Data Cleansing with Apache Spark and Optimus

#artificialintelligence 

Outdated, inaccurate, or duplicated data won't drive optimal data driven solutions. When data is inaccurate, leads are harder to track and nurture, and insights may be flawed. The data on which you base your big data strategy must be accurate, up-to-date, as complete as possible, and should not contain duplicate entries. Cleaning data is the most time-consuming and least enjoyable data science task (until Optimus), but one of the most important ones. No one can start a data science, machine learning or data driven solution without being sure that the data that they'll be consuming is at its optimal stage.