Autonomous system uses quadcopters to help wheeled robots climb steep cliffs


Sheer cliff faces present a traversal challenge for most wheeled robots on the market, but researchers at the University of Tokyo say they've developed a two-robot framework that works pretty reliably in their testing. In a newly published paper on the preprint server "[We] propose a novel cooperative system for an Unmanned Aerial Vehicle (UAV) and an Unmanned Ground Vehicle (UGV) which utilizes the UAV not only as a flying sensor but also as a tether attachment device," the authors of the paper explain. "[It enhances] the poor traversability of the UGV by not only providing a wider range of scanning and mapping from the air, but also by allowing the UGV to climb steep terrains with the winding of the tether." The UGV is permanently attached via mechanized winch and cable to the UAV, a custom-made quadcopter with an Nvidia Jetson TX2 chipset, a flight controller, and a raft of sensors including a modular fisheye camera, time-of-flight sensor, inertial measurement unit (IMU), and laser sensor.