Deep biomarkers of aging and longevity: From research to applications

#artificialintelligence 

IMAGE: Using age predictors within specified age groups to infer causality and identify therapeutic interventions. The deep age predictors can help advance aging research by establishing causal relationships in nonlinear systems. Deep aging clocks can be used for identification of novel therapeutic targets, evaluating the efficacy of various interventions, data quality control, data economics, prediction of health trajectories, mortality, and many other applications. Dr. Alex Zhavoronkov from Insilico Medicine, Hong Kong Science and Technology Park, in Hong Kong, China & The Buck Institute for Research on Aging in Novato, California, USA as well as The Biogerontology Research Foundation in London, UK said "The recent hype cycle in artificial intelligence (AI) resulted in substantial investment in machine learning and increase in available talent in almost every industry and country." Over many generations humans have evolved to develop from a single-cell embryo within a female organism, come out, grow with the help of other humans, reach reproductive age, reproduce, take care of the young, and gradually decline.