. I I 
That assumption reduces the number of conditional probabilities needed 
to 

m 

n · I ri · mci 
i= I 

n · ((1 + r)m - 1) 

(2,420 in our example), which is still unwieldy. 

(4) 

A second assumption often made is that test results are conditionally 
independent-i.e., given that some hypothesis is the true state of the world, 
the probability of observing result Ri,k for test Ti does not depend on what 
results have been obtained for any other test. This assumption allows all 

10We are actually underestimating the amount of data required for such an analysis. In 
addition to the conditional probabilities, we also need other values to construct an optimal 
test-selection function. For example, we might use the costs of performing each test (possibly 
different after each different test history) and the costs and benefits of each possible treat
ment. 
11 Although this seems very reasonable, it is not strictly true. The effect of one test may be to 
interfere with a later one. For example, the upper GI series can interfere with interpretation 
of a subsequent intravenous pyelogram (IVP). The situation is even more complex since the 
effect of the former test on the latter often depends on the time that elapses between them. 
Even so, the assumption is so useful that it is worth making. 
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information from previous tests to be summarized in the revised proba
bility distribution after the ith test, and the data requirements are reduced 
to approximately m · n · r conditional probabilities (100 in our example), 
which is reasonable for some applications (Flehinger and Engle, 1975). 

Unfortunately, three serious problems arise with the above scheme and 
its simplifications. The assumption of conditional independence is usually 
false, and the basic premises of the applicability of Bayes' Rule, that the 
set of hypotheses is exhaustive and mutually exclusive, are often violated. 
These may all lead to diagnostic conclusions that are wrong. 

In a small study of the diagnosis of left-sided valvular heart disease, 
we have found that assuming conditional independence between obser
vations of systolic and diastolic heart murmurs leads (not surprisingly) to 
erroneously reversed conclusions from those obtained by a proper analysis. 
To the extent that anatomical and physiological mechanisms tie together 
many of the observations that we can make of the patient's condition and 
to the extent that our probabilistic models are incapable of capturing those 
ties, simplifications in the computational model will lead to errors of di
agnosis. 

A similar error is introduced when conditional probabilities involving 
the negation of hypotheses are used. PRl-H• being the probability of a test 
result R given that hypothesis H is not the true state of the world, cannot 
be assessed without knowing the actual probability distribution over the 
other hypotheses (unless, of course, there is only one other hypothesis). In 
fact, in our formalism, 

(5) 

which obviously depends on the probability distribution over the hy
potheses. Even if we make the usual assumption of conditional indepen
dence, the practice of considering PRl-H; to be a constant is unjustified and 
leads to further errors. Formalisms that employ a constant likelihood ratio 
implicitly commit this error, often without recognizing it (Duda et al., 1976; 
Flehinger and Engle, 197 5). The likelihood ratio is defined as 
PRIH; IPRl-H;· Assuming conditional independence of the test results guar
antees only that the numerator is constant, while, in general, the denom
inator will vary according to formula (5) as new results alter the probability 
distribution over the hypotheses. Using a constant likelihood ratio evalu
ates the current result in the context of the a priori probabilities, wrongly 
ignoring the impact of all of the evidence gathered up to that point. 

A far more serious objection to the use of pure probabilistic decision 
making is that in most clinical situations the hypotheses under considera
tion are neither exhaustive nor mutually exclusive. If we perform a Bayes
ian calculation in the absence of exhaustiveness within the set of hy
potheses, we will arrive at improperly normalized posterior probabilities. 
Their use in assessing the relative likelihoods of our possible hypotheses 
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is appropriate, but we may not rest absolute prognostic judgments or com
pute expected values on the basis of such calculations. 

The absence of mutual exclusivity is a more serious flaw in this meth
odology. Doctors find it useful to describe the clinical situation of a patient 
in terms of abstractions of disorders. When a patient is described as having 
acute poststreptococcal glomerulonephritis (AGN), for example, no one 
means that this patient exhibits every symptom of the disease as described 
in a textbook or that every component of the disease and its typical accom
paniments is present. Having accepted such a description of the patient 
with AGN, diagnosis may then turn to consideration of whether such com
mon (but not necessary) complications as acute renal failure and hyper
tension are present as well. Mapping this process into the view imposed by 
classical probabilistic methods requires the creation of independent hy
potheses for every possible combination of diseases. That technique leads 
to a combinatorial explosion in the data collection requirements of the 
system and at the same time destroys the underlying view the practicing 
physician takes toward the patient. 

Because of the distortions that the pure probabilistic scheme imposes 
on the problem and because of the enormous data requirements it implies, 
it tends to be used successfully only in small, well-constrained problem 
domains. 

9.3 Reasoning in Current AIM Programs 

Medical judgment, by the physician and by computer programs, must be 
based on both categorical and probabilistic reasoning. The focus of re
search in applying artificial intelligence techniques to medicine is to find 
appropriate ways to combine these forms of reasoning to create competent 
programs that exhibit medical expertise. In this section, we will outline in 
brief the central reasoning strategy of four major AIM programs and com
pare their methods to the two "pure cases" presented above. 

9.3.1 The Present Illness Program 

Perhaps the best way to explain the reasoning of our program is to describe 
the data that are available to it. The Present Illness Program (PIP) (Szolovits 
and Pauker, 1976) (also see Chapter 6) can deal with a large set of possible 
findings and a separate set of hypotheses. Findings are facts about the patient 
that are reported to the program by its user. Hypotheses represent the 
program's conjecture that the patient is suffering from a disease or man
ifesting a clinical or physiological state. Associated with hypotheses are sets 
of prototypical findings that can either support or refute the hypothesis. 
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TRIGGERS 
FINDINGS 

Logical Decision Criteria 

IS-SUFFICIENT 
MUST-HAVE 
MUST-NOT-HAVE 
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<findings> 
<findings> 

<findings> 
<findings> 
<findings> 

Complementary Relation to Other Hypotheses 

CAUSED-BY <hypotheses> 
CAUSE-OF <hypotheses> 
COMPLICATED-BY <hypotheses> 
COMPLICATION-OF <hypotheses> 
ASSOCIATED-WITH <hypotheses> 

Competing Relation to Other Hypotheses 

DIFFERENTIAL-DIAGNOSIS 
(<condition 1 > <hypotheses>) ... (<condition k> <hypotheses>) 

Numerical Likelihood Estimator 

SCORE 
((<condition l,l><score 1,1>) ... (<condition l,n 1 ><score l,n 1 >)) 

((<condition m,l> <score m,l>) ... <condition m,nm > <score m,n
111 

>)) 

FIGURE 9-1 Structure of a hypothesis frame in PIP. 

Findings reported by the user are matched against these prototypical find
ings and, if a match occurs, 12 PIP's belief in the hypothesis is reevaluated. 
Figure 9-1 shows the structure of a hypothesis in PIP. 

Presentation 

Both TRIGGERS and FINDINGS are often associated with the hypothet_; 
ical disorder. If a reported finding matches one of the triggers of a hy
pothesis, that hypothesis is immediately activated. If it matches a nontrigger 

12The details of this matching process are not relevant to the questions addressed here and 
will not be discussed. The prototype finding can express either the presence or absence of a 
sign, symptom, laboratory test, or historical finding. For example, it is possible to use the 
absence of increased heart muscle mass (which takes months to develop) to argue in favor of 
acute rather than chronic hypertension. In general, many possible findings may match a 
prototype finding pattern. Thus, within each frame, only those aspects of a finding that are 
important to the hypothesis at hand need be mentioned, and any of the category of possible 
findings thus defined will match successfully. 
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finding, its relevance to that hypothesis is only noticed if the hypothesis is 
already under consideration. The logical decision criteria are used by the 
program to make categorical decisions about the likelihood of the patient's 
suffering from the currently considered hypothesis. IS-SUFFICIENT cov
ers the case of pathognomonic findings, in which the presence of a single 
finding is in itself sufficient to confirm the presence of the hypothesized 
disorder; logical combinations (by NOT, AND, and OR) may also be used 
to specify more complex criteria. MUST-HAVE and MUST-NOT-HAVE 
specify necessary conditions, in the absence of which the hypothesis will 
not be accepted as confirmed. 13 

The complementary hypotheses identify other disorders that may be 
necessary in addition to the hypothesis under consideration to account for 
the condition of the patient. 14 The relationship may be known as causal if 
the physiology of the disorders is well understood, may be complicational if 
one disorder is a typical complication of the other, or may be associational 
if the two may be related by some known but incompletely understood 
association. Although all noncomplementary hypotheses are competitors, 
medical practice specifically identifies those that may often be confused
that is the role of the DIFFERENTIAL-DIAGNOSIS relationships in the 
frame. 

The complementary and competing relations to other hypotheses are 
used in controlling the activation of hypotheses. In an anthropomorphic 
analogy, we think of an active hypothesis as corresponding to one about 
which the physician is consciously thinking. Active hypotheses offer the 
possible explanations for the patient's reported condition and are the basis 
from which the program reasons to select its next question. Inactive hy
potheses are all those possible disorders that play no role in the program's 
current computations; they may be inactive either because no findings have 
ever suggested their possibility or because they have been considered and 
rejected by evaluation in light of the available evidence. Semiactive hy
potheses bridge the gap between active and inactive ones and allow us to 
represent hypotheses that are not actively under consideration but that 
may be "in the back of the physician's mind." As mentioned above, if a 
trigger of any hypothesis is reported, that hypothesis is made active. When 
a hypothesis is activated, all of its closely related complementary hypotheses 
are semiactivated. Whereas nontrigger findings of inactive hypotheses do 
not lead to consideration of those hypotheses, any reported finding of a 
semiactive hypothesis causes it to be activated (i.e., each of its findings is 
treated as a trigger). This models the observation that physicians are more 
likely to pay attention to the minor symptoms of a disease related to the 
diagnosis that they are already considering than to the minor symptoms 

13For logical completeness, we could have an IS-SUFFICIENT-NOT-TO-HAVE criterion, 
which would confirm a hypothesis in the absence of some finding, but this is just not useful. 
14 Note that we use the word cornplernent in the sense of completion, not as implying negation 
or something missing. This is the sense of the word used in Pople (1975). 
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of an unrelated disorder. Each of the complementary hypotheses identifies 
another disorder that may be present along with the one under consid
eration and that is therefore to be semiactivated. The DIFFERENTIAL
DIAGNOSIS relation identifies a set of competing hypotheses that are to 
be semiactivated if the appropriate condition holds. 

We need to assign to every hypothesis some estimate of its likelihood. 
In PIP, that estimate forms one basis for deciding whether the hypothesis 
ought to be confirmed, if the estimate is sufficiently high, or inactivated, if it 
is sufficiently low. Further, PIP bases its questioning strategy in part on the 
likelihood of its leading hypothesis. That likelihood is estimated by com
bining a function that measures the fit of the observed findings to the 
expectations of the hypothesis with a function that is the ratio of the num
ber of findings that are accounted for by the hypothesis to the total number 
of reported findings. These two components of the likelihood estimate are 
called the matching score and the binding score. 

PIP allows us to define clinical and physiological states (not only dis
eases) as hypotheses. Thus it is not necessary to list every symptom of a 
disease with that disease hypothesis; commonly co-occurring symptoms can 
be made symptoms of a clinical state hypothesis, and their relation to the 
disease derives from the causal relation of the disease to the clinical state. 
This is an appropriate structure that is consistent with medical practice. It 
does, however, raise a problem in computing the matching and binding 
scores for a hypothesis. If a finding is accounted for by a clinical state that 
is related to a disease, then the binding score of the disease hypothesis 
should reflect that relation, and its matching score should also reflect that 
the finding has improved the fit of the facts of the case to the hypothesis. 
To effect this behavior, PIP uses a score propagation scheme, described below. 
A similar argument can be made to extend score propagation to disease 
hypotheses as well: if a disease is made more likely by the observation of 
one of its symptoms, causally related diseases should also be seen as more 
likely. 

The numerical likelihood estimator (see Figure 9-1) is used to compute 
the local score part of the matching score. The local score reflects the degree 
to which the facts found support the hypothesis directly. It consists of a 
series of clauses, each of which is evaluated as a LISP COND. 15 The local 
score of a hypothesis is the sum of the values of the clauses, normalized 
by the maximum possible total score. Thus it ranges from a maximum of 
1 (complete agreement) downward to arbitrarily large negative numbers 
(complete disagreement). 

15That is, for clause i, first <condition i, I> is evaluated, and if it is true, the value of clause 
i is <score i, I>. If that first condition is false, then each other condition in the clause is 
evaluated in turn, and the value of the clause is the score for the first true condition. Pro
totypical finding patterns in the condition that have not yet been asked about-thus, whose 
truth is not yet known-are treated as false, unless the pattern requests a negative or unknown 
finding. If none of the conditions is true, the value of the clause is zero. 
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PIP now computes the matching score by revising the local score to 
include the effects of propagated information deriving from related hy
potheses. Consider the case when PIP is trying to compute the score for 
the hypothesis, Hi. First we identify all those other hypotheses, H1, that are 
possibly complementary to Hi. 16 PIP then computes the MATCHING
SCORE by adding up the contributions of every scoring clause of Hi and 
each H1 and normalizing by the maximum possible total for this virtual 
scoring function. The effect here is to mechanically undo the organization 
imposed by the use of clinical and physiological states, since we could 
achieve a similar effect by merely listing with each hypothesis the exhaus
tive set of symptoms to which it might lead. Figure 9-2 shows, as an ex
ample, the PIP frame for acute glomerulonephritis. 

Discussion 

PIP uses both categorical and probabilistic17 reasoning mechanisms. We 
shall identify the various forms of reasoning that it undertakes and 
whether they are accomplished by categorical or probabilistic means. When 
a finding is reported to PIP, whether as a fact volunteered by the user or 
in response to the program's questions, it tries to characterize fully the 
finding in terms of all the descriptors known to apply to that finding. For 
example, if edema is reported, PIP will try to establish its location, severity, 
temporal pattern, and whether or not it is symmetrical, painful, and ery
thematous. Rather specific rules capture some of the physician's common 
sense: if the question of past proteinuria is raised, PIP can conclude its 
absence if the patient passed a military physical examination at that time. 
These inferences are purely categorical. 

The main control over PIP's diagnostic behavior resides in the list of 
active and semiactive hypotheses. Recall that only these hypotheses are 
"under consideration"-only they are evaluated or used to select the pro-

16 HJ may be directly linked as a complementary relation to Hi, or it may be linked by a causal 
path going through some other hypotheses. In the latter case, we insist that the flow of 
causality along such a linking path be unidirectional, for we do not want, for example, two 
independent causes of some disease to reinforce each other's likelihood merely by being 
possible causes of the same disorder. We also compute a LINK-STRENGTH between the 
hypotheses, which is the product of each LINK-STRENGTH along the component links. 
Those component link strengths are identified in the data base and reflect the strength of 
association represented by the links. 
17 As should be clear from the above discussion, we do not think of the score computations 
as representing a true probability (either objective or subjective). We have sometimes tried to 
think of our scores as log-transformed probabilities, but the analogy is weak. Rather, we must 
think of them as an arbitrary numeric mechanism for combining information, somewhat 
analogous to the static evaluation of a board position in a chess-playing program. It is useful, 
however, to contrast the scoring computations with a correct probabilistic formulation, be
cause that analogy suggests an explanation for various deficiencies of the scoring scheme 
(Szolovits, 1976). 
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TRIGGERS (EDEMA with LOCATION = FACIAL or PERI-ORBITAL, 
PAINFULNESS = not PAINFUL, 
SYMMETRY = not ASYMMETRICAL, 
ERYTHEMA = not ERYTHEMATOUS) 

FINDINGS (COMPLEMENT with RANGE = LOW), (MALAISE), (WEAKNESS), 
(ANOREXIA), (EDEMA with SEVERITY = not MASSIVE), 
(PATIENT with AGE = CHILD or YOUNG, SEX = MALE) 

CAUSED-BY (STREPTOCOCCAL-INFECTION in RECENT-PAST) 
CAUSE-OF SODIUM-RETENTION, ACUTE-HYPERTENSION, NEPHROTIC-SYNDROME, 

GLOMERULITIS 
COMPLICATED-BY ACUTE-RENAL-FAILURE 
COMPLICATION-OF CELLULITIS 

DIFFERENTIAL-DIAGNOSIS 

(CHRONIC-HYPERTENSION implies CHRONIC-GLOMERULITIS) 
(EDEMA with RECURRENCE = not FIRST-TIME 

implies NEPHROTIC-SYNDROME, CHRONIC-GLOMERULONEPHRITIS, 
FOCAL-GLOMERULONEPHRITIS) 

(ABDOMINAL-PAIN implies HENOCH-SCHOENLEIN-PURPURA) 
(RASH with PURPURA = PURPURIC implies HENOCH-SCHOENLEIN-PURPURA) 
(RASH with (either LOCATION = MALAR or PHOTOSENSITIVITY = PHOTOSENSITIVE) 

implies SYSTEMIC-LUPUS) 
(JOINT-PAIN implies HENOCH-SCHOENLEIN-PURPURA, SYSTEMIC-LUPUS) 

SCORE 

(((PATIENT with AGE = CHILD or YOUNG) ---. 0.8) 
((PATIENT with AGE = MIDDLE-AGED) ---. - 0.5) 
((PATIENT with AGE = OLD) ---. -1.0)) 

(((COMPLEMENT with RANGE = LOW) ---. 1.0) 
((COMPLEMENT with RANGE= NORMAL or MODERATELY-ELEVATED)---. -0.7) 
((COMPLEMENT with RANGE = VERY-HIGH) ---. -1.0)) 

(((EDEMA with LOCATION = FACIAL or PERI-ORBITAL, SYMMETRY = not ASYMMETRICAL, 
DAILY-TEMPORAL-PATTERN= WORSE-IN-MORNING, PAINFULNESS = not PAINFUL, 
ERYTHEMA = not ERYTHEMATOUS) ---. 1.0) 

((EDEMA with LOCATION = FACIAL or PERI-ORBITAL, SYMMETRY = not ASYMMETRICAL, 
PAINFULNESS = not PAINFUL, ERYTHEMA = not ERYTHEMATOUS) ---. .5) 

((EDEMA with SEVERITY= not MASSIVE)---. 0.1) 
((EDEMA with SEVERITY = MASSIVE) ---. - 0.1) 

(((PATIENT with SEX = MALE) ---. 0.3)((PATIENT with SEX = FEMALE) --+ - 0.3)) 
(((ANOREXIA) ---> 0.3) ((ANOREXIA absent) ---. - 0.3)) 
(((WEAKNESS) --+ 0.3) ((WEAKNESS absent) ---. - 0.3)) 

FIGURE 9-2 The PIP hypothesis frame for acute 
glomerulonephritis. 

gram's further questions. The activation (but not the evaluation) of all 
hypotheses is purely categorical. A hypothesis can come up for consider
ation only if one of its prototype findings is matched by a reported finding, 
if a complementary hypothesis is activated, or if a competing hypothesis is 
active and a finding matches a condition among its differential diagnosis 
clauses. 

Once a hypothesis is under consideration, both categorical and prob
abilistic mechanisms exist to decide its merit. In 18 of the 38 fully devel
oped hypothesis frames in the current PIP, we find categorical IS-SUF-
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FICIENT rules to establish the presence of the hypothesized disorder. 18 

By contrast, all frames have a scoring function by which a pseudoproba
bilistic threshold test may confirm hypotheses. Similarly, 9 of the frames 
have necessary conditions that may be used categorically to rule out a 
hypothesis, whereas all may be inactivated if their scores fall below another 
threshold. In our experience, the program performs best when presented 
with cases decided on categorical grounds. Too often, small variations in 
a borderline clinical case can push a score just above or just below a thresh
old and affect the program's conclusions significantly. Of course, in a text
book case, even the probabilistic mechanism will reach the right conclusion 
because the evidence all points in a consistent direction. Perhaps it should 
not disappoint us when the program flounders on tough, indeterminate 
cases where we have neither certain logical criteria nor a consensus from 
the evidence. 

Once the reevaluation of all hypotheses affected by the last finding 
introduced is done, PIP selects an appropriate question to ask the user. 
That selection depends on the probabilistic evaluation of each active hy
pothesis. PIP identifies the highest-scoring active hypothesis, and if one of 
its expected findings has not yet been investigated, that finding is asked 
about. If all its expected findings have already been investigated, then PIP 
pursues expected findings of hypotheses complementary to the leading 
one. 

To its user, PIP's reasoning is discernible from the conclusions it 
reaches and the focus of its questioning. PIP appears unnatural when its 
focus frequently shifts, as the probabilistic evaluator brings first one and 
then another competing hypothesis to the fore. This major deficiency re
lates to the lack of categorical reasoning. Such reasoning might impose a 
longer-term discipline or diagnostic style (Miller, 1975) on the diagnostic 
process. 

In summary, PIP proposes categorically and disposes largely proba
bilis ti call y. 

9.3.2 INTERNIST-The Diagnostic System of Pople 
and Myers 

INTERNIST (Oleson, 1977; Pople, 1975; Pople et al., 1975) is a comput
erized diagnostic program that emphasizes a very broad coverage of clinical 
diagnostic situations. The INTERNIST data base currently covers approx
imately 80% of the diagnoses of internal medicine (Pople, 1976), and thus 
is the largest of these AIM programs. Although INTERNIST is close to 
its goal of covering most of internal medicine, other problems lie down-

18Currently, PIP contains a total of 69 hypothesis frames, but 31 of them are so skeletal that 
they can never be confirmed. They are there to maintain the appropriate complementary 
relationships, and they anticipate a future extension of our data base. 
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Portal-vein-occlusion 

Manifestation L F 

Hepatic-vein-wedge-pressure-normal 0 4 
Splenomegaly 4 
Gastro-intestinal-hemorrhage 4 
Varices-esophageal 2 4 
Portal-vein-obstruction-by-radiography s 3 
Anemia 1 3 
Appendicitis-history 2 
Ascites 2 

FIGURE 9-3 A diagnosis and its manifestations in INTER
NIST. L indicates evoking strength; F indicates frequency. 

stream for these researchers, including human-engineering issues centered 
on usability of the program's interface, possibly significant costs of running 
the program and maintaining the data base, introducing some model of 
disease evolution in time, and dealing with treatment, as diagnosis is hard 
to divorce from therapy in any practical sense. 

Presentation 

The INTERNIST data base associates with every possible diagnosis, Di, a 
set of manifestations, {M). A manifestation is a finding, symptom, sign, 
laboratory datum, or another diagnosis that may be associated with the 
diagnosis. For every M1 listed under Di, two likelihoods are entered. 
LnilMp the evoking strength, is the likelihood that if manifestation M1 is seen 
in a patient, its cause is Di. It is assessed on a scale of 0 to 5, where 5 means 
that the manifestation is pathognomonic for the diagnosis and 0 means 
that it lends virtually no support. F MJID;' the frequency, is the likelihood that 
a patient with a confirmed diagnosis, Di, would exhibit M1. 

Although INTERNIST's developers resist identifying these numbers 
as probabilities, F MJID; is clearly analogous to the conditional probability 
PMJID;· The evoking strength is like a posterior probability, Pn;JMp that in
cludes a population-dependent prior, Pn;' that is not explicit in the data 
base. If we were to take such a probabilistic interpretation, all the usual 
complaints about the failure of Bayesian assumptions would be appropri
ate. The INTERNIST scoring function that computes with these numbers 
is, however, in no sense probabilistic, and the rough granularity of the data 
is undoubtedly equally significant. It is reported that small random per
turbations of the frequencies and evoking strengths in the data base do 
not significantly alter the program's behavior. A small example of a diag
nosis, its associated manifestations, and the evoking strengths and fre
quencies connecting them are shown in Figure 9-3 (Pople, 1976). 
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LIVER DISEASE 

HEPATOCELLULAR-DISEASE 

HEPATOCELLULAR-INFECTION 

E 
HEPATITIS-A 

HEPATITIS-8 

INFECTIOUS-MONONUCLEOSIS 

LEPTOSPIROSIS 

TOXIC-HEPTOCELLULAR-DISEASE 

ABNORMAL-IMMUNITY-HEPATOCELLULAR-REACTION 

NEOPLASMS-OF-LIVER 

I HEPA TOMA 

• • • 
CHOLEST A TIC-DISEASE 

••• 
• • • 

FIGURE 9-4 A small portion of INTERNIST's diagnosis 
hierarchy. 

INTERNIST also classifies all its diagnoses into a disease hierarchy, a 
small part of which is shown in Figure 9-4 (Oleson, 1977). The use of 
hierarchy is an important mechanism for controlling the proliferation of 
active hypotheses during the diagnostic process because it allows a single 
general diagnosis to stand for all its possible specializations when no dis
criminating information is yet available to choose among them. This oc
curs, however, only when all specializations of the chosen general diagnosis 
have in common the same set of observed manifestations. Because IN
TERNIST wants to evaluate general as well as specific diagnoses, it computes 
for each general diagnosis a list of manifestations and their corresponding 
evoking strengths and frequencies. The manifestations for the general di
agnosis are those common to each of its specializations, and the evoking 
strength and frequency of each are, respectively, the maximum evoking 
strength and minimum frequency of that manifestation among the spe
cializations. 

Borrowing the term from PIP, we will call a diagnosis active if at least 
one of its manifestations with a nonzero evoking strength has been ob
served, unless the diagnosis is a general one and must be replaced by its 
specializations (for example, because a manifestation occurring in one but 
not another of the more specific diagnoses has been reported). For each 
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active hypothesis, a score is computed by summing the scaled evoking 
strengths of all its manifestations that have been observed, adding "bonus" 
points for confirmed causally consequent diagnoses, subtracting the sum 
of frequencies of those of its manifestations that are known to be absent, 
and also subtracting a weight of importance for each significant finding that 
is reported to be present but that is not explained by either the diagnosis 
or some other confirmed diagnosis. Thus evocative findings and confirmed 
consequences of a diagnosis count in its favor, while expected findings that 
are known to be absent and reported findings that are unexplained count 
against it. 

Discussion 

Drawing an analogy with PIP, INTERNIST's diagnoses are PIP's hy
potheses, the manifestations are the findings and causally related hy
potheses, and the evoking strengths are like the triggers-they and the 
frequencies play the role of the scoring function. INTERNIST's use of the 
importance measure for unexplained findings is superior to PIP's simple 
fractional binding score. Because the scoring function in PIP is explicit in 
each hypothesis frame, it requires more effort to create but provides a 
more general means of evaluating the significance of present and absent 
findings. Also, because PIP provides some logical criteria for confirming 
or denying a hypothesis, it provides a data base with the option of cate
gorical hypothesis evaluation. 

The lumping together of findings with causally consequent diagnoses, 
both as manifestations, leads INTERNIST to some difficulties. For it, any 
manifestation is either present, absent, or unobserved. This may be ap
propriate for findings, but when imposed on the evaluation of diagnoses, 
ignores the arguably real support of a strongly suspected though not con
firmed causally consequent diagnosis for its antecedent. As Pople has 
pointed out, this effect may prevent INTERNIST from diagnosing a syn
drome of connected hypotheses if no one of them is definitely provable 
even though the circumstantial evidence of their combined high likelihood 
is convincing to a physician. A similar deficiency arises because reported 
findings are explained only by confirmed diagnoses. Again, a strongly sus
pected but not confirmed complementary hypothesis will not be able to 
explain its significant findings, and so the correct diagnosis may have its 
score strongly penalized. As discussed above, PIP addresses these problems 
by dealing more explicitly with complementary disorders and accepting 
that a hypothesis accounts for a finding if one of its active complementary 
hypotheses accounts for it. We will argue below, however, that both of these 
solutions are weakened by not having a sufficiently explicit model of the 
hypothesis they are pursuing. 

The most interesting part of INTERNIST is its focusing mechanism. 
After scoring all its active diagnoses, INTERNIST chooses to concentrate 
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on the highest-ranking diagnosis. It partitions the others into two lists: the 
competing and the complementary diagnoses. A diagnosis is complementary 
to the chosen one if the two, together, account for more findings than 
either alone; otherwise the diagnosis is competing. The complementary 
list is then temporarily set aside, and a questioning strategy (one of RULE
OUT, NARROW, DISCRIMINATE, or PURSUE) is selected, depending 
on the number of high-scoring competitors and whether the information 
to be requested is low or high in cost. The complete scoring, partitioning, 
and strategy-selection processes are repeated after each new fact is re
ported. Confirmation is by numerical threshold. The partitioning heuristic 
is credited by Pople with having a very significant effect on the perfor
mance of the program, focusing its questioning on appropriate alternative 
diagnoses. 

Because its intended coverage of disorders and findings is universal, 
INTERNIST relies on a uniform processing strategy and a simply struc
tured data base. Much of its decision making falls under our probabilistic 
designation. The use of a hierarchic tree of diagnoses and of the rule for 
moving from a general to more specific diagnoses is categorical and cap
tures an important part of a clinician's diagnostic behavior. The selection 
of questioning strategy is also categorical, although, interestingly, it de
pends on a probabilistic computation of the likelihood of each diagnosis. 

9.3.3 CASNET-A Model of Causal Connectives 

In a domain where normal and diseased states are well understood in 
physiological detail, it is sensible to build diagnostic models in which the 
basic hypotheses are much more detailed than the disease-level hypotheses 
of PIP and INTERNIST. Kulikowski, Weiss, and their colleagues have built 
such a system based on the causal modeling of the disease glaucoma. Their 
system is called CASNET, and it is in principle a general tool for building 
causal models with which well-known diseases may be diagnosed and 
treated (Weiss, I 97 4). 

Presentation 

CASNET defines a causal network of dysfunctional states and a set of tests 
that provide evidence about the likelihood of the existence of those states 
in the patient under consideration. States represent detailed dysfunctions 
of physiology, not complete diseases; thus the determination of disease is 
separated from the question of what, in detail, is going wrong in the pa
tient.· 

The network consists of a set of nodes, some of which are designated 
as starting states, meaning that they are etiologically primary, and some as 
final states, meaning that they have no dysfunctional consequences. All 
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causal relationships are represented by a link between two nodes, with a 
link strength that is interpreted as the frequency with which the first node 
causes the second. Starting states are given a prior frequency. No cycles 
are allowed in the network. Almost all nodes are representations of real 
physiological disorders. Although logical combinations of physiological 
states may be represented by a single node (for example, to express joint 
causation), this technique is discouraged. Further, "the resolution of states 
should be maintained only at a level consistent with the decision-making 
goal. A state network can be thought of as a streamlined model of disease 
that unifies several important concepts and guides us in our goal of diag
nosis. It is not meant as a complete model of disease" (Weiss, 1974). 

Two separate probabilistic measures are computed for every state in 
the network. A node's status is an estimate of its likelihood from the results 
of directly relevant tests. The status determines whether a node is confirmed 
or disconfirmed. A node's weight is an essentially independent estimate of its 
likelihood that derives from the strength of causal association between the 
node and its nearest confirmed and disconfirmed relatives. The weight 
computation ignores test results that affect the node's own status but is 
sensitive to results that establish the confirmation status of its causal rela
tives. 

All tests are binary and are entered with an evaluation of the cost of 
each. If a positive or negative test result is reported, a set of links from 
the test to nodes of the network implies the presence or absence, respec
tively, of the corresponding nodes. Each link is labeled with a confidence 
measure for both positive and negative results, separately. A test may rep
resent a simple observation of the patient, or it may be a logical combi
nation of specific results of other tests. Only the results of simple tests are 
directly asked of the user of the program-the others are computed from 
the results of simple tests. 

The status of each node is measured in the same units that are used 
to report the confidence measures of the implications of tests. Every time 
the result of a test is reported, the status of every node to which that test 
is linked is recomputed: if the result of the test has less confidence (i.e., is 
smaller in magnitude) than the status of the node, no change occurs. If 
the test result has greater confidence, the node's status is changed to that 
value. If they are equal, but of opposite sign, the node's status is set to 
zero, and a contradiction is noted for the user. One threshold, T, is defined 
such that if the status of a node is less than - T, the node is denied, and if 
the status exceeds + T, the node is confirmed. 

The use of a maximum-confidence value for status and the ability to 
define a high-confidence test as the conjunction of two lower-confidence 
tests are in the fuzzy set tradition. This approach sidesteps the problem of 
the interpretation of mutually dependent test results, as they arise in a 
Bayesian formulation, by requiring the designer of the data base to define 
explicitly a new test for any combination of tests that jointly support the 
same node. Weiss argues that in his application domain this is perfectly 
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appropriate, because when tests of varying confidence are available, only 
the results of the strongest should be counted (Weiss, 1974). One may 
question, however, whether this approach could be extended to wider med
ical areas, especially where many tests are available but only a consistent 
reading on most of them is enough to confirm a hypothesis. 

Both for selecting a "most informative" test and for interpreting the 
pattern of status values among nodes of the network as a coherent disease 
hypothesis, CASNET defines an acceptable path in the network as a sequence 
of nodes that includes no denied nodes. A forward weight is computed for 
every node in the network, which represents the likelihood of that node 
when considering the degree to which its confirmed causal antecedents 
should cause it. Consider each admissible path that leads to node nj and 
starts either at a starting node or at a closest confirmed node. CASNET 
computes the likelihood of causation along each such path by multiplying 
the link strengths along it (and the prior frequency for a starting state). 
The forward weight, wj, of node nj is defined to be the sum of the weights 
along each such path. 

An inverse weight, representing the degree to which the presence of a 
node is implied by the presence of its causal consequents, is also com
puted.19 CASNET then takes the maximum of the forward and inverse 
weights as the total weight, which is interpreted as a frequency measure of 
the degree to which the node is expected to be confirmed or disconfirmed 
from circumstantial causal evidence. Obviously, nodes with a high total 
weight and a status score near zero are excellent candidates for testing, 
since we might expect them to be confirmed. Conversely, nodes with low 
total weight are also candidates for testing, since we expect them to be 
denied. CASNET permits a number of different testing strategies to be 
used, based in part on the expected information implied by the weights 
and in part on the costs of the various tests. 20 

One should interpret the status of various nodes in the network as 
measures of the likelihood of subparts of a coherent disease. Based on the 
notion of the acceptable path, CASNET defines a number of different 
kinds of disease pathways, depending on which starting nodes are accept
able for such a path and on what criteria are used to terminate the path. 
It can compute those paths that are most likely to account for all the confirmed 
nodes in the network, all those that are potential explanations, and those 
that are not contradicted by a denied starting node (called global). Once 
the start of a disease path is selected, its termination criterion determines 
the type of path. An acceptable path that ends on a confirmed node is 
confirmed. An acceptable path ending on an undenied node is possible. A 

19We cannot describe all of the computational mechanisms of CASNET here. An excellent 
presentation of the algorithms and a thorough justification for the particular choices made 
are in Weiss's thesis (1974). 
20 At present, the program is used with a fixed sequence of tests because an attempt is being 
made to gather a large, uniform data base about glaucoma patients. Thus the test selection 
function and this interesting weighting function are not in use (Weiss, 1976). 
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path that ends on a final state, even if it includes denied nodes, is predictive. 
Depending on the intent of the user, any combination of starting and 
termination criteria for a disease path may be selected. For example, the 
most likely starting criterion taken with the confirmed termination crite
rion will yield the "best estimate" diagnosis of the patient's current state. 
Selecting the global starting criterion and the predictive stopping criterion 
produces essentially all pathways through the network. 

The most likely starting nodes are used to establish the probable causal 
mechanisms (the diseases) that account for the patient's difficulties. The 
ends of disease pathways give an estimate of the extent of the diseases. 
Together, these can be used to identify the primary disorder, to select a 
therapy for it, and to make prognostic judgments. 

In a very clever manner, the determination of the effectiveness of 
therapy is handled by application of the same techniques used for diag
nosis. A new causal network is constructed, in which the various therapies 
are the starting states and other nodes represent either complications of 
the treatments themselves or disorders not alleviated by the treatments. 
All of the above techniques are then available to assess whether any con
firmed disorders are left after treatment and, if so, by what causal paths 
they could come about. 

Discussion 

At the level of testing, confirmation, and denial of nodes of the causal 
network, virtually all of CASNET's reasoning is probabilistic, based on the 
fuzzy set formalism for test interpretation and a probability interpretation 
for propagating causal frequency. The ability to define a hierarchy of tests 
(where higher tests summarize logical combinations of results of lower 
ones) and the simple confidence interpretation of node status provide a 
mechanism in which categorical rules for deciding node status are easily 
embedded. 

The selection of a diagnosis and an associated therapeutic plan de
pends principally on the network designer's categorical understanding of 
the possible causal pathways through the net and on his or her definition 
of just which paths are subsumed by a given disease. In fact, if forward 
and inverse weights were not calculated, the elimination of any causal links 
that are not part of an identified disease path would result in no net effect 
on the operation of the program. 

Weiss emphasizes that perfect accuracy in diagnosis by his program is 
not an unrealistic goal (presumably, without significant cost limitations on 
its testing strategy). This is to be contrasted to statistical classification 
schemes that would likely remain imperfect even with the addition of large 
quantities of new data. In CASNET, this confidence is justified because an 
error in the program's classification of a patient must ultimately indict some 
part of the causal model. In response, it may be necessary to add more 
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tests to help distinguish the erroneous case, or the network may need to 
be disaggregated in selected places to give a more detailed model of some 
aspect of the disease. In the typical statistical approach, where the unit 
hypothesis is the disease, such local refinement is less feasible. 

The glaucoma program works so well because its domain is narrow 
and the pathophysiology is well understood. Especially when compared 
with the domain of all of internal medicine (INTERNIST) or renal disease 
(PIP), the level of detail that is medically known and that it is practical to 
include in the glaucoma program is great. In fact, we speculate that the 
program could be recast as a categorical reasoning program. Given a fixed 
flow chart for test selection, we might consider in turn each of the roughly 
50 starting states. From each, we might imagine a discrimination network 
that traces those diseases that start with that starting node. The discrimi
nation net would branch, based on the crudely quantized confidence mea
sure (status) of each successor node. That same measure could be used to 
determine the end of the disease path and thus the degree of progression 
of the disease and its possible therapies. Of course, such a technique may 
be too rigid to use in a changing environment or may not capture some 
capabilities of the original program (e.g., it could not compute all possible 
causes of some dysfunction). We hasten to mark this as pure speculation, 
but it suggests that perhaps more powerful categorical decision-making 
techniques could equally well solve the glaucoma problem, and thus that 
the probabilistic appearance of the CASNET solution is perhaps unnec
essary. 

A causal model is, nevertheless, attractive. We have seen physicians 
create (occasionally incorrectly) causal explanations for phenomena that 
they associate with diseases even though such a causal model played no 
important role in their interpretation of the phenomena. People seem hap
pier if they understand why something happens than if they merely know 
that, under given circumstances, it does. Causal models for diagnosing 
dysfunction have been implemented for simple physical devices (Rieger, 
1975) and proposed for medicine (Smith, 1978). In both these approaches, 
causality is taken as a categorical, not a probabilistic, connection. Reasoning 
about likelihood is often quantified only in the very fuzzy sense of IM
POSSIBLE, UNLIKELY, POSSIBLE, PROBABLE, and CERTAIN, and 
distinctive rules rather than a uniform numerical computation are used to 
combine data with different degrees of likelihood. 

9.3.4 Production Rules-MYCIN and Inference Nets 

The final AIM program whose reasoning component we shall describe is 
MYCIN, which is being developed to advise physicians and medical stu
dents in the appropriate treatment of infections (Shortliffe and Buchanan, 
1975) (see also Chapter 5). 
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IF: 1) The stain of the organism is gram positive and 
2) The morphology of the organism is coccus and 
3) The growth confirmation of the organism is chains 

THEN: There is suggestive evidence (.7) that the identity of 
the organism is streptococcus 

FIGURE 9-5 A typical MYCIN rule. 

MYCIN's knowledge is expressed principally in a number of independently 
stated rules of deduction, a typical example of which is shown in Figure 
9-5. MYCIN's highest-level goal is to determine if the patient is suffering 
from a significant infection that should be treated, and if he or she is, to 
select the appropriate therapy. It uses a backward-chaining deduction 
scheme in which all applicable rules are tried: if a condition in the IF 
(antecedent) part of a rule is decidable from the data base, that is done; if 
the condition can be asserted by the THEN (consequent) part of some other 
rules, they are applied; otherwise, MYCIN asks the user. Thus the rule of 
Figure 9-5 might be applied in the following chain of reasoning: 

1. To decide if the patient needs to be treated, we must decide if he or 
she has a significant infection. 

2. We must know the likely identity of the infecting organism to decide if 
the infection is significant. 

3. The rule of Figure 9-5 can determine the identity of the organism. 

Because conditions in the rules may include logical disjunctions as well as 
conjunctions, the deduction forms an AND/OR tree. 

When the methodology of MYCIN was applied to the simple domain 
of bicycle troubleshooting, a small set of categorical rules of this type was 
sufficient to give the program some interesting behavior. The complication 
in MYCIN arises from the uncertainty with which a medical rule implies 
its consequences, the applicability of several uncertain rules to suggest the 
same consequence, and the need to apply rules even when their anteced
ents are to some degree uncertain. 

MYCIN associates a certainty factor (CF) with each rule, which is a num
ber between 0 and 1, representing the added degree of belief that the rule 
implies for its consequent. With each fact in the data base is a measure of 
belief (MB) and a measure of disbelief (MD), both numbers between 0 and 1 
that summarize all the positive and negative evidence that has been im
puted for this datum by the application of rules that conclude about the 
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datum. The measures of belief and disbelief are maintained separately for 
each item, and the certainty factor of the fact is their difference. Thus the 
CF of a fact is a number between - 1 and 1. 

Arguing that the rule "A implies B with probability X" should not be 
inverted in the traditional probabilistic sense to entail "A implies not B 
with probability ( 1 - X)," Shortliffe defines a confirmation formalism for 
computing the certainty of facts (Shortliffe and Buchanan, 1975). In its 
simplest form, it says the following: assume that we are told (perhaps by 
some rule 51) the fact H with certainty MB HIS 1. Later, we discover that 
another source of information, 52, tells us H again, this time with certainty 
MBH1s2. Instead of using a maximum, as CASNET would, we would like 
to feel more confident in H after having received two reports in its favor 
than after having received either one by itself. MYCIN's scheme means 
that every new report of the truth of H reduces the difference between 1 
and H's measure of belief by the fraction that is the certainty of the new 
report. For example, if MBHISI = 0.4 and MBH1s2 = 0.6, then the com
bined result is MBH1si.s2 = 0.76. This process is defined separately for 
positive and negative reports, and we have 

MBHIS1,S2 0 if MDHIS1,S2 = 1 (6) 

MBHjs1 + MBH1s2 (1 - MBH1s1) otherwise 

and 

MDHIS1,S2 0 if MBHIS1,S2 = 1 (7) 

MDHISl + MDHIS2 (1 - MDHjs1) otherwise 

where 51 and 52 are the two reports. The measures of belief and disbelief 
combine to give a certainty factor for each fact: 

This, then, defines MYCIN's method of summarizing the certainty of a 
hypothesis when the application of several rules has contributed evidence 
for it. 

To compute the measure of belief (or disbelief) contributed by a par
ticular rule, MYCIN multiplies the CF of the rule by the MB (or MD) of 
the rule's antecedent. A fuzzy set strategy of maximizing for OR and min
imizing for AND is adopted to compute the belief measures of the ante
cedent from the belief measures of its components. This approach is pre
sented and justified in Shortliff e and Buchanan (197 5) and Shortliff e 
( 1976). An alternative formulation of separate measures of belief and 
disbelief is to be found in Shafer ( 1976). 



Reasoning in Current AIM Programs 235 

Discussion 

In MYCIN, the question of just what connections exist among different 
facts in the data base is not explicitly addressed. In addition to the rules 
that we have mentioned above, MYCIN also includes a context hierarchy, 
which plays a smaller but still important role in the program's operation. 
For example, the facts that "there are cultures associated with infections" 
and that "cultured organisms are associated with cultures" are embedded 
in no rules, but rather in this additional mechanism. 21 Turning MYCIN 
inside out, that context mechanism could be viewed as the principal or
ganizational facility of the diagnosis program. In such a view, the under
lying reasoning activity is filling in a frame for the patient by directly asking 
for some information (e.g., age and sex) and by instantiating and recur
sively filling in other frames (e.g., cultures and operations). The produc
tions and their associated certainty factors are then seen as a set of pro
cedurally attached heuristics to help fill in those frames. We conjecture that 
this methodology, which underlies the operation of the GUS program 
(Bobrow et al., 1977), would provide a reasonable alternative way of im
plementing the MYCIN system. 

MYCIN's categorical knowledge is encoded in three ways. First, the 
presence of each rule implicitly establishes a categorical, inferential con
nection between those facts in its consequent and those it uses in its an
tecedent. The MYCIN control structure, which is a nearly purely categor
ical backward-chaining deduction scheme, is based on these relationships. 
Second, the context tree explicitly, defines what objects may exist in MY
CIN's universe of discourse and how they may relate. Such categorical 
information would underlie a GUS-like implementation of MYCIN. Third, 
many other relationships, which record such data as how to ask a question 
and what answers are acceptable, are also categorical in nature. MYCIN's 
probabilistic reasoning resides in its use of the measures of belief and 
disbelief about each fact and the certainty factors associated with each rule. 
Although this probabilistic method has important consequences for the 
assessment of the relative likelihoods of the various infecting organisms 
under consideration, it appears that it affects the program's questioning 
behavior only slightly. Except in the case where a line of reasoning is pur
sued because of the joint effect of several very weak independent infer
ences, which we suspect is rare, the particular numbers used make little 
difference except in the final diagnosis (and thus therapy). We note that 
the context tree that is built for each patient depends for its structure 
mainly on information that is always asked of the patient, such as what 
cultures have been taken, what operative procedures have been performed, 

21 Note that, because of interposed levels of complexity such as the existence of cultures, the 
example "traceback" we presented above of how MYCIN would decide to apply the rule of 
Figure 9-5 is overly simplistic. 
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and what drugs are being used in treatment. Even dramatic changes in the 
probabilistic component of MYCIN's reasoning strategy would not alter 
this behavior. 

MYCIN has also inspired the creation of a more uniform inference 
scheme, in which every potential fact in the data base is viewed as a node 
in a large inferential network. 22 In such a network, the reasoning rules 
form the connections among the fact nodes, and we think of propagating 
some measures of likelihood among the nodes so that the impact of directly 
observable facts may be reflected on the diagnostic consequences of ulti
mate interest. This is the approach taken by Duda, Hart, and Nilsson 
( 1976) in their inference net formalism. The propagation scheme used there 
is Bayesian in its heritage, but suffers from the typical distortions (see 
above) that the Bayesian methodology can introduce. 

Of course, it is natural to compare the inference net to the causal net. 
The difference is primarily in the semantic interpretation of what a node 
and a link represent. In CASNET, the node is a dysfunctional state, and 
the link represents causality in the application domain. In the inference 
net, nodes are essentially arbitrary facts about the world, and rules are 
arbitrary implications among those facts. Much of Weiss's reasoning in 
justifying the particular propagation algorithms he has chosen rests on his 
specific interpretation of the network. Because the semantics of the inf er
ence net are less clearly (or constantly) defined, we must be more skeptical 
when evaluating the acceptability of the approximations introduced by the 
propagation formulas. 

9.4 Another Look at the Problems of Diagnosis 

Compared to the expert physician, our best AIM programs still have many 
deficiencies. We catalog a few of the more significant ones: 

1. Programs that deal with relatively broad domains, such as INTERNIST 
and PIP, have inadequate criteria for deciding when a diagnosis is com
plete. There is no sense of when the major diagnostic problems have 
been resolved and only the "loose ends" remain: the programs continue 
exploring less and less sensible additional hypotheses until the user tires 
of the consultation. For example, PIP only stops if no active hypotheses 
remain or if every finding of every active hypothesis has been explored 
already. 

22Uniformity is not necessarily an advantage for a reasoning scheme. For example, the par
ticular structures used by MYCIN are cleverly exploited by Davis in building an interesting 
knowledge-acquisition module (Davis, 1976). In a uniform system of representation, it would 
be more difficult for his programs to decide just where new knowledge is to be added. 
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2. Because the initial strategy of the programs is to use every significant 
new finding as a clue to raise the possibility of associated disorders and 
because this strategy remains throughout the programs' operation, new 
hypotheses are continually being activated. Thus, when the program 
asks about an expected finding for one of its leading hypotheses and 
the finding is present, that finding often suggests new hypotheses as 
well, even though it is perfectly consistent with the diagnosis being pur
sued. Obviously, some such sensitivity is necessary or the program 
would remain committed to its first hypothesis, but we now feel that it 
would be preferable if new hypotheses were triggered only by evidence 
that contradicts a current beiief. 

3. Part of the routine developed by clinicians is an appropriate order for 
acquiring information systematically. Computer diagnosticians tend to 
enforce such an order either too strictly (e.g., the flow charts and MY
CIN, which cannot accept out-of-sequence information in any useful 
way) or not at all (e.g., INTERNIST or PIP, where a global computation 
after the report of each fact may, in the worst case, change the program's 
focus to an entirely new topic for each question). 

4. The programs rely on a global likelihood assessment scheme, but they 
use a semantics that is too weak for the states over which they try to 
compute approximate probabilities. For example, none of the programs 
can dynamically distinguish among the aggregate hypotheses 

a. A and B, both together, when in fact A has caused B, 

b. A and B co-occurring but apparently unrelated, and 

c. A or B but not both. 

Yet there are therapeutic and strategic decisions that hinge on just such 
distinctions. For example, it may be sufficient to treat only for A in the 
first case, but not in the second; trying to discriminate between A and 
B makes sense in the third case, but not in the others. PIP and IN
TERNIST might eliminate some of these hypotheses by noting those 
causal or associational links that are disallowed by the data base, but in 
no sense are these hypotheses generally distinguishable. MYCIN might 
include some rules that could, for example, reduce the possibility of 
hypothesis c, but it also lacks any mechanism to take up the problems 
of dependence. Although CASNET does allow the proper handling of 
this problem, it must do so by the creation of joint states, which is its 
weakest semantic ability. 

9.4.1 Possible Improvements 

The practice of clinical medicine offers some clues to the proper solution 
of some of these difficulties. Questions of the appropriate termination of 
the diagnostic process and control over the proliferation of hypotheses may 
be resolved by considering two factors. First, the diagnosis needs to be only 
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as precise as is required by the next decision to be taken by the doctor. 
Thus, if all the remaining possible diagnoses are irrelevant or equivalent 
in their implications for therapy or test selection, then nothing is lost by 
postponing their consideration. Bayesian programs that explicitly com pare 
the cost of new information to its expected benefit will achieve this saving 
(Garry ~t al., 1973), but none of the programs discussed here includes such 
a computation. 

Second, the simple passage of time, "creative indecision," often pro
vides the best diagnostic clues because the evolution of the disorder in time 
adds a whole new dimension to the other available information. Whereas 
MYCIN, CASNET, and the Digitalis Therapy Advisor all use changes over 
time as diagnostic clues, none of the programs exploits the possibility of 
def erring its own decisions with a deliberate eye to waiting for disease 
evolution. Such a strategy is also applicable on the much shorter time scale 
of the diagnostic session. In taking the present illness, for example, the 
doctor knows that a physical examination and a review of symptoms will 
soon provide additional information. Therefore, consideration of unlikely 
leads and small discrepancies can be deferred, leaving a coherent structure 
of problems to work with at the moment. 

The ability to lay aside information that does not fit well with the 
current hypotheses is also a good mechanism for limiting the rapid shifts 
of focus caused by consideration of newly raised but unrelated hypotheses. 
In addition, however, the programs must have a sense of the orderly proc
ess by which information is normally gathered. The attempts in PIP to 
characterize a finding fully before proceeding and the attempts in IN
TERNIST and CASNET to ask summarizing questions (not described 
here) before launching on a series of similar, detailed questions are at
tempts to reflect such an order. We might, as Miller suggests (1975), go 
much further. We could, for example, incorporate a strategy that says, 
"When investigating a suspected chronic disease, insist on a chronological 
description of all the patient's relevant history." If such a strategy were 
followed, the program would not quickly jump at a "red herring" uncov
ered during the acquisition of those historical data. For example, consider 
a patient with a long history of sickle cell anemia who now complains of 
acute joint pain. Although that complaint would ordinarily raise the issue 
of rheumatoid arthritis, in this case we (and the program) should realize 
that the joint pain is a reasonable consequence of an already known disease 
process and should not evoke an immediate attempt to create elaborate 
additional explanations. Maintaining a richer semantic structure of just 
what the current hypothesis is and allowing that structure to control the 
program's focus of attention should also stabilize the program's behavior. 

Another possible mechanism for controlling the logic of diagnosis is 
suggested by the following example. Consider the earliest stages in the 
diagnosis of chest pain, a symptom of potentially grave consequence. With 
a disaggregated structure of relationships between findings and hy
potheses, chest pain might suggest angina pectoris, aortic stenosis, pneu-
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monia, tuberculosis, pericarditis, costo-chondritis, depression, hiatus her
nia, pancreatitis, esophagitis, gastric ulcer, fractured rib, pulmonary 
embolism, etc.-a long list of significantly different low-level hypotheses. 
Once those are all active, we must evaluate and compare all of them to 
choose a best hypothesis. On the other hand, we can say that, initially, we 
will only use the finding of chest pain to choose a somewhat specific di
agnostic area for our further focus; specifically, we would like to choose 
one of these generic hypotheses: the pain is due to cardiac, pulmonary, 
gastrointestinal, psychogenic, or muscular-skeletal causes. We ask only the 
age and sex of the patient and three of the most important descriptors of 
the chest pain, its character, provocation, and duration. Obtaining a· rank 
order for the five categories from each descriptor and combining them by 
a very simple arithmetic formula, we get a reasonably robust estimate of 
what is the best diagnostic area to pursue. 

No simple scheme like the one suggested here is, of course, a panacea. 
However, we have been surprised at how effective rather crude heuristic 
techniques can be when they are tailored to a specific problem. To illustrate 
the necessity of that tailoring, it should be pointed out that the same tech
nique appears not to be effective at the next level of diagnosis, for example, 
in sorting out the various possible cardiac causes of chest pain. 

In summary, our analysis of the reasoning mechanisms of current AI 
programs leads us to these conclusions: 

1. If possible, a carefully chosen categorical reasoning mechanism that is 
based on some simple model of the problem domain should be used 
for decision making. Many such mechanisms may interact in a large 
diagnostic system, with each being limited to its small subdomain. Many 
of the intuitively appealing observations made above can ·probably be 
implemented by the use of such techniques. 

2. When complex problems need to be addressed-which treatment 
should be selected, how much of the drug should be given, etc.-then 
causal or probabilistic models are necessary. The essential key to their 
correct use is that they must be applied in a limited problem domain 
where their assumptions can be accepted with confidence. Thus it is the 
role of categorical methods to discover what the central problem is and 
to limit it as strongly as possible; only then are probabilistic techniques 
appropriate for its solution. 

9.4.2 Postscript 

As we interact with our medical colleagues at work, we are sometimes 
amazed by two observations: 

1. They are often extremely reluctant to engage in any numerical com
putation involving the likelihood of a diagnosis or the prognosis for a 
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treatment. Even when official blessing is bestowed upon Bayesian tech
niques, we have seen both experienced and novice physicians acknowl
edge and then ignore them. Doctors certainly have a strong impression 
of their confidence in the diagnosis or treatment, but that impression 
must arise more from recognizing a typical situation or comparing the 
present case to their past experiences rather than from any formal 
computation of likelihoods. 

2. An experienced physician can be pushed, in his or her domain of ex
pertise, to give arbitrarily many complex potential explanations for a 
patient's condition. Especially in the teaching hospital environment with 
which we are most familiar, this serves the useful pedagogical purpose 
of discouraging pat answers from students. Because so many diagnostic 
possibilities appear to be available for the expert to consider, we suspect 
that the rapid generation and equally rapid modification or elimination 
of many explicit hypotheses play a significant role in his or her reason
mg. 

These observations reinforce our beliefs that somewhat more careful 
approaches to diagnosis are needed, ones that apply the most successful 
available techniques to each component of the diagnostic process. Al
though probabilistic techniques will be best in some well-defined domains, 
they should not be applied arbitrarily to making other decisions where the 
development of precise categorical models could lead to significantly better 
performance. The development and aggregation of a number of different 
approaches, both categorical and probabilistic, into a coherent program 
that is well suited to its application area remains a fascinating and difficult 
challenge. 

When thinking about the effectiveness of a computerized medical con
sultant, it is essential to recognize the difference between impressive ex
pertlike and truly expert behavior. A vehement critic of early work in 
artificial intelligence accused the practitioners of this "black art" of trying 
to reach the moon by climbing the tallest tree at their disposal (Dreyfus, 
1972). We must be somewhat concerned that the initial successes of the 
current programs should not turn out to be merely the improved view 
from a lofty branch. 
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Computer-Based Medical 
Decision Making: From 
MYCIN to VM 

Lawrence M. Fagan, Edward H. Shortliffe, 
and Bruce G. Buchanan 

We mentioned in the introduction to Chapter 5 that MYCIN provided a 
starting point for several additional research projects. The Ventilator Man
ager (VM) project of Larry Fagan had its beginnings in the MYCIN project 
but quickly diverged because of the dynamic nature of the intensive care 
unit (ICU) setting for which it was designed. MYCIN required a "snap
shot" approach to patient assessment-temporal trends were poorly handled 
and advice was generally provided on the basis of a patient's situation at 
a single point in time. In dynamic settings like an ICU, however, decisions 
may be dependent on frequent sequential assessments of the patient's status. 
Fagan's work was accordingly also influenced by another earlier Stanford 
project known as HASPISIAP (Nii et al., 1982). That system was not 
concerned with medical issues, but did develop iterative techniques for the 
ongoing analysis of signals. 

Although Fagan was a graduate student at Stanford at the time, much 
of his work was based at Pacific Medical Center in San Francisco. The 
director of the postsurgical ICU there, Dr. John Osborn, had developed an 
elaborate monitoring system that was in routine use. However, the amount 
of data generated was sometimes overwhelming, particularly for physicians 
in training. It was clear that there was expertise involved in learning how 
to interpret the data, and the idea developed to build an expert system that 
could monitor· the various physiological parameters and give advice ac
cordingly. The following chapter discusses the resulting evolution from 

From Automedica, 3: 97-106 (1980). Copyright© 1980 by Gordon & Breach Science Pub
lishers, Inc. All rights reserved. Used with permission. 
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MYCIN to VM and explains how the d~ffering requirements of the two 
clinical settings affected the ultimate design of the newer system. V M's 
specific approach is to use production rules for interpreting the physiological 
data, thereby permitting V M to aid in the management of patients being 
"weaned" from ventilators. This work is included here largely because of 
Fagan's insights regarding temporal reasoning in medicine. Particularly 
noteworthy is the development of techniques to allow the system to interpret 
patient data by comparing current findings with explicit expectations gen
erated using production rules during earlier time periods. 

10 1 Introduction • 

Since the early 1970s, researchers in computer-based medical reasoning 
have begun to recognize the potential benefits of applying symbolic rea
soning techniques in clinical domains (see Chapter 3). One such research 
group is the Heuristic Programming Project at Stanford University. The 
first medical reasoning program developed by the project, known as the 
MYCIN system (Shortliffe, 1976), adopted symbolic processing techniques 
largely in response to a conviction that computer-based consultation sys
tems, in order to be accepted by physicians, should be able to explain how 
and why a particular conclusion has been derived. Such systems should 
also be able to incorporate, organize, manipulate, and update large quan
tities of medical knowledge. Subsequently, a series of additional medical 
application programs using MYCIN's techniques has been created. In this 
paper we compare MYCIN, a program for infectious disease diagnosis and 
therapy, with a newer system, the Ventilator Manager (VM) program for 
measurement interpretation in the intensive care unit (ICU). Each of these 
programs uses a representation scheme, known as production rules (Davis 
and King, 1977), to encode the medical knowledge used for decision mak
ing. Each production rule is stated in the form "situation implies conclu
sion." Production rules may be chained together to form a line of reasoning 
leading from observed patient data to diagnostic and therapeutic conclu
sions. This report discusses the strengths of this form of knowledge rep
resentation and shows how production rules can be applied in two some
what different clinical applications. 

We begin by presenting the reasons that symbolic processing has been 
utilized for medical decision making. A brief discussion of the MYCIN 
program and a more detailed discussion of the VM program are included 
to demonstrate the use of the symbolic processing techniques. The design 
criteria for the two programs are compared. Differences in design criteria, 
plus experience with the MYCIN program, led to the extensions to the 
methodology described in the final section. 
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The Rationale for Using Symbolic Processing 
Techniques 

There is increasing evidence that computer-based diagnosis and therapy 
programs will be accepted by physicians only if they meet a stringent set 
of design criteria. Several sets of design requirements have been suggested 
(Shortliffe et al., 1974) (see also Chapter 2). Although the overriding goal 
for any computer-based consultation program is, of course, that it be ac
curate, Gorry has suggested (see Chapter 2) that clinical decision systems 
should ideally have three additional capabilities: (1) the ability to maintain 
and manipulate a set of symbolic concepts, rather than mere numbers, (2) 
the ability to interact with clinicians using natural language, and (3) the 
ability to explain the reasoning process used to make conclusions. These 
goals were derived from his experience with a program that used decision 
analysis for the management of acute renal failure ~Gorry et al., 1973). He 
concluded that detailed knowledge of medical concepts and the relation
ships between concepts would be required to reach reasonable conclusions 
reflecting a sense of the clinical context of the patient's problems. This 
could provide the program with a pragmatic view of the situation being 
analyzed. He encouraged the development of natural language commu
nication in order to expedite the transfer of expertise, both from the expert 
to the program during the creation and expansion of the knowledge base 
and from the program to the user once the program becomes a clinical 
tool. 

These criteria imply that the same piece of knowledge must be used 
in many different ways. The knowledge should be represented in a fashion 
that does not limit the manner in which it can be used. In many program
ming languages, one part of a program cannot access or modify another 
part. Thus incorporating the knowledge directly into the program's pro
cedures limits the possible utilization of that knowledge. Facts must be in 
a form that can be manipulated as easily as numerical data are manipulated 
in conventional programming tasks. 

The subfield of computer science known as artificial intelligence (AI) 
(Winston, 1977) has concentrated on using computers for symbolic rea
soning rather than for calculating with numbers. One goal of our project 
has been to determine the strengths and limitations of the production rule 
methodology drawn from Al. Production rules offer the advantage of 
containing a small "packet" of knowledge. These packets can be combined 
to create a knowledge base of facts and relations known to the system. 
Using current symbolic processing languages, these rules can be translated 
from an external English-like syntax into an internal form that can be 
examined and interpreted by a task-independent control program. Be
cause they can be displayed in English for communication with the user 
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RULE209 

IF: 
1) The site of the culture is blood, and 
2) There is significant disease associated with this occurrence of the organism, and 
3) The portal of entry of the organism is GI, and 
4) The patient is a compromised host 

THEN: 
It is definite (1.0) that bacteroides is an organism for which therapy should cover 

FIGURE 10-1 Example of a MYCIN rule. This is the English 
translation of a rule used to determine which organism may he 
causing the patient's infection. 

and because they also facilitate the development of simple techniques for 
understanding natural language, production rules have allowed us to re
spond effectively to the design criteria outlined above. 

10 3 Overview of MYCIN • 

MYCIN selects antimicrobial therapy for patients with severe infections 
(Shortliffe, 1976). The program uses knowledge obtained from infectious 
disease specialists; this knowledge was captured in the form of heuristics 
or "rules of thumb" that relate microbiological data and clinical signs and 
symptoms to possible pathogenic organisms. The details of the MYCIN 
program have been outlined in several other publications (referenced be
low) and will be described only briefly here. 

10.3.1 Knowledge Representation 

The MYCIN system is built around a set of medical concepts, such as the 
surgical history of the patient and the identity of infecting organisms. Each 
of these concepts is called a clinical parameter. Relations between the clinical 
parameters are used to build production rules of the form "IF premise 
THEN action." The premise of the rule is formed by the conjunction of 
statements about clinical parameters, for example, "The age is greater than 
8" or "The patient has had recent neurosurgery." The action portion of 
the rule states what conclusions can be drawn from the premise with an 
associated measure of certainty. The English translation of a MYCIN rule 
is shown in Figure 10-1. 

To perform a consultation, the rules must be combined together to 
form a line of reasoning (see Chapter 5). MYCIN uses a goal-directed 
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approach to integrate the knowledge, a process known as backward chaining. 
Starting with the top-level goal (i.e., to prescribe appropriate therapy), the 
program selects the set of rules that make a conclusion about this goal in 
their action part. The premise of each of these rules is evaluated to deter
mine if a rule can be applied. If a fact needed to evaluate this premise is 
not available, then the program,identifies other rules that make conclusions 
about the needed fact (or asks the user if no rules. exist). In this manner, 
only the portion of the rule set that is relevant to the particular patient is 
examined. The number of questions asked is also minimized by this goal
directed search through the knowledge base. 

The consultation program manipulates the rules as described above, 
but itself contains no knowledge about infectious diseases. The system also 
contains explanation and question-answering facilities that interact with 
both the knowledge in the rule set and an ongoing record of how rules 
were applied during a consultation (Scott et al., 1977). The definition and 
propagation of the measure of uncertainty (certainty factor) associated with 
each rule have also been a major area of concentration (Shortliffe and 
Buchanan, 1975). Evaluations (Yu et al., 1979a; 1979b) have shown that 
the performance of the system approaches that of a subspecialist in the 
two areas (bacteremia and meningitis) for which the knowledge base has 
been developed. 

10 4 Overview of VM • 

The VM program is designed to interpret on-line quantitative data in the 
intensive care unit (ICU). These data are used to manage postsurgical 
patients receiving mechanical ventilatory assistance. VM is an extension of 
a physiologic monitoring system (Osborn et al., 1969) and is designed to 
perform five specialized tasks in the ICU: (1) to detect possible measure
ment errors, (2) to recognize untoward events in the patient/machine sys
tem and suggest corrective action, (3) to summarize the patient's physio
logic status, (4) to suggest adjustments to therapy based on the patient's 
status over time and long-term therapeutic goals, and (5) to maintain a set 
of patient-specific expectations and goals for future evaluation by the pro
gram. The program produces interpretations of the physiologic measure
ments over time, using a model of the therapeutic procedures in the ICU 
and clinical knowledge about the diagnostic implications of the data. 

Most medical decision-making programs, including the MYCIN system 
described above, have based their advice on data available at one particular 
time. In actual practice, the clinician receives additional information from 
tests and observations over time and reevaluates the diagnosis and prog
nosis of the patient. Both the progression of the disease and the response 
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STATUS RULE: STABLE-HEMODYNAMICS 
DEFINITION: Defines stable hemodynamics based on blood pressures and heart rates 
APPLIES to patients on VOLUME, CMV, ASSIST, T-PIECE 
COMMENT: Look at mean arterial pressure for changes in blood pressure and 
systolic blood pressure for maximum pressures 
IF 

HEART RATE is ACCEPTABLE 
PULSE RATE does NOT CHANGE by 20 beats/min. in 15 min. 
MEAN ARTERIAL PRESSURE is ACCEPTABLE 
MEAN ARTERIAL PRESSURE does NOT CHANGE by 15 torr in 15 min. 
SYSTOLIC BLOOD PRESSURE is ACCEPTABLE 

THEN 
The HEMODYNAMICS are STABLE 

FIGURE 10-2 Sample VM interpretation rule. The meaning of 
ACCEPTABLE varies with the clinical context-for example, 
the type of ventilatory assistance. VOLUME, CMV, ASSIST, and 
T-PIECE refer to types of ventilation therapies. 

to prior therapeutic interventions are important for assessing the patient's 
situation. 

Data are collected in different therapeutic contexts. In order to inter
pret the data properly, VM includes a model of the stages that a patient 
follows from ICU admission through the end of the critical monitoring 
phase. Correct interpretation of physiologic measurements depends on 
knowing which stage the patient is in. The goals for patient management 
are also stated in terms of these clinical contexts. The program maintains 
descriptions of the current and optimal ventilatory therapies for any given 
time. 

Knowledge is represented in VM by production rules of the following 
form: 

IF: Relations about one or more parameters hold 
THEN: 1) Make a conclusion based on these facts, 

2) Make appropriate suggestions to clinicians, and 
3) Create new expectations about the future values of parameters 

Additional information associated with each rule includes the symbolic 
name, the rule group (e.g., rules about instrument faults), the main concept 
(definition) of the rule, and all of the therapeutic states in which it makes 
sense. Figure 10-2 shows a sample rule for determining hemodynamic 
stability. 

The VM knowledge base includes rules to support five reasoning steps 
that recur whenever a new time segment begins: (1) characterizing mea
sured data as reasonable or spurious; (2) determining the therapeutic state 
of the patient (currently the mode of ventilation); (3) adjusting expecta
tions of future values of measured variables when patient state changes; 
(4) checking physiologic status, including cardiac rate, hemodynamics, ven
tilation, and oxygenation; and (5) checking compliance with long-term 
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INITIALIZING RULE: INITIALIZE-CMV 
DEFINITION: Initialize expectations for patients on controlled mandatory ventilation (CMV) therapy 
APPLIES to all patients on CMV 
IF ONE OF: 

PATIENT TRANSITIONED FROM VOLUME TO CMV 
PATIENT TRANSITIONED FROM ASSIST TO CMV 

THEN EXPECT THE FOLLOWING: 

[ - - - - - - - - - - acceptable range -- - - - - -- - l 
very [ -- --ideal --- -] very 
low low min max ---~i~~-- - -- -~i~~---- - -- ... - ...... - --------- ---- ... --- - ---------

Mean pressure 60 75 80 95 110 
Heart rate 60 110 
Expired pC02 22 28 30 35 42 

FIGURE 10-3 Portion of an initializing rule. This rule estab
lishes initial expectations of acceptable and ideal ranges of vari
ables. Not all ranges are defined for each measurement. pC02 
is a measure of the percentage of carbon dioxide in expired air 
measured at the mouth. 

120 

50 

therapeutic goals. Each reasoning step is associated with a collection of 
rules sorted by the type of conclusions made in the action portion of the 
rule, for example, all rules that determine the validity of the data. 

10.4.1 Treating Measurement Ranges Symbolically 

Most of the rules represent the measurement values symbolically, using the 
term ACCEPTABLE or IDEAL to characterize the appropriate ranges. 
The actual meaning of ACCEPTABLE changes as the patient moves from 
state to state, but the statement of the relation between the physiologic 
measurements remains constant. The use of symbolic statements (e.g., 
"HEART RATE is ACCEPTABLE") allows for the exposition of common 
principles of physiologic interpretation in different contexts. In addition, 
it minimizes the number of rules needed to describe the complexity of the 
diagnostic situation. 

The meaning of the symbolic range is determined by rules that estab
lish expectations about the value of measured data. For example, when a 
patient is taken off the ventilator, the upper limit of acceptability for the 
expired carbon dioxide measurement is raised. The actual numeric cal
culation of "expired pC02 high" in the premise of any rule will change 
when the context switches (removal from ventilatory support), but the 
statement of the rules remains the same. An example of a rule that creates 
these expectations is shown in Figure 10-3. 
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10.4.2 Rule Interpretation 

The VM rule interpreter is based on the MYCIN interpreter. The major 
changes include (1) forward-chaining (data-driven) rule invocation as op
posed to backward chaining, (2) checking to see that information acquired 
in a previous time frame is still valid for making conclusions, and (3) cycling 
through appropriate parts of the rule set each time new information is 
available. 

A data-driven approach is necessary to take advantage of the small set 
of measurement values available in each time frame. This means that the 
reasoning process works forward from the available information as op
posed to working backward from a goal and obtaining information as nec
essary. Because of the demanding nature of the ICU environment, the 
system must acquire and interpret data with minimal staff intervention. 

Each of the rule groups corresponding to the five reasoning steps 
mentioned above is considered in order. Each rule is examined to deter
mine if it applies to the current context. The premise of the rule is ex
amined to determine validity, and the appropriate conclusions are re
corded by the program, as well as expectations on the future ranges of 
measurement values. Suggestions to clinicians are also printed out. 

Often the examination of the rule premise requires the utilization of 
a value acquired earlier, for example, the temperature measurement, which 
is volunteered to the patient-monitoring system on an episodic basis. The 
reliability of the stored value is determined by evaluating either a time 
constant (for variables that predictably change over time) or a rule (for 
cases in which the assessment of a value's reliability is dependent on con
text-specific information). Associated with each parameter in the system is 
a specific mechanism for determining its reliability over time. If a mea
surement is concluded to be spurious or outdated, then it is treated as if 
it were unknown, requiring alternative methods for determining the status 
of the patient. The rule invocation process is repeated each time a new set 
of measurements is available (currently every 2 to 10 minutes). 

Identical conclusions made in contiguous time frames are represented 
by the interval specified by the times of the first and last assertion. A list 
of these intervals summarizes the history of a particular conclusion. The 
evaluation of a rule clause such as "Patient hyperventilating for the past 
30 minutes" is made by direct examination of the time intervals stored 
along with the conclusions, as opposed to looking at the original measure
ments. Expectations are associated with the appropriate measurement and 
are classified by duration and type, such as the upper limit of the acceptable 
range. Expectations can persist for a fixed interval, such as "for 20 minutes 
starting in 10 minutes," or for the duration of one or more clinical situa
tions, for example, "while the patient is on the ventilator." 
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Comparison of Design Goals for MYCIN and 
VM 

MYCIN was designed to serve in the ward setting as an expert consultant 
for antimicrobial therapy selection. A typical interaction might take place 
after the patient has been diagnosed and preliminary cultures have been 
drawn but little microbiological data are available. In critical situations, a 
tentative decision about therapy must often be made pending actual cul
ture results. In return for assistance in making this decision, the clinician 
is asked to spend the small amount of time required to seek a consultation. 
As we have discussed, there are numerous challenges involved in the effort 
to motivate clinicians to use such a resource. The environment of the in
tensive care unit is quite different, however. Continuous surveillance and 
evaluation of the patient's status are required. The problem is one of mak
ing therapeutic adjustments over a long period of time, many of which are 
minor, such as adjusting the respiratory rate on the ventilator. The main 
reasons for interacting with VM would be to obtain status information or 
to investigate an unusual event. The program must therefore be able to 
interpret measurements with minimal human participation. When an in
teraction does take place, for example, when an unexpected event is noted 
by the program, it must be terse and concise. 

This difference in the timing and style of the user/machine interaction 
has considerable impact on system design. For example, the VM system 
must ( 1) presume that the clinician's input into the system will be brief, (2) 
use historical data to determine the clinical situation, (3) be able to provide 
advice at any point in the hospital course of the patient, ( 4) be able to 
follow up on the outcomes of previous therapeutic decisions, and (5) be 
able to provide summaries of conclusions made over time. VM's environ
ment thus differs from MYCIN's in that typed natural language input is 
an unlikely modality for communication with the clinician. 

A consultation program should also be able to model the changing 
medical environment so that the program can interpret the available data 
in the appropriate context. Of course, areas like infectious diseases often 
have critical points where a consultation is most necessary. In the devel
opment of the meningitis section of the MYCIN knowledge base, the con
cept of "partially treated meningitis" (prior treatment with an antibiotic) 
was handled quite distinctly from the untreated case, even though the 
laboratory findings might be identical. 

It was also necessary for VM to contain knowledge that could be used 
to evaluate the results of its therapeutic advice, just as a human consultant 
follows a case over a period of time. This is complicated by the fact that 
the user of the system may not follow the recommended therapy regimen. 
If the patient does not react as expected to the given therapy, then the 
program has to determine what alternative therapeutic steps may be re
quired. 
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10. 6 Extending the MYCIN Design 

The VM program has been used as a test-bed to investigate methods for 
increasing the capabilities of symbolic processing approaches by extending 
the production rule methodology. The main area of investigation has been 
in the representation of knowledge about dynamic clinical settings. There 
are two components to representing a situation that changes over time: ( 1) 
providing the mechanism for accessing and evaluating data in a new time 
frame, and (2) building a symbolic model to represent the ongoing proc
esses in the medical environment. 

Another aspect of VM development has been to experiment with more 
general extensions to production rules based on observations of the use of 
the MYCIN system. These changes can be described by two research di
rections: (1) expanding the level of detail in the knowledge base, and (2) 
increasing the global structure of the knowledge base. The problem of 
designing an advice-giving program with limited user/machine interaction 
has also been explored. 

10.6.1. Representing Knowledge About Dynamic 
Clinical Settings 

With VM we have begun to experiment with mechanisms for providing 
MYCIN-like systems with the ability to represent the dynamic nature of 
the diagnosis and therapy process. The original MYCIN system was de
signed to produce therapeutic decisions for one critical moment in the 
patient's hospital course. This was extended with a "restart mechanism" 
that allows for selectively updating those parameters that might change in 
the interval between consultations. MYCIN can start a new consultation 
with the updated information, but the results of the original consultation 
are lost. In VM three requirements are necessary to support the processing 
of new time frames: (1) examining the values of historical data and con
clusions, (2) determining the validity of those data, and (3) combining new 
conclusions with previous conclusions. 

New premise functions, which define the relationships about parameters 
that can be tested when a rule is checked for validity, were created to 
examine the historical data. Premise functions used in MYCIN include tests 
to see if: (a) any value has been determined for a parameter, (b) the value 
associated with a parameter is in a particular numerical range, or (c) there 
is a particular value associated with a parameter. VM includes a series of 
time-related premise functions. The first function examines trends in input 
data over time, for example, "The mean arterial pressure does not rise by 
15 torr in 15 minutes." A second function determines the stability of a 
series of measurements by examining the variation of measurements over 
a specific time period. Other functions examine previously deduced con-
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clusions, as in "The patient has been on the T-piece for greater than 30 
minutes" or "The patient has never been on the T-piece." Functions also 
exist for determining changes in the state of the patient, for example, "The 
patient has transitioned from assist mode to the T-piece." When VM is 
required to check whether a parameter has a particular value, it must also 
check to see if the value is "recent" enough to be useful. 

The notion that data are reliable for only a given period of time is 
also used in the representation of conclusions made by the program. When 
the same conclusion is made in contiguous time periods (two successive 
evaluations of the rule set), then the conclusions are coalesce~. The result 
is a series of intervals that specify when a parameter assumed a particular 
value. In the MYCIN system this information is stored as several different 
parameters. For example, the period during which a drug was given is 
represented by a pair of parameters corresponding to the starting and 
ending times of administration. In MYCIN, if a drug was again started 
and stopped, a new entity-DRUG-2-would have to be created. The effect 
of the VM representation is to aggregate individual conclusions into 
"states" whose persistence denotes a meaningful interpretation of the status 
of the patient. 

10.6.2 Building a Symbolic Model 

A sequence of states recognized by the program represents a segmentation 
of a time line. Specifying the possible sequences of states in a dynamic 
setting constitutes a symbolic model of that setting. The VM knowledge 
base contains a model of the ventilatory therapies. This model is used in 
three ways by the program: (1) to limit the number of rules examined by 
the program, (2) to provide a basis for comparing actual therapy with 
potential therapies, and (3) to provide the basis for the adjustment of 
expectations used to interpret the incoming data. 

Attached to each rule in VM is a list of the clinical situations in which 
the rule makes sense. When rules are selected for evaluation, this list is 
examined to determine if the rule is applicable. This provides a convenient 
filter to increase the speed of the program. A set of rules is utilized to 
specify the conditions for suggesting alternative therapeutic contexts. Since 
these rules are examined every few minutes, they serve both to suggest 
when the patient's condition has changed sufficiently for an adjustment in 
ventilatory therapy and to provide commentary concerning clinical ma
neuvers that have been performed but are not consistent with the embed
ded knowledge for making therapeutic decisions. The model also provides 
mechanisms for defining expectations about reasonable values for the mea
sured data. Much of the knowledge in VM is stated in terms of these 
expectations, and they can be varied in response to changes in the patient's 
situation. 
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RULE 236 
(This rule applies to organisms from positive cultures, and is tried in order 
to find out about the infection that requires therapy or whether there is 
significant disease associated with this occurrence of the organism.) 

IF: 
1) The site of the culture is urine, and 
2) The method of collection of the culture is voided, and 
3) The colony count (in thousands) of the organism is greater than or equal to 100 

THEN: 
1) There is suggestive evidence (0.5) that the infection that requires therapy is cystitis, and 
2) There is suggestive evidence (0.7) that there is significant disease associated with this occurrence 

of the organism 

Author: Yu. 
Comments: This definition of significance differs from E. Kass's original 
definition (Am. J. Med., 18:764, 1955) where two consecutive cultures are 
required. However, for practical purposes, if the patient is symptomatic, 
physicians generally start treatment on the basis of only one culture. 
Created: 19 May 1977, 13:43. 
Last edited: 1 June 1977, 11 :50. 

FIGURE 10-4 Example of a MYCIN rule with justificatory 
comments. 

10.6.3 Expanding the Level of Detail in the 
Knowledge Base 

Those who implement production rule systems often assume that the 
knowledge to be represented will be broken into small pieces correspond
ing to individual rules. What would happen in MYCIN if this assumption 
were violated? At one extreme there would be a single rule that weighed 
all of the clinical inputs in order to conclude the presence or absence of a 
single organism, say E. coli, but this would be too large and complicated 
to understand. The other extreme would be to base the deductive steps 
on the most minute details of physiologic knowledge, for example, knowl
edge of the cell wall properties of each species of bacteria. Explanation 
and modification would be very difficult in either situation. The approach 
taken in the development of MYCIN has been between these two extremes. 
Although no fixed criteria have been established, an examination of the 
rule set shows that intermediate steps have been left out when they ap
peared to be definitional in nature. ~ince the major performance require
ments of a consultation system, that is, reaching correct hypotheses, revolve 
around propagation of the uncertainty associated with each piece of knowl
edge, definitional facts affect the outcome primarily by providing "com
monsense" domain knowledge. Currently each of MYCIN's rules is aug
mented with a free-text justification or rationale that discusses some of the 
intervening steps that were used in formulating the particular content of 
that rule. The text justifications are available to the user if the basis for the 
knowledge in a rule is not clear from the translation of the rule itself 
(Figure 10-4). 
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Our representation of medical knowledge has been particularly ster
eotyped so that the programs we write can examine and manipulate the 
knowledge in many different ways. For example, in the middle of a MYCIN 
consultation the user can ask for an explanation of why a particular ques
tion is asked, resulting in the description of the chain of reasoning leading 
to the current rule under consideration (Davis, 1976; Scott et al., 1977). 
However, because a rule's justification is stored as unformatted text, it is 
unavailable for dissection and manipulation by the program as it gives 
explanations. It has become clear to us that the development of more 
formal mechanisms for encoding the basic knowledge that underlies a sin
gle rule (in a form that a computer can manipulate) will improve the edu
cational and explanatory features of the program by providing an addi
tional level of detail that can be explored and utilized programmatically. 
The detailed justifications could also be used for consistency checking since 
they represent the same knowledge but are stated in terms of "first prin
ciples." The requirements for augmenting the knowledge base in this way 
for the purpose of tutoring medical students have been described by Clan
cey ( l 979a). 

The approach taken in VM is to introduce additional rules that are 
often definitional in nature (e.g., the rule in Figure 10-2 that defines hemo
dynamic stability). We have found that these additional rules act to form 
a convenient method for introducing abstract concepts into the rule base. 
This, in turn, has provided a basis for separating out the portion of the 
knowledge that was independent of the current context, for example, the 
physiology, from the knowledge that must adjust to the changing medical 
situation. 

10.6.4 Increasing the Structure of the Knowledge 
Base 

In addition to the need for more highly formalized justifications associated 
with each rule, we have observed the potential value of a more global 
organization of the rule base. In the development of a set of rules for the 
treatment of meningitis, we identified a situation in which a series of very 
similar rules were used to represent a "case analysis" of patient findings. 
The development of the meningitis knowledge base also included the need 
to represent default decision rules that applied to the majority of the patients 
considered but could still be customized for individual patient histories. 
The problem was broken up into a master rule that would make a prelim
inary set of conclusions and more specific rules that could modify the 
preliminary conclusions in response to unusual items from the patient's 
history. These more specific rules, therefore, cannot be understood without 
first considering the default rule. Two different methods can be used to 
handle this dependence. The first would be to rewrite each of the specific 
rules in order to incorporate all of the information in the default rule (and 
the default rule would then have to be changed to specifically exclude each 
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of the special cases). Then each of the rules would be more complex but 
somewhat more independent. However, it would be difficult to relate the 
differences in conclusions based on one special situation versus another. 
An alternative solution would be to recognize the inherent structure in the 
segment of knowledge that has been distributed across several rules. A 
technique used in other symbolic processing approaches (Pople, 1977) (see 
also Chapter 6) is to promote prototypical situations (and their exceptions) 
as the basic unit of knowledge representation. Information in these systems 
is often organized around individual diagnoses and groups together all of 
the knowledge pertaining to a particular disease.· This method has the 
disadvantage that the size of each of these prototypical units, known as 
frames or schemas (Minsky, 1975), can become too large to comprehend. 
These organizational structures can also be used to provide for a more 
coherent consultation by supplying a larger context for the question-asking 
mechanism. 

We have experimented with another representation for structuring the 
rule base: the creation of a rule set containing knowledge about the medical 
knowledge of the system (meta-knowledge) (Davis, 1976). These meta-rules 
can be used as "strategy rules" to order the application of rules in the 
knowledge base. They provide a heuristic mechanism for taking into ac
count the facts that some information may be more relevant for making a 
specific conclusion and that other rules, although potentially applicable, 
can likely be ignored. 

Another use for a global structure overlaid on the knowledge base 
would be to provide for anatomical models. Reggia ( 1978) suggests that 
this would have been useful in the development of a production rule sys
tem for neurological localization. Aikins ( 1979) has explored the com bi-· 
nation of production rules and frames using the MYCIN methodology for 
the interpretation of pulmonary function tests. 

The designers of future rule-based systems should consider some of 
the above methods for providing a global structure for the knowledge. Not 
all rules can be considered independently, and when rules are related, the 
connections should be available for manipulation by the computer. 

10.6.5 Handling Limited User Input 

In the intensive care unit, the lack of communication is partly solved by 
the availability of a large mass of on-line computer-processed data. An
other approach to solving the communication problem is to display for the 
clinician conditional conclusions that require clinical observation before 
being carried out. For example, rather than asking whether a patient is 
sweating, VM might display a recommendation such as "If the patient is 
diaphoretic I suggest ... , otherwise .... " 

One additional solution to the problem of limited user-to-machine 
communication would be to anticipate the key questions that might be 
posed by the clinician at the bedside and provide a "menu" of likely ques-
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tions for exploring the conclusions generated by the program. During the 
development of part of the meningitis knowledge base, the MYCIN pro
gram was modified to generate automatically the answers to a few key 
questions specified in advance by the medical expert. Such a key question 
for the ICU setting is "What is the status of ventilatory therapy?" The 
program, by the evaluation of several of the rules, can produce the follow
ing type of explanation: "Before transition to the T-piece can be suggested, 
hemodynamic stability must be present, which requires systolic blood pres
sure to be acceptable (current systolic blood pressure value is 170)." 

10.7 Summary 

Several years of experience with the MYCIN program have led to an un
derstanding of additional requirements for symbolic processing ap
proaches to medical decision making. These include extending the knowl
edge base beyond the facts necessary for high performance, providing an 
organizing structure for a large number of production rules, and extend
ing the decision-making aids to include assistance throughout the patient's 
clinical course. For decision aids in the intensive care unit or other equally 
dynamic situations, programs cannot depend on interaction with the clin
ical users. Furthermore, they must handle data that are changing over time, 
but might be missing or spurious. They must also be able to provide track
ing of the patient's status during the course of the underlying disease or 
in response to therapeutic intervention. A more complete description of 
the VM program can be found in Fagan ( 1980). 
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11 
Intelligent Computer-Aided 
Instruction for Medical 
Diagnosis 

William J. Clancey, Edward H. Shortliffe, and 
Bruce G. Buchanan 

As AIM researchers began to develop techniques for allowing systems to 
explain their reasoning, some researchers became intrigued by the potential 
educational role of the developing methods. It became clear that advanced 
computer-aided instruction (CAI) programming techniques could be applied 
and extended in the medical setting. Intelligent computer-aided instruction 
(/CAI) differs from traditional CAI in its use of AI techniques for repre
senting both subject material and teaching strategies. 

Among /CAI programs, Clancey's GU/DON system described in this 
chapter is one of the largest and most complex. It contains all of the knowl
edge of MYCIN (Chapter 5) and uses a variety of techniques for mixed
initiative dialogue, student modeling, and response to partial student so
lutions. As a Stanford graduate student, Clancey had been involved in 
much of the early work on MYCIN and also became interested in /CAI 
and the possibility of adapting MYCIN for educational purposes. Thus 
GU/DON reflects the tremendous effort that went into building MYCIN's 
knowledge base of infectious disease rules, as well as nearly a decade of 
research in building /CAI systems. MYCIN's good performance in reaching 
decisions and giving explanations made a tutoring application of the 
knowledge base attractive. GU/DON also demonstrates the value of rep
resenting knowledge so that it can be applied in multiple settings, here for 
both consultation and teaching. This is the main advantage of separating 

© 1979 IEEE. Used with permission. From Proceedings of the Third Annual Symposium on Com
puter Applications in Medical Computing, Silver Springs, Md., October 1979, pp. 175-183. 
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the medical knowledge from the inference engine and encoding the medical 
knowledge in a stylized, program-readable form. 

This chapter briefly outlines the difference between traditional instruc
tional programs and /CAI. It then illustrates how GU/DON makes con
tributions in areas important to medical CAI: interacting with the student 
in a mixed-initiative dialogue (including the problems of feedback and 
realism), teaching problem-solving strategies, and assembling a computer
based curriculum. 

In evaluating GUIDON's performance, one can see the value in the 
basic idea off ormalizing teaching knowledge in procedures that are sepa
rate from the knowledge to be taught. However, the program is inherently 
limited by the MYCIN knowledge base. The rule set is poorly structured, 
does not contain pathophysiological knowledge for justifying the diagnostic 
associations, and does not explicitly state the strategies for gathering infor
mation and focusing on hypotheses. Thus the teaching perspective puts 
MYCIN's rules into sharp relief, revealing how they are crafted for good 
problem-solving, at the expense of making certain forms of common medical 
knowledge implicit (Clancey, 1983b). 

GU/DON research evolved into a reconsideration of what a medical 
student needs to be taught about diagnosis. What are the diagnostic strat
egies of the primary care physician (as opposed to MY CI N's specialized top
down approach)? How are causal and subtype relations used to index 
medical knowledge during problem solving? This study of expertise (de
scribed briefly in Chapter 15) is complementary to Feltovich's psychological 
experiments, which reveal expert knowledge that is not formalized in med
ical textbooks (Chapter 12) and Gomez's and Chandrasekaran's emphasis 
on the interrelation of disease knowledge (Chapter 13 ). The other side of 
knowing what to teach is developing techniques for representing procedures 
in a way that makes explanation possible. Swartout's methods (Chapter 16) 
nicely complement the analysis and improvements to MYCIN that evolved 
from GU/DON research. 

11 1 Introduction • 

Computer programs designed as aids for teaching medicine have been 
under development since the early 1960s. While sqme programs have been 
used for managing the use of conventional instructional material and grad
ing tests, the predominant application has involved using the computer as 
a device that interacts with the student directly (Trzebiakowski and Fer
guson, 1973). This application is generally called computer-aided instruction 
(CAI). 

The goal of CAI research is to construct instructional programs that 
incorporate well-prepared course material in lessons that are optimized for 
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each student. Early programs were either electronic "page-turners" that 
printed prepared text and simple, rote drills or practice monitors that 
printed problems and responded to the student's solutions using prestored 
answers and remedial comments. In the intelligent CAI (ICAI) programs 
of the 1970s, course material is represented independently of teaching 
procedures so that problems and remedial comments can be generated 
differently for each student. Research today focuses on the design of pro
grams that can construct a truly insightful model of the student's strengths, 
weaknesses, and preferred style of learning. It is believed that AI tech
niques will make possible a new kind of learning environment. 

In this paper, we outline traditional CAI techniques and discuss the 
advantages of ICAI programs. GUIDON, an ICAI program for teaching 
medical diagnosis, is introduced. We then characterize the design issues of 
past medical CAI programs and illustrate how GUIDON makes contri
butions to these areas of concern. 

11.1.1 Traditional CAI 

In traditional systems (Harless et al., 1971; Weinberg, 1973), a course ma
terial author attempts to anticipate every wrong student response and pre
specifies branching to specific teaching material based on the underlying 
misconceptions that he or she associates with each wrong response. Branch
ing on the basis of response was the first step toward individualization of 
in~truction (Crowder, 1962). This style of CAI has been dubbed ad hoc, 
frame-oriented (AFO) CAI by Carbonell ( 1970) to stress its dependence on 
author-specified units of information. 

11.1.2 Intelligent Computer-Aided Instruction 

In spite of the widespread application of AFO CAI to many problem areas, 
many researchers believe that most AFO courses do not make the best use 
of computer technology. Carbonell has pointed out that a programmed 
text can do much of what is required in CAI systems of the AFO type 
(Carbonell, 1970). In this pioneering paper, Carbonell goes on to define a 
second type of CAI that is known today as knowledge-based or intelligent 
CAI. Early CAI systems did, of course, have representations of the subject 
matter they taught, but ICAI systems also carry on a natural language 
dialogue with the student and use the student's mistakes to diagnose mis
understandings. ICAI has also been called generative CAI (Wexler, 1970) 
because it is typified by programs that present problems by generating 
them from a large knowledge base representing the subject material to be 
taught (Koffman and Blount, 1973). 

However, the kind of program that Carbonell was describing in his 
paper was to be more than just a problem generator. Rather, it was to be 
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a computer-tutor that had the inductive powers of its human counterparts 
and could offer what Brown et al. ( 1976) call a reactive learning environment, 
in which the student is actively engaged with the instructional system and 
his or her interests and misunderstandings drive the tutorial dialogue. 

The realization of the computer-tutor has involvt;d increasingly com
plicated computer programs and has prompted CAI researchers to use 
artificial intelligence techniques. Artificial intelligence (AI) work in natural 
language understanding, the representation of knowledge, and methods 
of inference, as well as specific applications such as algebraic simplification, 
calculus, and theorem proving, have been applied by various researchers 
toward making CAI programs that are more intelligent and more effective. 
Early research on ICAI systems focused on representation of the subject 
matter (Carbonell, 1970; Suppes and Morningstar, 1972; Brown et al., 
1974). The high level of domain expertise in these programs permitted 
them to be responsive in a wide range of problem-solving interactions. 

In the mid- l 970s, a second phase in the development of generative 
tutors has augmented knowledge representation techniques with expertise 
regarding the student's learning behavior, as well as tutorial strategies 
(Brown and Goldstein, 1977). AI techniques are used to construct models 
of the learner that represent his or her knowledge in terms of issues (Burton 
and Brown, 1976) or skills (Barr and Atkinson, 1975) that should be 
learned. These models then control tutoring strategies for presenting the 
instructional material. Finally, some ICAI programs are now using AI tech
niques to represent explicitly tutoring strategies themselves, gaining the 
advantages of flexibility and modularity of representation and control 
(Brown et al., 1976; Goldstein, 1977). 

11.1.3 What Medical CAI Programs Attempt to Teach 

Medical problem-solving skills can be categorized into three types: manip
ulative, interpersonal, and cognitive (Hoffer et al., 1975; Feinstein, l 977a). 
Manipulative skills involve acquisition of data and treatment by instru
mentation. Interpersonal skills are involved in taking a patient history and 
discussing a diagnosis and alternative therapies. Cognitive skills comprise 
judgmental knowledge for managing a case: collecting data, reaching and 
testing hypotheses, and prescribing therapy. Most medical CAI programs 
are designed to teach cognitive skills. These skills are generally presented 
in two stages: acquisition of facts (e.g., properties of organisms, typical 
development of an infection) in preclinical years, and application of this 
knowledge to solve clinical problems (Hoffer et al., 1975). Most medical 
CAI programs present specific clinical problems that give the student an 
opportunity to apply his or her knowledge of facts, while following some 
diagnostic strategy for collecting data and forming hypotheses. 
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RULE507 

IF: 1) The infection which requires therapy is meningitis, 
2) Organisms were not seen on the stain of the culture, 
3) The type of the infection is bacterial, 
4) The patient does not have a head injury defect, and 
5). The age of the patient is between 15 years and 55 years 

THEN: The organisms that might be causing the infection are 
diplococcus-pneumoniae (.75) and neisseria-meningitidis (.74) 

FIGURE 11-1 A typical MYCIN rule. 

11.2 An Overview of the GUIDON System 

The purpose of GUIDON research has been to develop a case method 
tutorial program that combines knowledge encoded in production rules 
[rules about infectious disease diagnosis provided by the MYCIN consul
tation system (Shortliffe, 1976) (see also Chapter 5)] with explicit tutorial 
discourse knowledge, while keeping the two distinct. GUIDON engages a 
student in a dialogue about a patient (a case) suspected of having an in
fection, and helps the student consider the relevant clinical and laboratory 
data for reaching a hypothesis about the causative organism(s). MYCIN's 
450 diagnostic rules, one of which is shown in Figure 11-1, provide the 
underlying expertise that is used by the tutorial program in selecting topics 
to be discussed. MYCIN's methods provide a problem-solving approach 
for understanding the student's behavior and for defining skills to be 
taught. In addition, GUIDON has 200 tutorial rules, which include meth
ods for guiding the dialogue economically, presenting diagnostic strategies, 
constructing a student model, and responding to the student's initiative. 

A MYCIN rule consists of a set of preconditions (called the premise) 
that, if true, justifies the conclusion made in the action part of the rule. 
Conclusions are modified by certainty factors (Shortliffe and Buchanan, 
1975), numbers that indicate how certain the rule's author is that the given 
conclusion is correct when the premise is true. 

MYCIN's rules have not been modified for the tutoring application, 
but they are used in additional ways, for example, for forming quizzes, 
guiding the dialogue, summarizing evidence, and modeling the student's 
understanding. Flexible use of the rule set is made possible by the existence 
of representational meta-knowledge (Davis and Buchanan, 1977), which ena
bles a program to take apart rules and reason about the components. 

Two formal evaluations of MYCIN's performance have demonstrated 
that MYCIN's competence in selecting antimicrobial therapy for meningitis 
and for bacteremia is comparable to that of the infectious disease faculty 
at Stanford University School of Medicine (where MYCIN was developed) 
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(Yu et al., l 979a; 1979b). From this we conclude that MYCIN's rules cap
ture a significant part of the knowledge necessary for demonstrably high 
performance in this domain. 

11.3 GUIDON's Capabilities 

The literature for medical CAI systems is extensive. Not all of the programs 
reported have a classic AFO design. For example, some programs use prob
ability tables to generate "cases" (a patient with a specific problem) and use 
differential diagnosis to analyze the student's response and provide assis
tance (Entwisle and Entwisle, 1963; Steele et al., 1978). GUIDON is the 
first medical tutorial program we know of that is based on AI techniques. 
What contributions does it make to medical CAI? Most researchers address 
the following set of issues in the setting of GUIDON: (1) the nature of the 
dialogue interaction (including feedback and realism), (2) pedagogy, and 
(3) the problem of assembling a variety of cases. 

We believe that GUIDON's main contribution lies in its capability to 
carry on a flexible dialogue with the student, allowing for problem-solving 
assistance in context, providing feedback for partial solutions at any time, 
and coping with the student's initiative in choosing topics and detail of 
discussion. Of secondary interest is the ease with which a library of cases 
can be assembled with minimal human intervention. Finally, current meth
ods by which GUIDON provides assistance demonstrate that it has the 
potential for explicitly teaching strategies for doing medical diagnosis and 
perhaps for detecting which strategy the student is using. 

11.3.1 Nature of the Dialogue Interaction 

Medical CAI programs vary greatly in the nature of the dialogue that the 
program has with the student. Relevant issues considered here are 

1. the form of input entered by the student, 
2. the freedom of the student to direct the dialogue, 
3. feedback for partial student solutions, 
4. assistance provided for solving the problem, and 
5. the realism of the interaction. 

Input 

Some programs restrict the student to key words or even numerical codes 
for diagnostic tests (Diamond et al., 1974), and others provide a humanlike 
interaction (by ad hoc means) that would tax the resources of any state-of-
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Option type 
Get case data 
Information retrieval 
Dialogue context 
Convey what you know 
Request assistance 
Change the topic 
Special 

Examples 
BLOCK,ALLDATA 
PENDING, DETAILS 
RULE, TOPIC 
IKNOW, HYPOTHESIS 
HINT, TELLME 
DISCUSS, STOP 
JUSTIFY, PROFILE 

FIGURE 11-2 Some of the 30 options available in GUIDON 
dialogues. 

the-art AI program (Swets and Feurzeig, 1965; Feurzeig et al., 1964). Some 
programs have borrowed AI techniques, for example, keyword analysis 
(Harless et al., 1971) and anaphoric resolution (Weber and Hageman, 
1972). The main issue here is that it should be easy for the students to 
express themselves by using constructs that the program will be able to 
understand. This has been an important concern in ICAI in general. Some 
of the best results have been achieved by Burton (1976). 

GUIDON, like most ICAI programs, accepts student input in the form 
of simple sentences. However, given the range of initiative we would like 
to allow (more than just collecting data), we are experimenting with the 
use of short-form options (Figure 11-2). This has the advantage that input 
is terse, and there is less chance of entering statements that the program 
cannot understand. In addition, the student is provided with a hard-copy 
listing of parameter designations that are recognized by the program, for 
example, BURNED, ALCOHOLIC, and AGE. 

Some researchers believe that providing the student with a list of pos
sible clinical factors to consider is unrealistic (a physician does not carry 
around a "crib sheet"). It serves as a crutch by cueing the student and, by 
the organization of the list, artificially distorts the student's approach (Hof
fer et al., 1975; Harless et al., 1971). Other researchers claim that the list 
of relevant factors is helpful to a beginning student who would otherwise 
not know what questions to ask (Entwisle and Entwisle, 1963). We observed 
in one GUIDON tutorial that the student went down the list of factors in 
the hard-copy handbook once he had exhausted his own knowledge. This 
usage may not be harmful; problems may arise when students use the 
handbook inappropriately. 

Student Initiative 

An essential part of tutorial dialogue management (Clancey, l 979c) is allow
ing the student self-expression. In a mixed-initiative program, provision 
must be made for every potential kind of initiative that the student may 



**FACTORS 
The following factors will be useful to determine the type of the infection: 

3a. whether the meningitis is partially treated 
3b. whether a lumbar puncture has been performed on Pt538 
3c. the duration of the neurological signs 
3d. the CSF protein 

(*)3e. whether Pt538 has a rash consistent with Herpes Zoster 
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Factors marked with * have already been stated. Based on what we have already mentioned, you should be able 
to conclude about: 3b. 
**USE 3C 
The duration of the neurological signs is 7.2 hours. Using other information available to you now, the duration of 
the neurological signs enables you to conclude that the type of the infection is bacterial (.2) viral (.2) fungal (-.4) tb 
(-.4) [RULE524]. 
** IKNOW 38 
Good. MYCIN has also made a decision. 
The site of CULTURE-1 is evidence that a lumbar puncture has been performed on Pt538 [RULE112]. 
Back to our discussion of the type of the infection .... 

Summary of evidence that the type of the infection is bacterial (.98) viral (-.76) fungal (-.83) tb (-.83): 
29a. The fact that the meningitis is partially treated (.95) is evidence that the type of the infection is bacterial (.19) 

[RULE148] 
29b. The WBC from the CSF and the percent of PMNs in the CSF is evidence that the type of the infection is 

bacterial (.9) viral (-.6) fungal (-.7) tb (-.7) [RULE501] 

**DETAILS 29A 
For which of the following .factors would you like to see a review of the evidence? (select from the following): 

1) the infection which requires therapy 
2) the fact that the meningitis is partially treated (.95) 

** 2 
Summary of evidence that the meningitis is partially treated (.95): 
32a. The infection which requires therapy, the fact that organisms were not seen on the stain of the pending CSF 

culture and the time since therapy with the cephalothin was started is evidence that the meningitis is partially 
treated (.95) [RULE145] 

Do you want to see RULE148? 
**NO 

FIGURE 11-3 Sample use of options. 

want to make. This includes being able to refer back to an earlier topic 
and provide more details, allowing the student to change the topic, and so 
on. We might summarize this by saying that we must allow the student to 
specify what he or she knows, wants to know more about, and wants to 
ignore. Figure 11-3 illustrates GUIDON's flexibility in responding to a stu
dent's initiative. Notice that tutorial remarks are indexed so that the student 
can easily refer to them later (by using them as arguments to options). 
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We allow the student to explore the reasoning of the underlying expert 
program, but we do not want the tutor to be simply a passive information 
retrieval system. In addition to laying out data and inferences clearly, the 
tutor has to reason about what constitutes reasonable, expected elaboration 
on the basis of what has been previously discussed. In the excerpt shown 
in Figure 11-3, GUIDON provided details for an inference (RULE148) by 
offering to support necessary preconditions that were not considered in 
the dialogue up to this point, though they could be inferred from known 
data. 

Similarly, when the student takes the initiative by saying he or she 
knows something (see Figure 11-3), the tutor needs to determine what 
response makes sense, based on what it knows about the student's knowl
edge and shared goals for the tutorial session. The tutor may want to hold 
a detailed response in abeyance, simply acknowledge the student's remark, 
or probe for a proof. Selection among these alternative dialogues might 
require determining what the student could have inferred from previous 
interactions and the current situation. In the excerpt shown here, GUI
DON decides that there is sufficient evidence that the student knows the 
solution to a relevant subproblem, so detailed discussion and probing are 
not necessary. 

In many AFO systems, the flow of the dialogue is permanently fixed 
by the author of the course material. The student cannot change topics as 
he or she might wish, discussing subproblems and offering hypotheses to 
be evaluated. Systems like ATS (Weber and Hageman, 1972) have limited 
ability to reason with author-provided material (by indexing material with 
keywords), but it is still necessary for a course author to "sit down and play 
the role of the student for each major step in his tutorial." Th us it is still 
necessary to anticipate possible contingencies in each case individually. 

Decoupling domain expertise from the dialogue program, an ap
proach used by all ICAI systems, is a powerful way to provide flexible 
dialogue interaction. In GUIDON, discourse procedures (Clancey, 1979a) for
malize how the program should behave in general terms, not in terms of 
the data and outcome of a particular case. A discourse procedure is a 
sequence of actions to be followed under conditions determined by the 
complexity of the material, the student's understanding of the material, 
and tutoring goals for the session. Each option available to the student 
generally has a discourse procedure associated with it. These procedures 
invoke other procedures for carrying on the dialogue, depending on cir
cumstances of the particular situation. 

For example, the procedure for the IKNOW option invokes the pro
cedure for requesting and evaluating a student's hypothesis if the expert 
program has not yet made a final decision (so the tutor does not believe 
that the student can know the result). Otherwise, if the expert program 
has a final result, the procedure for discussing a completed topic is fol
lowed. Whether or not the student will be probed for details will depend 
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T-RULES.02 [Directly state single, known rule] 

IF: 1) There are rules having a bearing on this goal that have succeeded and 
have not been discussed, and 

2) The number of rules having a bearing on this goal that have succeeded is 1, and 
3) There is strong evidence that the student has applied this rule 

THEN: Simply state the rule and its conclusion 

FIGURE 11-4 T-rule for deciding how to complete discussion 
of a topic. 

on the model that the tutor is building of the student's understanding 
(considered below). 

Conditional actions in discourse procedures _are expressed as tutoring 
rules. Figure 11-4 shows the tutoring rule that caused GUIDON to ac
knowledge the student's statement about what he or she knew, rather than 
to ask for details. 

As a final example of the problem of providing for and coping with 
the student's preferences, we will briefly consider the problem of focusing 
on topics during the dialogue. GUIDON allows a student to explicitly 
change the topic by using the DISCUSS option. However, student requests 
for data can also (implicitly) change the topic if the datum requested is not 
relevant to the current topic (cannot be used directly in any inference). In 
this respect, GUIDON enforces a goal-directed dialogue, so it will tell the 
student when he or she appears to be changing the topic. For example, if 
requested information is relevant to a previous, shallower subgoal (in the 
tree of topics by which the expert structures the problem solution), the 
tutor states this relation so that it is clear to the student what topic is 
currently being pursued (Figure 11-5). 

Feedback 

Nearly every discussion of medical CAI points to the importance of pro
viding feedback to the student-primarily an evaluation of the student's 
solution, including mention of unnecessary and missed diagnostic ques
tions. Programs vary from providing feedback at the end of the solution 
(Harless et al., 1971), to a step-by-step report that is inherent in AFO CAI 
(Feurzeig et al., 1964). Indeed, it is widely believed that the immediate 
correction of errors is an important capability of CAI (Hoffer et al., 1975). 
In a more general sense, the feedback that a CAI continuing education 
program offers provides a valuable tool for experienced physicians to eval
uate their practices in light of new techniques (Brandt, 1974). 

Providing feedback to the student is one problem that I CAI systems 
seem directly designed to resolve. A frame-oriented system is inherently 
unable to deal with unanticipated student errors; this would require that 
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earlier goal REGIMEN 

I I 
related subgoal ORGANISMS 

current~"" TY;( "" question CROWD 

**DOES THE PATIENT LIVE IN A CROWDED ENVIRONMENT? 
Pt538 does not live in a crowded environment. 

Whether the patient does live in a crowded environment is not relevant 
to determining the type of the infection. It is a consideration we can use 
later when we return to our discussion of the organisms that might be 
causing the infection. 

FIGURE 11-5 Coping with an indirectly relevant question. 

the author prepare for all possible contingencies, a combinatorially unat
tainable goal. Part of the problem is that these programs cannot flexibly 
articulate diagnostic reasoning, however realistic or humanlike the re
sponses may appear. That is, they cannot tolerate a random interruption 
of the dialogue in which the student poses a partial solution to the problem 
and asks for a response. Programs based on statistical tables (Kirsch, 1963; 
Entwisle and Entwisle, 1963; Steele et al., 1978) certainly have more flex
ibility to evaluate a given student's questions, but they have trouble char
acterizing the typicality of a case or what are the reasonable, important 
questions to ask. Of course, probabilistic programs have no way to justify 
correlations or to provide principles for remembering them. 

MYCIN's diagnostic rules make it possible to provide feedback to the 
student at any time, regardless of the order and completeness of the stu
dent's collection of case data. In contrast with the frame-oriented approach, 
we prepare for contingencies abstractly, for example, what to do in general 
when the student says he or she knows something but the expert program 
does not know it, as opposed to what to do if the student says he or she 
believes X after questions Ql and Q2 have been asked but not Q3. 

In order to provide feedback, the tutor must be able to account for 
the student's behavior in terms of problem-solving methods and strategies. 
This may involve interpreting wrong, but consistent, behavior in terms of 
misconceptions. In correcting the student, the tutor may need to refer back 
to past student actions and compare alternative approaches. Allowing for 
elaboration in a mixed-initiative exchange poses additional technical prob
lems in dialogue management, such as maintaining context while each 
participant varies the topic. 

In the excerpt that follows (Figure 11-6), the student's hypothesis for 
a subproblem is correct, but after analyzing the previous history of inter
action with the student, GUIDON is not sure that the student really knows 



What is the type of the infection? 
** BACTERIAL 
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What facts about this case tell you that the type of the infection is bacterial? (Enter one factor per line.) 
** PMNS 
The percent of PMNs in the CBC is not relevant for determining the type of the infection. 
** PMNS IN THE CSF 
**CEREBRAL-FLUID GLUCOSE VALUE 
** PROTEIN OF THE CSF 

You're right about the CSF protein, the percent of PMNs in the CSF and the CSF glucose value, however, you 
should have mentioned the fact that the meningitis is partially treated, the WBC from the CSF, and the fact that 
the simultaneous blood glucose value is not known. 

MYCIN rejected some possibilities you did not mention: 

What facts about this case tell you that the type of the infection is not viral? 

FIGURE 11-6 Responding to a student hypothesis. 

why this hypothesis is correct. Therefore, instead of accepting this answer, 
GUIDON requests relevant factors to support the hypothesis and probes 
further to see if the student knows why an alternative hypothesis is dis
credited. 

Note that GUIDON does more than say which student answers are 
right and which are wrong: the program actually reasons about the ex
pertise that is required to solve the problem. Referring to the rules that 
MYCIN uses to solve subproblems (such as determining whether a men
ingitis infection is bacterial, fungal, viral, or tuberculous), GUIDON de
cides which of these rules, if any, are known by the student. That is, what 
inference chains are consistent with the student's behavior? 

As the student inquires about the patient and receives more case data, 
this same information is given, piece by piece, to the MYCIN program. 
MYCIN applies rules, as far as it can, to carry its reasoning about the case 
forward. Thus, at any one time, some of the rules MYCIN follows for 
determining, say, the type of the infection, have made a conclusion, while 
others will require more information about the patient before they can be 
applied. Then, when the student offers an hypothesis, GUIDON compares 
the student's partial solution to MYCIN's, and, referring to what is known 
about the student's level of expertise and records from past interactions 
with him or her, the program attempts to explain the student's solution in 
terms of MYCIN rules. This analysis is complicated by the fact that a 
particular hypothesis about the problem may be indicated by more than 
one rule or that negative evidence may outweigh positive evidence. 

A student model constructed in this way is called an overlay model be
cause the tutorial program attempts to explain the student's behavior solely 
in terms of a fixed, single set of "expert knowledge," in this case, MYCIN's 
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**HINT 
Hint: Look for strong, positive evidence that Diplococcus-pneumoniae is one of the organisms that might be 
causing the infection. 

**HELP 
Let's consider whether J.Smith has a head injury. 

We already know that the patient has not had an injury to the central nervous system; this is evidence that he 
does not have a head injury [RULE509]. 

We now have strong evidence that Diplococcus-pneumoniae and Neisseria-meningitidis are organisms that might 
be causing the infection (considering the age of J.Smith and the fact that he does not have a head injury 
[RULE507]). 

It remains for us to consider other factors for determining the organisms that might be causing the infection. 

FIGURE 11-7 Providing assistance in context. 

rules. Overlay models were first used by Burton and Brown (1976); the 
technique was elaborated further by Carr and Goldstein (1977). Limita
tions of this approach are considered in Section 11.4. 

Assistance 

Another basic property of a tutorial dialogue is the extent to which the 
program is able to provide assistance for solving the problem. Ideally, the 
tutor's guidance should be based on the student's partial solution. In gen
eral, this is a difficult problem because it requires that the tutor be sensitive 
to the student's current problem-solving strategy and t~1e kind of advice 
he or she prefers (a hint? full details?). It must also be able to articulate 
problem-solving methods that might be applied (a problem of knowledge 
representation). 

Using its overlay model of the student, GUIDON is able to provide 
assistance by once again reasoning about the rules that MYCIN has been 
able to apply at the time that the student requests help. In the example 
shown here (Figure 11-7), GUIDON provides assistance by applying a so
lution method (RULE507) that suggests evidence contrary to that which 
has been discussed to this point of the dialogue. In this case the selected 
method was alluded to in an earlier hint. 

The program has many ways to present a rule to the student, such as 
forming a question or discussing each clause of the rule explicitly. Here 
GUIDON demonstrates the applicability of the solution method by show
ing how the truth of the single precondition that remains to be considered 
can be inferred from known evidence (RULE509). The inference is trivial, 
so it is given directly rather than opened up for discussion. GUIDON then 
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applies the original method (RULE507) and comments about the status of 
the current subproblem. 

Thus providing assistance can involve applying a teaching strategy that 
carries the solution of the problem forward. This in turn requires being 
able to articulate reasoning on the basis of what the student knows, ac
cording to principles of economical presentation. 

Observe that, to provide feedback and assistance, it is not sufficient 
simply to have a model of what the student knows: the program needs 
methods for presenting new material to the student. In a knowledge-based 
tutor, presentations are generated solely from the knowledge base of rules 
and facts. This requires that the tutor have presentation methods that 
opportunistically adapt material to the needs of the dialogue. In particular, the 
tutor has to be sensitive to how a tutorial dialogue fits together, including 
what kinds of interruptions and probing are reasonable and expected in 
this kind of discourse. GUIDON demonstrates its sensitivity to these con
cerns when it corrects the student before quizzing him or her about "miss
ing hypotheses," chooses between terse and lengthy discussions of infer
ences, follows up on previous hints, and comments on the status of a 
subproblem after an inference has been discussed ("other factors remain 
to be considered ... "). 

Realism of Course Material 

Implicit in the design of most medical CAI programs is the assumption 
that similarity of the tutorial problem-solving environment to actual con
ditions in actual practice (e.g., the timing and sequence of events, inter
actions with assistants) is important to ensure transferability of learning to 
the clinical setting. Furthermore, when the purpose of the tutorial is to 
make the student familiar with his or her responsibilities on the ward, 
realism is an integral part of the course material. 

Some medical CAI systems attempt to present the student with a "sim
ulated patient" who can be interviewed and given therapy (Harless et al., 
1971). Others place the student in a simulated hospital setting in which 
the student, as attending physician, orders tests, comes back "the next day" 
to reevaluate the patient, etc. (Feurzeig et al., 1964). The majority of pro
grams, like GUIDON, simulate the kind of tutorial discussion that the 
student might have on the hospital wards with a resident physician or 
classroom instructor (Diamond et al., 197 4; Weber and Hageman, 1972). 

Compared to the investigation of discourse, modeling, and pedagogy, 
the simulation of a particular real-world problem-solving environment has 
not been a major focus of ICAI research. However, it seems probable that 
AI research dealing with the importance of knowledge about prototypical 
problem situations in everyday reasoning will be useful for generating re
alistic cases to be solved by the student, as well as for simulating moment
by-moment patient events. 
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11.3.2 Pedagogy 

The main pedagogical question in CAI programs concerns what diagnostic 
strategy, if any, should be conveyed to the student and how this should be 
done. For example, one program is specifically designed to teach Weed's 
"problem-oriented approach" (Benbassat and Schiffmann, 1976); it im
poses a fixed logical order on the kinds of questions that the student asks. 
Other researchers believe that a completely uninterrupted, "free-form" 
style is an essential part of teaching independent thinking and responsible 
problem solving (Harless et al., 1971). 

GUIDON attempts to allow for a free-form style while still conveying 
problem-solving strategies. The student is free to gather case data in any 
order, but is told when he or she is wandering from the topic under con
sideration. Hints and help are based on a problem-solving strategy (Figure 
11-7) that could be altered (nontrivially) to reflect Weed's approach. 

CAI programs, including ICAI ones, have generally not focused on 
teaching problem-solving strategies because it is difficult to represent them 
internally in a way that allows the program to use them for teaching ma
terial (e.g., mentioning the strategy when posing a hint based on it) as well 
as for modeling the student (i.e., knowing that the student is following a 
particular strategy). Technical problems aside, medical CAI programs have 
probably focused on teaching facts and decision rules rather than strategies 
because "there is little agreement among medical educators about an ex
plicit and detailed model of clinical competence" (Hoff er et al., 197 5). Only 
recently have physicians developed scientific descriptions of alternative 
problem-solving strategies (Kassirer and Garry, 1978), which, interestingly 
enough, have been based on AI research. 

It is possible that the expert modules of ICAI systems (for example, 
the role MYCIN plays in the GUIDON program) will provide useful test
beds for formalizing and experimenting with problem-solving strategies. 
Meta-rules (Davis and Buchanan, 1977) and strategies for revising hy
potheses provide a language by which GUIDON can be used to formalize 
and measure diagnostic competency. AI alone cannot provide the missing 
physiological, chemical, and physical knowledge that will provide a deeper 
understanding of medical problems, but AI approaches to search and hy
pothesis confirmation may provide suitable information-processing models 
for talking about different approaches to diagnosis. 

11.3.3 Case Generation 

A major advantage of CAI over other forms of medical instruction is that 
it has the potential to expose a student to a variety of cases that might far 
exceed what actual hospital experience would provide. However, to achieve 
this potential, it has been necessary in traditional medical CAI to spend 
many days designing and debugging each case. Various estimates are given 
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for the ratio of design time to course time, and 1 week of design for a 20-
minute course is not atypical (Bitzer and Bitzer, 1973). Researchers em
phasize the ease with which their frame-oriented systems may be changed, 
but it must be remembered that each clever addition in one case must be 
repeated in others, a clearly untenable situation if the science of instruction 
is to advance. GUIDON offers an improvement over the traditional ap
proach: experience is cumulative, so that modifications made on the basis 
of one tutorial interaction will automatically show up in· similar situations 
during discussion of any other case. 

By coupling GUIDON to the patient library that has been accumulated 
during the testing of the MYCIN consultation program, formal course 
preparation is unnecessary. Given that MYCIN can work out the reasoning 
for solving a case and GUIDON can selectively discuss it with a student, 
preparation time for a new case is reduced to less than an hour for each 
hour of course time, allowing for the provision of some annotations that 
point out the pedagogical value of the case. (Patient cases are entered into 
the MYCIN system for the purpose of receiving a consultation or for test
ing the program, so the case library is available to GUIDON at no cost.) 
Eventually, given case-selection strategies (based on knowledge about the 
spectrum of cases), even these annotations would be unnecessary, and 
course preparation time would be eliminated. 

11.4 Limitations of the Approach 

A potential weakness of the GUIDON program is that it attempts to ex
plain the student's behavior solely in terms of MYCIN's rules. When the 
student is basing his or her questions and hypotheses on incorrect rules, 
GUIDON is not able to detect these rules and correct them directly. It is 
also possible that the student's concepts are different from MYCIN's, so 
the student's conclusions might be correct, but he or she will want to sup
port them using reasoning that is different from MYCIN's. This could 
involve something as simple as wanting to refer to the patient's age in 
general terms (infant, adolescent), while MYCIN only recognizes precise 
numerical ages. 

Representing a hierarchy of common concepts is a relatively straight
forward change to MYCIN. However, modeling medical reasoning in terms 
of an alternative rule set (not just a subset of MYCIN's) is a theory-for
mation problem that goes beyond the current capabilities of Al. Brown 
has investigated methods for modeling improper procedures that students 
follow when doing subtraction (Brown and Burton, 1978). Unfortunately, 
this technique does not generalize easily to semantically complex domains 
like medicine. The approach followed by Stevens for meteorology is to 
collect data about kinds of student misconceptions and then incorporate 
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**TOPIC 
We are discussing the degree of reversibility of airway obstruction of PATIENT-7. Hypotheses you should be 
considering are: none, insignificant, slight, good and significant. 

** WHAT IS THE CHANGE IN FORCED EXPIRATORY VOLUME? 
The change in Forced-Expiratory-Volume (1sec.) after bronchodilation of M.Smith is 31. 

** WHAT IS THE CHANGE IN RESISTANCE? 
The change in Resistance after bronchodilation of M.Smith is 20. 

We have substantially completed our discussion of the degree of reversibility of airway obstruction of M.Smith. 
Would you like to make a hypothesis now (as opposed to gathering more information)? 

**NO 

We will now consider evidence that leads to a conclusion about the degree of reversibility of airway obstruction of 
M.Smith. 

Here is a conclusion that you may not have considered .... 

The fact that the change in Forced-Expiratory-Volume (1sec.) after bronchodilation of M.Smith and the change in 
Resistance after bronchodilation are known is evidence that there are post bronchodilation test results [RULE028]. 

Given the post bronchodilation test results, does this tell you that the degree of reversibility of airway obstruction 
is slight? 

**YES 
No, given this fact, we can conclude that the degree of reversibility of airway obstruction of M. Smith is significant 
[RULE020]. 

The degree of reversibility of airway obstruction would be slight when the change in Forced-Expiratory-Volume 
(1 sec.) after bronchodilation of the patient is between 1 and 5. 

FIGURE 11-8 Excerpt from a PUFF tutorial. 

these variations in the modeling process (Stevens et al., 1978). We believe 
that GUIDON tutorials will provide the opportunity for furthering this 
study. 

11.5 Experimentation with Other Domains 

Besides being able to use a fixed set of teaching strategies (the discourse 
procedures) to tutor different cases, GUIDON is able to provide tutorials 
in any problem area for which a MYCIN-like knowledge base of decision 
rules and fact tables have been formalized (van Melle, 1979). This affords 
an important perspective on the generality of the discourse and pedagog
ical rules. At this time two other medical consultation programs have been 
developed using MYCIN's rule formalism: PUFF (Kunz et al., 1978) pro
vides diagnoses about pulmonary disease; HEADMED (Heiser and Brooks, 
1978) advises about the use of psychopharmaceuticals. 

The example shown in Figure 11-8 is taken from a GUIDON tutorial 
that uses PUFF's knowledge base for the problem of pulmonary function 
analysis. This example shows the program taking the initiative to present 
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new information to the student. GUIDON first interrupts the student's 
data collection to suggest that the student make an hypothesis; but the 
student does not do so. The program then observes that there is a partic
ular problem-solving method that can be applied and that is probably 
known to the student (RULE020). However, the student probably cannot 
apply the method to this case because· he or she does not know how to 
verify a necessary precondition. GUIDON presents the inference that it 
believes is unknown to the student (RULE028), and then asks him or her 
to take this evidence forward. 

Experimental tutorials with other knowledge bases have revealed that 
the effectiveness of discourse strategies for carrying on a dialogue econom
ically is determined in part by the depth and breadth of the reasoning tree 
for solving the problem. When a solution involves many rules at a given 
level (for example, when there are many rules to determine the organism 
causing the infection), the tutor and student will not have time to discuss 
each rule in the same degree of detail. Similarly, when inference chains 
are long, then an effective discourse strategy will entail summarizing evi
dence on a high level, rather than considering each subgoal in the chain. 

11 6 Conclusions • 

In traditional medical CAI, as well as in some ICAI programs, teaching 
expertise is "compiled" into the program, combining all kinds of problem
solving, communication, and pedagogical strategies. In GUIDON we make 
the important step of explicitly codifying teaching expertise within the 
program as a body of rules to follow in various situations. In fact, the rules 
are the program. By decoupling medical expertise from dialogue strategies, 
we are able to focus more directly on rules of conversation and commu
nication or "kibitzing" strategies (Burton, 1979). This is one of the special 
advantages of GUIDON's framework of discourse knowledge. GUIDON's 
tutoring rules never mention cultures or disease or any application area. 
Instead, the rules state how to teach, how to reply to a student, and how 
to guide a student. With these explicit principles before us, we are in a 
much better position to say what we are evaluating when we test the pro
gram. 

The key to GUIDON's contributions lies in the flexibility of its rep
resentation of teaching and problem-solving knowledge. MYCIN's domain 
rules can be reasoned about to construct a student model, to provide as
sistance, and to select presentation methods. GUIDON's tutoring rules, 
wholly separated from the domain rules, constitute general procedures 
that can be followed any time in a dialogue, giving the program the ca
pability to cope with arbitrary student initiative within the considerable 
range of expression the program's options allow. Finally, these tutoring 
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rules are problem- and domain-independent, allowing flexibility for teach
ing any case formalized in a MYCIN-like consultation system. 

With respect to the issues of dialogue interaction, pedagogy, and case 
generation, GUIDON's primary contributions to medical CAI are greater 
individualization of tutorials, a framework for expressing and accumulat
ing tutorial dialogue expertise, and a language for diagnostic problem
solving strategies. By constructing a model of problem-solving strategies 
in a student model, something not possible with traditional technology, 
!CAI systems could provide a basis for critiquing and teaching diagnosis 
in terms that even go beyond classroom or clinical experience. 
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12 
LCS: The Role and 
Development of Medical 
Knowledge in Diagnostic 
Expertise 

Paul J. Feltovich, Paul E. Johnson, 
James H. Moller, and David B. Swanson 

After a visit by Herbert Simon to the University of Minnesota in 1972, 
Paul Johnson (then a professor of educational psychology at the Center for 
Research in Human Learning) and associated graduate students began 
applying information-processing concepts to the study of expertise and prob
lem solving. This investigation was consistent with their view that psy
chology is the study of contextually dependent phenomena. That is, the 
psychology of human behavior is most fully understood in domains of use 
and practice. 

Johnson then met James Moller (a professor of pediatrics) who had sim
ilar interests in problem solving within medicine and medical education, 
and the collaboration started. David Swanson was Johnson's graduate stu
dent and wrote a simulation program called DJAGNOSER as part of his 
Ph.D. dissertation. Paul Feltovich also studied with Johnson, and this 
chapter reports on his dissertation research, a formal psychological study. 
The development of DIAGNOSER and the design of Feltovich's study took 
place in tandem, and each contributed to the other, although the simulation 
was completed first. The whole group at Minnesota, over this period of 
time, evolved a conception of expertise in terms of the organization and 

This chapter is based on the doctoral dissertation of Paul J. Feltovich, which was submitted 
to the graduate school of the University of Minnesota under the advisorship of Paul E. 
Johnson. The first version of this paper was presented at the annual meeting of the American 
Educational Research Association, Boston, 1980. Used with permission. 
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manipulation of knowledge and the adaptation of inner environment 
(knowledge and reasoning) to task environments. 

The roots of Feltovich's study are interesting and illustrate the changing 
nature of psychological investigations over the past decade. The major 
empirical studies of clinical expertise (Elstein et al., 1978; Barrows et al., 
1978) had focused on the process of clinical reasoning and found no 
differences between experts and novices. At the same time, psychological 
studies of expertise [e.g., Chase and Simon (1973)] had also found no 
differences at process levels (e.g., number of moves considered, depth of 
search). They were pointing to elements of the quality of reasoning and 
knowledge as the main contributors to expertise. The work by Barrows et 
al. in medicine also cited quality of reasoning as the only discriminator they 
could find. This previous work, in conjunction with the Minnesota group's 
view of expertise as the adaption of a knowledge ~ase to a task environment, 
led F eltovich, Johnson, and Swanson to study the organization and rep
resentation of knowledge in medicine, focusing on the determinants of qual
ity. In this pursuit they were influenced by related AI work in knowledge 
representation, including early writings about frames {e.g., Minsky ( 19 7 5)] 
and collections {e.g., Bobrow and Collins (1975)]. 

Thus, in sharp contrast with traditional psychological studies, Feltovich 
and his colleagues attempted to ferret out how the structure of an individ
ual's knowledge affects his or her problem solving. This level of analysis 
asks how particular hypotheses come to mind, not just how many hy
potheses are considered at once or how soon the first one is vocalized. The 
experiments reported here are of considerable value as scientific support for 
the structuring schemes that have been derived more intuitively by AI re
searchers. These include schemes for articulating strategies and principles 
in program explanations (Chapters 11 and 16) and factoring a knowledge 
base into "specialists" (Chapter 13 ). Such an analysis also provides a basis 
for eliciting knowledge from an expert and for teaching students (Chapter 
15). 

The reported study investigates the contribution of case-related medical 
knowledge to clinical diagnosis. Subjects, varying in their training and 
clinical experience in pediatric cardiology, diagnosed four cases of congen
ital heart disease while thinking aloud. Each case was designed to assess a 
different aspect of the subjects' medical knowledge. Consistent d~fferences 
in per[ ormance among diagnosticians at different levels of experience were 
found, and inferences were made to sources of medical knowledge respon
sible for performance. Recurrent sources of error were identified for the 
less experienced diagnosticians. 

Unlike the other chapters in this volume, this chapter does not report on 
a working computer program. In a narrow sense, this is not a report of 
medical Al research. However, the contribution to AIM research is evident 
in the kinds of questions asked and in the form of the model of reasoning. 
In this respect Feltovich's work is distinguished in the depth and controlled 
nature of his investigation. Moreover, research that fallowed (] ohnson et 
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al., 1981) made good use of the DIAGNOSER simulation model for testing 
and experimenting with conjectures about knowledge structures and rea
sonzng. 

The approach taken by F eltovich and colleagues in this study continues 
to evolve. Besides seeking generality in diverse areas such as law and 
physics, they are investigating the implications of their findings for the 
assessment of clinical competence and expertise, as well as the implications 
for teaching basic science for clinical problem solving. 

Overview: Studies on the Nature of 
Knowledge and Reasoning 

Knowledge influences reasoning and other cognitive skills. In recent years 
distinctions between knowledge and reasoning have blurred. That knowl
edge influences the quality and nature of reasoning that can occur has 
been suggested. That reasoning uses knowledge as a substrate is evident, 
and even the idea that reasoning constitutes a form of knowledge has been 
entertained. 

Recent laboratory research has indicated that knowledge contributes 
to even the most fundamental cognitive skills. The knowledge base pos
sessed by an individual has been shown to influence fundamental intellec
tual skills such as induction and analogy (Glaser and Pellegrino, 1980), 
basic memory mechanisms such as grouping and rehearsal (Chi, 1978), 
and even the functional size of short-term memory (Chi, 1976). Voss and 
his colleagues (Chiese et al., 1979; Spilich et al., 1979) have extended work 
of this sort beyond basic laboratory environments into domains of complex 
subject-matter learning. Within a given subject matter, high-knowledge 
individuals have greater recognition and recall of new material than do 
low-knowledge individuals, can make useful inferences from smaller 
amounts of partial information, and are better able to integrate new ma
terial within a coherent and interconnected framework of knowledge (or
ganized, for example, around a common goal structure). 

Reasoning itself has been shown to be highly dependent on the indi
vidual's knowledge base for the task environment in which the reasoning 
occurs. Subjects show dramatic improvement in testing the implications of 
logical inference rules (e.g., if p then q) when these are couched in terms 
of a familiar setting, as opposed to when the expression is stated in a more 
purely symbolic form (Rumelhart, 1979; Wason and Johnson-Laird, 1972). 
This content-constrained conception of formal reasoning is in contrast to 
structural developmental theories (Piaget, 1972) that claim cross-situa
tional, content-free, and maturationally determined general reasoning 
skills. Yet even within these theories, evidence is emerging for the import 
of accumulated knowledge as a contributor to these abilities (Carey, 1973). 
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Artificial intelligence research has also shown an evolution from systems 
in which knowledge (declarative) and reasoning (procedures) were clearly 
separated to systems in which these components strongly interact. Early 
systems such as Green's QA3 (Green, 1969) and Quillian's TLC (Quillian, 
1969) relied on data bases of uniformly formatted declarative knowledge 
and a few general-purpose reasoning algorithms for operating on these 
knowledge bases. These systems have given way to ones in which the sep
aration between knowledge and reasoning components is much less distinct 
and in which general reasoning algorithms have considerably less status in 
comparison to specific (local) reasoning strategies associated with specific 
domains of knowledge (Norman et al., 1975; Sacerdoti, 1977; vanLehn 
and Brown, 1979). Reasoning is seen not so much as a general but as a 
task-specific skill. 

The role of knowledge and its organization have been emphasized in 
recent work on expertise and expert/novice differences in problem solving 
in complex domains. The findings of groupings in expert perception of a 
chess board is taken as evidence that guidance in the choice of chess moves 
is provided by knowledge representations for configurations in the board 
(Chase and Simon, 1973). Similarly, Larkin ( 1978) has proposed a construct 
of "chunked procedures" for expert physics problem solvers, whereby ex
pert categorization of a problem leads to a relatively integrated problem 
plan and associated "bursts" of equations applied in solution. Feltovich and 
colleagues have shown that differences in problem-solving processes 
among expert and novice physics problem solvers result both from differ
ences in the structure of knowledge representations for problem types and 
from differences in memory organization among these types (Chi et al., 
1981). Simon and colleagues (Hinsley et al., 1978; Paige and Simon, 1966) 
have shown that schemata, which are knowledge structures representing 
problem types, strongly influence the nature of the problem-solving proc
ess in algebra. 

In light of developments such as those outlined in this section, Greeno 
( 1979) has proposed that knowledge and its effects on problem solving 
constitute a relatively neglected and important direction for research. Oth
ers have turned attention to the problem of how knowledge bases change 
and develop with experience so as to become better suited to problem
solving demands (Anderson et al., 1979; Lenat et al., 1979; Rumelhart, 
1979; Rumelhart and Norman, 1977). Among implications from this work 
important to the present study are that knowledge bases change in the 
directions of: (1) accretion or, simply, augmentation of knowledge, (2) 
knowledge reorganization, and (3) changes and refinements in the condi
tion tests by which knowledge is judged applicable to situations. 

The present study investigates the effects of medical knowledge on 
the clinical reasoning process and the changes in such knowledge as indi
viduals gain experience with the task of medical diagnosis and with the 
subject matter of a subspecialty of medicine. 
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Introduction: Clinical Diagnostic Reasoning 
and Expert/Novice Studies 

Recent research in clinical diagnosis (Barrows et al., 1978; Elstein et al., 
1978; McGuire and Bashook, 1978) contributed to a consensus about the 
general form of the process of clinical diagnostic reasoning. Cues in patient 
data suggest hypotheses, which are, in turn, tested against subsequent data 
of the case. The basic hypothetico-deductive process is shared by experi
enced and inexperienced diagnosticians alike, as are numerous parametric 
characteristics of the process, such as the percentage of data items to first 
hypotheses, the average number of hypotheses maintained in active con
sideration, etc. 

These studies, however, have generally neglected the content of di
agnostic reasoning, that is, the knowledge base of medical subject matter 
involved in the diagnostic process. Yet, despite prevalent findings of lack 
of differences in the form of diagnostic reasoning as a function of expe
rience, the few differential findings from these research efforts implicate 
the importance of the knowledge base. The Michigan State group (Elstein 
et al., 1978) found that expert and less expert physicians differ in the 
"accuracy of interpretation" of patient data with respect to the hypotheses 
they consider, a finding that shows the importance of the physician's knowl
edge of patient data that present in particular diseases. Barrows's group 
(Barrows et al., 1978) found that experience can be discriminated by the 
actual hypotheses (as opposed to the number of hypotheses) that physicians 
use. This suggests that experienced and less experienced physicians differ 
in their knowledge store of diseases or the conditions by which they judge 
that particular diseases are likely to apply to a case. The same projects have 
also confirmed the case-specificity of skill in diagnostic reasoning. The 
same physician may show different profiles of competence depending on 
his or her particular experiential history with different types of cases, a 
further indication that clinical reasoning is not a general skill, but rather 
a process that is strongly dependent on the contents of knowledge to which 
it is applied. 

Research at the University of Minnesota has concentrated on diag
nostic problem solving in the medical subspecialty of pediatric cardiology 
and has resulted in a theory of diagnosis in this field that attempts to 
explicate the knowledge and knowledge organization necessary for expert 
diagnostic performance (Johnson et al., l 979b). Extensive experimentation 
and consultation with an expert pediatric cardiologist has resulted in a 
computer-runnable instantiation of the theory for this expert that repre
sents knowledge explicitly and shows strong correspondence to the subject's 
performance over a broad range of cases (Swanson, 1978; Swanson et al., 
1979). 
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Within the constructs of this theory, the present experimental study 
investigates the development of the knowledge base, as exemplified by 
individuals with different levels of experience with pediatric cardiology, 
and the implications of developmental differences for diagnostic perfor
mance. The particular theoretical construct of focus is prototype, or disease 
knowledge (Johnson et al., l 979b). 1 Disease knowledge refers to a memory 
store of disease models, each of which specifies, for a particular disease, 
the pathophysiology of the disease and the set of clinical manifestations 
that a patient with the disease should present [see also Rubin, (1975), dis
ease "templates," and Pople ( 1977), "disease entities"]. In the theory of the 
expert, this set of disease models is extensive [see also deGroot ( 1965) and 
Simon and Chase (1973)] and organized hierarchically [see also Wortman 
(1972) and Pople ( 1977)]. At upper (more general) levels of the hierarchy 
are disease categories, sets of diseases that present similarly because of phys
iologic or clinical similarity. Particular diseases occupy middle ranks of the 
hierarchy, and these, in turn, are differentiated at the lowest hierarchical 
levels into numerous variants of each disease, each of which presents 
slightly differently in the clinic for reasons of subtle underlying difference 
in anatomy, physiology, severity, or age of presentation in a patient. 

Speculations about characteristics of novices' disease knowledge can 
be garnered from analysis of the training experiences that novices en
counter, the training materials they use, as well as psychological theory 
pertaining more generally to the development of knowledge bases. The 
first postulate for the novice's knowledge base of diseases is that it is clas
sically centered. Initial training materials (Moller, 1978), as well as the prob
ability distribution of diseases presenting in the hospital, accentuate the 
most common versions of diseases that constitute "anchorage points" for 
subsequent elaboration of the store of diseases [see also Rosch et al. ( 1976), 
"basic objects"]. A second postulate for novices is that the disease store is 
sparse in the sense that it lacks extensive cross referencing and connection 
among the diseases in memory (Elstein et al., 1971; Shavelson, 1972; Thro, 
1978). It is with experience that the starting-point set of diseases is aug
mented and both generalized into categorical clusters, as similarities among 
diseases are discovered, and discriminated into finer distinct entities, as 
differentiation points among and within diseases are learned (Reed, 1978; 
Wortman and Greenberg, 1971). A third postulate about novice disease 
knowledge refers to the internal structure of the disease models them
selves; this involves imprecision in the clinical expectations associated with 
diseases. Given that there is a range of natural variability associated with 
the clinical findings that can occur with any disease, large sampling, 

1The term disease knowledge will be used in the present paper instead of the term prototype 
knowledge. It was decided to abandon the latter designation because of its suggestion of entities 
particularly typical of a class (Rosch, 1975). While some disease models are prototypic, not 
all of them are. 
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through clinical experience or other training devices, is probably necessary 
to "tune" (Rumelhart and Norman, 1977; Anderson et al., 1979) clinical 
expectations in disease models to the naturally occurring range. Novice 
expectations may be either overly general, allowing clinical findings that 
should not occur, or overly specific, not allowing the legitimate range. 

In contrast to the novice, whose disease store is assumed sparse, im
precise, and classical, the expert's knowledge base of disease models, by 
converse arguments as well as by our prior research findings, is assumed 
dense, precise, and penumbra[. The device for studying these claims in the 
present study is the careful selection of naturally occurring patient cases, 
each of which, through the structure of patient data it contains, provides 
a focused test of a different aspect of disease knowledge. In a laboratory 
setting, these cases were diagnosed by subjects at different levels of expe
rience with pediatric cardiology. 

12.3 Method 

12.3.1 Materials 

Stimulus materials for the study were sets of patient data, each represent
ing a different patient case, extracted from medical records of clinical cases 
seen at the University of Minnesota Hospitals. Clinical and laboratory find
ings from the medical record for each case were assembled in a typed 
"patient file." The file arranged these data in the typical clinical order of 
history findings, followed by those from physical examination, x-ray, and 
electrocardiogram (EKG). 

Four cases were used, each of which was chosen to assess a different 
characteristic of subjects' disease knowledge, for example, the differentia
tion of a disease into subtypes. In addition, the case design employed a 
"garden path" methodology; some chosen cases showed early strong cues 
for erroneous diseases but had later critical, disconfirmatory evidence for 
these same diseases. This device had two functions. First, it brought all 
subjects to a common starting point in their thinking about possible expla
nations for the case. Second, because the true diseases were physiologically 
and clinically similar to the initially induced diseases, it provided a test of 
the precision in a subject's model of the initial disease (if it was to be 
rejected), and it established an environment for assessing the diseases that 
subjects considered as plausible competitors to the original disease. Hence 
the "garden path" is a means for studying subjects' "conceptual competitor" 
sets (Elstein et al., 1971 ). 

Case 1. The operative (true) disease in this case is subvalvular aortic 
stenosis, an uncommon variant of aortic stenosis, the "classic" or most com-
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mon version of which is valvular aortic stenosis. The case was meant to 
assess subjects' differentiation of diseases into subtypes and the precision 
in their models of the classical variant. 

Case 2. The operative disease in this case is total anomalous pulmonary 
venous connection (TAPVC). The case contains classic auscultatory find
ings for atrial septal defect (other findings are discrepant), a highly com
mon congenital heart disease, findings that are also perfectly consistent 
with TAPVC, and, in fact, also consistent with any disease in the category 
of diseases with volume overload in the right side of the heart (including, 
in addition to the diseases mentioned, partial anomalous pulmonary ve
nous connection and some forms of endocardial cushion defect). The case 
was designed to assess subjects' knowledge of and use of disease clusters 
corresponding to disease categories. 

Case 3. This case is a straightforward presentation of the operative 
disease, patent ductus arteriosus, a highly common congenital heart dis
ease. The case was intended to assess the relationships of this disease to 
other similar diseases within a subject's disease knowledge and the diag
nostic use of these related diseases in a case where the correct diagnosis 
seems clear. 

Case 4. The operative disease in this case is pulmonary atresia, one of 
a group of physiologically similar diseases (including, in addition, tricuspid 
atresia and Ebstein's malformation) that constitute a category of "cyanotic 
diseases with decreased pulmonary blood flow." Like Case 2, this case was 
designed to assess subjects' knowledge and use of disease clusters corre
sponding to categories. 

12.3.2 Subjects 

Subjects were 12 individuals from the University of Minnesota Medical 
School and were chosen to span a dimension of training and clinical ex
perjence in the diagnosis and management of congenital heart disease. 
Except for faculty experts, so few subjects existed at the prespecified ex
perience levels that the subjects chosen comprised nearly all of them. There 
were four subjects from each of the following three groups: 

• Students. These were fourth-year medical students who had just com
pleted a six-week course in pediatric cardiology. As part of this training, 
each had held primary responsibility for diagnosis and management of 
25-30 patients with congenital heart disease. 
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• Trainees. Subjects in this group were either in the third year of a general 
pediatrics residency or were beginning their first year of fellowship in 
pediatric cardiology. Subjects in this group estimated that they had held 
primary responsibility for about 150 patients with congenital heart dis
ease. Residents and fellows did not differ in their estimates. 

• Experts. This group was composed of two faculty members in the division 
of pediatric cardiology with upwards of 20 years of active practice as 
pediatric cardiologists and two fourth-year fellows in pediatric cardiol
ogy, one of whom was board-certified at the time of the study. The two 
fellows estimated that they had held primary responsibility for about 400 
patients with congenital heart disease. The best estimates the faculty 
subjects could give were somewhere between 5,000 and 10,000. The 
experience discrepancy in this group enabled assessment of the effects 
of very long-term experience in the faculty members. 

12.3.3 Procedure 

Each subject diagnosed all four cases, and every subject diagnosed the cases 
in the same order. The subject was presented the patient file for each case 
and was instructed to read aloud each numbered data segment in the order 
in which data were given in the file. 2 The subject could review findings but 
could not skip ahead. The subject was instructed to report aloud any 
thoughts he or she had at any time toward formulating a diagnosis for the 
patient's condition. At four points in the case, after history, physical ex
amination, x-ray, and EKG, the subject was asked for an explicit reporting 
of any "hunches" he or she might have about the patient's condition. After 
EKG, the subject was also asked for a primary diagnosis and as many as 
two alternatives. 

12.3.4 Data and Analyses 

Basic data from the study were typed transcriptions (protocols) of tape 
recordings made while subjects diagnosed the cases and reported aloud 
their thinking toward a diagnosis for each. Particular analyses of these data 
vary somewhat according to the objectives of each case. In general, analyses 
are organized according to a concept of logical competitor sets (LCS), which 
are sets of diseases targeted as important from the choice of cases for the 
study (see Section 12.3.1). Diseases in the competitor set for each case share 

20rder and content of patient findings presented to subjects were fixed in order to compare 
inferences, interpretations, and evaluations by subjects in a uniform "stimulus" environment. 
While this deemphasized some components of the diagnostic process, primarily those asso
ciated with data collection (e.g., strategy) and first-order interpretations of patient data (e.g., 
reading x-rays), "fixing" of the input was important to the control needed to investigate the 
knowledge-based issues of interest in the study. 
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major underlying physiology with the operative or true disease in the case 
and hence have similar clinical presentation. 

In concentrating analyses on the logical competitor set for each case, 
a commitment was made to focus analyses on diseases specified in advance 
to be plausible but easily confused alternatives for the case. Hence they 
constitute a set of good hypotheses to be considered in a case. There were 
two major motivations for concentrating on LCS diseases. One motivation 
comes from prior work on expert/novice differences, which suggests that 
unless a dimension of quality is built into the "dependent variables" mea
sured, expert/novice differences are not likely to be revealed (Chase and 
Simon, 1973; Barrows et al., 1978). The second motivation was the case 
design itself (see Section 12.3.1).3 It was assumed that the structure con
tained within the cases (e.g., garden-path notions) would greatly control 
and delimit subjects' performance so that the important dynamics of each 
case would center around the prespecified hypotheses (the LCS) and their 
management. (This turned out not always to be true for some subjects/ 
cases-as will be noted.) 

The LCS for each case was developed from two major sources. First, 
for the operative disease in each case, an expert in pediatric cardiology 
and collaborator on the project (the third author, a faculty member in 
pediatric cardiology at the University of Minnesota) was asked to specify 
the set of alternative diseases most similar to the true disease and likely to 
be confused with it. Because these are diseases that are highly similar in 
clinical presentation, he was also asked to specify the items of patient data 
that, if interpreted correctly, could be used to discriminate among diseases 
in the LCS. These judgments were then cross-checked against a major 
disease reference for pediatric cardiology (Moss et al., 1977). Specifically, 
for each disease described in this reference, the authors provide a "differ
ential diagnosis" section that discusses diseases similar to and difficult to 
discriminate from the target disease, as well as differential data points. 
Based on the reference, no diseases were deleted from the consultant's list, 
although some were added. 

For each case, protocols were coded for two general kinds of uses of 
the logical competitor set. The first of these is the use of LCS members as 
hypotheses by subjects at each patient data point of the case. To the extent 
LCS members are used together, this is taken as evidence that these dis
eases are being used as competitors and are clustered in memory. The 
second is the evaluations of LCS members with respect to a set of selected 
data items. These evaluations yield evidence of the precision in subjects' 
individual disease models, and also can be used to discern characteristic 
kinds of errors among the subjects and the loci of these errors in disease 
knowledge. 

3"Design" was through selection and not construction. Cases in the study are naturally oc
curring clinical cases and should not be considered oddities. According to the logic of the 
study, most cases, say, of TAPVC will have atrial septa! defect as a naturally occurring garden
path foil. 
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12 4 Results • 

In this section, the results from the study will be presented in a case-by
case manner. The presentation of results from each case will follow the 
same general format. First, there is an introduction to each case that dis
cusses the knowledge-based issue of interest and introduces the operative 
disease, its logical competitors, and key data points of the case. Since these 
discussions of congenital heart diseases ref er to abnormal modifications to 
the normal heart and cardiovascular system, a depiction of the normal 
cardiovascular system is given for comparison as Figure 12-1. After the 
case discussion, two kinds of results are presented for each case. The first 
involves the use by subjects of LCS members as hypotheses during the 
course of the case. The second addresses diagnostic errors and their pos
sible loci in disease knowledge. 

vc PVn 

RA LA 

RV PV AV LV 

LEGEND 

Ao Aorta PV Pulmonary Valve 

AV Aortic Valve PVn = Pulmonary Veins 

LA Left Atrium RA Right Atrium 

LV Left Ventricle RV Right Ventricle 

MV Mitra! Valve TV Tricuspid Valve 

PA Pulmonary Artery vc Vena Cavae 

FIGURE 12-1 The normal heart and cardiovascular system. 
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FIGURE 12-2 Logical competitor set for Case 1: three types 
of aortic stenosis. 

12.4.1 Case 1: Subvalvular Aortic Stenosis 

The purpose of this case is to investigate subjects' differentiation of a dis
ease into subtypes. The vehicle for doing this is a diagnostic problem that 
encourages subjects to display, in a diagnostic setting, their working knowl
edge of a set of disease variants. 

The logical competitor set for Case 1 includes three variants of aortic 
stenosis: valvular aortic stenosis (Valv AS), subvalvular aortic stenosis 
(SubAS), and supravalvular: aortic stenosis (SupAS). Figure 12-2 depicts 
the anatomical abnormalities within the heart that define each of these 
disease variants. All involve obstruction to left ventricular outflow with 
different variants defined by slight differences in the locus of obstruction: 
Valv AS is obstruction at the aortic valve itself; SubAS is an obstruction 
slightly "upstream" from the valve; SupAS is obstruction slightly "down
stream" from the valve. Because these disease variants are only subtly dif
ferent anatomically and physiologically, they differ only slightly in clinical 
presentation. Valv AS is the most common of the three and receives the 
greatest amount of exposition in introductory training materials of pedia
tric cardiology (Moller, 1978). Hence it might be expected that subjects' 
knowledge for Valv AS would develop more rapidly than for the others and 
that Valv AS may function as a "foil" for some subjects. SubAS, however, is 
the operative disease in the case and the correct diagnosis. 

In the patient file presented to subjects for Case 1, patient data items 
17 and 19, a "thrill" and a "murmur" respectively, are strong cues for 
valvular aortic stenosis, although they are compatible with other variants. 
Hence it was suspected that all subjects would raise at least Valv AS as a 



Results 287 

hypothesis by the time of these data points. Data item 18, a finding of "no 
systolic ejection click," is very strong evidence against Valv AS. Data items 
10, "normal facies," and 22, "prominent aorta," are evidence against 
SupAS. All data of the case are compatible with the operative disease, 
SubAS. 

Use of the Logical Competitor Set in Case 1 

Table 12-1 shows the variants of aortic stenosis that were used as hy
potheses by individual subjects at all patient data points where any variant 
was mentioned by any subject and at the four points of the case where 
"hunches" were actively solicited from the subjects.4 Numbers representing 
data from the patient file are listed across the top in the left-to-right order 
in which they were presented to subjects. An X in this table simply indicates 
that the subject mentioned a particular aortic stenosis variant in the pro
tocol at the data point where the X appears. 

Table 12-1 shows an increase in the use of variants of aortic stenosis, 
other than Valv AS, from medical students to experts in pediatric cardiol
ogy. In particular, only one student (S2), ever raised both of the less classic 
variants of aortic stenosis at all, during the entire course of the case, and 
he mentioned SubAS and SupAS only once each. Two trainees (Tl, T3) 
and three experts (E 1, E3, E4) used all three variants at some time during 
the case. If one considers the number of subjects in each group who not 
only used all three variants but used each more than once, no students, 
one trainee (Tl), and, again, three experts meet this criterion. 

While simple mention (as reflected in Table 12-1) of the aortic stenosis 
variants as hypotheses is one indication of whether these were considered 
by subjects, a measure of how actively these hypotheses were considered is 
the prevalence with which they were evaluated with respect to data items. 
Table 12-2 shows all evaluations by subjects of the aortic stenosis variants 
with respect to the set of data items that are central to successful solution 
of the case. A mark ( + , - , 0) under a disease variant and data item in 
this table indicates that the data item was judged to be positive, negative, 
or ambivalent evidence for the disease variant as a hypothesis.5 For ex-

4Subjects E3 and E4 are the faculty subjects with upwards of 20 years of experience. They 
are noted with asterisks in this and all subsequent tables. 
5There is no absolute correspondence between the use of a hypothesis at the point of a 
particular data item (Table 12-1) and the evaluation of the hypothesis with respect to that 
data item (Table 12-2). Subjects could evaluate a hypothesis with respect to a data item long 
past (e.g., evaluate with respect to data item 10 having reached, say, data point 17 of the case) 
and could also mention a hypothesis at a data point without necessarily evaluating the hy
pothesis with respect to that data item. Hence, for example, even though subject S2 mentioned 
all three variants at data point 10, he only ever evaluated one of these (SupAS) with respect 
to data item I 0. The mention of the other variants at 10 was part of a puzzled attempt to 
recall the variants of aortic stenosis. 



TABLE 12-1 Case 1: Subjects' Use of LCS Hypotheses in Response to Patient Data Items 
----------

Patimt data itnns 

Hislot)' Ph_vsirnl rxam X-ray EKG 
---- ----

Subjects/ hypothrsrs 1 3 4 7 8 HHx ]() 13 14 17 18 19 20 HPEx 22 Hxray 23 HEKG 

SI ValvAS xx x x x x x x x x x 
SupAS x 

S2 ValvAS x x x x x x x x x x x 
Sub AS x 
SupAS x 

S3 ValvAS x x x x x x x x x x x x 
S4 ValvAS x x x x x x 

Tl ValvAS x x x x x x x 
SubAS x x x x x x x 
SupAS x x 

T2 ValvAS x x x x x x 
N T3 ValvAS xx x x x x x x x x IXl 
IXl 

SubAS x x x x x x x x x 
SupAS x 

T4 ValvAS x x x x x x x x 

El ValvAS xx x x x x x x x x x x x 
SubAS x x x x x 
Sup AS x x x x 

£2 ValvAS x x x x x x x x x 
SupAS x x x x 

£3* ValvAS x x x x x x x x x x 
SubAS x x x x x x x x 
SupAS x x x x x 

£4* ValvAS x x x x x x x 
Sub AS x x x x x x x 
SupAS x x 

Xote: X indicates a subject's use of a hypothesis at the time of a patient data item. HHx, HPEx, etc. refer to points in 
the case where subjects are asked for hunches. 
* The two experts with more than 20 years of experience. 



TABLE 12-2 Case 1: Evaluations of Target Data Items in Relation to LCS Hypotheses 

Target patient data items 

JO 17 18 19 20 22 
Normal facies Thrill No click Murmur Aortic insuff. Prominent aorta 

Hypotheses Vah1AS SubAS SupAS ValvAS SubAS SupAS Vah1AS SubAS SupAS ValvAS SubAS SupAS Fah1AS SubAS SupAS \'ah1AS SubAS SupAS 

Su~jects 
SI + + 
52 + + + + + 
53 + + + + + 

N 
54 + + OQ 

t.o 

Tl + + + + + + + 
T2 + + 
T3 0 + + + + + + + 
T4 + + + 

El + 0 + + + + 0 + + + 
E2 + + + 
E3* + + + + + + + + + + + 
E4* + + + + + + + + + 

Note: + indicates subject judged data item as confirmatory for a hypothesis. - indicates su~jectjudged data item as disconfirmatory for a hypothesis. 
0 indicates subject judged data item as ambivalent in relation to a hypothesis. 
* The two experts with more than 20 years of experience. 
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ample, a negative evaluation of "no click" with respect to ValvAS would be 
"The lack of a systolic ejection click is against valvular aortic stenosis." 

Table 12-2 shows ,an increase, from students to experts, in the active 
evaluation of data items as evidence for or against the variants of aorti~ 
stenosis. In particular, no student evaluated all three of the variants with 
respect to a data item (of course, only one student, S2, ever mentioned all 
three variants at all). The two trainees (Tl, T3) and three experts (El, E3, 
E4) who used all three variants in the case also evaluated all three variants 
with respect to at least one data item. While this suggests activeness in the 
evaluation of variants by more experienced subjects, it does not necessarily 
reflect comparative evaluation. However, when a subject evaluates all var
iants with respect to the same data item, this is an indication that the subject 
is actively attempting to weigh the variants against each other to determine 
which is the best explanation for the data item and case. In this regard, 
no students, the two trainees (Tl, T3), and again, the three experts (El, 
E3, E4) evaluated all three variants with respect to a common (the same) 
data item. These same experts, but not the trainees, evaluated all variants 
in relation to more than one data item in common (E 1, 5 items; E3, 2 items; 
E4, 2 items). 

The analysis thus far suggests that with increasing diagnostic experi
ence subjects know and actively utilize nonclassical variants of a disease as 
hypotheses in a diagnostic setting. Examination of the protocols of the two 
most experienced subjects, E3 and E4, yields some clue as to the knowledge 
structure that supports this performance. Figure 12-3 shows the protocols 
of these subjects at two data points: 17, which is the first strong evidence 
for valvular aortic stenosis and other variants; and 18,. which is the strong
est evidence against ValvAS. E3 raises all three variants together at the time 
of the first strong evidence. These hypotheses are then available to be eval
uated comparatively against subsequent data, in particular, data item 18. 
This same form characterizes expert El (see Table 12-1). Expert E4, how
ever, aggressively focuses on the "classic" member of the competitor set at 
17, but immediately expands to the full set upon receiving strong negative 
evidence at 18. This form is shared by subject T3 and, less clearly, by 
subject Tl (see Table 12-1) and suggests that for these subjects LCS hy
potheses other than the classic disease may have undergone at least partial 
activation earlier. 

One explanation for these patterns is that in the expert a disease and 
its set of subtle variations come to constitute an interconnected memory 
unit, a kind of category; when one of the members is strongly activated in 
memory, the category and other members are also activated. The expert 
can then choose to consider category members in two modes. In the first 
mode, he or she tests all members simultaneously. This first mode might 
be termed precautionary since if any hypothesis encounters disconfirmatory 
evidence, alternative explanations for which the same evidence might be 
compatible are already under consideration. In the second mode, the ex
pert tests only the most likely (in his or her current judgment) member. 
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( 17) There is systolic thrill felt below the right clavicle, along 
the mid-left sternal border and in the suprasternal notch. 

E3: This thrill is most consistent with a diagnosis of bicuspid 
aortic valve or aortic valvular stenosis. It would also be 
consistent with supravalvular stenosis and discrete subaortic 
stenosis. 

E4: Until proved otherwise, now, he must have valvular aortic stenosis. 

( 18) The first heart sound is normal, and there is no systolic 
~jection click. 

E3: The absence of a systolic ejection click in the presence of what 
I would consider to be an aortic outflow thrill makes aortic 
valvular stenosis and bicuspid aortic valve less likely. Aortic 
valvular stenosis of a very severe degree might be associated 
without a click. On the other hand, uh, it makes us think more 
seriously of discrete membranous subaortic stenosis. 

E4: Absence of the click is against valvular aortic stenosis. Then 
perhaps instead he has subvalvular or supravalvular aortic 
stenosis. 

FIGURE 12-3 Protocols from experts E3 and E4 at data points 
17 and 18 in Case 1. 

This mode might be termed one of extraction because its general success 
depends heavily on rejection of the target disease when appropriate, which, 
in turn, depends heavily on the precision in the diagnostician's model for 
the disease. In instances where the target disease is rejected, other category 
members provide a ready back-up set of alternative hypotheses. Further 
evidence for these speculations will be addressed as results from other cases 
are presented. 

Diagnostic Errors in Case I 

A final analysis of the results of this case involves an attempt to discern 
the causes for subjects' errors in final diagnosis. Table 12-3 gives the final 
primary diagnosis for each subject. Among unsuccessful subjects, six sub
jects (SI, S3, S4, T2, T4, E2) never considered subvalvular aortic stenosis 
at all (see Table 12-1), although all generated and concluded valvular aortic 
stenosis. At least three explanations could apply to this lack of activation. 
First, and most basically, it could be that subjects do not know about SubAS 
at all. However, postexperimental interviews with all these subjects con
firmed that they had some knowledge of this disease af.ld could describe 
it. A second possible explanation is that these subjects have built up no 
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TABLE 12-3 Case 1: Subvalvular Aortic Stenosis 
-Final Diagnoses 

Subjects 

Students 

Trainees 

Experts 

Sl 
S2 
S3 
S4 

Tl 
T2 
T3 
T4 

El 
E2 

Final diagnosis 

Valvular aortic stenosis 
Valvular aortic stenosis 
Valvular aortic stenosis 
Valvular aortic stenosis 

Subvalvular aortic stenosis 
Valvular aortic stenosis 
Subvalvular aortic stenosis 
Valvular aortic stenosis 

Valvular aortic stenosis 
Valvular aortic stenosis 

E3* Subvalvular aortic stenosis 
E4* Subvalvular aortic stenosis 

*E3 and E4 are the two experts with more than 20 years of 
experience. 

strong "bottom-up" association in memory between any data item of the 
case and the subvalvular disease. Even lacking such a "trigger" or recog
nition rule for SubAS itself, it would have been possible for subjects to 
generate SubAS as a side effect of their activation of ValvAS, if these two 
diseases were related in a memory unit, through a process of "spreading 
activation" (Anderson, 1976) or "top-down" activation (Rumelhart and 
Ortony, 1977; Bobrow and Norman, 1975). This suggests the third expla
nation-that for these subjects knowledge representations for the variants 
of aortic stenosis exist more in isolation than they do in the more experi
enced subjects. This is the issue of sparseness in disease knowledge. 

For those subjects who generated Valv AS as a hypothesis but failed to 
abandon it in the face of strong negative evidence, examination of their 
handling of this disconfirmatory evidence yields insight into the nature 
and precision of their disease models for Valv AS. Discussion will focus on 
data item 18, the strongest evidence against ValvAS. Two students (S2, S3) 
evaluated 18, "no click," as confirmatory for ValvAS (Table 12-2). This 
appears to reflect, simply, an error in important factual knowledge about 
this disease. Two subjects (S4, T2) did not evaluate 18 at all with respect 
to ValvAS (Table 12-2). Significantly, they also did not generate any variant 
of aortic stenosis until after data item 18 (Table 12-1). This suggests that 
for these subjects the memory store of bottom-up associations between data 
items and aortic stenosis variants is not as extensive as for other subjects 
and, in particular, that data item 17 is not recognized as a strong cue for 
aortic stenosis-type diseases. A further implication is that the physical ex
amination finding of a "systolic ejection click" and its import in ValvAS are 
not represented in the Valv AS disease models of these subjects, since, if 
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(18) The first heart sound is normal, and there is no systolic ejection click. 

SJ: Ah, well this, the fact that there is no systolic ejection click present, tells us that 
there is probably not a poststenotic dilation of the aorta, which one would 
expect with the presence of aortic stenosis and some aortic insufficiency. How
ever, this does not necessarily rule it out. 

T4: Love it. Um, well, okay. I wonder if there is .. ., no click, that's funny. I would 
expect it if he has AS. I wish they had said whether the murmur went up into 
his neck, okay. 

(22) The chest x-ray shows normal cardiac size and contour and normal 
vascularity, but prominence of the ascending aorta. 

SJ: Ah, well this is what one would expect with ah, aortic stenosis with secondary 
aortic insufficiency. One would expect that the aorta, ascending aorta distal to 
the ah, to the stenosis, would be dilated due to the changes in the wall tension 
across the gradient. Therefore, ah, the fact that ah, a click was not heard on 
physical exam, may have been a subjective finding of the person examining. 
But, the x-ray does indeed suggest that there is some poststenotic dilation. 

T4: Ha ha! AS-Al. 

FIGURE 12-4 Protocols from subjects Sl and T4 at data points 
18 and 22 in Case 1. 

they were, the model itself should have led the subjects to reexamine this 
finding. 

Finally, there were four subjects (Sl, T4, El, E2) who, although eval
uating 18 as negative for Valv AS, still maintained Valv AS as a final diag
nosis. The protocols of subjects Sl and T4 yield some insight into an ex
planation for these subjects. Figure 12-4 shows the protocols for these two 
subjects at data points 18 and 22, the latter consisting primarily of the 
finding of a "prominent aorta" on x-ray. Both subjects question ValvAS at 
18, but are much more satisfied with this diagnosis at 22 and thereafter. 
Why might this be? 

Figure 12-5 shows the causal relationship between a "tight" or stenotic 
aortic valve and an enlarged or prominent aorta. To open the tight valve, 
the left ventricle (LV) of the heart must generate abnormally high pressure. 
Blood expelled under this high pressure forces against the aortic wall and 
expands it. For the two subjects under discussion, it appears that their 
causal knowledge attributes the "systolic ejection click" in ValvAS to the 
enlarged aorta itself; that is, the click is caused by the large chamber into 
which the valve is opening, perhaps some kind of resonance phenomenon. 
For these subjects the causal chain from the valve to the click is as follows: 

tight valve ---+ big aorta ---+ click 
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FIGURE 12-5 Aorta enlarged from the force of blood ejecting 
from a stenotic aortic valve. 

Hence, for these subjects, the big aorta itself is predominant over the click 
as evidence for ValvAS, with the click just additional evidence for a big 
aorta. Once they receive their best evidence for a big aorta, data item 22, 
they are no longer worried about the lack of a click. 

The true state of affairs appears to be that a tight valve causes both 
the click and the enlarged aorta at the same level of cause (Friedman and 
Kirkpatrick, 1977, p. 180). The systolic ejection click is associated with the 
opening of the tight valve itself as shown below: 

tight valve ---+ click 

L big aorta 

Hence both of these effects must be proved. Why might a number of 
subjects have misconstrued this relationship? One need look no farther 
than the introductory textbook these subjects use (Moller, 1978, p. 96) 
where the erroneous causal relationship is stated or at least strongly im
plied. 

The subjects just discussed raise two important issues. First, they dem
onstrate how "small" knowledge errors can have major repercussions for 
the handling of a case, and they shed some insight into the case-specificity 
of a clinician's diagnostic performance found elsewhere (Elstein et al., 
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1978). Second, they suggest a sensitivity in less experienced clinicians to 
specific training experiences, for example, training materials, particular 
patient cases, etc. As experience increases, so does the sample of "inputs" 
and the effects of particular experience might be expected to lessen. 

12.4.2 Case 2: Total Anomalous Pulmonary Venous 
Connection 

The purpose of this case is to investigate the aggregation by subjects of a 
set of physiologically similar diseases into a memory grouping or category. 
The case is different from Case 1 in that while Case 1 dealt with a set of 
variants of one disease, Case 2 is concerned with a set of diseases. 

The logical competitor set for Case 2 includes four diseases: total 
anomalous pulmonary venous connection (TAPVC), partial anomalous 
pulmonary venous connection (PAPVC), atrial septal defect (ASD), and 
endocardial cushion defect (ECD). Figure 12-6 shows the anatomical and 
physiologic abnormalities within the heart that define each of these dis
eases. 

In TAPVC, all four pulmonary veins (PVn in Figure 12-6) connect to 
the right atrium (RA) of the heart rather than to the left atrium (LA), 
their normal site of connection. All oxygenated blood coming back to the 
heart from the lungs mixes with deoxygenated blood coming back to the 
heart from the body. Hence, all blood subsequently pumped back to the 
body is a mixture of oxygenated and deoxygenated blood, which causes 
the patient to appear cyanotic, that is, to take on a mildly "blue" skin 
coloration. 

In PAPVC, only a subset of the pulmonary veins connect abnormally 
to the right atrium, with the remainder connecting, as they should, to the 
left atrium. A result is that some already oxygenated blood is recirculated 
through the lungs. Blood pumped to the body, however, is oxygenated, 
and the patient retains a normal "pink" coloration. 

Both ASD and ECD consist of a defect (a hole) in the atrial septum of 
the heart. They differ in the particular site of defect; ASD is a defect in 
the upper portion of the septum (the ostium secundum) while ECD is a 
defect in the lower portion of the septum (the ostium primum). In both 
diseases, the presence of the hole in the septum allows blood to shunt from 
the left atrium to the right atrium. While some oxygenated blood shunts 
to the right side to be recirculated to the lungs, blood expelled to the body 
is oxygenated, and the patient is pink. 

A feature common to all four diseases in the LCS is an increased 
volume of blood in the right-sided chambers of the heart. This common 
element is a candidate feature on which diagnosticians might base a disease 
category, for example, "diseases with right-sided volume overload." A clin
ical manifestation related to volume overload that all these diseases pro
duce in common is a set of three auscultation findings. One is a murmur 
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FIGURE 12-6 Logical competitor set for Case 2: total anom
alous pulmonary venous connection, partial anomalous pul
monary venous connection, atrial septal defect, and endocardial 
cushion defect. 
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associated with increased blood flow across the tricuspid valve (TV). The 
second is a murmur associated with increased flow across the pulmonary 
valve (PV). The third is wide, fixed splitting of the second heart sound. 
The third finding is nearly pathognomonic for conditions of this type. 

Of the four diseases, ASD is more common than the others. Hence it 
might be expected that subjects' knowledge for this disease would develop 
more rapidly than for the others. More importantly, ASD is the disease 
that is used instructionally to introduce the concepts of atrial level left-to
right shunting of blood in the heart and right-sided volume overload. 
Therefore, it might be expected that the three auscultation findings (es
pecially the splitting) reflecting overload would be more strongly associated 
with ASD than with the other diseases. TAPVC, however, is the operative 
disease in the case. 

There are six particularly important data items in the patient file pre
sented to subjects for Case 2. Data items 17, 18, and 19 contain the set of 
three findings discussed above that are salient results of increased right
sided heart flow. Item 17 contains the "wide, fixed, split second heart 
sound." Hence, it was expected that all subjects would raise at least ASD, 
the classic instance of this type of disease, by the time of these data points. 
Data item 7 (also 11), which reports that the patient is mildly cyanotic, 
represents disconfirmatory evidence for all members of the LCS except 
TAPVC. Data item 21, which contains an x-ray description of "an unusual 
vascular shadow on the right side," is evidence against ASD and simulta
neously constitutes a classic cue for PAPVC. In fact, one variant of PAPVC, 
scimitar syndrome, derives its name from its presentation of such a finding 
on x-ray (Lucas and Schmidt, 1977, p. 442). The EKG, item 22, contains 
a finding of "right-axis deviation" on the EKG and constitutes strong dis
confirmatory evidence for ECD. All data of the case are compatible with 
the operative disease, TAPVC. 

Use of the Logical Competitor Set in Case 2 

Table 12-4 shows all uses by all subjects of the four diseases in the logical 
competitor set for Case 2 at all patient data points where any of the four 
was mentioned by any subject. 

For reasons discussed above, it was assumed that most subjects would 
consider ASD in relation to the three data items, 17, 18, and 19. The use 
of other LCS members at these points is taken as evidence that the other 
diseases are associated in memory with ASD and this set of cues. Table 
12-4 shows a decrease from students to experts in the number of subjects 
who considered only ASD at these points. All of the students considered 
only ASD, the disease we presume to be the classic exemplar of right-sided 
volume overload, at data items 17-19. Three of four trainees (Tl, T2, T3) 
and the two least experienced experts also considered only ASD. Of the 



298 LCS: Role and Development of Medical Knowledge in Diagnostic Expertise 

TABLE 12-4 Case 2: Subjects' Use of LCS Hypotheses in Response to Patient 
Data Items 

Patient data items 

History Physical exam X-ray EKG 

Subjects/ 
hypotheses 1 3 5 7 HHx 17 18 19 20HPEx 21 Hxray 22HEKG 

SI ASD x x x 
PAPVC x x x x 

S2 ASD x x x 
ECD x x x 

PAPVC x 
S3 ASD x x x x 

ECD x x 
PAPVC x x 

S4 ASD x x x x x 
ECD x 

TAPVC x 

Tl ASD x x 
PAPVC x x x x 

T2 ASD x 
ECD x x 

TAPVC x x x 
T3 ASD x x x x x x x x 

PAPVC x 
TAPVC x x 

T4 ASD x x x x 
ECD x x x x x 

PAPVC x 
TAPVC x x x 

El ASD x x x x x x x x 
PAPVC x x x 

E2 ASD x x x 
PAPVC x x 
TAPVC x 

E3* ASD x x x x 
ECD x x x x 

PAPVC x x 
TAPVC x x x x x x x x x 

E4* ASD x x x 
ECD x x 

PAPVC x 
TAPVC x x 

Note: X indicates a subject's use of a hypothesis at the time of a patient data item. HHx, 
HPEx, etc. refer to points in the case where subjects are asked for hunches. 
*The two experts with more than 20 years of experience. 
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two highly experienced experts, E3 utilized three LCS members (ASD, 
PAPVC, TAPVC) and E4 used two (ASD, ECD) at these points. 

From the point of view of the entire case, no students, one trainee 
(T4), and two experts (E3, E4) generated all four members of the LCS 
during the course of the case. While this shows no obvious general trend 
toward increased use of the LCS with experience, it is perhaps significant 
that the full competitor set was used by the two high-level experts, E3 and 
E4. 

In utilizing the full logical competitor set, the two most experienced 
subjects, E3 and E4, demonstrated the same patterns of precaution and 
extraction respectively as they did in Case 1. E3 considered three of the four 
LCS members (ASD, PAPVC, TAPVC) at item 17, the first strong cue for 
right-sided volume overload. E4 raised only ASD at this point and main
tained this hypothesis until data item 21, which contains strong evidence 
against ASD. At this point, he expanded to the remainder of the LCS. 

Diagnostic Errors in Case 2 

Table 12-5 gives the final primary diagnoses for all subjects on Case 2. 
Only four subjects (trainees T2 and T3 and the two most experienced 
experts, E3 and E4) diagnosed the case correctly. Subjects who diagnosed 
the case incorrectly demonstrate informative types of errors. 

Student S3 diagnosed the case as endocardial cushion defect (ECD). 
The strongest evidence against this disease is the finding of right-axis de
viation on the EKG (data item 22). ECD uniformly presents with left-axis 
deviation and, in fact, is one of a very few congenital heart diseases that 
does; hence left-axis deviation is a nearly pathognomonic finding for ECD. 
S3 not only evaluated the right axis as positive evidence for ECD, but, in 
addition "triggered" or proposed ECD for the first time at this point (see 
Table 12-4). This is, simply, imprecision in the subject's disease model for 
ECD. It is as though the subject remembered that the EKG axis is impor
tant in ECD but could not remember the details. 

The final diagnosis of subject T4 was ASD, even though she had con
sidered TAPVC during the case. She correctly evaluated cyanosis (blue
ness-items 7 and 11) as negative for ASD, but maintained ASD nonethe
less. Her primary difficulty was that she did not believe that TAPVC could 
present in a child as old as the one in the case (5 years old), although it 
certainly can-as the case itself, a real case, attests. This suggests that the 
allowable age range specified in the subject's disease model for TAPVC is 
overly restrictive, probably reflecting a limited sample of experiences with 
this disease. 

Four subjects (Sl, Tl, El, E2) diagnosed the case as PAPVC. Three 
of these subjects (Sl, Tl, El) show a pattern in which only ASD (among 
the LCS members) is considered prior to data item 21, a classic x-ray cue 
for PAPVC, and only PAPVC is considered at that point and thereafter 
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TABLE 12-5 Case 2: Total Anomalous Pulmonary Venous Connection
Final Diagnoses 

Students 

Trainees 

Experts 

Subjects 

SI 
S2 

S3 
S4 

Tl 
T2 
T3 
T4 

El 
E2 
E3* 
E4* 

Diagnosis 

Partial anomalous pulmonary venous connection 
Transposition of the great vessels 

+ pulmonary stenosis 
+ atrial septal defect 
+ partial anomalous pulmonary venous 

connection 
Endocardial cushion defect 
Pulmonary stenosis 

+ atrial septal defect 
+ ventricular septal defect 

Partial anomalous pulmonary venous connection 
Total anomalous pulmonary venous connection 
Total anomalous pulmonary venous connection 
Atrial septal defect 

Partial anomalous pulmonary venous connection 
Partial anomalous pulmonary venous connection 
Total anomalous pulmonary venous connection 
Total anomalous pulmonary venous connection 

*The two experts with more than 20 years of experience. 

(see Table 12-4). This indicates a strong data-driven dependence in the 
diagnosis by these subjects; that is, the subjects are pushed from hypothesis 
to hypothesis depending on the most recent strong disease cue in the data, 
and when new hypotheses are generated, these are not strongly enough 
associated in memory with other LCS members to activate these other 
diseases. Some support for this claim can be seen in subject Tl's protocol, 
taken from the point in the case where he offers his final diagnosis: 

T 1: I am sort of drawing a blank on how to fit all this information 
together. And ah, I am just sort of guessing right now. I would say 
just scimitar syndrome [PAPVC] primarily based on the chest x-ray, 
and ah, I'm not really sure whether the whole thing fits together well. 
That is all I can say. 

Of the four subjects, student S 1 never evaluated PAPVC with respect 
to cyanosis; hence this finding had no opportunity to detract from his 
PAPVC hypothesis. Subject Tl evaluated cyanosis as confirmatory evidence 
for PAPVC, and this erroneous evaluation reinforced this disease inter
pretation. Expert subjects E 1 and E2 evaluated cyanosis appropriately as 
negative evidence for PAPVC, but this evaluation was probably overridden 
by the strength of the cue for PAPVC on the x-ray. 

Finally, two students (S2, S4) proposed configurations of multiple dis
eases as explanation for the case. Both of these composite diagnoses in-
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TABLE 12-6 Case 2: Interpretations of Data Item 18 

Interpretation 

Increased flow 
Subject Pulmonary stenosis pulmonary valve 

Students SI + 
S2 + 
S3 + + 
S4 + 

Trainees Tl 
T2 + 
T3 + + 
T4 + 

Experts El + + 
E2 
E3* + 
E4* + + 

Note: + indicates that a subject interpreted the murmur of data item 18 as 
pulmonary stenosis or increased flow over the pulmonary valve. 
*The two experts with more than 20 years of experience. 
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eluded the disease pulmonary stenosis (PS), and it is this component of the 
final diagnosis that is the key to understanding the performance of these 
two subjects. Table 12-6 shows the interpretations by all subjects of data 
item 18, a systolic murmur in auscultation of the heart. Such a murmur 
results whenever there is too much flow over the pulmonary valve, relative 
to its orifice size. This situation prevails in either of two conditions: 

1. When there is normal amount of flow but an abnormally small orifice. 
This is the disease pulmonary stenosis, which refers to an abnormally 
tight valve. 

2. When there is a normal-sized orifice but abnormally high flow, the sit
uation that prevails in the diseases of the LCS. A + under one of these 
two interpretations in Table 12-6 indicates that a subject attributed this 
interpretation to the murmur of data item 18. 

Table 12-6 shows that most of the students (three of four) interpreted 
the murmur only as pulmonary stenosis, while most of the expert group 
(three of four) interpreted the murmur as increased flow or a tight valve. 
While student S 1 (and subject T2) was eventually able to extract himself 
from his interpretation, students S2 and S4 were not. Once these students 
introduced PS into their diagnoses, they were forced to propose rather 
unusual combinations of multiple diseases to account for some of the find
ings of the case. For example, subject S2, in order to reconcile PS with 
other data of the case indicating increased blood flow in the lungs, simply 
transposed the great vessels of the heart; that is, he detached the pulmo-
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nary artery from its normal mooring at the pulmonary valve and reat
tached it at the aortic valve and did the opposite with the other great vessel, 
the aorta. While this rather creative causal explanation represents a con
genital heart disease, transposition of the great vessels, it is highly unlikely 
that a child with the combination of abnormalities proposed by the subject 
could have lived for five years untreated. 

The interpretations of the systolic murmur by the students in Case 2 
is another example of error, or at least limitation, in causal knowledge. It 
represents a situation where there are multiple causes for a finding and 
the novice considers only a subset. This is not unlike what has been shown 
at the disease and disease variant levels; that is, when multiple diseases in 
the logical competitor set can produce a finding, the novice seems limited 
to the most salient members. This suggests the import of grouped or clus
tered memory organization not only for diseases but also for "low-level," 
pathophysiologic interpretations for data. 

12.4.3 Case 3: Patent Ductus Arteriosus 

The purpose of this case is to test the robustness of expert grouping of 
hypotheses in a straightforward case in which there are no data discrepant 
with an initially induced disease interpretation. Interest is in whether sub
jects, even in a case with a very common disease, strong cues for this disease, 
and no data discrepant with this interpretation, still investigate a related 
set of physiologically similar alternatives. 

The operative disease in the case is patent ductus arteriosus (PDA), a 
schematic for which is shown in Figure 12-7. This disease is an extracardiac 
shunt, that is, an abnormal communication between vessels, the aorta (Ao) 
and the pulmonary artery (PA), outside the heart. There are four other 
"disease" conditions in the logical competitor set. The congenital heart 
diseases arterio-venous fistula (AVF) and aorto-pulmonary window (APW) 
are other extracardiac shunts. Venous hum (VH) is a benign condition that 
presents a murmur similar to PDA, and ruptured sinus of valsalva (RSV) 
is a heart condition that has a clinical presentation similar to that of PDA. 
In the patient file presented to subjects for Case 3, the most important 
patient data item is number 19, a classic murmur of patent ductus arter
iosus. It was assumed that all subjects would generate PDA as a hypothesis 
no later than this point. No data of the case are incompatible with PDA. 

Use of the Logical Competitor Set in Case 3 

Table 12-7 shows all uses of members of the logical competitor set by all 
subjects during the course of the case. It is clear that only one subject, E3, 
one of the two high-level experts, considered the full competitor set, al-
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FIGURE 12-7 Patent ductus arteriosus. 

though expert E2 considered three of the five-more than any of the 
remaining subjects. Since it was assumed that all subjects would consider 
PDA, a criterion far less stringent than "full use" for the LCS is the number 
of subjects in each group who considered even one additional LCS member 
and used it more than once. This condition holds for only one student 
(S3), one trainee (Tl), but three of the experts (El, E2, E3). 

Expert E3 considered the full LCS in a precautionary pattern consis
tent with his performance on other cases (see Table 12-7). He used three 
of the five LCS members as hypotheses at data item 19, a strong cue for 
PDA. The remainder of the LCS was filled out two items later, after an 
intervening, uninformative data item, at the point where the subject was 
asked for "hunches." The other high-level expert, E4, looks in all respects 
like a novice in this case, in that he considered only PDA. However, if our 
earlier interpretations of an extraction method are correct for this subject, 
we would not expect him to expand to other members of the competitor 
set unless he encountered data discrepant with his target hypothesis; of 
course, there are none in this case. 

The diseases in this case constitute a category of extracardiac com
munications and related conditions. An interpretation of the results from 
this case is that with high-level experience, it is this category, and not iso
lated individual members, that is generated and tested when a strong cue 
for a category member is encountered. No subject diagnosed this case 
incorrectly; hence analysis of subject errors is uninformative. 
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TABLE 12-7 Case 3: Subjects' Use of LCS Hypotheses in Response to Patient 
Data Items 

Patient data items 

History Physical exam X-ray EKG 

Subjects/ 
hypotheses 3 4 5 7 HHx 14 19 20 HPEx 21 Hxray 22 HEKG 

SI 

S2 
S3 

S4 

Tl 

T2 
T3 
T4 

El 

E2 

E3* 

E4* 

PDA 
APW 
PDA 
PDA 
AVF 
PDA 
AVF 

PDA 
APW 
PDA 
PDA 
PDA 

PDA 
AVF 
PDA 
AVF 
VH 

PDA 
AVF 
VH 

APW 
RSV 
PDA 

x 

x 

x 
x x x x 

x 

x 

x 
x 

x x 
x 

x 

x 
x 
x 
x 

x x x x 
x x x 

x x 
x x x 

x x x x 

x x 
x 

x x 
x x 

x 
x 

x 
x 

x 

x 

x 

x 
x 
x 

x 
x 
x 

x x 

x x 
x x 

x x 

x x 
x 

x x 
x x 
x x 

x x 
x 

x x 

x 

x 

x 

x x 
x 
x x 
x x 

x 
x x 

x x 
x 

x x 
x x 
x x 

x 
x 

x x 

x 

x x 
Note: X indicates a subject's use of a hypothesis at the time of a patient data item. HHx, . 
HPEx, etc. refer to points in the case where subjects are asked for hunches. 
*The two experts with more than 20 years of experience. 

12.4.4 Case 4: Pulmonary Atresia 

The objective of this case is similar to that of Case 2, that is, to assess 
subjects' aggregation of physiologically similar diseases into categories. 
Case 4 is different from Case 2 in that no single cue serves to distinguish 
the members of the logical competitor set from diseases outside it (as did 
"wide, fixed, split second heart sound" in Case 2). In Case 4 the diagnos
tician must arrive at the LCS by partitioning the space of diseases, using 
multiple data items from widely separated parts of the case. 

The logical competitor set for Case 4 includes three diseases: pulmo
nary atresia (PAT), tricuspid atresia (TAT), and Ebstein's malformation of 
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FIGURE 12-8 Logical competitor set for Case 4: pulmonary 
atresia, tricuspid atresia, and Ebstein's malformation 

the tricuspid valve (EBST). Figure 12-8 depicts the anatomical abnormal
ities within the heart that define each of these diseases. In pulmonary 
atresia and tricuspid atresia, the pulmonary and tricuspid valves respec
tively are "shut" (only tissue exists where the valves should be). In Ebstein's 
malformation, a diminutive and noncompliant right ventricle (RV) restricts 
inflow of blood to that ventricle. The net physiology of all these diseases 
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is one of obstruction to blood flow on the right side of the heart, resulting 
in reduced blood flow to the lungs and right-to-left shunting of blood at 
the atrial level within the heart. The right-to-left shunting and diminished 
blood flow to the lungs cause the patient to be cyanotic (blue skin colora
tion). In short, these diseases constitute a physiologic category of "cyanotic 
diseases with decreased pulmonary blood flow." 

Pulmonary atresia is the operative (or true) disease in the case. The 
three members of the LCS are best discriminated on the EKG. Tricuspid 
atresia produces a finding of left-axis deviation on the EKG, while pul
monary atresia produces a normal EKG axis. Ebstein's, unlike the other 
two, produces an EKG finding of right bundle branch blocking. All other 
clinical manifestations of the three diseases are quite similar. 

There are several key data items in the patient file presented to subjects 
for Case 4. The subject receives evidence of cyanosis during history and 
early physical examination (items 1, 3, and 8). The x-ray, item 17, contains 
evidence of diminished blood flow to the lungs and, with the cyanosis 
evidence, could enable the subject to narrow diagnosis to the three mem
bers of the LCS. The EKG, item 18, contains information to discriminate 
among these. 

Use of the Logical Competitor Set In Case 4 

Table 12-8 shows all uses of members of the logical competitor set as hy
potheses by all subjects during the course of the case. Table 12-8 shows a 
clear increase in the use of the full LCS from students to trainees, but no 
clear difference in this regard between trainees and experts. In particular, 
no student considered the full LCS, and two students (Sl, S3) considered 
only one member. All four trainees and three experts (El, E2, E3) used 
all of the diseases in the LCS. Two experts (E2, E3) used all three diseases 
more than once, while no trainee did-suggesting somewhat more active 
consideration of the LCS by these experts. 

While both trainees and experts considered the full LCS, their patterns 
of use of these diseases were different. Three of the four experts used all 
members of the LCS at data point 17 (the x-ray) or at the immediately 
succeeding point where subjects reported hunches. Since item 17 is the 
data item that allows specification of the category "cyanotic heart diseases" 
into the category "cyanotic diseases with decreased pulmonary blood flow," 
this pattern suggests that the expert subjects were using this category. In 
contrast, no trainees used all three LCS members at either of these points, 
suggesting that these three diseases do not, at least to the same extent, 
constitute a functional diagnostic category for these subjects. 

Regarding the expert diagnostic modes of precaution and extraction, 
expert E3 again considered all three LCS members together before the 
onset of data useful for discriminating among them. Expert E4 considered 
explicitly only pulmonary atresia, the correct disease, at data item 17. How-
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TABLE 12-8 Case 4: Subjects' Use of LCS Hypotheses in Response to Patient 
Data Items 

Subjects/ hypotheses 

Sl 
S2 

S3 
S4 

Tl 

T2 

T3 

T4 

EI 

E2 

E3* 

E4* 

TAT 
TAT 
PAT 

EBST 
TAT 
PAT 

EBST 
TAT 
PAT 

EBST 
TAT 
PAT 

EBST 
TAT 
PAT 

EBST 
TAT 
PAT 

EBST 
TAT 
PAT 

EBST 
TAT 
PAT 

EBST 
TAT 
PAT 
PAT 

History 

HHx 

x 

Patient data items 

Physical exam X-ray EKG 

14 15 16 HPEx 17 Hxray 18 HEKG 

x 

x 
x 

x 

x 

x 

x 
x 

x 

x 

x 

x 

x 

x 
x 

x 

x 

x x 
x 
x 

x x 
x x 

x 
x x 

x 

x 

x 
x 

x 
x 
x 

x 

x 
x 

x x 
x x 
x x 
x x 
x x 

x 
x x 

x 
x 
x 
x 
x 

x 

x 

x 

x 
x 

x 
x 

x 

x 
x 
x 
x 

x 

x 
x 
x 

x 

x 

x 
x 
x 

x 

x 
x 

x 
x 
x 
x 
x 
x 

Note: X indicates a subject's use of a hypothesis at the time of a patient data item. HHx, 
HPEx, etc. refer to points in the case where subjects are asked for hunches. 
*The two experts with more than 20 years of experience. 

ever, his protocol from the immediately succeeding data point, Hxray 
(hunches after x-ray), shows explicit consideration of the category of "cy
anotic disease with decreased pulmonary blood flow" with targeting for 
active consideration of the particular LCS member he judged most likely: 

E4: At this point the picture would be more likely that of cyanotic 
heart disease involving decreased pulmonary blood flow. The specific 
defect would seem to be pulmonary atresia with intact septum. 
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TABLE 12-9 Case 4: Pulmonary Atresia-Final 
Diagnoses 

Subjects Diagnosis 

Students SI Truncus arteriosus 
S2 H ypoplastic right 

ventricle 
S3 Truncus arteriosus 
S4 Pulmonary at.resia 

Trainees Tl Tricuspid atresia 
T2 Tricuspid atresia 
T3 Tricuspid atresia 
T4 Pulmonary atresia 

Experts El Pulmonary atresia 
E2 Pulmonary atresia 
E3* Ebstein's malformation 
E4* Pulmonary atresia 

*The two experts with more than 20 years of experience. 

Since no succeeding data are discrepant with this target hypothesis, his 
performance is consistent with the extraction mode as we have proposed 
it. In addition, E4's overt consideration of the LCS category here lends 
credence to a speculation we have made about the extraction mode in Case 
1 and Case 2, that is, that the subject covertly considered the LCS category 
in those cases before he overtly articulated the members. 

Diagnostic Errors in Case 4 

Table 12-9 gives the final primary diagnoses for all subjects. The final 
diagnoses of the students on this case are outside the logical competitor 
set, and the full explanation for their performance is not transparent. 
However, a partial explanation can be given. 

Two students (S 1, S3) gave a final diagnosis of truncus arteriosus. 
Truncus is a congenital heart disease in which the aorta and pulmonary 
artery, the two great vessels that normally lead out of the heart, are merged 
into one large outlet vessel with one outlet valve. The single valve results 
in a patient finding of "single second heart sound" on auscultation as pre
sented in Case 4. While truncus produces a single heart sound, so do a 
number of other diseases, including all members of the logical competitor 
set. It is not even necessary that only one valve exist for only a "single 
sound" to be produced; the same finding is produced when there are two 
outlet valves but the blood flow across one of them is substantially dimin
ished-the situation in Ebstein's malformation and tricuspid atresia. 
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(15) The second heart sound is single and perhaps slightly increased in in
tensity. There is no gallop or diastolic murmur. 

SJ: Well, this is a significant finding because ah, the fact that the second heart 
sound is not split ah, suggests that ah, we could be dealing with a truncus. 

SJ: It could be ah, ah. There is a single outflow tract, ah. It could be truncus 
arteriosus. Ah, that would fit with the single S2 [second heart sound] ... So, 
I'll go with number one on my list as ah, truncus arteriosus, and I'm not sure 
what type. I'd have to do an angio, I guess, or I mean arteriography. 

FIGURE 12-9 Protocols from subjects Sl and S3 showing 
interpretation of "single second heart sound"-Case 4. 

One explanation for the performance of students SI and S3 is that 
they judged the "single sound" to be more discriminating for truncus than 
it really is; in particular, they did not consider the multidimensional nature 
of this finding-number of valves and flow. Some evidence for this expla
nation can be seen in protocols from these two subjects showing interpre
tations of the patient finding of a "single sound" (Figure 12-9). It is clear 
that this finding had a substantial influence on the final diagnoses of these 
subjects. If our interpretation for these subjects is correct, it would be 
another example of how the beginning practitioner is restricted in the 
number of alternative explanations he or she can bring to bear on a find
ing, at the level of either alternative pathophysiological causes or alterna
tive disease explanations. In addition, the restricted explanations of novices 
are the highly salient or "classic" ones, since the "common trunk" that 
defines truncus greatly highlights the single sound as an expected finding 
in that disease. 

S2, the other student who misdiagnosed Case 4, gave as a final diag
nosis (hypoplastic right ventricle) one of the patient findings presented in 
the case (the EKG); that is, the subject used one of the patient data items 
as a final diagnosis. This subject suggests a kind of constraint relaxation 
that interacts with interpretive restrictiveness in the novice. The usual or 
preferred constraint on a good diagnostic explanation is that it account for 
much of the case data. When the novice encounters severe difficulty in 
meeting this constraint, he or she relaxes to accounting for a few key data 
items (SI, S3 above) or, in the extreme, to a data item itself, which embodies 
a level of physiological/disease interpretation. 

The trainees and experts were nicely split on this case with most train
ees (three of four) judging tricuspid atresia and most experts (three of 
four) judging pulmonary atresia, the correct disease. Recall that TAT and 
PAT are distinguishable on the axis of the EKG where TAT presents left
axis deviation and PAT presents a normal, undeviated axis. It is in the 
subjects' evaluations of this particular data item that we might expect to 
find an explanation for the performance of these two groups. 



310 LCS: Role and Development of Medical Knowledge in Diagnostic Expertise 

TABLE 12-10 Case 4: Evaluations of EKG Axis in 
Relation to Tricuspid Atresia and Pulmonary Atresia 

Hypotheses 

Subjects Tricuspid atresia Pulmonary atresia 

Students SI 
S2 
S3 
S4 + 

Trainees Tl + 
T2 
T3 
T4 + 

Experts El 0 + 
E2 
E3* 
E4* 

Note: +, - , or 0 indicate that the subject evaluated the EKG 
axis as confirmatory, disconfirmatory, or ambivalent evidence, 
respectively, in relation to the hypothesis. 
*The two experts with more than 20 years of experience. 

Table 12-10 shows all explicit evaluations by subjects of the EKG axis 
as confirmatory ( + ), disconfirmatory ( - ), or ambivalent (0) evidence with 
respect to pulmonary atresia and tricuspid atresia. All subjects below the 
expert level who explicitly evaluated the axis with respect to either of these 
two diseases evaluated the axis as confirmatory evidence for tricuspid atre
sia. All expert subjects who explicitly evaluated the axis evaluated it as 
either disconfirmatory for tricuspid atresia or confirmatory for pulmonary 
atresia. 

The EKG axis as presented in the case is + 50 degrees, which tech
nically represents left-axis deviation [for a four-day-old child, as presented 
in the case (Moller, 1978, p. 24)] as one would expect in tricuspid atresia. 
So that if one were using the textbook rule for discriminating PAT and 
TAT (Moller, 1978, p. 137), tricuspid atresia would be the diagnosis of 
choice in the case. However, the expert evaluations of this finding, as well 
as postexperimental discussions with these subjects, confirmed that the 
experts judged + 50 degrees to be 'just not far enough leftward" for tri
cuspid atresia and that these subjects would require the axis to be "down 
around zero or negative" before they would choose TAT over PAT. We see 
here a nice example of overly general, textbooklike rules of evaluation and 
clinical expectations in less experienced subjects (imprecise disease models) 
and pinpoint refinement of these in more experienced diagnosticians, 
probably just reflecting their greater clinical experience with the two dis
eases and the contextually dependent manifestations. 
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12.5. Summary 

For the cases of the study, an expert form and an expert substance for di
agnosis were identified. The expert form involves the full, active use of a 
set of physiologically similar diseases (the logical competitor set) for each 
case, diseases that have similar physiological structure and clinical presen
tation. The use of this set by the experts, generally in close proximity to 
the strongest cues for any member of the set, is interpreted here as evi
dence that these diseases constitute a unit or category in memory. Since 
diseases in the LCS are likely to be confused with each other, it would seem 
that as a "long-run" strategy of diagnosis it would be adaptive for a diag
nostician to consider (give a "hearing" to) other members of the set when
ever there is reason to believe any one of them is a good candidate in a 
case. It appears that this is what the experts do. Expert substance refers to 
correct data evaluations, within the logical competitor set of diseases, nec
essary to isolate the correct member. This is taken as evidence for precision 
in these subjects' models for diseases. 

For the two high-level experts in the study, two distinct methods of 
utilizing the LCS were also identified: 

1. Precaution. This involves the generation and use together as hypotheses 
of the full set of logical competitors, enabling them to be weighed 
against each other and the data. 

2. Extraction. This method involves more aggressive focus on a member of 
the set, with full expansion to the remainder of the set as disconfir
matory evidence for the target member is found. 

Medical students, after six weeks of training and clinical practice in 
the field represented by the cases, generally showed ne;,ther expert form 
nor expert substance. Students hardly ever considered the full LCS and 
focused on the "classic" members in cases that encouraged this. This sug
gests that LCS members, when they exist at all, are represented-in a more 
isolated form in memory. Errors of evaluation (shared at times with inter
mediate-level subjects) included several types: 

1. Mundane factual errors. These are just factual errors about which findings 
"go with" which diseases. 

2. Causal errors. These are errors concerning how observable data are re
lated to underlying physiology. 

3. Imprecise tests. These are either overly general or overly restrictive tol
erances on the range of variability allowed in an expected clinical find
ing for a disease. 
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4. Interpretive restrictiveness. This refers to restriction in the number of in
terpretations that are made of a finding. In some instances, these errors 
can be interpreted simply as reflecting imprecision in subjects' models 
for diseases, but other errors suggest a deficiency in integrating disease 
models or data with their underlying causal or physiological mecha
msms. 

The trainees in the study showed performances that at times looked 
very much expertlike and at other times could not be distinguished from 
the students. The number of trainees in each case who used the full LCS 
generally fell between the number of students and the number of experts. 
Moreover, depending on subject and case, trainees at times exhibited the 
types of errors discussed above for the students. The ultimate diagnoses 
of the trainees, unlike those of the students, were generally at least within 
the LCS, if not correct. This suggests that for these subjects the main 
problems were lack of connectedness in memory among LCS members or 
imprecision in knowledge necessary for discriminating LCS members cor
rectly. 

12 6 Discussion • 

The study demonstrates that diagnosticians' disease knowledge, a memory 
store of disease models and the memory organization among them, is cru
cial to successful diagnosis and does discriminate expert from less expert 
performance. The major differences that have been demonstrated among 
subjects concern their handling of a set of "good moves," that is, the logical 
competitor sets. More experienced subjects tend to consider more of the 
good hypotheses in a case, consider them in groups, and evaluate them 
correctly. 

The study did not set out to show that highly experienced practitioners 
are better diagnosticians than novices; this should go without saying. The 
intent was to learn something about the medical knowledge that diagnos
ticians use, the way this knowledge influences performance, and the ways 
this knowledge changes as people acquire experience in a field. Medical 
students, after only six weeks of training in the field of interest, were 
included because these individuals represent the "starting point" in a long 
learning process. 

12.6.1 The Nature of Knowledge Change 

What has been learned about the nature of knowledge change? It seems 
clear that the whole learning process starts with a small set of "classic" 
training concepts where these include particular diseases, descriptions of 
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expected patient findings under these diseases, and rules for disam
biguating diseases in this starting set. The learning of these training con
cepts is encouraged by the selection of content for inclusion in introductory 
training materials, that is, introductory textbooks and classroom instruc
tion. The diseases are the common ones, the patient data descriptions are 
prototypic, or average, and the rules of evaluation are overly simplified. 
We have seen several instances where the locus of novice errors could be 
traced fairly directly to such statements in the introductory textbooks to 
which the subjects had been exposed. Although students' initial exposure 
is limited, it provides the cognitive "anchorage points" to enable them to 
benefit from the experience to follow. 

With experience, the practitioner is exposed to and adds to memory 
additional diseases beyond the starting point set. Within psychology, the 
expert's "large vocabulary" of discriminable instances is now assumed 
(Chase and Simon, 1973). Concurrently with the addition of disease models 
to memory, there is an embellishment of the compositional features of a 
disease that are encoded in each disease model. These are features rep
resenting the disease's internal physiology and clinical presentation. The 
expert simply knows more defining characteristics of a disease (Rosch and 
Mervis, 1975). In some of our own work, we have found that expert physics 
problem solvers actively use "transformed" or "abstracted" features of a 
physics problem statement that novices do not even seem to recognize (Chi 
et al., 1981). 

In Case 1 of the present study, there were some inexperienced subjects 
who did not "pick up'' any aortic stenosis hypothesis until after the pre
sentation of the critical finding of "no click." The fact that they did not 
return to this finding after the aortic stenosis model was engaged suggests 
they may have had no expectation regarding a click. Recall that in Case 2 
of the present study some inexperienced subjects seemed to view the pul
monary stenosis issue (Table 12-6) as involving only one dimension, that 
is, orifice size, when in fact the problem involves the two interacting feature 
dimensions of size and flow. This is highly reminiscent of the "dimensional 
restrictiveness" or paucity of encoded problem features reported by Siegler 
(1976; 1978) for inexperienced problem solvers. 

As an individual encodes more features of a disease, this provides 
opportunity for discriminating the disease into subtypes, that is, variants 
that differ on a particular feature (Anderson et al., 1979). As an illustration 
of what we mean, if a person encodes only the features of height and 
weight for people, he or she is quite limited in the discriminations he or 
she can make among people. It is clear that the disease knowledge of the 
highly experienced diagnostician is highly differentiated within a disease 
type. In the present study the case explicitly designed to assess this was 
Case 1, where the increasing differentiation was demonstrated. It can be 
noted that for Case 2, TAPVC, expert E3 raised and considered no fewer 
than ten different subvarieties of TAPVC, where each of these was distin
guished by slight anatomical difference. 
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The differentiation of disease knowledge aids the development of pre
cision in the clinical expectations associated with any particular disease 
model. If possible distinctions among versions of a disease are not made, 
that is, if they are in a sense all seen as the same thing, then the associated 
variability in clinical manifestations among patients will be great. However, 
when an expert represents in memory, say, ten different versions of 
TAPVC, with each of these perhaps differentiated into more specific ver
sions by severity and age of presentation in a child, then the clinical ex
pectations associated with each of these "micro-models" can be highly spe
cific. 

Precise clinical expectations, in turn, contribute to precise rules of 
evaluation for patient data. This is the difference between the "left-axis 
deviation" rule used by less experienced subjects in Case 4 and the experts' 
"down around zero or slightly negative" rule used in evaluating the EKG 
axis in that case with respect to tricuspid atresia (see Table 12-10 and the 
discussion about it). Again, in Case 1, one can see a nice example of how 
differentiation of a disease contributes to correct evaluation. In the pro
tocol given in Figure 12-4, expert E3 raises the one micro-version of val
vular aortic stenosis in which a click is not expected. This is the version 
with a pressure gradient between the left ventricle and aorta (over the 
valve) of greater than 100 mm, that is, "aortic stenosis of a very severe 
degree." Under this version, other data of the case would have been dif
ferent from those presented. The expert was able to bring the appropriate 
(i.e., moderate severity) version of valvular aortic stenosis to bear on the 
evaluation and to reject it. 

The embellishment of the feature set in disease models aids general
ization as well as discrimination. Every additional feature represented for 
a disease is a potential feature of similarity with another disease; hence the 
potential of a generalization to "diseases that share feature x" exists (An
derson et al., 1979). The LCS analyses throughout this paper are taken as 
evidence that such groupings are pervasive in the more experienced knowl
edge base. 

Students and novices learn some disease groupings directly (Moller, 
1978, p. 46). These, like other teaching concepts, might be thought of as 
a set of "starting-point" disease categories. With experience and embellish
ment of feature sets, a diagnostician augments this initial set, often creating 
useful categories that "cross over" the original classic set. Case 2 from the 
present study is a good example. One might wonder how it is that a number 
of subjects on this case could generate and consider extensively the hy
pothesis of partial anomalous pulmonary venous connection, and never 
once even think of the correct disease, total anomalous pulmonary venous 
connection, a disease that even in its name is so similar. In the classic 
categorization of diseases, PAPVC, ASD, and ECD, three members of the 
LCS for this case, all go together in a category of "acyanotic heart diseases" 
(see Figure 12-10), while the final LCS member, TAPVC, is in a different 
category, "cyanotic heart diseases." One explanation for these subjects is 
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FIGURE 12-10 The classic categorization (solid lines) of the 
members of the logical competitor set for Case 2 and the expert 
regrouping (dashed lines) of these diseases. 

that they became "stuck in a chunk"; that is, they were in the wrong branch 
of their classic hierarchy and were not able to benefit from associative 
triggering or hypothesis activation. The two high-level experts, on the 
other hand, had created a category for the LCS members that crosses the 
classic categorization scheme (see Figure 12-10). Creation of this category 
required them to represent a new disease feature, the f ea tu re of "increased 
blood flow on the right side." 

Th~ speculation is that many kinds of logical groupings exist for the 
expert, tailored to different problem contexts and even different phases 
of data collection, for example, "the not too sick two-day-old child" in the 
very early phases of diagnosis. The totality of these groupings for the 
expert need not be strictly hierarchical; that is, the groupings "cross over" 
each other in many different ways, forming more a lattice structure than 
a formal hierarchy (Pople, 1977). 

The pervasiveness of groupings in the expert is a logical extension of 
the general "perceptual chunking hypothesis" of Simon and Chase ( 1973) 
and all of its ramifications (Chase and Chi, 1980). The cognitive "chunks" 
for an environment that people create with experience are those that serve 
their goals for functioning in that environment [see Egan and Schwartz, 
(1979) for "electronics trouble shooters"]. 
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12.6.2 Knowledge and Problem Solving 

One of the issues we set out to address with this study was the relationship 
between knowledge and general problem-solving processes. One way to 
address this issue is from a framework for problem-solving processes set 
out by Newell (1969). Newell proposed a power-generality dimension for 
problem-solving procedures. General procedures (weak methods) are those 
that apply widely, but offer little guarantee of success. Examples are means
ends analyses and "hill climbing." Powerful procedures (strong methods) 
are those that have well-specified conditions that must be met for their 
applicability, and hence are tailored to particular closed environments. An 
example is the formula for solving quadratic equations. Our work and that 
of others (Elstein et al., 1978) has shown that the general problem-solving 
procedure for diagnosis is one of hypothetico-deduction and that all sub
jects, regardless of experience, share this general approach. However, the 
present study has shown that this alone will not get one very far. The 
general process must be backed up by a rich body of accurate, well-orga
nized medical content. 

As problem-solving research has moved from semantically "lean" do
mains, for example, various toy problems such as the "Tower of Hanoi" 
and "cryptarithmetic" (Newell and Simon, 1972), to semantically rich do
mains, such as physics or "engineering thermodynamics" (Bhaskar and 
Simon, 1977), the role of domain knowledge has become increasingly im
portant as a supplement to general procedures. We speculate that with 
development of disease knowledge as outlined above, corresponding sets 
of more powerful procedures, in Newell's sense, are concurrently created. 
Hence we would propose that as the diagnostician establishes various par
titionings of the disease space, for example, the logical competitor sets of 
various kinds, he or she also establishes associated strong "local" proce
dures for working within abstracted regions of the space. This would mean, 
for instance, that the experienced diagnostician would have relatively intact 
or readily assembled "plans" (Sacerdoti, 1977; vanLehn and Brown, 1979) 
or "scripts" (Schank and Abelson, 1977) for discriminating hypotheses 
within conceptual groupings of various kinds and levels of generality. 

While related domain knowledge is clearly critical to high-level skill in 
problem solving in any complex domain and, in particular, in medical 
diagnosis, this is still not the whole story. Knowledge must be utilized ap
propriately in the particular contexts where it is needed. What is happen
ing when less experienced subjects fail to consider hypotheses (especially 
good ones) or evaluate data items poorly? One explanation is that knowl
edge is stored in memory incorrectly or not stored at all (knowledge 
"voids"). Another explanation concerns problems of access; subjects simply 
do not retrieve knowledge they need or retrieve it in some faulty manner. 

Postexperimental discussions with the subjects from this study indi
cated that most subjects, when they failed to generate particular hypotheses 
or interpreted items poorly (e.g., the click in Case 1), "knew better" in some 
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sense. Under conditions outside the diagnostic task they could discuss sub
valvular aortic stenosis or the import of the click in valvular aortic stenosis, 
etc. One subject called the experimenter on the day after his session, in 
which he had erroneously diagnosed Case 2, to tell him that the correct 
diagnosis had "dawned on him in the shower." 

Psychology has long known that the ability to access and use knowledge 
that one "has" is situationally dependent (Melton, 1963; Tulving and Pearl
stone, 1966). For example, knowledge that medical subjects might display 
on a paper and pencil test is not necessarily what they could display "on
line" in the diagnostic setting. (It was for this reason that the current study, 
despite its interest in knowledge, was conducted in a diagnostic context 
rather than in some other manner.) Yet it is this task-accessible knowledge 
that is crucial to successful performance. 

To the extent less experienced diagnosticians have knowledge access 
problems, several implications for training would seem to follow: First, a 
disease, other diseases likely to be confused with it in a diagnostic setting, 
and cues for the grouping should be emphasized together in instruction 
and, to the extent possible, in the clinical experiences of the diagnostician 
in training. This encourages the memory unitization of these diseases in 
categories or other kinds of connected knowledge organizations. U nitiza
tion is a hedge against oversight since information in a unit has two modes 
of "on-line" access, associations from external events and activations di
rected by the unit itself (Anderson, 1980; Cohen, 1966). Because real clin
ical experiences are somewhat constrained by the distribution of patients 
in the training setting, simulated diagnostic encounters (McGuire and So
lomon, 1971) could provide a vehicle for augmenting natural experience 
and for packaging prespecified sets of experiences. Second, tutorial in
struction in the diagnostic process itself must attempt to interact with the 
"on-line" thought processes of the learner as he or she engages in diag
nosticlike tasks. This is to help ensure that what is to be taught will be 
connected both to the situational cues and to the state of active memory 
likely to exist at some later time when the new material will be needed 
during a real diagnostic encounter. Expert-based instructional devices 
(computer-assisted instruction or decision-support systems) that contain 
expert knowledge and are capable of performing diagnosis in an expertlike 
manner could provide diagnostic practice exercises in which the device 
diagnoses a case in parallel with a "student," prompting alternative hy
potheses when they are overlooked, correcting erroneous interpretations, 
and offering instruction when this seems necessary (Brown et al., 1975; 
Clancey, 1979c; Swanson et al., 1977; Johnson et al., 1979a) (see also Chap
ter 11 ). Finally, it would be advantageous if much of the learning of medical 
content for those in training could be tied as closely as possible to its 
conditions of ultimate use. "Problem-based learning" approaches to med
ical education (Barrows and Tamblyn, 1980) seem the prototype of such 
an endeavor. Under this type of program, much of the basic medical sub-
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ject matter (e.g., physiology) that a student learns is organized within rep
resentative professional problems, including diagnosis. The problem di
rects what is to be learned. 

12.6.3 Future Directions 

Several directions for future research are suggested by the current work. 
The first of these is the problem of knowledge access and knowledge use. 
Not much is currently known about the structure of the knowledge base 
in memory that facilitates its situational use. Yet this is clearly a critical issue 
in problem solving within semantically rich domains. A second important 
focus is to investigate the "local" procedures or "scripts" that competent 
diagnosticians associate with the various partitions of the disease space that 
they recognize, for example, various disease and problem categories at 
different levels of generality such as "admixture lesions" or even "the 
healthy-appearing five-year-old." This appears to be the most promising 
avenue for studying the procedures and strategy of diagnosis that have hith
erto been studied only at their most general level, that is, at the level of 
hypothetico-deduction. This will require a better mapping of the types of 
diagnostic partitions good diagnosticians use-where the current study is 
only a start. Finally, the current study can be viewed as one step in a cyclical 
research paradigm that involves experimentation and more formal cog
nitive simulation. The Minnesota Diagnostic Simulation Model (Swanson, 
1978; Swanson et al., 1979) is a model of the expert, and its initial version 
was built based on studies similar to the current one. As a result of the 
present study, adjustments and additions to the initial expert simulation 
model have been made. In addition, the framework now exists for the 
creation of a more novice simulation. This may enable the study of learning 
mechanisms (Anderson et al., 1979) responsible for the transition from 
"noviceness" to expertise. The simulations will also direct a new cycle of 
more focused experimentation. 

It is hoped that the present study provides some guidance for the study 
of problem solving in semantically rich domains. Such work requires both 
task-environment and knowledge-base analysis and the creation of prob
lem-solving environments that make the interaction between the problem's 
information structure and the solver's knowledge structure comprehensible 
to the observer. 
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Knowledge Organization 
and Distribution for 
Medical Diagnosis 

Fernando Gomez and B. Chandrasekaran 

During the mid-1970s, an AIM research group directed by Professor B. 
Chandrasekaran was initiated at Ohio State University. Fernando Gomez 
was a graduate student at the time and was involved in the group's work 
on MDX, a program for the diagnosis of liver disease. That system provided 
an experimental environment in which many of the ideas expressed in this 
chapter were developed. 

In this paper, Gomez and Chandrasekaran adopt an analytical view for 
studying the nature of medical knowledge. Rather than saying "It's all a 
bunch of random heuristics," they try to formalize the rich structures that 
make efficient diagnosis possible. They center their representation around 
concepts, such as diseases and their causes, in the form of a hierarchical 
structure similar to a botanical or zoological classification. The key idea is 
that an expert diagnostician's knowledge is distributed through this hier
archy. Besides being of value for formalizing knowledge in an expert system, 
this perspective is of value for teaching. Specifically, a student needs to 
learn this refinement structure for focusing on and further specifying di
agnostic hypotheses. The chapter also proposes a useful framework for view
ing knowledge interaction in terms of communication via a blackboard 
model, a knowledge representation and control scheme that was first de
veloped for speech understanding (Lesser et al., 1975). The actual system 
implemented by Chandrasekaran's group is much simpler, however. 

It should be noted that Gomez and Chandrasekaran are trying to capture 
the compiled form of human knowledge and are not advocating that we 
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design expert systems in general by intermixing strategic and domain knowl
edge (cf NEOMYCIN's separation of' disease knowledge from domain
independent meta-rules, Chapter 15). Nor are they claiming that experts 
do not use general principles for ordering search and selecting alternatives 
(cf. Swartout's "domain principles," Chapter 16). Rather they are empha
sizing that other constructs, in addition to rules, are needed to organize 
knowledge. Explicating the hierarchical structure of' hypotheses and find
ings implicit in pure rule systems improves 5ystern organization for focused 
reasoning as well as ease of' system building [cf'. Aikins's "prototype hier
archy" (Aikins, 1980)]. 

The reader may be interested in pursuing a number of' related AI topics, 
such as studies of' ejJistemology and natural language understanding that 
are referenced in this chapter. 

Concepts lead us to make investigations, are the expressions of our in
terests, and direct our interests. 

Wittgenstein, Philoso/Jhical Investigations, prop. 560 

13 1 Introduction • 

What are the criteria that should be used to organize the medical knowl
edge in an automated medical system? We start with the observation that 
diagnosticians, when they arrive at a diagnosis or diagnoses, have invoked 
some concepts. These can be diseases, causes of diseases, or other notions 
that are relevant to the diagnosis. We shall suggest that these concepts form 
a hierarchical structure similar to that of a botanical or zoological classifi
cation. The diagnostician's knowledge is distributed through this hierarchy. 
The concepts in the hierarchy provide the criteria to organize under them 
small pieces of knowledge represented in the form of production rules. 
Thus concepts may be viewed as clusters of pr()duction rules. They extend 
the capabilities of production rules to more complex problem-solving sit
uations. The rules under each concept are further organized into three 
groups: exclusionary, confirmatory, and recommendation rules. 

During the problem-solving process, the concepts can be considered 
to be specialists. They interact and communicate with each other by means 
of a blackboard, a notion borrowed from Erman and Lesser (1975). In 
that respect, the ideas presented in this paper can be considered as an 
extension of the notions of the HEARSAY-II speech understansling system 
(Carnegie-Mellon University, Computer Science Research Group, 1977) to 
the medical diagnosis task. Nevertheless, there is an important methodo
logical difference. It is that concepts and not rules provide the principle 
of knowledge organization. 
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Section 13.2 contains critical notes on some aspects of knowledge rep
resentation. Section 13.3 describes the central features of our ideas on the 
organization of medical knowledge. Section 13.4 explains the different 
kinds of rules. Section 13.5 deals .with the identity of the notions concept 
and specialist. Section 13.6 discusses distributive problem solving. Finally, 
the paper concludes by indicating some of the similarities and differences 
between this approach and other medical diagnosis systems. 

13 .2 On Knowledge Representation 

In recent years, there has been much work in knowledge representation 
in artificial intelligence, but relatively little attention has been paid to how 
knowledge is used and organized. By use of knowledge we mean the invo
cation and instantiation of the right chunk of knowledge and the deter
mination of the appropriate structure of the knowledge needed for the 
task being studied. Other authors, especially F. Hayes-Roth (1978), have 
expressed a similar view. 

13.2.1 On the Representation and Use of Knowledge 

The assumption that a separation can be established between knowledge 
representation and its use dates back to the distinction made by McCarthy 
and Hayes ( 1969) between epistemologically and heuristically adequate 
analyses. Underlying this distinction is the belief that the first does not 
involve the second, and vice versa. Most researchers in knowledge repre
sentation have, consciously or unconsciously, subscribed to this distinction, 
which is indirectly related to the Saussorian distinction of la parole and la 
langue, better known after Chomsky as the performance-competence distinc
tion. The assumption underlying both distinctions is that it is appropriate 
to study the result of human thought, language, knowledge, etc., by "ab
stracting out" the homunculus that is using that thought. Both distinctions 
are influenced by the paradigm that modern logic brought to the study of 
linguistics and epistemological questions. While logic is no longer a dom
inant paradigm in Al, much research in knowledge representation never
theless has concerned itself with the so-called epistemological adequacy of 
the representation, thus deepening the separation between knowledge rep
resentation and its use. In particular, while many of the current techniques 
of knowledge representation in AI arose as components of localized models 
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of human cognition, the emphasis has increasingly been on the formalisms 
in the models. 

13.2.2 Content and Form in Knowledge 
Representation 

The semantic network (Quillian, 1968) was proposed as a model of se
mantic memory. But since Quillian's original formulation, the formalistic 
aspect of it has gained a life of its own-so much so that much of the 
research in semantic networks scarcely differs from the logic formalism. 
Recently, some researchers have. shown interest in the foundations of se
mantic networks (Woods, 1975; Brachman, 1979). Important distinctions 
have been made explicit, but no connection has been established between 
the proposed improvements to the representational formalisms and the 
use of the knowledge. It is unclear how the notational inventions will help 
in the understanding of the task being studied. 

Since Minsky's ( 197 5) important paper about frames, little progress 
has been achieved in extending his ideas, but formalisms (Goldstein and 
Roberts, 1979; Bobrow and Winograd, 1977) have been built on the outline 
proposed by Minsky. Minsky revived and began the task of giving com
putational meaning to an interesting theory of human cognition. The the
ory says that important aspects of vision, memory, problem solving, and 
comprehension can be explained as a process of recognition. In this process, 
the input is matched to an internal stereotyped structure called a frame, 
slots in the structure are filled, and others take default values. The notion 
of a default value was one of Minsky's most insightful ideas. Information 
not explicitly present in the input could be accounted for by reading the 
default values. 

Frames have proved to be an excellent construct for dealing with ex
tralinguistic knowledge in language. Other authors independently worked 
out a similar notion called a script (Schank and Abelson, 1977). In its rep
resentational aspect, frames are an extension of the property list notation. 
They look very much like a COBOL structure. But just as COBOL pro
grams using structures are not exemplifications of the frame theory, nei
ther are AI programs just because they happen to be written in a frame
type language. Otherwise, one would be confusing the form with the con
tent of the theory. It is precisely the theory that needs to be extended. We 
know very little about the criteria that govern the recognition of frames 
(Charniak, 1978), the invocation of the appropriate frame, and the inte
gration of frames in more inclusive structures . The available formalisms 
inspired by the frame theory, while they differ in the degree of their con
cern with such issues-FRL (Goldstein and Roberts, 1979) is meant as a 
programming language, whereas KRL's authors (Bobrow and Winograd, 
1977) have shown a great concern with extending and giving depth to the 
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frame ideas-nevertheless do not provide answers to these questions. [See 
Lehnert and Wilks (1979) for a sympathetic critique of KRL.] 

13.2.3 Production Rules and Organization of 
Knowledge 

In expert knowledge domains, production rules have been extensively 
used. Despite their apparent simplicity, production rules grasp an impor
tant aspect of human cognition. But it seems to us that they have sometimes 
been used unilaterally to explain cognitive aspects for which other con
structs are needed. They were used by Newell and Simon (1972) as tech
niques to model some aspects of human problem solving. Since this early 
and seminal work, production rules have been applied to almost every 
aspect of human cognition. [See Waterman ( 1978) for an excellent collec
tion of papers about production systems.] Two of the most successful sys
tems, DENDRAL (Buchanan et al., 1969) and MYCIN (Shortliffe, 1976) 
use production rules as the basic technique to represent knowledge. 

Production rules are the right tool to represent some kind of how-type 
knowledge. Winograd (1975) refers to it as secondary knowledge. Other 
authors have used the term judgmental (Duda et al., 1978). Some aspects 
of the knowledge needed to repair a car, to diagnose a disease, etc., are of 
this type. In the medical diagnosis domain, there are many terms of which 
a doctor does not need to have a thorough understanding. The knowledge 
that a diagnostician has that tells him or her that certain lab findings are 
indications of a certain disease is of that kind. In domains where the re
quired level of comprehension is deeper, for example, natural language 
understanding, the need for what-t_ype knowledge has become apparent. 
Ries beck's parser ( 1978) is a very good example of the integration of the 
two kinds of knowledge: production rules are used to build and to predict 
Schank's conceptual dependency structures. But the production rules are 
embedded in the conceptual structures. 

The problem of organization of knowledge is of paramount impor
tance in large knowledge base domains. The problem is not only one of 
efficiency, but one of focus and control. Things simply do not work if the 
knowledge is not properly organized [see Lenat and Harris (1978) for a 
discussion of these problems]. The solution generally offered by the ad
vocates of production rules is a new rule called a meta-rule (Davis and 
Buchanan, 1977). Meta-rules organize the production rules according to 
some meta-knowledge criterion. While production rules are natural mech
anisms to model an important aspect of human cognition, meta-rules seem 
to be an ad hoc solution to the problem. It is doubtful that they have any 
cognitive counterpart. We think that for an appropriate organization of 
knowledge, another construct, in addition to the rule, is needed. In the 
following pages we will show that even in domains in which the knowledge 
is basically how-type, concepts and not rules should provide the principles 
of organization. 
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13.3 The Role of Concepts in Medical Diagnosis 

In a recent paper about AI work on natural language, Fodor ( 1978) has 
characterized it as suffering from "operationalism, empiricism .... " On 
the other hand, if an empiricist looked at the AI work, of course, beyond 
Winograd's publications in 1971, he or she would consider it to be "irre
sponsible talk" about concepts. The existence of concepts and the need to 
take them seriously are almost granted, in particular by researchers in 
natural language understanding and in knowledge representation. The 
representation proposed for concepts has been a what-type of structure 
called a frame in FRL (Goldstein and Roberts, 1979), a prototype in KRL 
(Bobrow and Winograd, 1977), and a concept in KLONE (Brachman, 1979). 
In this paper, we will be speaking of concepts in a different sense, not as 
what-type structures but as labels that organize how-type knowledge rep
resented in production rules. They can be considered as clusters of pro
duction rules. 

13.3.1 Concepts and Organization of a Diagnostician's 
Knowledge 

Consider the following production rule: if bilirubin in urine and pruritus, 
then suggest cholestasis. A diagnostician has thousands of such rules. In 
our view they are associated with concepts such as "arteriosclerosis," "hep
atitis," "cholestasis," etc. These concepts themselves form a hierarchical 
structure similar to that of the botanical or zoological classification system. 
The most general concepts are placed at the top of the hierarchy and the 
most particular at the bottom (see Figure 13-1 ). Knowledge is distributed 
through this hierarchy. The structure serves the purpose of differentiating 
the knowledge, of assimilating new knowledge by inserting it in the ap
propriate place, or of retrieving the right piece of knowledge as a response 
to the appropriate query. 

For diagnosticians, this hierarchy serves the function of organizing 
their troubleshooting knowledge. The concrete details for each disease are 
encoded in the production rules attached to the appropriate concepts. 
However, it is clear that medical doctors also have additional cognitive 
structures that organize their knowledge from other views: pathological, 
physiological, etc. The role of these additional structures during diagnosis 
then becomes a relevant issue. The cognitive structures corresponding to 
these other views do not need to be present for purposes of diagnosis, as 
long as knowledge from these structures relevant to diagnosis is compiled 
in the diagnostic structure. This can be done by appropriately structuring 
the relevant concepts and embedding the compiled production rules 
therein. 
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FIGURE 13-1 Conceptual structure of cholestasis. 

13.3.2 Commonsense Knowledge 

The role of commonsense knowledge structures is of equal interest. A 
distinction must be made between (a) the commonsense knowledge a phy
sician needs in order to understand the data presented in a medical case 
and (b) that needed during the process of diagnosis. The patient data are 
entered in current AI programs for medical diagnosis in the form of a 
collection of atomistic facts, e.g., "high bilirubin, fever, jaundice." In con
trast, consider the following: 



The Role of Concepts in Medical Diagnosis 327 

At the age of 19 years, one year prior to his appendectomy, he began to 
have occipital headaches, usually upon awakening in the morning and oc
curring once or twice weekly for a 10-year period. These headaches had not 
been severe enough to interfere with his activities ... [taken from Harvey 
and Bordley ( 1972)]. 

Here we have a complex temporal interconnection of facts that cannot be 
decomposed into simple facts. It may be true that in most cases the atom
istic collection of data may contain sufficient manifestations to make a 
correct diagnosis. However, for those cases in which comprehending the 
complex structure of data is essential to a solution, systems whose data 
input is atomistic will miss the solution. In order to uncover the needed 
structure for data input in these cases, it is necessary to make a semantic 
analysis of the commonsense notions of time and causality in this context. 
For simple instances of temporal and causal notions, temporal cases could 
be enough, for instance, structures like"< > while < > ," "< > after < > ," 
and "< > causing < > ." But the kind of semantic notions and the mech
anism needed to integrate these simple structures in more inclusive ones 
like those needed to understand the course of the illness need further study. 

Let us consider (b), viz., the use of commonsense knowledge during 
diagnosis to verify or reject hypotheses. Suppose a doctor has established 
that a patient has hepatitis and is proceeding to find out the possible causes 
of the disease. Let a piece of data be "the patient is a farmer." The doctor 
can bring to mind the knowledge that farmers often drink water from 
wells and that the patient may have contracted a viral infection from drink
ing the water. Notice that in this case the piece of world knowledge "farm
ers usually drink water from wells" was only activated in the context of 
diagnosing the cause of hepatitis. The datum "the patient is a farmer" 
would not play any role and thus might have been unnoticed in the context 
of some other diseases. Medical knowledge has this type of knowledge 
embedded in it. The right medical context activates this knowledge, which 
can hence be easily compiled in the form of production rules. In particular, 
the production rules will be inserted under the concept "virus infection as 
a cause of hepatitis," explicitly checking whether the patient has been in
gesting contaminated water. 

The foregoing should not be interpreted as denying that, for a com
plete model of a physician's reasoning, physiological, anatomical, and com
monsense knowledge structures need to be represented in addition to di
agnostic knowledge. There is no doubt that a physician uses these other 
structures and that what-type knowledge must be captured in them. They 
are needed in order to acquire new pieces of judgmental knowledge, to 
reconfigure and extend the concepts in the diagnostic structure, and to do 
productive problem solving involving knowledge in these other domains 
(which may result in compilable production rules to be added to the di
agnostic structure). However, for achieving expert diagnostic performance, 
we do not believe that these additional structures are needed. 
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13.3.3 Redundancy and Biasing of Knowledge 

The above considerations point to the view that the resulting knowledge 
structure for the diagnostician must be biased by the function that it is 
meant to serve. This means that the concepts that make up the structure 
and their organization are determined by the fact that they are grasping 
the medical knowledge of a diagnostician and not that of, say, a pathologist. 
The organization of medical knowledge from a pathologist's point of view 
will call for a different set of concepts and a different organization in the 
structure. Similarly, the knowledge encoded under each concept must also 
be biased toward the diagnostic task. The knowledge diagnosticians have 
about stone, tumor, etc., is only that necessary to establish them or rule 
them out in the context of liver diseases. However, the structure does not 
have to be just a classification of diseases. Other concepts that are not 
names of diseases may appear in the structure, to the extent that these 
concepts are needed to properly diagnose a disease. For example, in the 
structure of Figure 13-1, the concepts "stone," "cancer," and "stricture" are 
causes of a disease and not themselves diseases. 

An organization of knowledge following these principles results in a 
high level of redundancy. Small pieces of knowledge in the form of pro
duction rules will appear grouped under different concepts. Also, the same 
concept may appear inserted in different places in the cognitive structure 
of the diagnostician. But the production rules grouped under the concepts 
will have differences reflecting the differences in the roles of the concept. 
An example of this occurs in the cholestasis syndrome. Consider the con
cept "stone" in its role as a cause of cholestasis. There will be production 
rules to establish or reject stone here, and also to check if a stone is indeed 
causing obstruction. However, stones may not necessarily cause obstruction 
directly, but may result in cholangitis. "Stone" would also occur as a concept 
under "cholangitis." This concept, while sharing some of the same pro
duction rules with the other stone concept, nevertheless will also have some 
rules that are different, because of the different role of this stone concept. 

13 4 Kinds of Rules • 

Three types of rules must be grouped under each concept: confirmatory, 
exclusionary, and recommendation rules. 

13.4.1 Confirmatory Rules 

Confirmatory rules look for those manifestations associated with the con
cept under which they are located. Those manifestations could be sufficient 
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to establish the concept completely or only enough to postulate it. These 
rules return a list of the findings on which they establish or postulate the 
concept. 

13.4.2 Exclusionary Rules 

The need for exclusionary rules has been recognized. For instance, Pauker 
et al. (see Chapter 6) use exclusionary rules to reject a disease categorically. 
In our approach, they are used in a more inclusive sense. They collect all 
of the negative evidence for a given disease. The evidence does not have 
to be sufficient to rule out the disease. An obvious reason to have such 
rules is that physicians need to rule out certain diseases before performing 
some invasive procedures such as biopsy. A more interesting reason is that 
doctors frequently use a ruling-out problem-solving strategy. This happens 
when the data suggest several diseases and there is no conclusive evidence 
for any of them. Then the strategy consists in ruling out those diseases 
with the lowest evidence and focusing on the remaining. The use of ruling
out rules is the key methodological principle of differential diagnosis as 
explained by Harvey and Bordley ( 1972). The strategy adopted through
out their book is the following: once hypotheses are postulated to explain 
a given disease, a procedure is invoked that systematically begins to rule 
out some of them. For instance, in the discussion of a case of splenomegaly 
(pp. 371-376), they establish up to seven possible major hypotheses: pol
yarteritis, systemic lupus enterocolitis (SLE), lymphoma, etc. Immediately 
they say: 

Polyarteritis is rarely associated with very significant splenomegaly, and 
the arterial lesions should have been seen. Arteritis can occur at all levels and 
may simulate almost any bowel disease, but at some stage bleeding is usually 
noted. None of the other clinical manifestatiOIJS which suggest polyarteritis 
were noted. 

Notice that the reasoning is based on highly categorical production rules. 
These ruling-out rules are tried even for those hypotheses that will even
tually be accepted as explanations of a disease; that is, an attempt may be 
made to refute a hypothesis even in the presence of positive evidence for 
it. Neverthel~ss, it would be incorrect to see this practice as an exemplifi
cation of Popper's principle of refutation, viz., hypotheses are not verified 
but refuted. This is because the clinician not only considers the negative 
evidence for a given disease, but also the positive evidence. In our opinion, 
he or she can be viewed as running two procedures. One collects the evi
dence in favor of a given disease, the other the negative evidence. Then 
both are weighed, and a decision is made. 
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13.4.3 Recommendation Rules 

Although the knowledge under each concept is mostly the knowledge 
needed to establish it or rule it out, there are pieces of knowledge under 
each concept that anticipate its subconcepts. For instance, jaundice, intense 
and intermittent abdominal pain, and elevated alkaline phosphatase 
strongly suggest not only a liver disease but also extrahepatic obstruction 
(one of the liver subconcepts). These pieces of knowledge will be translated 
during the problem-solving process as "recommendations" of a supercon
cept to its subconcepts. This knowledge will be represented in production 
rules that will be applied to the list of positive manifestations found by the 
confirmatory rules. 

13. 5 Concepts as Specialists 

Given these principles of organization of medical knowledge, the solution 
of a medical case becomes a problem of taxonomic classification. It is sim
ilar to the problem of placing, say, a specimen of maple in a hierarchy of 
botanical concepts. It consists of identifying its superordinate and subor
dinate concepts. This is a process of recognition that is intrinsically top
down. Let us consider the use of knowledge in the context of the repre
sentational framework we have proposed. The solution consists of taking . 
each concept in the structure as a specialist in that body of knowledge. 
Each concept interacts with others in the solution of a case by activating 
simultaneously each subconcept under conditions we explain below. 

The decomposition of a body of knowledge into small systems is an 
old idea in AI. It was one of the central notions in Simon's beautiful book 
The Sciences of Artificial Intelligence (Simon, 1969). Winograd ( 1972) used 
the ·term specialist to refer to his semantic program for the noun group. 
Lenat (1975) used the notion extensively in his notion of "Beings." Rieger 
and Small (1981) are building a "word expert parser," and Minsky has 
recently speculated about a "society of minds" (Minsky, 1979). 

The idea of viewing the human mind as a society of experts is very 
attractive. It has its counterpart in the human body system with its multi
plicity of functions going on in parallel. The notion of specialist or expert 
is another metaphor that AI has borrowed from computer science. Any 
program consisting of a collection of modules or routines can be viewed 
as a collection of experts. Then the following question arises: what contri
bution is made by calling them experts? It seems to us that, in order for 
the notion of the society of experts to be useful, (a) we need criteria for 
the decomposition of a body of knowledge into small independent units, 
(b) the decomposition should be such that it will be able to support par-
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allelism, and (c) communication and control should resemble those found 
in human intelligence. 

In the case of medical diagnosis, the identification of these components 
is facilitated by the fact that the medical community is organized as a society 
of experts. The solution of a medical case requires in many instances the 
interaction of several specialists. The concepts that make up a diagnostic 
specialty have already been identified by the medical community. Never
theless, the right structure and the precise interdependence of concepts 
for a given disease are by no means clear. One can be easily convinced of 
this by the fact that often different books about diagnosis do not coincide 
in the decomposition of the relevant concepts that need to be considered 
to properly diagnose a disease. The mapping of the medical knowledge as 
it appears in books into a structure like the one we are proposing is by no 
means automatic. Epistemic work is needed in order to come up with the 
right structure and the concepts that form the structure. It is our deep 
conviction that if automated medical diagnosis succeeds some day, books 
on medical diagnosis will be written in a very different form from that of 
the current texts. 

13.6 Distributive Problem Solving 

A distribution of the diagnostician's knowledge in a hierarchy of concepts, 
which are considered as independent specialists in that body of knowledge, 
leads naturally to a distributive problem-solving situation. In order to il
lustrate this, we recapitulate our basic ideas by considering the medical 
knowledge of an internist. 

Referring to Figure 13-2, we see that the top-level node has no rules 
in it since it is always established. Its immediate successors are formed by 
generic diseases such as those related to liver, heart, etc. Under the concept 
"liver," our internist will have that knowledge needed to determine if a 
given patient has a liver disease. That specialist will look for those key 
findings associated with liver diseases, for instance, abdominal pain, jaun
dice, alcoholism, etc. Also, the specialist will have knowledge to rule out a 
liver disease and to make some recommendations to its subconcepts. But 
it will not have the knowledge to discriminate between the different kinds 
of liver diseases. That knowledge will be located in the two concepts under 
it, the intrahepatic and extrahepatic specialists. 

Pathognomonic knowledge is useful not merely in establishing the con
cept under which it is located. In medical diagnosis, pathognomonic man
ifestations are those that indicate the presence of a disease with near cer
tainty. If a concept has pathognomonic knowledge about a successor 
concept and if the corresponding manifestations are present, control is 
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FIGURE 13-2 Top levels of the internist's conceptual struc
ture. 

transferred to the successor even if it is located several nodes down the 
tree. 

If we consider the internist's knowledge organization, the nodes in the 
hierarchy are called concepts. Because these knowledge sources interact with 
others to solve a medical case, they are called specialists. Finally, because 
these concepts are names of diseases that must be verified or rejected, they 
may be called hypotheses. We use these three terms interchangeably in the 
remainder of the paper. A blackboard will be used to coordinate the work 
of the specialists in the solution of a case. 

13.6.1 The Blackboard 

The notion of a blackboard was used by Erman and Lesser ( 197 5) as a way 
to provide an interface between different knowledge sources. The function 
of the blackboard in our design is similar to theirs: to provide a way of 
interaction among the specialists and to hold the current state of the sys
tem. The blackboard is divided into the following sections. ACTIVE-HY
POTHESES contains the names of all specialists that are active at a given 
moment. ESTABLISHED-HYPOTHESES contains the names of all hy
potheses that have been established during the solution of a case. A hy
pothesis is established when the evidence exceeds some threshold. There 
could be cases in which the evidence in favor of a hypothesis is sufficient 
to categorically establish it, while in other cases the evidence could be only 
sufficient to postulate it. REJECTED-HYPOTHESES contains the hy
potheses that have been rejected. SUSPENDED-HYPOTHESES contains 
all hypotheses for which a specialist has not found sufficient evidence to 
justify pursuing them. This section also includes those hypotheses that 
were initially postulated but later on abandoned because the evidence did 



Distributive Problem Solving 333 

not exceed the threshold needed to pursue them. Finally, it should be noted 
that as hypotheses are entered in the various sections of the blackboard, 
the underlying hierarchical structure among them is preserved. 

13.6.2 Activation 

We can now consider the activation of the specialists. Once the top-level 
node is invoked, it activates simultaneously all its immediate successors and 
enters their names in the ACTIVE-HYPOTHESES section of the black
board. These act in parallel on the patient's data base. These will look for 
those manifestations in the patient's data base that are associated with the 
generic concept they stand for. We can distinguish the following cases: 

Case 1. A specialist, say S, can find data to consider that the disease it 
stands for must be pursued. If so, it will enter in the ESTABLISHED
HYPOTHESES section of the blackboard its name followed by a list of the 
manifestations on which it based its decision. Then it will activate its im
mediate successors (if some of the pathognomonic rules have been fired, 
it could activate some subspecialist down the tree). Upon their activation, 
Swill pass to them the same information it entered in the blackboard plus 
a list of "recommendations." Finally S will deactivate itself by removing its 
name from the ACTIVE-HYPOTHESES section of the blackboard. The 
list of recommendations will contain pieces of advice about such aspects as 
what kind of rules (disconfirmatory or confirmatory) a given specialist 
should try first, indications to discourage the subspecialist to do an exten
sive search, etc. The type of recommendations depends on each disease. 
They provide another criterion to further organize the production rules 
under each specialist. 

Each specialist, on establishing itself, will add to the list of manif esta
tions, which then will be passed from parent node to child until it reaches 
a tip node. If the specialist in the tip node succeeds, it will print the list. 
At that point, the list will contain a classification of the medical case under 
study. The list could look like: 

(Liver (A 1 A2 •.. A") Extrahepatic (B 1 B2 ... B,J Tumor (C 1 C2 

... C,J) 

where A;, B;, and Ci are the manifestations on which each specialist based 
its decision. 

Case 2. A specialist rejects itself. This happens when the exclusionary 
rules found the presence or absence <1f data sufficient to rule out the 
disease. In that case the specialist enters its name in the REJECTED-HY-
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POTHESES section of the blackboard followed by a list of the negative 
evidence and deactivates itself. 

Case 3. A specialist suspends itself. It then enters its name in the SUS
PENDED-HYPOTHESES section of the blackboard followed by the list of 
manifestations before suspending itself. The suspension of a specialist can 
happen because the data it found did not exceed some threshold or be
cause its immediate successors rejected or suspended themselves. 

In cases 2 and 3, when the immediate successors of a node have re
jected or suspended themselves, a mechanism has to be provided to remove 
that specialist from the ESTABLISHED-HYPOTHESES section of the 
blackboard. This can be accomplished by making the last active sibling (if 
it has suspended or rejected itself) check if any of its other siblings are in 
the ESTABLISHED-HYPOTHESES section of the blackboard. If none of 
them is there, it means that all of them have rejected or suspended them
selves. In that case, the specialist will move its parent from the ESTAB
LISHED-HYPOTHESES section of the blackboard to the SUSPENDED
HYPOTHESES section. After that, it will check to see if none of its uncles 
is in the ESTABLISHED-HYPOTHESES section. If none is there, it will 
remove its grandparent, and so on. 

13.6.3 The OVERVIEW Critic 

It is generally accepted that a good practice in the diagnostic process is to 
explain again all the patient's manifestations from the point of view of the 
final diagnosis or diagnoses. Harvey and Bordley ( 1972) considered this to 
be the final step in the diagnostic process. In our approach, we need to 
organize a body of knowledge around that methodological idea. This is 
due to the fact that quite a few suspended hypotheses could result during 
the diagnostic process. They should be cleared, resulting in a more unified 
diagnosis. For this purpose we associate with each disease in the top level 
of the hierarchy an OVERVIEW critic. 

OVERVIEW is activated only if the disease with which it is associated 
is advanced as one of the diagnoses. Basically, what OVERVIEW will do is 
to check if those manifestations that the specialists entered in the black
board with each suspended hypothesis appear in the list of manifestations 
associated with any of the subspecialists of the disease that has been estab
lished. If all manifestations associated with a suspended hypothesis can be 
accounted for by this procedure, OVERVIEW will reject that hypothesis. 
Otherwise, it will advance that hypothesis as a second or third diagnosis. 
If the only function of OVERVIEW were this procedure, then it would 
not have to be associated with any particular disease. We feel, however, 
that other questions should be formulated by OVERVIEW, such as the 
relevance of the manifestation to the suspended hypothesis in particular 
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and to the diagnostic process in general and the chances of the appearance 
of both the suspended hypothesis and the established one. Further inves
tigation will have to be conducted to determine the nature of these ques
tions concretely. We conjecture that OVERVIEW would have knowledge 
global to the individual subspecialists into which a disease has been decom
posed, as well as knowledge about other diseases in the top level of the 
conceptual hierarchy. 

13.6.4 The Specific Role of the Blackboard 

The blackboard can serve many functions in our approach to medical 
diagnosis. It will be a matter of further study to exploit all of its advantages. 
We can mention two instances in which its use is necessary. The first one 
deals with the problem of a disease being secondary to another. For in
stance, cirrhosis (a liver disease) can cause portal hypertension (which can 
have many other causes). In the medical jargon, it is said that the clinical 
manifestations of the latter are secondary to the former. However, the man
ifestations of each disease are different. Following our approach, let portal 
hypertension be a successor of the top node, internist (see Figure 13-2). 
Both nodes, viz., cirrhosis and portal hypertension, will be established in 
parallel in a patient with portal hypertension secondary to cirrhosis. At a 
given point, the portal hypertension specialist will pass control to subspe
cialists that will determine the possible causes of the disease. Then one of 
them is going to contemplate cirrhosis as being the cause. That subspecialist 
can verify this by looking at the blackboard for cirrhosis. Without this 
blackboard, the hierarchical call structure would be violated by a call to 
the cirrhosis specialist, or a redundant and ad hoc specialist would need to 
be created. 

The second instance has to do with the fact that the specialists must 
communicate between each other to reduce the amount of search they 
must do. Consider specialists associated with different causes of the same 
syndrome. Although it is possible that a disease can have more than one 
cause, it is not frequent. Then if a given specialist has already found the 
cause of a disease, it makes very little sense for its sibling to pursue its 
search in the presence of very low evidence. As a specific example, consider 
the situation where extrahepatic cholestasis has been established, and each 
of its immediate successors, stone and cancer, is investigating itself as its 
cause (see Figure 13-1). As the stone and tumor experts are working in 
parallel, suppose the preliminary evidence for stone is low, while the tumor 
specialist establishes tumor. Now the stone specialist should suspend itself, 
but only if the information about tumor establish:.nent is made available. 
This can be made possible by making the specialists (in this case the stone 
specialist) periodically inspect the ESTABLISHED-HYPOTHESES portion 
of the blackboard. 
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13 • 7 Implementation 

In the preceding pages we have described a methodology for knowledge 
distribution and the associated distributed problem-solving strategies for 
medical diagnosis. There are two key aspects to the methodology: ( 1) 
knowledge is decomposed into a collection of specialists, and (2) these 
specialists perform problem solving in parallel in certain specified ways, 
using a blackboard as a record of the global state of problem solving. 

A prototype diagnosis system called MDX (Chandrasekaran et al., 
1979; Mittal et al., 1979) has been built by our group and has been oper
ational for some time. This implementation has both points of contact with 
and differences from the methodology described in the preceding pages. 
The major points of contact are that the current domain of MDX, viz., 
cholestasis, is organized into a collection of specialists as indicated in Figure 
13-1 and that diagnostic knowledge is distributed in this structure following 
the guidelines spelled out in Section 13.3. The problem-solving strategy is 
the area of most of the differences between the methodology described in 
this paper and MDX as implemented. The source of these differences is 
threefold: (1) the strategy in this paper is of more recent origin and goes 
beyond the current MDX strategy in power; (2) the methodology empha
sizes the parallel invocation of specialists, which is of particular importance 
in a distributed implementation and of less operational significance in a 
serial implementation such as MDX; and (3) the domain of implementation 
is not large enough to need the global state record in the form of a black
board. The power of a blackboard of the type we have envisaged will be 
needed as the domain is enlarged. In particular, it will be needed for 
decisions at the top (internist and one or two levels below) where proper 
coordination between subspecialists of vastly different scope would be 
needed. 

These differences notwithstanding, MDX is a working implementation 
of a distributed approach to problem solving. As such, a brief outline of 
its performance is in order. A more complete discussion of the system and 
its performance is available in the papers cited earlier. 

The top-level specialist in the system is GP (or internist), but all that 
it can do at this stage of implementation is either to hypothesize cholestasis 
and transfer control to it or to reject the case. Cholestasis may be hypoth
esized by a collection of production rules that respond to the relevant lab 
data and physical signs and symptoms. When cholestasis gets control, its 
charge is first to establish itself and then to further refine itself to account 
for all the manifestations. This establish-r~fine strategy is fairly general to 
the system as it currently exists. The rules used to establish cholestasis are 
of the confirmatory type mentioned in Section 13.4. The disconfirmatory 
evidence is not currently used in all the nodes, but where it is used it is in 
the form of negative weights for the disease for certain combinations of 
data in an evidence-weighting table. 
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Once cholestasis, say, is established, a priority scheme is needed to call 
subspecialists, since MDX is a serial implementation. This priority is pro
vided by a collection of rules that suggest possible specialists on the basis 
of certain patient data or combination thereof. The criterion for the se
lection of the rules is that they represent common or easy possibilities. If 
this criterion is satisfied, the specialists that are called earlier by the priority 
scheme are more likely to solve most of the cases. Only in "hard" or un
common cases will the rest of the specialists need to be called. 

These specialists are typically called to establish and refine themselves 
and, when they succeed, to return those abnormal data that they can ex
plain. The specialists that are established and the corresponding data are 
kept in an ACTIVE list. When the specialists in the top-level ACTIVE list 
together can explain all the abnormalities in a nonoverlapping way, the 
case is solved. Note that the specialists lower than cholestasis in the hier
archy may also have their own priority rules to select their subspecialists. 
The tip nodes, when called, match the data within their scope with confir
matory rules or equivalent tables to establish or reject themselves. This 
information is passed up to the calling specialist. Each specialist thus or
ganizes, by means of production rules, the priority by which it uses its 
subspecialists to arrive at an explanation of abnormal data in its scope. 
When the subspecialists explicitly suggested by the rules fail to explain the 
case, then an exhaustive interrogation of all subspecialists one level below 
will be made. Thus the priority rules do not preclude the correct answer 
from being obtained eventually. 

As stated earlier, the current implementation of MDX does not use a 
blackboard. Consider the case involving cirrhosis and portal hypertension 
that was discussed in Section 13.6.4. In our current implementation, portal 
hypertension will neither call up the cirrhosis expert nor look up the black
board. Instead, it will have a cirrhosis-as-cause-of-hypertension subspe
cialist, most of whose knowledge would be a replication of the cirrhosis 
specialist. This is clearly an ad hoc solution, but as long as the domain is 
not very large, it does not produce serious problems. 

Another constraint in the MDX implementation has to do with the 
atomistic nature of the patient manifestations (see Section 13.3). The cho
lestasis domain has so far not produced sufficiently complex cases for 
which this data representation presents a serious limitation. However, the 
future extensions of MDX will increasingly incorporate more sophisticated 
structured data representations as discussed in Section 13.3. 

13.8 Concluding Remarks 

The ideas presented in this paper contain points of coincidence with other 
research in automated medical diagnosis. They coincide with MYCIN 
(Shortliffe, 1976) in taking production rules as the formalism for repre-
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sentation, but in our approach rules are organized under concepts. In 
INTERNIST (Pople, 1977) the hierarchy of diseases is essential to the 
problem-solving strategy. In our approach the hierarchy is not only of 
diseases, but also of causes of them and of any concept relevant to the 
diagnostic process. The concepts in our hierarchy are specialists, aggregates 
of knowledge about a significant step in the determination of the diagnosis. 
We coincide with CASNET (see Chapter 20) in the relevance of etiologic 
reasons in the diagnostic process, but in our approach that is one reason 
among others. The concepts in our hierarchy are highly compiled. Thus 
some specialists will have etiologic knowledge, while others will base their 
reasoning on other types of knowledge depending on the disease. Finally, 
our approach coincides with PIP (see Chapter 6) in taking each disease as 
a cluster of knowledge with distinct features. But the structure of diseases 
is a hierarchy in our approach; in PIP it is not. 

An important aspect of our ideas is that medical (or for that matter 
any) knowledge can be viewed as a collection of essentially decoupled con
ceptual structures, each with an embedded problem-solving mechanism 
(reflecting its intended use). In the actual handling of a case, a physician 
is in the diagnostic mode only part of the time. The incompleteness of the 
diagnostic structure in a particular physician, as well as other considera
tions involving therapies, costs and other situational idiosyncrasies, and a 
perceived need for explanation at different levels will typically cause him 
or her to switch between different knowledge structures, but a satisfactory 
accounting of this overall process can be done, in our view, only after the 
underlying conceptual structures and the problem-solving mechanisms im
plicit in them are identified. We have advanced in this paper an analysis 
of one such structure, viz., the diagnostic one. 

ACKNOWLEDGMENTS 

We thank David C. Brown, James Reggia, J orgen Hilden, Jack Smith, and 
Sanjay Mittal for their comments on an earlier draft. Our access to the 
computing facilities of the Rutgers University Laboratory for Computer 
Science Research, made possible by a grant (RR-643) from NIH Biotech
nology Resources Program, Division of Research Resources, has been es
sential to our implementation activities. Finally, the National Library of 
Medicine Biomedical Computing Training Grant to The Ohio State Uni
versity (LM 07023-02) has helped foster an active interest in these and 
other fundamental problems in medical knowledge representation. 



14 
Causal Understanding of 
Patient Illness in Medical 
Diagnosis 

Ramesh S. Patil, Peter Szolovits, and 
William B. Schwartz 

In most medical AI programs, the use of notions such as causal relation
ships, temporal patterns, and aggregate disease categories has been limited. 
Yet studies of clinicians' behavior reveal that a diagnostic or therapeutic 
program must consider a case at various levels of detail to integrate overall 
understanding with detailed knowledge. 

To explore these issues, Ramesh Patil, Peter Szolovits, and William 
Schwartz have applied the knowledge-based approach in a detailed study 
of consultation for electrolyte and acid-base disturbances. The resulting 
program, Patil's dissertation work, is known as ABEL (for Acid-Base and 
ELectrolyte program). ABEL and an earlier M.I. T./Tufts program known 
as the Digitalis Therapy Advisor (Corry et al., 197 8) were important de
partures from other systems in that they both viewed clinical problem solving 
as a process of constructing an explanation of man~festations, what they 
have called a patient-specific model. In ABEL, this description includes 
data about the patient as well as the program's hypothetical interpretations 
of these data in a multilevel causal network. Proceeding from the lowest 
level, the concepts and relations gradually shift in content from pathophysi
ological to syndromic knowledge. The aggregate level of this description 
summarizes the patient data, providing a global perspective for ~fficient 
exploration of the diagnostic possibilities. The pathophysiological description 
provides the ability to handle complex clinical situations arising in illnesses 

From the Proceedings of the Seventh International Joint Conference on Artificial Intelligence, vol. 2, 
198 l, pp. 893-899. Used by permission of International Joint Conferences on Artificial 
Intelligence, Inc.; copies of the Proceedings are available from William Kaufmann, Inc., 95 
First Street, Los Altos, CA 94022. 
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with multiple etiologies, to evaluate the physiological validity of diagnostic 
possibilities being explored, and to organize large amounts of seemingly 
unrelated facts into coherent causal descriptions. 

The approach can be considered to be an outgrowth of PIP (Chapters 6 
and 9), but using a complete causal model of disease. While CASNET 
(Chapter 7) simply propagates weights, ABEL symbolicall_v manipulates
through operations such as aggregation and elaboration-causal concepts 
on multiple levels of detail. It is hierarchical, the kind of organization 
promoted in MDX (Chapter 13 ), but involves a principled abstraction of 
causes with complex links that can themselves be reasoned about; they are 
not just pointers connecting diseases. 

The ABEL research is evolving into a study of reasoning strategies for 
using the principled representation of medical knowledgP (Patil and Szo
lovits, 1982). This is clearly the state of the art in medical knowledge 
representation, with strong implications for producing robust consultation 
programs. The empirical psychological methodology-studying expert prob
lem sol-oing in detail to derive better representations-has been strongl_v 
promoted by the group at M ./. T. and Tufts and is an idea we see in much 
of the research reported in this volume (Chapters 10, 12, 13, 15, and 16). 

14 I Introduction • 

We have studied difficulties arising in the operations of the "first genera
tion" of AI programs in medicine and have undertaken the development 
of knowledge representation structures to support needed improvements. 
The description of a patient in existing programs such as INTERNIST-I 
(Pople et al., 1975), PIP (see Chapter 6), and MYCIN (Shortliffe, 1976) 
starts from a single list of findings about the patient. Using a data base of 
associations between diseases and findings (or rules establishing those con
nections), these programs form an interpretation of the patient's condition 
that is essentially a list of possible diseases, ranked by a calculated estimate 
of likelihood or degree of belief in each. 

Researchers (Patil, 1979; Pople, 1977; Smith, 1978) have recognized 
the need to use notions such as causal relationships, temporal patterns, 
and aggregate disease categories in the description of a program's diag
nostic understanding, but the mechanisms provided to do this have been 
too weak. For example, although causality appears as a term in descriptions 
in PIP and INTERNIST-I, in both cases its use is limited to guiding the 
propagation of likelihood measures. These programs fail to capture the 
human notion that explanation should rest on a chain of cause-effect de
duction. Although the CASNET/Glaucoma (see Chapter 7) program uses 
a network of causally related states and defines diseases as paths in this 
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network, its primary reasoning mechanism is nevertheless the local prop
agation of probability weights. 

Similarly, it has been realized that a diagnostic or therapeutic program 
must consider a case at various levels of detail in order to integrate its 
overall understanding with its detailed knowledge. This insight also has 
not prevailed in the actual mechanisms provided in existing programs. 

To explore the issues outlined here, we have undertaken a study of 
the medical problem of providing expert consultation in cases of electrolyte 
and acid-base disturbances. We have partly completed implementation of 
a program, ABEL, that is the diagnostic component of our overall effort. 
In this paper we concentrate on ABEL's mechanism for describing a pa
tient. Called the patient-specific model (PSM) (Gorry et al., 1978), this de
scription includes data about the patient as well as the program's hypo
thetical interpretations of these data in causal hierarchical networks. We 
describe the representations of medical knowledge and the processing 
strategies needed to enable ABEL to construct a PSM from the initial data 
presented to the program about a patient. The same representations and 
procedures will also be useful to revise the PSM during the process of 
diagnosis, but we will concentrate here on the logically prior operation of 
building the PSM. 

Our understanding of medical expert reasoning suggests that an ex
pert physician may have an understanding of a difficult case in terms of 
several levels of detail. At the shallowest that understanding may be in 
terms of commonly occurring associations of syndromes and diseases, 
whereas at the deepest it may include a biochemical and pathophysiological 
interpretation of abnormal findings. For our program to reason at a so
phisticated level of competence, it will need to share such a range of rep
resentations. The PSM is, therefore, a multilevel causal model, each level 
of which attempts to give a coherent account of the patient's case. This 
model also serves as the basis for an English-generation facility that pro
vides explanations of the program's understanding. 

The PSM is created by instantiating portions of ABEL's general med
ical knowledge and filling in details from the specific case being considered. 
The instantiation of the PSM is very strongly guided by initially given data, 
because the PSM includes only those disorders and connections that are 
needed to explain the current case. Instantiation is accomplished by five 
major operators. Aggregation and elaboration make connections across the 
levels of detail in the PSM by filling in the structure above and below, 
respectively, a selected part of the network. In a domain such as ABEL's, 
multiple disorders in a single patient and the presence of homeostatic 
mechanisms require the program to reason about the joint effects of several 
mechanisms that collectively influence a single quantity or state. Component 
decomposition and summation relate disorders at the same level of detail by 
mutually constraining a total phenomenon and its components; the net 
change in any quantity must be consistent with the sum of individual 
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changes in its parts. The final operator, projection, forges the causal links 
within a single level of detail in the search for etiologic explanations. The 
operators all interact because the complete PSM must be self-consistent 
both within each level and across all its levels. Therefore, each operation 
typically requires the invocation of others to complete or verify the creation 
of related parts of the PSM. 

14.2 Hierarchical Representation of Medical 
Knowledge 

Based on our observation that a physician's knowledge is expressed at 
various levels of detail, we have developed a hierarchical multilevel rep
resentation scheme to describe medical knowledge and procedures to in
stantiate this knowledge to describe a particular patient's illness. The lowest 
level of description consists of pathophysiological knowledge about dis
eases, which is successively aggregated into higher-level concepts and re
lations, gradually shifting the content of the description from physiological 
to syndromic knowledge. The aggregate syndromic knowledge provides us 
with a concise global perspective and helps in the efficient exploration of 
diagnostic possibilities. The physiological knowledge provides us with the 
capability of handling complex clinical situations arising in patients with 
multiple disturbances, evaluating the physiological validity of the diagnos
tic possibilities being explored, organizing a large number of seemingly 
unrelated facts, and formulating therapy recommendations and prognosis. 
Finally, since the causal-physiological reasoning tends to be categorical and 
the syndromic reasoning probabilistic, the hierarchical description allows 
us to blend together the use of categorical and probabilistic reasoning (see 
Chapter 9). 

14.2.1 Multilevel Description of States 

Medical knowledge about different diseases and their pathophysiology is 
understood in varying degrees of detail. While it may be easier for a pro
gram to reason succinctly with medical knowledge artificially represented 
at a uniform level of detail, we must be able to reason with medical knowl
edge at different levels of detail to exploit all the medical information 
available. Although this does not pose any difficulty in medical domains 
where the pathophysiology of diseases is not well developed, in a domain 
such as electrolyte and acid-base disturbances where, on the one hand, the 
pathophysiology of the disturbances is well developed and, on the other, 
the pathophysiology of many of the diseases leading to these disturbances 



Hierarchical Representation of Medical Knowledge 343 

is relatively poorly understood, we are constantly faced with this problem. 
Second, the information about a patient parallels the physician's med

ical knowledge about diseases and therefore also comes at different levels 
of detail. For example, "serum creatinine concentration of 1.5" is at a dis
tinctly different level than "high serum creatinine," 1 and "lower gastroin
testinal loss" is at a different level than "diarrhea." We need some mecha
nism by which we can interrelate these concepts. Finally, in order to be 
effective in diagnostic problem solving and communicating with clinicians, 
we ought to have the ability to portray the diagnostic problem in a small 
and compact space. Yet to be efficacious, we must maintain the ability to 
take every possible detail into consideration. We have solved this problem 
by representing the medical knowledge in five distinct levels of detail from 
a deep pathophysiological level to a more aggregate level of clinical knowl
edge about disease associations. 

Each level of the description can be viewed as a semantic net describing 
a network of relations between diseases and findings. Each node represents 
a normal or abnormal physiological state and each link represents some 
relation (causal, associational, etc.) between different states. A state (inter
changeably used with node) in the system, such as "diarrhea," is repre
sented as a node in the causal network. Each node is associated with a set 
of attributes describing its temporal characteristics, severity or value, and 
other relevant attributes. A state is called a primitive node if it does not 
contain internal structure and is called a composite node if it can be defined 
in terms of a causal network of states at the next more detailed level of 
description. One of the nodes in this causal network is designated as the 
focus node, and the causal network is called the elaboration structure of the 
composite node. The focus node identifies the essential part of the causal 
structure of the node above it. Indeed, the collection of focus nodes acts 
to align the causal networks represented by different levels of the PSM. 
We note that very often a composite node and its focal description at the 
next level share the same name; this is typical in English, where the level 
of detail of place names, for example, is often obtained from context and 
not encoded in the name used. Nodes that do not play a role as the focal 
definition of any node at a higher level are called nonaggregable nodes. They 
represent a detailed aspect of the causal model that is subsumed under 
other nodes with different foci at less detailed levels of description. 

To illustrate the description of a state at various levels of aggregation, 
let us consider the electrolyte and acid-base disturbances that occur with 
diarrhea, which is the excessive loss of lower gastrointestinal fluid (lower 
GI loss). The composition of the lower gastrointestinal fluid and plasma 
fluid are as follows: 

1 For a muscular patient whose previously known value of creatinine is 1.3 we can assume this 
to be normal, but for a patient with a previously known value of 1.0 this is definitely high 
and could imply a loss of about one-third of the kidney function. 
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Na 
K 
Cl 
HC03 

Lower GI fluid 
100-110 
30-40 
60-90 
30-60 

Plasma fluid 
138-145 mEq/L 
4-5 mEq/L 
100-110 mEq/L 
24-28 mEq/L 

In comparison with plasma fluid, the lower GI fluid is rich in bicarbonate 
(HC03) and potassium (K) and is deficient in sodium (Na) and chloride 
(Cl). This information is represented in the knowledge base by decompos
ing lower GI loss into its constituents (and associating appropriate quan
titative information with the decomposition). The loss of lower GI fluid 
would result in the loss of corresponding quantities of its constituents (in 
proportion to the total quantity of fluid loss) as shown in Figure 14-1. 

Therefore, an excessive loss of lower GI fluid without proper replace
ment of fluid and electrolytes would result in a net reduction in the total 
quantity of fluid in extracellular compartments (hypovolemia). Because the 
concentration of K and HC03 in lower GI fluid is greater than it is in 
plasma fluid, there is a corresponding reduction in the concentration of K 
(hypokalemia) and HC03 (hypobicarbonatemia) in the extracellular fluid. 
Finally, as the concentration of Cl and Na in the lower GI ft uid is lower 
than that in plasma fluid, there is an increase in the concentration of Cl 
(hyperchloremia) and Na (hypernatremia) in the extracellular fluid. This 
is represented at the next level of description as shown in Figure 14-2. 

Figure 14-3 shows the aggregation of this information along with some 
additional causes and consequences of lower GI fluid loss at the next more 
aggregate level of detail. 

The lower GI fluid loss at this level is a nonaggregable state and there
fore does not have an aggregation at the next level above. Figure 14-4 
shows the description of the aggregate effects of diarrhea (one of the 
causes of lower GI loss). 

The summarization of the description of lower GI fluid loss and diar
rhea shown in Figure 14-4 is achieved through the use of link aggregation 
and elaboration, described in the next subsection. 

water-loss 
constituent-of 

< 

I bicarb-loss 
constituent-of 

< I constituent-of 
sodium-loss Lower-GI-fluid-losses 

potassium-loss < 
constituent-of I 

chloride-loss 
constituent-of 

FIGURE 14-1 Effects of lower GI fluid losses on lower GI 
fluid constituents. 



Hierarchical Representation of Medical Knowledge 345 

hypobicarbonatemia 
causes 

~ 

I 
hypokalemia 

causes 
< I causes 

hyperch lo rem ia Lower-GI-fluid-losses 

hypernatrem ia 
causes I _J < 

hypovolemia 
causes 

FIGURE 14-2 Effects of lower GI fluid losses at the next level 
of description. 

metabolic-acidosis 
causes 

< 

I dehydration 
causes causes 

< I ~ causes causes 
hypotension Lower-GI-flu id-losses < 

weakness 
causes I 

I 
1 causes 

< 
acute-renal-failure 

causes 
< 

FIGURE 14-3 Aggregation ofinformation in Figure 14-2 with 
some additional causes and consequences of lower GI fluid loss. 

metabolic-acidosis 
causes 

< 

I dehydration 
causes 

< I causes 
hypo tension diarrhea 

weakness < 
causes ·I 

I acute-renal-failure 
causes 

< 

FIGURE 14-4 Summarization of the description of lower GI 
fluid loss and diarrhea. 

14.2.2 Multilevel Description of Causal Links 

colostomy 

diarrhea 

fistula 

A causal link specifies the cause-effect relation between the cause (the an
tecedent) and the effect (the consequent) states. In past programs (e.g., 
PIP, INTERNIST), causal links were described by specifying the type of 
causality (may-be-caused-by, complication-of, etc.) and a number or a set 
of numbers representing in some form the likelihood (conditional proba-
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Causal-Link 
Effect- Instance < Cause-Instance 

Attribute:1 

Attribute:2 

Attribute:3 

Mapping 
Relation 

Contexts Def au Its 

FIGURE 14-5 A causal link in the system. 

Attribute:1 

Attribute:2 

bility), importance, etc., of observing the effect given the cause or vice versa. 
We now believe that this simple representation of the relation between 
states is inadequate. The form of presentation of an effect and the con
ditional probability of observing it depend on various aspects of the cause, 
such as severity, duration, etc., as well as other factors in the context in 
which the link is invoked2 (such as the patient's age, sex, and weight, and 
the current hypothesis about the patient). Therefore, a causal link in the 
system (an object denoting the causal relation between a cause-effect pair) 
specifies a multivariate relation between various aspects of the cause and 
effect and also specifies the context and assumptions that constrain the 
causal relation, as shown in Figure 14-5. 

One important function of diagnostic reasoning is to relate causally 
the diseases and symptoms observed in a patient. These causal relations 
play a central role in identifying clusters that can be meaningfully aggre
gated in developing coherent diagnoses. The presence or absence of a 
causal relation between a pair of states can change their diagnostic and 
prognostic interpretations. Therefore, the system should and does have 
the capability of hypothesizing the presence or absence of a causal link. 
This is the reason why links are objects in their own right rather than 
simple pointers between nodes. 

To reason with a causal network representation effectively, a program 
must make conclusions about a node or link depending only on informa
tion that is locally available from the neighborhood of the mechanism in 
question. If nonlocal effects are to be invoked in causal explanations, they 
must be explicitly identified (e.g., as part of the context of the causal link), 
or else they corrupt our ability to reason with any portion of the network. 
If at some level of detail two distant phenomena interact, we must aggre
gate the description of the causal network to a level where the two phe
nomena are adjacent to one another. Further, because the causal relations 

2For example, a severe diarrhea causes severe hypokalemia, and a mild diarrhea causes mild 
hypokalemia. 
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clinical level 

dehydration 

focus 

intermediate level 

dehyd ation 
causes 

focus 

pathophysiological level 
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FIGURE 14-6 Causal relation between diarrhea and dehydra
tion. 

diarrhea 

focus 

diarrhea 
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I 
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: focus 
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I 
I 
I 
I 
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diarrhea 

specified by links are not guaranteed to be true under all circumstances 
(they represent strong associations, not logical truth), the validity of de
ductions degrades with every additional intermediate link. That is, a causal 
pathway containing a large number of links is less likely to be valid than 
one using only a few links. Therefore, in order to explore a large diagnostic 
space, we must aggregate the diagnostic space to a level where each link 
represents an aggregate causal phenomenon covering larger distances and 
thus minimizing the possibility of error in the deduction. This ability to 
move from one level of description to another is provided by the multilevel 
description proposed here. 

Links can be categorized, as nodes are, into two types: the primitive 
links and the composite links. To illustrate the concept of elaborating causal 
links to form a causal pathway, let us consider the causal relation between 
diarrhea and dehydration shown in Figure 14-6. The causal mechanism 
of diarrheal dehydration can be elaborated as follows: diarrhea causes 
lower GI fluid loss, which causes dehydration. Expressed at the next level 
of detail, the lower GI fluid loss can be described as consisting of the loss 
of water and sodium along with other electrolytes. The water loss in the 
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presence of the reduced total quantity of extracellular sodium results in 
lower extracellular volume, which at the higher level of description is de
scribed as dehydration. 

14.3 Reasoning About Components 

One of the important areas of medical diagnosis not adequately addressed 
by the first generation of AIM programs is the evaluation of the effect of 
more than one disease present in ·the patient simultaneously, especially 
when one of the diseases alters the presentation of the others. This prob
lem does not place serious limitations on programs dealing with single 
problems such as the therapy of glaucoma or the diagnosis of bacteremia. 
But, in the case of electrolyte and acid-base disturbances, where a large 
fraction of cases involve multiple diagnoses, the ability to evaluate the joint 
influence of multiple diseases and the ability to decompose their influences 
on observable findings is particularly important. 

For example, let us consider a patient with diarrhea and vomiting 
leading to severe hypokalemia. Let us also suppose that we know about 
the diarrhea, but we are not aware of the vomiting. The observed hypo
kalemia is too severe to be properly accounted for by the diarrhea alone. 
Without the ability to decompose the hypokalemia, we would have to at
tribute it completely to the diarrhea or completely to something else. In 
either case3 we fail because the total state of hypokalemia is inconsistent 
with any of its possible single causes. Thus any single cause hypothesized 
by the program (e.g., vomiting) will not be severe enough to account for 
the observed hypokalemia by itself. As argued above, we need the ability 
to hypothesize that only a part of the hypokalemia is accounted for by 
diarrhea. We introduce the notion that any primitive node in the causal 
hierarchy4 may have components, which are other primitive nodes that to
gether make up the given node. 

In our system this is achieved by a pair of operators: component sum
mation and its dual, component decomposition. Using our example, these op
erators allow us to attribute only a part of hypokalemia to the diarrhea 
and to compute that part of hypokalemia that is not caused by diarrhea 
(called the unaccounted component of the hypokalemia). These operations 
deal not only with the magnitude of some disorder but also with other 
attributes such as duration. They are implemented by associating with each 

3 All of the previous programs would allow the entire hypokalemia to be accounted for by 
diarrhea. In particular, PIP, after allowing the hypokalemia to be accounted for by diarrhea, 
will not allow hypokalemia to lend any support to the hypothesis of vomiting. INTER
NIST-I, on the other hand, will allow the entire hypokalemia to lend support to the hypothesis 
of vomiting as well as allowing it to be explained by diarrhea. 
4Recall that primitive means that it is not the aggregation of a further defined causal structure. 
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primitive node a multivariate relation that constrains attributes of the node 
and its constituents. Component summation combines attributes of the 
components to generate the attributes of the joint node; component de
composition identifies unaccounted components by noting differences be
tween the joint node and its existing components. These operations enrich 
the PSM by instantiating and unifying component nodes when the case 
demands them. This occurs whenever multiple causes contribute jointly to 
a single effect. An important case of this arises whenever feedback is mod
eled, because in any feedback loop there is at least one node acted on both 
by an outside factor and by the feedback loop itself. 

As the PSM is built, component summation and decomposition op
erations can cause a node in the program's general knowledge to be in
stantiated as a node and its several components. If a node is primitive and 
there are multiple causes, the contribution of each cause. is instantiated 
separately. Then the profile of the combination is computed using com
ponent summation. The combined effect is then instantiated and con
nected to its components by component links. 

Because components are defined only for primitive nodes, the instan
tiation of composite nodes that involve component summation must be in 
terms of the summation of components in the node's elaboration structure. 
If the node is composite, we elaborate the constituent nodes around their 
focal nodes until we reach the primitive nodes associated with them at a 
level of greater detail. Then we combine these primitive nodes and aggre
gate their effects back. For example, if we know that a patient has two 
disturbances, diarrhea and shock, causing metabolic acidosis (Figure 
14-7)5 , we evaluate their contribution to metabolic acidosis and then focally 
elaborate the two components until the metabolic acidosis is described in 
terms of the quantity of serum bicarbonate lost.6 We then aggregate the 
joint effects to derive the actual severity of metabolic acidosis. 

As mentioned above, the mechanism of component summation allows 
us to represent feedback explicitly by representing the primary component 
of the change (the forward path) and the secondary feedback component 
(the response of the homeostatic mechanism in defense of the parameter 
being changed) as components to be summed to yield the whole. Figure 
14-8 shows the primary change in serum pH caused by low serum bicar
bonate and the response of the respiratory system in defense against the 
change in serum pH. Read the example as follows: the lowering of the 
concentration of serum bicarbonate causes a reduction in serum pH, which 
causes hyperventilation and thus reduces the pC02, which in turn causes 
an increase in the serum pH (negative feedback). This increase is less than 
the initial reduction, causing a net reduction in serum pH. 

5This is a hypothetical example; in the program this component summation will take place 
at the pathophysiological level. 
6The quantities of serum bicarbonate lost may be summed by simply adding the loss due to 
each cause to evaluate their combined effect. 
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FIGURE 14-7 Metabolic acidosis caused by diarrhea and 
shock. 
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FIGURE 14-8 Primary change in serum pH caused by low 
serum bicarbonate causes response by respiratory system. 

The decomposition of an effect with multiple causes into its causal 
components also provides us with valuable information in evaluating prog
nosis and in formulating therapeutic interventions. 

14.4 The Patient-Specific Model 

Diagnosis is the process of actively seeking information and identifying the 
disease process(es) causing the patient's illness. In other words, diagnosis 
involves ascertaining the facts and their implications. The effectiveness of 
the information-gathering process depends on the analysis of the available 
facts. From our experience with the existing diagnostic systems (Pople et 
al., 1975) (see also Chapter 6) we are convinced that a relatively simple 



The Patient-Specific Model 351 

representation of physician's analysis of patient's illness (i.e., a list of disease 
hypotheses) is incapable of providing the desired level of expertise. The 
patient description must unify all known facts about the patient, their in
terpretations, their suspected interrelationships, and disease hypotheses in 
order to explain these findings. Finally, we observe that at any point in 
diagnostic reasoning practiced by human experts, there are only a few 
significantly different explanations for the patient's illness under consid
eration. 

In the program, each such explanation is represented by a patient
specific model (PSM). Note that within each PSM all the diseases, findings, 
etc., are mutually complementary, while the alternate PSM's are mutually 
exclusive and competing. In this section we describe procedures for build
ing and extending a patient-specific model based on the known findings 
and the program's medical knowledge. These operations are initial formu
lation to create an initial patient description from the presenting complaints 
and laboratory results, aggregation to summarize the description at a given 
level of detail to the next more aggregate level, elaboration to elaborate the 
description at a given level of aggregation to the next more detailed level, 
and projection to hypothesize associated findings and diseases suggested by 
states in the PSM. 

14.4.1 Initial Formulation 

From observing the clinical behavior of physicians, we have noticed that 
when presented with the chief complaints and other voluntarily provided 
information in a case, the physicians set up a tentative diagnosis. This 
diagnosis serves as a specific framework that can be used in soliciting in
formation and for organizing the incoming information. Similarly, the pro
gram, when provided with the initial findings and a set of serum electrolyte 
values, constructs a small set of PSM's as its initial possible diagnoses, using 
the following steps. First, it analyses the electrolytes and formulates all 
possible single or multiple acid-base disturbances that are consistent with 
the electrolyte values provided and selects from them a small set that is 
consistent with the initial findings. Next, it generates a pathophysiological 
explanation of the electrolytes based on each of the proposed acid-base 
disturbances. This is performed by elaborating all known clinical infor
mation to the pathophysiological level, where its relationships to the lab
oratory data are determined by projecting the unique causes and definite 
consequences of every node. Then the program summarizes these patho
ph ysiological descriptions to the clinical level by repeated application of 
aggregation operations. This process results in the initial description of 
the patient at every level of detail. It is this description that is later modified 
by the diagnostic process as new information becomes available. Note that 
each of the mechanisms, aggregation, elaboration, and projection, are used 
in the initial formulation of the PSM. 
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14.4.2 Aggregation 

The aggregation process allows us to summarize the description of the 
patient's illness at any given level to the next more aggregate level. The 
summarization of a causal network can be achieved by recognizing that a 
central node and its surrounding causal relationships may be expressed at 
a more aggregate level by a single node (called focal aggregation) and by 
summarizing a chain of relations between nodes by a single causal relation 
between the initial cause and the final effect nodes (called causal aggrega
tion). 

Focal Aggregation 

In aggregating a causal network, we must first identify the nodes in the 
network that form anchor points (i.e., landmarks, points of special signif
icance) around which the causal phenomenon can be summarized. Con
sider a partially completed PSM in which some nodes at a detailed level of 
aggregation have been instantiated. Any of these nodes is an anchor point 
if ( 1) in the medical knowledge base such a node is the focus of some node 
at the next more aggregate level in the network and (2) at least one such 
higher-level node already exists or can be instantiated within the PSM. If 
it exists and the constraints on the focal link are satisfied, then the focal 
link connecting the two is instantiated. If it does not exist, then both it and 
the focal link are instantiated. Finally, if more than one possible description 
of the node is consistent with the causal structure above, we defer the 
aggregation process until we can obtain some additional information to 
resolve this ambiguity. 

Causal Aggregation 

Once we have determined the focal aggregations for nodes at a given level 
of aggregation, we need to describe the causal relations among these ag
gregate nodes. The process of causal aggregation takes a node and its 
causes and aggregates the relation between them according to one of three 
rules. First, if the node has no causal predecessors or if none of the causal 
paths leading into the node (called predecessor paths) have a node with a 
focal aggregation, then the focal aggregation of the node either is an ul
timate etiology or is totally unaccounted for and does not need to be 
causally aggregated. Second, if every predecessor path has a node with a 
focal aggregation, then the focal aggregation of the node is fully accounted 
for. The causal aggregation is achieved by instantiating a causal link be
tween the focal aggregation of the node and the first focal aggregation in 
each path. Finally, if only some of the predecessor paths have nodes with 
focal aggregations, then the focal aggregation of this node is partially ac-
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counted for. The causal aggregation is achieved by decomposing the node 
into two components: (1) the component due to paths that have focal ag
gregation (called the accounted component), and (2) the component due to 
paths that do not have focal aggregation (called the unaccounted component). 
Then the focal aggregation of the node is decomposed based on the de
composition at the present level, and the two cases are treated as described 
above. 

14.4.3 Elaboration 

Elaboration is the dual of the aggregation operation described above and 
is used to elaborate the description of a causal network at a given level of 
aggregation to the next more detailed level. This is achieved by elaborating 
each link in the causal network by first describing the cause and effect of 
the link at the next more detailed level (called focal elaboration) and then 
instantiating the causal pathway between these detailed nodes (called causal 
elaboration). If the causal pathway being instantiated interacts with other 
causal paths in the PSM, the combined effects of the multiple causality are 
computed using component summation. The combined effects of this sum
mation can then be aggregated to reflect the better understanding of the 
causal phenomenon at higher levels of aggregation. 

Focal Elaboration 

Focal elaboration is the inverse of focal aggregation. To focally elaborate 
a composite node, the program computes the possible profile of the focal 
concept associated with the given node. If a node at the next lower level 
of aggregation matches this profile and is consistent with the node above, 
the program instantiates the focal link connecting the two. If not, it in
stantiates the focal node and the focal link connecting the two. 

Causal Elaboration 

Causal elaboration is the dual of causal aggregation. A composite causal 
link can be elaborated if the cause and the effect nodes of the link have 
focal elaborations. To elaborate a composite link, the program matches the 
causal path associated with the link starting at the focal nodes of the cause 
and the effect of the link with existing paths in the PSM. If some part of 
this pathway is not present in the PSM, the program recursively calls itself 
on each link in the pathway (starting from the focus node of the source) 
that is absent in the PSM. If the link being recursively elaborated is a 
primitive link and if its effect node is not present in the PSM, the effect 
node and the link a\e instantiated. Otherwise, if the effect node is present, 
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it matches the attributes of the cause and the effect nodes. If they are 
compatible, it instantiates the link. Otherwise, if the effect node is an ob
served node,7 the program decomposes the effect node and instantiates 
the link connecting the cause and the component of the effect node con
tributed by it. Otherwise, if the effect node is accounted for by some other 
cause, it instantiates the combined effect by summing the components of 
the two causes. Finally, it aggregates the effect node to revise the descrip
tion at the next more aggregate level. 

14.4.4 Projection 

The projection operation is used to hypothesize and explain the associated 
findings and diseases suggested by the states in the PSM. The projection 
operation is very similar to elaboration. It differs from elaboration in that 
the causal relation being projected is hypothetical and therefore is not 
present in the PSM. Furthermore, the projection operation fails if the 
causal description of the hypothe~ized link is inconsistent with the descrip
tion in the PSM at any level of aggregation. As a result, the application of 
the projection operation cannot result in the decomposition of a fully ac
counted node, creating an additional unaccounted component and there
fore degrading the quality of explanation. 

We envision using the projection operation in the diagnostic problem 
solver for exploring diagnostic possibilities, for evaluating their physiolog
ical validity, and in generating expectations about the consequences of 
hypothesized diagnoses. 

14.5 An Example 

Let us consider a 40-year-old 70-kg patient who has been suffering from 
moderately severe diarrhea for the last two days and, as a result, has de
veloped moderately severe metabolic acidosis and hypokalemia. The lab
oratory analysis of the patient's blood sample (serum analysis) is Na, 140; 
K, 3.0; Cl, 115; HC03, 15; pC02, 30; and pH, 7.32. 

14.5.1 Initial Formulation 

To exercise the program, let us provide it initially with only the laboratory 
data. Based on these data, the program generates all possible acid-base 
disturbances that can account for the laboratory data, as follows: 

70r if the effect node is a causal predecessor of some observed node that completely accounts 
for it. 
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1. metabolic acidosis 

2. chronic respiratory alkalosis + acute respiratory acidosis 

3. metabolic acidosis + chronic respiratory alkalosis + acute respiratory 
acidosis 

4. metabolic alkalosis + chronic respiratory alkalosis + acute respiratory 
acidosis 

Based on the complexity, 8 likelihood, and severity of each component, 
the list of possible disturbances is pruned and rank ordered. 9 The rank
ordered list of likely disturbances is 

1. metabolic acidosis (severity: 0.4) 

2. chronic respiratory alkalosis (severity: 0.68) + acute respiratory acidosis 
(severity: 0.32) 

The program now creates a PSM 10 for each possible acid-base distur
bance and asserts in it instantiations of the laboratory data (at the patho
physiological level) and the appropriate acid-base disturbances (at the clin
ical level). In the rest of the example we will focus on the first acid-base 
disturbance, metabolic acidosis. The program focally elaborates the met
abolic acidosis through the intermediate levels until it reaches the patho
physiological level and thus identifies the amount of HC03 loss corre
sponding to the severity of the metabolic acidosis. Based on this 
information and the laboratory data, it instantiates the feedback loop cor
responding to the acid-base homeostatic mechanism. Next, it projects 
back 11 each node whose cause can be uniquely determined and projects 
forward the definite consequences of each node in the PSM. We now have 
the explanation at the pathophysiological level of the electrolytes consistent 
with the diagnosis of metabolic acidosis as shown in Figure 14-9. 

14.5.2 Aggregation 

After the pathophysiological description is completed, this description is 
aggregated through the intermediate levels to the clinical level of detail. 
To illustrate this operation, let us consider the low-serum-K-1 node at the 

8Triple disturbances are quite rare and are generally not considered during initial formulation 
unless there is compelling evidence for their presence. 
9The rank ordering of the diseases is based on Occam's Razor-simpler hypotheses are pre
ferred. 
1°For ease of explanation, the example described here uses a three-level PSM instead of the 
five-level PSM used in the program. 
11 Note here that as we are at the pathophysiological level, each link being pr~jected is prim
itive. Thus projecting back at this level can be restated as instantiating the cause and the link 
connecting the cause and the effect node. 
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FIGURE 14-9 Initially formulated PSM. 

pathophysiological level. Focally aggregating this node, we instantiate hy
pokalemia-I as shown in Figure I4-9. To determine the causal aggregation 
of this node at the next level of detail, we must focally aggregate the first 
aggregable node in each path leading back, in this case low-pH-I. Focally 
aggregating low-pH-I, we instantiate acidemia-1. Next, we compute the 
component oflow-serum-K that can be accounted for by low-pH-I and the 
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component that remains to be accounted for because of the unaccounted 
K-loss-2. Then we compute the mapping of these components at the next 
level of aggregation and instantiate normokalemia-I (the component ac
counted for by low-pH-I) and hypokalemia-2 (due to unaccounted K-loss-
2). We then connect the normokalemia-I to acidemia-I and mark the hy
pokalemia-2 as unaccounted (indicated in the figure by an asterisk). Next, 
in order to causally aggregate low-pH-I, we focally aggregate low-pCOr I 
and low-HC03-I into hypocapnia-I and hypobicarbonatemia-I, respec
tively. As each path leading back from low-pH-I terminates in a node with 
focal aggregation, the focal aggregation oflow-pH-I (acidemia-I) is a fully 
accounted node. Therefore, we connect acidemia-I to hypocapnia-I and 
hypobicarbonatemia- I. This process is repeated for each aggregable node 
at the current level, and then the whole process is repeated at the next 
level until we reach the clinical level of aggregation. 

14.5.3 Projection 

To illustrate the projection operation, let us assume that the diagnostic 
component has hypothesized that the unaccounted component of hypo
kalemia at the clinical level (hypokalemia-2) is caused by diarrhea and 
wishes to determine if this is so and how this assumption fits with the 
current PSM. The result of this operation is shown in Figure I 4-I 0. 

To project the link between hypokalemia and diarrhea, the program 
evaluates the link to determine the attribute profile of the diarrhea con
sistent with hypokalemia-2, from which it determines the profile of diar
rhea at the next more detailed level. It then attempts to match the causal 
path associated with the link (hypokalemia - lower-GI-loss - diarrhea) at 
the next level. As none of the links in this pathway are present and as this 
causal pathway is consistent with the description at the next level, the pro
gram recursively calls itself on each link in the path. Considering the first 
link (that is, hypokalemia - lower-GI-loss), i_t finds the causal path associ
ated with this link at the next level of detail (low-serum-K - low-total-K -
K-loss +-- lower-GI-loss). Matching this path with the description in the 
PSM, it finds that all but one link (K-loss - lower-GI-loss) is already 
present. Since this link is primitive, the program evaluates the profile of 
the lower-GI-loss consistent with the unaccounted component of K-loss 
and instantiates it and the causal link connecting lower-GI-loss-I to K-loss-
2. To reflect this addition at the higher levels of detail, the program ag
gregates the low-serum-K-I (the effect node in the path). As the low-serum
K-I is now a fully accounted node, the component structure associated 
with its focal aggregation (hypokalemia-I) is deleted, and the causal links 
associated with the accounted component of hypokalemia-I and an addi
tional link from lower-GI-loss-I are connected to it. This process is re
peated until we establish the relation between the diarrhea and hypoka
lemia at the clinical level. 
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FIGURE 14-10 PSM extended to include diarrhea. 

14.5.4 Elaboration 

The process of elaboration is similar to that of projection described above 
and differs from it in two major ways: (1) the causal link and the associated 
nodes already exist in the PSM at the higher level of aggregation, and (2) 
we have already determined that the causal link being elaborated is valid. 
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Therefore, if a causal pathway associated with the link at some level of 
detail is not consistent with the description in the PSM, the program mod
ifies the PSM appropriately to accommodate the pathway. In the example 
being described, the second (and more interesting) case does not arise. To 
demonstrate the elaboration process, let us establish the relation between 
diarrhea- I and metabolic-acidosis- I at the clinical level. The result of elab
orating this link is shown in Figure 14-10. 

14. 6 English Explanation 

To illustrate the program's understanding of the patient's illness at various 
levels of detail, an English generator was implemented to translate the PSM 
at any given level into its English description. 12 The descriptions are given 
at three levels of detail in Figure 14-11. 

14 7 Conclusion • 

We have begun a complex and challenging task: to reason about difficult 
medical problems with a representation that is capable of capturing the 
subtlety and richness of knowledge and hypotheses used by expert physi
cians. We have thus far succeeded in creating a representation and a set 
of structure-building operators that are able to create a patient description 
based on causal models, multiple levels of detail in description, and the 
explicit use of components of quantities and states. The various viewpoints 
on the patient represented by different cuts through this complex descrip
tion are kept consistent by the operators. We believe that this approach 
displays a level of understanding not achieved before in medical reasoning 
programs or other programs that need to describe an organization of hy
potheses or mechanisms at different levels of detail. 

In continuing to develop our diagnostic and therapeutic programs, we 
believe that the organizational framework provided by the PSM and its 
associated operators gives us a suitable machinery for exploring the choice 
of reasoning strategies and recording our programs' changing conceptions 
of a case. The rich network of interconnections in the PSM constrains a 
diagnostic reasoner to generate only a relatively small number of coherent 
explanations, thereby reducing the space of possibilities to be investigated 

12The generator makes use of the methodology and some of the code of a generator built 
by William Swartout as part of an interactive system that explains and justifies portions of 
expert programs (Swartout, 1981 ). 
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Clinical Level 

This is a 40-year-old 70.0-kg male patient with moderate diarrhea. His electrolytes are: 

Na: 140.0 
K: 3.0 
Cl: 115.0 

HC03 : 15.0 
pC02 : 30.0 
pH: 7.32 

Agap: 13.0 

The diarrhea causes moderate metabolic acidosis, which causes mild acidemia. The acidemia and diarrhea 
cause mild hypokalemia, and acidemia causes hyperventilation. All findings have been accounted for. 

Intermediate Level 

This is a 40-year-old 70.0-kg male patient with moderate diarrhea. His electrolytes are: .... 

The diarrhea causes moderate lower GI loss, which causes moderate metabolic acidosis. The 
metabolic acidosis along with moderate hypocapnia causes moderate hypobicarbonatemia. The 
hypobicarbonatemia along with hypocapnia causes mild acidemia. The acidemia and lower GI loss cause 
mild hypokalemia, and acidemia causes hypocapnia. The acidemia also causes hyperventilation. All findings 
have been accounted for. 

Pathophysiological Level 

This is a 40-year-old 70.0-kg male patient with moderate lower GI loss. His electrolytes are: .... 

Moderate lower GI loss, reduced renal HC03 threshold, and normal HC03 buffer binding jointly 
cause no HC03 change. The no HC03 change causes low ecf HC03 , which causes low serum HC03 . The 
low serum HC03 and low serum pC02 jointly cause low serum pH. The low serum pH causes K shift out of 
cells and causes increased respiration rate. The increased respiration rate causes low serum pC02 , which 
causes normal HC03 buffer binding. The low serum pC02 also causes reduced renal HC03 threshold and 
increased respiration rate causes increased ventilation. The lower GI loss and K shift out of cells jointly cause 
K loss. The K loss causes low ecf K, wh~ch causes low serum K. All findings have been accounted for. 

FIGURE 14-11 English explanation at different levels of 
detail. 

in seeking a diagnosis. In particular, enforcing the requirements of causal 
consistency (at each appropriate level of detail) on any tenable explanation 
provides a means of pruning the diagnostic space and permits us to try a 
"hypothesize and debug" reasoning strategy. The multilevel interconnec
tions of the PSM also help us merge decisions and considerations we have 
described as categorical and probabilistic. Although much work clearly 
remains before developments such as those described here form the fabric 
of truly successful medical consulting systems, we have proposed here a 
useful new representational basis for such work. 
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15 
NEOMYCIN: 

. Reconfiguring a Rule-Based 
Expert System for 
Application to Teaching 

William J. Clancey and Reed Letsinger 

As described 'in the introduction to GU/DON (Chapter 11 ), Clancey's work 
on that system led to an appreciation of the severe limitations of MYC/N's 
knowledge base if the system were to be used for instructional purposes 
(Clancey, 1983b). The NEOMYCIN research described in this chapter has 
been an attempt to rethink the knowledge structure and diagnostic strategy 
of MYCIN in view of requirements for teaching. This ~[fort has several 
important products: 

• a better understanding of medical diagnostic strategy and its relation to 
knowledge structures (such as F eltovich 's "logical competitor set," Chap
ter 12); 

• a design of a representation framework for separating strategy from 
domain facts, in which strategy is stated abstractly (Clancey, 1983c); 
and 

• a body of meta-rules, constituting a generic procedure that eases con
struction of knowledge bases for related problems in other domains (e.g., 
another diagnostic consultation program). 

The work is also of interest because of its relation to psychological studies 
(Chapter 12) and explanation methodology (Chapter 16). 

From Proceedings of the Seventh International joint Confnn1ce on Artificial Intelligence, vol. 2, 829-
836 (1981). Used by permission of International Joint Conferences on Artificial Intelligence, 
Inc.; copies of the Proceedings are available from William Kaufmann, Inc., 95 First Street, Los 
Altos, CA 94022. 
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NEOMYCIN is a medical consultation system in which MYC/N's knowl
edge base is reorganized and extended for use in the next version of GU/
DON. The new system attempts to capture psychological characteristics of 
diagnostic reasoning, designed to provide a basis for interpreting student 
behavior and teaching diagnostic strategy. This psychological orientation 
provides a constraint for making choices about representation and the rea
soning process. In particular, NEOMYCIN captures the forward-directed, 
"compiled association" mode of reasoning that characterizes expert behav
ior. Collection and interpretation of data are focused by the "differential" 
or "working" memory of hypotheses~ Moreover, the knowledge base is broad
ened so that GU/DON can teach a student when to consider a specific 
infectious disease and what competing hypotheses to consider, essentially the 
knowledge a human would need in order to use the MYCIN consultation 
system properly. 

In order to articulate this knowledge to a student, it was necessary to 
greatly revise MYC/N's representation. Kinds of knowledge that were pro
cedurally embedded in MYCIN's rules are stated separately, to make them 
accessible to the teaching program. The key idea is to represent explicitly 
and separately a domain-independent diagnostic strategy in the form of 
meta-rules, knowledge about a disease taxonomy, causal and data/hypothesis 
rules, and world facts. In essence, the new representation explicitly struc
tures and controls the use of the diagnostic rules, simplifying them by iso
lating the basic data/ hypothesis relations from their application criteria. 

A more detailed .discussion of methodological issues in the development 
of NEOMYCIN can be found in Clancey (1984). More recent research, 
exploiting the features of NEOMYCIN, includes modeling student strate
gies (London and Clancey, 1982) and stating strategies in explanations 
(Hasling et al., 1984). With the combination of empirical and knowledge
engineering interests, this research also has implications for incorporating 
cognitive modeling in new tools for building knowledge bases. 

15 1 Introduction • 

A knowledge base used in a teaching program must explicitly represent 
what a student might need to be told. Development of intelligent tutoring 
systems such as SOPHIE (Brown et al., 1975), WHY (Stevens and Collins, 
1978), 'WUMPUS (Goldstein, 1978), and GUIDON (Clancey, l 979a; 
l 979b) can be viewed, in part, as a problem of knowledge representation. 
This research has shown the advantages of: 

• multiple representations of knowledge (e.g., the simulation model and 
semantic network in SOPHIE)'; 
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• representations that can be both interpreted and used to generate teach
ing text [e.g., Brown's meteorological automata (Brown et al., 1973) and 
production rules used in WUMPUS and GUIDON]; 

• network representations of knowledge that capture "importance" 
[SCHOLAR (Carbonell, 1970)], "complexity" or "prerequisite" associa
tions [WUMPUS, BIP (Barr et al., 1976)], "analogy" and "generalization" 
relations (WUMPUS); and 

• representations that allow for variants on expert performance (for mod
eling the student) [WEST (Burton, 1979), BUGGY (Brown and. Burton, 
1978)]. 

In the GUIDON program we have been exploring the problem of 
using MYCIN's rule set as teaching material. MYCIN (Shortliffe, 1976) is 
a rule-based expert system that provides therapy advice for certain kinds 
of infectious diseases. It has spawned a class of systems, called EMYCIN 
systems, that all use the same production rule language and interpreter 
(van Melle, 1980). GUIDON can operate using the rule set of any EMYCIN 
system as subject material. 

MYCIN's rules were thought to be potentially useful for teaching be
cause formal evaluations indicate that MYCIN captures a high level of 
expertise (Yu et al., l 979b), and modular design and representational 
meta-knowledge enable the program to explain its reasoning (Davis, 1976). 
Ironically, we have found that it is in precisely these two areas-expertise 
and explanatory capability-so important for a successful teaching pro
gram, that MYCIN falls short. To solve these problems, we have imple
mented a new system we call NEOMYCIN. 

15.1.1 The Limitations of MYCIN for Application to 
Teaching 

MYCIN is designed to be used as a consultant; consequently, we encounter 
difficulties when using it for teaching a student how to be a primary diag
nostician. MYCIN's knowledge base is designed to interpret culture results 
from the blood and the cerebral-spinal fluid (CSF). But the expertise that 
suggests that such a culture should be taken is not part of the system. It 
is the user of MYCIN, the person seeking advice, who will think about 
meningitis in the first place and order the CSF culture and who will con
sider competing hypotheses (and medical tests) that need to be considered 
before MYCIN is even brought into the case as a consultant. This knowl
edge is certainly a critical part of teaching infectious disease diagnosis, but 
it lies completely outside the scope of the MYCIN knowledge base. 

Moreover, protocols of experts who solve the same cases as are pre
sented to MYCIN indicate that the program does not organize or use its 
knowledge in the same way a human expert does. This result is not sur-
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prising, for MYCIN was not designed to simulate the process of human 
reasoning. The rules make use of the same data a physician uses and some 
of the same intermediate concepts of disease, but MYCIN's weakly focused, 
exhaustive search is quite dissimilar from how people reason. For GUI
DON, our tutorial program, to articulate and recognize the hierarchical 
organizations of knowledge and search strategies that humans find useful, 
we need to reorganize MYCIN's rule set and incorporate an explicit model 
of human diagnostic reasoning, the kind indicated by psychological 
research in medical problem solving (Miller, 1975; Rubin, 1975; Pauker 
and Szolovits, 1977; Swanson et al., 1977; Elstein et al., 1978; Kassirer and 
Corry, 1978) (see also Chapter 6). In particular, the model must exhibit: 

• focused, forward-directed use of data (including trigger associations that 
suggest diagnoses); 

• follow-up questions that establish the disease process (part of what a 
physician calls "forming a picture of the patient"); and 

• management of a changing "working" memory of hypotheses under con
sideration. 

In this sense, the development of NEOMYCIN is an attempt to synthesize 
previous medical psychological research and to analyze its application to 
the infectious disease problem domain. 

15.1.2 Developing a Psychological Model by 
Modifying EMYCIN 

A psychological model of diagnostic reasoning cannot be represented using 
the EMYCIN representation alone, that is, by simply rewriting MYCIN's 
rules. For example, the idea of asking a follow-up question is not allowed 
by MYCIN's rule interpreter. Also, we need to apply rules selectively and 
nonexhaustively. In general, the rule representation and interpreter must 
be modified; rules need to be organized so they can be selectively applied 
in different ways. 

Many of the changes to EMYCIN are straightforward. They illustrate 
how local changes to the "inference engine" of a program can dramatically 
change how the knowledge base is used in problem solving. For example, 
a simple change is to provide for data-directed reasoning so new data can 
cause new subgoals to be set up and pursued. In MYCIN, an antecedent 
rule is tried whenever some piece of information required by the rule's 
premise becomes known. A NEOMYCIN trigger rule is similar, but it allows 
for new data to be requested in order to apply the rule. For example, one 
trigger rule is "if the patient has a stiff neck and a headache, then consider 
meningitis." 1 When a physician hears that the patient has a stiff neck, the 

1The medical examples in this paper are simplified; we make no claims about completeness 
or accuracy. They are for purposes of illustration only. 
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IF: 1) The infection is meningitis, 
2) The subtype of meningitis is bacterial, 
3) Only circumstantial evidence is available, 
4) The patient is at least 17 years old, and 
5) The patient is an alcoholic 

THEN: There is suggestive evidence that diplococcus-pneumoniae is an organism causing the 
meningitis 

FIGURE 15-1 Typical MYCIN rule. 

association to meningitis might come to mind, prompting him or her to 
determin.e whether the patient has a headache as well. This behavior is 
brought about in NEOMYCIN by simply marking trigger rules to distin
guish them from ordinary antecedent rules and "throwing a switch" in the 
rule interpreter so that pursuing new subgoals is enabled for trigger rules. 

Besides interpreter changes, different kinds of knowledge had to be 
separated out of the rules and represented explicitly. Figure 15-1 shows a 
typical (paraphrased) MYCIN rule, an example of "compiled expertise." 
We can list some of the individual steps of reasoning and knowledge 
sources out of which it is composed, unknown to MYCIN, but explicitly 
represented in NEOMYCIN: 

• Analysis of other rules shows that this rule (to determine the organism) 
is only invoked after it has been established that the patient has an 
infection. Thus four major subgoals are established in this order: Is there 
an infection? Is it meningitis? Is it bacterial? Is it Diplococcus pneumoniae? 
Each of these subgoals hypothesizes a more specific cause of disease. 
Thus, the ordering of clauses constitutes a top-down refinement strategy. How
ever, MYCIN does not know about this specialization hierarchy. It does 
not even know that Diplococcus pneumoniae is a bacterium. Perhaps most 
serious of all for meeting our teaching goals, MYCIN omits intermediate 
categories such as acute/chronic meningitis and gram-negative menin
gitis that physicians find helpful. In NEOMYCIN these categories are 
represented explicitly in an etiological taxonomy by allowing parameters to 
be specializations of one another. 

• The clause about the patient's age prevents MYCIN from asking if a 
child is an alcoholic. MYCIN does not know that the ordering of these 
clauses is important, or what the relationship is. In NEOMYCIN these 
world relations are captured by separate screening rules. 

• When there is laboratory evidence (a culture with visible organisms), this 
rule does not apply (clause 3). However, a companion rule still allows 
the circumstantial evidence of alcoholism to be considered, but gives it 
less weight. This principle of considering circumstantial evidence even 
when there are hard, physical observations of the cause is not explicitly 
known to MYCIN. The principle is compiled identically into 40 pairs of 
rules, rather than being stated as a reasoning rule for combining hard 
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and soft evidence. NEOMYCIN has rules for reasoning about the evi
dence it has collected, so connections between data and hypotheses are 
separate from the contexts in which they will be used. 

These forms of knowledge-a (top-down) strategy, an etiological tax
onomy, world facts, evidence-weighing rules-form a basis for a psycho
logical model about knowledge organization and access, but they are not 
sufficient. Consider the above rule again. How does a physician remember 
to ask about alcoholism? How does he or she remember the connection 
with Diplococcus? Experts use a rich set of organizational aids and mne
monics for accessing their knowledge. 

For example, one can think of taking the patient's history as a process 
of determining the differential of possible causes. Under this strategy, the 
expert follows the principle (rule model) that "compromised host condi
tions broaden the differential by suggesting special causes." Alcoholism is 
one of these conditions. So the low-level behavior of asking "Is the patient 
an alcoholic?" occurs in the context of the general process of diagnosis. In 
explaining the question to a student, it is important to be able to step back 
from the immediate concern for supporting a particular disorder and to 
articulate the general goals and methods of diagnosis itself. At the lowest 
level, the association to Diplococcus might be remembered as a simple causal 
story: alcoholics breathe in their own secretions, so organisms found in the 
mouth find their way to the lungs, causing pneumonia. 

In summary, NEOMYCIN incorporates these psychological aids for 
teaching diagnosis: 

I. a representation of diagnostic strategy that provides a meaningful, useful 
orientation for collecting data ("attempt to broaden the differential"); 

2. structural associations for indexing evidence to consider (abstractions such 
as "compromised host conditions" and rule models that use them); and 

3. rule justifications that relate data/hypothesis associations to underlying 
causal processes. 

15.1.3 The Need for Focusing Strategies 

As we mentioned above, we cannot use MYCIN for teaching about men
ingitis diagnosis because it does not know how patients with meningitis 
typically appear when the physician first sees them and what competing 
disorders need to be considered. But if we simply added knowledge about 
more diseases and when to order laboratory tests we would be in trouble: 
a top-down diagnostic strategy is inadequate for a broader range of prob
lems. The combinatorics of the search problem for medical diagnosis make 
it impossible for an expert to consider every infection, to work top-down. 
Initial information most commonly brings the physician into the middle of 
his or her taxonomic hierarchy (via the "compiled associations" such as the 
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trigger rule given above). Working from the middle, the physician must 
first look upward to focus the possibilities ("Is it a traumatic process? can
cer?") and then refine downward. The approach used by MYCIN's rules 
only works because the user of the program is the one who focuses on 
meningitis. MYCIN can verify that the historical and laboratory evidence 
is consistent with meningitis, but it does not have the knowledge for con
sidering meningitis in the first place. The program has only two infections 
to consider and does not know about other causes of the findings reported 
by the user. 

For the program itself to shoulder this focusing burden (so that GUI
DON can teach it to a student), we should more properly think of its area 
of expertise as being related to the observations a user will bring to it rather 
than the problems it knows how to confirm and refine. Thus MYCIN's area 
of expertise is "meningitis~'; in contrast, NEOMYCIN deals with "abnormal 
neurological signs" or "headache and fever." In order to give NEOMYCIN 
the capability to deal with a broader range of problems, to actually have it 
think of other causes of headache and fever, we did the following: 

1. expanded the etiologfral knowledge to include broad categories of other, 
noninfectious problems, such as "toxic problem," and "neoplastic prob
lem"; 

2. incorporated the focusing strategy of "group and d~fferentiate" so the program 
could manage this broader range of possibilities; and 

3. added knowledge about disease processes, knowledge that cuts orthogonally 
across the etiological taxonomy, so diseases can be compared according 
to location, extent of the disorder, duration, severity, etc., in order to 
enhance the program's ability to apply the focusing strategy. 

15 2 An Overview of NEOMYCIN • 

A few words about the character of MYCIN's problem domain are in order. 
We assume that a diagnosis or problem solution consists of an ordered list 
of problem causes that have been selected from a fixed, hierarchical space 
of hypotheses (e.g., "cancer process," "chronic meningitis") or categories of 
disease and pathophysiological states (e.g., "mass lesion in the brain"). We 
assume that an informant presents a problem to the program, which acts as 
a consultant, the role played by a student using GUIDON. There are two 
types of data: soft data (circumstantial or historical) and hard data (lab
oratory or direct measurements). Some of the evidence may be missing, 
and conclusions will usually be uncertain. 

A schematic of the NEOMYCIN system (Figure 15-2) illustrates the 
various knowledge sources and their relation to the strategic knowledge 
and differential (the set of diagnoses under consideration). These com-
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FIGURE 15-2 Components of the NEOMYCIN system. 

ponents are shown as icons expanded m subsequent figures. The inter
pretation of Figure 15-2 follows. 

• There are four kinds of domain rules: 

o Causal rules form a network of pathophysiological states and disease 
categories, ultimately linking raw observations (incoming data) to the 
etiological taxonomy. 

o Trigger rules associate data with etiologies, which are placed as hy
potheses in the differential (maintained so that general causes are 
replaced by their more specific descendents). 
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METARULE397 (for the task group-and-differentiate) 

IF: There are two items on the differential that differ in some disease process feature 
THEN: Ask a question that differentiates between these two kinds of processes 

FIGURE 15-3 A typical strategy rule. 

o Data/hypothesis rules associate circumstantial and laboratory data with 
diseases, as do trigger rules, but only those rules focused by the dif
ferential are tried when the data are circumstantial (i.e., the associa
tions that "come to mind" are those hypotheses already in the differ
ential, as well as the nodes of the etiological taxonomy that hang below 
the hypotheses of the differential). 

o Screening rules (not shown) form a hierarchy of abstractions and re
strictions on data (e.g., "if the patient is not immunosuppressed, then 
he is not an alcoholic"); they are applied by backward chaining, in an 
attempt to determine a datum without asking the user. 

• Other domain knowledge (not shown), orthogonal to the hierarchies of 
cause, considers diseases as processes having a location, extent, progres
sion of symptoms, etc. 

o One form of disease process knowledge is represented as a framelike 
description associated with diseases in the etiological· taxonomy and is 
used to differentiate among them. 

o A second form consists of a list of process-oriented, follow-up ques
tions that should be immediately asked when some disease category 
or pathophysiological state is implicated (e.g., to establish when symp
toms occurred and their ordering and change in severity). 

• The meta-strategy for doing diagnosis consists of a hierarchy of domain
independent meta-rules. In general, these meta-rules examine the dif
ferential and make use of the etiological taxonomy, causal associations, 
and disease process knowledge to decide what datum to request next. A 
typical strategy rule is shown in Figure 15-3. 

The annotated typescript in the next section shows how these forms 
of knowledge interact in practice. Subsequent sections provide a few more 
details about the representation. 

15.3 A Sample Case 

To illustrate the ideas presented above, a simple case was presented to a 
simple version of NEOMYCIN (there are generally only one or two rules 
to establish each hypothesis). Only the collection of circumstantial evidence 
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is shown in Figure 15-4. Although this trace of reasoning is very detailed, 
it is included here because it is precisely the process by which data, hy
potheses, and rules interact that is at issue. 

Observe the many different reasons why a question is asked; this is a 
reflection of the complexity of the diagnostic strategy. NEOMYCIN is hy
pothesis- and data-directed. In contrast, MYCIN only asks a question to 
evaluate a clause of a rule for the goal it is pursuing. Its rules are not 
sorted by conclusion, so its questions appear to skip back and forth ran
domly among hypotheses. It is not backward chaining per se that distin
guishes the two systems, for NEOMYCIN essentially backward chains 
through its strategic rules. It is NEOMYCIN's forward, nonexhaustive rea
soning and management of a space of hypotheses that make it reason more 
like a human does. 

7-Dec-80 16:18:25 

--------PATI ENT-1--------

task MAKE-DIAGNOSIS METARULE384 succeeded. 
task IDENTIFY-PROBLEM METARULE385 succeeded. 

Initial tasks are unconditional. The first step is to collect identifying data, followed by the reasons for seeking 
advice. 

Please enter information about the patient. 

1) 
2) 

Name Age 
~ MIKE 4 
Please describe the chief complaint: 

(Enter keyword or phrase.) 

** DIPLOPIA 

Sex 
MALE 

Race 
CAUCASIAN 

Diplopia is recognized to be a neurological sign which triggers meningitis, and leads to a follow-up question 
(associated with NEUROSIGN) .... 

antecedent RULE376 succeeded. 
Conclude: NEUROSIGN is YES (1.0) 
antecedent RULE426 succeeded. 
Conclude: INFECTIOUS-PROCESS is MENINGITIS (.7) 

Differential: Adding MENINGITIS 

3) How many days has Mike had abnormal neurologic signs? 
** 13 

Trying evidence rules: LENSIGN -+ CHRONIC-MENINGITIS 
Trying RULE524; succeeded. 
Conclude: MENINGITIS is ACUTE-MENINGITIS (-.3) 
Conclude: MENINGITIS is CHRONIC-MENINGITIS (.3) 

FIGURE 15-4 Trace of NEOMYCIN's reasoning for a sample 
case. [For brevity, the trace of rule conclusions is of the form 
"Conclude: PARAMETER is VALUE (CF)." Parameters are al
ways associated with the context, here PATIENT-I. Strategic 
tasks are sometimes abbreviated. Figure 15-5 relates meta-rules 
to tasks.] 



Differential: 
replace MENINGITIS with CHRONIC-MENINGITIS 

Another antecedent rule is associated with diplopia .... 

antecedent RULE373 succeeded. 
Conclude: BRAIN-PRESSURE is YES (.8) 

A Sample Case 371 

Brain pressure suggests a mass lesion-these antecedent rules all model immediate, forward inferences that 
we observed in experts .... 

antecedent RULE375 succeeded. 
Conclude: MASS-LESION is YES (.72) 

Differential: Adding MASS-LESION 

Any other information? 
**HEADACHE 

Here a trigger antecedent rule requires more information before it can be applied .... 

4) Does Mike have a stiff neck? 
**YES 
antecedent RULE424 succeeded. 
Conclude: INFECTIOUS-PROCESS is MENINGITIS (.91) 

Any other information? 
**NO 

The program now takes initiative, starting its main history-taking task of "establish the hypothesis space" 
(hereafter, EHS). The differential has new, unexamined elements, so the "group and differentiate" (G&D) 
task is invoked first. METARULE400 recognizes that the etiological ancestors of chronic meningitis have not 
been explored, so an attempt is made to confirm (task PURSUE-HYPOTHESIS = PH) that an infectious 
process is causing the problem. 

Enter EHS loop: focus = NIL 
task METARULE427 succeeded. 

Review differential: MASS-LESION CHRONIC-MENINGITIS 

Enter G&D loop: focus = NIL 
task METARULE400 succeeded. 

Enter PH loop: focus = INFECTIOUS-PROCESS 
task METARULE410 succeeded. 

5) Is Mike febrile? 
** y 
antecedent RULE423 succeeded. 
Conclude: 

DISORDER-ETIOLOGY is INFECTIOUS-PROCESS (.7) 

There are no further questions to ask; an interrupt returns control to the G&D task. No rules succeed, so 
control returns to the EHS task. The "explore and refine" (E&R) task silently refines mass lesion, expanding 
the differential by different etiological categories, and so triggering return to the EHS task. 

observed STOP-PURSUING METARULE408 

Repeating G&D loop: focus = INFECTIOUS-PROCESS 

Repeating EHS loop: focus = INFECTIOUS-PROCESS 
task METARULE428 succeeded. 

Enter E&R loop: focus = INFECTIOUS-PROCESS 
task METARULE429 succeeded. 

FIGURE 15-4 continued 
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observed STOP-EXPLORING METARULE407 

Repeating EHS loop: focus = INFECTIOUS-PROCESS 
task METARULE427 succeeded. 

The first step is again to review the differential, a process observed in experts. Process features of brain 
abscess and chronic meningitis are compared: they both occur in the central nervous system, are chronic 
problems, and are infectious, but brain abscess is a localized problem. NEOMYCIN asks a question to 
discriminate on this basis .... 

Review differential: BRAIN-ABSCESS HEMATOMA 
PUS-IN-BRAIN CHRONIC-MENINGITIS 

Enter G&D loop: focus = INFECTIOUS-PROCESS 
task METARULE397 succeeded. 

6) Does Mike have focal neurological signs? 
••NO 

Trying evidence rules: FOCALSIGNS ---+ BRAIN-ABSCESS 
RULE179 failed due to clause 1 

The program has not been supplied with knowledge for confirming other causes of mass lesion (e.g., 
traumatic hemorrhage, tumor), so it is unable to continue its grouping operation and begins an exploration 
cycle .... 

Repeating G&D loop: focus = INFECTIOUS-PROCESS 

Repeating EHS loop: focus = INFECTIOUS-PROCESS 
task METARULE428 succeeded. 

Enter E&R loop: focus = INFECTIOUS-PROCESS 
task METARULE402 succeeded. 

Enter PH loop: focus = BRAIN-ABSCESS 
task METARULE409 succeeded. 

Now directly focusing on brain abscess, the program "realizes" that data supplied earlier are relevant 
(RULE433). Chronic meningitis is then considered by refining it and pursuing specific causes. Pursuing TB, 
NEOMYCIN follows the strategy of confirming the first ("enabling") step in the disease process: canto.ct with 
the organism .... 

Trying evidence rules: MASS-LESION---+ BRAIN-ABSCESS 
Trying RULE433; succeeded. 
Conclude: INFECTIOUS-PROCESS is BRAIN-ABSCESS (.216) 

Observed STOP-PURSUING METARULE408 

Repeating E&R loop: focus = BRAIN-ABSCESS 
task METARULE429 succeeded. 

Enter PH loop: focus = TB-MENINGITIS 
task METARULE411 succeeded. 

7) Does Mike have a TB risk factor? 
••YES 

Trying evidence rules: TBRISK ---+ TB-MENINGITIS 
Trying RULE525; succeeded. 
observed STOP-PURSUING METARULE408 

Focusing strategies dictate that a sibling be considered next. Fungal meningitis is refined, and a child, 
cryptococcus, pursued .... 

Repeating E&R loop: focus = TB-MENINGITIS 
task METARULE401 succeeded. 
Enter PH loop: focus = FUNGAL-MENINGITIS 

FIGURE 15-4 continued 



Repeating E&R loop: focus = FUNGAL-MENINGITIS 
task METARULE399 succeeded. 
Enter PH loop: focus = CRYPTOCOCCUS 

A Sample Case 373 

A cancer patient is at some risk of getting cryptococcal meningitis. Rather than asking directly if the patient 
has cancer, the program models an expert's efficient casting of a wider net by asking a more general 
question. Specifically, there are "screening rules," that lead it to determine first if the patient is 
immunosuppressed (RULE395) and then compromised (RULE343). This is the only form of backward 
chaining that occurs in NEOMYCIN. 2 

task METARULE431 succeeded. 

--[OJ Findout: LEUKEMIA 
--[1] Findout: IMMUNOSUPPRESSED 

Trying RULE343; 
8) Is Mike a compromised host (e.g. alcoholic, sickle-cell-disease, 

immunosuppressed)? 
**YES 
RULE343 failed due to clause 1 

If the patient were not compromised, the program could have concluded that he is not immunosuppressed 
(RULE343). Now it is unsure and must ask directly. If the patient is not immunosuppressed, the program will 
know that he does not have leukemia (RULE395). The answer of LEUKEMIA below implies 
immunosuppressed, so RULE395 fails, and the original goal is determined. 

--[1] Finished: IMMUNOSUPPRESSED 
9) Is Mike immunosuppressed (e.g. corticosteroid therapy, cytotoxic drug 

therapy, radiation therapy, leukemia)? 
**LEUKEMIA 

I will assume that leukemia is one of the diagnoses of Mike 
RULE395 failed due to clause 1 

--[OJ Finished: LEUKEMIA 

Trying evidence rules: LEUKEMIA-+ CRYPTOCOCCUS 
Trying RULE056; succeeded. 
Conclude: FUNGAL-MENINGITIS is CRYPTOCOCCUS (.3) 

Repeating E&R loop: focus = CRYPTOCOCCUS 
task METARULE401 succeeded. 

Attention turns to a sibling. Again, the "enabling step" is asked about first .... 

Enter PH loop: focus = COCCIDIOIDES 
task METARULE411 succeeded. 

10) Has the patient ever been to a cocci-endemic area? 
**NO 

Trying evidence rules: COCCI-ENDEMIC -+ COCCIDIOIDES 
RULE570 failed due to clause 1 
RULE287 failed due to clause 1 
observed STOP-PURSUING METARULE408 

Repeating E&R loop: focus = COCCIDIOIDES 

Repeating EHS loop: focus = COCCIDIOIDES 
task METARULE430 succeeded. 

2Ed. note: A later version of NEOMYCIN accomplishes this form of inference by meta-rules. 



374 NEOMYCIN: Reconfiguring an Expert System for Application to Teaching 

Having exhausted its limited knowledge, the program finds no other relevant, hypothesis-oriented questions 
to ask. Several general questions are asked .... 

11) Is Mike receiving any medications? 
**NO 

Repeating EHS loop: focus = COCCIDIOIDES 
task RULE430 succeeded. 

12) Has Mike been recently hospitalized? 
**NO 

Repeating EHS loop: focus = COCCIDIOIDES 

If additional data had been supplied, new hypotheses might have been placed on the differential and 
strategies tor grouping or refining might have been called into play once again. This ends the history-taking 
process. Next the program would order laboratory tests, process them, and perhaps return to gathering 
circumstantial evidence. 

FIGURE 15-4 continued 

15.4 The Diagnostic Meta-Strategy 

Formalizing the diagnostic strategy from protocol analysis was the most 
difficult part of designing NEOMYCIN. Figure 15-5 shows the general 
outline of the meta-strategy. Each nonterminal node in the tree stands for 
a task that is achieved by a set of rules. An important aspect of our model 
of diagnosis is that the process can be taught as a task-posing activity: the 
problem solver thinks in terms of what he or she is trying to do (e.g., to 
consider unusual causes and so broaden the differential) in order to bring 
knowledge sources to mind. Thus the meta-strategy is structured so the 
tasks make sense as things that experts try to do. 

Figure 15-5 shows that the main object of the meta-strategy is to decide 
what data to collect next (invoke MYCIN's FINDOUT routine), generally 
by focusing on some hypothesis in the differential. Aside from collecting 
initial information, the basic idea is that collecting circumstantial evidence 
is a process of establishing the hypothesis space. This process takes the form 
of considering what could cause the reported data, grouping and refining 
the differential, and asking general questions. 3 A great deal of what we 
might call heuristic confidence is placed in the general questions, which con
stitute the outline of the "history-taking process" as it is generally taught 
to medical students. However, strategies for using causal and disease proc
ess knowledge enable the expert to be an efficient problem solver in a 
combinatorially large space, and these strategies are generally not taught. 

3Group and differentiate is used here in the loose sense of establishing general focus on a process 
that is consistent with hypotheses suggested independently by the data. Clustering (in multiple 
ways) and discriminating, the usual meaning of the term, is one operation for achieving this 
focus. 
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Make-diagnosis [384] 

Process-hard-data 
[rules] 

Establish-hypothesis-space 

initial chief 
info complaint 

~&dr·~ 
not compact 

(393] 
process split 

[397] 

\..__---------~ 
Pursue-hypothesis 

top unexplored 
[400] 

[5 rules] 

J 

~\~ 
skipped-evidence 

[409] 
trigger 

\. [410] 
enabling 

[411] 

~ 
Findout 

other 

[431].J 

FIGURE 15-5 NEOMYCIN's diagnostic meta-strategy. (Rule 
numbers in brackets appear in the sample trace.) 

The implementation is in terms of hierarchical meta-rules,4 which as 
a whole constitute the meta-strategy. Figure 15-6 illustrates how the rules 
for a given task are treated as a pure production system-they are repeat-

4So called because they indirectly control the invocation of the domain-dependent object 
rules. Davis's conception of meta-rules was that they would directly order object-level rules. 
However, in our theory of diagnostic strategy, meta-rules reason about the state of the dif
ferential and knowledge sources (kinds of evidence) that could change it in desirable ways. 
Thus, our meta-rules choose kinds of object rules (hypothesis-confirming, process-oriented, 
ca~sal). 
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--- ........... .- ' TASK 

' END CONDITION TEST 

( RULE-1 RULE-2 • • • RULE-N ) 

SUBTASK-1 SUBTASl<-N 

FIGURE 15-6 Rule-based invocation and interruption of 
strategic tasks. 

' \ 

' 

edly tried in order, returning to the head of the list when one succeeds, 
stopping when no rule succeeds or an end condition is true. 

The end condition is itself determined by rules, and is inherited as we 
descend into the hierarchy of tasks. The main use for this feature is to 
allow refocusing when new data change the state of the differential, as well 
as nonexhaustive consideration of hypotheses. 

15.5 Etiological Taxonomy, Causal and Disease 
Process Knowledge 

Some details of the implementation are given in this section. The etiological 
taxonomy (Figure 15-7) is implemented as EMYCIN parameters in which 
the values for one parameter (e.g., CHRONIC-MENINGITIS) are them
selves parameters (e.g., TB-MENINGITIS and FUNGAL-MENINGITIS). 
We call these taxonomic parameters. 
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DISORDER-ETIOLOGY 

MENINGITIS CYSTITIS BRAIN-ABSCESS 

-- --/ -- --/ -- --ACLJTF.-MENl~lGITIS CHHmllCMENIJ\IGITiS 

BACTERIAL VIRAL PARTIAL-RX TB FUNGJ\L 

/\ 
CRY flTOCOCCUS COCCI GRAM-NEG SKIN-ORGS (OTHER ORGS) 

FIGURE 15-7 Portion of etiological taxonomy. (Links repre
sent specialization of cause.) 

Causal knowledge (Figure 15-8) is represented as rules modified by a 
certainty factor, as are all MYCIN rules. A causal rule of the form "if A 
then B" implies that A is caused by B, the direction of the association that 
is most generally useful for interpreting data and refining hypotheses. 
These rules mention data parameters, taxonomic parameters, or state-category 
parameters. State-category parameters stand for pathophysiological states or 
categories of disease (e.g., a mass lesion in the brain). In linking these 
concepts together, it is important to properly distinguish between causal 
and subtype links. (While we might say that an unknown mass lesion, a 
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space-occupying substance, is caused by a tumor, it is more proper to rep
resent a tumor as a kind of mass lesion.) Causal rules are used by the 
"explore and refine" task to work backward from state-category hypotheses 
in the differential to prior causes, and ultimately to diagnostic hypotheses 
in the etiological taxonomy (as shown in Figure 15-8). 

Disease process knowledge is represented as a frame associated with 
taxonomic parameters. Slots are process descriptors such as EXTENT, LO
CATION, and COURSE associated with a literal value and a pointer to 
the parameter to establish it. For example, associated with BRAIN-AB
SCESS is the triple (EXTENT FOCAL FOCALSIGNS), meaning that the 
extent of the disease is focal and this can be determined by asking about 
focal signs. Disease process knowledge is orthogonal to the etiological tax
onomy, making it useful for grouping and discriminating hypotheses (see 
sample trace, before question 6). 
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15 6 Related Research • 

Besides the intelligent computer-assisted instruction (ICAI) projects cited 
in the introduction, our work has been motivated by previous research in 
teaching problem-solving strategies [e.g., Papert (1970); Brown et al. 
(1977); Wescourt and Hemphill ( 1978)]. We believe NEOMYCIN is the 
first attempt to formalize a runnable psychological model of diagnostic 
strategy that can be presented to a student. As should be obvious from our 
analysis, a considerable debt is owed to the medical problem-solving liter
ature, cited above. 

Both Reggia ( 1978) and Aikins ( 1980) modified the MYCIN system to 
make it more acceptable to physicians, particularly to improve knowledge 
acquisition. Aikins's use of an etiological taxonomy and trigger rules, de
rived from Rubin's work, is particularly close to our approach. However, 
we go a step further by representing strategic knowledge separately in 
domain-independent form. Our teaching application has also made clear 
the importance of disease process knowledge for broadening the diagnostic 
range of a consultation program. 

Research in cognitive psychology has been helpful to us, particularly 
studies at the Learning Research Development Center (Anderson et al., 
1981; Chi et al., 1981) (see also Chapter 12) in modeling the differences 
between experts and novices in geometry and physics problem solving. To 
some extent, our attempt to "decompile" MYCIN's knowledge is the inverse 
of Anderson's task of modeling how a novice composes and generalizes 
knowledge from experience. 

15 7 Some Limitations • 

Pople's experience has been useful to point out limitations in our design. 
He shows that a simplistic causal network is not adequate when an attempt 
is made to represent all of general internal medicine (Pople, 1982). For 
example, when the causal connections between data and the taxonomy are 
long and complex, it may not be feasible to follow each path (possible 
cause). His "bridge concepts" [similar to Feltovich's "logical competitor sets" 
(see Chapter 12)] are attempts to model how an expertjumps over to distal, 
tentative hypotheses. They essentially provide a quick way to find the in
tersection of causes for a set of disease symptoms. 

Similarly, Rubin's thesis illustrates a number of strategies for combin
ing hypotheses (for example, relating complications and causes) that we 
have not yet found to be important in MYCIN's domain. To this extent, 
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our model is not the complete story of human diagnostic reasoning, but it 
can be built on as we expand our experience into other domains. We do 
not yet understand how an expert organizes his or her differential; how 
context is saved and restored from interrupts; how urgency, cost, and hu
man values factor into the diagnostic process; and so on. 

15 • 8 Summary of What We Learned 

To teach diagnosis, it is useful to have a psychological model of problem 
solving. In particular, we need to incorporate into our model the medical 
knowledge and strategies an expert uses for initial problem formulation. 
An expert thinks in terms of a hierarchy of causes and the process char
acteristics of a disease so that he or she can order the data and the search. 
Moreover, an expert has learned "compiled associations" that allow him or 
her to efficiently associate hypotheses with data (e.g., trigger rules, Pople's 
"bridge concepts"), and cast a wide net of questions (e.g., general, screen
ing, and follow-up questions). 

Also, we need to represent the various kinds of knowledge explicitly 
so that they can be accessible for teaching. Our method is to represent 
strategic knowledge in domain-independent form, wholly separate from 
the medical knowledge described above. This requires that the medical 
knowledge be organized so that it can be indexed by the strategies (e.g., 
as the disease-process frame links abstract features of any disease, such as 
progression over time, to means for establishing this information in a par
ticular case). 

In a sense, we join cognitive psychologists [e.g., Anderson et al. (1981) 
and Rumelhart and Norman (1980)] in rediscovering the procedural/ 
declarative problem in the context of how knowledge becomes transformed 
through experience. We recognize that the expert has composed associa
tions, so he or she makes wide, tentative jumps between data and hy
potheses. However, we represent these compiled associations declaratively 
for use in instruction (spelling out the diagnostic procedure in detail), and 
we record justifications of data-interpretation rules to allow for explanation 
of reasoning. 

15 9 Future Research • 

Development of NEOMYCIN and GUIDON version 2 will proceed in par
allel. Comparisons of NEOMYCIN's performance to MYCIN's will indicate 
if our more principled representation has changed the performance of the 
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system. This is a possibility because we have simplified some rules so they 
represent more closely the associations a human expert normally remem
bers. Preliminary runs give comparable results, though NEOMYCIN asks 
fewer questions because of its focused approach. We might also use NEO
MYCIN's representation and meta-rules for diagnosis in a nonmedical do
main, to test the domain-independence of the model. 

GUIDON version 2 will use the NEOMYCIN representation, making 
it possible to articulate diagnostic strategy. A new phase of development 
will begin as we try to use the diagnostic strategies (and variants of them) 
for interpreting student behavior, leading to capabilities to evaluate partial 
solutions and provide assistance. The first version of GUIDON attempted 
these things, but was not able to recognize or suggest psychologically valid 
approaches. · 
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16 
Explaining and Justifying 
Expert Consulting 
Programs 

William R. Swartout 

As was mentioned in the introduction to Chapter 14, the ABEL work of 
Patil, Szolovits, and Schwartz uses a patient-specific model inspired in part 
by an earlier project from the M.I. T./Tufts group known as the Digitalis 
Therapy Advisor (Corry et al., 1978). The Digitalis Therapy Advisor 
reached an excellent level of per[ ormance regarding the appropriate ad
justment of digitalis dosing in cardiac patients, and it also provided a rich 
environment for related work such as the XPLAIN research of William 
Swartout described in this chapter. Swartout focused on the construction 
of an explanation capability for the Digitalis Therapy Advisor; the resulting 
programs have in turn influenced subsequent AI research on explanation. 

Traditional methods for generating explanations by a decision-making 
program have involved displaying "canned" text or converting to English 
the code of the program (or traces of the execution of that code). While such 
methods can provide superficially us~ful explanations of what the program 
does or did, they generally cannot tell why what the system is doing is a 
reasonable thing to be doing. The jJroblem is that the knowledge required 
to provide these justifications is used (by the programmer) only when the 
program is being written and does not appear in the code itse?f 

Swartout's XPLA/N system, on the other hand, uses an automatic pro
grammer to generate the consulting program by refinement from abstract 
goals. The automatic programmer uses a domain model, consisting off acts 
about the application domain, and a set of domain principles that drive the 

From the Proceedings of the Seventh International Joint Conference on Artificial Intelligence, vol. 2, 
pp. 815-823, (1981). Used by permission of International Joint Conferences on Artificial 
Intelligence, Inc.; copies of the Proceedings are available from William Kaufmann, Inc., 95 
First Street, Los Altos, CA 94022. 
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refinement process forward. Examining the refinement structure created by 
the automatic programmer makes possible justifications of the code. This 
chapter describes XP LAIN and outlines additional advantages this ap
proach has for explanation. 

The significance of Swartout's work is not just its use of a s_vstem design 
technique that makes explanation possible. His work reveals how principles 
(here, domain strategies by which specific treatment methods are apphed) 
are part of explanation. It is useful to supply not just an "audit trail" of 
what a problem solver did (on perhaps d~fferent levels of detail) but an 
explanation of why the procedure is valid. Swartout's point is that a more 
powerful knowledge representation is the secret to better explanation, not 
just better natural language facilities. The same obsernation holds for tutor
ing systems (see Chapters 11 and 15). 

16 1 Introduction • 

To be acceptable, expert programs must be able to explain what they do 
and justify their actions in terms understandable to the user. Expert pro
grams usually have some heuristic basis. While these heuristics may provide 
good performance for most cases, there may be unusual cases where they 
produce erroneous results or where the rationale for using them is faulty. 
If a user is suspicious of the advice he or she receives, the user should be 
able to ask for a description of the methods employed and the reasons for 
employing them. In addition, the scope of expert systems, like that of 
human experts, is often quite narrow. An explanation facility can help a 
user discover when a system is being pushed beyond the bounds of its 
expertise. 

In the area of medical consultant programs, 1 the need for explanation 
is particularly acute. In designing a consultant program, we must consider 
what sorts of capabilities we are trying to provide for the physician user. 
If we consider the interaction between a physician and a human consultant, 
we realize that it is not just a simple one-way exchange where the physician 
provides data and the consultant provides an answer in the form of a 
prescription or diagnosis. Rather, there is typically a lively dialogue be
tween the two. The physician may question whether some factor was con
sidered or what effect a particular finding had on the final outcome. 
Viewed in this light, we realize that a computer program that only collects 
data and provides a final answer will not be found acceptable by most 

1Some medical consultant programs include MYCIN, a program that aids physicians with 
antimicrobial therapy (Shortliffe, 1976); INTERNIST, a program that makes diagnoses in 
internal medicine (Pople, 1977); and PIP, a program that makes diagnoses primarily in the 
area of renal disease (see Chapter 6). 
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physicians. In addition to providing diagnoses or prescriptions, a consul
tant program must be able to explain what it is doing and justify why it is 
<loin~ it. 

Researchers have recognized this, and many proposals for new expert 
systems have at least mentioned the need for explanation. Some systems 
have actually provided an explanatory facility. Yet existing approaches to 
explanation fail in some important ways. This paper will document these 
failings and describe an approach toward their solution. 

While we have concentrated on the problem of providing explanations 
to medical personnel, we do not feel that the need for explanation is limited 
to medicine or that the techniques we have developed for explanation and 
justification are limited to medical applications. Medical programs provide 
a good test-bed for the general problem of explaining a consulting pro
gram to the audience it is intended to serve. 

The next section will describe the Digitalis Therapy Advisor, a pro
gram we have chosen as a test-bed for our ideas about explanation, and 
some of the medical aspects of digitalis therapy. After that, we will describe 
some of the problems with previous explanation systems and the approach 
we have takeq to overcome those problems. 

16.2 Digitalis Therapy and the Digitalis Therapy 
Advisor 

The digitalis glycosides are a group of drugs that were originally derived 
from the foxglove, a common flowering plant. Their principal effect is to 
strengthen and stabilize the heartbeat. In current practice, digitalis is pre
scribed chiefly to patients who show signs of congestive heart failure (CHF) 
and/or conduction disturbances of the heart. Congestive heart failure re
fers to the inability of the heart to provide the body with an adequate 
blood flow. This condition causes fluid to accumulate in the lungs and outer 
extremities, and it is this aspect that gives rise to the term congestive. Dig
italis is useful in treating this condition because it increases the contractility 
of the heart, making it a more effective pump. A conduction disturbance 
appears as an arrhythmia, which is an unsteady or a,bnormally paced heart
beat. Digitalis tends to slow the conduction of electrical impulses through 
the conduction system of the heart, and thus steady certain types of ar
rhythmias. Due to the positive effect that digitalis has on the heart, it is 
one of the most commonly used drugs in the United States. 

Like many other drugs, digitalis can also be a poison if too much is 
administered. For a variety of reasons, including a small therapeutic win
dow, subtle signs of toxicity, and high interpatient variability, digitalis is 
difficult to administer. One complication the physician must deal with is 
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the possibility that a patient may be more sensitive to the drug (for what
ever reason) than the average patient. If a physician knows those factors 
that make a patient more sensitive, he or she can reduce the likelihood of 
overdosing (or underdosing) the patient by adjusting the dose depending 
on whether or not the sensitizing factors are observed. 

Over the years, a number of factors that increase the automaticity of 
the heart2 have been identified. These include a low level of serum potas
sium (hypokalemia), a high level of serum calcium (hypercalcemia), dam
age to the heart muscle (cardiomyopathy), and a recent myocardial infarc
tion, among others. When these exist in conjunction with digitalis 
administration, the automaticity can be increased substantially. This chap
ter will describe in detail how those fragments of the Digitalis Therapy 
Advisor that adjust for the first two sensitivities are justified and explained. 

16.2.l The Digitalis Therapy Advisor Test-Bed 

A few years ago, the Digitalis Therapy Advisor was developed at M.I.T. 
by Pauker, Silverman, and Gorry (Silverman, 1975; Gorry et al., 1978). 
This program was later revised and given a preliminary explanatory ca
pability (Swartout, 1977). The limitations of these explanations (and of 
those produced by similar techniques) will be discussed below. This pro
gram differed from earlier digitalis advisors (Peck et al., 1973; Jelliffe et 
al., 1970; Jelliffe et al., 1972; Sheiner et al., 1972) in two important re
spects. First, when formulating dosage schedules, it anticipated possible 
toxicity by taking into account the factors that increased digitalis sensitivity 
and reduced the dose when those factors were present. Second, the pro
gram made assessments of the toxic and therapeutic effects that actually 
occurred in the patient after receiving digitalis to formulate subsequent 
dosage recommendations. This program worked in an interactive fashion. 
The program asked the physician for data about the patient and produced 
recommendations after that data was entered. When the dose of digitalis 
was being adjusted, the physician was asked to consult with the program 
again to assess the patient's response. This is the program we used as a 
test-bed for our work in explanation and justification. In the remainder of 
the paper, we will refer to this program as the old Digitalis Advisor. 

2In the normal heart, there is a place in the left atrium called the sino-atrial (SA) node, which 
sets the pace for the heart. Under the right circumstances, other parts of the heart can take 
over the pace-setting function. Sometimes this can be life-saving, if, for example, the SA node 
is damaged. But at other times it can be life-threatening, since several pacemakers operating 
simultaneously tend to increase the likelihood of setting up a dangerous arrhythmia. When 
we say that digitalis increases the automaticity of the heart, we mean that digitalis increases 
the tendency of other parts of the heart to take over the pace-setting function from the SA 
node. 
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16.3 Kinds of Questions That Arise Concerning 
the Advisor 

In the spring of 1979, we conducted a series of informal trials in an attempt 
to discover what kinds of questions occurred to medical personnel as they 
ran the old Digitalis Advisor. In this trial, medical students and fellows 
were asked to run the program and ask questions (verbally) as they oc
curred to them. The author attempted to answer these questions. The 
interactions were tape-recorded and later transcribed. 

No formal analysis of the data was attempted, but examination of the 
transcripts did provide an indication of the types of questions that might 
arise while running a consulting program. These included: 

1. Questions about the methods the program employed: 

User: "How do you calculate your body store goal? That's a little 
lower than I anticipated." 

This sort of question could be answered by the explanation routines of the 
old Digitalis Advisor. It can also be answered by the system presented in 
this paper. 

2. Justifications of the program's actions: 

User (peruses recommendations): "Why do we want to make a tem
porary reduction?" 

Author: "We're anticipating surgery coming up and surgery, even 
noncardiac surgery, can cause increased sensitivity to digitalis, so 
it wants to temporarily reduce the level of digitalis." 

This is exactly the sort of question we are concentrating on in this paper. 
It cannot be answered by the explanation routines of the old Digitalis 
Advisor. 

3. Questions involving confusion about the meaning of terms: 

User (in response to the question IS THE RENAL FUNCTION STA
BLE?): "Now this question ... I'm not really sure ... 'renal func
tion stable' does it mean stable abnormally or ... because I mean, 
the patient's renal function is not normal but it's stable at the 
present time." 

Author: "That's what it means." 

This paper will not address this last type of question. 
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16.4 Previous Approaches to Explanation 

A number of different approaches have been taken to attempt to provide 
programs with an explanatory capability. The major approaches include 
( 1) using previously prepared text to provide explanations and (2) pro
ducing explanations directly from the computer code and traces of its 
execution. 

The simplest way to get a computer to answer questions about what it 
is doing is to anticipate the questions and store the answers as English text. 
Only the text that has been stored can be displayed. This is called canned 
text, and explanations produced by displaying canned text are called canned 
explanations. The simplest sorts of canned explanations are error messages. 
For example, a medical program designed to treat adults might print the 
following message if someone tried to use it to treat an infant: 

THE PATIENT IS TOO YOUNG TO BE TREATED BY THIS PROGRAM. 

It is relatively easy to get a small program to provide English explanations 
of its activity using this canned text approach. After the program is written, 
canned text is associated with each part of the program explaining what 
that part of the program is doing. When the user wants to know what is 
going on, the computer merely displays the text associated with what it is 
doing at the moment. 

There are several problems with the canned text approach to expla
nation. The fact that the program code and the text strings that explain 
that code can be changed independently makes it difficult to guarantee 
consistency between what the program does and what it claims to do. An
other problem with the canned text approach is that all questions and 
answers must be anticipated in advance and the programmer must provide 
answers for all the questions that the user might ask. For large systems, 
that is a nearly impossible task. Finally, the system has no conceptual model 
of what it is saying. That is, to the computer, one text string looks much 
like any other, regardless of the content of that string. Thus it is difficult 
to use this approach if we want our system to provide more advanced sorts 
of explanations, such as suggesting analogies or giving explanations at 
different levels of abstraction. 

Another approach to explanation is to produce explanations directly 
from the program (Davis, 1976; Shortliffe, 1976; Swartout, 1977; Wino
grad, 1971). That is, the explanation routines examine the program that 
is executed. Then by performing relatively simple transformations on the 
code, these explanation routines can produce explanations of how the sys
tem does things. For example, the old Digitalis Advisor could examine the 
code it used to check for increased digitalis sensitivity caused by increased 
serum calcium and produce an explanation of how that code worked (as 
shown in Figure 16-1). 
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TO CHECK SENSITIVITY DUE TO CALCIUM I DO THE FOLLOWING STEPS: 

1. I DO ONE OF THE FOLLOWING: 
1.1 IF EITHER THE LEVEL OF SERUM CALCIUM IS GREATER THAN 10 
OR INTRAVENOUS CALCIUM IS GIVEN THEN I DO THE FOLLOWING SUBSTEPS: 

1.1.1 I SET THE FACTOR OF REDUCTION DUE TO HYPERCALCEMIA TO 0.75. 
1.1.2 I ADD HYPERCALCEMIA TO THE REASONS OF REDUCTION. 

1.2 OTHERWISE, I REMOVE HYPERCALCEMIA FROM THE REASONS OF 
REDUCTION AND SET THE FACTOR OF REDUCTION DUE TO HYPERCALCEMIA TO 1.00. 

FIGURE 16-1 .Explanation of how the old Digitalis Advisor 
checked hypercalcemia in general. 

The old Digitalis Advisor, like most similar systems, also maintained 
an execution trace. The trace could be examined by the explanation rou
tines to tell what the system did for a particular patient. Figure 16-2 
describes how the system checked for myxedema. The system also had a 
limited ability to explain why it was asking the user a question. Figure 
16-3 shows the system's response when the user wants to know why he or 
she is being asked about serum calcium. 

I CHECKED SENSITIVITY DUE TO THYROID-FUNCTION BY EXECUTING THE 
FOLLOWING STEPS: 

1. I ASKED THE USER THE STATUS OF MYXEDEMA. THE USER RESPONDED THAT 
THE STATUS OF MYXEDEMA WAS PRESENT. 

2. SINCE THE STATUS OF MYXEDEMA WAS PRESENT I DID THE FOLLOWING: 

2.1 I ADDED MYXEDEMA TO THE PRESENT AND CORRECTABLE CONDITIONS. 
THE PRESENT AND CORRECTABLE CONDITIONS THEN BECAME MYXEDEMA. 

2.2 I REMOVED MYXEDEMA FROM THE DEGRADABLE CONDITIONS. THE 
DEGRADABLE CONDITIONS THEN BECAME HYPOKALEMIA, HYPOXEMIA, 
CARDIOMYOPATHIES-MI, AND POTENTIAL POTASSIUM LOSS DUE TO DIURETICS. 

2.3 I SET THE FACTOR OF REDUCTION DUE TO MYXEDEMA TO 0.67. 
THE FACTOR OF REDUCTION DUE TO MYXEDEMA WAS PREVIOUSLY UNDETERMINED. 

2.4 I ADDED MYXEDEMA TO THE REASONS OF REDUCTION. 
THE REASONS OF REDUCTION THEN BECAME MYXEDEMA. 

FIGURE 16-2 Explaining how thyroid function was checked. 

WHAT IS THE LEVEL OF SERUM CALCIUM? 

ENTER NUMERICAL VALUE = = = = > why? (The user types "why?" indicating that the user questions why 
he or she is being asked to supply the value of serum calcium.) 

MY TOP GOAL IS TO BEGIN THERAPY. ONE STEP IN DOING THAT IS TO CHECK 
SENSITIVITIES. I AM NOW TRYING TO CHECK SENSITIVITY DUE TO CALCIUM. 

FIGURE 16-3 A limited explanation telling why a question is 
asked. 
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Since the explanation routines only perform simple transformations 
on the program code, the quality of the explanations produced in this 
manner depends to a great degree on how the system code is written. In 
particular, the basic structure of the program is not altered significantly, 
and the names of variables in the explanation are basically the same as 
those in the program. If the explanations are to be understandable, the 
expert system must be written so that its structure is easily understood by 
anyone familiar with its domain of expertise, and the variable and proce
dure names used in the program must represent concepts that are mean
ingful to the user. 

This method of producing explanations has some advantages. It is 
relatively simple. If the right way of structuring the problem can be found, 
it does not impose too great a burden on the programmer; since the ex
planations reflect the code directly, consistency between explanation and 
code is assured. 

Despite these advantages, there are some serious problems with this 
technique. It may be difficult or impossible to structure the program so 
that the user can easily understand it. The fact that every operation per
formed by the computer must be explicitly spelled out sometimes forces 
the programmer to program operations that a physician would perform 
without thinking. That problem is illustrated in Figure 16-2. Steps 2.1, 2.2, 
and 2.4 are somewhat mystifying. In fact, these steps are needed by the 
system so that it can record what sensitivities the patient had that made 
him or her more likely to develop digitalis toxicity. These steps are involved 
more with record keeping than with medical reasoning, but they must 
appear in the code so that the computer will remember why it made a 
reduction. Since they appear in the code, they are described by the expla
nation routines, although they are more likely to confuse than enlighten a 
physician user. An additional problem is that it is difficult to get an over
view of what is really going on here. While the system is explicit about 
record keeping, it is not very explicit about the fact that it is going to reduce 
the dose, though it hints at a reduction by saying that the factor of reduc
tion is being set to 0.67. 

An additional problem, and the primary one we will address in this 
paper, is that while this way of giving explanations can state what the system 
does or did, it has only a limited ability to state why the system did what it 
did (see Figure 16-3). That is, the system cannot give adequate justifications 
for its actions. In the explanations given above, the system cannot state 
that it reduces the dose because increased calcium causes increased auto
maticity. The information needed to justify the program is the information 
that was used by the programmer to write the program, but it does not 
have to be incorporated into the program for the program to perform 
successfully-just as one can successfully bake a cake without knowing why 
baking powder appears in the recipe. Since it is desirable for expert pro
grams to be able to justify what they do as well as do it successfully, we 
need to find a way of capturing the knowledge and decisions that went 
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into writing the program in the first place. The remainder of this chapter 
will describe recent efforts we have made toward achieving that goal in the 
context of the Digitalis Therapy Advisor. 3 

16. 5 Providing Justifications 

We need a way of capturing the knowledge and decisions that went into 
writing the program. One way to do this is to give the computer enough 
knowledge so that it can write the program itself and remember what it 
did. Automatic programming has been researched considerably (Balzer et 
al., 1977; Barstow, 1977; Green et al., 1979; Long, 1977; Manna and Wal
dinger, 1977), but using an automatic programmer to help in producing 
explanations is a new idea. Since we are primarily interested in explanation, 
we have chosen not to deal with a number of problems that arise in au
tomatic programming, including choosing between different implemen
tations, backup and recovery from dead-end refinements, and optimiza
tion. 

16.5.1 System Overview 

XPLAIN is our framework for creating expert systems. Systems developed 
within it can be explained and justified. An overview is given in Figure 
16-4. The system has five parts: a writer, a domain model, a set of domain 
principles, an English generator, and a generated refinement structure. 
The writer is an automatic programmer. It wrote new code that captured 
the functionality of major portions of the old Digitalis Advisor. 4 The 
domain model and the domain principles contain knowledge about the 
domain of expertise. In this case, they contain information about digitalis 
and digitalis therapy. They provide the writer with the knowledge it needs 
to write the code for the Digitalis Therapy Advisor. The refinement struc
ture can be thought of as a trace left behind by the writer. It shows how 
the writer develops the Digitalis Therapy Advisor. When a physician-user 
runs the Digitalis Therapy Advisor, he or she can ask the system to justify 
why the program is doing what it is doing. The generator gives the user 
an answer by examining the refinement structure and the step of the 
advisor currently being executed. If we wanted to write a new program 

3Clancey (I 979c) notes that even in rule-based systems, knowledge is often too "compiled," 
resulting in explanation problems very similar to the ones described here. 
4The code that has been written includes code to anticipate toxicities and to check for and 
assess various types of toxicities that may occur. As is discussed by Swartout (1981 ), it should 
not be too difficult to complete the remainder of the implementation so that the functionality 
of the old Digitalis Advisor is completely captured. 
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FIGURE 16-4 System overview. 

covering a new medical domain, we would have to change the domain 
model and the domain principles, but we would not have to change the 
writer or the English generator. 5 

The refinement structure is created by the writer from the top-level 
goal (in this case, "administer digitalis") as it writes the Digitalis Therapy 
Advisor. The refinement structure is a tree of goals, each being a refine
ment of the one above it in the tree (see Figure 16-5). By refining a goal, 
we mean taking a goal and turning it into more specific subgoals. Looking 
at Figure 16-5, we see that the top of the tree is a very abstract goal, in 
this case, to administer digitalis. This goal is refined into less abstract steps 
by the writer. These more specific steps are steps the system executes to 
administer digitalis. For example, one such step is to anticipate toxicity, 
that is, to anticipate whether the patient may become toxic due to increased 
digitalis sensitivity. The writer then refines this more specific goal to a still 
more specific goal. Eventually, the level of system primitives is reached. 
System primitives are operations that are built in. Normally they are very 
basic, simple operations, so the fact that they cannot be explained is usually 

5Note that the writer writes the program once, and once written, the program is static. It is 
not written "on the fly" during interaction wi.th the physician user. 



392 Explaining and Justifying Expert Consulting Programs 

Abstract 

Specific 

System Primitives 

FIGURE 16-5 A sample refinement structure. 

not a problem. Typical primitives include those that perform arithmetic 
operations like PLUS and TIMES and those that set variables to a partic
ular value. The leaves of the refinement structure constitute the basic op
erations performed by the Digitalis Therapy Advisor, the program that we 
wanted the automatic programmer to produce. 

, The domain model is a model of the facts of the domain. In this case, 
it is a model of the causal relationships in digitalis therapy. A simplified 
portion of the model is shown in Figure 16-6. In this model, the boxes are 
states, and the arrows represent causality. This model shows some of the 
effects of increased digitalis. It also shows that increased serum Ca and 
decreased serum K can each cause increased automaticity. These facts cor
respond to the sorts of facts that a medical student learns in class during 
the first two years of medical school. They are descriptive in the sense that 
they describe what happens in the domain, but they do not tell how to 
achieve a goal, such as checking for digitalis sensitivity. The model says 
that increased digitalis can cause a change to ventricular fibrillation but it 
does not say what to do about it. Medical students go to medical school for 
an additional two years, and acquire these procedures by observing more 
experienced personnel as they practice medicine on the wards. The set of 
domain principles provides the writer with this sort of problem-solving 
knowledge. 
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Increased Ca Decreased K 

Increased Automaticity 

Change to V. Fibrillation 

FIGURE 16-6 A simplified portion of the domain model. 

Domain principles tell the writer how something (such as prescribing 
a drug or analyzing symptoms) should be done. They guide it as it refines 
abstract goals to more specific ones. A (somewhat simplified) domain prin
ciple appears in Figure 16-7.6 This particular principle helps the writer in 
anticipating digitalis toxicity. It represents the commonsense notion that if 
one is considering administering a drug and there is some factor that 
enhances the deleterious effects of that drug, then if that factor is present 
in the patient, less drug should be given. This principle has three parts: a 
goal, a domain rationale, and a prototype method. 

The goal tells the writer what it is that the principle can do. In this 
case, the principle tells how to anticipate toxicity. The domain rationale is 
a pattern that is matched against the domain model to provide further 
information necessary to achieve the goal. In Figure 16-7, arrows represent 
causality, just as they do in the domain model. Thus the system will look 
in the domain model to match a Finding (e.g., increased Ca) that causes 
some sort of a Dangerous Deviation (e.g., change to ventricular fibrillation) 
that is also caused by an increased level of the drug. By looking at the 
domain model, we can see both increased Ca and decreased K will match 
as findings, since both can cause a change to ventricular fibrillation. 

The prototype method is an abstract method that tells the system how 
to accomplish the goal. The steps of the prototype method are annotated 
to distinguish implementation details (such as record-keeping) from steps 
that are significant in medical problem solving. These annotations are used 
by the explanation routines to filter out implementation details when 
presenting explanations to medical personnel. 

6Domain principles are composed of variables and constants. Variables appear in boldface in 
Figure 16-7. When the writer is matching, a variable in a pattern will match anything that is 
of the same kind as itself. Thus the Yariable Finding would match increased serum Ca or 
decreased K, since increased serum Ca and decreased K are both kinds of findings. 
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Goal: Anticipate Drug Toxicity 

Domain Rationale: 

Finding Increased 

! i 
Dangerous Deviation 

Prototype Method: 

If the Finding exists 

then: reduce the drug dose 

else: maintain the drug dose 

Drug 

FIGURE 16-7 An example of a domain principle. 

After the domain rationale has been matched against the domain 
model, the prototype method is instantiated for each match of the domain 
rationale. When we say that we instantiate the prototype method, we mean 
that we create a new structure where the variables in the prototype method 
have been replaced by the things they matched. In this case, two structures 
would be created. In the first, Finding would be replaced by increased 
serum Ca, and drug would be replaced by digitalis. In the second, Finding 
would be replaced by decreased serum K, and drug would again be 
replaced by digitalis. Note that now, with these new structures, we have 
changed the single abstract problem of how to anticipate toxicity into sev
eral more specific ones, such as how to determine whether decreased serum 
K exists, how to reduce the dose, and how to maintain it. 

After instantiation, the more specific goals of the prototype method 
are placed in the refinement structure as offspring of the goal being re
solved. If we look at Figure 16-5, we can see that the instantiated prototype 
method that checks for decreased serum K has been placed below the 
anticipate toxicity goal. Once they have been placed in the refinement 
structure, the newly instantiated goals become goals for the writer to re
solve. For example, after the writer applied this domain principle, it would 
have to find ways of determining whether increased Ca existed in the 
patient, whether decreased K existed, and ways of reducing and maintain
ing the dose. The system continues in this fashion, refining goals at the 
bottom of the structure and growing the tree down until eventually the 
level of system primitives is reached. 
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Please enter the value of serum-k: why? 

The system is anticipating digitalis toxicity. Decreased serum-k causes 
increased automaticity, which may cause a change to ventricular 
fibrillation. Increased digitalis also causes increased automaticity. 
Thus, if the system observes decreased serum-k, it reduces the dose of 
digitalis due to decreased serum-k. 

Please enter the value of serum-k: 3.7 

Please enter the value of serum-ca: why? 

(The system produces a shortened explanation, reflecting the fact that it has already explained several of 
the causal relationships in the previous explanation. Also, since the system remembers that it has already 
told the user about serum-K, it suggests the analogy between the two here.) 

The system is anticipating digitalis toxicity. Increased serum-ca also 
causes increased automaticity. Thus, (as with decreased serum-k) if the 
system observes increased serum-ca, it reduces the dose of digitalis due to 
increased serum-ca. 

Please enter the value of serum-ca: 9 

FIGURE 16-8 A sample interaction providing justifications. 

The system must also take into account interactions between the ac
tions it takes. For example, while the individual instantiations above say 
that if increased serum Ca exists the dose should be reduced and if de
creased serum K exists the dose should be reduced, they do not give any 
indication of what should happen if both increased serum Ca and decreased 
serum K occur. Exactly what should happen depends on the characteristics 
of the domain. It could be that the occurrence of either sensitivity "covers" 
for the other, so that only one reduction should be made and the predicate 
of the If should be made into a disjunction. Or (as is actually the case) it 
could be that when multiple sensitivities appear, multiple reductions should 
be made. The way to resolve that is to serialize these two program frag
ments, connecting the outputs of the first to the inputs of the second. The. 
automatic programmer handles this situation by setting it up as something 
to be refined. The domain principle used in the refinement of this problem 
may further constrain the way in which other goals may be refined. The 
details of this operation will not be presented here. The interested reader 
should see Swartout (1981). 

Once the refinement process is complete, we have a working expert 
system. A sample interaction with the system is given in Figure 16-8. The 
first sentence of the explanation was produced by stating the higher goal 
(that is, anticipate toxicity). Next, the explanation routines located the do
main principle that caused the step in question to appear in the program. 
The domain rationale associated with that principle was then converted to 
English (with pattern variables replaced by the facts they matched in the 
domain model). That step produced the next two sentences of the expla
nation. The last sentence is just the instantiated version of the prototype 
method of the domain principle. These explanations should be compared 
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(describe-method [(check sensitivities)]) 

TO CHECK SENSITIVITIES I DO THE FOLLOWING STEPS: 

1. I CHECK SENSITIVITY DUE TO CALCIUM. 
2. I CHECK SENSITIVITY DUE TO POTASSIUM. 
3. I CHECK SENSITIVITY DUE TO CARDIOMYOPATHY-MI. 
4. I CHECK SENSITIVITY DUE TO HYPOXEMIA. 
5. I CHECK SENSITIVITY DUE TO THYROID-FUNCTION. 
6. I CHECK SENSITIVITY DUE TO ADVANCED AGE. 
7. I COMPUTE THE FACTOR OF ALTERATION. 

FIGURE 16-9 An explanation from the old Digitalis Advisor. 

with those presented in Figure 16-3 to appreciate the improvement that is 
possible with this approach. [The generation routines are described in 
detail in Swartout (1981).] 

16.5.2 Explanations of Domain Principles 

In the old Digitalis Advisor, when we wanted to give a more abstract view 
of what was going on, we just described a higher-level procedure (Swartout, 
1977). In this regard, we were following the principles of structured pro
gramming. While this approach often gave reasonable explanations, there 
were times when it was considerably less than illuminating. The general 
method for anticipating digitalis toxicity was called "check sensitivities" in 
the old Digitalis Advisor. An explanation of it appears in Figure 16-9. 
While this explanation does tell the user what sensitivities are being 
checked, 7 it does not say what will be done if sensitivities are discovered, 
nor does it say why the system considers these particular factors to be 
sensitivities. Finally, it is much too redundant and verbose. The first ob
jection can be dealt with by removing the calls to lower procedures and 
substituting the code of those procedures in-line. This results in the some
what improved explanation produced by XPLAIN when it is asked to de
scribe the method for anticipating digitalis toxicity (see Figure 16-10). 
However, while this explanation shows what the system does, it does not 
say why things like increased calcium, cardiomyopathy, and decreased po
tassium are sensitivities, and if anything, it is even more verbose than the 
original explanation. 

The reason we cannot get the sorts of explanations we want by pro
ducing explanations directly from the code is that much of the sort of 
reasoning we want to explain has been "compiled out." Thus we are forced 

7The reader may notice that there were more sensitivities checked in the original version of 
the program than in the current version. We now feel that some of these, such as thyroid 
function and advanced age, should not be treated as sensitivities per se because they tend to 

have an effect on reducing renal function and hence slowing excretion, rather than on in
creasing sensitivity to digitalis. The other sensitivities would be easy to add by including the 
appropriate causal links in the domain model. 
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(describe-method [((anticipate*o (toxicity*f digitalis))*i 1)]) 

To anticipate digitalis toxicity: 

(1) If the system determines that cardiomyopathy exists, it reduces 
the dose of digitalis due to cardiomyopathy. 

(2) If the system determines that decreased serum-k exists, it reduces 
the dose of digitalis due to decreased serum-k. 

(3) If the system determines that increased serum-ca exists, it 
reduces the dose of digitalis due to increased serum-ca. 

FIGURE 16-10 An explanation from the code for anticipating 
toxicity. 

(describe-proto-method [(anticipate*o (toxicity*f digitalis))]) 

The system considers those cases where a finding causes a dangerous 
deviation and increased digitalis also causes the dangerous deviation. If 
the system determines that the finding exists, it reduces the dose of 
digitalis due to the finding. 

The findings considered are increased calcium and decreased potassium. 

FIGURE 16-11 Explanation of a domain principle. 

into explaining at a level that is either too abstract or too specific. The 
intermediate reasoning that we would like to explain was done by a human 
programmer in the case of the old Digitalis Advisor. However, because the 
Digitalis Therapy Advisor performance program was produced by an au
tomatic programmer, that reasoning is available in the domain principle. 
For example, if we were to use the English generator to explain the domain 
principle that produced the code for anticipating digitalis toxicity rather 
than the code itself, we would get the explanation that appears in Figure 
16-11. Thus the use of an automatic programmer not only allows us to 
justify the performance program, it also allows us to give better descrip
tions of methods by making available intermediate levels of abstraction 
that were not previously available. 

16.6 Is Automatic Programming Too Hard? 

One possible objection to the whole approach to explanation advocated in 
this paper is that it is just too hard to get an automatic programmer to 
write the performance program. Our original plan for producing better 
explanations was to create structures detailing the development of the per
formance program, but these structures would be created by hand rather 
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than automatically, because it was feared that automatic programming was 
just too hard. However, as the research progressed, it became clear that if 
we had sufficiently powerful representations available so that it could be 
said that explanations were being produced from an understanding of the 
program, then actually writing the program automatically would not be all 
that much more difficult. This seems to be true in general. It seems that 
the primary difficulty in both explanation and automatic programming is 
a knowledge representation problem, and that the kinds of knowledge to 
be represented in both cases are similar, so that a solution to one makes 
the other much easier. However, it must be pointed out that the field of 
automatic programming is still an active research area and a number of 
difficult problems remain to be solved in addition to the knowledge rep
resentation problem, so this conjecture still awaits a final resolution. 

16. 7 A Summary of Major Points 

First, we have argued that to be acceptable, consultant programs must be 
able to explain what they do and why. Second, we have described the 
various ways that traditional approaches fail to provide adequate expla
nations and justifications. Major failings include ( 1) the inability of such 
approaches to justify what the system is doing because the knowledge re
quired to produce justifications is not represented within the system, and 
(2) a lack of distinction between steps required just to get the computer
based implementation to work and those that are motivated by the appli
cation domain. Third, we have outlined an approach that captures the 
knowledge necessary to improve explanations. This involves using an au
tomatic programmer to generate the performance program. As the pro
gram is generated, a refinement structure is created that gives the expla
nation routines access to decisions made . during the creation of the 
program. The improvement in explanatory capabilities that is achieved is 
due more to the availability of this refinement structure than to the use of 
more sophisticated English generation functions, since the explanation 
routines used in this paper do not differ greatly from those used in the 
old Digitalis Advisor. 
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17 
Discovery, Confirmation, 
and Incorporation of 
Causal Relationships from 
a Large Time-Oriented 
Clinical Data Base: The RX 
Project 

Robert L. Blum 

In the mid-1970s Robert Blum, a physician with an interest in medical 
AI, went to Stanford as a fellow in clinical pharmacology and a doctoral 
student in computer science. He soon learned about the well-known TOD 
data base work of James Fries and Gio Wiederhold (the time-oriented data 
bank that is used as the basis for an international rheumatology network 
known as ARAMIS-the American Rheumatism Association Medical In
formation System). Working with Wiederhold, he developed the concept of 
a computer program to derive new clinical knowledge from such data. His 
doctoral dissertation, known as RX, used a subset of the ARAMIS data 
base for this kind of investigation. RX differs from the other systems de
scribed in this book because the emphasis is not on consultation but on the 
use of AI techniques to guide the analysis of collected data. RX is knowl
edge-based in the sense that it requires not only the observations from a 
data base, but also underlying knowledge of pathophysiology, causality, and 
statistics. 

As Blum describes in this chapter, the objectives of the RX research are 
thre~f old: ( 1) to automate the processes of hypothesis generation and ex-

From Computers and Biomedical Research, 15: 164-187 (1982). Copyright© 1982 by Academic 
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ploratory analysis of data in a large nonrandomized, time-oriented clinical 
data base, (2) to provide knowledgeable assistance in performing studies 
on large data bases, and ( 3) to increase the validity of medical knowledge 
derived from nonprotocol data (i.e., data that are collected without formal 
guidelines or an experimental question in mind). In addition to the AR
AMIS data and knowledge of pathophysiology and statistics, RX is com
posed of a discovery module and a study module. The knowledge in the 
s_-ystem is organized hierarchically and is used to assist in the discovery and 
study of new hypotheses. Confirmed results from the data are automatically 
entered into the knowledge base for future use. Thus the work is related to 
research in learning, where the goal is to develop programs that can assim
ilate new knowledge by observing and analyzing past experience. 

When RX starts running, it begins the "discovery" process by scanning 
the ARAMIS data. The discovery module uses lagged, nonparametric cor
relations to generate hypotheses of clinical interest. These are then studied 
in detail by the study module, which automatical(-y determines confounding 
variables and methods for controlling their influence. In determining the 
confounders of a new hypothesis, the study module uses previously "learned" 
causal relationships. The study module selects a study design and statistical 
method based on knowledge of con{ ounders and their distribution in the 
data base. Most of the RX experiments haz1e used a longitudinal design 
involving a multiple regression model applied to individual patient records. 

The importance of this work lies in its merging of Al, data bases, and 
statistics and in the thoughtful characterization of causality that Blum has 
devised. In characterizing the difference between data and knowledge (see 
Chapter 3 ), authors have often noted that knowledge is derived from data 
that are analyzed and validated. In RX we see that this process of data 
analysis is itself a knowledge-based task. Note, also, that new knowledge, 
once derived and added to the knowledge base, can then be used to guide 
further data analyses in the future. The analogy to intellectual growth and 
learning is clear, but equally evident is the importance of validation before 
new correlations are accepted as fact. RX continues to be an active area 
of research for Blum and his colleagues. 

17 I Introduction • 

Every year, as computers become more powerful and less expensive, in
creasing amounts of health care data are recorded on them. Motivation 
for collecting data routinely into ambulatory and hospital medical record 
systems comes from all quarters. Health practitioners require sets of data 
for clinical management of individual patients. Hospital administrators 
require them for billing and resource allocation. Government agencies re-
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quire data for assessments of the quality of health care. Third-party in
surers require them for reimbursement. Data bases may also be used for 
performing clinical research, for assessing the efficacy of new diagnostic 
and therapeutic modalities, and for the performance of postmarketing 
drug surveillance. 

The various uses for data bases may be grouped into two fundamen
tally distinct categories. The first category pertains to uses that merely 
require retrieval of a set of data. For example, we may wish to know the 
names of all patients who had a diastolic blood pressure greater than 100 
for more than six months and who received no treatment. Uses of medical 
record systems for patient management, billing, and quality assurance usu
ally fall into this category. The second use of data bases is for deriving or 
inferring facts about the world in general. For example, we might request 
data from a health insurance data base on occupation and hospital diag
noses to determine whether certain occupations are associated with an 
increased prevalence of heart disease. Here the predominant interest is in 
generalizing from the data base and only secondarily in the particular 
values in the data base. The use of data bases for determining causal effects 
of drugs, for establishing the usefulness of new tests and therapies, or for 
determining the natural history of diseases falls into this latter category. 

The possibility of deriving medical knowledge from data bases is an 
important reason for establishing them. Given a collection of large, geo
graphically dispersed medical data bases, it is easy to imagine using them 
for discovering new causal relationships or for confirming hypotheses of 
interest. 

The RX Project, as this research project is called, is a prototype system 
for automating the discovery and confirmation of hypotheses from large 
clinical data bases. The project was designed to emulate the usual method 
of discovery and confirmation of medical knowledge that characterizes 
epidemiological and clinical research. The following hypothetical scenario 
serves to illustrate this method. 

} 7 .2 Evolution of Empirical Knowledge 

Suppose a medical researcher has noticed an interesting effect in a small 
group of patients, say unusual longevity. He carefully examines those pa
tients' records looking for possible explanatory factors. He discovers that 
heavy physical exertion associated with occupation and sports is a possible 
factor in promoting longevity. 

Interested in pursuing the hypothesis that "heavy physical exertion 
predisposes to long life,'' the medical researcher consults with a statistician, 
and together they design a comprehensive study of this hypothesis. First, 
they analyze the results of the study on their local data base, controlling 
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FIGURE 17-1 The evolution of medical knowledge. 

for factors known to be associated with longevity. Having confirmed the 
hypothesis on one data base, they proceed to test the hypothesis on many 
other data bases, modifying the study design to allow for differences in 
the type and quantity of data. Having confirmed the hypothesis, they pub
lish the result, and other researchers proceed with further confirmatory 
studies, attempting to elucidate the mechanism of the "exercise effect." 
When future researchers study other factors that influence longevity, they 
control for physical activity. 

This cycle in which knowledge gradually evolves from data through 
a succession of increasingly comprehensive studies is illustrated in Figure 
I 7 -1. At each stage of discovery and confirmation existing medical knowl
edge is used to design and to interpret the studies. 

} 7 .3 The RX Project 

It is easy to imagine automating at least parts of the above cycle of discovery 
and confirmation. We obtain our initial hypotheses by selectively combing 
through a large data base, examining a few patient records guided by prior 
knowledge. These clues are then studied more comprehensively on the 
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FIGURE 17-2 Discovery and confirmation in RX. 

data base as a whole. To design and interpret these studies, medical and 
statistical knowledge from a computerized knowledge base is used. The 
final results are incrementally incorporated into the knowledge base, where 
they can be used in the automated design of future studies. 

This describes the RX computer program, a prototype implementation 
of these ideas. Besides a data base, the RX program consists of four major 
parts: the discovery module, the study module, a statistical analysis pack
age, and a knowledge base (Figure 17-2). 

• The discovery module produces hypotheses of the form "A causes B ." The 
hypotheses denote that in a number of individual patient records "A 
precedes and is correlated with B ." Information from the knowledge base 
is used to guide the formation of initial hypotheses. 

• The study module then designs a comprehensive study of the most prom
ising hypotheses. It takes into account information in the knowledge base 
in order to control for known factors that may have produced a spurious 
association between the tentative cause and effect. The study module 
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uses statistical knowledge in the knowledge base to design an adequate 
statistical model of the hypothesis. 

• The statistical analysis package is invoked by the study module to test the 
statistical model. The analysis package accesses relevant data from pa
tient records, and then applies the statistical model to the data. The 
results are returned to the study module for interpretation. 

• The knowledge base is used in all phases of hypothesis generation and 
testing. If the results of a study are medically and statistically significant, 
they are tentatively incorporated into the knowledge base where they 
are used to design further studies. Newly incorporated knowledge is 
appropriately labeled as to source, validity, evidential basis, and so on. 
As the knowledge base grows, old information is updated. 

Currently, the RX program uses only one data base: a subset of the 
ARAMIS data base. Also, the extent of medical and statistical knowledge 
is limited, since the purpose of the research was primarily the development 
of methodology. 

While the program is a prototype, it has been operational since 1979 
and has been widely demonstrated. Several interesting medical hypotheses 
(in varying states of confirmation) have been discovered by the program, 
including some with little prior supporting evidence. 

The objective of this chapter is to present an overview of the RX 
Project. Details on statistical methods, modeling of causal relationships, and 
methods of knowledge representation may be found in Blum ( 1982). 

17 4 Time-Oriented Data Bases • 

The general format of a patient record is illustrated in Table 17-1. Each 
time a patient is seen in a clinic a number of observations are made. These 
are recorded with the date of observation in the data base. The recorded 

TABLE 17-1 Hypothetical Time-Oriented Record for One Patient 

VISIT NUMBER: 2 3 
DATE: 17 Jan 79 23 Jun 79 I Jul 79 
KNEE PAIN: severe mild mild 
FATIGUE: moderate moderate 
TEMPERATURE: 38.5 37.5 36.9 
DIAGNOSIS: systemic lupus 
WHITE BLOOD COUNT: 3500 4700 4300 
CREATININE CLEARANCE: 45 65 
BLOOD UREA NITROGEN: 36 33 
PREDNISONE: 30 25 20 
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characteristics of a patient are known as prima1y attributes, or simply attri
butes. Attributes may be real-valued, rank, categorical, or binary. The term 
attribute includes all recorded signs and symptoms, lab values, diagnoses, 
therapy, and functionaJ states. 

The defining characteristic of a time-oriented data base is that sequen
tial values for each attribute may be recorded. Note that different attributes may 
be recorded on different patients and that the time intervals between val
ues will usually differ. Some attributes may have values that are only spo
radically recorded or not at all. In general, the quantity and character of 
data across patients may vary greatly. 

All of the research reported here was done using a subset of the 
ARAMIS/TOD data base of rheumatology (American Rheumatism Asso
ciation Medical Information System/Time-Oriented Databank) collected at 
Stanford University from 1969 to the present (Fries, 1972; Wiederhold et 
al., 1975). The subset contains the records of 50 patients with severe sys
temic lupus erythematosus (SLE). The average number of clinic visits for 
each patient was 50, and the average length of follow-up was five years. 
Patient records contained 52 attributes. 

The size of the data base used in this project, a small sample of the 
ARAMIS data base, is approximately a half-million characters-much 
greater than available core storage on our computers after programs have 
been loaded. Patient records are kept in hash files on disk, where they are 
stored in compressed and transposed format. Indices for each attribute 
are maintained specifying numbers of values for each patient. Details of 
data storage and display methods may be found in Blum ( 1981 ). 

17•5 Computer Facilities and Languages 

Research was performed at two computer facilities at Stanford University: 
SUMEX-AIM and SCORE. At the time SUMEX-AIM featured a DEC dual 
processor KI-10 running the TENEX operating system. Currently both 
SUMEX and SCORE have DEC 20/60's running TOPS-20. The ARAMIS 
data base per se is stored at the Stanford Center for Information Technol
ogy on an IBM 370/3033. Data transfer was accomplished by magnetic 
tape. 

All computer programs are written in Interlisp (Teitelman, 1978), a 
dialect of LISP, a language that is highly suitable for knowledge manipu
lation. Statistics are performed in IDL (Interactive Data-Analysis Lan
guage) (Kaplan et al., 1978), discussed later. The RX source code with 
knowledge base comprises approximately 200 disk pages of 512 words 
each. 



406 The RX Project 

17.6 The Knowledge Base 

While the prospect of using clinical data bases to discover or to confirm 
medical hypotheses is tantalizing, there are formidable problems in making 
inferences from nonrandomized, nonprotocol data. These include numer
ous forms of treatment and surveillance bias, poor adjustment for covar
iates, inadequate specification of patient subsets, and improper use of sta
tistical analysis (Blum and Wiederhold, 1978; Byar, 1980; Dambrosia and 
Ellenberg, 1980). The use of nonrandomized data for clinical inference 
demands more stringent data analysis, study designs of greater sophisti
cation, and more thoughtful interpretation than does the use of data gath
ered in a randomized trial. 

The leitmotif of the RX Project is that derivation of new knowledge 
from data bases can best be performed by integrating existing knowledge 
of relevant parts of medicine and statistics into the medical information 
system. During the evolution of a medical hypothesis, as was illustrated, 
existing medical knowledge comes into play at every stage. 

In the RX computer program the medical knowledge base determines 
the operation of the discovery module, plays a pivotal role in the creation 
of subsequent studies in the study module, and, finally, serves as a reposi
tory for newly created knowledge. The medical knowledge base grows by 
automatically incorporating new knowledge into itself. Hence it must be 
designed in such a way that relationships derived from the data base can 
be translated into the same machine-readable form as knowledge entered 
from the medical literature by a researcher. In any case knowledge relevant 
to a study must be automatically accessible. 

The main data structure of RX's knowledge base (KB) is a tree rep
resenting a taxonomy of relevant aspects of medicine and statistics. Each 
object in the tree is represented as a schema containing an arbitrary num
ber of property:value pairs. The RX KB contains approximately 250 sche
mata pertaining to medicine, 50 pertaining to statistics, and 50 pertaining 
to the overall system. The medical knowledge in the RX KB covers only a 
small portion of what is known about systemic lupus erythematosus and 
some areas of general medicine. The present KB is merely a test vehicle; 
its size is 50 disk pages or 120,000 bytes. 

17 .6.1 Medical Knowledge 

The medical knowledge base is a subtree of the KB distinct from the sta
tistical knowledge base. Its first-order subtrees are states and actions, which 
in turn are broken down into signs, symptoms, lab findings, and diseases and 
into drugs, surgery, and physical therapy. The categories of diseases and other 
entities follow the conventional nosology based on organ systems and pa-
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thology found in any standard textbook of medicine (Isselbacher et al., 
1980). I will occasionally refer to each of the objects in the medical KB as 
a node and to the information stored at each node as its schema. 

The schema for each object is represented as a collection of prop
erty :value pairs called a property list. In general, the objects in the KB are 
either primary attributes in the data base or derived variables, that is, objects 
whose values must be derived from primary data. The properties in an 
object's schema may be grouped into the following categories: data base 
schema properties, hierarchical relationship properties, properties describing the def
inition of an object and its intrinsic properties, and properties describing cause/ 
effect relationships to other objects. 

Data Base Schema Properties 

Each of the attributes in the clinical data base is represented by a schema 
in the KB describing its units of measurement, how its values are stored, 
and so on. This kind of schema is typical of most data bases today (Wied
erhold, 1977). As an example, part of the schema for the attribute hemo
globin appears below: 

Hemoglobin 

attribute-type: point-event 
value-type: real {i.e., a real-valued number} 
range: 0 <value< 25 
significance: .1 {i.e., values are rounded to the nearest .1} 
units: grams per deciliter 

Hierarchical Relationship Properties 

Two properties are used to store the position of an object in the medical 
hierarchy: specialization and generalization, abbreviated spec and genl as 
shown below. 

Respiratory Diseases 
gen/: All Categories of Disease 
spec: Pneumonia, Asthma, Emphysema 

Pneumonia 
gen/: Respiratory Dis. 
spec: Pneumoncoccal Pn. 

Klebsiella Pn. 

Asthma 
gen/: Respiratory Dis. 
spec: Allergic Asthma 

Intrinsic Asthma 

Emphysema 
gen/: Respiratory Dis. 
spec: C02 retention 

Inheritance mechanisms (Stefik, 1979) are used by the study module 
as a means for exploiting the knowledge implicit in the hierarchy. For 
example, in the course of a study, if the expected duration of klebsiella 
pneumonia was required to construct a statistical model, then a default 
value might be inherited from the schema for pneumonia. 
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Properties Pertaining to the Definition and Intrinsic 
Characteristics of an Object 

If an object is a primary data base attribute like hemoglobin, then no 
definition is' required, at least not from a standpoint of deriving values for 
it. Values for hemoglobin are simply those in the data base. 

On the other hand, if the values for an object are derived from pri
mary attributes, the specification of the means for derivation must be re
corded in the KB. That is the object's definition. The didactic example 
below shows a definition for pneumonia. 

Pneumonia 

definition: Temperature > 38 degrees C. 
and WBC > 10,000 cells per mm3 

and Chest-XRAY = Lobar Infiltrate 

In the RX KB the specification and use of definitions are far more 
complicated than is suggested by this example. Recall that data base attri
butes are time-oriented with nonuniform time intervals and frequently 
missing values. Hence definitions of derived objects must contain time
dependent predicates and mechanisms for handling sporadic values. Def
initions can also refer to other derived objects. The temporal characteristics 
of an object may be specified using other properties in the schema: expected 
duration, carry-over, onset delay, and so on. These parameters are used by 
the time-dependent predicates when definitions for objects are evaluated. 

Properties Specifying Causal Relationships to Other 
Objects 

The final class of properties are those specifying the causal relationships 
of an object to other objects. In RX all causal relationships are stored using 
two properties: ~ffects and affected-by. The ~fleets property records a list of 
those objects directly affected by the object. The affected-by property con
tains a list of objects that directly affect it. Additionally, the detailed char
acteristics of the causal relationship between a pair of objects is stored on 
the a:ffected-by property. The resulting causal model is a directed cyclic 
graph; that is, the representation allows for the possibility that A causes B 
causes A. 

Besides the simple fact that A may affect B, each causal relationship is 
represented by a set of features as follows: 

<intensity, frequency, direction, setting, functional form, validity, eviden~e> 

Briefly, these take the following form when both the cause and effect 
are real-valued: 
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• intensity: the expected change in the effect given a change in the cause, 
expressed as an unstandardized regression coefficient 

• frequency: the distribution of the effect across patients, expres~ed as dec
iles of the expected effect given a "strong" change in the causal variable 

• direction: increase or decrease 

• setting: the clinical circumstances specifically included or excluded from 
the study, expressed as a Boolean with time-dependent predicates 

• functionalform: the complete statistical model used to study the relation
ship, expressed in machine-readable form 

• validity: a l-to-10 scale distinguishing tentative associations from widely 
confirmed causal relationships 

• evidence: a summary of the study performed by the study module, m
cluding patient ID's, methods, and intermediate results 

The entire causal relationship is machine-readable. This enables it to be 
used automatically by the study module during subsequent studies. The 
causal relationships in the KB can also be interactively displayed in a variety 
of forms. All paths connecting two nodes may be displayed, or only the 
details of a particular causal relationship: its mathematical form, the evi
dence supporting it, or its distribution across patients. In the following 
example the effects of prednisone have been displayed. The verbs and 
adverbs in the phrases are supplied by a lexicon during machine transla
tion. 

PREDNISONE, at a level of 30 mgms/day, {modal effects} 

usually increases CHOLESTEROL by 50 to 130 mgms/dl, 
usually increases WEIGHT by 3 to 7 kgms, 
regularly attenuates NEPHROTIC-SYNDROME by 1. to 2. gms protein/24 hrs, 
regularly attenuates GLOMERULONEPHRITIS by 10. to 30. percent activity, 
regularly decreases EOSINOPHILS by 2 to 3 percent of WBC, 
commonly decreases ANTI-DNA by 50 to 90 percent activity, 
occasionally increases GLUCOSE by 20 to 100 mgms/dl. 

17•7 The Discovery Module 

The general methodology used by RX to discover and then to study causal 
relationships is known as a generate-and-test algorithm. Briefly, the dis
covery module proposes causal links based on a test for strength of asso
ciation and time precedence. After a number of tentative links have been 
added, the study module performs an exhaustive study of them in the 
same order in which they were added. In the course of this study many 
tentative links will be removed, and the remaining ones will be labeled with 
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detailed information on the respective relationships. After a link has been 
incorporated into the model, it may be used to refine the study of further 
links. 

17. 7 .1 An Operational Definition of Causality 

Underlying the discovery module and the study module is the following 
operational definition of causality: A is said to cause B if over repeated 
observations ( 1) A generally precedes B, (2) the intensity of A is correlated 
with the intensity of B, and (3) there is no known third variable, C, re
sponsible for the correlation. 

These properties are the foundation of the RX algorithm. I will refer 
to these properties as ( 1) time precedence, (2) covariation or association, 
and (3) nonspuriousness (Kenny, 1970; Suppes, 1970). 

Causality can never be proven using observational data. The persua
siveness of a given demonstration simply depends on the extent to which 
the three properties have been shown. 

17. 7 .2 Methodology of the Discovery Module 

The function of the discovery module is to find candidate causal relation
ships. To do this, the discovery module exploits only the first two properties 
of causal relationships: time precedence and covariation. 

The discovery module considers all pairs of variables, {A, B}, where A 
and B are either primary attributes in the data base or are derivable from 
primary attributes. It attempts to determine whether the data suggest that 
A causes B, B causes A, both, or neither. The output of the discovery 
module is an ordered list of hypotheses. A researcher may designate which 
potential causes and effects are of interest. For example, certain drugs and 
diseases might be tagged as being of interest in exploration. The algorithm 
is intrinsically slow, O(n2) where 0 is Order and n is the number of vari
ables; however, it makes up for this inefficiency by its sensitivity and the 
speed with which simple correlations can be performed. 

A pairwise algorithm was chosen for the discovery module after 
months of experimentation with multivariate methods. The latter cannot 
be applied to data of the type recorded in the ARAMIS data base without 
extensive loss of information. The reason is that values are only sporad
ically recorded and patients differ widely on covariates. The general phi
losophy in all RX procedures in either the discovery module or the study 
module is to analyze data only within individual patient records. That is, data 
in two patient records are never combined before statistical analysis. The 
computational expense incurred by analyzing individual patient records 
will decrease markedly when multi-CPU machines become standard. 
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FIGURE 17-3 The principle underlying lagged correlation. 

The basic algorithm uses a sliding nonparametric correlation per
formed on data from an individual patient's record. The principle under
lying a lagged correlation is illustrated in Figure 17-3. Given a tentative 
cause, A, and an effect, B, the basic tool for uncovering a causal relationship 
is the Spearman correlation coefficient, r5(A, B, -r), where Tis the time delay 
used in computing the correlation. 

Selection of Patients for Correlation 

In the discovery module only a sample of the patient records are analyzed. 
The sampling procedure uses a precomputed index called a records list 
associated with every variable in the data base. The records list is a sorted 
list of the form ((patient1, n 1), (patient2 , n2), ... (patientm, nm)). The list 
identifies patients in descending order by their number of recorded values 
for the variable. That is, patient1 has n 1 measurements of the variable, and 
so on. 

The sample of records that are analyzed for a given pair of variables, 
{A, B}, is the sample P*{A, B}' where this is the set with the largest number 
of pairs of measurements of A and B. Let K denote the number of pairs 
in the set P*{A, B}· In experimental trials of the discovery module::, K was 
set to 10. 

The advantage of choosing the sample to be those patients with the 
most data on A and B is that "one might as well look where the looking is 
best." If a relationship exists between A and B, then it will be easiest to 
detect in patients with lots of data on A and B. This heuristic is particularly 
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valid for medical data when variables are more apt to be recorded when 
they are abnormal. Therefore, the frequency of observation tends to be 
correlated with the variance of the variable. 

Correlations for the records in P*{A. R} are computed as follows: 

for each record in P*{A,B} collect 

[for each T in T* collect rs(A, B, T)] 

The collect operator denotes assembling a set composed of the value of each 
iterand. The time delays in T* over which the correlations are performed 
are based on information from the knowledge base. That is, the algorithm 
makes use of prior information on the expected time delays of broad 
classes of causes and effects. 

Combining Correlations Across Patients 

That various correlations within and across patient records are based on 
different numbers of measurements poses a difficulty in combining them. 
Given equal correlations, we would like to assign more weight to records 
with more data. Using the p-value of the correlation achieves this and also 
facilitates combining correlations. 

The p-values from the above procedure may be diagrammed as fol
lows: 

TJ T2 Tq 

patient1 Pu P1.2 P1.q 
patient2 P2.1 P2.2 P2.q 

patientK 

Here Pii denotes the p-value on the ith patient at the jth time delay. 
By the method of Fisher, the p-values may be combined to form an overall 
score s for each time delay T{ 

s(A, B, T1, P*{A, B}) = - 22:log(p;,T) 
J 

where the sum is over all patient records in P*{A, R}· It can be shown (Mood 
et al., 1974) that the scores s are distributed as x2 on 2p degrees of freedom. 
Since the distribution of the scores is known, their statistical significance 
may be calculated. Because of autocorrelation, the differences between 
scores determined at different time lags may not be distributed as x2. How-
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ever, the significances are not taken literally by the discovery module, but 
are merely used to rank the hypotheses in terms of promise. 

If the difference between the forward and back ward sets of scores is 
large, a strong time precedence of association is implied. Since time prec
edence is not a suffiGient condition for causality, spurious associations may 
also be reported as significant. 

The output of the discovery module is a list of dyadic relations ranked 
in descending order by strength. of unidirectionality of association. The 
algorithm has proven to be a sensitive, if nonspecific, detector of causal 
relationships, and is usually capable of accurately discriminating time prec
edence and determining approximate onset delay. 

In the discovery module, only the properties of time precedence and 
covariation are used in a blind search for clues to causal relationships. 
Included in its output are many spurious relationships. The objective of 
the study module is to eliminate those relationships and to carefully ex
amine those that remain in order to detail their characteristics and to store 
them in the KB. 

17 .8 The Study Module 

The study module is the core of the RX algorithm. It takes as input a 
causal hypothesis obtained either from the discovery module or interac
tively from a researcher. It then generates a medically and statistically plau
sible model of the hypothesis, which it analyzes on appropriate data from 
the data base. 

The study module is patterned after a sequence of steps usually un
dertaken by designers of large clinical studies. Its design may be considered 
an exercise in artificial intelligence insofar as it emulates human expertise 
in this area. There are at least six persons whose knowledge is brought to 
bear in designing, executing, reporting, and disseminating a large data 
base study. We may think of the data base research team as consisting of a 
doctor, a statistician, an archivist, a data analyst, a technical writer, and a 
medical librarian. The study module, in conjunction with the knowledge 
base (KB), emulates part of their expertise. The steps performed by the 
study module appear in Table 17-2. 

I 7 .8.1 Determination of the Feasibility of a Study 

The study module may be operated automatically in batch mode, or it may 
be run interactively, enabling a researcher to modify the evolving study 
design. In this presentation we will assume that it is being run interactively. 
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TABLE 17-2 Steps Performed by the Study Module 

1. Parse the hypothesis. 

2. Determine the feasibility of the study on the data base. 

3. Select confounding variables and causal dominators. 

4. Select methods for controlling the causal dominators. 

5. Determine proxy variables. 

6. Determine eligibility criteria. 

7. Create a statistical model. 
a. Select an overall study design. 
b. Select statistical methods. 
c. Format the appropriate data base access functions. 

8. Run the study. 
a. Fetch the appropriate data from eligible patient records. 
b. Perform a statistical analysis of each patient's record. 
c. Combine the results across patients. 

9. Interpret the results to determine significance. 
10. Incorporate the results into the knowledge base. 

Throughout this section we will use as an example the hypothesis that the 
steroid drug prednisone elevates serum cholesterol. 

The first general task of the study module, or of the "data base re
search team," is to determine whether a particular study is feasible given 
the knowledge and the data available. The first step is the recognition by 
the program of the terms used in the hypothesis. 

Suppose a researcher enters the hypothesis "prednisone elevates cho
lesterol." A top-down parser is applied to this input string. The pattern 
that matches is <variable relationship variable> where a variable may be 
any primary attribute or derived variable in the medical KB. As the parser 
matches the tokens in the input, it determines their classification in the 
KB. 

Prednisone is a known concept. 
It is classified as a Steroid which is a Drug which is an Action. 

Elevates is a known concept. 
It is classified as a Relationship. 

Cholesterol is a known concept. 
It is classified as a Chemistry which is a Lab-Value which is a State. 

The classifications are simply determined by following the generaliza
tion pointers in the knowledge tree. The classification of each variable is 
not only of interest to the user but facilitates the inheritance mechanisms 
discussed above. For example, properties of the class steroids may be in
herited by the drug prednisone, if they are needed in the course of the 
study. 
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To study the relationship between prednisone and cholesterol both 
variables must have been recorded in some patient records. Hence, the 
program next examines the intersection of their records lists. 

The following list denotes that patient 78 had 32 recorded values for 
cholesterol, patient 118 had 25 values, and so on. 

Cholesterol 

records: ((P78 32) (P118 25) . . . (P967 1)) 

17 .8.2 Confounding Variables and Causal Dominators 

The principal objective of the study module is the demonstration of non
spuriousness. In any observational drug study, as in the current one, the 
possibility must always be addressed that the effect of interest was caused 
by the disease for which the drug was given rather than by the drug itself. 
The first step in demonstrating nonspuriousness is identifying the set of 
possible confounding variables. 

A confounding variable is any node, C, that may cause a clinically 
significant effect on both the causal node, A, and the effect node, B, in our 
hypothesis. The "clinical significance" of a given change in a variable is 
determined by a prior partitioning of that variable's range. Every real
valued object in the knowledge base has stored in its schema a partition list 
that divides its range into clinically significant regions. 

Let C be the set of known confounders. The determination of C in
volves tracing the directed graph in the KB starting from A and B. 

C = Intersection[Antecedents(A), Antecedents(B)] 

where the list Antecedents(A) is the set of nodes that may produce a clin
ically significant effect on A. The antecedents set of a node is calculated by 
traversing the causal network in the KB. In the current example, the set 
C is determined to be {ketoacidosis, hepatitis, glomerulonephritis, ne
phrotic syndrome}. 

Having determined the variables in C, the program displays the causal 
paths connecting them to A and B. The paths for glomerulonephritis ap
pear below. The intensities of intermediate nodes are calculated using the 
regression coefficients stored in sequential causal relationships. 

Glomerulonephritis {50 percent activity} is treated by Prednisone {30 mgms/day}, 

Glomerulonephritis can cause Nephrotic Syndrome {4 gms proteinuria/24 hrs} which is treated by 
Prednisone {20 mgms/day}, 

Glomerulonephritis can cause Nephrotic Syndrome {4 gms proteinuria/24 hrs} which increases 
Cholesterol {65 mgms/dl}. 
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17 .8.3 Causal Dominators 

To increase statistical power and stability of estimation it is usually desirable 
to control for as few confounding variables as possible. Since the set C in 
any real study is apt to be quite large, it is desirable to control for only the 
essentials. The set of causal dominators, C*, is the smallest subset of C 
through which all known causal influences on both A and B flow. 

The set of causal dominators, C*, is determined by the following al
gorithm. The nodes in C are sorted into descending order according to 
their expected magnitude of effect on the relationship between A and B. 
More potent confounders appear earlier in the list. To determine C*, the 
nodes in the ordered list are checked to determine whether paths to A and 
B still exist after earlier (more proximal) nodes have been blocked. In the 
current example, glomerulonephritis is deleted from the confounders since 
its confounding influence is entirely through nephrotic syndrome. 

17 .8.4 Controlling Variables Related to the Cause 

Suppose prednisone affects cholesterol in some fashion; it is possible that 
related drugs may also affect cholesterol. We may also want to remove their 
influence by controlling them. Generally, we would like the program to 
suggest to us variables related to the cause, since they may also be con
founders. These variables may not be in the set C, since causal paths be
tween them and the effect may be unknown. 

To select this set of variables related to the causal variable, the program 
uses the hierarchical structure of the KB. For example, since prednisone 
is one of the steroids, RX controls for the other steroids [i.e., siblings (pred
nisone) = {dexamethasone ACTH}, the other nodes in the same class, 
steroids]. 

17 .8.5 Determination of Methods for Controlling 
Confounding Variables 

Three general methods _are used by RX to control confounding variables: 
( 1) eliminating entire patient records, (2) eliminating time intervals con
taining confounding events, and (3) controlling statistically for the pres
ence of the confounder. Eliminating patient records is always the safest 
and most intellectually reassuring. With statistical control, doubt always 
remains as to whether the confounder has been entirely eliminated. When 
eliminating time intervals, there is always the possibility that the confound
ing influence extends beyond the interval. On the other hand, eliminating 
patient records is the strategy most wasteful of data. There may be too few 
records left to analyze, or the generalizability of the result may be dimin
ished. 
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To determine which method to use for each confounder, some decision 
criteria must be used. In making this decision and others discussed later, 
the study module uses decision criteria stored in the KB in the form of 
production rules. 

17 .8.6 Production Rules 

Production rules have been widely used in artificial intelligence research 
to store domain knowledge (Shortliffe et al., 1975) (see also Chapter 5). A 
production rule is an IF/THEN rule consisting of a premise and conclu:
s1on. 

The rule below is stored with other similar rules in the schema for 
control methods. To choose a control strategy, the rules are exhaustively 
invoked. Some rules may be used to resolve conflicts, if more than one 
control method is suggested. 

IF the number of patients affected by a variable 
is a small percentage of the number of 
patients in the study, 

AND the variable is present throughout those records, 

THEN eliminate those records from the study. 

The premise and conclusion of each production rule consists of a few 
lines of machine-readable code. In some systems (Shortliffe et al., 1975), 
the code may be mechanically translated into English upon request. To 
avoid the attendant complexity and to improve the quality of translation, 
the RX KB simply stores an English translation of each production rule. 

In writing programs that use much domain knowledge, it is advanta
geous to separate the specific knowledge from the general algorithms that 
use it. Production rules are one method for achieving this modularity. The 
advantages are that (1) knowledge is more easily examined and updated, 
(2) dependencies among the knowledge are more easily discovered, and 
(3) the homogeneous format lends itself to machine translation. 

17 .8. 7 Controlling Confounders 

To determine how a particular confounder is to be controlled, the following 
information is first determined: N, the number of patient records in the 
study; %records, the fraction of records affected by the confounder; and 
%visits, the average fraction of visits affected. Each of these parameters is 
calculated using the information in the records list for each confounding 
variable. 

If %records or %visits are low, then either records or time intervals 
may be eliminated. The rules tend to favor the elimination of records if N 
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is high. Only if N is low and %records or %visits is high is statistical control 
of the confounder considered. 

While the program is running, the user may request a display of the 
rules that determined the choice of strategy. The user, as always, may 
override the decision made by the program. 

In the prednisone/cholesterol study the program makes the following 
selections: 

Dexamethasone No control needed, since no values were recorded in the database 

ACTH No control needed 

Nephrotic Syndrome Control statistically using albumin as a proxy 

Hepatitis Eliminate affected time intervals 

Ketoacidosis Eliminate affected time intervals 

17.8.8 Choice of Study Design and Statistical Method 

Both the study design and the statistical method are selected using decision 
criteria stored in production rules in the KB. The choice of study design 
in the present system is simply a choice between a cross-sectional and a 
longitudinal design. In a cross-sectional design each variable is sampled 
once in a patient's record; in a longitudinal design variables are repeatedly 
sampled over time. The longitudinal study design has the advantage of 
making use of temporal information and multiple observations of variables 
within individual patient records. A cross-sectional design is only chosen 
when a longitudinal design is not feasible. 

The selection of a particular statistical method uses knowledge 
encoded in a hierarchically organized, statistical knowledge base. The 
organization follows the conventional classification as in Armitage ( 1971) 
or Brown and Hollander (1977). 

On the property list of each node in the tree is an objectives, a prereq
uisites, and an assumptions property. The objectives property describes the 
goals of the method. The prerequisites property describes the conditions 
that must hold for the method to be mechanically applied. The assump
tions property describes the assumptions that must hold for the result to 
be valid. 

An example of the schema for multiple regression appears below. The 
schema stores not only the English text but the equivalent machine
executable code. 

Multiple-Regression 

objectives: linear-model 
prerequisites: 

one dependent variable 
two or more independent variables 
measurement-level of dependent variable = real valued 
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measurement-level of independent variables = real valued 
number of observations > 1 + number of independent variables 

assumptions: 
independent and identically distributed errors 
normally distributed errors 
linear and additive effects 

To select a statistical method the objectives and prerequisites properties 
must satisfy the constraints of the study. The tree structure of the KB is 
used to prune limbs that are not applicable. When there is more than one 
applicable method, production rules at intermediate nodes arbitrate 
among methods. The present program does not determine whether the 
assumptions of a method have been fulfilled; they are merely displayed. 
However, it does make available tables and plots of residuals, so that the 
assumptions can be manually checked. 

The present version of this robot statistician is rudimentary. Each of the 
nodes in the statistical KB contains about as much knowledge as is shown 
for multiple regression. No knowledge or methods are present for critically 
analyzing a fitted model or for revising the model. The current emphasis 
is simply on selecting a method that may be mechanically applied. 

17.8.9 Formatting of Data Base Access Functions 

In order to apply the selected analytical methods to the appropriate data, 
the data must be sampled from patient records at times that reflect the 
time delays inherent in the underlying processes. These time parameters 
are obtained by the study module from information in the KB. 

For the longitudinal design in the present example the following 
model is created: 

dcholesterol {30 + {3 1dalbumin + {32dlog(prednisone) 

where 

dcholesterol = cholesterol(!) - cholesterol(tpchot) 

dalbumin = albumin(t - TNs) - albumin(tpchol - TNs) 

dlog(prednisone) = log[prednisone(t - T prec1)] - log[prednisone(tpchol - Tprec1)] 

The time tpchol denotes the time of the preceding measurement of 
cholesterol (previous to the present one), and TJ\is denotes the estimated 
delay from the start of nephrotic syndrome to the establishment of a steady 
state for cholesterol. The symbol Tpred is the analogous onset delay for 
prednisone. No values are sampled during episodes of hepatitis or ketoac
idosis. Figure 17-4 illustrates some of the time relationships that might be 
seen in one patient's record. 
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FIGURE 17-4 Time relationships in prednisone/cholesterol 
study. 

Next, the mathematical model must be translated into the appropriate 
data base access functions. The function create-access-functions uses infor
mation in the schemata for the variables in the model to format the ap
propriate access functions. For example, the values for the onset delays 
and the indicator that there is a need for the log transform are retrieved 
from the schemata for nephrotic syndrome and prednisone. The estimated 
time delay for the effect of prednisone on cholesterol is obtained from the 
discovery module. 

17 .8.10 Determination of Eligibility Criteria 

All patients in a data base may not be eligible for a particular study. Eli
gibility criteria in the current example are automatically formatted based 
on the number of relevant observations in a patient's record and the within
patient variance in the causal variable. 

The study design cannot be executed on patient records in which there 
are less than four sets of observations (note that there is 1 degree of free
dom for the mean plus 2 degrees of freedom for dalbumin and for dpred
nisone). Furthermore, patient records are excluded in which the coefficient 
of variation in log(prednisone) is below threshold. 
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17 .8.11 Statistical Analysis: Fitting the Model 

Until July 1980, all statistical analyses were performed using SPSS (Nie et 
al., 197 5) as a subroutine; however, this incurred the inefficiency of having 
to write and read files in formats intended for human usage. Currently, 
all statistical analysis is performed using IDL (Kaplan et al., 1978). Written 
in Interlisp, IDL makes available fast numerical computation, matrix ma
nipulation, and a variety of primitive operators for statistical computation. 

Most of our studies are sufficiently large that statistical analysis re
quires use of a separate core image (separate job). The study module writes 
the study design to disk, then calls IDL. IDL reads the study design, exe
cutes it, writes the results to disk, and then calls the study module. 

Longitudinal Design Using Weighted Multiple 
Regressions 

The method of analysis that we have most extensively developed combines 
the results of separate multiple regression analyses performed on individ
ual patients. Recall that individual patient records differ in quantity of 
data and greatly vary on covariates. By analyzing each patient's record 
separately, we can determine the distribution of an effect across patients 
and obtain information as to why some patients exhibit an effect and others 
do not. 

Naturally, we are interested in knowing whether a given causal rela
tionship is statistically significant in the study sample as a whole. The anal
ysis of significance is complicated by the fact that patients have widely 
varying amounts of data. Intuitively, one would like to weight most heavily 
those patients in whom a relationship has been most precisely determined, 
i.e., the patients with the most data; however, these patients may be un
representative. 

The approach we use is a mixed model. The regression coefficient for 
each patient is weighted by the inverse of its variance. The mathematical 
justification for this procedure lies beyond the scope of this paper but may 
be found in Blum ( 1982). When there is a large variation in the effect 
across patients, perfect precision on any one patient is of little advantage, 
and all patients are weighted nearly equally. When across-patient variation 
is small, weighting by precision is more appropriate, and the weights di
verge. 

17.8.12 Interpretation of Results 

The final result of the longitudinal design is an estimate of {3, the unstan
dardized regression coefficient of the effect on the cause, and var({3), its 
variance. The ratio {3/[ var({3) ]5 is approximately distributed as a t statistic 
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TABLE 17-3 Distribution of the Prednisone/ 
Cholesterol Effect Across Patients (given a 
baseline value of 230 mg/di and a change in 
prednisone from 0 to 30 mg/day) 

Range of Percentage Magnitude o( 
cholesterol of patients change 

100 150 0 extreme -
150 195 0 strong -
195 210 0 moderate -
210 225 0 weak -
225 230 0 equivocal -
230 235 0 equivocal + 
235 250 0 weak+ 
250 280 10 moderate + 
280 360 82 strong + 
360 700 8 extreme + 
---------

on n - 1 degrees of freedom, where n is the number of patients in the 
study. A two-sided p-value is calculated using the t statistic. 

Presently, the interpretation of the results of a study depend only on 
the magnitude of f3 and its corresponding p-value. A significant p-value 
does not necessarily mean the result is medically significant; a p-value can 
always be made significant if the number of patients is large enough. The 
program for interpretation uses the following heuristic: if f3 is large, then 
for a given p-value, the program assigns a higher validity to the result than 
it does if f3 is small. 

The clinical significance of f3 is determined by the magnitude of its 
expected influence on the effect variable in the study. This is illustrated in 
Table 17-3, which shows the expected distribution of cholesterol given 
prednisone at 30 mgms per day. 

Recall that the validity score is a component of every causal relationship 
stored in the KB. The validity score is measured on a scale from 1 to 10 
summarizing the state of proof of a relationship. The highest score that a 
study based on a single nonrandomized data base can achieve is 6. Higher 
scores can only be obtained from replicated studies, the highest scores 
requiring experimental manipulation and a known mechanism of action. 
A score of 6 means "strong correlation and time relationship have been 
demonstrated after known covariates have been controlled in a single data 
base study." 

The discovery module populates the KB with causal links of validity 
between 1 and 3. The study module overwrites the links that it explores, 
assigning to those that it confirms scores between 4 and 6. 

A statistician or researcher might choose to pursue a given study fur
ther, asking "Have the confounding variables in C* been adequately con-
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TABLE 17-4 Effects of Prednisone 

Direction Onset delay p-value 

Weight + chronic < .0001 
Cholesterol + acute .0001 
WBC + acute .0004 
o/r Neutrophils + acute .003 
o/r Lymphs acute .003 
BP-diastolic + acute .004 
Glucose + acute .007 
Hemoglobin + chronic .009 
Wintrobe ESR chronic .01 
Platelets + acute .02 
Temperature chronic .05 
anti-DNA chronic .08 
% Eosinophils acute .15 
Urine-RBC's chronic .17 
Creatinine chronic .19 

trolled?" "Are the residuals in each of the regressions independent and 
identically distributed?" "What accounts for the differences among pa
tients?'' A researcher can pursue these questions interactively in RX, in
crementally improving the mathematical model (Draper, 1966); however, 
the automation of this kind of inquiry will require building much greater 
knowledge into the robot statistician. 

17 9 Medical Results • 

The medical results reported here were generated by running the discov
ery module and then the study module on a sample data base containing 
the records of 50 patients with systemic lupus erythematosus (SLE). Many 
patients had multisystem involvement including glomerulonephritis and 
nephrotic syndrome. 

Table 17-4 shows the effects that were confirmed by the study module 
for the steroid drug prednisone. The study module automatically incor
porated these new links and details of the studies into the knowledge base 
in the format discussed above. 

The effects that were confirmed by the study module for the steroid 
drug prednisone are shown in Table 17-4. To illustrate the interpretation 
of Table 17-4, the second row of the table means that prednisone is thought 
to cause an increase ( +) in cholesterol, that the time delay is "acute" (less 
than one average intervisit interval), and that the effect is highly statistically 
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significant (p = .0001 ). The study module automatically incorporated these 
new links and details into the knowledge base in the format discussed 
above. 

Almost all of the acute effects appearing in the table have been exten
sively confirmed in the medical literature. The effect of prednisone on 
cholesterol, strongly supported by this study, has only been reported a few 
times previously. No previous study has recorded the reproducibility of the 
effect over time or the interpatient variability, as was done here. 

The chronic effects of prednisone shown in Table 1 7-4 are those ap
pearing in a setting of severe SLE. Literature confirmation of these effects 
has been scant. Because of small numbers of patients, the chronic effects 
shown here must be further studied. Tables of other empirical results and 
a discussion of the statistical models used in these studies may be found iQ. 
Blum ( 1982). 

17.10 Summary 

The methods described here emanate from a small set of operational prop
erties of causal relationships. The discovery module uses a nonparametric 
method for producing a ranked list of causal hypotheses based on strength 
of time precedence and association. The study module uses a consensual 
causal model stored in a knowledge base to determine all known confound
ing variables and to determine appropriate methods of adjusting for them. 
The statistical model of the tentative causal relationship is then applied to 
a set of data. If the results indicate that a relationship is significant after 
controlling for confounding influences, then a new relationship is incor
porated into the KB. Subsequent studies may make use of this new link. 

All components of the study module can be used in an interactive 
mode to give a researcher more control in determining the course of the 
study. For example, the causal model stored in the KB can be queried 
interactively or changed in the course of a study as new information be
comes available. All phases of the statistical analysis can also be interactively 
modified. 

Any methodology that draws causal inferences based on nonrandom
ized data is subject to an important limitation: unknown covariates cannot be 
controlled. The strength of the knowledge base lies in its comprehensiveness, 
but even so, it cannot guarantee nonspuriousness. Any single study, par
ticularly one using nonrandomized data, must be viewed skeptically. For 
this reason, the most conclusive causal relationships that RX discovers are 
always assigned a modest validity. Only through repeated studies, partic
ularly through experimental manipulation of the causal variable, can a 
given result become more definitive. 
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18 
A System for Empirical 
Experimentation with 
Expert Knowledge 

Peter Politakis and Sholom M. Weiss 

When CASNET (Chapter 7) evolved into the general s_vstem-building tool 
known as EXPERT, one of the first applications was a rheumatology con
sultant program called AI/Rheum (Kingsland and Lindberg, 1983). De
veloped collaboratively by researchers at Rutgers University and the Uni
versity of Missouri, AI/Rheum quickly became large and complex, thereby 
complicating the process of knowledge base maintenance. Peter Politakis, 
a Rutgers graduate student working with Sholom Weiss and Casimir Ku
likowski, accordingly developed a program, named SEEK, that was de
signed to assist with both expansion and ver~fication of the AI I Rheum 
knowledge base. 

SEEK illustrates how a model ~f expert reasoning (in this case the rules 
of rheumatology diagnosis) can be rr:fined with program assistance. The 
program suggests possible experiments involving generalization or special
ization of the preexisting rules in the system. A library of stored patient 
cases with known conclusions is used as a basis for proposing the experi
ments. This approach has proven particularly valuable in assisting the 
expert in a domain like rheumatology where two diagnoses are often difficult 
to distinguish. 

The research on SEEK also has its origins in the knowledge-acquisition 
tool TE/RES/AS, developed by Davis for MYCIN (Davis, 1979). How
ever, SEEK is able to go a step further by using a somewhat more artic
ulated representation than MYC/N's rules. In AI/Rheum evidence is 
class~fied according to major and minor findings, plus required and 

From Proceedings of the Fifteenth Hawaii International Conference on Systems Science, 2: 649-657 
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excluded findings. Specialization and generalization are accomplished by 
adding or deleting elements in these lists. The use of symbolic categories of 
belief (definite, probable, and possible) provides a specifiable means for 
manipulating the rules. 

While based on a simple idea, the SEEK program convincingly dem
onstrates the value of a rich('v structured representation and of reasoning 
from cases as a way of constructing a model. That is, exjJert knowledge is 
inseparable from case experience (Schank, 1983 ), in so far as knowledge 
explains the cases. The use of a knowledge base to provide an explanalm)' 
model has characterized other recent AIM work as well (cf. the diagnostic 
approach used by Patil, Chapter 14 ). Another important strength of the 
SEEK approach is its exhaustive analysis of the entire library of cases, 
thereby revealing the overall effect of a modification. Experts building the 
system can accordingly avoid being swa_ved by one or two cases; they must 
explain their experiences as a whole. 

18 1 Introduction • 

Over the past decade, much of the research in the development of expert 
systems has been focused on the acquisition of knowledge in various med
ical areas: CASNET (Chapter 7)-ophthalmology; INTERNIST (Chapter 
8), PIP (Chapter 6)-internal medicine; and MYCIN (Chapter 5)-infec
tious diseases. A relatively difficult task is to find effective methods for 
validating a system's knowledge base and evaluating its performance. A 
step in this direction has been taken in recent work to develop knowledge
engineering tools that would facilitate the building and testing of aq ex pert 
system. Two examples of generalized knowledge-engineering tools are the 
EXPERT (Weiss and Kulikowski, 1979) and EMYCIN (van Melle, 1979) 
systems. These systems provide the builder of an expert system with a 
prespecified control strategy, a production rule formalism for encoding 
expert knowledge, explanatory tools for tracing the execution of rules dur
ing a consultation session, and a data base system in which cases can be 
stored for empirical testing. Other work on empirical testing of expert 
systems has been reported in the development of the PROSPECTOR con
sultation model for mineral exploration (Gaschnig, 1979). The PROSPEC
TOR scheme uses sensitivity analysis to determine the effect on the model's 
conclusions as a result of making changes to certainties in the input data. 
The empirical testing is based on matching the expert's conclusion to the 
overall result and also to the intermediate conclusions reached by the 
model. 

As has been demonstrated in the TEIRESIAS system (Davis, 1977), 
the knowledge-engineering tools that explain a system's decisions are inval
uable aids in expert knowledge acquisition and in improving performance. 
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During a consultation session on a patient case, TEIRESIAS assists the 
user in composing new rules to correct erroneous conclusions. TEIRESIAS 
generates its advice about the contents of a new rule by using a rule model 
that summarizes relationships within a subset of the rules in the knowledge 
base. It does not, however, directly determine the impact of changes to the 
knowledge base on other cases previously processed by the consultation 
program. 

The approach described in this paper is to integrate performance in
formation into the design of an expert model to automatically provide 
advice about rule refinement. A system called SEEK has been developed 
that generates advice in the form of suggestions for possible experiments 
in generalizing or specializing rules in an expert model. Case experience, 
in the form of stored cases with known conclusions, is used to interactively 
guide the expert in refining the rules of a model. In particular, SEEK looks 
for certain regularities about the performance of the rules in misdiagnosed 
cases as a basis for suggesting changes to the rules. An expanded descrip
tion of methods and the uses of SEEK can be found in Politakis ( 1982). 

18 2 The Model • 

A table of criteria, which is a specialized type of frame or prototype (Aikins, 
1979), is prepared for each potential diagnosis. The table consists of two 
parts: 

• major and minor observations that are significant for reaching the di
,agnos1s 

• a set of diagnostic rules for reaching the diagnosis 

The following example shows observations, grol)ped under the headings 
Major criteria and Minor criteria, for mixed connective tissue disease: 

M ajar criteria 
1. Swollen hands 
2. Sclerodactyly 
3. Raynaud's phenomenon or 

esophageal hypomotility 
4. Myositis, severe 
5. CO cliff. capacity (normally < 70) 

Minor criteria 
1. Myositis, mild 
2. Anemia 
3. Pericarditis 
4. Arthritis ~ 6 w ks 
5. Pleuritis 
6. Alopecia 

The second part of the table contains the diagnostic rules. In the 
following example, each column consists of a rule for a specific degree of 
certainty in the diagnosis: 



Requirements 

Exclusions 

Definite 
4 majors 

Positive RNP 
antibody 

Positive SM 
antibody 

Probable 
2 majors, 

2 minors 
Positive RNP 

antibody 
No exclusion 
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Possible 
3 majors 

No requirement 

No exclusion 

There are three levels of confidence: definite, probable, and possible. A 
diagnostic rule is a conjunction of three components, one taken from each 
row: specific numbers of major or minor observations, requirements, and 
exclusions. Requirements are those combinations of observations that are 
necessary beyond simple numbers of major and minor findings (although 
major and minor findings also may be requirements). Exclusions are those 
observations that rule out the diagnosis at the indicated confidence level. 
The three fixed confidence levels are an important attribute of the model. 
They substitute for complex scoring functions, which can be a major dif
ficulty in analyzing and explaining model performance (see Chapter 9). It 
is understood that if a definite diagnosis for a particular disease is made, 
then even if the rules for the probable or possible diagnosis for the same 
disease are satisfied, the definite conclusion is appropriate. 

As an example, the rule for concluding definite mixed connective tis
sue disease can be stated as follows: if the patient has 4 or more major 
observations for mixed connective tissue disease, and RNP antibody is pos
itive, and SM antibody is not positive, then conclude definite mixed con
nective tissue disease. In most applications, multiple rules are described 
for each confidence level. 

In terms of refinement of a model, the following sections will focus 
on tools that facilitate identifying two classes of changes that can be made 
to the rules-generalizations and specializations. Generalizations are changes 
to a rule R that result in a different rule Rg where Rg logically includes 
R. For example, this can be accomplished by dropping a requirement or 
decreasing the number of major and minor findings for a rule. Speciali
zations are changes to a rule R that result in a different rule Rs where Rs 
is logically included by R. For example, this can be accomplished by in
creasing the number of major and minor findings in a rule. 

Framelike schemes have been used to represent medical knowledge in 
the PIP (see Chapter 6) and CENTAUR (Aikins, 1979) systems, which were 
designed to provide diagnostic consultations in subspecialties of medicine. 
In addition to representing various clinical states, findings with typical 
values and frequencies, and related diseases in each disease frame, there 
were slots containing relatively complex scoring functions that could be 
specialized for the evaluation of the disease frame. The tabular model is 
a simple type of frame representation requiring for each diagnostic con-
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clusion fixed types (e.g., majors, exclusions) of observations that are rela
tively easy to understand. Also, scoring follows directly from the three 
confidence levels of definite, probable, and possible. 

18.3 The Rheumatology Application 

In collaboration with rheumatologists at the University of Missouri, a con
sultation model for connective tissue diseases has been realized using the 
EXPERT system (Weiss and Kulikowski, 1979) for developing consultation 
models. This subpart of rheumatology is a particularly difficult area for 
the physician and includes seven diseases: rheumatoid arthritis, systemic 
lupus erythematosus (SLE), progressive systemic sclerosis, mixed connec
tive tissue disease, polymyositis, primary Raynaud's syndrome, and Sjo
gren's disease. Some of the difficulties in the differential diagnosis of these 
diseases may be appreciated by noting that even the experts in this area 
disagree about some of the diagnoses, that the disease process evolves in 
atypical ways within patients, and that there is a general lack of pathog
nomonic criteria to confirm diagnoses objectively (Lindberg et al., 1980). 

In terms of building the model in this area, a key aspect throughout 
its development has been testing the model against a data base of clinical 
cases that includes the correct diagnosis for each case; a correct diagnosis 
was decided by an agreement of at least two out of three rheumatologists. 
After an initial design consisting of 18 observations and 35 rules, the model 
has undergone many cycles of testing and revision. This incremental proc
ess resulted in the expansion of the model to include 150 observations, of 
which several observations were combined by rules to reach intermediate 
conclusions, and a total of 14 7 rules. The model has been critiqued by an 
external panel of expert rheumatologists, and a review of performance has 
shown the model to achieve diagnostic accuracy in 94% of 145 clinical cases 
(Lindberg et al., 1980). Current efforts include expanding the model to 
cover other rheumatic diseases and to provide advice about treatment 
management. 

18.4 Stages of Model Development 

The use of SEEK assumes the specification of a tabular model for each 
final diagnosis and the entry of cases, including the correct final diagnosis 
assigned to each case. The stages of model development that will be dis
cussed are listed below. 
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Stages in the Design of an Expert Model 

• Initial design of the model 

• Data entry: cases with correct conclusions 

• Performance summary of the model 

• Analysis of the model 

• Generation of model refinement experiments 

• Refinement of the model 

• Impact of model changes on the data 

18.4.1 Initial Design of the Model 

A text editor is used to specify an initial design of the model. Any one of 
three editing modes can be specified by the model designer: table input, 
table update, or table review and store. For each newly identified final 
diagnosis, table input mode allows the model designer to list major and 
minor observations and to specify components of the rules that would 
conclude the diagnosis. In table update mode, the table for a specified final 
diagnosis is retrieved, and the model designer can revise the rules or the 
lists of major and minor observations. When the additions and updates are 
completed, the table is stored and translated into a format used by SEEK. 
The translation of the table is to the EXPERT format (Weiss and Kuli
kowski, 1979) so that a consultation session (to be described in the next 
section) looks the same as one in EXPERT. 

18.4.2 Entry of Data in a Consultation Session 

A questionnaire is used to enter the observations, including the correct 
final diagnosis for a case. Editing facilities are available to review and to 
change the responses to questions. A case is stored in a data base that is 
maintained by the system. Figure 18-1 shows the entry of data for a par
ticular case. After all questions have been asked, the system provides a 
summary of the data in the case. From this, the expert can correct any data 
entry errors, and, later, the case can be stored in a data base. Cases are 
usually entered in large groups during a single session. Typically, the tedi
ous cycle that is repeated for each case consists of data entry, fixing errors, 
and saving the case. However, the expert can request the model's diagnosis 
for any case and at any time during this stage. An example (continuing 
with the case entered above) of the interpretative anal-ysis output provided 
is shown in Figure 18-2. This includes the differential diagnosis (i.e., def
inite rheumatoid arthritis and possible SLE) followed by detailed lists of 
findings that provide a more complete picture of the case. These lists are 
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CASE TYPE: 
(1) Case Entry 
(4) Case Deletion 

Enter Name or ID Number: test 

Case Type: (1)Real (2)Hypothetical *2 
Enter Date of Visit: 6/22/81 

(2) Visit Entry 
(5) Demo Entry 

(3) Case Review 
(6) Program Exit: 1 

Enter Initial Findings (Press RETURN to begin questioning): 

1. Extremity Findings: 
1) Arthralgia 
2) Arthritis ~6 wks. or non-polyarticular 
3) Chronic polyarthritis >6 wks. 
4) Erosive arthritis 
5) Deformity: subluxations or contractures 
6) Swollen hands, observed 
7) Raynaud's phenomenon 
8) Polymyalgia syndrome 
9) Synovial fluid inflammatory 
10) Subcutaneous nodules 

Checklist: 
*1,2,3,4, 10 

31. Presumptive Diagnosis: 
1) Mixed Connective Tissue Disease 
2) Rheumatoid Arthritis 
3) Systemic Lupus Erythematosus 
4) Progressive Systemic Sclerosis 
5) Polymyositis 
6) Primary Raynaud's 
7) Sjogren's 

Checklist: 
*2 

FIGURE 18-1 The entry of data for a case. 

obtained by matching findings from the case data to prespecified lists that 
are associated with each final diagnosis in the model; the lists include those 
findings consistent, not expected, and unknown for the diagnosis. 

18.4.3 Model Performance 

A typical mode of interaction with SEEK involves iterating through these 
steps: 

• obtain performance of rules on the stored cases 

• analyze the rules 

• revise the rules 
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INTERPRETATIVE ANALYSIS 
Diagnoses are considered in the categories definite, probable, and possible. 

Based on the information provided, the differential diagnosis is 

Rheumatoid arthritis (RA) 
Systemic lupus erythematosus (SLE) 

Patient findings consistent with RA: 
Chronic polyarthritis >6 wks. 
RA factor (l.f.), titer <1 :320 
Subcutaneous nodules 
Erosive arthritis 

Patient findings not expected with RA: 
Oral/nasal mucosa! ulcers 

Patient findings consistent with SLE: 
Platelet count, /cmm: ~99999 
Oral/nasal mucosa! ulcers 
Arthritis ~6 wks, or non-polyarticular 

Patient findings not expected with SLE: 
Erosive arthritis 

-Definite 
-Possible 

Unknown findings which would support the diagnosis of SLE: 
LE cells 
DNA antibody (hem.) 
DNA antibody (CIEP) 
DNA (hem.), titer 1: 
FANA 
Sm antibody (imm.) 

End of diagnostic consultation: 22-Jun-81. 

FIGURE 18-2 The interpretative analysis for the case in Fig
ure 18-1. 

In reviewing the performance of a model, the expert's conclusions are 
matched to the model's conclusions. The expert's conclusion is stored with 
each case, while the model's conclusion is taken as that conclusion reached 
with the greatest certainty. 

Conditions for Performance Evaluation 

The first step is to produce performance results on all stored cases. As 
mentioned earlier, evaluating performance involves matching the expert's 
conclusion to the model's conclusion in each case. A practical problem for 
scoring the results in a particular case occurs when ties in certainty between 
the expert's conclusion and the model's different conclusion are noted. 
Whether the model is scored as correct or incorrect for such a case affects 
the direction of subsequent rule refinements. A decision on how ties should 
be treated in performance evaluation rests with the problem domain. 
Whereas ties may be acceptable in particular medical areas for which it is 
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Current Performance 

Mixed connective tissue disease 
Rheumatoid arthritis 
Systemic lupus erythematosus 
Progressive systemic sclerosis 
Polymyositis 
Total 

9/33 
42/42 
12/18 
22/23 

4/5 
891121 

(27%) 
(100%) 
(67%) 
(96%) 
(80%) 
(74%) 

False positives 
0 
9 
4 
5 
1 

FIGURE 18-3 Summary of the model's performance. 

difficult to discriminate between competing diagnoses, they probably 
would not be acceptable in areas for which the diagnostic choices are well 
understood and mutually exclusive. Rheumatology is an area that exem
plifies the former condition. For instance, particular rheumatic diseases do 
coexist during the progression of the respective disease processes, and 
therefore a final diagnosis is difficult to make. In such cases, a tentative 
diagnosis may be made that does not rule out other related diseases. An 
interpretation of a model's conclusions could reflect this situation by treat
ing ties in certainty as correct (e.g., ties in certainty at the possible or 
probable confidence level). There may be exceptions. For example, ties at 
the definite level and at the null level (i.e., no conclusion was reached by 
the model) may be considered incorrect for diagnostically related diseases. 
The point of this discussion is to motivate the need for specifying a con
dition under which performance evaluation is to be performed. SEEK 
allows the model designer to specify how ties in confidence are to be 
treated. 

Another condition is to allow the model designer to determine which 
rules and cases are to be ignored during the evaluation process. This has 
been found useful when either there are insufficient numbers of cases for 
a particular final diagnosis or the rules are not deemed to be in a satisfac
tory state by the model designer. If not turned off, these rules usually 
interfere in several case diagnoses, and their performance over all cases is 
therefore quite low. SEEK allows the model designer to specify rules to be 
turned off for performance evaluation. 

Performance Summary of the Model 

The results are organized according to final conclusions and show the 
number of cases in which the model's conclusion matches the expert's con
clusion. The column labeled False positives shows the number of cases in 
which the indicated conclusion was reached by the model, but did not 
match the stored expert's conclusion. In Figure 18-3, the summary of per
formance for mixed connective tissue disease indicates that 9 cases out of 



Rule 72: 

43 Cases: 
13 Cases: 

7 Cases: 
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2 or more Majors for RA (MJRA) 
2 or more Minors for RA (MNRA) 
No Exclusion for RA (EX102) 
~ Probable Rheumatoid arthritis (RA) 

in which this rule was satisfied. 
in which the greatest certainty in a conclusion was obtained 
by this rule and it matched the expert's conclusion. 
in which the greatest certainty in a conclusion was obtained 
by this rule and it did not match the expert's conclusion. 

FIGURE 18-4 Summary of a specific rule's performance. 

33 were correctly diagnosed. Furthermore, there are no cases that were 
misdiagnosed by the model as mixed connective tissue disease. The rules 
that conclude rheumatoid arthritis perform quite well for the stored rheu
matoid arthritis cases, but they also appear to be candidates for speciali
zation because of the 9 false positives. 

In addition to the results shown in Figure 18-3, performance results 
about a specific rule can be obtained that show the number of cases in 
which the rule was satisfied. An example of this is shown in Figure 18-4, 
and includes the number of cases in which the rule was used successfully 
(i.e., matching the expert's conclusions stored with the cases) and the num
ber of cases in which the rule was used incorrectly (i.e., not matching the 
expert's conclusions stored with the cases). 

18.4.4 Analysis of the Model 

Interactive assistance for rule refinement is provided during the analysis 
of the model. The model designer has the option of selecting either "single 
case" or "all cases" as a basis of analysis. 

Analysis of the Model in a Single Case 

Analysis in a single case proceeds after a case has been chosen from the 
data base of stored cases. The objective of single case analysis is to provide 
the model designer with an explanation of the model's results in the case. 
This is done by first showing the model's confidence in both the expert's 
conclusion and the model's conclusion. Rules are cited that were used to 
reach these conclusions. Rules for the expert's conclusion are selected from 
those rules in the model with the same conclusion as the conclusion stored 
(by the expert) for a case. If the model's conclusion does not match the 
expert's conclusion in the case, the system attempts to locate a partially 
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CASE: 3 

Expert conclusion: Progressive systemic sclerosis 
Model conclusion: Probable Rheumatoid arthritis 

This is the strongest satisfied rule for the expert's conclusion: 

Rule 111: 1 or more Majors for PSS (MJPSS) (1 Majors Satisfied) 
1 or more Minors for PSS (MNPSS) (3 Minors Satisfied) 
---+ Possible Progressive systemic sclerosis (PSS) 

This is the rule for the model's conclusion: 

Rule 72: 2 or more Majors for RA (MJRA) (2 Majors Satisfied) 
2 or more Minors for RA (MNRA) (3 Minors Satisfied) 
No Exclusion for RA (EX102) (Satisfied) 
---+ Probable Rheumatoid arthritis (RA) 

There exists 1 partially satisfied rule for PSS with weight 
assignment 3 that set by RA rule 

Rule 112: Requirement 1 for probable PSS (RR105) (Not set) 
No Exclusion for probable PSS (ER105) (Satisfied) 
---+ Probable Progressive systemic sclerosis (PSS) 

FIGURE 18-5 Results of a case analysis. 

satisfied rule for the expert's conclusion that is the "closest" to being sat
isfied and would override the model's incorrect conclusion. A procedure 
for finding the "closest" rule is described later. An example of the results 
of single case analysis is shown in Figure 18-5. Case 3 is misdiagnosed by 
the model, which has assigned the certainty value of "possible" to pro
gressive systemic sclerosis. The model's conclusion is rheumatoid arthritis 
with a certainty value of "probable." Rule 111 and Rule 72 are responsible 
for reaching these conclusions. Each line printed for a rule contains an 
internal label for reference purposes, such as MJPSS. In this example, Rule 
72 was triggered because two majors and three minors for rheumatoid 
arthritis are present, and Case 3 did not have the (exclusion) findings that 
would deny Rule 72. Given this information the model designer can pursue 
either of two directions to refine the rules: to weaken Rule 72 so that it 
will not override Rule 111, or to find a stronger rule concluding progressive 
systemic sclerosis. In response to this latter possibility, SEEK cites Rule 112 
as a likely candidate to generalize. A procedure that SEEK uses to identify 
rules such as Rule 112 is described in the next section. 

Besides this information provided in single case analysis, SEEK allows 
the model designer to interrogate any condusion in the model, both final 
and intermediate results. The rules for any conclusion can be cited by 
specifying a rule number or the internal label tagged to a conclusion (e.g., 
PSS). In the latter situation, all rules for a conclusion are cited, both totally 
satisfied and partially satisfied rules in the case. This aids the model de
signer m reviewing the performance of a subset of the rules on the case 
data. 
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Analysis of the Model Based on Case Experience 

The first step for the analysis of the model for all cases is to specify a final 
diagnosis for which 'rules are to be analyzed. In this manner, the model 
designer focuses the analysis on the subset of the rules in the model. The 
analysis is usually done after performance results have been obtained. 
SEEK assists the model designer in the analysis of a subset of the rules 
that are relevant to the misdiagnosed cases. An important design consid
eration for SEEK is to provide the model designer with a flexible means 
to perform experiments in refining the rules. In this section, advice will 
be described that helps in determining the specific experiments for rule 
refinement. Heuristic procedures are needed to select experiments from 
the many possibilities. For example, SEEK uses a heuristic procedure by 
tracing rules that conclude the stored expert's conclusion to determine 
which rules are "closest" to being satisfied. It looks for a partially satisfied 
rule for which the following conditions hold: 

1. the rule concludes at a minimum confidence level that is greater than 
(or equal to, depending on the treatment of ties) the certainty value for 
the model's conclusion; 

2. the rule contains the maximum number of satisfied components for all 
rules concluding at that confidence level. 

A rule satisfying these conditions is marked for generalization, so that it 
may be invoked more frequently. The rule used to reach the model's con
clusion is marked for specialization, so that it may be invoked less fre
quently. 

In the following example, SEEK analyzes the rules for the specified 
diagnosis, mixed connective tissue disease, with regard to their use on the 
stored cases. After analysis, SEEK reports the results by numbering and 
listing rules that conclude mixed connective tissue disease, for which there 
exists information to indicate that the rule is a potential candidate for 
generalization or specialization. Figure 18-6 is a summary of this rule anal
ysis and shows unsatisfied rules in the misdiagnosed cases for mixed con
nective tissue disease that are candidate rules for generalization. The col
umn labeled Generalization contains the number of cases suggesting the 
generalization of a rule, and the column labeled Specialization contains the 
number of cases suggesting the specialization of a rule. 

In Figure 18-6, rules at the possible level of certainty are strong can
didates for generalization. Although Rule 56 is not satisfied in eight mis
diagnosed cases, if Rule 56 had been satisfied, these eight cases would have 
been correctly diagnosed. In the eight cases cited for Rule 56, Rule 56 is 
"closer" to being satisfied than Rule 55 is. A more detailed analysis of each 
rule, summarizing the satisfied and unsatisfied components of the rule, is 
normally obtained at this point. Rule 55 can be stated as follows: if the 
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Mixed Connective Tissue Disease 

Rule Certainty Generalization Specialization 
54. Possible 2 0 
55. Possible 7 () 

56. Possible 8 0 
57. Probable 2 0 
58. Probable 2 () 

FIGURE 18-6 Summary of rule analysis for the diagnosis of 
mixed connective tissue disease. 

patient has two or more major observations for mixed connective tissue 
disease and RNP antibody is positive, then conclude possible mixed con
nective tissue disease. Rule 56 can be stated as follows: if the patient has 
three or more major observations for mixed connective tissue disease, then 
conclude possible mixed connective tissue disease. A simple experiment 
for generalization of Rule 56, which might be tried first because it is the 
simpler rule, is to decrease the number of major observations required. 

The scheme for analysis in all cases focuses on a subset of the rules 
by gathering empirical information suggesting the generalization and spe
cialization of rules in the set. This can be viewed as a learning system. In 
Mitchell's version space approach (Mitchell, 1979), two sets of rules are 
maintained as bounds on the "maximally specialized" rules and the "max
imally generalized" rules that are consistent with the training cases pre
sented for a conclusion. A training case is prespecified as either positive
a rule must be found to cover the case-or negative-no rule should match 
the case. The scheme seeks to cover all positive cases\ while allowing no 
negative cases to match any of the rules. There are no certainty values 
assigned to the rules in the version space. Our scheme seeks to refine 
expert-derived rules that have been categorized by confidence levels in the 
model. Correct classification for all cases is not required. That is, a negative 
case is allowed to be covered so long as there is a rule for another conclu
sion that overrides the matched rule(s). A rule is marked for generalization 
or specialization based on the comparison of the certainty values assigned 
to the final conclusion expected to that reached by the model. Finally, our 
scheme is interactive in nature, requiring the involvement of the model 
designer. It is not intended to be an autonomous learning system. 

18.4.5 Generation of Model Refinement Experiments 

As was shown in Figure 18-6, SEEK indicated several mixed connective 
tissue disease rules that are candidates for generalization. In general, there 
are many possibilities that can be tried for refining the rules in a model. 
A difficult task is to select a rule or group of rules to work on and then to 
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24 cases in which the expert's conclusion MCTD does not match the model's conclusion: 

1, 4, 11, 12, 14, 15, 42, 47, 49, 57, 60, 67, 71, 75, 78, 80, 84, 93, 99, 100, 104, 105, 107, 130 

Proposed Experiments for Mixed Connective Tissue Disease 

1. Decrease the number of majors in rule 56. 
2. Delete the requirement component in rule 55. 
3. Delete the requirement component in rule 54. 
4. Decrease the number of minors in rule 57. 
5. Delete the requirement component in rule 58. 

FIGURE 18-7 List of misdiagnosed cases of mixed connective 
tissue disease and proposed experiments for improving the 
rules. 

determine plausible refinements beyond classifying a rule as a candidate 
for generalization or specialization. In this section, an approach to suggest 
automatically plausible experiments for refining the rules in a model is 
described. 

A heuristic rule-based scheme is used to suggest experiments. The 
heuristic rules are called EX-rules so as not to confuse them with the ex
pert-modeled rules. The IF part of an EX-rule contains a conjunction of 
predicate clauses that essentially looks for certain features about the per
formance of rules in the model, while the THEN part of an EX-rule con
tains a specific rule refinement experiment. An example of an EX-rule is 
shown below and is used to suggest the specific generalization experiment 
to decrease the number of major findings in a rule. Currently, there are 
eleven EX-rules, which are divided almost equally with respect to the types 
of experiments (i.e., generalizations or specializations) that may be sug
gested. 

IF: the number of cases suggesting generalization of the rule is greater 
than the number of cases suggesting specialization of the rule and the 
most frequent missing component in the rule is the major component, 

THEN: decrease the number of major findings in the rule. 

Evaluation of an EX-rule begins by instantiating the clauses with the 
required empirical information about a specific rule in the model. Function 
calls are used to gather the information. After instantiation, the clauses 
are evaluated in order beginning with the first clause in the EX-rule. If all 
clauses are satisfied, then the specific experiment is posted. All EX-rules 
are evaluated in this manner for a specific rule in the model. The exper
iments suggested by the EX-rules are narrowed by the expert to those 
changes consistent with his or her medical knowledge. In Figure 18-7, the 
experiments for improving the rules used in reaching the diagnosis of 
mixed connective tissue disease are presented after listing the misdi
agnosed cases of mixed connective tissue disease. 

The experiments are ordered based on maximum potential perfor
mance gain on the cases. Other criteria for ordering can be used such as 
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:why(1) 

If rule 56 had been satisfied, 8 currently misdiagnosed MCTD cases would have been diagnosed correctly. 
Currently, rule 56 is not used incorrectly in any of the cases. In rule 56 the component missing with the 
greatest frequency is Major. 

Therefore, we suggest decreasing the number of majors in rule 56. 
This would generalize the rule so that it will be easier to satisfy. 

FIGURE 18-8 Explanation of a proposed experiment. 

ease of change (e.g., an experiment that suggests changing the minors in 
a rule may be preferred over an experiment that suggests changing the 
majors). An explanation of a particular experiment is provided by a trans
lation of the specific EX-rule used to suggest the experiment into a nar
rative statement containing the empirical information about the rule. As 
an example, the support for the first experiment is shown in Figure 18-8. 
It should be emphasized that a decision as to which experiments, if any, 
are to be tried is left to the model designer. Even though a particular 
experiment is supported empirically, the ultimate decision should include 
justifying an experiment in terms of other knowledge about the domain. 
For example, is a rule resulting from the first experiment for Rule 56 
"medically sound" to make the diagnosis? This can lead to reconsidering 
the lists of major and minor findings for a particular final diagnosis and 
to potentially refining these findings. 

It should be noted that one is not absolutely certain of a net gain in 
performance before an experiment is tried. In the case of a generalization 
experiment, there may be more than one unsatisfied component in a rule 
marked for generalization; the marking procedure picks the first unsatis
fied component in the rule. Facilities for performing experiments and for 
determining the impact of changes on the cases are described later. 

18.4.6 Refinement of the Model 

After an experiment to revise the rules has been determined, the model 
designer can test his .or her proposed revision on the cases. This is facili
tated by editing capabilities that permit the model designer to interrogate 
and to modify the rules in the model. The changes are logged separately 
from the rules in the model so that the original rules can be restored. The 
editing functions include changing: 

• the number of major or minor observations, 

• the requirement component, 

• the exclusion component, and 

• any rule reaching an intermediate result that is used by other rules. 
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Candidate for Change is MJMCT in rule 56 

Rule 56 is: 

3 or more Majors for MCTD (MJMCT) 
---> Possible Mixed connective tissue disease (MCTD) 

Generalization of Rule 56 is: 

2 or more Majors for MCTD (MJMCT) 
---. Possible Mixed connective tissue disease (MCTD) 

FIGURE 18-9 SEEK's description of the proposed rule 
change. 

Continuing with our example, Figure 18-9 shows the response by 
SEEK for the model designer's suggested change to Rule 56: to change 
the number of majors required by Rule 56 to be 2 or more majors. The 
commands that allow the model designer to interrogate and to modify the 
rules require rule numbers or symbolic labels to reference parts of the 
model. 

18.4.7 Impact of Model Changes on the Data 

The results of a specific experiment are obtained by conditionally incor
porating the revised rule(s) into the model. The updated model is then 
executed on the data base of cases. The results are summarized in Figure 
18-10 for making the change to Rule 56. In this example, such a modifi
cation significantly improves performance. Several misdiagnosed cases of 
mixed connective tissue disease are now correctly diagnosed by the model. 

MCTD 
Others 
Total 

Before 
9/33 (27%) 

80/88 (91 %) 
89/121 (74%) 

False positives 
0 

(see below) 

Details of Effect on Other Diseases 

RA 42/42 (100%) 9 
SLE 12/18 (67%) 4 
PSS 22/23 (96%) 5 
PM 4/5 (80%) 

After 
17/33 (52%) 
80/88 (91 %) 
97/121 (80%) 

42/42 (100%) 
12/18 (67%) 
22/23 (96%) 
4/5 (80%) 

False positives 
0 

(see below) 

8 
3 
3 

FIGURE 18-10 Results of executing updated model on the 
data base of cases. 
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Moreover, there was no adverse side effect of this change on other cases 
with different stored conclusions. The model designer has the option 
either to accept or to reject the experiment. If a simple modification does 
not lead to desirable results, more complicated changes may be tried, such 
as multiple modifications or dropping a condition in a requirement. 

18 5 Discussion • 

The tabular model appears to be a reasonable framework for encoding 
expert knowledge in a real and complex application. Excellent perfor
mance was achieved for the diagnosis of mixed connective tissue disease 
(Lindberg et al., 1980). This approach has proven particularly valuable in 
assisting the expert in domains where two diagnoses are difficult to distin
guish. For example, there is a general lack of deterministic clinical criteria 
to confirm the diagnoses in the connective tissue disease area. The experts 
obtain by means of empirical testing a measure of the usefulness of the 
observations expressed in the tabular model. There are limitations to this 
approach-for some applications it may be difficult to express rules using 
major and minor observations or using only three levels of confidence. 
Although this model may not be the most expressive model for capturing 
expert knowledge, it is a model that is suitable for an empirical analysis 
leading· to experimentation with rule refinement. Samples of cases are not 
completely representative and cannot begin to match the scope of the ex
pert's knowledge. But as others have found (Gaschnig, 1979), even with 
small samples of cases, empirical evidence can be of great value in design
ing and verifying an expert model. 

Ideally, a tabular model abstracts the expert's reasoning in diagnostic 
criteria, while cases cite evidence that is accurately diagnosed by the model. 
The use of SEEK attempts to achieve this harmony by pointing out poten
tial problems with these dual sources of knowledge. Given the performance 
of the cases, potential problems with the rules can be identified with the 
tools described earlier. The summarized performance results are a means 
for the expert to rethink a tabular model that is performing poorly for a 
specific diagnosis. The analysis of the tabular rules based on case experi
ence sharply focuses the expert's attention on modifications that potentially 
result in improved performance and that are medically sound. This can 
lead to reviewing individual cases for inaccuracies in the data and to re
considering the importance of specific criteria in the model. It should be 
emphasized that this process is not intended to "custom-craft" rules solely 
to the cases, but rather to provide the expert an interactive environment 
with explicit performance information that needs to be accurately ex
plained. From an artificial intelligence perspective, this may be viewed as 
a learning process based on experience in developing the model. From the 
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empirical testing and successive improvements in the performance of the 
model, the human expert will obtain not only a better formulation of the 
model but also a better understanding of the explicit diagnostic criteria 
used in his or her reasoning. 
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19 
PUFF: An Expert System 
for Interpretation of 
Pulmonary Function Data 

Janice S. Aikins, John C. Kunz, 
Edward H. Shortliffe, and Robert J. Fallat 

In this and the next chapter we close this volume with discussions of the 
two AIM systems that had achieved routine use by the end of thPfirst decade 
of research in the field. It is irnportant to note that neither requires direct 
interaction with a physician requesting advice. Thus both systems avoid the 
sign~ficant problems of human engineering and user acceptance that define 
many of the serious research problems that remain unsolved at present [see 
Teach and Shortliffe ( 1981) and a further discussion of these points in 
Chapter 21}. H owe·oer, each does provide a glimjJse of what lies ahead, 
and their success at d~fficult tasks is an encouraging indication of the 
practical impact that we can eventually expect from this kind of work. 

Because MYCIN was designed to lteep its knowledge base of rules sep
arate from the program that used them to generate advice (Chapter 5), it 
was recognized that the program itself could be isolated and used in other 
domains for which additional rule sets were developed. The resulting EMY
CIN system (van Melle, 1980) was used to build several other programs 
during the late 1970s, in both medical and nomnedical domains [e.g., 
SACON, a program to provide guidance regarding the use of a computer 
system to aid in aircraft design (Bennett and Englemore, 1979)]. An early 
system developed using EMYCIN was PUFF, a collaborative effort between 
computer scientists from Stanford Universit_y, researchers from the lnstitutf 
of Medical Sciences in San Francisco, and physicians from Pacific Medical 
Center (PMC). 

From Computers i11 Bio111edirnl Researrlz, JG: 199-208 (1983). Copyright© 1983 by Academic 
Press, Inc. All rights reserved. Used with permission. 
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For several years pulmonary physiologists at PM C had been toying with 
ideas for the deuelopment of a program to interpret pulmonar_'V function 
test (PFT) results. They hadfound it difficult to develop a straightforward 
algorithm for d~fin?ng the criteria for test interpretation, however, and as 
a result were continuing to interpret P FT results by hand when the col
laboration with Stanford developed. Working in the EMYCIN environ
ment, they were delighted to find that they could more easily distill their 
criteria for test interpretation by using the production rule formalism. 
Within a few months a small experimental system was developed and was 
shown to perform extremely well for analyzing a subset ~f PFT abnormal
ities. Thereafter the rule set was expanded, and, when it had stabilized, the 
clinicians were eager to implement the system for use at PM C. It had been 
developed at Stanford on the SUMEX-AIM computer, lwwe·oer, and this 
was an unrealistic vehicle for providing sernice computing at a hospital in 
San Francisco. As is described in this chapter, the PUFF rule set was 
therefore rewritten into a program using the BASIC language and imple
mented to run on a minicomputer at PMC. It accordingly became a working 
tool in the pulmonary physiology lab of this large institution. Its perfor
mance and the results of a formal evaluation experiment are described here. 
In addition, Janice Aikins and her coauthors examine some of the elements 
of the problem that pa·oed the way for its success and also consider the 
significant limitations of the solution that warrant further study. 

19 1 Introduction • 

Researchers in the field of artificial intelligence are just beginning to pro
duce systems that capture the specialized knowledge of experts and that 
use this knowledge to perform difficult tasks. Although the technology is 
still rather new, a small set of programs now exist as "tools" useful for 
building these so-called expert systems. This paper describes an expert 
system, called PUFF, that was built using EMYCIN, a generalization of an 
earlier medical system named MYCIN. The task chosen for PUFF is de
scribed briefly, and the rationale for the appropriateness of this choice is 
presented. PUFF was initially developed on the SUMEX computer, a large 
research machine at Stanford University, and was later rewritten in a pro
duction version to run on the hospital's own minicomputer. We describe 
here the histQry of the PUFF project and its current status, including ob
servations about its limitations and successes. We also take a brief look at 
the knowledge representation and control structure used for the SUMEX 
version of the system. Finally, the results of a formal evaluation of the 
production version of PUFF are presented. 
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19 2 Task • 

PUFF interprets measurements from respiratory tests administered to pa
tients in the pulmonary (lung) function laboratory at Pacific Medical Center 
in San Francisco. The laboratory includes equipment designed to measure 
the volume of the lungs, the ability of the patient to move air into.and out 
of the lungs, and the ability of the lungs to get oxygen into the blood and 
carbon dioxide out. 1 The pulmonary physiologist interprets these mea
surements in order to determine the presence and severity of lung disease 
in the patient. An example of such measurements and an interpretation 
statement are shown in Figure 19-1. The test measurements listed in the 
top half of the figure are collected by the laboratory equipment. The pul
monary physiologist then dictates the interpretation statements to be in
cluded in a typewritten report. All of the measurements are given as a 
percentage of the predicted values for a normal patient of the same sex, 
height, and weight. The interpretation and final diagnosis are a summary 
of the reasoning about the combinations of measurements obtained in the 
lung tests. 

19 3 Rationale • 

PUFF's task is to interpret such a set of pulmonary function (PF) 'test re
sults, and to produce a set of interpretation statements and a diagnosis for 
the patient. The problem of developing an automated pulmonary function 
interpretation system was chosen for several reasons: 

1. The interpretation of pulmonary function tests is a problem that occurs 
daily in most hospitals, so a computer program that captures the ex
pertise involved in interpreting these tests, and that can assist in pro
viding interpretations, fills a practical need. 

2. The biomedical researchers at Pacific Medical Center (PMC) were in
terested in the problem and were eager to work with us on developing 
a solution. It was possible that such a system could enhance the effec
tiveness of patient care and the pulmonary physician's efficiency. In 
addition, solution of this relatively simple interpretation problem could 
identify possibilities for further research into more· difficult interpre
tation tasks. 

1 Measurements include spirometry and, optionally, body plethosmography, single breath CO 
diffusion capacity, and arterial blood gases. Measurements can be made at rest, following 
inhalation of a bronchodilator, and during exercise. 
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PRESBYTERIAN HOSPITAL OF PMC 
CLAY AND BUCHANAN, BOX 7999 
SAN FRANCISCO, CA. 94120 
PULMONARY FUNCTION LAB 

WT 40.8 KG, HT 161 CM, AGE 65 SEX F 
REFERRAL DX-
*** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ***TEST DATE 5-13-76 

PREDICTED POST DILATION 
(+/-SD) OBSER(%PRED) OBSER(%PRED) 

LNSPIR VITAL CAP (IVC) L 2.7(0.6) 2.3 (83) 
RESIDUAL VOL (RV) L 2.0(0.1) 3.8 (193) 3.1 (154) 
FUNG RESID CAP (FRC) L 2.9(0.3) 4.6 (158) 3.9 (136) 
TOTAL LUNG CAP (TLC) L 4.7(0.7) 6.1 (129) 5.5 (116) 
RV/TLC % 42. 62. 55. 

FORCED EXPIR VOL (FEV1) L 2.3(0.5) 1.5 (66) 1.6 (71) 
FORCED VITAL CAP (FVC) L 2.7(0.6) 2.3 (85) 2.4 (88) 
FEV1/FVC % 82. 64. 66. 
FORCE EXP FLOW 200-1200US 3.6(0.8) 1.8 1.9 
FORCED EXP FLOW 25-75% us 2.6(0.5) 0.7 0.7 
FORCED INS FLOW 200-1200U8 2.5(0.5) 2.5 3.4 

AIRWAY RESISTANCE (RAW) (TLC= 6.1) 2.5 1.5 2.2 
DF CAP-HGB = 14.5 (DSBCO) (TLC= 4.8) 23. 17.4 (72) 

INTERPRETATION: THE VITAL CAPACITY IS LOW, THE RESIDUAL VOLUME IS HIGH 
AS IS THE TOTAL LUNG CAPACITY, INDICATING AIR TRAPPING AND OVERINFLATION. 
THIS IS CONSISTENT WITH A MODERATELY SEVERE DEGREE OF AIRWAY OBSTRUCTION 
AS INDICATED BY THE LOW FEV1, LOW PEAK FLOW RATES AND CURVATURE TO THE 
FLOW VOLUME LOOP. FOLLOWING ISOPROTERANOL AEROSOL THERE IS VIRTUALLY NO 
CHANGE. 

THE DIFFUSING CAPACITY IS LOW INDICATING LOSS OF ALVEOLAR CAPILLARY 
SURFACE. 

CONCLUSIONS: OVERINFLATION, FIXED AIRWAY OBSTRUCTION AND LOW 
DIFFUSING CAPACITY WOULD ALL INDICATE MODERATELY SEVERE OBSTRUCTION 
AIRWAY DISEASE OF THE EMPHYSEMATOUS TYPE. ALTHOUGH THERE IS NO RESPONSE 
TO BRONCHODILATORS ON THIS ONE OCCASION, MORE PROLONGED USE MAY PROVE TO 
BE MORE HELPFUL. 

PULMONARY FUNCTION DIAGNOSIS: OBSTRUCTIVE AIRWAY DISEASE, MODERATELY 
SEVERE, EMPHYSEMATOUS TYPE. 

FIGURE 19-1 Verbatim copy of pulmonary function report. 
The data were obtained from equipment and the interpretation 
dictated by an expert physician. 

3. PF data interpretation was a problem that the artificial intelligence re
searchers were particularly interested in solving in order to demonstrate 
the generality and power of expert system techniques. Putting a system 
into clinical use would contribute to the credibility of those techniques, 
and also would show their promise and limitations in clinical practice. 
Earlier AI programs had demonstrated competence, but their use had 
required large amounts of professional time simply for data input. 
PUFF, however, produced PF data interpretations automatically without 
the necessity for user interaction. Thus we hoped that PUFF would be 
used by the clinical staff. 
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4. PF data interpretation was a problem that was large enough to be in
teresting (the biomedical researchers did not know how to solve it, and 
the AI researchers did not know whether their techniques would be 
appropriate) and small enough that a pilot project of several months' 
duration could concretely demonstrate the feasibility of a longer de
velopment effort. Furthermore, the amount of domain-specific knowl
edge involved in pulmonary function testing is limited enough to make 
it feasible to acquire, understand, and represent that knowledge. 

5. The domain of pulmonary physiology is a circumscribed field: the data 
needed to interpret patient status are available from the patient's history 
and from measurements taken in a single laboratory. Other large bodies 
of knowledge are not required in order to produce accurate diagnoses 
of pulmonary disease in the patient. 2 

6. All the data used in the laboratory at PMC were already available in a 
computer; the computer data were known to be accurate, reliable, and 
relevant to the interpretation task. The clinical staff in the PF lab were 
already receptive to the use of computers within their clinical routines. 

7. Pulmonary physiologists who interpret test measurements tend to 
phrase their interpretations similarly from one case to the next. One 
goal of PUFF was to generate reports from a set of prototypical inter
pretation statements, thus saving the staff a great deal of tedious work. 
The staff themselves would not be displaced by this tool because their 
expertise still would be necessary to verify PUFF's output, to handle 
unexpectedly complex cases, and to correct interpretations that they 
felt were inaccurate. 

19 .4 Project History and Status 

This research developed from work done on the MYCIN system (Chapter 
5). That program used a knowledge base of production rules (Davis and 
King, 1977) to perform ·infectious disease consultations. PUFF was initially 
built using a generalization of the MYCIN system called EMYCIN (van 
Melle, 1979). EMYCIN, or "Essential MYCIN ," consists of the domain
independent featu~es of MYCIN, principally the rule interpreter, expla
nation, and knowledge-acquisition modules (Shortliffe et al., 1975). It pro
vides a mechanism for representing domain-specific knowledge in the form 
of production rules, and for performing consultations in that domain. Just 
as MYCIN consists of EMYCIN plus a set of facts and rules about diagnosis 
and therapy of infectious diseases, PUFF consists of the EMYCIN pro
grams plus a pulmonary disease knowledge base. 

2This was a problem in MYCIN, a related system for determining the diagnosis and therapy 
for infectious disease cases. The results produced by the system often suffered because it 
lacked knowledge about related diseases that were also present in the patient. 
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EMYCIN (and hence the EMYCIN version of PUFF) is written in 
Interlisp (Teitelman, 1978) and runs on a DEC KI-10 at the Stanford 
SUMEX-AIM computer facility. In order to run PUFF on a PDP-11 at 
Pacific Medical Center, a second version of the program was created after 
the EMYCIN version had been refined. This was done by translating the 
production rules into procedures and writing them in the BASIC language. 
Conversion to BASIC was an advantage because the PDP-11 was located 
on the same site as the laboratory, and its schedule could be easily con
trolled to support production operation by the system users. However, as 
a result of the conversion, the production and development versions of 
PUFF became incompatible, and modifications made to one system were 
sometimes difficult to make in the other. 

The PDP-11 version is now routinely used in the pulmonary function 
laboratory and provides lung test interpretations for about ten patients 
daily. Since the system became operational in 1979, it has interpreted the 
results of over 4000 cases. The BASIC code is currently being converted 
again so that it will run on a personal computer. 

The form of the interpretations generated by PUFF is shown in Figure 
19-2. This report is for the same patient as in Figure 19-1, seen several 
years later. As in the typed report, the pulmonary functi?n test data are 
set forth, followed by the interpretation statements and a pulmonary func
tion diagnosis. The pulmonary physiologist checks the PUFF report, and, 
if necessary, the interpretation is edited on-line prior to printing the final 
report for physician signature and entry into the patient record. Approx
imately 85% of the reports generated are accepted without modifications. 
The change made to most others simply adds a statement suggesting that 
the patient's physician compare the interpretation with tests taken during 
previous visits. For example, statements such as "These test results are 
consistent with those of previous visits" or "These test results show consid
erable improvement over those in the previous visit" might be made. PUFF 
was not designed to represent knowledge about multiple visits, so this kind 
of statement must be added by the pulmonary physician. 

19 5 Observations • 

PUFF is a practical assistant to the pulmonary physiologist, and thus is a 
satisfactory and exciting result of the research done with production rule 
consultation systems. PUFF's performance is good enough that it is used 
daily in clinical service, and it has the support of both the hospital staff 
and its administration. However, improvements could be made in the fol
lowing areas: 3 

3Many of these problems are also present in other rule-based systems; they motivated the 
development of the experimental CENTAUR system (Aikins, 1980; 1983). 
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PRESBYTERIAN HOSPITAL OF PMC 
CLAY AND BUCHANAN, BOX 7999 
SAN FRANCISCO, CA. 94120 
PULMONARY FUNCTION LAB 

WT 40.8 KG, HT 161 CM, AGE 69 SEX F 
REFERRAL DX 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *TEST DATE 5-13-80 

INSPIR VITAL CAP 
RESIDUAL VOL 
TOTAL LUNG CAP 
RV/TLC 

FORCED EXPIR VOL 
FORCED VITAL CAP 
FEV1/FVC 
PEAK EXPIR FLOW 
FORCED EXP FLOW 
AIRWAY RESIST(RAW) 

DF CAP-HGB = 14.5 

(IVG) L 
(RV) L 
(TLC) L 
O/o 

(FEV1) L 
(FVC) L 
% 
(PEF) us 
25-75%US 
(TLC= 6.1) 

(TLC= 4.8) 

PREDICTED POST DILATION 
(+/-SD) OBSER(%PRED) OBSER(%PRED) 
2.7 2.3 (86) 2.4 (90) 
2.0 3.8 (188) 3.0 (148) 
4.7 6.1 (130) 5.4(115) 
43. 62. 56. 

2.2 1.5 (68) 1.6 (73) 
2.7 2.3 (86) 2.4 (90) 
73. 65. 67. 
7.1 1.8 (25) 1.9 (26) 
1.8 0.7 (39) 0.7 (39) 
0.0(0.0) 1.5 2.2 

24. 17.4 (72) (74%1F TLC = 4.7) 

INTERPRETATION: ELEVATED LUNG VOLUMES INDICATE OVERINFLATION. IN 
ADDITION, THE RV/TLC RATIO IS INCREASED, SUGGESTING A MODERATELY SEVERE 
DEGREE OF AIR TRAPPING. THE FORCED VITAL CAPACITY IS NORMAL. THE FEV1/FVC 
RATIO AND MID-EXPIRATORY FLOW ARE REDUCED AND THE AIRWAY RESISTANCE IS 
INCREASED, SUGGESTING MODERATELY SEVERE AIRWAY OBSTRUCTION. FOLLOWING 
BRONCHODILATION, THE EXPIRED FLOWS SHOW MODERATE IMPROVEMENT. HOWEVER, 
THE RESISTANCE DID NOT IMPROVE. THE LOW DIFFUSING CAPACITY INDICATES A LOSS 
OF ALVEOLAR CAPILLARY SURFACE, WHICH IS MILD. 

CONCLUSIONS: THE LOW DIFFUSING CAPACITY, IN COMBINATION WITH 
OBSTRUCTION AND A HIGH TOTAL LUNG CAPACITY IS CONSISTENT WITH A DIAGNOSIS 
OF EMPHYSEMA. ALTHOUGH BRONCHODILATORS WERE ONLY SLIGHTLY USEFUL IN 
THIS ONE CASE, PROLONGED USE MAY PROVE TO BE BENEFICIAL TO THE PATIENT. 

PULMONARY FUNCTION DIAGNOSIS: 
1. MODERATELY SEVERE OBSTRUCTIVE AIRWAYS DISEASE. 

EMPHYSEMATOUS TYPE. 

FIGURE 19-2 Pulmonary function report generated by 
PDP-11 version of PUFF. 

• representation of prototypical patterns, 

• addition or modification of rules to represent knowledge not previously 
encoded, 

• alteration of the order in which information is requested during the 
consultation, and 

• explanation of system performance. 

The first point refers to the fact that many cases can be viewed as 
relatively simple variations of typical patterns. PUFF does not recognize 
that a case fits a typical pattern, nor can it recognize that a case differs in 
some important way from typical patterns. As a result, PUFF's explanations 
of its diagnoses lack some of the richness of explanation that physicians 
can use when a case meets, or fails to meet, the expectations of a proto-
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typical case. The medical knowledge in PUFF is encoded as rules. Rules 
encode relatively small and independent bodies of domain knowledge. The 
rule formalism makes modification of the program's knowlecg-e much eas
ier than when that knowledge is embedded in computer code. However, 
additions or modifications to the rules as referred to in the second point 
have caused difficulties because changes to one rule sometimes affect the 
behavior of other rules in unanticipated ways. The last two points apply 
only to the EMYCIN version of PUFF, which runs interactively in a con
sultation-style, question-and-answer mode with the user. In that system, 
questions are sometimes asked in an unusual order, and explanations of 
both the questions being asked of the user and the final interpretation 
need to be improved. 

Even though PUFF does exhibit certain limitations, the representation 
of pulmonary knowledge as production rules allows the encoding of in
terpretive expertise that previously was difficult to define because it is heu
ristic knowledge of the expert. EMYCIN on the SUMEX computer pro
vided an excellent environment for acquiring, encoding, and debugging 
this expertise. However, it would have been inefficient and somewhat im
practical to use the interactive EMYCIN version of PUFF in a hospital 
setting. The simplicity of EMYCIN's reasoning process made the transla
tion into BASIC procedures a feasible task, thus allowing the hospital's own 
computer staff to take over maintenance of the system. 

The BASIC version of PUFF runs in batch mode and does not require 
interaction with a physician. We believe that this system was readily ac
cepted by the pulmonary staff for several reasons. First, the program's 
interpretations are consistently accurate. Second, explanations of diagnoses 
are appropriately detailed so that the user has confidence in the accuracy 
of correct diagnoses and enough information with which to recognize and 
modify incorrect diagnoses. Third, less physician time is required to pro
duce consistently high-quality reports using the system than is required to 
analyze and dictate case reports without it. Finally, the program is well 
integrated into the routine of the laboratory; its use requires very little 
extra technician effort. 

19 6 Overview of EMYCIN-PUFF • 

19.6.1 Knowledge Representation 

The knowledge base of the EMYCIN-PUFF system consists of (a) a set of 
64 production rules dealing with the interpretation of pulmonary function 
tests and (b) a set of 59 clinical parameters. The production version (BASIC
PUFF) has been extended to include 400 production rules and 75 clinical 
parameters. The clinical parameters represent pulmonary function test 
results (e.g., TOTAL LUNG CAPACITY and RESIDUAL VOLUME), pa-
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RULE011 

IF: 1) A: The mmf/mmf-predicted ratio is between 35 and 45, and 
B: The fvc/fvc-predicted ratio is greater than 80, or 

2) A: The mmf/mmf-predicted ratio is between 25 and 35, and 
B: The fvc/fvc-predicted ratio is less than 80 

THEN: 1) There is suggestive evidence (.5) that the degree of 
obstructive airways disease as indicated by the MMF 
is moderate, and 

2) It is definite (1.0) that the following is one of the 
findings about the diagnosis of obstructive airways 
disease: Reduced mid-expiratory flow indicates 
moderate airway obstruction. 

PREMISE: [$AND ($OR ($AND (BETWEEN* (VAL1 CNTXT MMF) 35 45) 
(GREATER* (VAL 1 CNTXT FVC) 80)) 

($AND (BETWEEN* (VAL 1 CNTXT MMF) 25 35) 
(LESSP* (VAL 1 CNTXT FVC) 80) 

ACTION: (DO-ALL (CONCLUDE CNTXT DEG-MMF MODERATE TALLY 500) 
(CONCLUDETEXT CNTXT FINDINGS-OAD 

(TEXT $MMF/FVC2) TALLY 1000)) 

FIGURE 19-3 A PUFF production rule in English and LISP 
versions. 

tient data (e.g., AGE and REFERRAL DIAGNOSIS), and data that are 
derived from the rules (e.g., FINDINGS associated with a disease and 
SUBTYPES associated with the disease). There may be auxiliary infor
mation associated with the clinical parameters, such as a list of expected 
values and an English translation used in communicating with the user. 

The production rules operate on associative <attribute object value> 
triples, where the attributes are the clinical parameters, the object is the 
patient, and the values are given by the patient data and lung test results. 
Questions are asked during the consultation in an attempt to fill in values 
for the parameters. 

The production rules consist of one or mote premise clauses followed 
by one or more action clauses. Each premise is a conjunction of predicates 
operating on associative triples in the knowledge base. A sample PUFF 
production rule is shown in Figure 19-3. 

The rules are coded internally in LISP. The user of the system sees 
the production rules in their English form, which is shown in the upper 
part of the figure. The English version is generated automatically from 
templates, as is described in van Melle ( 1979). 

19.6.2 Control Structure 

The EMYCIN-PUFF control structure is primarily a goal-directed back
ward chaining of production rules. The goal of the system at any time is 
to determine a value for a given clinical parameter. TcJ conclude a value 
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for a clinical parameter, the program tries a precomputed list of rules 
whose actions conclude values for the clinical parameter [refer to van Melle 
(1979) for details]. 

If the rules fail to conclude a value for a parameter, a question is then 
asked of the user in order to obtain that value. An exception to this process 
occurs for parameters labeled ASKFIRST. These represent information 
generally known by the user, such as results of pulmonary function tests. 
For these parameters it is more efficient simply to ask a consultation ques
tion than to attempt to infer the information by means of rules. 4 

19.7 Evaluation of the BASIC-PUFF Performance 
System 

The knowledge base from the original performance version of PUFF was 
tested on 107 cases chosen from files in the pulmonary function laboratory 
at Pacific Medical Center. Those 107 cases formed a representative sample 
of the various pulmonary diseases, their degrees, and their subtypes. Mod
ifications were made to the knowledge base, and the cases were tried again. 
This iteration continued until our collaborating expert was satisfied that 
the system's interpretations agreed with his own. At this point the system 
was "frozen," and a new set of 144 cases was selected and interpreted by 
the system. All 144 cases also were interpreted separately by two pulmo
nary physiologists (the expert working with us and a physician from a 
different medical center). 

The results of the comparison of interpretations by each diagnostician 
are presented in the table in Figure 19-4. The table com pares close agree
ment in diagnosing the severity of the disease, where close is defined as 
differing by at most 1 degree of severity. Thus, for example, diagnoses of 
mild (degree = 1) and moderate (degree = 2) are considered close, while 
mild and severe (degree = 3) are not. Further, a diagnosis of'normal is 
not considered to be close to a diagnosis of a mild degree of any disease. 

The table shows that the overall rate of agreement between the two 
physiologists on the diagnoses of disease was 92%. The agreement between 
PUFF and the physician who served as the expert to develop the PUFF 
knowledge base (MD-1 in the table) was 96%. Finally, the agreement be
tween PUFF and the physician who had no part in the development of the 
PUFF knowledge base (MD-2) was 89%. Figure 19-5 shows the distribution 
of diagnoses by each diagnostician. The number of diagnoses made by 
each diagnostician does not total 144 because patients were often diag
nosed as having more than one disease. 

1In the BASIC version of PUFF implemented at PMC, all of the test data are known ahead 
of time so that "asking a question" merely entails retrieYing another datum from a stored 
file. 
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PERCENT AGREEMENT 

MD-1 MD-1 
DIAGNOSIS MD-2 PUFF 

NORMAL 

OAD 

RLD 

DD 

TOTAL 

(S.D.) 

Diseases: 

92 95 

94 99 

92 99 

90 91 

92 96 

{1.63) {3.83) 

Normal= f\!ormal Pulmonary Function 
OAD = Ob:::;truclivc i\irways Disease 
RLD '.';; Restrictivn Lung Disease 
DD:=: DiHusion Defect 

M0-2 
PUFF 

92 

94 

85 

85 

89 

(4.6~1) 

FIGURE 19-4 Summary of percent agreement in 144 cases. 

DIAGf\JOSTICIAN 

DIAGNOSIS MD-1 MD-2 PUFF 

NORMAL 31 26 30 

OAD 79 85 89 

RLD 52 45 55 

DD 53 35 52 

FIGURE 19-5 Number of diagnoses by each diagnostician for 
144 cases. 
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19 8 Conclusions • 

The PUFF research has demonstrated that if the task, domain, and re
searchers are carefully matched, then the application of existing techniques 
can result in a system that successfully performs a moderately complicated 
task of medical diagnosis. Success of the program can be measured not 
only in terms of the system's technical performance, but equally impor
tantly, by the ease and practicality of the system's day-to-day use in the lab 
for which it was designed. Rule-based representation allowed easy codifi
cation and later modification of expertise. The simplicity of the rule inter
preter in the Interlisp version facilitated translation into BASIC and im
plementation on the hospital's own PDP-11 machine. Using EMYCIN 
allowed the researchers to move quickly from a point where they found it 
difficult even to describe the diagnostic process to a point where a simple 
diagnostic model was implemented. Having a diagnostic model allowed 
them to focus on individual issues in order to improve that model. Al
though PUFF does not itself represent new artificial intelligence tech
niques, its success is a testimonial for EMYCIN. In addition, its simplicity 
has facilitated careful analysis of EMYCIN's rule representation and con
trol structure and has led to other productive research efforts (Aikins, 
1980; 1983; Smith and Clayton, 1980). 
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20 
Developing 
Microprocessor-Based 
Expert Models for 
Instrument Interpretation 

Sholom M. Weiss, Casimir A. Kulikowski, and 
Robert S. Galen 

just as PUFF was built using EMYCIN and then converted to run in a 
d~fferent environment, the last program discussed here was built using the 
EXPERT system-building tool developed at Rutgers University. In this 
case, however, Sholom Weiss and Casimir Kulikowski devised a scheme for 
developing an interpretive system and tran~ferring it to a microprocessor 
en-oironment. The scheme was succes~fully implemented and tested b_"Y pro
ducing a program for interpreting results from a widely used medical lab
oratory instrument: a scanning densitometer. Specialists in the field of 
serum protein electrophoresis ana("Ysis, including particularly Dr. Robert 
Galen, provided the knowledge needed to build an interpretive model using 
EXPERT. By constraining a few of the structures used in the general 
model, it was possible to develop procedures for automatically translating 
the model to a specialized application program and then to a microprocessor 
assembly language program. Thus model development was able to take place 
on a large machine, using established techniques for capturing and con
veniently updating expert knowledge structures, while the final interpretive 
program was targeted to a microprocessor that was dependent on the ap
plication and suitable for installation as an output controller for an elec
trophoresis device. The experience of Weiss, Kulikowski, and Galen in 

From Proceedings of the Seventh International Joint Conference 011 Artificial /ntelligence, pp. 853-
855 (198 l ). Used by permission of International Joint Conferences on Artificial Intelligence, 
Inc.; copies of the PrucePdings are available from William Kaufmann, Inc., 95 First Street, Los 
Altos, CA 94022. 
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carrying out the complete process illustrates many of the requirements in
volved in taking an expert system from its early development phase to actual 
implementation and use in a real-world application. The resulting instru
ment produces interpretations as well as the usual protein electrophoresis 
curves and component percentages. It is a commercially available product
the first marketed medical device to have used AI techniques in its devel
opment. 

20 1 Introduction • 

Most knowledge-based medical consultation systems developed during the 
1970s were relatively large-scale experimental prototypes (Chapters 5 
through 8). Their advice on diagnostic and treatment problems typically 
involved approximate reasoning over a space of many interrelated hy
potheses, characteristically supported by hundreds of observations linked 
to them by various types of reasoning rules. By adopting symbolic reason
ing methods with more powerful representations than the traditional math
ematical decision-making schemes, these knowledge-based systems pro
duced results that were generally easier to analyze, explain, and update 
than those from more conventional systems. Human-engineering features 
were often stressed as an important means of enhancing the interaction 
with the expert systems. Successful clinical experience with many of these 
systems has been reported in pilot demonstration projects, yet few are in 
routine clinical use at present. 1 Both technical and social factors contribute 
to the difficulties of introducing expert systems into the everyday practice 
of medicine. One often cited technical factor is the slow rate of manual 
data entry required by most of the larger systems. This problem is mini
mized for applications where most of the data can be read directly off a 
clinical instrument and only a few items must be entered manually. The 
commercial availability and use of automated electrocardiogram interpre
tation programs (using traditional algorithmic techniques) support this 
point. Regardless of the methods used in constructing a knowledge base, 
or its complexity, instrument-derived interpretations are more likely to be 
accepted because they can be seen as extensions of the instrument. And 
since many advanced medical instruments are already microprocessor-con
trolled, it may be possible to add an interpretive module that enhances the 
performance of such a device at relatively little extra cost. 

In this paper we briefly describe how we were able to accelerate the 
development of interpretive software for a widely used laboratory instru
ment, the scanning densitometer. We did this by automatically producing 

1See Chapter 19 for a report on the successful use of PUFF at the Pacific Medical Center in 
San Francisco. 
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a computer translation of an expert model for serum protein electropho
resis interpretation, developed on a mainframe computer, into a micro
processor assembly language version. The translation methods have been 
generalized so that this process can be repeated for EXPERT (Weiss and 
Kulikowski, 1979) models in any domain, with a few restrictions on the 
types of knowledge structures used. 

By taking this approach, we have demonstrated that knowledge
engineering methods from expert systems can be used to full advantage 
in producing an effective model, which can then be transferred with ease 
to a microcomputer. 

20 2 Methods • 

Several general-purpose schemes for building consultation systems have 
evolved from work on the earlier, more specific domain-dependent sys
tems. Two such schemes that were originally designed for representing 
medical consultation problems in particular are the EXPERT and EMYCIN 
(van Melle, 1979) systems. Both provide built-in control mechanisms op
erating over specific types of production-rule models. The consultation 
program of EXPERT is primarily event-driven, while that of EMYCIN is 
predominantly goal-directed. 

The EXPERT system has been used in building a number of expert 
medical consultation models (mainly in ophthalmology, rheumatology, and 
endocrinology) and pilot prototypes in several nonmedical areas (spectro
scopy interpretation, car repair, hazardous spill management, and oil well 
log interpretation). 

The process of model design and transfer that we used in developing 
the microprocessor-based expert model for serum protein electrophoresis 
interpretation involved the following tasks: 

• specification of the knowledge base using EXPERT, 

• empirical testing with several hundred cases, 

• refinement of the knowledge base by the expert, 

• further cycle of testing with additional cases and review by independent 
experts, 

• test of the final model on the large machine, 

• automatic translation of the EXPERT model to a specialized program 
and a microprocessor assembly language program, and 

• interfacing of assembly language model with instrument. 
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FIGURE 20-1 Sample rules (arrows) linking primary data and 
interpretative conclusions. 

This last step requires detailed knowledge of the instrument. In this ap
plication, the manufacturer interfaced the interpretive program to the ex
isting program for printing instrument readings. 

Figure 20-1 illustrates the types of conclusions reached by the in
terpretive system and the type of rules used in reasoning. The most sig-
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nificant restriction on the type of production rules used in the model was 
to limit the use of confidence measures to three values, representing con
firmation, denial, and unknown status. In applications of this type, it 
should be noted that the strategy of questioning is n<lt a significant task 
because most of the information will be obtained directly from the instru
ment. In building the EXPERT model, we simulated this situation by en
tering the values of certain key features of the instrument signal (Figure 
20-2) that are currently given as a digital output by the instrument. These 
features include peaks of the waveform and areas under certain segments 
of the waveform. A few items (patient identification, age, and some wave
form features that are more easily scanned by the technician) are entered 
manually. 

The serum protein electrophoresis model required several stages of 
refinement over a period of six months, with the aid of one principal expert 
and comments and suggestions from the independent experts. We began 
with a relatively small and simple model, having 10 conclusions and a 
production rule for each. After the first cycle of revision we had about 25 
conclusions and 50 rules, which included many for handling interactions 
among the hypotheses. The current model has 38 conclusions and 82 pro
duction rules. Its performance on 256 test cases covering the full spectrum 
of conclusions is 100% acceptable to our experts. They expect differences 
of opinion on the amount of detail included in the present set of conclu
sions, but feel that covering infrequently found problems would detract 
from a model that is to be disseminated widely. An option for allowing 
users to add a written record of their own opinions on such unusual cases 
has been provided in the final microprocessor implementation. 

20 3 Conclusions • 

The completed microprocessor version of the interpretative serum protein 
electrophoresis model may not look much different than it would if it had 
been hand-coded directly in the assembly language of the microprocessor 
or translated from an algorithmic language. There is, nevertheless, a fun
damental difference. With our system, we can rapidly produce new ver
sions of the microprocessor program from our high-level EXPERT model 
in response to any changes suggested by the experts or resulting from 
future empirical analysis and clinical tests in the field. In contrast, consid
erable effort would usually be required to recode directly on a micropro
cessor. Besides, the original expert-derived model is also very different 
from one produced by more traditional methods. Our conclusions and 
intermediate hypotheses were developed in such a way that they include 
not only diagnostic considerations but also prognostic, treatment, and fu
ture test selection decisions for motivating their use. The large amount of 
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FIGURE 20-2 Interpretative analysis: Electrophoretic pattern suggests chronic inflammation. 
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experimentation that took place with the model as it went through its cycles 
of testing and modification could only be carried out on a larger system, 
with adequate facilities for analyzing many cases and knowledge-engineer
ing tools for changing the model. A recently published version of an in
terpretative model in this domain, developed with very traditional pro
gramming techniques, shows a contrasting sparsity in diagnostic statements 
(Dito, 1977). In addition, the conclusions of that model appear to be overly 
specific given the nature of the supporting data. Thus, while programs of 
this type may be initially simple to implement, they do not incorporate the 
elements of expert reasoning that are essential to a clinically helpful pro
gram. 

In conclusion, the work reported here is a novel illustration of the 
requirements encountered in taking an expert system from an early de
velopmental phase to actual implementation and use in the real world. 
Such applications can lead to the increasing acceptance of expert systems 
in medicine and other domains where similar problems can be found. 
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21 
ARticipating the Second 
Decade 

Edward H. Shortliffe and William J. Clancey 

The research efforts described in this book may paradoxically appear to be 
both hideously complex and yet ridiculously simplistic-complex in the range 
of concepts they attempt to capture, encode, and use effective[_'), but simplistic 
in the important areas of human knowledge and common sense that they 
ignore (but that we know can be crucial to excellent clinical decision mak
ing). Viewed in this light, the research invites the question whether "ulti
mate" AIM systems, when they are eventually constructed, will be man
ageable and amenable to ongoing refinement. Or will they become so large 
and complex that they will totally outgrow the ability of their developers to 
cope with their knowledge bases and with the need for ongoing verification 
and updating? 

It is certainly true that the research has raised at least as many new 
questions as it has answered old ones, but such is the nature of scholarly 
investigation. It is unlikely that we will ever see the day when all questions 
have been answered and all the problems solved. However, as the field 
progresses, we believe that useful (albeit limited) tools will increasingly 
become available, particular(') as the hardware revolution (made possible 
by large-scale integration) provides the AIM field with cost-effective vehicles 
for moving advice programs from research laboratories to hospitals and 
private offices. Hardware and software advances are also beginning tu 
offer us new models of system-building environments, ones in which graph
ical capabilities and interactive tools provide knowledge engineers with 
effective methods for dealing with systems that are much too lwge to be 
managed using traditional hard-cop_') listings for r~ference (Tsuji and 
Shortliffe, 1983 ). 

Many of the ideas presented in this chapter were previously discussed by E. H. Shortliffe 
(l 982a; l 982b). 

463 
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In this final chapter, we summarize the trends of the past decade while 
citing the important research problems that remain to be solved in the years 
ahead. The discussion is motivated by a summary ~f the design considera
tions that have been identified by asking physicians what they would demand 
from a clinical consultation s_'Vstem be{ ore they would be willing to use it 
routinel_'V. We also ident~fy those kinds <f medical problems for which prac
tical systems can be built soon, using the kinds of techniques that have been 
developed during the 1970s. The ultimate systems art' still probably many 
decades away, but existing techniques help define a subset of problems with 
which we are alread_'V prepared to deal. 

21.1 What Physicians Want 

Researchers in the field of medical decision making must contend with a 
great deal of ambivalence on the part of the potential physician users of 
their systems. On the one hand, there is a "show me" attitude expressed 
by a profession that has heard the potential of clinical computing extolled 
for more than ten years but has yet to see a widely accepted decision 
support system. On the other hand, there are indications that the environ
ment is changing, with an increased acknowledgment that clinical decision
making research can validly contribute to medical practice. For example, 
we have seen significant clinical changes result from theoretical work in 
clinical decision analysis (e.g., the recent American Cancer Society rec
ommendations regarding mammography and PAP smear screening) and 
the development of an ambitious, well-received journal in the field (Lusted, 
1981 ). Studies of physician attitudes (Teach and Shortliffe, 1981) have also 
shown that there is a growing curiosity about computers and a heightened 
faith in their potential. This phenomenon has been further demonstrated 
by the emergence of doctors with home computers and customized office 
systems, and by the success of educational programs designed to introduce 
physicians to computers for both business and clinical applications. 

The study of physicians' attitudes towards clinical consultation systems 
(Teach and Shortliffe, 1981) showed that a significant segment of the med
ical community believes that assistance from computer-based consultation 
systems will ultimately benefit medical practice. Teach and Shortliffe also 
studied the physicians' demands regarding desirable features for such sys
tems if they are to be useful and clinically accepted. The resulting design 
considerations highlight performance capabilities that are a challenge to 
medical computer scientists. Consider, for example, the six design features 
that physicians rated most important for future consultation systems: 

1. they should be able to explain their diagnostic and treatment decisions 
to physician users; 
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2. they should be portable and flexible so that the M.D. can access them 
at any time and place; 

3. they should display an understanding of their own medical knowledge; 

4. they should improve the cost-efficiency of tests and therapies; 

5. they should automatically learn new information when interacting with 
medical experts; and 

6. they should display common sense. 

No current consultation system meets all these criteria, but the list does 
help identify both the research challenges that lie ahead and the criteria 
for assessing new systems that may be introduced. The first, third, fifth, 
and sixth of these criteria are central issues being addressed by researchers 
in the AI field and thereby emphasize the importance of AI as an ingre
dient in the development of clinically acceptable decision aids. 

21 2 Two Decades of Research • 

Medical decision-making research in the 1960s emphasized the use of the 
computer to deal with probabilistic information, to recognize patterns us
ing numerical techniques, to model physiological processes that were ame
nable to mathematical simulation, or to encode algorithmic approaches to 
routine clinical chores. The field was then in its first decade as an identi
fiable area of research, and the emphasis was on how to get machines to 
make decisions that were both accurate and reliable. Formal statistical ap
proaches that had been impractical before computers became available 
were, quite naturally, the first techniques to be tried as physicians and 
engineers began to appreciate the computer's potential as a clinical tool. 

In the 1970s, however, there was a shift in research direction. As was 
outlined in Chapter 3, investigators increasingly realized that there are 
several key problems that escape attention if the research focuses solely on 
the development of techniques for reaching good decisions. These include: 

1. the problem of data acquisition-how to acquire, encode, and control for 
variations in the descriptors that define patients and populations; 

2. the problems of knowledge acquisition and representation-how to acquire 
and encode the kinds of judgmental perceptions and the commonsense 
approach that characterize expertise in the clinical decision-making 
areas being modeled; 

3. the problem of explanation-how to build decision support programs 
that not only give advice but are able to defend their decisions in terms 
physicians can understand; and 
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4. the logistics of integration-how to design and implement computer-based 
decision aids that fit smoothly into the daily routine of physicians' prac
tices, that acknowledge their hectic schedules, and that seek to demystify 
and simplify the mechanics of the human-computer interface. 

Several early approaches to these problems were developed during the 
last decade. Large patient data bases have been constructed and used to 
aid in defining prognoses for new cases (Feinstein et al., 1972; Fries, 1972; 
Rosati et al., 1975). Investigators who depend on valid statistics to support 
their decision-making systems have begun to look at geographical varia
tions in populations in order to assess the transferability of programs (de 
Dombal, 1979). Hospital information systems have become increasingly 
common and provide promising early models for the way in which relevant 
data will eventually be routinely acquired (Lindberg, 1977). There has also 
been complementary work in the development of large computer-based 
text documents designed to bring up-to-date knowledge of a domain to 
the practicing physician (Bernstein et al., 1980). 

During the same period, AI approaches have become prominent and 
have suggested several methods for encoding uncertainty, representing 
expert knowledge, and modeling the reasoning processes of accomplished 
clinicians. The symbolic reasoning techniques described in this book have 
suggested ways decision-making programs can explain their reasoning to 
physicians, thereby allowing the user to decide whether to follow the sys
tem's recommendations. Interactive techniques have been developed that 
also allow experimental systems to interview experts and to acquire new 
knowledge directly from them (Davis, 1979). 

Finally, there have been several notable experiments that have sought 
new ways to encourage physicians to interact with computer programs. 
These have included systems using light pens (Watson, 1974) or touch 
screens (Schultz and Davis, 1979) and decision support programs inte
grated into large-scale hospital information systems (Pryor et al., 1982). 
These efforts and others have demonstrated that physicians will learn to 
use computers and accept their role if the benefits of the technology out
weigh the costs of learning how to use the device and integrating it into 
one's normal routine. 

21.3 The Challenges Remaining 

A litany of recent accomplishments partly serves to emphasize the signifi
cant problems still remaining, however. Many of the experiments we have 
cited are only first steps toward the development of clinically useful tools. 
Some of the major barriers are practical ones relating to the logistics of 
interfacing patient data bases with expert systems, issues of legal liability 
(Brannigan, 1981), and the problem of training system users and knowl-
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edge engineers. At a more basic level, as is true with any emerging science, 
the development of short-term solutions tends to lead to a new understand
ing of the nature of the remaining problems and helps define the funda
mental research directions for the future. Current results suggest that the 
following areas are among those requiring attention in the decade ahead: 

1. additional psychological studies, similar in motivation to some of the pi
oneering studies of the 1970s (Elstein et al., 1978; Kassirer and Corry, 
1978), that will provide new insights into optimal methods for simulat
ing expert decision-making performance and may suggest novel ap
proaches to the organization of knowledge and its interaction with prob
abilistic information; 

2. improved techniques for representing and using causal and mechanistic rela
tionships (because expert decision-making behavior sometimes depends 
on an ability to reason from "first principles" rather than relying on 
empirical associations between observations and hypotheses); 

3. improved methods for acquiring expert knowledge, encoding it, and checking 
it for inconsistencies or incompleteness (Davis, 1979; Suwa et al., 1982; Pol
itakis and Weiss, 1984), thereby helping avoid the problems of knowl
edge base construction that have been major impediments to the 
development of expert systems; 

4. enhanced explanation capabilities, ideally guided by an improved under
standing of how human beings explain things to one another and, in 
particular, how they adapt their explanations to the knowledge and 
experience of the individual requesting advice; 

5. experimentation with new machine architectures (e.g., parallel processing 
or networking of multiple coordinated processors) that may permit an 
optimal assignment of languages and interfaces for the individual sub
tasks required by high-performance decision-making programs; 

6. experiments that seek to provide an optimal melding of symbolic techniques 
drawn from artificial intelligence research and the analytic techniques of 
formal statistics, pattern recognition, and decision theory; and 

7. research into novel ways that developing technologies for personal comput
ing and graphics might heighten both the acceptability and cost-effec
tiveness of systems to aid physicians with their decision-making tasks. 

21.4 Steps in Demonstrating the Effectiveness of a 
Consultation System 

With significant fundamental problems such as those above requiring so
lutions, can anything of practical use for decision support be implemented 
soon? Can we define clinical problems that are amenable to short-term 
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solutions and that will allow AIM researchers to undertake validating ex
periments in active clinical environments rather than in hypothetical 
experimental settings such as those used for the evaluation of MYCIN (Yu 
et al., l 979a; l 979b) and INTERNIST-I (Chapter 8)? We believe that the 
answer to both of these questions is "yes." Short-term clinical implemen
tation is inherently intertwined with evaluation issues, however, and we 
have accordingly found it useful to define a series of steps through which 
an advice system must pass as it moves from a research environment to 
ongoing clinical use. 

Diagnostic programs have tended to be assessed on the basis of their 
decision-making accuracy-the issue that is usually central to the system's 
design and to the motivation of the system's developers. Yet there are 
several additional components to the evaluation process when it is per
formed optimally. In order to control for confounding variables, we have 
suggested (Shortliffe and Davis, 1975) that system evaluations should be 
undertaken in a series of steps as follows: 

I. Demonstrate a need.for the system. Are there data indicating that physicians 
need help with the task for which the consultation system is designed 
to assist, and if so, is a computer necessary to provide that assistance? 

2. Demonstrate that the system performs at the level of an expert. Can it be for
mally shown that the system reaches the same decisions as experts who 
are presented with the same clinical decision tasks? If there are frequent 
disagreements, can it be shown that the system is correct at least as often 
as the experts are? Note that the determination of correctness thereby 
requires some "gold standard" against which the performance of both 
experts and the consultation system can be measured. 

3. Demonstrate the system's useability. Can physicians easily learn to handle 
the mechanics of interacting with the consultation system? Is the re
sponse time adequate? ls the system's performance sufficiently trans
parent so that the clinician can obtain the information he or she needs 
in an efficient and straightforward manner? 

4. Demonstrate acceptance of the system by physicians. Can it be shown that 
clinicians offered the decision tool will in fact return to use it, even 
when access to it is entirely optional? 

5. Demonstrate an impact on the management of patients. If physicians use the 
system, can it be shown that they follow the advice it offers? If not, has 
it favorably changed their behavior in some other way? 

6. Demonstrate an impact on the well-being of patients. If physicians are follow
ing the recommendations of the consultation system, can it be shown 
that patients are benefiting from its use? Are there objective measure
ments of patient-care quality that can be assessed before and after the 
decision aid has been introduced? 
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7. Demonstrate cost-effectiveness of the tool. If all the other validation criteria 
have been satisfied, can it be shown that there is a version of the con
sultation system that is cost-effective when both costs and benefits are 
assessed using some generally accepted criterion? 

These seven steps for demonstrating the effectiveness of a medical 
consultation system are idealized and difficult to traverse. We know of no 
medical decision-making system that has rigorously been shown to meet 
formal validation criteria at all seven steps of development. In fact, most 
systems have been assessed only at step 2, and remarkably few have met 
even the criterion of need specified in step 1. 

Some observers of the field may argue that the theoretical issues in 
the development of high-performance consultation systems are still so 
great that it is folly to focus attention on steps 3 through 7 at this time. Yet 
many significant theoretical barriers to the successful implementation of 
consultation systems do not arise at step 2 and will not be met until the 
subsequent steps are encountered. 

21.5 Characteristics of an Optimal Application 
Domain 

Attitude surveys such as that of Teach and Shortliffe ( 1981) help delineate 
some of the issues that must be addressed by system builders if clinically 
acceptable decision tools are to be developed. However, since most of these 
issues are best studied and assessed at the later stages of system imple
mentation, scientists who wish to address them in their current research 
must select an appropriate clinical problem area. The following criteria for 
that selection seem to be particularly pertinent: 

1. As indicated above, there must be a demonstrated need for help in the 
domain. A program that deals with an "interesting" problem, but one 
with which physicians already do rather well, will generate little interest. 

2. Equally as important, there must be a recognized need for help by the 
physicians themselves. Data showing poor performance by the overall 
population of physicians will not necessarily convince individual prac
titioners that they are among those needing help. Demand will come 
only from perceived need on the part of the intended users. 

3. The domain should ideally provide a core of formalized and readily avail
able knowledge. We have learned that knowledge base development can 
be an arduous and time-consuming aspect of consultation system re-
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search. Theoretical issues regarding knowledge completeness, consis
tency, and acquisition must inevitably be faced when a complex system 
is built for a domain in which expert knowledge is poorly formalized. 

4. The domain must provide a straigh~forward mechanism for introducing a 
computer-based tool into the daily routine of the physicians who use it. This 
point has several corollaries. First, use of the computer should ideally 
replace a task that is already being performed; this helps guarantee that 
the system will require a minimal additional time commitment. Second, 
the mechanical interface must be rapid, congenial, and easy to learn to 
use. And third, the decision tool's design must demonstrate a respect 
for the physician's hectic schedule. 

5. The program should maintain the physician's role as ultimate decision maker 
(e.g., by giving explanations for recommendations and allowing the user 
to override any advice that is offered). 

6. The system developers must be able to identify highly motivated collabo
rators from the domain of expertise. 

7. The problem area should allow the initial prototype system to a·ooid 
major theoretical barriers (e.g., the domain should not require solutions to 
problems such as the development of approaches to the management 
of inexact inference, generalized methods for the management of tem
poral reasoning, encoding of strategic knowledge for domain-specific 
problem solving, or generation of highly customized explanations that 
demonstrate "first principle" understanding of the clinical area). 

Criteria such as these have guided the development and progress of 
one of the newer AIM research activities. That project, known as ONCO
CIN, is an expert system designed to aid physicians in the management of 
patients receiving cancer chemotherapy. The program is based on AI rep
resentation and control techniques similar to those described in this book 
(Shortliffe et al., 1981), but much of the effort has focused on getting the 
program implemented for use by physicians. Experience with the program 
and its users, both before and after its clinical introduction in May 1981, 
has recently been described (Bischoff et al., 1983). In order to provide a 
congenial high-speed interface, the system required a novel system archi
tecture that separated the reasoning and interactive components (Gerring 
et al., 1982). ONCOCIN has also provided a productive environment for 
research on methods to ensure knowledge base completeness and consis
tency (Suwa et al., 1982) and on specialized explanation techniques (Lang
lotz and Shortliffe, 1983). Because of its initial promising success, plans 
have been made to convert the program to run on professional worksta
tions and to use them as a vehicle for disseminating the technology to 

nonacademic settings (Tsuji and Shortliffe, 1983). More detailed discus
sions of ONCOCIN may be found in a recent book by Buchanan and 
Shortliffe ( 1984). 
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On Artificial Intelligence and Medical 
Computer Science 

Those who work in the AIM field are uniformly enthused about the field's 
potential to do social good but are also aware of the common misinterpre
tation of their goals and of the frequent failure to acknowledge the fun
damental research barriers that remain to be conquered. We have already 
discussed the problems that lie ahead, and we hope that the reader will 
share the cautious optimism that we feel about the future. Misinterpreta
tions of the goals of AI research, however, at least partly relate to the 
phrase artificial intelligence itself. For example, the eminent essayist Lewis 
Thomas recently wrote in a "Notes of a Biology Watcher" column in the 
New England journal of Medicine (Thomas, 1980): 

The most profoundly depressing of all ideas about the future of the 
human species is the concept of artificial intelligence. The ambition that hu
man beings will ultimately cap their success as evolutionary overachievers by 
manufacturing computers of such complexity and ingenuity as to be smarter 
than they are, and that these devices will take over and run the place for 
human betterment or perhaps, later on, for machine betterment, strikes me 
as wrong in a deep sense, maybe even evil. Until now, computers have had 
the look of useful, often indispensable tools ... [But] this is what the artificial 
intelligence people are talking about: a mechanical brain with the capacity to 
look back over the past and make accurate predictions about the future, then 
to lay out flawless plans for changing that future any way it feels like, and, 
most appalling of all, capable of feeling like doing one thing or another. 
Machines like this would be connected to each other in a network all around 
the earth, doing all the thinking, maybe even worrying nervously. But being 
right all the time. Leaving us with time for leisure ... 

We are not sure where Thomas obtained his information about the 
field, but we hope that this volume has demonstrated his misinterpretation 
of the nature of AI-both regarding the motives of the researchers and 
regarding expectations of what can and will be accomplished. One is re
minded of a recent book by Weizenbaum that questioned not so much 
what could be accomplished by the AI field but what should be accomplished 
(Weizenbaum, 1976). 

In response to Thomas's essay, Shortliffe and Buchanan sent a letter 
to the editor of New England journal of Medicine, a portion of which was 
published with other letters on the subject (Shortliffe and Buchanan, 
1980). We reproduce the entire original letter here: 

Lewis Thomas' polemic against artificial intelligence responds more to 
the emotional content of the phrase than to the realities of the techniques 
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and goals associated with this subfield of computer science. It is ironic that 
his opinion piece should appear at a time when computing techniques drawn 
from AI are being increasingly applied in clinical domains. 

It is commonly accepted that computers can offer the medical profes
sions significant relief from the complexities of routine information handling 
and data analysis (e.g., office billing systems, CT scanners). Because of the 
frequently cited explosion of medical knowledge, much research has also 
focused on computer-based tools to assist physicians with clinical decision 
making. Medical computing researchers are being drawn to AI largely be
cause they see in the field techniques that will make programs for physicians 
more congenial, acceptable, and clinically useful. One of the goals of AI is 
to construct intelligent assistants that reason symbolically using empirical as
sociations, accepted theory, and experts' judgmental knowledge. Although a 
textbook is a well-accepted tool, it is static and inflexible in the sense that it 
fails to customize its knowledge to the consideration of specific patients. By 
reasoning with general knowledge to suggest an individual approach to a 
patient's management, a program that can function as an intelligent assistant 
may further enhance the physician's effectiveness. 

Thomas would have us believe that AI research purports to create a 
network of machines "doing all the thinking ... leaving us with time for 
leisure." Yet in its medical applications, AI research is seeking ways to over
come the tendency to estrangement between man and machine, a frequent 
complaint that has tended to limit the utility of clinical computing. AI workers 
are attempting to provide us with computer-based tools that will make doctors 
more effective thinkers and clinical decision makers (Shortliffe, 1980). In his 
fervor for pursuing the philosophical correlates of a phrase like artificial 
intelligence, Thomas loses sight of the fact that "intelligent" knowledge-based 
machines may continue to serve as the "useful, often indispensable tools" 
which he admits he has come to appreciate. 

The preceding interchange brings us naturally to a further definition 
of goals that will guide "the second decade" of AIM research that lies 
ahead. In addition to the research areas previously outlined, it is clear that 
two issues stand foremost on the medical computing agenda for the 1980s 
(Shortliffe, 1983): (1) there must be improved education of medical stu
dents and practicing physicians regarding computers and decision making, 
and (2) there must be an enhanced acceptance of medical computer science 
as an intrinsic component of the modern academic medical environment. 
The financial and academic support necessary for tackling difficult tasks 
such as those we have outlined will be made available only if there is im
proved recognition of the field's potential and of the fundamental research 
questions that exist for the medical computing community. 
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Causal dominators, 416 
Causal-hierarchical network, 96, 341 
Causality 

covariation in, 410 
defined, 340,410 
nonspuriousness in, 410, 415, 424 
strict, 163, 187 
time precedence in, 410 

Causal knowledge 
in ABEL, 16, 345-348 
in CASNET, l 63ff, 228 
in Digitalis Therapy Advisor, 392 
in INTERNIST, 194, 204, 225 
in NEOMYCIN, 368, 376 
jn PIP, 144, 145, 221 
in RX, 408 
of novice, 302, 309 

Causal model, 163ff, 177, 180, 228, 392, 467 
admissible path in, 172 
feedback in, 349 
multi-level, 163, 339, 341 
need for intermediate states in, 163, 204 
need for multiple levels in, 346 

Causal reasoning, 187, 231 
Causal relation, 163, 194, 221, 339-360 

direction of, 408 
embedded in associational structure, 167, 

187 
frequency of, 165, 408 
intensity of, 181, 408 



validity of, 34 7, 408, 422 
Causal rule, 368, 376 
CENTAUR, 7, 11, 92, 95, 429, 449 
Certainty factor, 66, 86, 106, 122, 233, 245. 

See also Uncertainty 
Chest pains, 52 
Cholestasis, 328, 336ff 
Classically-centered disease knowledge, 280, 

290 
Classic explanations, 309 
Classification. See also Hierarchy of diseases 

problem, 193, 321, 330, 367 
tables, 167, 179 

Clinical algorithms. See Flow chart algorithms 
Clinical parameter, 107 
Clinicopathological conferences, 191, 192 
COBOL, 323 
Cognitive modeling, 135, 158, 212, 279, 318. 

See also Modeling of human problem 
solving 

experimental design of, 276, 281, 284 
Combinatorial explosion in data gathering, 218 
Commonsense knowledge, 13, 32, 109, 146, 

222, 252, 326-327, 465 
Competing hypotheses, 198, 228, 302, 312. 

See also Logical competitor sets 
Compiled knowledge, 212, 273, 320, 325, 

327, 365, 380, 390, 396. See also 
Knowledge structuring; Separation of 
knowledge 

Complementary hypotheses, 220, 228 
Complication, 220 
Composite hypotheses, 94 
Computer-aided instruction, 114, 256-274, 

317, 361-381. See also Educational 
benefits; Explanation; Tutoring 

Computer decision systems 
acceptability of, 68-71, 243, 363, 398, 451, 

467. See also User interaction 
assumptions in design of, 115, 155 
as consultants, 2, 20, 73, 80, 100, 115, 367 
conversion of, for small computers, 15, 

449, 456,467, 470 
deficiencies of, 31-33, 43, 46, 49-50, 52-

53, 57-58, 61-62, 67-71, 74, 126, 
216, 221, 236ff, 348, 467 

design guidelines, 31-33, 37, 62-65, 68-
71, 100, 243, 455, 464 

in routine practice, 16 
microprocessor, 456, 457 
need for education about, 472 
performance of, 15, 68-69. See also 

Evaluation 
problem area selection criteria, 469 
rational for, 15, 19-20, 36-37 

Concept identification, 31. See also 
Knowledge acquisition 

Conceptual structure, 84, 88, 321, 332 
Confirmatory evidence, 300 
Confirmatory rules, 321, 328 
Confounding variables, 416, 467 
Congenital heart disease, 26, 281 ff 
Congestive heart failure, 364 
Connective tissue diseases, 430 
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CONNIVER, 135 
Consistency 

in reasoning. See Caus-al consistency 
of knowledge bases, 96, 128, 253, 467, 470 

Constraint relaxation, 309 
Constrictor relationships, 94 
Consultation programs. See Computer 

decision systems 
Content vs. form, 323 
Context tree, 86, 90, 107, 112, 234 
Control strategy, 6, 90, 92, 93, 95, 162. See 

also Reasoning strategy 
among specialists, 95 
backward chaining, 86, 107, 119, 233, 245, 

370, 452 
bottom-up, 292 
constraint relaxation, 309 
data-driven, 248, 370 
depth-first, 107 
distributed, 331 
domain-independent, 361, 369 
establish-refine, 336 
exhaustiv~ 29, 86, 108 
forward chaining, 248 
generate and test, 409 
goal-directed, 154, 248 
group-and-differentiate, 374 
hypothesis-directed, 87, 177, 279, 316 
parallel, 336 

Correlation, lagged, 411 
Cost of tests, 24, 176, 216 
Covariation in causality, 410 

Daemons, 14 7-149 
Data. See also Findings; Manifestations; 

Observations 
vs. knowledge, 4, 37-39, 440 
spurious, 248 
validity of, 250 

Data base analysis, 43-47, 406 
Data bases, 4-5, 400, 465 
Data-driven reasoning, 248, 370, 458 
Data-gathering strategy, 11, 13, 141, 170, 

238, 465. See also Test selection function 
combinatorial explosion, 218 
of ABEL, 350 
of INTERNIST, 199, 228 
of NEOMYCIN, 370 
of PIP, 135, 146, 152, 221, 224 

Decision-making paradigms, 35, 40, 77-82 
Decision theoretical approach, 23-28, 58-62, 

83, 215, 467 
compared to Bayesian approach, 61-62 
deficiencies of, 28-30, 61-62, 126 

Decision trees, 25ff, 59, 61-62 
Declarative knowledge, 95, 278 
Decomposition of disease components, 341, 

348 
Definitional rules, 253 
DENDRAL, 18, 114, 324 
Depth-first reasoning, 107 
Descriptive component, 90. See also 

Knowledge structuring 
DIAGNOSER, 275-276 



Diagnosis. 141, 192, 194, 211, 279, 350 
See also Hypotheses 

classification in, 179, 193 
definitive, 201 
differential, 197, 284, 329, 430 
errors in, 202, 217, 236ff, 271, 276, 291, 

299, 308, 311, 316-317 
explaining findings in, 203, 237, 334, 364 
guessing in, 158 
partitioning algorithm for, 88, 194, 228 
procedure for, 90, 92, 194, 318 
sequential, 21-23, 172, 215 

Diagnosis strategies. See also Control strategy; 
Data-gathering strategy; Focus in 
reasoning; Hypothesis-directed reasoning; 
Reasoning strategy; Scoring function 

establish-refine, 336 
group-and-differentiate, 367, 374 
problem-oriented approach, 270 
ruling-out, 329 

Differentiation of disease knowledge, 286, 
314, 325 

Digitalis therapy, 93, 211, 364 
Digitalis Therapy Advisor, 7, 93, 95, 214, 

382-398 
Discourse procedures, 264 
Disease 

categories, 167, 226, 280, 314, 321, 339, 
340, 368, 406 

chronic, 95 
classification tables, 167, 179 
components, decomposition of, 341, 348 
hierarchy. See Etiologic knowledge; 

Hierarchy of diseases 
mechanism. See Causal model 
process, 163, 367, 369, 388 
profile, 193, 203. See also Prototypical 

models 
secondary, 335 
seriousness of, 165 
severity of, 179 

Disease knowledge. See also Anatomic 
knowledge; Causal knowledge; Etiologic 
knowledge; Pathoanatomic knowledge; 
Pathognomonic knowledge; 
Pathophysiological knowledge 

classically centered, 280, 290 
combined with statistical analysis of a data 

base, 406 
differentiation of, 286, 314, 325 
generalization of, 314 
precision of, 280, 299, 310 
sparseness of, 280, 292 
syndromic, 341, 342 

Distributed problem solving, 331 
Domain-independent strategies, 361, 369 

"Domain-independent tutoring rules, 273 
Dysfunctional states, 228. See also 

Pathophysiological knowledge 

Edema, 132 
Educational benefits, 3, 43, 74, 88, 95, 253, 

317, 320, 331, 363. See also Explanation; 
Tutoring 
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Elaboration of hypotheses, 341, 351, 353 
ELIZA, 26 
EMYCIN, 16, 73, 95, 99, 362ff, 427, 444ff, 

456, 468 
Epistemological adequacy of representation, 

322 
Errors in reasoning. See Diagnosis, errors in 
Establish-refine strategy, 336 
Etiologic explanations, 342 
Etiologic knowledge. See also Hierarchy of 

diseases; Classification problem 
in MDX, 330ff 
in NEOMYCIN, 365, 376 

Evaluation 
experimental design of program, 453, 467 
of CASNET, 187 
of INTERNIST, 192, 200-205 
of microprocessor EXPERT, 460 
ofMYCIN, 15, 118 
of PUFF, 15, 453-454 

Evoking strength, 193, 225 
Exclusionary rule, 150, 321, 329 
Exhaustive reasoning, 29, 86, 89, 108 
Expectations of patient state, 246 
Expected values, 59 
Experiential knowledge, 29-32. See also 

Compiled knowledge 
Experimental design 

confounding variables in, 416 
garden path methodology in, 281 
of cognitive study, 135, 276, 281, 284 
of data base discovery, 410 
of medical discovery, 402 
of model development, 430, 458 
of program evaluation, 453 

Expert knowledge, 62-65, 212, 281, 290, 311 
Expert vs. novice problem solving, 159, 

212, 278, 309, 312, 379 
Expert systems. See Knowledge-based 

systems 
EXPERT, 73, 74, 95, 160, 426-443, 456-462. 

See also Microprocessor EXPERT; SEEK 
compared to CENTAUR and PIP, 429 
deficiencies of, 442 
evaluation of model, 432 
FORTRAN implementation of, 14 
scoring function in, 429 
transcript, 432 
uncertainty in, 429 
user interaction in, 431 

Explaining findings, 203, 237, 309, 334, 339, 
351, 364, 427 

Explanation, 3, 11, 13, 76, 87, 95, 115, 465, 
467. See also Justifications; XPLAIN 

assumptions about, 124 
benefits of, 383 
from canned text, 382, 387 
from code, 214, 260, 382, 387-389 
in ABEL, 359 
in CASNET, 188 
in GUIDON, 265-269 
in MYCIN, 120ff 
in ONCOCIN, 470 
in SEEK, 436, 440 



levels of abstraction in, 15, 387, 397 
need for, 33, 386, 450 
of case experience, 427 
program, 102 
requested by program users, 262, 386 
structuring a knowledge base for, 361 ff 

Extraction in reasoning, 291, 299, 303, 306, 
311 

Feedback 
in causal reasoning, 349 
of physiological parameters, 95 
in tutorial dialogues, 265 

Findings, 77, 79, 193, 218, 393. See also Data; 
Manifestations; Observations 

characterizing, 146, 222, 238, 247, 369 
explanation of, 203, 237, 309, 334, 339, 

351, 364, 427 
import of, 193 

First principles, 212, 253, 467, 470 
Flexibility of program design, 76 
Flow chart algorithms, 40-43, 55, 81, 213 
Focus in reasoning, 89-90, 108, 200, 204, 

220, 227' 238ff, 290, 324, 343, 366 
FORTRAN, 14 
Forward chaining of rules, 248 
Forward weight, 230 
Frames, 16, 88, 90, 143, 154, 2254, 278, 316, 

323, 325, 378,407,428 
combined with production rules, 235, 254. 

324-325 
in PIP, 143, 144, 146, 154 

Frequency, 165, 193, 225, 408 
FRL, 325 
Fuzzy logic, 65, 84, 86, 115, 229, 232, 234 

Garden path methodology, 281 
Gastrointestinal diseases, 55-57 
Generalization of disease knowledge, 314 
Generate and test, 409 
Glaucoma, 84, 16lff, 228, 232 
Goal-directed reasoning, 154, 245 
Group-and-differentiate strategy, 367, 374 
G UIDON, 11, 14-16, 95, 256-27 4, 363ff. See 

also Tutoring 
GUS, 235 

HASP/SIAP, 241 
HEADMED, 272 
Health care improvements, 19-20, 73 
HEARSAY, 321 
Heuristics, 30, 69, 374 
Hierarchical-causal networks, 96, 341 
Hierarchy of diseases, 76, 87, 193, 226, 280, 

315, 320,407 
deficiencies of rigid, 193 
with production rules, 321, 369 

Human engineering, 444, 457 
of CASNET, 185 
of INTERNIST, 225 
of MYCIN, 101, 102, 107, 112, 113, 120 
of VM, 248ff 

Hypotheses, 79, 218 
activation of. See Activation of hypotheses 
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aggregation of, 94, 237, 295, 303, 341, 
351, 352 

confirmed, 170, 221 
consideration of alternative, 302, 312 
denied, 229 
elaboration of, 341, 351, 353 
evidence for, 79 
mutual exclusivity of, 172, 217 
proliferation of, 153, 237 
refinement of, 329, 365 
refutation of, 329 
revision of, 159 
tentative, 1 70, 351, 434 
testing of, in PIP, 150 

Hypothesis-directed reasoning, 85, 87, 89, 
177, 220, 276, 279, 316 

Hypothesize and debug, 360 

Import of finding, 193, 227 
Imprecise disease knowledge, 280, 299, 310 
Independence of tests, 216 
Inexact reasoning. See Model, of inexact 

reasoning 
Infectious diseases, 86, 100, 232, 363, 427 
Inference engine, 90 
Inference function, 24. See also Scoring 

function 
Inference net, 235 
Information gathering, 23. See also Data-

gathering strategy 
Information structure, 23. See also Knowledge 
Intensity of causal relation, 181, 408 
Intensive care unit, 241 ff 
Interactive Data-Analysis Language (IDL), 

405,421 
Interdependency of manifestations, 204 
Interlisp, 14, 87, 93, 96, 102, 405, 421, 449 
Internal medicine, 87, 191, 224, 232, 427 
INTERNIST, 2, 7, 11, 14, 16, 64, 67, 74, 84, 

87-88, 94, 161, 190-209, 210, 224-228, 
383,468 

causal knowledge in, 194, 204, 225, 340 
compared to other systems, 227, 236, 338, 

379 
data-gathering strategy in, 199, 228, 237 
deficiencies of, 204-205, 227, 236, 237, 

340 
disease hierarchy of, 193, 226 
evaluation of, 15, 192, 200-205 
human engineering in, 191, 225 
probabilistic reasoning in, 225 
reasoning strategy in, 87, 197-200, 227 
scoring function in, 194, 197-200, 225 
transcript, 205-209 

Interpretations of physiologic measurements, 
245,446 

Inverse weight, 174, 230 
IRIS, 93, 95 

Judgmerital knowledge and reasoning, 28, 
37, 106, 187, 194, 212, 324 

Justifications in explanation, 76, 253, 386, 
389ff 



KLONE, 325 
Knowledge. See also Causal knowledge; Disease 

knowledge; Judgmental knowledge and 
reasoning; Meta-knowledge 

commonsense, 13, 32, 109, 146, 222, 252, 
326-327' 465 

compiled, 212, 273, 320, 325, 327, 365, 
380, 390, 396 

content vs. form, 323 
contrasted with data, 4, 37-39, 440 
contrasted with reasoning, 277 
errors. See Diagnosis, errors in 
experiential, 29-32. See also Compiled 

knowledge 
expert, 62-65, 212, 281, 290, 311 
of first principles, 212, 253, 467, 470 
organization of, 324 
procedural, 29 
redundance and bias of, 328 
separation of, 76, 90, 185, 321, 417 
shallow, 203, 214, 342 
task-accessible, 31 7, 366 
traditional view of, 276 

Knowledge acquisition, 11, 16, 17, 30, 32, 
102, 115, 236, 426ff, 465, 467. See also 
Automatic programming; Concept 
identification; EXPLAIN; Knowledge 
engineering tools; Knowledge 
structuring; Learning; TEIRESIAS 

assumptions about, 126 
by case experience, 427, 437, 442, 458 
by debugging, 94, 126 
by discovery, 401 
by lottery, 28 
by refinement, 428, 438 
by trial and error, 30 
from experts, 3, 28, 108, l 26ff 
from textbooks, 157 

Knowledge-based systems, 2, 5, 6, 9, 23, 95, 99 
Knowledge embedding, kinds of 

causal relations in associational structure, 
167, 187 

production rules in a disease hierarchy, 
325, 369 

production rules in a state transition 
network, 251 

Knowledge engineering, 36, 97 
tools, 95, 427, 445, 458. See also AGE; 

EMYCIN; EXPERT 
Knowledge representaticn, 3 

declarative, 278 
epistemological adequacy of, 322 
modularity of, 87, 106, 118 
multiple use of, 243 
stylized, 118, 253 
uniformity of, 86, 236 

Knowledge representations, kinds of. See also 
Decision trees; Flow chart algorithms; 
Frames; FRL; KRL; Production rules; 
Semantic network 

AND/OR goal tree, 107, 233 
blackboard model, 96, 320, 321, 332 

Knowledge structuring, 6, 11, 12, 162, 253, 
325 
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for explanation, 15, 389ff 
for performance, 68-69, 84, 203-205, 342 
for teaching, 273, 320, 353-366, 380 
vs. scoring function, 61-62, 84, 203-205, 

218 
KRL, 323, 325 

Learning, 278, 321-315, 318,400, 438 
Levels of abstraction, 163, 341 

in explanation, 15, 387, 397 
in knowledge representation languages, 5, 

32-33 
LISP, 14 
Logical competitor set, 281, 283, 311, 312, 

361, 379 
Long-term memory, 142 
Lottery, 28 
Lung disease, 446 

MACSYMA, 99 
Manifestations, 204, 205, 225 
Markov modeling, 62 
Mathematical models, 4 7 -50, 93 
MATHLAB, 2, 99 
MDX, 7, 11, 16, 17, 95, 320-338 

compared to other systems, 327, 328 
etiologic knowledge in, 330ff 
reasoning strategy in, 328ff, 336 

Mechanism of disease. See Causal model 
Medical application areas 

acid-base and electrolyte disorders, 48, 
339-360 

acute renal failure, 23ff, 60 
bacterial infection, 101 
bone tumors, 26 
cancer chemotherapy, 42-43, 46 
chest pains, 52 
cholestasis, 328, 336ff 
chronic disease, 95 
congenital heart disease, 26, 281 ff 
congestive heart failure, 364 
connective tissue diseases, 430 
digitalis therapy, 93, 211, 364 
edema, 132 
gastrointestinal diseases, 55-57 
glaucoma, 84, 16lff, 228, 232 
infectious diseases, 86, 100, 232, 363, 427 
intensive care unit, 241 ff 
internal medicine, 87, 191, 224, 232, 427 
interpretations of physiologic 

measurements, 245, 446 
lung disease, 446 
meningitis, 370ff 
ophthalmology. 427 
patient monitoring, 241 ff 
pediatric cardiology, 279 
psychopharmacology, 95 
pulmonary function, 446 
renal disease, 211 
rheumatology, 405, 426, 430 
scanning densitometer, 457 
serum protein electrophoresis, 456, 458 
systemic lupus erythematosus, 423 
ventilator management. See VM 



Medical knowledge. See Disease knowledge 
MEDICO, 93 
Meningitis, 3 70ff 
Meta-knowledge, 11, 13, 94, 96, 110, 112 

of decision program limitations, 75 
about strategies, 71, 3 7 4 

Meta-rules, 111, 254, 324, 270, 361 
Microprocessor, 456, 457 
Microprocessor EXPERT, 11, 16, 17, 456-462 
Model 

causal. See Causal model 
Markov, 62 
mathematical. See Mathematical modeling 
of disease processes, 163 
of inexact reasoning, 105, 115. See also 

Certainty factors 
of mineral exploration, 427 
of stages in intensive care unit, 246 
of student, 266-268, 362 
of ventilatory therapies, 251 
patient-specific, 85, 87, 339, 341, 350 
prototypical, 88, 218, 254, 280, 313, 325, 

428,450 
stages in problem-solving, development of, 

430, 458 
Modeling of human problem solving, 16, 17, 

21-22, 77, 133, 188, 192, 220, 228, 240, 
275, 279, 324,413,467. See also 
Cognitive modeling; Expert vs. novice 
problem solving 

for teaching programs, 271, 363ff, 380 
to improve AI programs, 154, 237, 340, 

350 
Modularity of knowledge, 6, 76, 87, 106, 118 
Multiple diagnoses, 16, 181, 192, 204, 237, 

301, 342, 348 
Multiple use of knowledge, 13, 243 
Multiple views, 193, 325. 359 
Multiple visits, 449 
Mutual exclusivity of hypotheses, 172, 217 
MYCIN, 2, 7, 8, 11, 12, 16, 65-66, 74, 75, 

84, 86-87, 95, 160, 210, 232-236, 324, 
361-383,427,468 

assumptions in design, 116 
compared to other systems, 187, 234, 

24lff, 249, 337, 365-370 
data-gathering strategy in, 237 
deficiencies of, 237, 241 
deficiencies of, for application to teaching, 

361, 363-364. See also GUIDON; 
NEOMYCIN 

evaluation of, 15, 118 
explanation in, 15, 66, 102, 120ff 
extensions to, 250 
human engineering in, 101, 102, 108, 112, 

113, 120 
knowledge acquisition in, 126ff, 236. See 

also TEIRESIAS 
nondescriptive representation in, 90 
probabilistic reasoning in, 66, 102, 235 
production rules in, 233, 244 
reasoning strategy in, 107, 113, 233 
transcript, 101 
user interaction in, 15 
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Natural language understanding, 32, 115, 
127, 325, 383 

NEOMYCIN, 7, 11, 12, 14, 17, 361-381 
assumptions about, 367 
backward chaining in, 370 
causal knowledge in, 376 
compared to other systems, 321, 365-370, 

379 
data-gathering strategy in, 370 
deficiencies of, 3 79 
etiologic knowledge in, 365 
metq-rules in, 16 
reasoning strategy in, 366, 374 
transcript, 370-374 

NEUREX, 95 
NEUROLOGIST, 95 
Nonspuriousness in causality, 424 
Normative component, 90. See also Control 

strategy 
Novice. See also Expert vs. novice problem 

solving 
diagnosis, 212, 311 
disease knowledge, 280 

Observations of the patient, 163, 167, 193, 
428. See also Data; Findings; 
Manifestations 

ONCOCIN, 11, 15, 16, 46, 470 
Ophthalmological network (ONET), l 86ff 
Ophthalmology, 427 
Organization of knowledge, 324. See also 

Knowledge structuring 
Organ-system involvement, 203, 205 

Parallel reasoning, 336, 467 
Partitioning algorithm, 88, 194, 228 
Pathoanatomic knowledge, 192 
Pathognomonic knowledge, 220, 297, 299, 331 
Pathophysiological knowledge, 29-30, 89, 

163, 194, 204, 280, 312, 341, 342, 368, 
377, 399ff. See also Causal relation 

Patient monitoring, 241 ff 
Patient-specific model, 85, 87, 142, 339, 341, 

350 
Pattern-recognition methods, 82 
Paucity of problem features, 312 
Pediatric cardiology, 279 
Perceptual chunking hypothesis, 315 
Perceptual skills, 77 
Performance of programs, 15, 68-69. See also 

Evaluation 
structuring a knowledge base for, 69, 342 

Physicians, supply of, 19-20 
Physiologic interpretation, 245, 446 
Physiologic knowledge, 30-31, 144, 218, 246, 

327, 342 
Physiologic monitoring system, 245 
PIP, 2, 11, 16, 19, 84, 88-90, 13lff, 160, 

210, 218-224, 226-228, 383 -
causal knowledge in, 144, 145, 221, 340 
compared to other systems, 227, 236, 338, 

429 



data-gathering strategy in, 135, 146, 152, 
221, 224, 237 

deficiencies of, 89, 155, 224, 236, 237, 340 
experimental design of, construction, 135 
hypothesis activation in, 14 7, 220 
hypothesis revision in, 159, 226 
hypothesis testing in, 150, 224 
reasoning strategy in, 89, 146, 154, 220, 

222 
scoring function in, 151, 221 
transcript, 136-140 
use of frames in, 143-146, 154 
weight propagation in, 221 

PLANNER, 66, 107, 108 
Planning, 92, 317 
Precautionary reasoning, 290, 299, 303, 306, 

311 
Predisposing factors, 194, 204 
Present illness of a patient, 211, See also PIP 
Primary care physician, 36, 363 
Principle of parsimony, 153 
Probabilistic data, 194, 216 
Probabilistic reasoning, 21-23, 213 

in CASNET, 188, 229 
vs. categorical reasoning, 188, 210-240, 

342, 360 
in INTERNIST, 225 
in MYCIN, 235 

Problem area, 192, 198 
Problem formulation, 193 
Problem-oriented approach, 270 
Problem solving in complex domains, 278. 

See also Semantically complex domains 
Procedural knowledge, 29, 95 
Procedurally attached heuristics, 235 
Production rules, 16, 29-31, 86, 90, 100, 

117, 232, 242, 324. See also Rules 
advantages of, 66-67, 118, 129, 260, 266, 

417, 455 
assumptions in use of, 116 
combined with frames, 235, 254, 321, 324-

325 
embedded in a disease hierarchy, 325, 369 
embedded in a state transition network, 251 
in MDX, 321 
in Microprocessor EXPERT, 460 
in MYCIN, 66, 86, 102, 232, 244 
in PUFF, 452 
in RX, 417 
in VM, 246 
limitations of, 119, 128, 236, 324, 364, 451 
methodology of, 114, 243 
unity path, 109 

Progression of disease, 1 79 
Projection, 351, 354 
Proliferation of hypotheses, 153 
PROSPECTOR, 93, 95, 235, 427 
Prototypical models, 88, 218, 254, 280, 313, 

325, 428, 450 
Psychological experimentation. See Cognitive 

modeling 
Psychopharmacology, 95 
PUFF, 7, 11, 16, 17, 99, 444-456 

deficiencies of, 449 

511 

evaluation of, 15, 453-454 
production rules in, 452 
transcript, 450 
tutorial example, 272-273 
user interaction in, 44 7 

Pulmonary function, 446 

QA3, 278 
Question-answering program, 102. See also 

Explanation 
Questioning strategy. See Data-gathering 

strategy 

Reasoning strategy, 11, 12, 76, 278, 318. See 
also Aggregation; Control strategy; 
Decomposition; Elaboration; Extraction; 
Problem formulation; Projection; 
Summation 

improvements, 237, 348 
of ABEL, 350-354 
of CASNET, 85, l 76ff, 231 
of Digitalis Ad_visor, 393 
of INTERNIST, 87, 197-200, 227 
of MDX, 328ff, 336 
of MYCIN, 107, 113, 233 
of NEOMYCIN, 336, 374 
of PIP, 89, 146, 154, 220, 222 
of RX, 403-404 ' 
of VM, 248 

Recommendation rule, 321 
Refinement of hypotheses, 329, 365 
Refinement structure of program, 390 
Renal disease, 211 
Rheumatology, 405, 426, 430 
Risk of treatment, 23, 384 
Rule justification, 253 
Rule model, 428 
Rule refinement, 428 
Rules, kinds of. See also Production rules 

antecedent, 110 
causal, 368 
confirmatory, 321 
definitional, 253 
domain-independent, 273, 361, 369 
exclusionary, 150, 321, 329 
meta-, 111, 254, 324, 369 
recommendation, 321 
sufficiency, 151 
tutoring, 260, 265 

RX, 7, 11, 17, 399-425 
causal knowledge in, 408 
deficiencies of, 424 
production rules in, 417 
reasoning strategy in, 403-404 
temporal reasoning in, 408 
transcript, 423 
user interaction in, 424 

SACON, 444 
Scanning densitometer, 457 
Schemata. See Frames; Prototypical models 
SCHOLAR, 363 
Scoring function, 24, 89. See also Uncertainty 

of CASNET, 169, 229 



of EXPERT, 429 
of INTERNIST, 194, 197-200, 225 
of PIP, 151, 221 
vs. knowledge structuring, 61-62, 84, 203-

205, 218 
Secondary disease, 335 
SEEK, 11, 16, 17, 426-443 
Semantically complex domains, 271, 316, 318 
Semantic network, 90, 94, 114, 163, 323, 343 
Separation of knowledge, 76, 90, 185, 321, 

417. See also Compiled knowledge; 
Knowledge embedding; Knowledge 
structuring 

Seriousness of disease, 165 
Serum protein electrophoresis, 456, 458 
Severity of disease, 1 79 
Severity of manifestation, 205 
Shallow reasoning, 203, 214, 342 
Short-term memory, 142 
Signal interpretation, 241, 460 
Simulated diagnostic encounters, 269, 317 
Skills in medical problem solving, 259 
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