Artificial-intelligence system surfs web to improve its performance


Of the vast wealth of information unlocked by the Internet, most is plain text. The data necessary to answer myriad questions--about, say, the correlations between the industrial use of certain chemicals and incidents of disease, or between patterns of news coverage and voter-poll results--may all be online. But extracting it from plain text and organizing it for quantitative analysis may be prohibitively time consuming. Information extraction--or automatically classifying data items stored as plain text--is thus a major topic of artificial-intelligence research. Last week, at the Association for Computational Linguistics' Conference on Empirical Methods on Natural Language Processing, researchers from MIT's Computer Science and Artificial Intelligence Laboratory won a best-paper award for a new approach to information extraction that turns conventional machine learning on its head.