UNSW obtains 10-fold boost in quantum computing stability

ZDNet 

Engineers at the University of New South Wales (UNSW) have created a new quantum bit (qubit) which remains in a stable superposition for 10 times longer than previously achieved, expanding the time during which calculations could be performed in a future silicon quantum computer. According to Arne Laucht, a Research Fellow at the School of Electrical Engineering & Telecommunications at UNSW, the new qubit, made up of the spin of a single atom in silicon and merged with an electromagnetic field -- known as a dressed qubit -- retains quantum information for much longer that an "undressed" atom, which opens up new avenues quantum computer creation. The Australian-based team said the race to building a quantum computer has been called the "space race of the 21st century" as it is both a difficult and ambitious challenge to undertake. The appeal, however, is the potential to deliver revolutionary tools for tackling otherwise impossible calculations, such as the design of complex drugs and advanced materials, or the rapid search of large-scale, unsorted databases. Explaining the importance of the breakthrough, Andrea Morello, leader of the research team and a Program Manager in the Centre for Quantum Computation & Communication Technology (CQC2T) at UNSW, said its speed and power lies in the fact that quantum systems can host multiple "superpositions" of different initial states, treated as inputs in a computer that all get processed at the same time.

  Country:
  Industry: Government (0.37)
  Technology: Information Technology > Hardware (1.00)