Google AI predicts hospital inpatient death risks with 95% accuracy

#artificialintelligence 

Using raw data from the entirety of a patient's electronic health record, Google researchers have developed an artificial intelligence network capable of predicting the course of their disease and risk of death during a hospital stay, with much more accuracy than previous methods. The deep learning models were trained on over 216,000 deidentified EHRs from more than 114,000 adult patients, who had been hospitalized for at least one day at either the University of California, San Francisco or the University of Chicago. For those two academic medical centers, the AI predicted the risks of mortality, readmission and prolonged stays, as well as discharge diagnoses, by ICD-9 code. The network was 95% accurate in predicting a patient's risk of dying while in the hospital--with a much lower rate of false alerts--than the traditional regressive model--the augmented Early Warning Score--which measures 28 factors and was about 85% accurate at the two centers. The researchers' findings were published last month in the Nature journal npj Digital Medicine.