Asymptotic slowing down of the nearest-neighbor classifier

Snapp, Robert R., Psaltis, Demetri, Venkatesh, Santosh S.

Neural Information Processing Systems 

Santosh S. Venkatesh Electrical Engineering University of Pennsylvania Philadelphia, PA 19104 If patterns are drawn from an n-dimensional feature space according to a probability distribution that obeys a weak smoothness criterion, we show that the probability that a random input pattern is misclassified by a nearest-neighbor classifier using M random reference patterns asymptotically satisfies a PM(error) "" Poo(error) M2/n' for sufficiently large values of M. Here, Poo(error) denotes the probability of error in the infinite sample limit, and is at most twice the error of a Bayes classifier. Although the value of the coefficient a depends upon the underlying probability distributions, the exponent of M is largely distribution free.We thus obtain a concise relation between a classifier's ability to generalize from a finite reference sample and the dimensionality of the feature space, as well as an analytic validation of Bellman's well known "curse of dimensionality." 1 INTRODUCTION One of the primary tasks assigned to neural networks is pattern classification.

Similar Docs  Excel Report  more

None found