Resolving single-cell heterogeneity from hundreds of thousands of cells through sequential hybrid clustering and NMF


We describe a new iteration of ICGS that outperforms state-of-the-art scRNA-Seq detection workflows when applied to well-established benchmarks. This approach combines multiple complementary subtype detection methods (HOPACH, sparse-NMF, cluster "fitness", SVM) to resolve rare and common cell-states, while minimizing differences due to donor or batch effects. Using data from multiple cell atlases, we show that the PageRank algorithm effectively down-samples ultra-large scRNA-Seq datasets, without losing extremely rare or transcriptionally similar yet distinct cell-types and while recovering novel transcriptionally distinct cell populations. We believe this new approach holds tremendous promise in reproducibly resolving hidden cell populations in complex datasets.

Duplicate Docs Excel Report

None found

Similar Docs  Excel Report  more

None found