New machine learning algorithm can help search new drugs


LONDON, Feb 12: Researchers say they have developed a machine learning algorithm for drug discovery which is twice as efficient as the industry standard, and could accelerate the process of developing new treatments for diseases such as Alzheimer's. The team led by researchers at the University of Cambridge in the UK used the algorithm to identify four new molecules that activate a protein thought to be relevant for symptoms of Alzheimer's disease and schizophrenia. A key problem in drug discovery is predicting whether a molecule will activate a particular physiological process, according to the study published in the journal PNAS. It is possible to build a statistical model by searching for chemical patterns shared among molecules known to activate that process, but the data to build these models is limited because experiments are costly and it is unclear which chemical patterns are statistically significant. Machine learning is an application of artificial intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed "Machine learning has made significant progress in areas such as computer vision where data is abundant," said Alpha Lee from Cambridge's Cavendish Laboratory.