AI for code encourages collaborative, open scientific discovery

#artificialintelligence 

We have seen significant recent progress in pattern analysis and machine intelligence applied to images, audio and video signals, and natural language text, but not as much applied to another artifact produced by people: computer program source code. In a paper to be presented at the FEED Workshop at KDD 2018, we showcase a system that makes progress towards the semantic analysis of code. By doing so, we provide the foundation for machines to truly reason about program code and learn from it. The work, also recently demonstrated at IJCAI 2018, is conceived and led by IBM Science for Social Good fellow Evan Patterson and focuses specifically on data science software. Data science programs are a special kind of computer code, often fairly short, but full of semantically rich content that specifies a sequence of data transformation, analysis, modeling, and interpretation operations.