Deep Double Descent

#artificialintelligence 

We show that the double descent phenomenon occurs in CNNs, ResNets, and transformers: performance first improves, then gets worse, and then improves again with increasing model size, data size, or training time. This effect is often avoided through careful regularization. While this behavior appears to be fairly universal, we don't yet fully understand why it happens, and view further study of this phenomenon as an important research direction. The peak occurs predictably at a "critical regime," where the models are barely able to fit the training set. As we increase the number of parameters in a neural network, the test error initially decreases, increases, and, just as the model is able to fit the train set, undergoes a second descent.

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilarity
None found