Intro to Machine Learning in H2O


The focus of this workshop is machine learning using the H2O R and Python packages. H2O is an open source distributed machine learning platform designed for big data, with the added benefit that it's easy to use on a laptop (in addition to a multi-node Hadoop or Spark cluster). The core machine learning algorithms of H2O are implemented in high-performance Java; however, fully featured APIs are available in R, Python, Scala, REST/JSON and also through a web interface. Since H2O's algorithm implementations are distributed, this allows the software to scale to very large datasets that may not fit into RAM on a single machine. H2O currently features distributed implementations of generalized linear models, gradient boosting machines, random forest, deep neural nets, dimensionality reduction methods (PCA, GLRM), clustering algorithms (K-means), and anomaly detection methods, among others.