On Education Decision Trees, Random Forests, AdaBoost & XGBoost in Python - all courses

#artificialintelligence 

Get a solid understanding of decision tree Understand the business scenarios where decision tree is applicable Tune a machine learning model's hyperparameters and evaluate its performance. Use Pandas DataFrames to manipulate data and make statistical computations. Use decision trees to make predictions Learn the advantage and disadvantages of the different algorithms Students will need to install Python and Anaconda software but we have a separate lecture to help you install the same You're looking for a complete Decision tree course that teaches you everything you need to create a Decision tree/ Random Forest/ XGBoost model in Python, right? You've found the right Decision Trees and tree based advanced techniques course! After completing this course you will be able to: Identify the business problem which can be solved using Decision tree/ Random Forest/ XGBoost of Machine Learning.