Nonlinearity-induced photonic topological insulator

Science 

Ways to control and design topological features in various systems are being studied intensively because the resulting properties tend to be robust against things such as scattering and defects, endowing the system with topological protection. Maczewsky et al. now look to another regime in optics to show that optical nonlinearity can induce a topological change in the properties of a photonic lattice. At low excitation power, probe light uniformly leaks into the rest of the lattice, an optically trivial phase. Above a threshold power, optical nonlinearity induces a topological change in the properties of the photonic lattice, and probe light is confined to propagate along the edge of the structure. These results illustrate a route to dynamically control the propagation of light. Science , this issue p. [701][1] A hallmark feature of topological insulators is robust edge transport that is impervious to scattering at defects and lattice disorder. We demonstrate a topological system, using a photonic platform, in which the existence of the topological phase is brought about by optical nonlinearity. The lattice structure remains topologically trivial in the linear regime, but as the optical power is increased above a certain power threshold, the system is driven into the topologically nontrivial regime. This transition is marked by the transient emergence of a protected unidirectional transport channel along the edge of the structure. Our work studies topological properties of matter in the nonlinear regime, providing a possible route for the development of compact devices that harness topological features in an on-demand fashion. [1]: /lookup/doi/10.1126/science.abd2033

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
None found