Prediction of a plant intracellular metabolite content class using image-based deep learning


Plant-derived secondary metabolites play a vital role in the food, pharmaceutical, agrochemical and cosmetic industry. Metabolite concentrations are measured after extraction, biochemistry and analyses, requiring time, access to expensive equipment, reagents and specialized skills. Additionally, metabolite concentration often varies widely among plants, even within a small area. A quick method to estimate the metabolite concentration class (high or low) will significantly help in selecting trees yielding high metabolites for the metabolite production process. Here, we demonstrate a deep learning approach to estimate the concentration class of an intracellular metabolite, azadirachtin, using models built with images of leaves and fruits collected from randomly selected Azadirachta indica (neem) trees in an area spanning 500,000 sqkms and their corresponding biochemically measured metabolite concentrations.