DataWorkshop Club Conf 2019 Machine Learning Conference Online

#artificialintelligence 

Recent years have seen a rising interest in developing AI algorithms for real world big data domains ranging from autonomous cars to personalized assistants. At the core of these algorithms are architectures that combine deep neural networks, for approximating the underlying multidimensional state-spaces, with reinforcement learning, for controlling agents that learn to operate in said state-spaces towards achieving a given objective. The talk will first outline notable past and future efforts in deep reinforcement learning as well as identify fundamental problems that this technology has been struggling to overcome. Towards mitigating these problems (and open up an alternative path to general artificial intelligence), I will then summarize a brain computing model of intelligence, rooted in the latest findings in neuroscience. The talk will conclude with an overview of the recent research efforts in the field of multi-agent systems, to provide the future teams of humans and agents with the necessary tools that allow them to safely co-exist.