Can we trust scientific discoveries made using machine learning?

#artificialintelligence 

Allen, associate professor of statistics, computer science and electrical and computer engineering at Rice and of pediatrics-neurology at Baylor College of Medicine, will address the topic in both a press briefing and a general session today at the 2019 Annual Meeting of the American Association for the Advancement of Science (AAAS). "The question is, 'Can we really trust the discoveries that are currently being made using machine-learning techniques applied to large data sets?'" "The answer in many situations is probably, 'Not without checking,' but work is underway on next-generation machine-learning systems that will assess the uncertainty and reproducibility of their predictions." Machine learning (ML) is a branch of statistics and computer science concerned with building computational systems that learn from data rather than following explicit instructions. Allen said much attention in the ML field has focused on developing predictive models that allow ML to make predictions about future data based on its understanding of data it has studied. "A lot of these techniques are designed to always make a prediction," she said.