Machine Learning for Finance in Python


Time series data is all around us; some examples are the weather, human behavioral patterns as consumers and members of society, and financial data. In this course, you'll learn how to calculate technical indicators from historical stock data, and how to create features and targets out of the historical stock data. You'll understand how to prepare our features for linear models, xgboost models, and neural network models. We will then use linear models, decision trees, random forests, and neural networks to predict the future price of stocks in the US markets. You will also learn how to evaluate the performance of the various models we train in order to optimize them, so our predictions have enough accuracy to make a stock trading strategy profitable.

Duplicate Docs Excel Report

None found

Similar Docs  Excel Report  more

None found