Using AI To Analyze Video As Imagery: The Impact Of Sampling Rate

#artificialintelligence 

Plate from Muybridge's Animal Locomotion series published in 1887. Deep learning has become the dominate lens through which machines understand video. Yet video files consume huge amounts of storage space and are extremely computationally demanding to analyze using deep learning. Certain use cases can benefit from converting videos to sequences of still images for analysis, enabling full data parallelism and vast reductions in data storage and computation. Representing video as still imagery also presents unique opportunities for non-consumptive analysis similar to the use of ngrams for text.