Hybrid-MST: A Hybrid Active Sampling Strategy for Pairwise Preference Aggregation

LI, JING, Mantiuk, Rafal, Wang, Junle, Ling, Suiyi, Callet, Patrick Le

Neural Information Processing Systems 

In this paper we present a hybrid active sampling strategy for pairwise preference aggregation, which aims at recovering the underlying rating of the test candidates from sparse and noisy pairwise labelling. Our method employs Bayesian optimization framework and Bradley-Terry model to construct the utility function, then to obtain the Expected Information Gain (EIG) of each pair. For computational efficiency, Gaussian-Hermite quadrature is used for estimation of EIG. In this work, a hybrid active sampling strategy is proposed, either using Global Maximum (GM) EIG sampling or Minimum Spanning Tree (MST) sampling in each trial, which is determined by the test budget. The proposed method has been validated on both simulated and real-world datasets, where it shows higher preference aggregation ability than the state-of-the-art methods.

Duplicate Docs Excel Report

None found

Similar Docs  Excel Report  more

None found